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Abstract
Similar toWeyl fermions, a recently discovered topological fermion ‘triple point’ can be generated
from the splitting ofDirac fermion in the systemswith inversion symmetry (IS) breaking or time-
reversal symmetry (TRS) breaking. Inducing triple points in IS breaking symmorphic systems have
beenwell studied, but the same cannot be said for the TRS breaking symmorphic systems. In this
work, we extend the theory of searching for triple points to all symmorphicmagnetic systems.We list
among all symmorphic systems all the k paths which allow the existence of triple points.With this
systematic study, we also found that the coexistence ofDirac points and triple points is allowed in
some particular symmetric systems. Besides theoretical analysis, we carried out numerical analysis as
well. According to ourfirst-principles calculations, B Re3 7 and As Ni2 5 are the candidates for realizing
the coexistence ofDirac and triple points.We have not only provided an exhaustive triple point search
mechanism for the symmorphic systems, but also identifiedmaterial systems that host theDirac and
the triple points.

1. Introduction

Over the past few decades, topology has been emerging in condensedmatter physics. The development started
from the quantumHall effect [1, 2]which is the quantum-mechanical version of theHall effect. The second
stage of development is the quantum anomalousHall effect [3–6]which is a quantumHall effect without
externalmagnetic field. The third stage of development is the quantum spinHall effect [7–12]which is a
quantumHall effect without the breaking of time-reversal symmetry (TRS). Analogous to quantum spinHall
effect which pumps spin, there are topological crystalline insulators [13–16]which can pump the eigenvalues of
mirror symmetry. All these four topological phenomena are insulating in bulk band, but have topologically
protected surface states which are conducting.

Besides looking for topological phenomena in bulk insulatingmaterials, scientists also look for
topological phenomenon in bulkmetallicmaterials. Recently, topologicalmetals such as Dirac semimetal
[17–21],Weyl semimetal [22–29] and triple point semimetal [29–42] have been discovered. These topological
metals have topologically protected surface states just like those quantumHall effects. Nomattermetallic in
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bulk or insulating in bulk, as long as their surface state are topologically protected, they can be promising
candidates for electronic devices or even spintronic devices. Thus they can be valuable for industrial
applications. On the other hand, topologicalmetal provides a different playground and relatively lower price
to search for those elementary particles described by relativistic quantum field theory. Since topologicalmetal
is valuable for both academic research and industrial applications, it has drawn a lot of attention in recent
years.

One of the topologicalmetals hosting a quasiparticle analogue of an elementary particle is theDirac
semimetal. The earliest foundDirac semimetal is Na Bi3 [19]. Na Bi3 has both inversion symmetry (IS) andTRS,
thus all bands at every k points in the Brillouin zone are at least doubly degenerate.When a doubly degenerate
band linearly crosses over another doubly degenerate band at a k point, a four-fold degenerate Dirac point is
formed. Such aDirac point can be an analogue of theDirac fermion described by relativistic quantumfield
theory in high energy physics.

In high energy physics, breaking TRS or IS causesDirac fermion to split intoWeyl fermions. In condensed
matter physics, bands can be non-degenerate when systemdoes not have TRS or IS.When a non-degenerate
band linearly crosses over another non-degenerate band at a k point, a two-fold degenerateWeyl point is
formed. Such aWeyl point can be an analogue ofWeyl fermion in high energy physics too.

However, in condensedmatter physics, fermions in crystal are constrained bymagnetic space group (MSG)
symmetries rather than by Lorentz invariance. This gives rise to the uncertainty that doubly degenerate bands
may ormay not split whenTRS or IS is broken. In this paper, wewill discuss a new fermion-triple point which
has no counterparts in high energy physics and can be formed by a non-degenerate band linearly crossing
over a doubly degenerate band at a k point. In general, the formations of triple points can be caused by the
nonsymmorphic or the symmorphicMSG symmetries, but aswe emphasize in the title, we only discuss those
triple points which are caused by the symmorphicMSG symmetries.

If Dirac fermions in condensedmattermust has TRS and IS just like theDirac fermions in high energy
physics, then it cannot coexist with triple points which need to break either TRS or IS. However, recent research
shows thatDirac fermions in condensedmatter can exist in a systemwithout TRS·IS [43, 44]. This gives rise to
the possibility offinding several systemswhich have two k pathswith two different symmetry groups: one allows
the existence ofDirac points while another one allows the existence of triple points.

We organize this paper as follows. In section 2, we review the condition of forming triple points by discussing
a special case [19, 33, 43]. In section 3, we generalize this condition to allmagnetic point groups (MPGs) and list
all possible k paths of all possible symmorphic systemswhich allow the existence of triple points. In section 4, we
point out that the coexistence ofDirac points and triple points is symmetrically allowed in some particular
symmetric systems. In section 5, we provide examples, B Re3 7 and As Ni2 5, to realize the coexistence ofDirac
points and triple points. In section 6, we summarize the contributions of this paper.

2. The condition of forming triple points

Similar toWeyl fermions in high energy physics, triple points in condensedmatter physics can be split from
Dirac fermionswhenTRS or IS of the system is broken. It is well known thatDirac fermions can exist in a system
which has both TRS andD6h point group symmetry (D6h is a Schoenflies notation for origin point group, please
refer to [45] for all origin point groups in Schoenflies notation). In this section, we are going to use this system as
an example to showhow triple points split fromDirac fermions and point out the necessary condition of
forming triple points.

