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Abstract – An exact classical approach to the calculation of electron’s self-energy and anoma-
lous g-factor is reported. The electron’s intrinsic dynamics, related electrodynamics and oc-
currence of anomalous magnetic moment are completely determined. A unique regularization
of the electromagnetic field scalar potential underlying all results is derived. A fundamental
transcendental equation satisfied by the electron’s anomalous g-factor is obtained, with solution
ae = 0.0011596521800027(65), matching the experimentally measured value reported in the liter-
ature to 0.59 parts per trillion. Field representation of the electron intrinsic and orbital dynamics
in atoms is discussed.
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Introduction. – The anomalous magnetic moment
and the intrinsic dynamics of non-composite particles have
been considered as unique features of the quantum field
theory since the beginning of its development [1–7]. The
electron’s anomalous magnetic moment and its fundamen-
tal properties are the first to be studied and realized (see
ref. [8] and references therein). With the aid of quan-
tum electrodynamics the value of corresponding g-factor
was predicted with a stunning accuracy [8–15], leaving
no space for mistrusting the mathematical framework of
quantum theory. On the other hand, the quest to cal-
culate and measure as precisely as possible the anoma-
lous magnetic moments of the remaining two charged
leptons, the muon and tau, is still open. The muon’s
anomalous magnetic moment [16,17] is still puzzling the
community aiming to reduce the gap between theory and
experiment [18–24], with the most recent result reported
in ref. [25]. Having a very short lifetime and being the
massive ones among all leptons, measuring and predicting
the anomalous magnetic moment of tau is a challenging
task requiring great efforts [26–32]. Although, there is a
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serious discrepancy between theory and experiment, such
efforts may have the potential to shed more light on the
actual contribution of the higher-order hadronic terms.

The microscopic electrodynamics underlying the occur-
rence of anomalous component in the intrinsic magnetic
moment of the charged leptons is indispensably related
to a singularity-free radial dependence of the correspond-
ing effective mass density and self-energy [1,3,33–38]. The
latter are believed to be partially addressable only by
the methods of quantum theory [39–44], with no classi-
cal analog. Moreover, within the semiclassical approaches
of the quantum mechanics, like those used to study multi-
electron systems, the evaluation of self-interactions and
self-energy still poses a challenge [45,46]. Therefore, the
quest for a (semi-)classical regularized electrodynamics
quantifying the self-interaction, self-energy and anoma-
lous magnetic moment of charged leptons is far from being
clear cut.

The present letter reports an exact classical approach
quantifying the self-interaction, self-energy and anomalous
g-factor of the electron. A non-probabilistic description
of the electron’s intrinsic dynamics and related electro-
dynamics is discussed in detail. Essential regularization
of the electromagnetic field scalar potential underlying all
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results and allowing the effect of self-interaction to be ac-
counted for with removable singularities is obtained. The
electron’s anomalous g-factor is calculated and compared
with the theoretical and experimental results available in
the literature. The obtained value agrees with the most
recently reported experimental value to 5.9 parts in 10−13,
surpassing by accuracy the latest theoretical prediction of
the quantum field theory.

Theoretical framework. – Henceforth, all mathe-
matical representations are narrowed down to the frame-
work of classical and semi-classical relativistic mechanics
and electrodynamics. We find it convenient to omit the
four-vector convention and represent all physical quanti-
ties and equations using the standard three-dimensional
vector formalism.

General notations and representations. Consider an
isolated electron, with rest frame of reference R, rest mass
me and electric charge ē = −e, where e denotes the ele-
mentary charge. Let rce = αλ̄ce denote the electron’s
electromagnetic radius at rest, where α is the fine struc-
ture constant and λ̄ce is the corresponding reduced Comp-
ton wavelength. Let ρe and ρme be the electron’s charge
and rest mass densities defined within the spatial domain
Ωce ∈ R3, with boundary ∂Ωce and volume Vce. The
boundary ∂Ωce is considered as smooth and spherically
symmetric with radius rce. In accordance with the experi-
mental observations [47,48] the distribution of charge and
mass in Ωce is considered as isotropic, with ρeρ

−1
me

= em−1
e .

