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Abstract

Similar to Weyl fermions, a recently discovered topological fermion ‘triple point’ can be generated
from the splitting of Dirac fermion in the systems with inversion symmetry (IS) breaking or time-
reversal symmetry (TRS) breaking. Inducing triple points in IS breaking symmorphic systems have
been well studied, but the same cannot be said for the TRS breaking symmorphic systems. In this
work, we extend the theory of searching for triple points to all symmorphic magnetic systems. We list
among all symmorphic systems all the k paths which allow the existence of triple points. With this
systematic study, we also found that the coexistence of Dirac points and triple points is allowed in
some particular symmetric systems. Besides theoretical analysis, we carried out numerical analysis as
well. According to our first-principles calculations, B;Re; and As, Nis are the candidates for realizing
the coexistence of Dirac and triple points. We have not only provided an exhaustive triple point search
mechanism for the symmorphic systems, but also identified material systems that host the Dirac and
the triple points.

1. Introduction

Over the past few decades, topology has been emerging in condensed matter physics. The development started
from the quantum Hall effect [1, 2] which is the quantum-mechanical version of the Hall effect. The second
stage of development is the quantum anomalous Hall effect [3—6] which is a quantum Hall effect without
external magnetic field. The third stage of development is the quantum spin Hall effect [7—12] whichis a
quantum Hall effect without the breaking of time-reversal symmetry (TRS). Analogous to quantum spin Hall
effect which pumps spin, there are topological crystalline insulators [ 13—16] which can pump the eigenvalues of
mirror symmetry. All these four topological phenomena are insulating in bulk band, but have topologically
protected surface states which are conducting.

Besides looking for topological phenomena in bulk insulating materials, scientists also look for
topological phenomenon in bulk metallic materials. Recently, topological metals such as Dirac semimetal
[17-21], Weyl semimetal [22—29] and triple point semimetal [29-42] have been discovered. These topological
metals have topologically protected surface states just like those quantum Hall effects. No matter metallic in

©2018 The Author(s). Published by IOP Publishing Ltd on behalf of Deutsche Physikalische Gesellschaft


https://doi.org/10.1088/1367-2630/aaf11d
https://orcid.org/0000-0002-3927-2914
https://orcid.org/0000-0002-3927-2914
https://orcid.org/0000-0001-8085-2251
https://orcid.org/0000-0001-8085-2251
mailto:f98245017@ntu.edu.tw
http://crossmark.crossref.org/dialog/?doi=10.1088/1367-2630/aaf11d&domain=pdf&date_stamp=2018-12-05
http://crossmark.crossref.org/dialog/?doi=10.1088/1367-2630/aaf11d&domain=pdf&date_stamp=2018-12-05
http://creativecommons.org/licenses/by/3.0
http://creativecommons.org/licenses/by/3.0
http://creativecommons.org/licenses/by/3.0

10P Publishing

New J. Phys. 20 (2018) 123002 C-H Cheungetal

bulk or insulating in bulk, as long as their surface state are topologically protected, they can be promising
candidates for electronic devices or even spintronic devices. Thus they can be valuable for industrial
applications. On the other hand, topological metal provides a different playground and relatively lower price
to search for those elementary particles described by relativistic quantum field theory. Since topological metal
is valuable for both academic research and industrial applications, it has drawn a lot of attention in recent
years.

One of the topological metals hosting a quasiparticle analogue of an elementary particle is the Dirac
semimetal. The earliest found Dirac semimetal is Naz Bi [19]. Na; Bi has both inversion symmetry (IS) and TRS,
thus all bands at every k points in the Brillouin zone are at least doubly degenerate. When a doubly degenerate
band linearly crosses over another doubly degenerate band at a k point, a four-fold degenerate Dirac point is
formed. Such a Dirac point can be an analogue of the Dirac fermion described by relativistic quantum field
theory in high energy physics.

In high energy physics, breaking TRS or IS causes Dirac fermion to split into Weyl fermions. In condensed
matter physics, bands can be non-degenerate when system does not have TRS or IS. When a non-degenerate
band linearly crosses over another non-degenerate band at a k point, a two-fold degenerate Weyl point is
formed. Such a Weyl point can be an analogue of Weyl fermion in high energy physics too.

However, in condensed matter physics, fermions in crystal are constrained by magnetic space group (MSG)
symmetries rather than by Lorentz invariance. This gives rise to the uncertainty that doubly degenerate bands
may or may not split when TRS or IS is broken. In this paper, we will discuss a new fermion-triple point which
has no counterparts in high energy physics and can be formed by a non-degenerate band linearly crossing
over a doubly degenerate band at a k point. In general, the formations of triple points can be caused by the
nonsymmorphic or the symmorphic MSG symmetries, but as we emphasize in the title, we only discuss those
triple points which are caused by the symmorphic MSG symmetries.

If Dirac fermions in condensed matter must has TRS and IS just like the Dirac fermions in high energy
physics, then it cannot coexist with triple points which need to break either TRS or IS. However, recent research
shows that Dirac fermions in condensed matter can exist in a system without TRS - IS [43, 44]. This gives rise to
the possibility of finding several systems which have two k paths with two different symmetry groups: one allows
the existence of Dirac points while another one allows the existence of triple points.