D6h point group includesC3z,C2z,Mx and IS (please refer to [46, 47] for symbols’meaning and orientation of
the symmetry operators of any origin point groups). Since the systemhas TRS and IS, all bands have spin
degeneracy at any k point. AsDirac fermions are a crossing point of two 2-fold degenerate bands, Dirac fermion
is a point of 4-fold degeneracy.

If all bands have spin degeneracy at any k point, triple point cannot be formed (triple point is a point of 3-fold
degeneracy). Thus TRS or ISmust be broken to induce triple points. However, at a high symmetry k point/path/
plane, TRS and IS are not the only symmetries which protect the degeneracy of bands. Therefore, other crystal
symmetries need to be considered.

To bemore specific, we assume that the irreducible representations of the bandswhich form theDirac points
are E g u1 and E g u3 (the symbols of irreducible representations arewritten in extendedMulliken notation).With
the irreducible representations, thematrix forms of the symmetry operators are as follows:
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where TRO is the operator of TRS andK is complex conjugate operator.
If a symmetry operator S (S can be a unitary or an anti-unitary operator) acts on a kh vector, such that

Sk k nGh h= + , whereG is any reciprocal lattice vector and n is any integer number, then all such symmetry
operators form the little group of kh.

Firstly, we only consider the unitary subgroup of the little group of kh. HamiltonianH(kh) has to commute
with all the symmetry operators of the unitary subgroup of the little group of kh. If any symmetry operators of
this unitary subgroup does not commutewith each other in a subspace of theHilbert space, thenH(kh) has to be
degenerate in this subspace, otherwiseH(kh) cannot commutewith all the symmetry operators of the unitary
subgroup simultaneously.

Furthermore, those anti-unitary symmetry operators of the little group of kh could cause extra degeneracy.
In symmorphic system, in order to consider all the symmetry operators of the little group of kh, we have to treat
the little group as anMPG rather than the original point group, regardless if the systemdoes or does not have any
magneticmoment. If the systemdoes not have anymagneticmoment, then it has TRS. Thus the symmetry
group of the system is one of the grey groups of the 122MPGs. The little group of kh of this system is a subgroup
of the grey group. Therefore, the little group of kh of a paramagnetic system could be anyMPG. All 122MPGs
can be classified into three types: 32 ordinary point groups, 32 ‘grey’ point groups and 58 ‘black andwhite’MPGs
(grey point groups are the groups contain TRS symmetry and their point group symbols always have ‘1¢’ at the
end. For example ‘ mmm6 1¢’ is a grey point group. Similar denotations are forMSG.MSG symbol always has 1¢
at the end if the space group has TRS. Please refer to [45] for further details ofMPG andMSG symbols). The
degeneracies of the ordinary point groups have been discussed hereinabove. The extra degeneracies caused by
the TRS of any grey point groups are known as theKramers degeneracywhich havewell discussed too [47]. The
extra degeneracies caused by the anti-unitary symmetry operators of any black andwhiteMPGs are discussed in
the appendix of this paper.

In the systemwithD6h andTRS, any k point onΓ−Z axis-kz is invariant underC3z,C2z rotation orMx

reflection or (TRO·IS) operation, thus the symmetry group ofΓ−Z axis is m mm6 ¢ which is a black andwhite
MPG.According to equation (1),C2z does not commutewithMx in both E g u1 and E g u3 . Furthermore,
according to table A1, the anti-unitary operators in m mm6 ¢ do not cause any extra degeneracy. Thus, E g u1 and
E g u3 are both 2-fold degenerate along the kz path. Besides, E g u1 and E g u3 are two different irreducible
representations in kz path, so any coupling between these two representations (bands) are forbidden.Hence,
therewill be no gap openingwhen these two bands come across each other at kz path. Therefore, under such
symmetry condition, a linear crossing between two 2-fold degenerate bands is allowed and so is the 4-fold
degenerateDirac point.

The symmetry condition that allows the existence ofDirac points can be streamlined and generalized as
follows: Dirac points can exist at a k pathwhose symmetry group has two ormore than two 2-dimensional
double group irreducible representations.Wewill simply call this symmetry conditionCondition A.

If the TRS of the system is broken, the symmetry group of kz path is reduced from m mm6 ¢ toC6v. Since the
2-fold degeneracy of E g u1 and of E g u3 remain protected byC2z andMx, theDirac points on kz path do not split
just because of TRS breaking. IfMx symmetry is chosen for further symmetry breaking, all symmetry operators
of the little group of kz path commutewith each other. Both E g u1 and E g u3 will split. If wewant to induce triple
points, breakingMx symmetry is not an option. IfC2z is chosen for the further symmetry breaking, the symmetry
group of the little group of kz path becomesC3v. All symmetry operators in E g u3 commutewith each other, the
symmetry operators in E g u1 do not commutewith each other. Thus E g u1 remains a 2-fold degeneracywhereas
E g u3 splits into two non-degenerate bands. On kz path, sinceC3z symmetry can prevent any coupling between
E g u1 and E g u3 , these representations still belong to different irreducible representations. Therefore, the
crossing point will not be gapped. Thus eachDirac point will split into two triple points when theC2z andTRS
are broken. The variations of band structures and of system symmetry are shown infigure 1.