Let the electron be characterized by an effective rest
mass

Me =
∫

Ωce

ρMedv, (1)

where the effective mass density ρMe = ρMe(r) is a smooth
function over r ∈ (0,+∞). Here, r is time-independent
radial parameter.

Let ue, with unit vector κ and magnitude |ue| = ue,
be the electron’s relative velocity with respect to the ob-
servational rest frame of reference O and pe = γemeue

be its momentum, where γe is the corresponding Lorentz
factor. Furthermore, let re, with |re| = re, be an intrinsic
field vector oscillating about the origin of R, with angular
velocity ωe and areal velocity

fe =
1
2
(re × ũe), (2)

where ũe is the corresponding tangential velocity, with
|ũe| = ũe, ũe = ωe × re and ũe · ue = 0. Here, re and ũe

are time-independent conjugate quantities and λ̄ce is not
an intrinsic wavelength characterizing the electron at rest.
It represents the lower bound in the range of the electron’s
observable radius re. Since the areal velocity is intrinsic,
we have the constraint

reũe = λ̄cec, (3)

where c is the light speed in vacuum. We would like
to point out, furthermore, that the magnitude of relative

velocity ue is intrinsic and not an average quantity. There-
fore, in the Lorentz boost it remains invariant.

From eq. (2) there follows that the dynamics of re un-
derlie the occurrence of angular magnetic moment

μe = −1
2
re

∫
Ωce

Gejedv, (4)

where je = ρereωe is a pseudovector associated to the
charge density current Je = γeρeue. Here, Ge is the inte-
grand g-factor, where the latter reads

ge =
2
Vce

∫
Ωce

Gedv, Ge =
eρMe

meρe
. (5)

Since ge = 2(1 + ae), we further have Me = me(1 + ae),
where ae is the electron’s anomalous g-factor.

Electromagnetic field. The pseudodensity current je
occurs not only in O but also in R and satisfies γeje ·Je =
|Je|2. The free electron cannot be at rest with respect
to any observer and ue = ũe. Since u̇e and ω̇e are zero
vectors the scalar ϕe = ϕe(r) and vector Ae = Ae(r) po-
tentials of the electromagnetic field in O do not depend
explicitly on time and according to the Lorentz transfor-
mations, we have

ϕe(r) = γeηeψe(r), Ae(r) = 2γe
ue

c2
ψe(r), (6)

where ηe = 1+β2
e , with βe = uec

−1. The function ψe(r) is
regularized to the origin of R with respect to O and reads

ψe(r) =
ē

4πεor

(
1 − e− γer

(1+ae)λce

)
, (7)

where εo is the vacuum permittivity. The function given
in eq. (7) satisfies the classical field equation

Δrψe(r) − χ2
eφe(r) = 0, (8)

where Δr is the radial part of the Laplace operator in
spherical coordinates and χe = γe((1+ae)λce)−1 is a scal-
ing constant. For ue < c, both functions in eq. (8) satisfy
the boundary conditions

ψe(r), φe(r) =

⎧⎪⎨
⎪⎩

0, r → ∞,

γeē

4πεo(1 + ae)λce
, r → 0.

(9)

The scale constant gives the lower bound of the electro-
magnetic field spatial frequency with respect to an ob-
server in O. The function φe(r) is associated to a Yukawa
potential contributing to the electron’s self-energy, with
scaling constant γec((1+ae)h)−1, where h is Planck’s con-
stant. Therefore, we have χe = γemec((1 + ae)h)−1 show-
ing that within the quantum theory the self-interaction
would be governed by an off shell photon with effective
mass me(1 + ae)−1. Comparison between the Coulomb
and regularized potentials is shown in fig. 1.

20001-p2



Exact classical approach to the electron’s self-energy and anomalous g-factor

Fig. 1: Graphical representations of the regularized electromag-
netic field scalar potential and Coulomb counterpart depicted
for comparison. The corresponding electromagnetic field en-
ergy as a function of the distance from the origin of electron’s
rest frame of reference is depicted in the inset.

