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Abstract

Lattice simulations of supersymmetric gauge theories is not straightforward. In this thesis, we

propose a non-lattice method as an alternative to the conventional lattice approach for studying

supersymmetric gauge theories. To gain some insight into this non-lattice approach, we first

apply it to the supersymmetric anharmonic oscillator model, which is a non-gauge theory and

well-studied with the lattice formalism. We extracted the bosonic and fermionic mass gaps

from the exponential decay of two-point correlators and compared the results with those ob-

tained from lattice approach. Our simulations also confirm that the SUSY is preserved for the

model.

Then, we simulated the bosonic and supersymmetric (SUSY) matrix quantum mechanics model

with four supercharges. We used the Polyakov loop as an order parameter to investigate the

phase structure of the models at finite temperatures. Our simulations confirmed that the bosonic

case exhibits a confinement-deconfinement phase transition as the temperature changes, but the

SUSY model always remains in the deconfined phase. Other observables, such as internal en-

ergy and space extent, were also computed in addition to the Polyakov loop. Our plots also

agreed well with the high-temperature expansion results.
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Chapter 1

Introduction

The development of lattice gauge theory, along with the advancement of various simulation

techniques, has provided us with a powerful non-perturbative method for studying gauge the-

ories such as QCD. However, when attempting to apply the method to supersymmetric gauge

theories, which are interesting for a variety of reasons, some practical and theoretical challenges

arise.

First of all, since the algebra of supersymmetry contains continuous translations, which are

broken to discrete ones, it seems unavoidable to break it on a lattice. This can be seen immedi-

ately if one recalls the supersymmetry algebra [Q, Q̄] ∝ Pµ , where the generators for translation

appear on the right hand side. Since the translational symmetry is broken by the lattice regular-

ization, one necessarily breaks supersymmetry. Then, one has to include all the relevant terms

allowed by symmetries preserved on the lattice, and fine-tune the coupling constants to arrive

at the desired supersymmetric fixed point in the continuum limit. One way to deal with this

(see Ref. [Giedt 06] and references therein) is that one can reduce the number of parameters

to be fine-tuned (even to zero in some cases) by preserving some part of supersymmetry. In

lower dimensions, one can alternatively take the advantage of super-renormalizability, and de-

termine the appropriate counter-terms by perturbative calculations to avoid fine-tuning. These

two approaches can be nicely illustrated in one dimension by the example of a supersymmetric

anharmonic oscillator.

Supersymmetric gauge theories appear in a variety of ways in the context of string/M-theory.

The (p + 1)-dimensional U(N) super Yang-Mills theory, in particular, gives the low-energy

effective theory of a stack of N p-branes. This gave rise to a number of intriguing hypothe-

ses. For example, gauge/gravity duality, states that the strong coupling limit of large-N gauge

theories has a dual description in terms of classical supergravity. A different but related con-

1



Ashutosh Tripathi Introduction

jecture asserts that non-perturbative superstring/M-theory formulations can be given by matrix

models, which can be obtained by dimensionally reducing ten-dimensional N = 1 U(N) su-

per Yang-Mills theory to D = 0,1,2 dimensions. The D = 1 model [Banks 97], in particular,

corresponds to the M-theory. The bosonic version has been studied with Monte Carlo simula-

tions using the lattice formulation [Kawahara 07a] and the continuum quenched Eguchi-Kawai

model [Kawahara 05]. However, the next step of including fermionic matrices would be diffi-

cult even theoretically due to their Majorana-Weyl nature inherited from ten dimensions. Ref.

[Kaplan 05] proposed a lattice approach of discretization, which preserves half of SUSY at the

expense of breaking the SO(9) symmetry.

The aim of this thesis is to point out that there exists an extremely simple and elegant method

to simulate supersymmetric gauge theories, known as non-lattice simulations. (We discuss the

case of U(N) gauge group, but extension to more general group must be possible.) This method

was proposed by three pioneers (M.H., J.N. and S.T.) in 2007 [Hanada 07]. In particular, it will

enable us to study the gauge theory side of the aforementioned duality and also to put M-theory

on computer.

Let us first recall that the importance of the lattice formulation lies in its manifest gauge in-

variance. We will be looking at the one-dimensional (1d) case for which the gauge dynamics

is almost trivial. (We assume that the 1d direction is compact. The non-compact case would

be easier since the gauge dynamics is completely trivial.) This gives us an opportunity to use

a non-lattice formulation. More specifically, we first take the static diagonal gauge. Using the

residual large gauge transformation, we can choose a gauge slice such that the diagonal ele-

ments of the constant gauge field lie within a minimum interval. Finally we expand the fields

into Fourier modes, and keep only the modes up to some cutoff. The crucial point of our method

is that the gauge symmetry is completely fixed (up to the global permutation group, which is

kept intact) before introducing the cutoff.

Notably, one can extend this approach to 3d and 4d gauge theories [Ishiki 09] by using the

idea of large-N reduction [Ishii 08]. In the 4d case, the gauge theory becomes superconformal

and the number of supersymmetries enhances from 16 to 32. This superconformal theory is

interesting on its own right, but it is also studied intensively in the context of the AdS/CFT

correspondence, which is a typical case of the gauge-gravity duality. The non-lattice simulation

of the 4d superconformal theory requires no fine-tuning, unlike the previous proposals based on

the lattice regularization [Kaplan 05].

2
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1.1 One-dimensional Supersymmetric Yang-Mills Models

The non-lattice method has been proved to be very efficient and useful for studying supersym-

metric Yang-Mills (SYM) theories in the strongly coupled regime.

1.1.1 The 4 Supercharge Model

The one-dimensional SYM model with four supercharges can be formally obtained by dimen-

sionally reducing four-dimensional N = 1 U(N) super Yang-Mills theory to one dimension.

The action of the model is given by

SE =
1
g2

∫
β

0
dt Tr

[1
2
(DtXi)

2− 1
4
[Xi,X j]

2 + ψ̄Dtψ− ψ̄σi[Xi,ψ]
]
, (1.1)

where DtX i = ∂tX i− i [ A(t),X i(t) ] is the covariant derivative with the gauge field A(t) being

an N×N Hermitian matrix. The bosonic matrices X i(t) with i= 1,2,3, are also N×N Hermitian

matrices, and the fermionic matrices ψα(t) and ψ̄α(t) with α = 1,2, are N×N matrices with

complex Grassmann entries. The 2×2 matrices σi are the Pauli matrices.

1.1.2 The 16 Supercharge Model

The one-dimensional SYM model with sixteen supercharges can be derived by dimensionally

reducing ten-dimensional super Yang-Mills theory to one dimension. The action is given by

SE =
1
g2

∫
β

0
dt tr

{
1
2
(DtXi)

2− 1
4
[Xi,X j]

2 +
1
2

ψαDtψα −
1
2

ψα(γi)αβ [Xi,ψβ ]

}
, (1.2)

where DtX i = ∂tX i− i[ A(t),X i(t) ] represents the covariant derivative with the gauge field

A(t) being an N×N Hermitian matrix. The bosonic matrices Xi(t) (i = 1,2, · · · ,9), come from

spatial components of the ten-dimensional gauge field, while the fermionic matrices ψα(t) (α =

1,2, · · · ,16), come from a Majorana-Weyl spinor in ten dimensions. The 16× 16 matrices γµ

in Eq. (1.2) act on spinor indices and satisfies the Euclidean Clifford algebra {γi,γ j}= 2δi j.

In both models, we impose periodic and anti-periodic boundary conditions on the bosons and

fermions, respectively. The extent β in the Euclidean time direction then corresponds to the

inverse temperature β ≡ 1
T . The parameter g in Eq. (1.1) and (1.2) can always be scaled out by

an appropriate rescaling of the matrices and the time coordinate t. We take g = 1√
N

without loss

of generality. Both models can be viewed as a one-dimensional U(N) gauge theory.

3
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1.2 Phase Transition

For a system with a density of states that grows exponentially,

ρ(E)∼ eβHE (1.3)

there exists an upper limit to the temperature known as the Hagedorn temperature. Above this

temperature the partition function diverges [Furuuchi 03]

lim
T→T−H

Tr
(

e−βH
)
→ ∞. (1.4)

Above this cutoff temperature TH , the partition function does not exist. However, it can be

made to exist if we keep N large but finite. Performing this breaks the exponential growth in

the asymptotic density of states at some large but finite energy value. For temperature greater

than TH , the entropy and energy are dominated by the states at and above the cutoff scale and

the free energy jumps from O(1) to O(N2) [Hadizadeh 05]. Thus

lim
N→∞

F
N2 = 0 (Confined Phase), (1.5)

lim
N→∞

F
N2 6= 0 (Deconfined Phase). (1.6)

The transition from the confined phase to deconfined phase is known as confinement-deconfinement

phase transition or deconfinement phase transition. In the confined phase, the quantum states

of the Hamiltonian should be singlets under the gauge symmetry [Semenoff ]. This condition

fails as soon as the system reaches the Hagedorn temperature. This type of transition is found

in large-N gauge theories, such as weakly coupled Yang-Mills theory and it is also expected to

be found in the bosonic part of the above discussed one-dimensional SYM models [Semenoff ].

This confinement-deconfinement phase transition in the matrix models is associated with the

breakdown of the center symmetry, i.e., A(t)→ A(t)+ k1. The order parameter for this sym-

metry breaking is the Polyakov loop [Polyakov 78]. Polyakov loop is defined as the trace of the

holonomy of the gauge field around the finite temperature Euclidean time circle

P =
1
N

Tr
(

P(ei
∮

dtA(t))
)
. (1.7)

This operator is gauge invariant as it is a special case of the Wilson line operator. The expec-

tation value of this operator is zero in the confined phase and it jumps to a non-zero value as

we cross the phase transition point and enters the deconfined phase. This is simply because the

4
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Polyakov loop is a unitary matrix and its eigenvalues are uniformly distributed on the unit circle

in the confined phase and in the deconfined phase the eigenvalues clump towards a single point.