We organize this paper as follows. In section 2, we review the condition of forming triple points by discussing
aspecial case [19, 33, 43]. In section 3, we generalize this condition to all magnetic point groups (MPGs) and list
all possible k paths of all possible symmorphic systems which allow the existence of triple points. In section 4, we
point out that the coexistence of Dirac points and triple points is symmetrically allowed in some particular
symmetric systems. In section 5, we provide examples, B;Re; and As,Nis, to realize the coexistence of Dirac
points and triple points. In section 6, we summarize the contributions of this paper.

2. The condition of forming triple points

Similar to Weyl fermions in high energy physics, triple points in condensed matter physics can be split from
Dirac fermions when TRS or IS of the system is broken. It is well known that Dirac fermions can exist in a system
which has both TRS and Dy, point group symmetry (Dgy, is a Schoenflies notation for origin point group, please
refer to [45] for all origin point groups in Schoenflies notation). In this section, we are going to use this system as
an example to show how triple points split from Dirac fermions and point out the necessary condition of
forming triple points.

Dgy, point group includes Cs,, C,,, M, and IS (please refer to [46, 47] for symbols’ meaning and orientation of
the symmetry operators of any origin point groups). Since the system has TRS and IS, all bands have spin
degeneracy atany k point. As Dirac fermions are a crossing point of two 2-fold degenerate bands, Dirac fermion
is a point of 4-fold degeneracy.

Ifall bands have spin degeneracy at any k point, triple point cannot be formed (triple point is a point of 3-fold
degeneracy). Thus TRS or IS must be broken to induce triple points. However, at a high symmetry k point/path/
plane, TRS and IS are not the only symmetries which protect the degeneracy of bands. Therefore, other crystal
symmetries need to be considered.

To be more specific, we assume that the irreducible representations of the bands which form the Dirac points
are E| ¢/uand Eg /u (the symbols of irreducible representations are written in extended Mulliken notation). With
the irreducible representations, the matrix forms of the symmetry operators are as follows:
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for basis: Eyg;,
TRO IS M, Cy Cs,

0 —1 10 0 il][i o]les o
=9 k=5 9 [i 0][0 i][o e]

for basis: Esgy,,
TRO 1S M, Cy, Cs,

o I S e o

where TRO is the operator of TRS and K is complex conjugate operator.

If a symmetry operator S (S can be a unitary or an anti-unitary operator) acts on a kj, vector, such that
Sk, = kj, + nG, where Gis any reciprocal lattice vector and  is any integer number, then all such symmetry
operators form the little group of ky,.

Firstly, we only consider the unitary subgroup of the little group of k;,. Hamiltonian H(kj,) has to commute
with all the symmetry operators of the unitary subgroup of the little group of k;,. If any symmetry operators of
this unitary subgroup does not commute with each other in a subspace of the Hilbert space, then H(k;,) has to be
degenerate in this subspace, otherwise H(k;,) cannot commute with all the symmetry operators of the unitary
subgroup simultaneously.

Furthermore, those anti-unitary symmetry operators of the little group of k;, could cause extra degeneracy.
In symmorphic system, in order to consider all the symmetry operators of the little group of k;,, we have to treat
the little group as an MPG rather than the original point group, regardless if the system does or does not have any
magnetic moment. If the system does not have any magnetic moment, then it has TRS. Thus the symmetry
group of the system is one of the grey groups of the 122 MPGs. The little group of k;, of this system is a subgroup
of the grey group. Therefore, the little group of k;, of a paramagnetic system could be any MPG. All 122 MPGs
can be classified into three types: 32 ordinary point groups, 32 ‘grey’ point groups and 58 ‘black and white’ MPGs
(grey point groups are the groups contain TRS symmetry and their point group symbols always have ‘1"’ at the
end. For example ‘6 /mmm]1” is a grey point group. Similar denotations are for MSG. MSG symbol always has 1/
at the end if the space group has TRS. Please refer to [45] for further details of MPG and MSG symbols). The
degeneracies of the ordinary point groups have been discussed hereinabove. The extra degeneracies caused by
the TRS of any grey point groups are known as the Kramers degeneracy which have well discussed too [47]. The
extra degeneracies caused by the anti-unitary symmetry operators of any black and white MPGs are discussed in
the appendix of this paper.

In the system with Dgj, and TRS, any k point on I'—Z axis-k, is invariant under Cs,, C,, rotation or M,
reflection or (TRO-IS) operation, thus the symmetry group of I'—Z axis is 6 /m’mm which is a black and white
MPG. According to equation (1), C,, does not commute with M, in both E,,/, and Es, /.. Furthermore,
according to table A1, the anti-unitary operators in 6/m’mm do not cause any extra degeneracy. Thus, ./, and
Esgy, areboth 2-fold degenerate along the k, path. Besides, Ej g/, and Es,/,, are two different irreducible
representations in k, path, so any coupling between these two representations (bands) are forbidden. Hence,
there will be no gap opening when these two bands come across each other at k, path. Therefore, under such
symmetry condition, a linear crossing between two 2-fold degenerate bands is allowed and so is the 4-fold
degenerate Dirac point.