For an observer in O the dependence on r of the elec-
tromagnetic field potentials given in eq. (6) is confined
within the plane perpendicular to the electron’s relative
velocity. Accordingly, the Coulomb and Lorenz gauge are
satisfied trivially and the electromagnetic field potentials
do not obey the Liénard-Wiechert representation [49–52].
The electromagnetic field does not propagate at speed c
independently of the electron and it does not classify as
an on shell coupling between the electric and magnetic
fields. The system will exhibit neither spontaneous emis-
sion nor absorption of photons. The electromagnetic field
is confined to the electron with Umov-Poynting vector
μ−1

o (Ee × Be) = εoE
2
eue, where Ee is the corresponding

electric field, Be is the magnetic one, μo is the vacuum
magnetic permeability and εoE

2
e is the corresponding en-

ergy density. Integrating the latter over R3 by accounting
for the representation Ee = |∇rϕe(r)|, we obtain the en-
ergy of the electromagnetic field. We have

We(r) = αc2γ2
eη

2
eme

λ̄ce

2r

(
2 − 4e

γer
(1+ae)λce + 2e2

γer
(1+ae)λce

+
γer

(1 + ae)λce

)
e−2 γer

(1+ae)λce ,

where

lim
r→0

We(r) =
αc2γ3

eη
2
eme

4π(1 + ae)
. (10)

The dependence on r is depicted in the inset of fig. 1.
The limits given in eqs. (9) and (10) underline that for

ue < c the radial dependence of the electromagnetic field
has a removable singularity ensuring the electron’s self-
energy takes finite value. Moreover, at high momentum
scale the theory remains consistent, since the limit ue → c
corresponds to an open system.

Self-energy. – Introducing the electron’s self-energy
in accordance with the theoretical framework set in the
previous section, we apply the Hamiltonian formalism.

The Hamiltonian. Since the system is closed, with
the action of no additional fields, the electron exhibits no
exchange of energy and hence momentum. Consequently,
neither external nor net self-forces [52–54] are acting on
the electron. The system’s energy remains purely kinetic,
with Hamiltonian not depending explicitly on time. How-
ever, the considered system definitely exhibits a type of
self-interaction, with energy that is not directionally spe-
cific. The corresponding Hamiltonian reads

He = γemec
2 + Σe, (11)

where Σe is the electromagnetic self-energy. In particular,
Σe equals the spatial average over the domain Ωce of the
interaction energy ēϕe describing the electron’s electro-
magnetic self-interaction in O. Moreover, the electron’s
self-energy is an effective kinetic-energy generated by the
corresponding self-interaction yielding larger mass density
ρMe > ρme , with ρMe satisfying eq. (1). In the absence of
self-interaction ρMe = ρme and the system is electrically
neutral. Thus, we have

Σe = γec
2

∫
Ωce

ρMe − ρmedv, (12)

where

ρMe = ρme

(
1 + ηe

rce

r

(
1 − e− γer

(1+ae)λce

))

= ρme

(
1 +

ηeē

mec2
ψe

)
. (13)

The self-energy term given in eq. (12) is intrinsic and
not a potential energy of a gradient field. Represented
within the mathematical framework of quantum theory,
it will remain invariant with respect to the electron’s or-
bital state in many-body systems. That may be of ben-
efit to the researchers studying multi-electron systems
with the aid of computational methods that fail to ac-
count for the self-interactions without generating errors,
see, for example, the case of Kohn-Sham density func-
tional theory [46,55,56]. Moreover, having an exact value
of a scaling constant regularizing the electrons interac-
tions in solids, like χe from the cutoff term φe(r) repre-
sented explicitly in eq. (7) regularizing the electromagnetic
field potentials in eq. (6), is a key point in facilitating
the successful application of time-dependent density func-
tional theory in studying electric polarization-switching
mechanism in ferroelectric systems [57,58].

The Hamiltonian density. The Hamiltonian given in
eq. (11) has a corresponding density related to the dynam-
ics of the field vector re. According to eqs. (3) and (13),
for r = re, we have

He = c2ρme

(
γe +

α

mec
Pe

)
, (14)

where
Pe = meγeηeũe

(
1 − e− γec

2π(1+ae)ũe

)

20001-p3



M. Georgiev

Table 1: Theoretical and experimental values of the elec-
tron’s anomalous g-factor. The result predicted by the regular-
ized classical electrodynamics (CED) discussed in the present
study is given in the second row. The third and fourth rows
show some of the recent results based on renormalized quan-
tum electrodynamics (QED) and included hadronic and weak
contributions (QED+), respectively. In the fourth row only the
uncertainty arising from the fine structure constant is included.
The last row shows the most recent experimental result.