We have

〈P〉= 0 (Confined phase), (1.8)

〈P〉 6= 0 (Deconfined Phase). (1.9)

We will also use this as an order parameter for our simulations of the four supercharge model.

1.3 One-dimensional SYM (16 Supercharges) and Gauge-

gravity Duality

One of the motivations to investigate the 16 supercharge version of the 1d SYM model is its

dual relationship with the so-called black 0-brane solution in type IIA supergravity. In order for

this duality to be valid, one has to take the ’t Hooft large-N limit and the strong coupling limit

on the gauge theory side.

Given the dual geometry, Hawking’s theory of the black hole thermodynamics talks about vari-

ous thermodynamic relations such as

1
N2

(
E

λ 1/3

)
= c
(

T
λ 1/3

)14/5

, c =
9

14

{
413152

(
π

7

)14
}1/5

≈ 7.41. (1.10)

In the large-N limit, at low T , gauge-gravity duality predicts that this should be reproduced

by 1d SYM [Itzhaki 98]. The importance of this prediction is that, if it is true, it explains the

microscopic origin of the black hole thermodynamics, meaning that the 1d SYM provides the

quantum description of the states inside the black hole.

As another prediction from the gauge-gravity duality, let us consider the Wilson loop, which

winds around the temporal direction once, like the Polyakov line. However, unlike the usual

Polyakov line, we consider the one involving the adjoint scalar as

W ≡ 1
N

TrP exp
[

i
∫

β

0
dt{A(t)+ iniXi(t)}

]
, (1.11)

where ni is a unit vector in nine dimensions, which can be chosen arbitrarily due to the SO(9)

invariance.

5
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Figure 1.1: Wilson loop against T−3/5.

For the model Eq. (1.2), the logarithm of the Wilson loop is given by

lnW =
βRSch

2πα ′
= κ

(
T

λ 1/3

)−3/5

(1.12)

where RSch is the Schwarzschild radius of the dual black hole geometry and

κ =
1

2π

{
16
√

15π7/2

7

}2/5

≈ 1.89. (1.13)

Figure 1.1 is a plot of the log of the Wilson loop Eq. (1.11) against T−3/5.

At low temperature, the data points are expected to fit nicely to a straight line with a slope

1.89 in precise agreement with Eq. (1.13). The Wilson loop observable helps in extracting

the information of dual geometry such as Schwarzschild radius. It also confirms directly the

fuzz-ball picture [Mathur 08] of a black hole proposed to solve the information paradox.

6



Chapter 2

Complex Langevin Dynamics

In this chapter, we will go over the fundamental concepts underlying the complex Langevin

dynamics, as well as its recent developments and successes. The primary advantage of this

method over traditional Monte Carlo methods is that it does not rely on the action to assign a

weight to the field configurations. As we will see, this approach is completely unaffected by the

sign problem when it comes to numerical simulations.

2.1 Stochastic Dynamics

The path integral approach, however successful, is not the only way to quantize a quantum field

theory. In general, there are various other methods available and, following Ref. [Damgaard 87],

we are going to discuss one of the most robust alternatives, namely stochastic quantizations.

The idea was first introduced by Parisi and Wu [Parisi 81] in 1980 and it consists of considering

the Euclidian QFT as an equilibrium limit of a system governed by a stochastic process. The

system evolves in an additional time tL under the effect of some drift force, determined by the

system, together with random noise. When the equilibrium is reached, for tL→ ∞, stochastic

averages become identical to ordinary Euclidean vacuum expectation values.

The oldest and best known stochastic equation, and the one we are interested in, is the Langevin

equation [Lemons 97]

m
d
dt

v(t) =−αv(t)+η(t), (2.1)

introduced in 1908 to describe the Brownian motion of a particle of mass m in a fluid with

viscosity α that randomly collides with other particles of the fluid with intensity and direction

η . The latter is represented by a Gaussian distributed random noise

〈ηi(t)〉η = 0; 〈ηi(t)η j(t ′)〉η = 2λδi jδ (t− t ′). (2.2)

7
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with a mean of 0 and a variance of 2λ . This old model, however simple and classical, is worth a

brief examination in order to gain an understanding of the Langevin stochastic process. Because

the Langevin equation Eq. (2.1) is a non-homogeneous first order linear differential equation, it

can be solved analytically as the Green’s function

vi(t) = exp
(
−α

m
t
)

vi(0)+
1
m

∫ t

0
exp
(
−α

m
(t− τ)

)
ηi(τ)dτ. (2.3)

We notice that the dependence on the initial conditions v(0) is lost exponentially fast with time

so that we might as well assume that v(0) = 0 without losing any generality. Having an equation

for v(t) we want to calculate some physical quantity from it, for example the average kinetic

energy of our Brownian particle

1
2

m〈v2(t)〉= 1
2m

∫ t

0
dτ

∫ t

0
dτ
′ exp

(
−
(

α

m

)
(2t− τ− τ

′)
)
〈ηi(τ)η j(τ

′)〉

=
3λ

2α

[
1− exp

(
−2α

m
t
)]

. (2.4)

We note that by taking λ = kT α the correct value for the average kinetic energy E = 3
2KT is

recovered for t→∞. Since eventually we are going to be interested in numerical simulations, it

is essential for us to know the behaviour of the probability distribution governing the Langevin

stochastic process. Let us set λ = 1, in this case, the observables will be functions of the velocity

v(t)

〈O(v(t))〉η ≡
∫

Dη exp
(
−1

4

∫ t

0
η

2(τ)dτ

)
O(v(t))

=
∫

dv O(v) P(v, t) ≡ 〈O(v(t))〉P, (2.5)

where we used the fact that averages can be computed either over the noise η or over the

probability distribution P(v)

〈 f 〉η = 〈 f 〉P. (2.6)

Taking the time derivative of Eq. (2.5) and using the Langevin equation (2.1) (with m = α = 1),

one gets 〈
∂O(v)

∂v
dv
dt

〉
=

〈
∂O(v)

∂v
(−v+η)

〉
=
∫

dvO(v)
∂P(v, t)

∂ t
. (2.7)

8
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Furthermore, using Eq. (2.5) and integrating by parts, we can write

〈
∂O(v)

∂v
η

〉
=
∫

Dη

[
∂

∂η(t)
exp
(
−1

4

∫ t

0
η

2(τ)dτ

)]
∂O(v)

∂v

(2.8)

= 2
〈

∂ 2O(v)
∂v2

∂v
∂η

〉
=

〈
∂ 2O(v)

∂v2

〉
,

where in the last step we used the expression Eq. (2.3) for v(t)

∂v(t)
∂η(t)

∫
∞

0
θ(t− τ)e(− (t− τ))ηi(τ)dτ = θ(0) =

1
2
. (2.9)

If we adopt the middle point prescription for the Heaviside step function θ(t−τ). At this point,

we can use Eq. (2.8) and, after applying integration by parts, we can rewrite Eq. (2.7) as

∫
dvO(v)

[
∂

∂v

(
v+

∂

∂v

)]
P(v, t) =

∫
dvO(v)

∂P(v, t)
∂ t

. (2.10)

This results in the Fokker-Planck equation, which describes the evolution of the probability

distribution P(v, t).
∂P(v, t)

∂ t
=

∂

∂v

(
v+

∂

∂v

)
P(v, t). (2.11)

We can notice here that the stationary solution ∂

∂ t P = 0 of Eq. (2.11), after requiring the condi-

tion P(v) = P(−v), leads to the Boltzmann distribution for the particle in equilibrium with the

system

Peq ∼ exp
(
−v2

2

)
. (2.12)

The Fokker-Planck equation plays a crucial role in the numerical application of the Langevin

dynamics in the case of a complex field theory.

2.2 Stochastic Quantization of a Field Theory

The idea behind stochastic quantization is to formulate the equivalent of the Langevin equation,

Eq. (2.1) for a field theory in such a way that the associated Fokker-Planck distribution may

have the Euclidian Boltzmann distribution exp(−SE) as the unique stationary solution.

The first step is the introduction of an additional fictitious time tL in which the stochastic sys-

9
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tems evolves

φ(x0, · · · ,xn)→ φ(x0, · · · ,xn, tL). (2.13)

From now on we are going to call the Langevin time tL just t, having in mind it is different from

the Euclidian time x0. The second requirement is that the evolution of fields be described by the

Langevin stochastic equation

∂

∂ t
φ(x, t) =− δS

δφ(x, t)
+η(x, t), (2.14)

where S is the Euclidian action of the field theory, which also depends on the Langevin time

S =
∫

dt dnx L

(
φ(x, t),

∂

∂ t
φ(x, t)

)
(2.15)

and η(x, t) is the same Gaussian white noise

〈η(x, t)〉= 0; 〈η(x, t)η(x′, t ′)〉= 2δ
n(x− x′)δ (t− t ′). (2.16)

In the same way as in the classical case, Eq. (2.14) is associated with a probability distribution

function P(φ , t) for the fields at the Langevin time t

〈φ(x1, t), · · · ,φ(xn, t)〉η =
∫

DφP(φ , t)φ(x1) · · ·φ(xn), (2.17)

which satisfies the Fokker-Planck equation, corresponding to Eq. (2.11), generalized for the

field theory
∂P(φ , t)

∂ t
=
∫

dnx
δ

δφ(x, t)

(
δ

S
δφ(x, t)+

∂

∂φ(x, t)

)
P(φ , t). (2.18)

As a final remark we would like to show that the Eq. (2.18) leads P(φ , t) to converge to the