This physical phenomenonwill be further clarified if we use the k·P expansion andmethod of invariants to
calculate theHamiltonian aroundΓ point for kz path:
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this is theHamiltonian for the systemwithD3d symmetry andwithout TRS; the expansion is only up to the first
order of k for off-diagonalmatrix elements and up to the second order of k for diagonalmatrix elements;

k A A kz z0 0 1
2e = +( ) .C0 andC1 are real positive k independent coefficients.A0,A1 andD are real k independent

coefficients.
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=- -( ) ( ). If only considering the
Hamiltonian ofΓ−Z axis, all thesematrix elements become zero. This explains: ‘on kz path,C3z symmetry can
prevent any coupling between E g u1 and E g u3 , such that these representations belong to different irreducible
representations.’ Furthermore breakingC2z symmetry andTRS induces D 2x z x0t s t s-( ) (τ is theHilbert
space of the combined E g u1 and E ;g u3 σ is theHilbert spacewithin E g u1 orwithin E g u3 ). This term splits E g u3

into two 1-dimensional irreducible representations. Thus the 4-fold degenerateDirac point splits into two
3-fold degenerate triple points.

Base on the above analysis, the symmetry condition that allows the existence of triple points can be
streamlined as follows: triple points can only exist at a k pathwhose symmetry group contains both
1-dimensional and 2-dimensional double group irreducible representations [33].Wewill simply call this
symmetry conditionCondition B.

3. Triple points in all symmorphic systems

In this section, we are going tofind among all possible symmorphic systems all possible k paths that allow the
existence of triple points.

In a symmorphic system, symmetry group of any k points is one of theMPGs. So thefirst step is to check
among the 122 types ofMPGs and list all theMPGswhich canmatch the symmetry condition that allows the
existence of triple points.

Among the 32 types of ordinary point groups, there are 3 types, namelyC3v,D3 andD3d, of point groups that
satisfy Condition B. In all the Brillouin zone of the 14 types of Bravais lattice, only 6 types of k path containC3

symmetry (there is no k plane containsC3 symmetry). These 6 types of k path areΛ andP of the trigonal;Γ−Z
andK−H of the hexagonal; 1 1 1 direction of cubicP (simple cubic), cubic F (face-centered cubic) and cubic I
(body-centered cubic); F of cubic I (since there is no unified k path symbol, the Brillouin zones are demonstrated
infigure 2 to define the 6 symbols which are used formarking the 6 types of k path). These 6 types of k path can
only containC3v, none of them can containD3 orD3d. Therefore, among the ordinary point groups onlyC3v can
match the symmetry condition that allows the existence of triple points.

Since operating TROon k is to change the sign of k, only k points, not k paths, allow grey point group to be
their symmetry group. Thus, if the symmetry group of k is a grey point group, triple point cannot exist on this k.

All black andwhiteMPGs contain a set of unitary operators which form a unitary subgroup (one of the
ordinary point group), and this unitary subgroup has a set of double group irreducible representations. The rest
of the operators of the black andwhiteMPGare anti-unitary operators. These anti-unitary operators cannot

Figure 1.The schematic figure of the symmetry reduction processes of the system. After the system symmetry has been reduced from
D DTRSh h6 6+ ( ) toD6h, both E g u1 and E g u3 do not split.When the symmetry of the system becomesD3d, E g u1 remains 2-fold
degenerate whereas E g u3 splits into two non-degenerate bands. TheDirac points aremarked in black circles and the triple points are
marked in red circles.
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generate any double group irreducible representation, but they can further ‘degenerate’ the ordinary double
group irreducible representations (as shown in appendix). The further degeneracies could allow the existence of
triple points, whereas the ordinary double group irreducible representations forbid that.Or contrarily, the
further degeneracies forbid the existence of triple points, whereas the ordinary double group irreducible
representations allow that.

Among all the 58 types of black andwhiteMPGs, 17 types have further degeneracies (as shown in table A1).
Among the 17 types, only 6- ¢ allows the existence of triple points, whereas the double group irreducible
representations of its unitary subgroup forbid that. All the other 16 types forbid the existence of triple points due
to one ormore of the following reasons: (1) the presence of element-TRS ·IS, (2) the absence of 1-dimensional
double group irreducible representation, (3) the absence of k path belonging to the black andwhiteMPG.
Among the 16 types, m3- ¢ is the one that forbids the existence of triple points, whereas the double group
irreducible representations of its unitary subgroup (its unitary subgroup isC3v) allow that. For later discussion, it
would be important to notice that m3- ¢ has the element of 1- ¢ ( 1- ¢ is IS ·TRS).

Next step is to look for k paths, in all symmorphic systems, which allow the existence of triple points.We can
directly look for these k paths in all the symmorphicMSGs.However, there are toomany symmorphicMSGs.
Thuswe choose to analyzeMPGof the symmorphicMSG first. In this way a large number of unqualifiedMSGs
can be excluded. Thenwe contrast those qualifiedMPG systemswith theirMSG symbols.