The symmetry condition that allows the existence of Dirac points can be streamlined and generalized as
follows: Dirac points can exist at a k path whose symmetry group has two or more than two 2-dimensional
double group irreducible representations. We will simply call this symmetry condition Condition A.

If the TRS of the system is broken, the symmetry group of k, path is reduced from 6 /m’mm to C,. Since the
2-fold degeneracy of Ey,/, and of E3,, remain protected by C,, and M,, the Dirac points on k, path do not split
just because of TRS breaking. If M, symmetry is chosen for further symmetry breaking, all symmetry operators
of the little group of k, path commute with each other. Both Eg suand Eg 7u will split. If we want to induce triple
points, breaking M, symmetry is not an option. If C,, is chosen for the further symmetry breaking, the symmetry
group of the little group of k, path becomes Cs,.. All symmetry operators in Es,/,, commute with each other, the
symmetry operators in Eg /u do not commute with each other. Thus E; ¢/u remains a 2-fold degeneracy whereas
E3g/, splits into two non-degenerate bands. On k, path, since C;, symmetry can prevent any coupling between
Ejg/y and E,/,, these representations still belong to different irreducible representations. Therefore, the
crossing point will not be gapped. Thus each Dirac point will split into two triple points when the C,, and TRS
are broken. The variations of band structures and of system symmetry are shown in figure 1.

This physical phenomenon will be further clarified if we use the k - P expansion and method of invariants to
calculate the Hamiltonian around I" point for k, path:
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break TRS break C,, &TRS
Eig]k E?Ffu Erg/u Eagiu Erglu
" ; / b, Eiig,fu
[————=— X [———
Z =TI Z ¢+ =T Z =23
Dgp, + TRS(Den) D, D3q

Figure 1. The schematic figure of the symmetry reduction processes of the system. After the system symmetry has been reduced from
Degi + TRS(Dgp) to Dgp, both Ey g/, and Es,/,, do not split. When the symmetry of the system becomes D3, Ei g/, remains 2-fold
degenerate whereas Es,,, splits into two non-degenerate bands. The Dirac points are marked in black circles and the triple points are
marked in red circles.

Co — Clkzz 0 0 0
0 Co — Ck? 0 0
Hp,,(k;) = eo(ks) + ‘ , (2
Dot ’ 0 —Co+ Gk? D
0 0 D —Co + Gk?

this is the Hamiltonian for the system with D5, symmetry and without TRS; the expansion is only up to the first
order of k for off-diagonal matrix elements and up to the second order of k for diagonal matrix elements;

go(k;) = Ay + Ajk2. Cyand C are real positive k independent coefficients. Ao, A; and D are real k independent
coefficients.

When the Cs, operator acts on the effective Hamiltonian Cs, Hp,, (k) C5,', according to the Cs, symmetry
operator of equation (1), a phase factor ¢ or —e willbe generated on the matrix elements Hj,, H,; and the
matrix elements of off-diagonal block. Therefore these matrix elements must have k ork_ (ks = k, =+ ik,)
factor to match the C;, symmetry condition Cs, Hp, (k) C,'=H D (C;,'k). If only considering the
Hamiltonian of I'—Z axis, all these matrix elements become zero. This explains: ‘on k, path, C5, symmetry can
prevent any coupling between E ¢/uand E_3g /u»> such that these representations belong to different irreducible
representations.” Furthermore breaking C,, symmetry and TRS induces D (1y0, — 7,0) /2 (7is the Hilbert
space of the combined Eyq/, and Es,/,; o is the Hilbert space within Eyg /,, or within Esg /). This term splits E3, ,,
into two 1-dimensional irreducible representations. Thus the 4-fold degenerate Dirac point splits into two
3-fold degenerate triple points.

Base on the above analysis, the symmetry condition that allows the existence of triple points can be
streamlined as follows: triple points can only exist at a k path whose symmetry group contains both
1-dimensional and 2-dimensional double group irreducible representations [33]. We will simply call this
symmetry condition Condition B.

3. Triple points in all symmorphic systems

In this section, we are going to find among all possible symmorphic systems all possible k paths that allow the
existence of triple points.

In a symmorphic system, symmetry group of any k points is one of the MPGs. So the first step is to check
among the 122 types of MPGs and list all the MPGs which can match the symmetry condition that allows the
existence of triple points.

Among the 32 types of ordinary point groups, there are 3 types, namely Cs,, D; and D;,;, of point groups that
satisfy Condition B. In all the Brillouin zone of the 14 types of Bravais lattice, only 6 types of k path contain C;
symmetry (there is no k plane contains C; symmetry). These 6 types of k path are A and P of the trigonal; '—Z
and K—H of the hexagonal; 1 1 1 direction of cubic P (simple cubic), cubic F (face-centered cubic) and cubic I
(body-centered cubic); F of cubic I (since there is no unified k path symbol, the Brillouin zones are demonstrated
in figure 2 to define the 6 symbols which are used for marking the 6 types of k path). These 6 types of k path can
only contain Cs,, none of them can contain D; or D3,. Therefore, among the ordinary point groups only C;, can
match the symmetry condition that allows the existence of triple points.