Euclidian Boltzmann weight of the standard path integral quantization exponentially fast with

Langevin time. Let us consider, for simplicity, one degree of freedom x. The partition function

of this system reads

Z =
∫

dxe−S(x) (2.19)

and the corresponding Langevin equation is

dx
dt

=−∂xS(x)+η . (2.20)

The time evolution of the associated probability distribution function P(x)

〈O(x))〉=
∫

dx O(x)P(x; t) (2.21)

10
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which is determined by the Fokker-Planck equation

∂tP(x, t) = ∂x[∂x +∂xS(x)]P(x, t), (2.22)

whose stationary point is easily found to be P(x)∼ e−S(x). Moreover, we can rewrite Eq. (2.22)

upon the transformation

P(x, t) = ψ(x, t)e−
1
2 S(x), (2.23)

in the form of Schrödinger like equation

ψ̇(x, t) =−HFPψ(x, t) (2.24)

where

HFP =

(
−∂x +

1
2

S′(x)
)(

∂x +
1
2

S′(x)
)
. (2.25)

The operator Eq. (2.25) is self-adjoint and, if | limx→∞ S′(x)→ ∞|, the spectrum of its eigenval-

ues is non-negative and discrete

Hψn = Enψn, (2.26)

with the ground state ψ0 ∼ e−S(x)/2 annihilating Eq. (2.25). Therefore we can rewrite ψ(x, t)

on the base of the eigenvectors of HFP

ψ(x, t) = c0e−
S(x)

2 +∑
n

cnψn(x)e−Ent → c0e−
S(x)

2 (2.27)

and the correct distribution P(x)∼ e−S(x) is reached exponentially fast.

2.3 Complex Langevin Dynamics

We already discussed how a complex weight prevents the application of standard Monte Carlo

methods. On the other hand, stochastic processes do not rely on importance sampling, which

makes them good candidates to deal with the sign problem. In this section we shall see how

Langevin dynamics can be generalized to the case of complex actions S(x), examining in detail

the careful steps that make this method successful.

ẋ =−S′(x)+η(t) (2.28)

and, consequently, to the FP equation

∂tρ(x, t) = LT
0 ρ(x, t), (2.29)

11
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where LT
0 is the usual Fokker-Planck operator LT

0 = ∂x(∂x +∂xSc(x)) that now is complex. Eq.

(2.29) is expected to have the desired complex weight

ρ(x)∼ e−S(x) (2.30)

as a stationary solution. However, being complex-valued, ρ(x) is not suitable to be regarded

as a probability distribution function (PDF) as in Eq. (2.21). Furthermore, the associated FP

Hamiltonian HFP(z), the complex equivalent of Eq. (2.25), is not self-adjoint anymore, so

that a proof of exponentially fast convergence to the unique solution cannot be provided. The

way to proceed then [Aarts 11b, Aarts 13a], is to consider the real and imaginary parts of the

complexified variables z→ x+ iy as new and independent degrees of freedom

ẋ = Kx +
√

NRηR,

ẏ = Ky +
√

NIηI, (2.31)

with the two drifts

Kx =−Re∂zS(z), Ky =−Im∂zS(z). (2.32)

The correlators between the noises ηR and ηI derive from the original prescription Eq. (2.2) on

the complex noise η = ηR + iηI and read

〈ηR(t)ηR(t ′)〉= 2NRδ (t− t ′),

〈ηI(t)ηI(t ′)〉= 2NIδ (t− t ′), (2.33)

〈ηR(t)ηI(t ′)〉= 0,

where NR−NI = 1 and NI ≥ 0. The complexification of the Fokker-Planck equation

Ṗ(z, t) = ∂z(NR∂z−Kz)P(z, t) (2.34)

can be written, for holomorphic observables, in terms of the two independent variables x(t) and

y(t) in Eq. (2.31)

Ṗ(x,y, t) = [∂x(NR∂x−Kx)+∂y(NI∂y−Ky)]P(x,y, t) (2.35)

and has the form of a continuity equation with the probability density P(x,y; t) being the charge

Ṗ(x,y, t) = ∂xJx +∂yJy, (2.36)

12
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and

Jx = (NR∂x−Kx)P, Jy = (NI∂y−Ky)P, (2.37)

being the currents. Equation (2.35) generates a real PDF for the holomorphic observables

〈O〉P(t) =
∫

dx dy P(x,y, t)O(x+ iy), (2.38)

which is, in fact, the main idea of complex Langevin (CL) dynamics, i.e., to reformulate a d-

dimensional complex system into a 2d-dimensional real one. One requirement is to consider

the holomorphic continuations of the observables 〈O(x)〉→ 〈O(z)〉= 〈O(x+ iy)〉. In this sense

neither the quantity 〈O(x)〉 nor 〈O(y)〉 have, by themselves, any meaning in the complexified

space.

The reason why complex Langevin dynamics was not largely employed immediately after

its introduction in the 80’s is that Eq. (2.35), even keeping the same form of the real case,

is much harder to solve or to be proved convergent to the appropriate stationary distribution

ρ(x) ∼ e−S(x) [Klauder 85a, Gausterer 88, Ambjorn 86]. On top of that, unstable solutions of

Eq. (2.32) can be found in the complex plane and that was believed to inevitably spoil the

dynamics when solved numerically. These two problems have been more recently addressed,

allowing CL to become one of the most acknowledged methods when it comes to system af-

fected by the sign problem. The issue of instabilities on the lattice was the first to be successfully

and consistently solved [Aarts 10a]. The discretized CL equations for the field φ are

φ
R
x (n+1) = φ

R
x (n)− ε Re(S′(xn,yn))+

√
εη

R
x (n),

φ
I
x(n+1) = φ

I
x(n)− ε Im(S′(xn,yn))+

√
εη

I
x(n), (2.39)

where ε is the discrete Langevin time step and x labels the sites of the lattice. When the system

is brought near an unstable trajectory τ(φR,φI), the drifts KR(τ) and KI(τ) can potentially lead

the fields to infinity, in a finite Langevin time tL = εn. It turns out that careful integration in the

form of adaptive step-size εn along those trajectories is enough to completely remove the prob-

lem. The idea is to keep the product εnK constant, where K = f (
√

K2
R +K2

I ) is a function of the

drift to be chosen optimally depending on the system, in order to greatly reduce the step-size εn

along the unstable trajectories and allow the real component of the random noise ηR to kick the

system away from such trajectories. For this purpose, the imaginary component of the random

noise η I is, in general, counter-productive so that is usually preferable to get rid of it. This is

in perfect accord with the prescriptions Eq. (2.33) and corresponds to the choice of parameters

NI = 0 and NR = 1.

13
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The problem of convergence of CL is much more complicated to address. Although no defini-

tive solution has been found yet, fundamental progress has been made to fully understand

this issue. In particular proofs of convergence have been found to infer, from the distribu-

tion of the observables, whether the CL is expected to converge to the right result or not

[Aarts 10b, Aarts 11b, Aarts 11a, Aarts 13c, Aarts 13b].

2.4 Problems with Complex Langevin Method

There are a number of problems associated with complex Langevin dynamics, see e.g. Refs.

[Klauder 85b]. These can roughly be divided under two headings: instabilities and conver-

gence. The first problem concerns the appearance of instabilities when solving the discretized

Langevin equations numerically. Sometimes, but not always, this can be controlled by choosing

a small enough step-size. The second problem pertains to convergence. In some cases complex

Langevin simulations appear to converge but not to the correct answer.

2.4.1 Adaptive Step-size

The method of adaptive step-size has been proved efficient in dealing with the instabilities as-

sociated with the CLM.

Consider a real scalar field φ with the Langevin equation of motion

∂φ

∂τ
=− ∂S

∂φ
+η . (2.40)

Here τ is the supplementary Langevin time,− ∂S
∂φ

is the drift term derived from the action S, and

η is a Gaussian noise. The fundamental assertion of stochastic quantisation is that in the infinite

(Langevin) time limit, noise averages of observables become equal to quantum expectation

values, defined via the standard functional integral

〈O(φ)〉S =
〈O(φ)e−iSI(φ)〉SR

〈e−iSI(φ)〉SR

, (2.41)

where the brackets on the left denote a noise average.

If the action is complex the drift term becomes complex and so the field acquires an imag-

inary part (even if initially real). One must therefore complexify all fields, φ → φR + i φI . The

14
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Langevin equation then becomes

∂φ R

∂τ
= KR +η , KR =−Re

∂S
∂φ
|φ→φR+i φI , (2.42)

∂φ I

∂τ
= KI, KI =−Im

∂S
∂φ
|φ→φR+i φI. (2.43)

Here we restricted ourselves to a real noise. The complexification changes the dynamics sub-

stantially. Suppose that before complexification φ is a variable with a compact domain, e.g.

−π < φ ≤ π . After complexification, the domain is non-compact since −∞ < φ I < ∞. More-

over, there will be unstable directions along which φI →±∞. This is best seen in classical flow

diagrams, in which the drift terms are plotted as a function of the degrees of freedom φR,φI . In

Fig. 2.1 we show an example of a classical flow diagram in the XY model at finite chemical

potential.

Figure 2.1: Example of a classical flow diagram in the XY model at nonzero chemical potential
(µ = 2). The arrows denote the normalized drift terms (KR,KI) at (φR,φI). The dots are classical
fixed points.