Methods ae Reference

CED 0.0011596521800027(65) eq. (17)
QED 0.00115965218178(77) [11]
QED+ 0.001159652181606(229) [13]
Experiment 0.00115965218059(13) [15]

is the generalized momentum. From eq. (14) we obtain
the equations of motion as

ũe =
∫

Ωce

∂He

∂Pe
dv, Ṗe = 0, (15)

describing the electron’s intrinsic dynamics.

The anomalous g-factor. – Integrating over the do-
main Ωce in eq. (15), we get

ũe = αc, ηe = 1 + α2, γ−1
e =

√
1 − α2. (16)

Taking into account the explicit representation of the
effective mass density given in eq. (13), from eq. (5) we
obtain a transcendental equation satisfied by the electron’s
anomalous g-factor. We have

ae = 3ηe

⎛
⎜⎝1

2
−

⎛
⎜⎝1 − e− αγe

2π(1+ae)

(
1 + αγe

2π(1+ae)

)
(

αγe

2π(1+ae)

)2

⎞
⎟⎠

⎞
⎟⎠ . (17)

Along with the successful quantum theory calculations
[12,13], eq. (17) represents a unique classical equation pre-
dicting the electron’s anomalous g-factor. The calculated
value is given in table 1 along with the most recent re-
sults found in the literature, where for the fine struc-
ture constant we obtain α = 137.0359990849004(3)−1.
The graphical representation of the data given in ta-
ble 1 is shown in fig. 2. It is worth noting that accord-
ing to NIST [59] the value of fine structure constant is
α = 137.035999084−1. We would like to point out that
for α = 137.035999206−1 [60], the computed value of ae

matches the experimental one only to a few parts per
billion.

To the best of our knowledge, the value of the anomalous
g-factor given in the second row in table 1 represents the
most accurate theoretical results reported by far.

Field representations. – Hereon quantum mechani-
cal representations of immense relevance are used by ex-
ception for complementary purpose.

Fig. 2: Calculated and measured (black circle) values of the
electron’s anomalous g-factor. Only the most recent results
are depicted, with data provided in table 1. For the sake of
clarity, the first ten digits on the left-hand side with respect to
the decimal point are replaced by a central dot symbol.

Fig. 3: Graphical representation of a right circular polarization
of the electron’s intrinsic field vector re (blue arrows) along the
axis of relative motion of the electron’s rest frame of reference.
The corresponding helix (red line) has a pitch 2πre, since for
a free electron ũe = ue.

Intrinsic magnetic moment. The magnetic moment
presented in eq. (4) is intrinsic. It is a classical representa-
tion of the electron’s spin magnetic moment with included
anomalous component. The anomalous component occurs
as a result of the regularized self-interaction (see eq. (12)).
In particular, substituting the explicit representation ofGe

from eq. (5) in eq. (4), we get

μe = −1
2
geμBκ, (18)

where μB is the Bohr magneton. Here, stepping closer to
the frontier of quantum theory, we take into account the
equality λ̄cemec = �.

The intrinsic magnetic moment is related to neither ro-
tation nor spinning of the electron’s electric charge or rest
mass, with R remaining inertial. It occurs since the elec-
tron’s intrinsic field vector re is oscillating with angular
frequency ωe = ũer

−1
e , see eq. (2). Therefore, as the ori-

gin of R is moving relatively to an observer, with velocity
ue, the electron appears as a circularly polarized traveling
wave of amplitude Ae = re and carrying rest mass Me,
see fig. 3. Accordingly, the electron’s dynamics in O is
associated to the vector field Φe(x) = AeΦe(x)ne, where
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x ∈ R1,3 is the position four-vector of the origin of elec-
tron’s rest frame of reference and ne ∈ C

3 is the field’s unit
vector. Here, at a certain point in spacetime the phase
factor Φe(x) of the propagator satisfies the Klein-Gordon
equation (

� +
M2

e c
2

�2

)
Φe(x) = 0. (19)

The electron’s intrinsic field vector is represented by
the vector field in O according to the relation re =√

2Re{Φe(x = ct)}, where ne = ( 1√
2
,± i√

2
, 0).