Since operating TRO on k is to change the sign of k, only k points, not k paths, allow grey point group to be
their symmetry group. Thus, if the symmetry group of k is a grey point group, triple point cannot exist on this k.

All black and white MPGs contain a set of unitary operators which form a unitary subgroup (one of the
ordinary point group), and this unitary subgroup has a set of double group irreducible representations. The rest
of the operators of the black and white MPG are anti-unitary operators. These anti-unitary operators cannot
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Figure 2. The Brillouin zone for (a) trigonal with a > /2 ¢, (b) trigonal with a < /2 ¢, (c) hexagonal, (d) cubic P, (e) cubic Fand
(f) cubic I. All the k paths, which contain C; symmetry, are marked in green. Other Brillouin zones, which cannot contain C;
symmetry, are omitted.

generate any double group irreducible representation, but they can further ‘degenerate’ the ordinary double
group irreducible representations (as shown in appendix). The further degeneracies could allow the existence of
triple points, whereas the ordinary double group irreducible representations forbid that. Or contrarily, the
further degeneracies forbid the existence of triple points, whereas the ordinary double group irreducible
representations allow that.

Amongall the 58 types of black and white MPGs, 17 types have further degeneracies (as shown in table A1).
Among the 17 types, only —6' allows the existence of triple points, whereas the double group irreducible
representations of its unitary subgroup forbid that. All the other 16 types forbid the existence of triple points due
to one or more of the following reasons: (1) the presence of element-TRS - IS, (2) the absence of 1-dimensional
double group irreducible representation, (3) the absence of k path belonging to the black and white MPG.
Among the 16 types, —3’m is the one that forbids the existence of triple points, whereas the double group
irreducible representations of its unitary subgroup (its unitary subgroup is Cs,) allow that. For later discussion, it
would be important to notice that —3/m has the element of —1’ (—1’isIS- TRS).

Next step is to look for k paths, in all symmorphic systems, which allow the existence of triple points. We can
directly look for these k paths in all the symmorphic MSGs. However, there are too many symmorphic MSGs.
Thus we choose to analyze MPG of the symmorphic MSG first. In this way a large number of unqualified MSGs
can be excluded. Then we contrast those qualified MPG systems with their MSG symbols.

As mentioned above, there are two kinds of k paths allowing the existence of triple points: the first kind is the
k paths which belong to —6’ black and white MPG; the second kind is the k paths whose unitary subgroup
belongs to Cs, while the k paths do not have — 1’ symmetry. We will search for these two kinds of k paths
separately.

Firstly, we search for the k paths which belong to —6’. If the Brillouin zone of a system contains the —6' k
path, the crystal symmetry (directions of magnetic moments are not counted for crystal symmetry) of the system
must contains Csj, symmetry. According to the subgroup decomposition of the 32 point groups in [47], the
crystal symmetry of the system contains Csj, symmetry only if the crystal symmetry of the system is Dgj, or D3y, or
Cep or Csy,. The Bravais lattice of these four kinds of crystal symmetry is Hexagonal. In the Brillouin zone of
Hexagonal Bravais lattice, only I'—Z can contain all the symmetry elements of —6’. Thus we only need to

5



10P Publishing

New J. Phys. 20 (2018) 123002 C-H Cheungetal

Table 1. The list of MPG system that might
contain k path of the first kind. The first column
is the label of MPG systems. Answer of ‘Does
T'-Z of the system belong to —6/?’ is given in the
second column.

Label of MPG systems Does I'—Zbelong to

—6'?
(Cor)6/m no
6/ml’ no
6'/m’ yes
6//m no
6/m’ no
(D3j) —6m2 no
—6m21’ no
—6m’2’ no
—6/m2’ no
—6/'m’2 yes
(Dgp,) 6/mmm no
6/mmm1’ no
6/m’'mm no
6/mm’m’ no
6/m'm'm’ no
6//mmm’ no
6/ /m'mm’ no
(Csp) —6 no
—61' yes
-6 yes

determine whether the I'—Z of all MPG systems of Dgy,, D3y, Cop, and Csj, belong to —6/. The results are shown at
table 1.

Secondly, we search for the k paths whose unitary subgroup belongs to Cs,, while the k paths do not have —1’
symmetry. If the Brillouin zone of a system contains such k path, the symmetry group of the system must contain
G5, symmetry. According to the subgroup decomposition of the 32 point groups in [47], the symmetry group of
the system contains C;, symmetry only if the crystal symmetry of the system is one of the seven symmetries,
namely Cs,, T3, Oy, Cs,», D34, D35 and Dgy,. Furthermore, as (TRO - IS) acting on any k is equal to k, any k point in
the Brillouin zone contains (TRO - IS) symmetry if and only if the system contains (TRO - IS) symmetry. Thus we
can use two symmetry conditions to filter most of the MPGs which belong to the seven crystal symmetry: 1. the
system must contain C;, symmetry; 2. the system must not contain (TRO - IS) symmetry. Besides, the k paths
which contain C;, symmetry must contain C; symmetry. Hence, as mentioned above, the k path whose unitary
subgroup is C;, symmetry must be one of the following: A and P of trigonal; I'—Z and K—H of hexagonal; 111
direction of cubic P, cubic Fand cubic ; F of cubic I. All we need to do is to determine whether the unitary
subgroup, of these 6 types of k paths in the Brillouin zone of the filtered MPG systems, is Cs, symmetry. The
determining processes and results are given in table 2. Notice that for the Brillouin zone of trigonal Bravais
lattice, the k path-P appears only if lattice constants fulfill the condition of a > +/2 ¢ (please refer to table 3.1 of
[45] for the definitions of lattice constant a and lattice constant ¢). Sometimes, the k path-K—H of the Hexagonal
Bravais lattice is not contained in the mirror plane of C;, symmetry, such that K—H does not contain C;,
symmetry. Hence, we need the MSG to determine whether the existence of triple points is allowed on this k path.
Thus, some answers in the fifth column of table 2 are ‘MSG is needed’. Combining table 1 and table 2, then
contrasting with MSG, we can get among all symmorphic systems all the k paths which allow the existence of
triple points (as shown in table 3).