The arrows denote the drift terms (KR,KI) at (φ R,φ I). The length of the arrows is normal-

ized for clarity. In this case there are unstable directions at φ R ∼−0.7 and φ R ∼ 2.4. The black

dots denote classical fixed points where the drift terms vanish. Generally speaking, the forces

are larger when one is further away from the fixed points. In absence of the noise, one finds

generically that configurations reach infinity in a finite time, since the forces grow exponentially

for large imaginary field values.
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When a Langevin trajectory makes a large excursion into imaginary directions, for instance,

by coming close to an unstable direction, sufficient care in the numerical integration of the

Langevin equations is mandatory. In some cases it suffices to employ a small step-size ε , after

discretizing Langevin time as τ = nε . However, this does not solve instabilities in all situa-

tions. Moreover, a small step-size will result in a slow evolution, requiring many updates to

explore configuration space. To cure both problems, we introduce an adaptive step-size, εn, in

the discretized Langevin equations

φ
R
x (n+1) = φ

R
x (n)+ εn KR

x (n)+
√

εnηx(n), (2.44)

φ
I
x(n+1) = φ

I
x(n)+ ε KI

x(n), (2.45)

where the noise satisfies

〈ηx(n)〉η = 0; 〈ηx(n)ηx′(n
′)〉η = 2δxx′δnn′. (2.46)

The magnitude of the step-size is determined by controlling the distance a single update makes

in the configuration space. Here we present two specific algorithms to do this. In the first

formulation, we monitor, at each discrete Langevin time n, the quantity

Kmax
n = max|Kx(n)|= max

√
KR2

x (n)+KI2
x (n). (2.47)

We then place an upper bound on the product εKmax and define the step-size εn as

εn = ε̄
〈Kmax〉
Kmax

n
. (2.48)

Here ε̄ is the desired average step-size (which can be controlled) and the expectation value of

the maximum drift term 〈Kmax〉 is either precomputed, or computed during the thermalisation

phase (with an initial guess). In this way, the step-size is completely local in Langevin time and

becomes smaller when the drift term is large (e.g. close to an instability) and larger when it is

safe to do so. In the second formulation, we keep εKmax within a factor p relative to a reference

value K. That is,
1
p
K ≤ εKmax ≤ pK . (2.49)

If this range is exceeded the step-size is increased/reduced by the factor p. This is iterated

several times, if necessary. Both p and K have to be chosen beforehand, but this does not

require fine tuning as long as clearly inadequate regions are avoided.
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2.4.2 Correct Convergence Criteria - Validity of CLM

When one applies CLM to the calculation of expectation values of observables with a complex

weight, one necessarily has to complexify the dynamical variables due to the complex drift

term, which is derived from the complex weight. Correspondingly, the drift term and the ob-

servables should be extended to holomorphic functions of the complexified variables by analytic

continuation. Then by measuring the observables for the complexified variables generated by

the Langevin process and calculating their expectation values at sufficiently late times, one can

obtain the expectation values of the observables for the original real variables with the complex

weight.

For a long time, it has been known that this method does not always work. Typically, the

complex Langevin process achieves thermal equilibrium without issue, but the results for the

expectation values are simply incorrect in some cases. It was discovered that there is a subtlety

in the integration by parts used in translating the time evolution of the probability distribution of

the complexified variables into that of the observables. The probability distribution of the com-

plexified variables must exhibit appropriate asymptotic behaviour for the integration by parts to

be valid.

By now, the following two conditions are relevant in applying the CLM to finite density QCD

or any other theory which suffers from sign problem.

• The probability distribution should be suppressed strongly enough when the complexi-

fied variables take large values. Typically, this becomes a problem when the complexified

variables make long excursions in the imaginary directions during the Langevin simula-

tion.

• The drift term can have singularities while it is otherwise a holomorphic function of the

complexified variables. In that case, the probability distribution should be suppressed

strongly enough near the singularities.

The crucial point for the success of the CLM turns out to be extremely simple. The probability

of the drift term should be suppressed exponentially at large magnitude.
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Chapter 3

Supersymmetric Anharmonic Oscillator

In this chapter, we are going to simulate the supersymmetric anharmonic oscillator model. This

model is a non-gauge supersymmetric theory and is well studied with the lattice formulation.

To gain some insights into the non-lattice approach and to check the validity of simulations,

this model would be an excellent starting point. In Ref. [Bergner 08], the same model has been

studied on the lattice using various methods. As far as non-gauge theories are concerned, this

approach is almost equivalent to the method with the non-local SLAC derivative [Drell 76]. In

the lattice case, the only difference is the identification of the modes at the boundary of the

Brillouin zone. As a consequence, our results shown in Fig. 3.1 agree with the corresponding

results in Ref. [Bergner 08].

3.1 Model and Non-lattice Regularization

The Euclidean action for the model is

S =
∫

β

0
dt
[1

2
(∂tφ)

2 +h′(φ)2 + ψ̄(∂t +h′′(φ))Ψ
]
, (3.1)

where φ is a real scalar field, and ψ is a one-component Dirac field, both in 1d, obeying periodic

boundary conditions [φ(t +β ) = φ(t) and ψ(t +β ) = ψ(t)]. This model is supersymmetric

for arbitrary function h(φ), but here we take h(φ) = 1
2mφ 2 + 1

4gφ 4.

For regularization purpose, we make a Fourier expansion

φ(t) =
Λ

∑
n=−Λ

φ̃neinωt ; where ω =
2π

β
(3.2)

and similarly for the fermionic fields, where n takes integer values, and Λ is the UV cutoff. In
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terms of the Fourier modes, the action can be written as S = SB +SF , where

SB = β

[
1
2

Λ

∑
n=−Λ

(n2
ω

2 +m2)φ̃nφ̃−n +mg(φ̃ 4)0 +
1
2

g2(φ̃ 6)0

]
(3.3)

and

SF =
Λ

∑
n,m=−Λ

˜̄ψnMn,mψm. (3.4)

Here, Mn,m is the fermionic matrix with dimensions (2Λ+1)× (2Λ+1). The exact form of the

fermionic matrix M depends on the potential h(φ).

For h(φ) = 1
2mφ 2 + 1

4gφ 4, the form is

Mn,m = β
{
(inω +m)δnm +3g(φ̃ 2)lδn,m+l

}
. (3.5)

Here, we have used a shorthand notation(
f (1) · · · f (p)

)
n
≡ ∑

k1+···+kpn
f 1
(k1) · · · f

(
(kp)

p). (3.6)

Integrating out the fermionic part of the action, we obtain an effective action

Seff = SB− lndetM, (3.7)

where the fermion determinant detM is real positive for positive m and g.

3.2 CLM for the Model

We simulate the action Eq. (3.7) using the Complex Langevin Method (CLM). We solve the

following discretized version of the Langevin equation. Here l is the Langevin time; it is a

fictitious parameter, not the real time dimension 1

φn(l + ε) = φn(l)− ε
δSeff

δφ−n
+
√

εηn(l). (3.8)

1Here, we take the derivative with respect to φ̃−n, instead of φ̃n. Let us consider the one-complex variable case
S = 1

2 (x
2)+ y2 = zz∗, with x,y ∈ R and z = x+iy√

2
,z∗ = x−iy√

2
. The derivatives for x,y are dx

dt = − dS
dx = −x, dy

dt =

− dS
dy =−y. Hence, we have dz

dt =−
(x+iy)√

2
=−z =− dS

dz∗ (6=−
dS
dz ).
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Equation (3.8) is the evolution equation followed by each Fourier mode. The white noise func-

tion ηn(l) in the evolution equation has a Gaussian distribution

∝ exp

(
−1
4 ∑

l

Λ

∑
−Λ

|ηn(l)|2
)

= exp

[
−1
4 ∑

l

(
η

2
0 (l)+

Λ

∑
1
|2ηn(l)|2

)]
, (3.9)

where, η0(l) =
√

2x0(l) and η±n(l) = xn(l)± iyn(l), each xn(l) andyn(l)(n = 0,1,2, · · · ,Λ)
obeying the standard normal distribution N(0,1) independently.

The gradient is given by

∂Seff

∂ φ̃n
= β

[
(n2

ω
2 +m2)φ̃−n +4mg(φ̃ 3)−n +3g2(φ̃ 5)−n

]
−Tr

(
∂M
∂ φ̃n

M−1
)
. (3.10)

Here, “Tr” represents the trace of the (2Λ+1)× (2Λ+1) matrix. The trace is evaluated as

Tr
(

∂M
∂ φ̃n

M−1
)
=

(
∂M
∂ φ̃n

)
k1k2

M−1
k2k1

= 6βg
Λ

∑
k2=−Λ

(
2Λ

∑
p=−2Λ

(φ̃)p−nδk1,k2+p

)
︸ ︷︷ ︸

=0 for |p−n|>(K−2)Λ or |k1−p|>Λ

M−1
k2k1

= 6βg
2Λ

∑
p=−2Λ

(φ̃)p−nM−1
k1−p,k1︸ ︷︷ ︸

=0 for |p−n|>(K−2)Λ or |k1−p|>Λ

. (3.11)

In Appendix A, we have given an alternative method for the estimation of Tr
(

∂M
∂ φ̃n

M−1
)

term.