Asmentioned above, there are two kinds of k paths allowing the existence of triple points: the first kind is the
k pathswhich belong to 6- ¢ black andwhiteMPG; the second kind is the k pathswhose unitary subgroup
belongs toC3vwhile the k paths do not have 1- ¢ symmetry.Wewill search for these two kinds of k paths
separately.

Firstly, we search for the k pathswhich belong to 6- ¢. If the Brillouin zone of a system contains the 6- ¢ k
path, the crystal symmetry (directions ofmagneticmoments are not counted for crystal symmetry) of the system
must containsC3h symmetry. According to the subgroup decomposition of the 32 point groups in [47], the
crystal symmetry of the system containsC3h symmetry only if the crystal symmetry of the system isD6h orD3h or
C6h orC3h. The Bravais lattice of these four kinds of crystal symmetry isHexagonal. In the Brillouin zone of
Hexagonal Bravais lattice, onlyΓ−Z can contain all the symmetry elements of 6- ¢. Thuswe only need to

Figure 2.The Brillouin zone for (a) trigonal with a c2> , (b) trigonal with a c2< , (c) hexagonal, (d) cubic P, (e) cubic F and
(f) cubic I. All the k paths, which containC3 symmetry, aremarked in green. Other Brillouin zones, which cannot containC3

symmetry, are omitted.
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determinewhether theΓ−Z of allMPG systems ofD6h,D3h,C6h andC3h belong to 6- ¢. The results are shown at
table 1.

Secondly, we search for the k pathswhose unitary subgroup belongs toC3vwhile the k paths do not have 1- ¢
symmetry. If the Brillouin zone of a system contains such k path, the symmetry group of the systemmust contain
C3v symmetry. According to the subgroup decomposition of the 32 point groups in [47], the symmetry group of
the system containsC3v symmetry only if the crystal symmetry of the system is one of the seven symmetries,
namelyC3v,Td,Oh,C6v,D3d,D3h andD6h. Furthermore, as (TRO · IS) acting on any k is equal to k, any k point in
the Brillouin zone contains (TRO · IS) symmetry if and only if the system contains (TRO · IS) symmetry. Thuswe
can use two symmetry conditions tofiltermost of theMPGswhich belong to the seven crystal symmetry: 1. the
systemmust containC3v symmetry; 2. the systemmust not contain (TRO · IS) symmetry. Besides, the k paths
which containC3v symmetrymust containC3 symmetry. Hence, asmentioned above, the k pathwhose unitary
subgroup isC3v symmetrymust be one of the following:Λ andP of trigonal;Γ−Z andK−H of hexagonal; 111
direction of cubic P, cubic F and cubic I; F of cubic I. All we need to do is to determinewhether the unitary
subgroup, of these 6 types of k paths in the Brillouin zone of the filteredMPG systems, isC3v symmetry. The
determining processes and results are given in table 2.Notice that for the Brillouin zone of trigonal Bravais
lattice, the k path-P appears only if lattice constants fulfill the condition of a c2> (please refer to table 3.1 of
[45] for the definitions of lattice constant a and lattice constant c). Sometimes, the k path-K−H of theHexagonal
Bravais lattice is not contained in themirror plane ofC3v symmetry, such thatK−H does not containC3v

symmetry. Hence, we need theMSG to determinewhether the existence of triple points is allowed on this k path.
Thus, some answers in thefifth columnof table 2 are ‘MSG is needed’. Combining table 1 and table 2, then
contrastingwithMSG,we can get among all symmorphic systems all the k pathswhich allow the existence of
triple points (as shown in table 3).

4. Symmetry-allowed coexistence ofDirac point and triple point

The degeneracy of aDirac fermion in high energy physics is protected byTRS and IS.However, the degeneracy
of aDirac fermion in condensedmatter can be preserved in a k pathwhose symmetry group satisfy ConditionA
(asmentioned in section 2). ThatmeansDirac fermion can exist in a systemwhich does not contain (TRO ·IS)
symmetry. This gives rise to the possibility of the coexistence ofDirac fermion and odd-fold degenerate fermion.
We know that triple points can exist in a k pathwhose symmetry group satisfy Condition B (asmentioned in
section 2 too). Combining the condition of existence for theDirac fermionwith the condition of existence for
the triple point, wefind that there are several systemswhich allow the coexistence ofDirac points and triple

Table 1.The list ofMPG system thatmight
contain k path of the first kind. The first column
is the label ofMPG systems. Answer of ‘Does
Γ–Z of the system belong to 6- ¢?’ is given in the
second column.

Label ofMPG systems DoesΓ−Z belong to

6- ¢?