4. Symmetry-allowed coexistence of Dirac point and triple point

The degeneracy of a Dirac fermion in high energy physics is protected by TRS and IS. However, the degeneracy
of a Dirac fermion in condensed matter can be preserved in a k path whose symmetry group satisfy Condition A
(as mentioned in section 2). That means Dirac fermion can exist in a system which does not contain (TRO - 1S)
symmetry. This gives rise to the possibility of the coexistence of Dirac fermion and odd-fold degenerate fermion.
We know that triple points can exist in a k path whose symmetry group satisfy Condition B (as mentioned in
section 2 too). Combining the condition of existence for the Dirac fermion with the condition of existence for
the triple point, we find that there are several systems which allow the coexistence of Dirac points and triple
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Table 2. The list of system symmetry that might contain k paths of the second kind. The first column is the label of MPG systems. The second
column shows whether the system is filtered out by the symmetry condition of ‘containing Cs, but not —1”’. The third column is the class of
the Brillouin zone. The fourth column is the label of the k path. The fifth column shows answers for whether the k path allows the existence of
the triple points. Sometimes, the k path-K—H of the Hexagonal Bravais lattice is not contained in the mirror plane of C;, symmetry and
consequently K—H does not contain C;, symmetry. Hence, we need the MSG to determine whether the existence of the triple points is
allowed on this k path. Thus, some answers in the fifth column are ‘MSG is needed’. For the Brillouin zone of the trigonal Bravais lattice, the

k path-Pappears only if lattice constants fulfill the condition of a > /2 c.

Symmetry of Contains Cs, or not? Brillouin zone k path The existence
the system contains —1’ or not? of triple points
(Cs,)3m contains Cs,, butno —1’ trigonal A yes
P yes
Hexagonal r-z yes
K—H MSG is needed
3ml1’ contains Cs,, butno —1’ trigonal A yes
P yes
Hexagonal r-z yes
K—H MSG is needed
3m’ no Cs,
(T —43 m contains Cs,, butno —1’ cubic P 111 yes
cubicF 111 yes
cubic] 111 yes
F yes
—43m1’ contains Cs,, butno —1’ cubic P 111 yes
cubic F 111 yes
cubicl 111 yes
F yes
—4'3m’ no Cs,
(Op) m-3 m contains Cs,, butno —1’ cubic P 111 yes
cubic F 111 yes
cubicl 111 yes
F yes
m-3ml’ contains —1’
m’-3'm contains —1’
m-3m’ no Cs,,
m’-3'm’ contains —1’
(Cs,) 6 mm contains Cs,, butno —1’ Hexagonal r-z no
K—H yes
6mm1’ contains Cs,, butno —1’ Hexagonal -z no
K—H yes
6'mm’ contains Cs,, butno —1’ Hexagonal r-z yes
K—H MSG is needed
6m’'m’ no Cs,
(Ds3g)-3 m contains Cs,, butno —1’ trigonal A yes
P yes
Hexagonal r-z yes
K—H MSG is needed
—3ml’ contains —1’
—3'm contains —1’
—3'm’ no Cs,
—3m/’ no Cs,
(D3;,) —6m2 contains Cs,, butno —1’ Hexagonal -z yes
K—H MSG is needed
-6m21’ contains Cs,, butno —1’ Hexagonal r-z yes
K—H MSG is needed
—6m’2/ no C;,
—6'm2’ contains Cs,, butno —1’ Hexagonal -z yes
K—H MSG is needed
—6'm’2 no Cs,
(Dgp,) 6/mmm contains Cs,, butno —1’ Hexagonal -z no
K—-H yes
6/mmm1’ contains —1’
6/m'mm contains —1’
6/mm’m’ no Cs,,
6/m’'m'm’ contains —1’
6//mmm’ contains —1’
6//m’'mm’ contains Cs,, butno —1’ Hexagonal -z yes
K—-H MSG is needed
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Table 3. The list of all k paths which allow the existence of
triple points. The first column is the label of MSG systems
which allow the existence of triple points. The second
column are the k paths of the system which allow the
existence of triple points. The third column is the kind of
the k path. The first kind of k paths is from table 1 and the
second kind is from table 2.