3.3 Observable - Measurement of Mass

We extract masses from the exponential decay of the two-point correlators.
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3.3.1 Bosonic Mass

The bosonic physical mass mB can be extracted using the correlation function GB(t), defined as

GB(t) = 〈φ(0)φ(t)〉=

〈
Λ

∑
m,n=−Λ

φ̃mφ̃neiωnt

〉

= 〈φ̃ 2
0 〉+

Λ

∑
n=1
〈φ̃nφ̃−n〉(eiqωt + e−inωt)+ ∑

m+n6=0
〈φ̃mφ̃n〉einωt = c0e−mBt + · · ·

= b0 +
Λ

∑
n=1

2bn cos(nωt), (3.12)

where b0 = 〈φ̃ 2
0 〉 and bn = 〈φ̃nφ̃−n〉. Equation (3.12) satisfies the following relation

− ln
GB(t +∆t)

GB(t)
=− ln

c0e−mb(t+∆t)

c0e−mbt =− lne−mb(∆t) = mB(∆t). (3.13)

Hence the mass is obtained at sufficiently large t, where we witness a plateau, as

mB =− 1
∆t

ln
GB(t +∆t)

GB(t)
=− 1

∆t
(lnGB(t +∆t)− lnGB(t))

=− d
dt

lnGB(t) =
∑

Λ
n=1 2nωbn sin(nωt)

b0 +∑
Λ
n=1 2bn cos(nωt)

. (3.14)

In order to avoid the problem of sharp cut-off in the summation over Fourier modes, that is the

Gibbs phenomenon, we extend the sum over n up to 1000 assuming the asymptotic form of the

coefficients bn as bn ∼ d1
n2 +

d2
n4 at large n [Hanada 07]. The coefficients d1,d2 can be obtained

using results at n = Λ−1,Λ, that is,

bΛ−1 =
d1

(Λ−1)2 +
d2

(Λ−1)4

bΛ =
d1

(Λ)2 +
d2

(Λ)4

=⇒ d1 =
Λ4bΛ− (Λ−1)4bΛ−1

2Λ−1

d2 =
(Λ−1)4Λ2bΛ−1− (Λ−1)2Λ4bΛ

2Λ−1
. (3.15)
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Figure 3.1: Bosonic mass gap coming out as plateau as per Eq. (3.14).

3.3.2 Fermionic Mass

For fermionic mass (mF ), we use fermionic two point correlator, defined as

GF(t)≡ 〈ψ(0) ¯ψ(t)〉=
Λ

∑
n=−Λ

cne−inωt , (3.16)

where we have defined, cn ≡ 〈(M−1)nn〉. For fermions, it proved convenient to consider, instead

of Eq. (3.15), a symmetrized correlator

G(sym)
F ≡ 1

2
{GF(t)+GF(−t)}= c0 +

Λ

∑
n=1

2Re(cn)cos(nωt), (3.17)

where we have used the fact (Mnk)
∗ = M−n,−k. We make an analogous analysis for Re(cn) in

Eq. (3.16).

Using the above method, we observe clear exponential behaviours, and the physical masses

can be extracted from the data using exponential fits.

22



Ashutosh Tripathi Supersymmetric Anharmonic Oscillator

3.4 Simulation Details and Results

In this section, we will go over the important quantities that are required to monitor reliability of

the simulations and compare simulation data to analytical results. The effective dimensionless

expansion parameter is g
m2 = 1 so this corresponds to a regime of strong coupling.

First, we simulate SUSY harmonic oscillator for physical parameters mphys = 10.0 and gphys =

0.0. Simulations were performed for different Λ keeping the (physical) circle size β = 1. In Tab.

3.1 we provide the values of the bosonic and fermionic mass gaps. It is clear that mB
phys ≈mF

phys

indicating that SUSY is preserved in the model. Fig. 3.2 shows bosonic (red line) and fermionic

(blue circle) physical mass gaps versus 1
λ

. Black dashed line shows the continuum value of

SUSY harmonic oscillator mass gaps for the physical parameters mphys = 10.0 and gphys = 0.0.

That is, mexact = 10. We see that boson and fermion masses are degenerate within statistical

errors, and furthermore, as inverse Fourier cutoff 1
Λ
→ 0, the common mass gap approaches the

correct continuum value.

Λ mB mF

2 6.5440 6.4872
4 7.8288 7.7680
6 8.6176 8.7008
8 9.2800 9.2928

Table 3.1: Bosonic and fermionic mass gaps for the SUSY harmonic oscillator with physical
parameters mphys = 10.0 and gphys = 0.0. Simulations were performed for Λ = 2,4,6,8 values.
We used adaptive Langevin step size ∆τ ≤ 5× 10−3, thermalization steps Ntherm = 104, and
generation steps Ngen = 105. Measurements were taken with a gap of 10 steps.

Now we simulate SUSY anharmonic oscillator for physical parameters mphys = 10.0 and

gphys = 100.0. Simulations were again performed for different Λ values keeping the (physi-

cal) circle size β = 1. In Tab. 3.2 we provide the bosonic and fermionic mass gaps. Here

also we have mB
phys ≈ mF

phys indicating that SUSY is preserved in the model. In Fig. 3.3

we show the bosonic and fermionic physical mass gaps versus 1
Λ

. Black dashed line shows

the continuum value of SUSY anharmonic oscillator mass gaps for the physical parameters

mphys = 10,gphys = 100 that is mexact = 16.865 [Bergner 08]. We see that boson and fermion

masses are degenerate within statistical errors, and furthermore as 1
Λ
→ 0, the common mass

gap approaches the correct continuum value.
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Figure 3.2: Bosonic and fermionic physical mass gaps for SUSY harmonic oscillator against
1
Λ

, with physical parameters mphys = 10.0, and gphys = 0.0. The plot is based on the simulation
data provided in Tab. 3.1.

Λ mB mF

2 6.8855 6.8060
4 10.1018 10.0523
6 12.4501 12.7357
8 14.4128 14.6048

Table 3.2: Bosonic and fermionic mass gaps for the SUSY harmonic oscillator with physical
parameters mphys = 10.0 and gphys = 100.0. Simulations were performed for Λ = 2,4,6,8 val-
ues. We used adaptive Langevin step size ∆τ ≤ 5× 10−3, thermalization steps Ntherm = 104,
and generation steps Ngen = 105. Measurements were taken with a gap of 10 steps.

3.4.1 Reliability of Simulation Results

Thermalization

We started the simulation with a cold start, i.e., all the field configurations were set to zero

initially. After that, we updated the field configurations using the Langevin evolution equation.

In Fig. 3.4 we show the Langevin time history of the bosonic action, SB for λ = 4,16,32.

The action for each Λ is oscillating about some value, which shows that the system has been

thermalized, and now we can collect the data for our calculation purpose.
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Figure 3.3: Bosonic and fermionic physical mass gaps for SUSY anharmonic oscillator against
1
Λ

, with physical parameters mphys = 10.0, and gphys = 100.0. The plot is based on the simula-
tion data provided in Tab. 3.2.

Figure 3.4: Langevin time history of the bosonic action SB for physical parameters mphys = 10
and gphys = 100.

Decay of the Drift Terms

Another test to check the correctness of the complex Langevin simulation results, as proposed

in Refs. [Nagata 16, Nagata 16], is to look at the probability distribution P(u) of the magnitude
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of the drift term u at large values of the drift. We have the magnitude of the mean drift

u =

√√√√ 1
2Λ+1

Λ

∑
n=−Λ

∣∣∣∣∂Se f f

∂ φ̃−n

∣∣∣∣2. (3.18)

In Refs. [Nagata 16, Nagata 16] the authors demonstrated, in a few simple models, that the

probability of the drift term should be suppressed exponentially at larger magnitudes in order

to guarantee the correctness of complex Langevin method. In Fig. 3.5, we show the probability

distribution P(u) of the magnitude of the mean drift term u, for different Λ values. It is clear

from the plot that the probability of drift is suppressing exponentially. Hence, the simulation

results are reliable.

Figure 3.5: Probability of drift plotted for Λ = 4,8,12,16 at m = 10 and g = 0.0.
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Chapter 4

Bosonic Matrix Quantum Mechanics

In this chapter, we are first going to discuss how to implement non-lattice method in case of

one-dimensional gauge theories and then apply this technique to simulate the bosonic matrix

quantum mechanics model with four supercharges. Simulations including fermions will be

discussed in the next chapter.

4.1 Gauge Symmetries and Gauge Fixing

Let us first discuss a little bit about gauge symmetries and gauge fixing procedures before going

to the model.

Gauge symmetry is not a true symmetry, but rather a reflection of a theory’s redundant de-

grees of freedom. The existence of different field configurations that are equivalent is implied

by gauge symmetry. For example, consider a U(1) theory with fields Aµ and ψ . The fields

transform as

ψ −→ eiα(x)
ψ,

Aµ −→ Aµ +
1
e

∂µα(x).

Here, the phase of ψ as well as the longitudinal part of Aµ are not physical degrees of freedom.

A massless spin-1 representation of the Lorentz group has only two polarizations. Aµ has four

components. Thus, to have a Lorentz covariant formulation, we require gauge symmetries to

get rid of the extra degrees of freedom.

When quantizing the theory, we should separate the redundant and physical degrees of free-

dom. We need to make sure only physical modes contribute to observables. This leads to

complications in dealing with gauge theories. There are two general approaches:
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Figure 4.1: Equivalent gauge orbits in configuration space.

1. Isolate the physical degrees of freedom: fix a gauge and quantize the resulting constrained

system. This method is used, for example, in axial gauge quantization in quantum elec-

trodynamics.

2. Retain the nonphysical modes, or even introduce additional modes, but make sure that

they do not contribute to any physical observables. This method is used, for example, in

covariant path integral quantization.

4.1.1 Faddeev-Popov Ghosts

The equivalence principle implies that in the functional integral approach, one must integrate

over classes of gauge equivalent fields rather than integrating over all fields.

Let S(A) be the action of our theory, which is a function of gauge field Aa
µ .

The choice of the representatives in the classes of equivalent fields is realized by means of

a gauge condition (gauge fixing). For instance,

∂µAa
µ = 0. (4.1)

This condition defines a plane in the set of all fields, which is intersected by the gauge orbits

defined above.

In this context, the difference among Abelian and non-Abelian cases becomes clear. In the

Abelian case, we take Ω(x) = exp i∆(x) and a gauge orbit is defined by

Aµ −→ Aµ +∂µΛ, (4.2)
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which is just a linear shift. Thus all the Abelian orbits intersect the gauge surface at the same

angle. In the non-Abelian case, the gauge orbit equations are non-linear and the intersection an-

gle depends on the field parameterizing the orbit. It is clear that this must be taken into account

in the functional integral.