(C6h) 6/m no

6/m1′ no

6′/m′ yes

6′/m no

6/m′ no

(D3h)−6m2 no

−6m21′ no

−6m′2′ no

−6′m2′ no

−6′m′2 yes

(D6h) 6/mmm no

6/mmm1′ no

6/m′mm no

6/mm′m′ no

6/m′m′m′ no

6′/mmm′ no

6′/m′mm′ no

(C3h)−6 no

−61′ yes

−6′ yes
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Table 2.The list of system symmetry thatmight contain k paths of the second kind. Thefirst column is the label ofMPG systems. The second
column showswhether the system isfiltered out by the symmetry condition of ‘containingC3v but not 1- ¢’. The third column is the class of
the Brillouin zone. The fourth column is the label of the k path. Thefifth column shows answers forwhether the k path allows the existence of
the triple points. Sometimes, the k path-K–H of theHexagonal Bravais lattice is not contained in themirror plane ofC3v symmetry and
consequentlyK–H does not containC3v symmetry. Hence, we need theMSG to determinewhether the existence of the triple points is
allowed on this k path. Thus, some answers in thefifth column are ‘MSG is needed’. For the Brillouin zone of the trigonal Bravais lattice, the
k path-P appears only if lattice constants fulfill the condition of a c2> .

Symmetry of ContainsC3v or not? Brillouin zone k path The existence
the system contains 1- ¢ or not? of triple points

(C3v) 3 m containsC3v, but no 1- ¢ trigonal Λ yes
P yes

Hexagonal Γ−Z yes
K−H MSG is needed

3m1′ containsC3v, but no 1- ¢ trigonal Λ yes
P yes

Hexagonal Γ−Z yes
K−H MSG is needed

3m′ noC3v

(Td)−43 m containsC3v, but no 1- ¢ cubic P 1 1 1 yes

cubic F 1 1 1 yes
cubic I 1 1 1 yes

F yes
−43m1′ containsC3v, but no 1- ¢ cubic P 1 1 1 yes

cubic F 1 1 1 yes
cubic I 1 1 1 yes

F yes
−4′3m′ noC3v

(Oh)m-3 m containsC3v, but no 1- ¢ cubic P 1 1 1 yes
cubic F 1 1 1 yes

cubic I 1 1 1 yes
F yes

m-3m1′ contains 1- ¢
m′-3′m contains 1- ¢
m-3m′ noC3v

m′-3′m′ contains 1- ¢
(C6v) 6 mm containsC3v, but no 1- ¢ Hexagonal Γ−Z no

K−H yes
6mm1′ containsC3v, but no 1- ¢ Hexagonal Γ−Z no

K−H yes
6′mm′ containsC3v, but no 1- ¢ Hexagonal Γ−Z yes

K−H MSG is needed
6m′m′ noC3v

(D3d) -3 m containsC3v, but no 1- ¢ trigonal Λ yes
P yes

Hexagonal Γ−Z yes
K−H MSG is needed

−3m1′ contains 1- ¢
−3′m contains 1- ¢
−3′m′ noC3v

−3m′ noC3v

(D3h)−6m2 containsC3v, but no 1- ¢ Hexagonal Γ−Z yes
K−H MSG is needed

-6m21′ containsC3v, but no 1- ¢ Hexagonal Γ−Z yes
K−H MSG is needed

−6m′2′ noC3v

−6′m2′ containsC3v, but no 1- ¢ Hexagonal Γ−Z yes

K−H MSG is needed
−6′m′2 noC3v

(D6h) 6/mmm containsC3v, but no 1- ¢ Hexagonal Γ−Z no
K−H yes

6/mmm1′ contains 1- ¢
6/m′mm contains 1- ¢
6/mm′m′ noC3v

6/m′m′m′ contains 1- ¢
6′/mmm′ contains 1- ¢
6′/m′mm′ containsC3v, but no 1- ¢ Hexagonal Γ−Z yes

K−H MSG is needed
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points.T andΔ of Pm m3 ,Δ of Fm m3 ,Δ of Im m3 ,Γ−Z of P mmm6 ,Γ−Z of P mm6 andΓ−Z of P mm6 1¢
allow the existence ofDirac points while the k paths of these several systems, which allow the existence of triple
points, are given in table 3. The Brillouin zone of these several systems and definitions ofT andΔ are shown in
figure 3.

Then two questions surfaced:

Table 3.The list of all k pathswhich allow the existence of
triple points. The first column is the label ofMSG systems
which allow the existence of triple points. The second
column are the k paths of the systemwhich allow the
existence of triple points. The third column is the kind of
the k path. Thefirst kind of k paths is from table 1 and the
second kind is from table 2.

Label ofMSG systems k path the kind of k path

P3m1 Γ−Z first kind

P3m11′ Γ−Z first kind

P31m Γ−Z first kind

K−H first kind

P31m1′ Γ−Z first kind

K−H first kind

R3m Λ first kind

P first kind

R3m1′ Λ first kind

P first kind

P-31 m Γ−Z first kind

K−H first kind

P-3m1 Γ−Z first kind

R-3 m Λ first kind

P first kind

P-61′ Γ−Z second kind

P-6′ Γ−Z second kind

P6′/m′ Γ−Z second kind

P6mm K−H first kind

P6mm1′ K−H first kind

P6′m′m Γ−Z first kind

P6′mm′ Γ−Z first kind

K−H first kind

P-6m2 Γ−Z first kind

P-6m21′ Γ−Z first kind

P-6′m′2 Γ−Z second kind

P-6′m2′ Γ−Z first kind

P-62 m Γ−Z first kind

K−H first kind

P-62m1′ Γ−Z first kind

K−H first kind

P-6′2′m Γ−Z first kind

K−H first kind

P-6′2m′ Γ−Z second kind

P6/mmm K−H first kind

P6′/m′m′m Γ−Z first kind

P6′/m′mm′ Γ−Z first kind

K−H first kind

P-43 m 1 1 1 first kind

P-43m1′ 1 1 1 first kind

F-43 m 1 1 1 first kind

F-43m1′ 1 1 1 first kind

I-43 m 1 1 1 first kind

F first kind

I-43m1′ 1 1 1 first kind

F first kind

Pm3m 1 1 1 first kind

Fm3m 1 1 1 first kind

Im3m 1 1 1 first kind

F first kind
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(1) Is the condition of existence for theWeyl points similar to the condition of existence for the triple points?
More specifically, canWeyl points exist in a k pathwhose symmetry group contains two 1-dimensional double
group irreducible representations?