Label of MSG systems k path the kind of k path

P3m1 -z first kind
P3m11’ r-z first kind
P31m r-z first kind

K—H first kind
P3Iml’ r-z first kind

K-H first kind
R3m A first kind

P first kind
R3m1’ A first kind

P first kind
P-31m r-z first kind

K-H first kind
P-3ml1 -z first kind
R-3m A first kind

P first kind
P-61’ r-z second kind
P-6’ r-z second kind
P6’/m’ r-z second kind
P6mm K-H first kind
P6émm1’ K—H first kind
P6'm'm r-z first kind
P6/'mm’ -z first kind

K—-H first kind
P-6m2 r-z first kind
P-6m21’ -z first kind
P-6'm’2 r-z second kind
P-6/'m2’ r-z first kind
P-62 m -z first kind

K-H first kind
P-62m1’ r-z first kind

K-H first kind
P-6"2'm r-z first kind

K—H first kind
P-6/2m’ r-z second kind
P6/mmm K-H first kind
P6’/m'm’'m r-z first kind
P6’/m’'mm’ r-z first kind

K-H first kind
P-43m 111 first kind
P-43m1’ 111 first kind
F-43m 111 first kind
F-43m1’ 111 first kind
[-43 m 111 first kind

F first kind
[-43m1’ 111 first kind

F first kind
Pm3m 111 first kind
Fm3m 111 first kind
Im3m 111 first kind

F first kind

points. Tand A of Pm3m, A of Fm3m, A of Im3m,T'—Z of P6/mmm,—Z of Pémm and '—Z of P6mm1’
allow the existence of Dirac points while the k paths of these several systems, which allow the existence of triple
points, are given in table 3. The Brillouin zone of these several systems and definitions of Tand A are shown in
figure 3.

Then two questions surfaced:
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Figure 3. The Brillouin zone of the systems which allow the coexistence of Dirac points and triple points. The Brillouin zone of (a)
P6/mmm, Pémm and Pémm1’. The Brillouin zone of (b) Pm3m, (¢) Fm3m and (d) Im3m. The k paths, which allow the existence of
triple points, are marked in green. The k paths, which allow the existence of Dirac points, are marked in blue.

(1) Is the condition of existence for the Weyl points similar to the condition of existence for the triple points?
More specifically, can Weyl points exist in a k path whose symmetry group contains two 1-dimensional double
group irreducible representations?

(2) Can the coexistence of Dirac points, triple points and Weyl points be allowed in some symmetric
systems?

To answer question (1), we analyze two systems: the first system has Ds,; point group symmetry with
hexagonal Bravais lattice. The symmetry group of I'—Z in its Brillouin zone is Cs,. C5, contains two
1-dimensional double group irreducible representations. These two representations have different mirror
symmetry eigenvalues (iand —i) which means they are two different representations in the mirror plane of Cs,
symmetry. Thus the crossing point in I'—Z must extend onto the mirror planes of C;, symmetry to form a Weyl
nodal line other than discrete points. This means, in this case, Weyl points are not able to exist in a k path whose
symmetry group contains two 1-dimensional double group irreducible representations.

The second system has C;, point group symmetry with hexagonal Bravais lattice. The symmetry group of I'
—Zis Cs. C; contains two 1-dimensional double group irreducible representations. This system can be viewed as
the first system to which a uniform magnetic field-B,, in parallel with principle axis, is applied. The B, breaks the
mirror symmetry of Cs, and the Weyl nodal line break up into nodal points. Furthermore, the band structure
along k, path can be described by equation (2) plus several B, induced terms:

0 M(k,) + 0 0
HC3i(kZ) = 60(’(2) + 0 ( é ﬁz *M(k ) + ﬁ3 D + 55 5 (3)
0 0 D+ 35 M)+ B

where (3,, 3, 3s and (3, are real while 35 is complex; M(k,) is C; — C k2. Solving the eigenvalues of equation (3),
we find that the 2-dimensional double group irreducible representation- E; ¢/u i equation (2) splits into two
1-dimensional double group irreducible representations. That means each triple point in equation (2) splits into
two crossing points. Using k - P expansion and method of invariants to calculate the Hamiltonian around these
crossing points can prove that these crossing points are Weyl points [48]. Therefore, the two 1-dimensional
double group irreducible representations of I'—Z in this system allow the existence of Weyl points.

According to the above analysis for the two systems, the Weyl points can exist or not exist in a k path whose
symmetry group contains two 1-dimensional double group irreducible representations. Thus, the answer to
question (1) is negative.

For answering question (2):

The I'—Z of two of the above mentioned systems does not allow the coexistence of Dirac points, triple points
and Weyl points, but recent research shows that triple point and Weyl point are able to coexist with each
other [30, 35].

The symmetry requirement of Weyl points is much lower than that of the triple points. Weyl points are
robust against the perturbations of most of the symmetry breaking. Weyl points can even exist at the k points
whose symmetry group belongs to C; [49]. Such Weyl points in the bulk of 3-dimensional systems only need
periodic symmetry in the absence of (TRO - IS).
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Figure 4. (a), (b) and (c) are the crystal structure of B;Re;. (b) is the top view of B;Re; while (c) is the profile view. Green atoms in (a),
(b) and (c) are B while grey atoms are Re. (d), (e) and (f) are the crystal structure of As,Nis. (e) is the top view of As,Nis while (f) is the
profile view. Green atoms in (d), (¢) and (f) are As while grey atoms are Ni. The Bravais lattice of B;Re; and As,Nis is hexagonal. The
directions are marked at the corner of each subfigure, c axis is the Z axis of hexagonal.