Effective mass-energy equivalence. Taking into ac-
count eqs. (11) and (12), we obtain the effective mass-
energy relation

Ee = γeMec
2, (20)

where for the electromagnetic self-energy we get

Σe = aeγemec
2.

Here we take into account that Me = me(1 + ae). From
eqs. (19) and (20) there follows that the electron is char-
acterized by the effective momentum Pe = γαMeue satis-
fying the energy-momentum relation

Ee =
√
M2

e c
4 + P 2

e c
2. (21)

Moreover, the effective rest mass, energy and momentum
related by eq. (21) are physical characteristics of the spinor
field Ψe(xμ) that effectively accounts for the discussed self-
interaction and satisfies the Dirac equation

(i�γμ∂μ −Mec)Ψe(xμ) = 0. (22)

In contrast to the Dirac spinor in standard quantum the-
ory the spinor field in eq. (22) accounts for the anomalous
component in the electron’s spin magnetic moment.

Atomic orbitals. From eqs. (3) and (16), we calculate
the free electron field vector magnitude. We have re =
rB , where rB is the Bohr radius. Moreover, expanding in
power series the Lorentz factor in eq. (20), we get

Mec
2 +

α2

2
Mec

2 +
3α4

8
Mec

2 + · · · ,

where the second term is the non-relativistic oscilla-
tion energy of the free electron field vector. Omit-
ting the anomalous component it equals the absolute value
of the ground-state energy of the hydrogen atom. There-
fore, the ground state of a hydrogen atom preserves the
amplitude of the free electron field vector. Consequently,
the corresponding total angular momentum equals the
spin one. As a result of the proton-electron interaction
the electron’s net relative velocity equals zero and the dy-
namics of re appears as not directionally specific. At any
instant of time, instead of a helix (see fig. 3), the oscil-
lation of the electron field vector re indicates a point on
a sphere representing the first hydrogen atomic orbital,
see fig. 4. When excited, the magnitude and dynamics of

Fig. 4: Graphical representation of the angular dynamics of the
electron field vector rnlm in the hydrogen atom, see eq. (23).
The vector’s magnitude is normalized to unity and the density
of arrows is reduced for the sake of clarity.

the electron field vector change obtaining different orbital
shape and hence electron cloud.

According to the current picture, the electron cloud
does not represent a moving around the nucleus point-
like charge and mass with motion exclusively stabilized
by the uncertainty of corresponding position and momen-
tum. The electron’s charge and mass only seemingly or-
bit around the atomic nucleus. In particular, the atomic
shells and subshells appear as different modes of oscillation
of re = re(θ, ϕ) related to the stationary wave function
Φe(�, θ, ϕ) = Re(�)Ye(θ, ϕ), where �, θ and ϕ are the ra-
dial coordinate, polar and azimuthal angles, respectively.
The associated vector field is Φe(θ, ϕ) = AeYe(θ, ϕ)ne,
where ne is the radial unit vector. The stationary wave
function satisfies the Helmholtz equation

(
Δ + ζ2(�)

)
Φe(�, θ, ϕ) = 0, (23)

where ζ2(�) = 2me�−2(E − U(�)), E is the total energy
of the oscillator and U(�) = −mec

2rce�
−1 is its non-

regularized potential energy. Note that as in eq. (19), the
delta operator in eq. (23) is associated only to the kinet-
ics of re and not to the motion of electron’s charge and
mass. Therefore, in the corresponding Schrödinger equa-
tion the momentum operator of the electron will be asso-
ciated only to the dynamics of its field vector. Moreover,
the hydrogen wave functions will be related to the proba-
bility of finding the electron’s field vector pointing at a cer-
tain direction in space and having a particular magnitude.
The position and momentum associated to the field vec-
tor will be naturally related via the Heisenberg uncertainty
relations.