(2)Can the coexistence ofDirac points, triple points andWeyl points be allowed in some symmetric
systems?

To answer question (1), we analyze two systems: the first systemhasD3d point group symmetry with
hexagonal Bravais lattice. The symmetry group ofΓ−Z in its Brillouin zone isC3v.C3v contains two
1-dimensional double group irreducible representations. These two representations have differentmirror
symmetry eigenvalues (i and i- )whichmeans they are two different representations in themirror plane ofC3v

symmetry. Thus the crossing point inΓ−Zmust extend onto themirror planes ofC3v symmetry to form aWeyl
nodal line other than discrete points. Thismeans, in this case,Weyl points are not able to exist in a k pathwhose
symmetry group contains two 1-dimensional double group irreducible representations.

The second systemhasC3i point group symmetrywith hexagonal Bravais lattice. The symmetry group ofΓ
−Z isC3.C3 contains two 1-dimensional double group irreducible representations. This system can be viewed as
thefirst system towhich a uniformmagnetic field-Bz, in parallel with principle axis, is applied. TheBz breaks the
mirror symmetry ofC3v and theWeyl nodal line break up into nodal points. Furthermore, the band structure
along kz path can be described by equation (2) plus severalBz induced terms:

H k k

M k

M k

M k D

D M k

0 0 0

0 0 0

0 0

0 0

, 3C z z

z

z

z

z

0

1

2

3 5

5 4

i3

*

e

b
b

b b
b b

= +

+
+

- + +
+ - +

⎛

⎝
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⎞

⎠

⎟⎟⎟⎟
( ) ( )

( )
( )

( )
( )

( )

whereβ1,β2,β3 andβ4 are real whileβ5 is complex;M(kz) is C C kz0 1
2- . Solving the eigenvalues of equation (3),

wefind that the 2-dimensional double group irreducible representation-E g u1 in equation (2) splits into two
1-dimensional double group irreducible representations. Thatmeans each triple point in equation (2) splits into
two crossing points. Using k P· expansion andmethod of invariants to calculate theHamiltonian around these
crossing points can prove that these crossing points areWeyl points [48]. Therefore, the two 1-dimensional
double group irreducible representations ofΓ−Z in this system allow the existence ofWeyl points.

According to the above analysis for the two systems, theWeyl points can exist or not exist in a k pathwhose
symmetry group contains two 1-dimensional double group irreducible representations. Thus, the answer to
question (1) is negative.

For answering question (2):
TheΓ−Z of two of the abovementioned systems does not allow the coexistence ofDirac points, triple points

andWeyl points, but recent research shows that triple point andWeyl point are able to coexist with each
other [30, 35].

The symmetry requirement ofWeyl points ismuch lower than that of the triple points.Weyl points are
robust against the perturbations ofmost of the symmetry breaking.Weyl points can even exist at the k points
whose symmetry group belongs toC1 [49]. SuchWeyl points in the bulk of 3-dimensional systems only need
periodic symmetry in the absence of (TRO · IS).

Figure 3.The Brillouin zone of the systemswhich allow the coexistence ofDirac points and triple points. The Brillouin zone of (a)
P6/mmm,P6mmandP6mm1’. The Brillouin zone of (b)Pm3m, (c) Fm3mand (d) Im3m. The k paths, which allow the existence of
triple points, aremarked in green. The k paths, which allow the existence ofDirac points, aremarked in blue.
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Therefore, in view of the symmetry analysis hereinabove, the coexistence ofDirac points, triple points and
Weyl points is allowed in some systems. If that happens, it will be chaotic whether the systems are to be defined as
Dirac semimetal, triple point topologicalmetal orWeyl semimetal. There is a viewpoint that triple point
topologicalmetal is an intermediate phase betweenDirac andWeyl semimetal [33]. It can be true, but there are
overlaps among these three phases and the boundary of the phases is still obscure so far. Such a state of chaos
raises due to the use of symmetry to classify these three phases. In condensedmatter systems, the symmetry
group of a system is unique, but, in the Brillouin zone of a system, there aremany different k paths/planes
belonging to different symmetry groups. Usually, the existence ofDirac points or triple points in a k path
depends on the symmetry group of the k path, other than depending only on the symmetry group of the system.
As a result, the coexistence ofDirac points, triple points andWeyl points is symmetry-allowed.

