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Abstract

For many years neutron decay has been investigated as a possible pathway to the exploration of new physics. One such example is the bound
beta-decay (BoB) of the neutron into a hydrogen atom and an anti-neutrino. This two-body decay mode offers a very elegant method to study
neutrino helicities, just as the Goldhaber experiment has done. However, this rare decay has not yet been observed so far owing to the
challenges of measuring a decay involving only electrically neutral particles with an estimated branching ratio of only 10 of the three-body
decay mode. Specifically an intense source of thermal neutrons would be required for such an experiment, such as the FRMII in Garching, the
ILL in Grenoble or the ESS in Lund. This paper provides a summary of the novel experimental scheme that we propose to observe the BoB
neutron decay, addressing all necessary problems in a very coherent way.
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1. Introduction

In 1947 Daudel, Jean and Lecoin predicted the existence of a two-body beta-decay mode in which the daughter
nucleus and the electron remain bound (Daudel, Jean and Lecoin (1947)). For the beta-decay of the free neutron,
this is referred to as “bound beta-decay” or “BoB” and is the two-body neutron decay mode: n - H + v, . Many
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theoretical studies of this decay mode have been published (Bahcall (1961), Kabir (1967), Nemenov (1980), Song
(1987), Byrne (2001), Faber (2009)), although it has never been observed experimentally. The main challenges in
observing this decay and studying its properties lie in the small predicted branching ratio ~4x10° of the three-body
decay mode (Nemenov (1980), Faber (2009)) and in the detection of low-energy, electrically neutral particles in
the final state.

Experimentally, the decay signature is a hydrogen atom of energy 325.7 eV, corresponding to a velocity
~10° m/s. As the weak interaction is a short-range force, it is also expected that only hydrogen atomic states with
zero angular-momentum will be populated, with 83.2% of atoms in the 1s state and 10.4% in the 2s state and the
remainder in an ns state where n > 3.

2. Physics Motivation

As this decay results in a two-body final state, the spin state of the anti-neutrino is mirrored by the outgoing
hydrogen atom. A careful and precise study of the hyperfine spin state of the hydrogen atom would therefore
contain full information regarding the momentum direction of the anti-neutrino. The observation and study of the
bound beta-decay of the neutron is therefore a novel and exciting opportunity to directly observe neutrino helicity.

Table 1 shows the possible combinations of spin states in this decay along with the spin state populations as
predicted by V—A theory. In this theory, Configurations 4, 1’ and 2’ cannot be populated as the emission of a left-
handed anti-neutrino would be required. Therefore a genuine non-zero value measured for populations Wy, W;- or
W, would imply a left-right symmetric V+A theory.

Table 1. The six possible spin configurations, i, in the neutron bound-beta decay (Schott (2006)). By convention the neutron, n, is in the rest
frame, the anti-neutrino, V,, goes to the left and the hydrogen atom, H, goes to the right. The spins of all the particles, including the electron, e,
are indicated by arrows. The spin population of each of the spin configurations, W, is also given. F is the total spin with hyperfine interactions,
its projection being my. |mgm;> are the Paschen-Back states where m, and m; represent the ¢” and p quantum numbers respectively.

Configuration, i V, n P e Wi (%) F mr |mm>
1 — — — - 44.14+0.05 0,1 0 [+—>
2 — — - — 55.24+0.04 0,1 0 |—+>
3 — - - - 0.622+0.011 1 1 [++>
4 . - - - 0.0 1 1 l-—>
1 - — — — 0.0 0,1 0 |—+>
2 - - — — 0.0 0,1 0 [+—>

The population probabilities of Configurations 1 to 3 are given by (Nemenov and Ovchinnikova (1980)):

(x — 1) 2 ( + 1)

=2, W,= , o Wy= e
YT 2(x2+3) 27 x2+3 3T 22 +3)

where
xr=@0+ gs)/(z—A —2gr) and Z—A = —1.2695 + 0.0029 (Eidelman (2004))
14 14

and where g4, gy, gs and grare the axial, vector, scalar and tensor coupling constants respectively. Therefore, by
measuring W;, a combination of gg and grcan be obtained. The current best limits for gs and grare |g,| < 6x107
(68% C.L.) obtained from e*—v, correlation measurements in 0*—0" nuclear beta-decay (Adelberger (1999)) and
lg7 /g4l < 9107 (95% C.L.) obtained from the complete set of nuclear beta-decay correlations (Boothroyd (1984)).
A more exciting possibility would be the observation of a non-zero value of Configuration 4. Here, V+A theory
predicts the population probability to be (Byrne (2001)):
(x + Ay)?
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with x =#-¢ and y =n+¢ Here 7 <0.036 (Gaponenko (2005)) is the mass-ratio squared of two intermediate
charged-vector bosons mediating the left and right-handed interactions and ¢ < 0.020 (90% C.L.) (Bayes (2011)) is
the boson mass eigenstate mixing angle.