More explicitly, in the naive integral∫
exp {iS(A)}∏

x
δµAµ ∏

x,a
dAa

µ , (4.3)

where we integrate the Feynman weight exp(i}action) over all fields, we should introduce a

factor taking into account this angle. It is intuitively clear that this factor is a determinant of

some operator. The only natural candidate operator for this determinant is the one obtained

from an infinitesimal change of the gauge condition. An infinitesimal gauge transformation is

defined via the function ε(x) with values in the Lie algebra G

δAµ = ∂µε− [Aµ ,ε]. (4.4)

The corresponding change of the gauge condition is

δ (∂µAµ) = M(A)ε = ∂
2
µε−∂µ [Aµ ,ε]. (4.5)

The dependence of M(A) on the field A is due to the second, non-linear, term in Eq. (4.5), which

is absent in the Abelian case.

Thus, we can modify the functional integral to∫
exp {iS(A)}∏

x
δµAµ ∏

x,a
det M(A) dAa

µ . (4.6)

In the Abelian case, the determinant detM does not depend on A and gives a constant factor,

which does not influence the physical quantities. In the non-Abelian case, this determinant adds

to the perturbative expansion some new terms.

Now, let ∆(A) be given by

∆(A)−1 =
∫

∏δ (∂µAΩ
µ ∏

x
dΩ). (4.7)
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This integral is apparently gauge invariant and, on the gauge surface ∂µAµ = 0, it is equal to

∫
∏δ (M(A)ε)∏dε =

1
detM(A)

. (4.8)

4.2 Model and Non-Lattice Discretization

In this section we will discuss the bosonic counterpart of supersymmetric matrix quantum me-

chanics model with four supercharges. The model can be formally obtained by dimensionally

reducing 4d N = 1 U(N) pure Yang-Mills theory to 1 dimension. (The totally reduced model

has been studied by Monte Carlo simulation in Ref. [Ambjørn 00]). The Euclidean action of

the model is given by

SE =
1
g2

∫
β

0
dt Tr

{
1
2
(DtXi)

2− 1
4
[Xi,Xj]

2
}
. (4.9)

Here, Dt represents the covariant derivative Dt ≡ ∂t − i [ A(t), .]. The one-dimensional fields

A(t) and Xi(t) (i = 1,2,3) are N×N Hermitian matrices, which can be regarded as the gauge

field and three adjoint scalars, respectively. The Euclidean time t has a finite extent β , which

corresponds to the inverse temperature β = 1
T , and all the fields obey periodic boundary con-

ditions. A suitable rescaling of the matrices and the time coordinate t can always absorb the

parameter g in Eq. (4.9). Therefore, we can set g = 1√
N

without any loss of generality.

The importance of the lattice formulation lies in its manifest gauge invariance. In the present 1d

case, however, the gauge dynamics is almost trivial. (We assume that the 1d direction is com-

pact. The non-compact case would be easier, since the gauge dynamics is completely trivial.)

This gives us an opportunity to use a non-lattice formulation.

More specifically, we first take the static diagonal gauge. Using the residual large gauge trans-

formation, we can choose a gauge slice such that the diagonal elements of the constant gauge

field lie within a minimum interval. Finally, we expand the fields into Fourier modes, and keep

only the modes up to some cutoff. The crucial point of our method is that the gauge symmetry

is completely fixed (up to the global permutation group, which is kept intact) before introducing

the cutoff.

Let us take a static diagonal gauge

A(t) =
1
β

diag(α1,α2, · · · ,αN), (4.10)
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where αa(a = 1,2, · · · ,N) can be chosen to lie within the interval (−π,π] by making a gauge

transformation with a non-zero winding number(k 6= 0). In the present case with only adjoint

representations, it is more convenient to impose a weaker constraint max(αi)−min(αi) < 2π ,

which respects the center U(1) symmetry αi −→ αi + const.

We have to add to the action a term

SFP(α) =−∑
a<b

2ln|sin
αa−αb

2
|, (4.11)

which appears from the Faddeev-Popov procedure discussed in Eq. (4.1.1), and the integration

measure for αa is taken to be uniform.

Z =
∫

DA DX e−S[X ,A]

∝

∫ N

∏
a=1

d αa

N

∏
a>b
|eiαa− eiαb|2 DX e−S[X ,A]

∝

∫ N

∏
a=1

dαa

N

∏
a>b

sin2(
αa−αb

2
) DX e−S[X ,A]

∝

∫ N

∏
a=1

dαa DX e−S[X ,A(α)]−SFP(α), (4.12)

where SFP(α) is known as Faddeev-Popov term, and it is given by

SFP(α) =−∑
a 6=b

ln
∣∣∣∣sin

αa−αb

2

∣∣∣∣ . (4.13)

The integration measure for αa is taken to be uniform.

Now, we need to discretize our theory and for that purpose we are using non-lattice method.

The whole procedure is mentioned in Ref. [Hanada 07]. We will use the same procedure here

also.

We make a Fourier expansion of our matrix fields

Xab
i (t) =

Λ

∑
n=−Λ

X̃ab
in eiωnt . (4.14)
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The kinetic part of the action, Rq. (4.9), transforms as follows

(DtXi)
2 = ( ∂tXi(t)− i [ A(t), Xi(t)] )( ∂tXi(t)− i[A(t),Xi(t)] )

= ( ∂tXi(t) )2− i [ [A(t),Xi(t)],∂tXi(t) ]− [ A(t), Xi(t) ]2. (4.15)

On using transformation Eq. (4.14) in Eq. (4.15), the three terms transforms as follows.

First term-

(
∂tXab

i (t)
)2

=

[
Λ

∑
m=−Λ

iωm X̃ab
im eiωmt

][
Λ

∑
n=−Λ

iωn X̃bc
in eiωnt

]
. (4.16)

Performing integration over time t gives

N
∫

β

0
dt Tr

[
(∂t Xab

i (t))2
]
= N Tr

[
Λ

∑
m,n=−Λ

iωm X̃ab
im iωn X̃bc

in

∫
β

0
dteiω(m+n)t

]

=−N Tr

[
Λ

∑
m,n=−Λ

(ωm)(ωn) X̃ab
im X̃bc

in
2π

ω
δ (m+n)

]

=−Nβ Tr

[
Λ

∑
n=−Λ

(−ωn)(ωn) X̃ab
i,−n X̃bc

in

]

= NβTr

[
Λ

∑
n=−Λ

(ωn)2 X̃ab
i,−nX̃bc

in

]

= Nβ

[
∑
a,b

Λ

∑
n=−Λ

(ωn)2 X̃ab
i,−nX̃ba

in

]
. (4.17)

Last term- - The last term involves square of the commutator ( [ A(t), Xi(t)] ). This commuta-

tor can also be viewed as

[A(t),Xi(t)]ab = ∑
n
(Aan(Xi)nb− (Xi)anAnb)

= ∑
n

αnδan(Xi)nb− (Xi)anαnδnb

= αa(Xi)ab− (Xi)abαb = (αa−αb)(Xi)ab. (4.18)
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Performing integration over time t gives

N
∫

β

0
dtTr

(
[A(t),Xi(t)]2

)
= N

∫
β

0
dtTr

(
[A(t),Xi(t)]ab[A(t),Xi(t)]bc

)

= N
∫

β

0
dt∑

a,b

(
(αa−αb)(Xi)ab(αb−αa)(Xi)ba

)

= N ∑
a,b

(
− (αa−αb)

2

[
Λ

∑
m,n=−Λ

X̃ab
im X̃ba

in

∫
β

0
dteiω(m+n)t

])

= Nβ

([
∑
a,b

Λ

∑
n=−Λ

−(αa−αb)
2X̃ab

i,−nX̃ba
in

])
. (4.19)

Similarly, the middle term in Eq. (4.15) becomes

− i [[A(t),Xi(t)],∂tXi(t)] =−Nβ

[
∑
a,b

Λ

∑
n=−Λ

2nω
(αa−αb)

β
X̃ab

i,−nX̃ba
in

]
. (4.20)

Combining Eqs. (4.17), (4.19), and (4.20) gives the final discretized action

Sregular = Nβ

[
1
2

Λ

∑
n=−Λ

{
nω− αa−αb

β

}2

X̃ba
i,−nX̃ab

in −
1
4

Tr
(
[Xi,Xj]

2)
0

]
. (4.21)

If we also consider the additional term obtained from gauge fixing, the effective action becomes

Seff = Nβ

[
1
2

Λ

∑
n=−Λ

{
nω− αa−αb

β

}2

X̃ba
i,−nX̃ab

in −
1
4

Tr
(
[Xi,Xj]

2)
0

]
−∑

a<b
2ln

∣∣∣∣∣sin
αa−αb

2

∣∣∣∣∣.
(4.22)

We will use the action Eq. (4.22) for the simulation purpose.

4.3 CLM for Bosonic Model

Langevin dynamics provides us with the stochastic evolution of the dynamical field configura-

tion, in a fictitious time t, governed by the following equation

dφ

dt
=−∂S[φ ]

∂φ
+η(t). (4.23)

The Langevin evolution equation contains drift term. Here, for our model we will have two

kind of drift terms corresponding to two field variables. First are gauge variables αk, which is

a one-dimensional array of size N and other are scalar fields X i
n, which are N×N Hermitian

matrices.