5. Coexistence ofDirac points and triple points in B Re3 7 and As Ni2 5

In this section, we show that there are twomaterials-B Re3 7 and As Ni2 5 which allow the coexistence ofDirac
points with triple points.More interestingly, thoseDirac points and triple points can exist near the Fermi level
with orwithout electron–hole doping.

The crystal structures of B Re3 7 and As Ni2 5 are plotted infigure 4. and theBrillouin zone of these two systems is
shown infigure 3(a). According to [50, 51], both B Re3 7 and As Ni2 5 belong to P mc6 13 ¢. TheirMPG symmetry is
the sameas P mm6 1¢which has beenmentioned in section 4. Even though theC2z symmetry of P mc6 13 ¢ is
accompanied by a fractional translation, the translation is to shift 1/2 lattice constant along theZ axis. Thus the
translation does not change the irreducible representations ofΓ−Z andofK−H (exceptZpoint andHpoint).
Therefore, it is possible to identify the coexistence of theDirac pointswith triple points in the P mc6 13 ¢ system.

The followingfirst-principles calculations are performed by theViennaAb initio Simulation Package
[52, 53]. For self-consistent total energy calculations, we use the generalized gradient approximation plusU
(GGA+U) and the Perdew–Burke–Ernzerhof exchange-correlation functional with projector-augmentedwave

Figure 4. (a), (b) and (c) are the crystal structure of B Re3 7. (b) is the top viewof B Re3 7 while (c) is the profile view. Green atoms in (a),
(b) and (c) are Bwhile grey atoms are Re. (d), (e) and (f) are the crystal structure of As Ni2 5. (e) is the top view of As Ni2 5 while (f) is the
profile view. Green atoms in (d), (e) and (f) are Aswhile grey atoms areNi. The Bravais lattice of B Re3 7 and As Ni2 5 is hexagonal. The
directions aremarked at the corner of each subfigure, c axis is theZ axis of hexagonal.
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potentials. The parametersU are given by [50], we do not tuneU in our calculation.UsingGamma-centered grid
method, the reciprocal space ismeshed at 4×4×6 and 4×4×2 for B Re3 7 and As Ni2 5, respectively. The
energy convergence criteria for electronic iterations are set to be smaller than 10−4 eV. The cutoff energies for the
planewave basis are 980 eV and 515.123 eV for B Re3 7 and As Ni2 5, respectively.

According to thefirst-principles calculations for B Re3 7 (as shown in figure 5), B Re3 7 has oneDirac point and
two triple points, and these three points are very close to Fermi level (within 30meV). Besides, B Re3 7 has other
Dirac-triple pairs in the range of 0–0.3 eV,whichmeans B Re3 7 can host the coexistence ofDirac points and
triple points with orwithout electron–hole doping [48, 54]. According to the first-principles calculations of
As Ni2 5 (as shown infigure 6), As Ni2 5 does not haveDirac-triple pair around the Fermi level. However, As Ni2 5

has 4Dirac points and 7 triple points in a short energy range (0.25–0.37eV), whichmeans As Ni2 5 can host the
coexistence ofDirac points and triple points with electron–hole doping [48, 54].

Generally, anymagneticmoment in a systemwill breakTRS for sure.However, in similar crystal structure
(C6v), since theDirac points onΓ−Z (Zpoint is not included) and the triple points onK−H arenot protected by
TRS, theymaypresentwhilemagneticmoments exist. If allmagneticmoments point to samedirection andalong
Z axis, allmirror symmetries ofC6vwill bebrokenwhileC6maintained.Consequently, eachDirac point onΓ−Z
(Zpoint is not included) splits into 4Weyl pointswhile each triple point onK−H splits into 2Weyl points. If the
mirror symmetries-Mx (the subscript-xmeans themirror plane contains thea and c axis offigure 4) is broken by
themagneticmomentwhilemirror symmetry-My (the subscript-ymeans the normal vector ofMy is perpendicular
to thenormal vector ofMx and c axis infigure 4) is preserved, thenC6vwill be down toC3v. Consequently, each
Dirac point onΓ−Z (Zpoint is not included) splits into 2 triple pointswhile triple points onK−H remain intact.

Since the primitive unit cells of B Re3 7 and of As Ni2 5 are too large (B Re3 7 has 20 atoms and As Ni2 5 has 42), it
is quite difficult to include theHeyd–Scuseria–Ernzerhof (HSE) hybrid functional in the first-principles
calculations. However,HSE hybrid functional is a small perturbation and there are a lot ofDirac-triple pairs in
B Re3 7 and As Ni2 5. It is quite impossible to eliminate all theDirac-triple pairs with such a small perturbation.