The solutions of eq. (23) are orthogonal polynomials as-
sociated to the eigenstates of the hydrogen atom. We have
Φe(�, θ, ϕ) → Φnlm(�, θ, ϕ) ≡ ΛlmRnl(�)Y m

l (θ, ϕ), where
Rnl(�) are the radial wave functions and Y m

l (θ, ϕ) the
spherical harmonics. Moreover, n, l and m are the prime,
orbital and magnetic quantum numbers, respectively. The
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oscillator’s energy is

En = −mec
2rce

2n2rB
.

For all n and l, the field’s amplitude Ae → Anl is the
peak amplitude equal to the value of � at the global max-
imum of the function |�Rnl(�)|. Furthermore, Ye(θ, ϕ) →
ΛlmY

m
l (θ, ϕ), where for all l and m the normalization

constant Λlm preserves the peak amplitude. In particu-
lar, for m, θ = {0, 0}, {±l, 0.5π}, we have the constraint
Λlm|Y m

l (θ, 0)| = 1. Thus, for the electron field vector
we have re → rnlm = AnlRe{ΛlmY

m
l (θ, ϕ)}ne, where

the corresponding field reads Φe(θ, ϕ) → Φnlm(θ, ϕ) =
AnlΛlmY

m
l (θ, ϕ)ne.

The angular dynamics related to three different atomic
orbitals, with A10 = rB, A21 = 4rB and A32 = 9rB, is
depicted in fig. 4.

Summary and conclusions. – The present latter re-
ports an exact classical approach quantifying the elec-
tron’s self-interaction, self-energy, spin and anomalous
magnetic moments. The presented mathematical frame-
work demonstrates that the classical and quantum rep-
resentations of the electron’s intrinsic dynamics are very
closely interconnected and that the corresponding intrin-
sic and anomalous magnetic moments are not exclusive
features of the quantum theory.

In particular, a framework of essential classical repre-
sentations of the electron’s effective rest mass and intrin-
sic magnetic moment are given (see eqs. (1) to (5)). To
this aim an inherent field vector underlying the electron’s
wave-like dynamics is introduced. Furthermore, a unique
regularization of the electromagnetic field scalar poten-
tial that removes the radial singularity in the system is
presented, see eq. (7). Consequently, unique equations of
motion and a transcendental equation describing the elec-
tron’s intrinsic dynamics, predicting the Bohr radius and
the electron’s anomalous g-factor are derived, see eqs. (15)
and (17), respectively. The electron’s effective rest mass
and self-energy are exactly calculated, showing that the
rest energy of an electrically charged particle is larger
than the rest energy of electrically neutral particle of the
same rest mass, see eq. (20). Furthermore, the electron’s
anomalous g-factor is calculated with stunning precision
obtaining the most accurate and only classical value re-
ported by far, see table 1 and fig. 2. In addition, the
semiclassical and effective Dirac spinor fields describing a
self-interacting electron are derived, see eqs. (19) and (22),
respectively. A fundamental advantage of the presented
fields is that they directly account for the occurrence of
anomalous component in the electron’s intrinsic magnetic
moment and are more massive to the degree defined by
eq. (20). Moreover, a field representation of the atomic
orbitals is obtained, proposing that each of the latter rep-
resents a particular oscillation of the electron field vector
closely related to the stationary wave function of the hy-
drogen atom, see eq. (23).

The reported approach has the potential to address the
occurrence of anomalous magnetic moment of the remain-
ing massive leptons and the non-composite particles in
general. Applied to study the muon self-interaction it
predicts a highly accurate result for the corresponding
anomalous g-factor. The calculated value matches the
most recent experimental one reported in the literature to
about 0.43 ppb. These results lie beyond the scope of the
present letter and will be discussed in a separate paper.

The approach may be built on and implement into the
framework of quantum field theory to influence our un-
derstanding about the inter-relationship between classical
and quantum physics beyond the corresponding principle.

It is worth emphasizing, furthermore, that the obtained
regularization of the electromagnetic field scalar potential
may significantly facilitate the optimization of some com-
putational methods in solid state physics making them
self-consistent, especially methods studying multi-electron
systems that fail to address the self-interactions without
the consideration of additional corrections.
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