Therefore, in view of the symmetry analysis hereinabove, the coexistence of Dirac points, triple points and
Weyl points is allowed in some systems. If that happens, it will be chaotic whether the systems are to be defined as
Dirac semimetal, triple point topological metal or Weyl semimetal. There is a viewpoint that triple point
topological metal is an intermediate phase between Dirac and Weyl semimetal [33]. It can be true, but there are
overlaps among these three phases and the boundary of the phases is still obscure so far. Such a state of chaos
raises due to the use of symmetry to classify these three phases. In condensed matter systems, the symmetry
group of a system is unique, but, in the Brillouin zone of a system, there are many different k paths/planes
belonging to different symmetry groups. Usually, the existence of Dirac points or triple points in a k path
depends on the symmetry group of the k path, other than depending only on the symmetry group of the system.
As aresult, the coexistence of Dirac points, triple points and Weyl points is symmetry-allowed.

5. Coexistence of Dirac points and triple points in B;Re; and As,Ni;

In this section, we show that there are two materials- BsRe; and As,Nis which allow the coexistence of Dirac
points with triple points. More interestingly, those Dirac points and triple points can exist near the Fermi level
with or without electron—hole doping.

The crystal structures of B;Re; and As,Nis are plotted in figure 4. and the Brillouin zone of these two systems is
shown in figure 3(a). According to [50, 51], both B3Re; and As,Nis belongto P6;micl’. Their MPG symmetry is
the same as P6mm1’ which has been mentioned in section 4. Even though the C,, symmetry of P6;mcl’ is
accompanied by a fractional translation, the translation is to shift 1,/2 lattice constant along the Z axis. Thus the
translation does not change the irreducible representations of I'—Z and of K—H (except Z point and H point).
Therefore, it is possible to identify the coexistence of the Dirac points with triple points in the P6;mcl’ system.

The following first-principles calculations are performed by the Vienna Ab initio Simulation Package
[52, 53]. For self-consistent total energy calculations, we use the generalized gradient approximation plus U
(GGA+ U) and the Perdew—Burke—Ernzerhof exchange-correlation functional with projector-augmented wave

10
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Figure 5. The band structures of B;Re;. The Fermi energy is set to be zero. (a) The band structure along I'—Z and K-H. The Dirac
points, which are close to Fermi level and coexist with triple points, are marked in blue while triple points are marked in red. (b) is the
zoom picture of Dirac point which is closest to Fermi level. (c) is the zoom picture of triple points which are closest to Fermi level. The
dashed lines in (b) and (c) are merely a guide for viewing the energy level of Dirac point and triple points.

potentials. The parameters U are given by [50], we do not tune Uin our calculation. Using Gamma-centered grid
method, the reciprocal spaceis meshed at4 x 4 x 6and4 x 4 x 2for BsRe; and As,Nis, respectively. The
energy convergence criteria for electronic iterations are set to be smaller than 10~* eV. The cutoff energies for the
plane wave basis are 980 eV and 515.123 eV for B;Re; and As,Nis, respectively.

According to the first-principles calculations for BsRe; (as shown in figure 5), B;Re; has one Dirac point and
two triple points, and these three points are very close to Fermi level (within 30 meV). Besides, B;Re; has other
Dirac-triple pairs in the range of 0—0.3 eV, which means B;Re; can host the coexistence of Dirac points and
triple points with or without electron—hole doping [48, 54]. According to the first-principles calculations of
As;)Nis (as shown in figure 6), As;Nis does not have Dirac-triple pair around the Fermi level. However, As,Nis
has 4 Dirac points and 7 triple points in a short energy range (0.25-0.37 V), which means As;Nis can host the
coexistence of Dirac points and triple points with electron—hole doping [48, 54].

Generally, any magnetic moment in a system will break TRS for sure. However, in similar crystal structure
(Cs,), since the Dirac points on I'—Z (Z point is not included) and the triple points on K—H are not protected by
TRS, they may present while magnetic moments exist. If all magnetic moments point to same direction and along
Z axis, all mirror symmetries of Cy, will be broken while Cy maintained. Consequently, each Dirac pointonI'—Z
(Zpoint is notincluded) splits into 4 Weyl points while each triple point on K—H splits into 2 Weyl points. If the
mirror symmetries-M, (the subscript-x means the mirror plane contains the a and c axis of figure 4) is broken by
the magnetic moment while mirror symmetry-M,, (the subscript-y means the normal vector of M, is perpendicular
to the normal vector of M, and c axis in figure 4) is preserved, then Cy, will be down to Cs,. Consequently, each
Dirac point on I'=Z (Z point is not included) splits into 2 triple points while triple points on K—H remain intact.