Figure 5.The band structures of B Re3 7. The Fermi energy is set to be zero. (a)The band structure alongΓ−Z andK–H. TheDirac
points, which are close to Fermi level and coexist with triple points, aremarked in bluewhile triple points aremarked in red. (b) is the
zoompicture ofDirac point which is closest to Fermi level. (c) is the zoompicture of triple points which are closest to Fermi level. The
dashed lines in (b) and (c) aremerely a guide for viewing the energy level ofDirac point and triple points.
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6. Conclusion

In high energy physics, breaking TRS or IS and keeping Lorentz invariance, oneDirac fermionwill split into two
Weyl fermions. In condensedmatter systems, breaking TRS or IS, Dirac pointmay remain intact, split into triple
points or split intoWeyl points. OneDirac point can split into two triple points, two triple points can split into
fourWeyl points. The existence of triple point between theDirac phase and theWeyl phasewaswell hidden in
the past. The recent discovery of the triple pointmotivates researchers further to studymany of its unknown
characteristics. Therefore, we extend the theory of searching for triple points to all symmorphicmagnetic
systems, and list among all symmorphic systems all the k paths which allow the existence of triple points. Our
study is helpful for a systematic search of the triple points in various systems. Besides, we also found that the
coexistence of theDirac points with the triple points is symmetrically allowed in some particular symmetric
systems. According to ourfirst-principles calculations, B Re3 7 and As Ni2 5 can be the candidates for realizing the
coexistence ofDirac points with the triple points.We have not only provided an exhaustive triple point search
mechanism for the symmorphic systems, but also identifiedmaterial systems that host theDirac and the triple
points.
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Appendix: Corepresentations of black andwhiteMPG

All black andwhite point groups can be expressed as follows [45]:

M H G HTRO , 4= + -( ) ( )

whereM is black andwhite point group,H is the unitary subgroup ofM andG is one of the ordinary point
groups.

Here, we denote element ofH byU, and element of G HTRO -( ) byV.We suppose thatΔ is a unitary
irreducible representation ofH (the dimension ofΔ can be greater than 1) and jñ∣ is the basis ofΔ (the
dimension ofΔ is same as the dimension of jñ∣ ), therefore:

U U . 5j já =á D∣ ∣ ( ) ( )

Nowwe introduce a basis fñ∣ which is produced by operatingV on jñ∣ :

V . 6j fá =á∣ ∣ ( )

Figure 6.The band structure alongΓ−Z andK−H for As Ni2 5. The Fermi energy is set to be zero. ThoseDirac points and triple points,
which are in the energy range of 0.25 eV–0.37 eV, aremarked in blue and red, respectively.
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From equations (5), (6) andV UV1- belongs toH, we can obtain:

U UV V V UV V V UV V UV , 71 1 1*f j j j fá = á = á = á D = á D- - -∣ ∣ ( ) ∣ ∣ ( ) ∣ ( ) ( )

complex conjugate is denoted by asterisk. Let

, . 8z j fá = á∣ ∣ ( )

From equations (5), (7) and (8), we have:

U D U , 9z zá = á∣ ∣ ( ) ( )

where

D U
U

V UV

0

0
, 10

1*
=

D
D -

⎛
⎝⎜

⎞
⎠⎟( )

( )
( )

( )

for allU that belong toH. Since V UV1*D -( ) is also a representation ofH [55], the anti-unitary operators ofM do
not create any extra irreducible representation. Anti-unitary operators only cause the irreducible representations
ofH to become degenerate with each other orwith itself, but usually anti-unitary operators do not cause any
extra degeneracy.

IfΔ(U) and V UV1*D -( ) are equivalent, then there exists an unitary operator P such that:

U P V UV P , 111 1*D = D - -( ) ( ) ( )

for allU belonging toH.
If

PP V , 122* = D( ) ( )

then anti-unitary operators do not cause any extra degeneracy, andwe call it case(1).
If

PP V , 132* = -D( ) ( )

then anti-unitary operators cause the irreducible representationΔ to become degenerate with itself, andwe call
it case(2).

IfΔ(U) and V UV1*D -( ) are not equivalent, then they are degenerate with each other, andwe call it case(3).

Table A1.The list of all the black andwhiteMPGswhich have
representations belonging to case (2) or case (3). The first column is the
label forM. The second column is the label forH. The third column is
the label for the irreducible representation ofH (the symbols of
irreducible representations are written in extendedMulliken notation).
The fourth column is the classification of the irreducible representation
ofH.

M H Irreducible representation ofH Case

−1′ 1 (C1) A 2

2′/m m (C1h) E1 , E2 3

2/m′ 2 (C2) E1 , E2 3

4′ 2 (C2) E1 , E2 3

−4′ 2 (C2) E1 , E2 3

4′/m 2/m (C2h) Eg
1 , Eg

2 , Eu
1 , Eu

2 3

4/m′ 4 (C4) E1
2, E2

1, E1
1, E2

2 3

4′/m′ -4 (S4) E1
2, E2

1, E1
1, E2

2 3

−3′ 3 (C3) A 2

E1 , E2 3

−3′m 3 m (C3v) E1 , E2 3

E1 1

−3′m′ 32 (D3) E1 , E2 3

E1 1

6′ 3 (C3) E1 , E2 3

A 1

−6′ 3 (C3) E1 , E2 3

A 1

6′/m -6 (C3h) E1
1, E2

3, E1
2, E2

2, E2
1, E1

3 3

6/m′ 6 (C6) E1
1, E2

3, E1
2, E2

2, E2
1, E1

3 3

6′/m′ −3 (C3i) Eg
1 , Eg

2 , Eu
1 , Eu

2 3

Ag , Au 1

m′3 23 (T) F1 , F2 3

E 1
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Nowwe can classify all the representations of all the black andwhite point groups. All those black andwhite
point groups contain representations belonging to case(2) or case(3) are listed in table A1.
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