From the Goldhaber experiment in 1957 (Goldhaber, Grozins and Sunyar (1958)) which laid the foundations of
V-A theory, to the present day, no experimental investigations into the beta decay of the neutron, u and © and also
into W and Z° production have shown any deviations from a pure V-A interaction. However, the observation of
finite neutrino mass (deduced from the observation of neutrino oscillations), the large violation of CP-symmetry
linked to the asymmetry of matter over anti-matter in the Universe and the mass hierarchy problem make it
obvious that our present Standard Model is not yet complete and a higher symmetry may exist which could allow
for a left-right symmetric description of nature leaving room for the right handed boson sector contributing to the
interactions. As the bound beta-decay of the neutron has never been studied experimentally, this provides a new,
un-explored pathway to directly search for such physics beyond the Standard Model.

3. Experimental concept

Figure 1 shows a schematic diagram of the experimental concept. The neutrons decay into hydrogen atoms
inside the through-going beam tube and within a longitudinal magnetic field, B;, which preserves the original
hyperfine spin state of the H atoms in the metastable 2s state and its spin projection on the axis. Assuming the
experiment were located at the FRMII, 0.1 H(2s) per second will exit the beam tube (Schott (2006)). The atoms
then pass through the collimator followed by the Lamb-Shift Spin Filter which separates out the hyperfine spin
states. A transverse magnetic field, B, then removes the large number of charged three-body-decay protons and
electrons from the beam line to reduce background radiation at the hydrogen detector. The H(2s) atoms now pass
through an array of electric field grids where they are periodically quenched at a frequency of ~25 MHz in a field
of 500 V. This allows for measurement and assessment of background measured in the hydrogen detector, as well
as velocity-selection of the H(2s) of interest, thus acting as a “beam chopper”. Finally the H(2s) with an energy of
325.7 eV enter the hydrogen-detection stage where they are detected through Lyman-a detection or via a charge-
exchange reaction.

Transverse
E magpnetic field, B
Collimator 5'73 g :

Neutron source RF

f ® W Hydrogen

Detector
Electric

Longitudinal Lamb-Shift field
magnetic field, B Spin Filter grids

—

Fig. 1. Schematic diagram showing the main concept of the experiment to measure the bound-beta decay
of the neutron.

In the Lyman-a detection method, although hydrogen atoms in the 2s state are metastable (r;, ~ 0.1 s), the
presence of a moderate electric field allows the 2s state to mix with the 2p state, resulting in decay in ~ ns with the
emission of a Lyman-a photon (4 = 121.6 nm). The photon can then be detected by e.g. a photomultiplier tube.

A second method explored by our group has been the charge-exchange reaction of hydrogen atoms in argon gas
with subsequent detection of the charged reaction H-atom: H + Ar - H™ + Ar*. Here hydrogen atoms pass
through a gas cell containing argon and the resulting H are energy-selected by an electric counter-field. From
binding energy calculations we can show that a ground state H of 325.7 eV will form an H™ of 309.9 eV whereas an
H(2s) of 325.7 eV will form an H of 320.1 eV. This is due to the 2s state lying 10.2 eV above the 1s state. The H’
can then be deflected by 90° through a dipole magnet and accelerated to a detector such as a CsI(TI) crystal.
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4. Suitable sources of neutrons

A further important consideration for the BoB experiment is the source of neutrons. The first requirement is an
intensive thermal neutron source due to the very small expected branching ratio for the decay. A second
requirement is a through-going beam tube to reduce neutron background in the detector (essentially to prevent the
hydrogen detector from “seeing” the source) as the experiment will be very sensitive to neutron background. There
are currently two facilities which meet these requirements: the FRMII in Garching (neutron flux ~10" cm™s™) and
the H6-H7 beam tube at the ILL in Grenoble (neutron flux ~5x10" cm'zs'l). A further option would be the
European Spallation Source (ESS) in Lund, where the possibility of constructing through-going beam tube is
currently under discussion. For a through-going beam tube passing below the internal Be reflector and thus
reducing the flux at the other beam ports by less than a few percent, it is estimated that the integrated thermal
neutron flux at the centre of this beam tube would be ~2x10" cm™s™! (Klinkby (2013)). Although the flux would be
lower than at the FRMII or the ILL, the ESS has the further advantage of a pulsed beam. This would significantly
benefit the BoB experiment allowing for measurement of background in the detector without using the electric
field grids to chop the beam and, in the process, removing a certain proportion of H(2s) from the beam.

5. Summary

An experiment to measure the bound beta-decay of the neutron has been outlined. The experiment will rely on
the detection of H(2s) atoms in order to measure the branching ratio of this so-far unobserved decay for the first
time. A measurement of the hyperfine spin state populations of these atoms will then be measured, providing a
novel method to directly observe the helicity of the neutrino and thus open up a new pathway to look for physics
beyond the Standard Model. Our previous calculations (Schott (2006)) have shown that in the proposed experiment
the upper limits of gy, g7, # and ¢ can be reduced by a factor of ten. In addition to the sensitive detection of
hydrogen atoms in the 2s state at 325.7 eV, another key requirement of this experiment will be an intense source of
thermal neutrons with a through-going beam tube. In addition to the FRMII in Garching and the ILL in Grenoble,
the ESS will provide such a facility having the further advantage of combining a high neutron flux with a pulsed
beam.
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