33



Ashutosh Tripathi Bosonic Matrix Quantum Mechanics

The drift terms can be calculated using the action Eq. (4.22), and are given by

−∂Se f f

∂αa
= N

[
N

∑
b=1

{(
nω− αa−αb

β

)}
X̃ba

i,0 X̃ab
i,2Λ

]
+

1
2

N

∑
b=1
a6=b

cot
(

αa−αb

2

)
, (4.24)

−∂Se f f

∂X i
n,ab

=−Nβ

2

[(
nω− αa−αb

β

)2

X̃ i
−n,ba

]
+Nβ [X j, [Xi,X j]]baδn,0. (4.25)

The gradient of the trace of the commutator square term is given by

1
4

∂

∂ (Xi)ba
Tr
(
[Xi,Xj]

2)= 2
3

∑
j=1

(X jXiX j)ab−
3

∑
j=1

[
(XiX jX j)ab +(X jX jXi)ab

]
. (4.26)

4.4 Observables

The observables that we will be looking at are the Polyakov loop |P|, the extent of space R2, and

the internal energy E. The definition and the discretized forms of these observables are given

below.

• Polyakov loop |P|

〈|P|〉 ≡ 1
N

〈∣∣∣P(ei
∮

dtA(t))
∣∣∣〉=

〈∣∣∣∣Tr(U)

N

∣∣∣∣〉 , (4.27)

where the symbol P exp represents the path-ordered exponential and the unitary matrix

U is called the holonomy matrix.

• Extent of space (R2)

〈R2〉 ≡
〈 1

Nβ

∫
β

0
dtTr(Xi2)

〉
=
〈 1

Nβ

[
Tr(Xi

0)
2 +

Λ

∑
n=−Λ

Tr(Xi
n)

2
]〉

(discretized form). (4.28)

• Internal energy E

As a fundamental quantity in thermodynamics, the free energy F ≡− 1
β

lnZ(β ) is defined

in terms of the partition function

Z[β ] =
∫
[DX ]β [DA]β ]e

−S(β ), (4.29)
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where the suffix of the measure [.]β represents the period of the field to be path-integrated.

However, the free energy F cannot be calculated straightforwardly by Monte Carlo simu-

lation because that would require evaluation of the partition function Z(β ). We therefore

study the internal energy defined by

E ≡ d
dβ

(βF) =− d
dβ

logZ(β ), (4.30)

which has equivalent information as the free energy (given that F = E at T = 0). Note

also that the internal energy at T = 0 provides the ground state energy of the quantum

mechanical system. In Appendix B we have derived this formula

1
N2 E =

3
4
〈F2〉, (4.31)

F2 ≡ −1
N

∫
β

0
dtTr([Xi,Xj]2), (4.32)

where the symbol 〈.〉 represents the expectation value with respect to Z(β ). This formula

enables us to calculate the internal energy E directly by Monte Carlo or real Langevin

simulations.

The discretized form used for the simulations is given by〈
E
N2

〉
≡
〈 −3

4Nβ

∫
β

0
dtTr([Xi,Xj]2)

〉
=
〈 −3

4Nβ

Λ

∑
n=−Λ

Tr([Xi
n,X

j
n]

2)
〉
. (4.33)

4.5 Simulation Details and Results

In the simulations each variable and parameter have been measured in units of ’t Hooft coupling

λ0. The physical properties of the system depend only on the dimensionless effective coupling

constant given by

λe f f =
λ

T 3 . (4.34)

In what follows we set λ = 1 without loss of generality. One can confirm this statement

by rescaling the fields and the coordinate t appropriately so that all the λ and T dependence

appears in the combination of Eq. (4.34). Thus, every variable and parameter appearing in Eq.

(4.22) are dimensionless. We simulated the model for parameter values N = 2 and Λ = 2. We
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run the simulations for 15 different temperature values. We used adaptive Langevin step-size

(∆τ ≤ 5×10−3), thermalization steps Ntherm = 104, and generation steps Ngen = 105. Measure-

ments were taken with a gap of 10 steps.

The results are provided below. Our results are in excellent agreement with the results given in

Ref. [Hanada 07]

Polyakov Loop |P|

It is known that the bosonic matrix quantum mechanics undergoes a phase transition [Aharon 04,

Janik 00] at some critical temperature, which can be interpreted as the Hagedorn transition in

string theory. This transition is associated with the spontaneous breakdown of the U(1) symme-

try and therefore it is analogous to the confinement/deconfinement transition in ordinary gauge

theories.

A(t)−→ A(t)+α1. (4.35)

The Polyakov loop |P| acts as an order parameter for this phase transition. Fig. 4.2 shows

the plot of Polyakov loop against temperature obtained from the simulation. The black and

red curves show the leading and next-to-leading terms of the high temperature expansion cal-

culations given in Ref. [Kawahara 07b]. The system remains in the confined phase for small

temperature, and after crossing the critical temperature Tc, the system moves to the deconfined

phase. In the limit N → ∞ the plot will be given by the Heaviside step function with the dis-

continuity at the critical temperature Tc. So for a finite system we fit our plot of the Polyakov

loop with a suitable function that in the limit should converge to the step function. Our fitting

function is given by

f (T ) = A tan−1(B(T−Tc))+D, (4.36)

where A,B,Tc and D are the fit parameters. If we choose A = 1
π

and D = 0.5 and take the limit

B→ ∞ then

lim
B→∞

1
π

tan−1(B(T−Tc))+0.5 = θ(T−Tc). (4.37)

We see that it does converge to the required limit; so the function f (T ) is the correct choice. The

values of fit parameters obtained after the fit are provided in Table 4.1. From this we conclude

that the critical temperature Tc = 1.068221±0.0173883.

Internal Energy E and Extent of Space R2

Figure 4.3 shows the plot of the scaled internal energy E
N2 against temperature T . If we had

simulated this for larger N then we would clearly see a kink near the critical temperature, which

would directly show that the system undergoes a phase transition. But for smaller N this feature
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Parameters Fit Value ± error

A 0.288069 0.0107622
B 1.8178 0.123878
Tc 1.068221 0.0173883
D 0.509731 0.00582357

Table 4.1: Values of the fitting parameters A, B, Tc and D.
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Figure 4.2: Polyakov loop against temperature T .

is not visible in the plot. The plot agrees well with the high temperature expansion (HTE). In

Fig. 4.4 we show the plot of the extent of space R2 against temp T .
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Figure 4.3: Plot of E/N2 against temperature T .

	1

	1.5

	2

	2.5

	3

	0 	0.5 	1 	1.5 	2 	2.5

<R
2 >

T

Extent	of	Space	(R2)	against	T

Data
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Chapter 5

Supersymmetric Matrix Quantum

Mechanics

This chapter discusses the numerical simulations of the supersymmetric matrix quantum me-

chanics model with four supercharges. In the previous chapter, we discussed the bosonic coun-

terpart of the model. We will now add fermions to our theory and study the full model.

5.1 Model and Non-Lattice Discretization

The model can be obtained formally by dimensionally reducing 4d N = 1 U(N) super Yang-

Mills theory to 1d, and it can be viewed as a one-dimensional U(N ) gauge theory.

The Euclidean action of the full model is given by

SE =
1
g2

∫
β

0
dt tr

[1
2
(DtXi)

2− 1
4
[Xi,X j]

2 + ψ̄Dtψ− ψ̄σi[Xi,ψ]
]
, (5.1)

where DtX i = ∂tX i− i[ A(t),X i(t) ], Xi are N ×N Hermitian matrices; λ is the ’t Hooft

coupling; the fermionic matrices ψα(t) and ψ̄α(t)(α = 1,2) are N×N matrices with complex

Grassmann entries. The 2× 2 matrices σi are the Pauli matrices. Let us assume the boundary

conditions to be periodic for bosons and anti-periodic for fermions. The extent β in the Eu-

clidean time direction then corresponds to the inverse temperature β ≡ 1/T .

We use the following Fourier transformation equations

Xab
i (t) =

Λ

∑
n=−Λ

X̃ab
in eiωnt ; ψ

ab
α (t) =

Λ

∑
r=−Λ

ψ̃
ab
αre

iωrt (5.2)
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and similarly for ψ̄ , where r takes half-integer values, due to the anti-periodic boundary condi-

tions, and λ ≡ Λ− 1
2 . Eq. (5.1) can then be written as

SE = Sb + SF (5.3)

Sb = Nβ

[
1
2

Λ

∑
n=−Λ

{
nω− αa−αb

β

}2

X̃ba
i,−nX̃ab

in −
1
4
(
[Xi,X j]

2)
0

]
(5.4)

S f = Nβ

Λ

∑
r=−Λ

i
{

rω− αa−αb

β

}
˜̄ψba

αrψ̃
ab
αr− (σi)αβ tr

{
˜̄ψαr
(
[X̃i, ψ̃β ]

)
r

}
︸ ︷︷ ︸

M

 . (5.5)

The partition function of this model is given by

Z =
∫

DX Dψ exp(−SE). (5.6)

We can integrate out the fermions from this partition function. For that, we first need to form

the fermion matrix. We can simplify the fermionic part of the action to get the fermion matrix.

First, we will decompose the fields with the help of the U(N) generators. We have

X̃i =
N2

∑
C=1

X̃C
i tC, ˜̄ψαr =

N2

∑
A=1

˜̄ψA
αrt

A, ψ̃β r =
N2

∑
B=1

ψ̃
B
β rt

B, (5.7)

where X̃C
i are real numbers, ψ̃A

β r and ˜̄ψB
αr are Grassmann numbers and the generators are nor-

malized as tr(tatb) = δab.
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Substituting this in the fermionic part of the action, we get

M =−Nβ (σi)αβ Tr
{

˜̄ψαr
(
[X̃i, ψ̃β ]

)
r

}

=−Nβ (σi)αβ Tr
{

˜̄ψA
αrt

A
(
[X̃C

i tC, ψ̃B
β

tB]
)

r

}

=−Nβ (σi)αβ
˜̄ψA

αrX̃
C
ir ψ̃

B
β rTr

(
tA[tC, tB]

)
=−iNβ (σi)αβ

˜̄ψA
αrX̃

C
ir ψ̃

B
β r fCBDTr

(
tAtD

)
(using[tC, tB] = i fCBDtD)

=−iNβ (σi)αβ
˜̄ψA

αrX̃
C
ir ψ̃

B
β r fCBD

δAD (usingtr(tAtD) = δAD)

= ˜̄ψA
αr

(
iNβσ

i
αβ

X̃C
ir f ABC

)
ψ̃

B
β r.