Since the primitive unit cells of B;Re; and of As,Nis are too large (B;Re; has 20 atoms and As;Nis has 42), it
is quite difficult to include the Heyd—Scuseria—Ernzerhof (HSE) hybrid functional in the first-principles
calculations. However, HSE hybrid functional is a small perturbation and there are alot of Dirac-triple pairs in
BsRe; and As,Nis. Itis quite impossible to eliminate all the Dirac-triple pairs with such a small perturbation.

11
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Figure 6. The band structure along I'—Z and K—H for As,Nis. The Fermi energy is set to be zero. Those Dirac points and triple points,
which are in the energy range of 0.25 eV-0.37 eV, are marked in blue and red, respectively.

6. Conclusion

In high energy physics, breaking TRS or IS and keeping Lorentz invariance, one Dirac fermion will split into two
Weyl fermions. In condensed matter systems, breaking TRS or IS, Dirac point may remain intact, splitinto triple
points or split into Weyl points. One Dirac point can split into two triple points, two triple points can split into
four Weyl points. The existence of triple point between the Dirac phase and the Weyl phase was well hidden in
the past. The recent discovery of the triple point motivates researchers further to study many of its unknown
characteristics. Therefore, we extend the theory of searching for triple points to all symmorphic magnetic
systems, and list among all symmorphic systems all the k paths which allow the existence of triple points. Our
study is helpful for a systematic search of the triple points in various systems. Besides, we also found that the
coexistence of the Dirac points with the triple points is symmetrically allowed in some particular symmetric
systems. According to our first-principles calculations, B;Re; and As,Nis can be the candidates for realizing the
coexistence of Dirac points with the triple points. We have not only provided an exhaustive triple point search
mechanism for the symmorphic systems, but also identified material systems that host the Dirac and the triple
points.
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Appendix: Corepresentations of black and white MPG

All black and white point groups can be expressed as follows [45]:
M = H + TRO(G — H), (4)

where M is black and white point group, H is the unitary subgroup of M and G is one of the ordinary point
groups.

Here, we denote element of H by U, and element of TRO(G — H) by V. We suppose that A is a unitary
irreducible representation of H (the dimension of A can be greater than 1) and |(p) is the basis of A (the
dimension of A is same as the dimension of | )), therefore:

U{pl=(¢l A). ®)
Now we introduce a basis | ¢) which is produced by operating V on |©):
V{el=(el. (6)
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Table Al. Thelist of all the black and white MPGs which have
representations belonging to case (2) or case (3). The first column is the
label for M. The second column is the label for H. The third column is
the label for the irreducible representation of H (the symbols of
irreducible representations are written in extended Mulliken notation).
The fourth column is the classification of the irreducible representation

of H.
M H Irreducible representation of H Case
—1 1(C) i 2
2'/m m(Cyp) E,E 3
2/m’ 2(Gy) IE,°E 3
4/ 2(C) 'E,E 3
—4/ 2(Cy) 'E, ’E 3
4//m 2/m(Cyp) 'E,, *E;, 'Eus °E, 3
4/m’ 4(Cy) 'Ey, 2Ey, 'Ey, 2B, 3
4 /m’ -4(Sy) 'E,, 2Ey, 'Ey, 2B, 3
-3/ 3(Gs) A 2
'E, 2E 3
—3'm 3m(Cs,) IE,2E 3
E 1
—3'm’ 32(Ds) 'E,E 3
E 1
6 3(GCs) 'E,E 3
A 1
-6’ 3(Cs) E,E 3
A 1
6'/m -6 (Csp) 'E\, 2Es, 'E,, 2E,, %E), 'Es 3
6/m’ 6(Co) 'Ey, ’Es, 'Ey, 2By, °Ey, 'Es 3
6'/m’ —3(Csy) 'E,, E;, 'Eu» ’E, 3
Ay A,y 1
m'3 23(1) 'F, 2F 3
E 1

From equations (5), (6) and V~! UV belongs to H, we can obtain:
U(pl=UV(pl = V(VIUV)(pl = V(p| A(V'UV) = (¢] X(V'UV), (7)

complex conjugate is denoted by asterisk. Let

(= (p 9l (®)
From equations (5), (7) and (8), we have:
U(¢l = (¢ D), 9
where
_(AWU) 0
D) _( 0 A*(VIUV)’) (10)

for all U that belong to H. Since A*(V~!UV) is also a representation of H [55], the anti-unitary operators of M do
not create any extra irreducible representation. Anti-unitary operators only cause the irreducible representations
of H'to become degenerate with each other or with itself, but usually anti-unitary operators do not cause any
extra degeneracy.

If A(U) and A*(V~1UV) are equivalent, then there exists an unitary operator Psuch that:

A(U) = PAY(V-IUV) P, (11)

for all Ubelonging to H.
If

PP* = A(V?), (12)
then anti-unitary operators do not cause any extra degeneracy, and we call it case(1).
If
PP* = —A(V?), (13)
then anti-unitary operators cause the irreducible representation A to become degenerate with itself, and we call
it case(2).
If A(U) and &X¥(V~'UV) are not equivalent, then they are degenerate with each other, and we call it case(3).
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Now we can classify all the representations of all the black and white point groups. All those black and white
point groups contain representations belonging to case(2) or case(3) are listed in table A 1.
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