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I. INTRODUCTION

Beam-beam deflection is a useful tool for beam center-
ing and size measurement in existing and future linear col-
liders ). It is indispensable in the Stanford Linear Collider
when beam intensity becomes too strong for conventional
wire scans. In future linear colliders beam-beam deflection
may be one of the few viable methods from which infor-
mation can be drawn about beam sizes.

Because of the importance of beam-beam deflection at
higher intensity, it is crucial to address the problem of
disruption. At low intensity, it is enough to use the rigid
deflection formula:

(1)

where £2 = 0? 4+ 0%, ¢ is the deflection angle , r. the
classical electron radius, A the impact parameter and ¢
the transverse RMS beam size. 1 and 2 are beam labels.
The limiting cases of (1) are:

A <« 2230,

A > 2.230. (2)
At high intensity, the bunches steer and deform each other
considerably. This leads to a nonlinear deviation from
the rigid formula. Below we describe some techniques at-
tempted at modeling this effect.

II. LOWEST ORDER ANALYTICAL CALCULATION

We start with the equations relating the beam distribu-
tion and deflection of individual particles. For the 2-beam
system in figure 1, a formulation of disruption with A =0
has been laid out in [2]. The same can be applied here
except the absence of cylindrical symmetry:

With the distributions ng(z,y, z) for both beams, the
effect on a particle in beam 1 by beam 2 is
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where & = (z,y),V = (8/8z,0/8y). The above equation
is solved to the lowest order and then inverted to the same
degree of accuracy to derive the change in the distribution
of beam 1:
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The same formula applies to beam 2 except for a different
initial distribution offset by A. Two terms contribute to
the angular change of beam 1 : that caused by the distri-
bution change of beam 2, and that by the change in beam 1
itself. Substituting én,o for n;2 and integrating over time,
followed by an ensemble average over beam 1:
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where I; is the Bessel function. The remaining integral is
well behaved although no closed form can be found.

The contribution to < é¢1, > due to the change in beam
1 itself is equal to (5) with the following substitutions:
interchanging oy and o2 and replacing Dy by Ds.

The total angular change is plotted in figure 2 with nom-
inal SLC parameters (612 = 2um, Dy » = 0.1, 0.1 ,2 =1
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mm). It modifies the rigid deflection formula by roughly
0.8% near A = 0.

This method takes into account the realistic distribution
and does not rely on transverse symmetry. It can be it-
erated to obtain progressively better results. The algebra
however is formidable.

ITI. RIGID TWO-DISK MODEL

To focus on the nonlinear nature of the problem , we
developed a conceptual model to elucidate the disruption
effects at different A as depicted in Figure 3. The lon-
gitudinal distributions have been compressed into two é-
function peaks 20, apart, each carrying a transverse Gaus-
sian distribution with half of the total charge . The whole
process of bunch crossing is concentrated in three steps
corresponding to the coincidences of the “disks”. At each
crossing the rigid deflection formula for transverse Gaus-
sian distributions is used to calculate the kick on each disk,
which in turn is used to propagate the disk to the next
crossing point. The kicks at each step are compounded to-
wards the end. In the following D is as defined in Section
II, 2’ is the average deflection angle .

Small impact parameter - Suppression
In this case after the 2-disk crossing is complete as in
Figure 3, the compounded kick received by beam 1 is

1r.N A 1
. _ e = -
z' = 5700 71 (1 4D). (6)

Thus the effect of disruption is a suppression of the rigid
deflection result (2) . This can be understood since at small
A the deflection force decreases with A. As disruption
effect pulls the two beams closer , the deflection is reduced.
Large impact parameter - Enhancement
In the regime where the two beams are far apart trans-
versely, we can use the second formula in (2) and get:

2reN (o _L) o1\?
I e
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Thus the net effect is an enhancement for large A.
Near mazimum deflection - Shift of the peak
Disruption shifts the deflection peak which can serve as a
useful signature. We can calculate this from the expansion

of equation (1) around the peak (A = 2.230). This is then
used to calculate the shift by disruption:

{Shift of peak}
o

= (.3190D. (8)
These results agree with that of Section II.
IV. SEMI-RIGID TWO-DISK MODEL

The two-disk model is generalized to include changes
in the second moment as well as a continuous treatment
over the whole range of A. This is achieved via a program
combining the analytical expression for single particle de-
flection and multiparticle tracking over a continuous range

of impact parameters. The longitudinal distributions are
again compressed into two §-disks. The transverse distri-
butions are however flexible by taking on a Gaussian dis-
tribution of particles, each allowed to move independently.
The kick a particle receives from a Gaussian bunch is given
by
2reN Ay y
A2
Each particle is propagated independently between cross-
ings. Before the next kick is applied, the transverse RMS
value as well as the centroid shift is calculated and substi-
tuted into (9) to obtain the next kick for each particle.
Figure 4 shows such a calculation where the rigid deflec-
tion formula (1) , the deflection of rigid 2-disks and that
including second moment changes are compared. The ef-
fect of the second moment counteracts that due to the rigid
2-disk model, especially at small A, where the pinching of
the beams enhances the deflection the most.

Adpy = — (1—e *7). (9)

V. TRACKING RESULTS

Tracking has been employed to simulate the disrup-
tion effect in the realistic SLC environment. In some cases
the accuracy is limited by the computer capacity we could
muster. In the simulation each beam has 20000 particles
meshed into a 32 x 32 grid transversely and 100 compart-
ments longitudinally. Simulation was carried out for dif-
ferent disruption parameters D and different optical con-
ditions defined by the divergence parameter A given in [2]:
A = (0,/B8*) , which is a measure of the inherent diver-
gence with #* being the lattice beta at the collision point.
Figures 5(a) and (b) show tracking results for different D
and A, with D = 0.1, A = 0.05 corresponding to the SLC
running condition. The simulation becomes difficult as A
increases and cylindrical symmetry is thus less exact.

V1. CONCLUSION

We demonstrated different approaches in addressing
disruption effects in beam-beam deflection. Short of an an-
alytical scheme which encompasses all essential features of
disruption at non-zero A, we settle for methods which have
different emphases on the problem. The results are consis-
tent to a large degree. Extensions of these techniques, in
particular the semi-rigid disks and multi-particle tracking,
are being worked on for improved understanding of this
phenomenon.
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Figure 2. Net effect of disruption from analytic calc.
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Figure 3. The conceptual 2-disk model
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Figure 4. zero, 1st and 2nd moment disruption effect
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Figure 5(a).Tracking result with A=0.0
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Figure 5(b).Tracking result with A=0.05