(5.8)

Finally, the fermionic action takes the form

SF = Nβ

λ

∑
r=−λ

[
i
{

rω− αa−αb

β

}
˜̄ψA

αr(t
A)ba

ψ̃
B
αr(t

B)ab + ˜̄ψA
αr

(
i(σi)αγ X̃C

ir f ABC
)

ψ̃
B
γr

]
. (5.9)

The fermionic action SF may be written in the form SF = MAαr;Bβ sψ̃
A
αrψ̃

B
β s. Here, the

fermionic operator M is a 2(N2)(2λ + 1)× 2(N2)(2λ + 1) size matrix with A,B = 1,2, · · · ,
α,β = 1,2 and r, s varies from −λ to λ .

SF =
N2

∑
A,B=1

λ

∑
r,s=−λ

2

∑
α,γ=1

˜̄ψA
rαMAαr,Bγsψ̃

B
sγ , (5.10)

where

MAαr,Bγs = Nβ

[
i
{

rω− αa−αb

β

}
(tA)ba(tB)ab

δαγδrs +σ
i
αγtr

(
X̃ir[tA, tB]

)
δrs

]
. (5.11)

Now using the result that∫
dψ exp(−ψ

TAψ) = Pf(A) = det(A)1/2 where A is an antisymmetric matrix

we can integrate out the fermions from the partition function Eq. (5.6). Integrating out the
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fermions from the partition function we get

Z =
∫

DX exp{−Sb}Pf(M), (5.12)

where Sb is the bosonic part of the action. P f (M) for this model is a real number because the

fermion determinant is real positive. One can then use the standard RHMC (Rational Hybrid

Monte Carlo) or real Langevin method. We have used the real Langevin method for producing

the results.

5.2 CLM for SUSY Model

We calculated the drift terms for the bosonic half in the previous chapter, and now we just need

to include the contribution from the fermionic part.

The gradients of the fermionic operator can be computed using Eq. (5.11), and are given by

∂MAαr;Bγs

∂ (X̃ir)ba
= Nβσ

i
αγ

(
[tA, tB]

)
ab
, (5.13)

∂MAαr;Bγr

∂ (αa)
= N(−i)δαγδAB. (5.14)

The derivative identity of the Pfaffian states that if A relies on some variable xi, then the

Pfaffian’s gradient can be manipulated as

1
P f (A)

∂P f (A)
∂xi

=
1
2

tr
(

A−1 ∂A
∂xi

)
. (5.15)

Using Eq. (5.15), the final drift terms to be used in the Langevin equations can be written as

∂Se f f

∂ (X̃ir)ba
=

∂SB

∂ (X̃ir)ba
− tr

(
M−1 ∂MAαr;Bγr

∂ (X̃ir)ba

)
, (5.16)

∂Se f f

∂ (αa)
=

∂SB

∂ (X̃ir)ba
− tr

(
M−1 ∂MAαr;Bγr

∂ (αa)

)
. (5.17)

Here we included the contribution from Faddeev-Popov term into the bosonic gradient.
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5.3 Observables

The observable we are interested in is the Polyakov loop |P|. The definition and the discretized

form is given below

• Polyakov loop |P|

〈|P|〉 ≡ 1
N

〈∣∣∣P(ei
∮

dtA(t))
∣∣∣〉=

〈∣∣∣∣Tr(U)

N

∣∣∣∣〉 , (5.18)

where the symbol P exp represents the path-ordered exponential and the unitary matrix

U is called the holonomy matrix.

5.4 Simulation Details and Results

The simulations were performed for N = 2 and Λ = 4. All other simulation parameters are same

as used for the bosonic model.

Figure (5.1) show the results for the Polyakov line, for the bosonic and supersymmetric cases.

For the supersymmetric case, our preliminary results with Λ = 4 reproduce the asymptotic

behavior at large T obtained by the high temperature expansion (HTE) [Kawahara 07b] up to

the next-leading order. (The solid lines represent the results at the leading order of HTE, which

are the same for the bosonic and SUSY cases.) Note that the non-lattice method is applicable

also at low temperature, where the HTE is no longer valid.
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Figure 5.1: Polyakov loop against temperature T .
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Chapter 6

Summary and Concluding Remarks

The goal of this thesis is to explore the non-lattice approach and apply the method to several

supersymmetric models. We used complex Langevin method for simulations.

In the bosonic matrix quantum mechanics case, we used Polyakov loop as an order parame-

ter to investigate the phase structure of the model at finite temperature. We clearly observed

the confinement-deconfinement phase transition. From the energy vs temperature plot it is clear

that the phase transition is of second order. All our results are consistent with the results pro-

duced by other authors.

In the SUSY MQM case, our preliminary results reproduce the asymptotic behavior at large

T obtained by the high temperature expansion up to the next-leading order.

The perk of using non-lattice method is that Fourier acceleration requires no extra cost, since

we deal with the Fourier modes directly. The continuum limit is achieved much faster than one

would expect naively from the number of degrees of freedom. This is understandable since the

Fourier modes omitted by the cutoff scheme are naturally suppressed by the kinetic term.

It is simple to apply the non-lattice method to the case of sixteen supercharges, which is more

interesting due to its dual relationship with type IIA supergravity theory. In the future, we can

use complex Langevin or Monte Carlo simulations to investigate the sixteen supercharge model.

This study has been discussed in the Ref. [Anagnostopoulos 08].
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Appendix A

Noisy Estimator for Tr
(

∂M
∂ φ̃n

M−1
)
.

In the simulations of Chapter 3, we did not use a noisy estimator, since calculating M−1 does

not take much CPU cost. For the trace of the general m×m matrix M, we prepare a white-noise

vector ηi(i = 1,2, · · · ,m) obeying 〈η∗i η j〉= δi j. To that end, we set

η j =
X j + iYj√

2
, η

∗
j =

X j− iYj√
2

, whereXj,YjobeyN(0,1). (A.1)

In this case, we have

〈η∗j η j〉=
1
2
{〈X2

j 〉+ 〈Y 2
j 〉}= 1, 〈η∗i η j〉= 0(i 6= j). (A.2)

Then, we have

m

∑
j,k=1

〈η∗j M jkηk〉=
m

∑
j,k=1

M jk〈η∗j ηk〉=
m

∑
j,k=1

M jkδ jk =
m

∑
k=1

Mkk = TrM. (A.3)

In the present case, we prepare a noise vector ηki (ki =−Λ, · · · ,Λ) obeying

〈η∗k1
ηk2〉= δk1k2. (A.4)

Then, the trace is estimated as (here, we omit the Langevin time (n)).

Tr
(

∂M
∂ φ̃n

M−1
)
=

〈
η
∗ ∂M

∂ φ̃n
M−1

η︸ ︷︷ ︸
=X

〉
=

〈
η
∗
k1

(
∂M
∂ φ̃n

)
k1k2

Xk2

〉
(A.5)

X = M−1η can be calculated via the conjugate gradient (CG) method. It is convenient to solve

M†MX = M†
η (A.6)
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(

∂M
∂ φ̃n

M−1
)

.

since the CG method is applicable to a symmetric and positive-definite matrix. Also, we com-

ment that in Langevin simulation we do not need to take the average of

〈
η∗ ∂M

∂ φ̃n
M−1

η︸ ︷︷ ︸
=X

〉
. Just

one noisy estimator is enough, since the Fokker-Planck equation will be the same as the one we

obtain when we treat Tr
(

∂M
∂ φ̃n

M−1
)

exactly.
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Appendix B

Derivation of a Formula for the Internal

Energy

In this section, we derive the formula Eq. (4.31) that relates the internal energy of the current

model to the expected value Eq. (4.32), which is directly accessible through Monte Carlo sim-

ulation.

Let us simplify Eq. (4.30)

E =− 1
Z(β )

lim
∆β→0

Z(β ′)−Z(β )
∆β

. (B.1)

Here β ′ = β +∆β , and represent Z(β ′) for later convenience as

Z(β ′) =
∫
[X ′

beta′][A
′]β ′e

−S′, (B.2)

where S′ is deduced from S given in Eq. (4.9) by substituting β , t,A(t),Xi(t) with β ′, t ′,A′(t ′),X ′i (t
′).

In order to connect Z(β ′) with Z(β ), we consider the transformation

t ′ =
β ′

β
t, A′(t ′) =

β

β ′
A(t), X ′i (t

′) =

√
β ′

β
Xi(t). (B.3)

The factors in front of the fields are inspired on the basis of dimensions, and we have in

particular we have [DX ′]β ′ = [DX ]β and [DA′]β ′ = [DA]β . The kinetic term in S′ is reduced to

that in S by this transformation, but the interaction term transforms non-trivially as

∫
β ′

0
dt ′tr

(
[X ′i (t

′),X ′j(t
′)]2
)
=

(
β ′

β

)3 ∫ β

0
dt tr

(
[Xi(t),Xj(t)]2

)
. (B.4)
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This gives us the relation

Z(β ′) = Z(β )
{

1− 3
4

N2
∆β 〈F2〉+O

(
(∆β )2)} , (B.5)

where the operator F2 is defined by Eq. (4.32). Plugging this into Eq. (B.1) we get Eq. (2.8).
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