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Abstract 

For many years neutron decay has been investigated as a possible pathway to the exploration of new physics. One such example is the bound 
beta-decay (BoB) of the neutron into a hydrogen atom and an anti-neutrino. This two-body decay mode offers a very elegant method to study 
neutrino helicities, just as the Goldhaber experiment has done. However, this rare decay has not yet been observed so far owing to the 
challenges of measuring a decay involving only electrically neutral particles with an estimated branching ratio of only 10-6 of the three-body 
decay mode. Specifically an intense source of thermal neutrons would be required for such an experiment, such as the FRMII in Garching, the 
ILL in Grenoble or the ESS in Lund. This paper provides a summary of the novel experimental scheme that we propose to observe the BoB 
neutron decay, addressing all necessary problems in a very coherent way.
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1. Introduction 

In 1947 Daudel, Jean and Lecoin predicted the existence of a two-body beta-decay mode in which the daughter 
nucleus and the electron remain bound (Daudel, Jean and Lecoin (1947)). For the beta-decay of the free neutron, 
this is referred to as “bound beta-decay” or “BoB” and is the two-body neutron decay mode: � � � � �� . Many 
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theoretical studies of this decay mode have been published (Bahcall (1961), Kabir (1967), Nemenov (1980), Song 
(1987), Byrne (2001), Faber (2009)), although it has never been observed experimentally. The main challenges in 
observing this decay and studying its properties lie in the small predicted branching ratio ~4×10-6 of the three-body 
decay mode (Nemenov (1980), Faber (2009)) and in the detection of low-energy, electrically neutral particles in 
the final state. 

Experimentally, the decay signature is a hydrogen atom of energy 325.7 eV, corresponding to a velocity 
~105 m/s. As the weak interaction is a short-range force, it is also expected that only hydrogen atomic states with 
zero angular-momentum will be populated, with 83.2% of atoms in the 1s state and 10.4% in the 2s state and the 
remainder in an ns state where n ≥ 3. 

2. Physics Motivation

As this decay results in a two-body final state, the spin state of the anti-neutrino is mirrored by the outgoing 
hydrogen atom. A careful and precise study of the hyperfine spin state of the hydrogen atom would therefore 
contain full information regarding the momentum direction of the anti-neutrino. The observation and study of the 
bound beta-decay of the neutron is therefore a novel and exciting opportunity to directly observe neutrino helicity. 

Table 1 shows the possible combinations of spin states in this decay along with the spin state populations as 
predicted by V−A theory. In this theory, Configurations 4, 1’ and 2’ cannot be populated as the emission of a left-
handed anti-neutrino would be required. Therefore a genuine non-zero value measured for populations W4, W1’ or
W2’ would imply a left-right symmetric V+A theory. 

Table 1. The six possible spin configurations, i, in the neutron bound-beta decay (Schott (2006)). By convention the neutron, n, is in the rest 
frame, the anti-neutrino, ��

�
, goes to the left and the hydrogen atom, H, goes to the right. The spins of all the particles, including the electron, e-, 

are indicated by arrows. The spin population of each of the spin configurations, Wi, is also given. F is the total spin with hyperfine interactions, 
its projection being mF. |msmI> are the Paschen-Back states where ms and mI represent the e- and p quantum numbers respectively. 

Configuration, i ��
�

n p e- Wi (%) F mF |msmI> 

1 ← ← ← → 44.14±0.05 0,1 0 |+−> 

2 ← ← → ← 55.24±0.04 0,1 0 |−+> 

3 ← → → → 0.622±0.011 1 1 |++> 

4 → ← ← ← 0.0 1 -1 |−−> 

1’ → → → ← 0.0 0,1 0 |−+> 

2’ → → ← → 0.0 0,1 0 |+−> 

The population probabilities of Configurations 1 to 3 are given by (Nemenov and Ovchinnikova (1980)): 
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and where gA, gV, gS and gT are the axial, vector, scalar and tensor coupling constants respectively. Therefore, by 
measuring Wi, a combination of gS and gT can be obtained. The current best limits for gS and gT are |gs| < 6×10-2

(68% C.L.) obtained from �	��
 correlation measurements in 0+
→0+ nuclear beta-decay (Adelberger (1999)) and 

|gT /gA| < 9×10-2 (95% C.L.) obtained from the complete set of nuclear beta-decay correlations (Boothroyd (1984)). 
A more exciting possibility would be the observation of a non-zero value of Configuration 4. Here, V+A theory 

predicts the population probability to be (Byrne (2001)): 
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with x = η−ξ and y = η+ξ. Here η < 0.036 (Gaponenko (2005)) is the mass-ratio squared of two intermediate 
charged-vector bosons mediating the left and right-handed interactions and ξ < 0.020 (90% C.L.) (Bayes (2011)) is 
the boson mass eigenstate mixing angle. 

From the Goldhaber experiment in 1957 (Goldhaber, Grozins and Sunyar (1958)) which laid the foundations of 
V−A theory, to the present day, no experimental investigations into the beta decay of the neutron, µ and π and also 
into W and Z0 production have shown any deviations from a pure V−A interaction. However, the observation of 
finite neutrino mass (deduced from the observation of neutrino oscillations), the large violation of CP-symmetry 
linked to the asymmetry of matter over anti-matter in the Universe and the mass hierarchy problem make it 
obvious that our present Standard Model is not yet complete and a higher symmetry may exist which could allow 
for a left-right symmetric description of nature leaving room for the right handed boson sector contributing to the 
interactions. As the bound beta-decay of the neutron has never been studied experimentally, this provides a new, 
un-explored pathway to directly search for such physics beyond the Standard Model. 

3. Experimental concept 

Figure 1 shows a schematic diagram of the experimental concept. The neutrons decay into hydrogen atoms
inside the through-going beam tube and within a longitudinal magnetic field, B1, which preserves the original 
hyperfine spin state of the H atoms in the metastable 2s state and its spin projection on the axis. Assuming the 
experiment were located at the FRMII, 0.1 H(2s) per second will exit the beam tube (Schott (2006)). The atoms 
then pass through the collimator followed by the Lamb-Shift Spin Filter which separates out the hyperfine spin 
states. A transverse magnetic field, B3, then removes the large number of charged three-body-decay protons and 
electrons from the beam line to reduce background radiation at the hydrogen detector. The H(2s) atoms now pass 
through an array of electric field grids where they are periodically quenched at a frequency of ~25 MHz in a field 
of 500 V. This allows for measurement and assessment of background measured in the hydrogen detector, as well 
as velocity-selection of the H(2s) of interest, thus acting as a “beam chopper”. Finally the H(2s) with an energy of 
325.7 eV enter the hydrogen-detection stage where they are detected through Lyman-α detection or via a charge-
exchange reaction. 

In the Lyman-α detection method, although hydrogen atoms in the 2s state are metastable (τ1/2 ~ 0.1 s), the 
presence of a moderate electric field allows the 2s state to mix with the 2p state, resulting in decay in ~ ns with the 
emission of a Lyman-α photon (λ = 121.6 nm). The photon can then be detected by e.g. a photomultiplier tube. 

A second method explored by our group has been the charge-exchange reaction of hydrogen atoms in argon gas 
with subsequent detection of the charged reaction H-atom: H � Ar � H� � Ar	 . Here hydrogen atoms pass 
through a gas cell containing argon and the resulting H- are energy-selected by an electric counter-field. From 
binding energy calculations we can show that a ground state H of 325.7 eV will form an H- of 309.9 eV whereas an 
H(2s) of 325.7 eV will form an H- of 320.1 eV. This is due to the 2s state lying 10.2 eV above the 1s state. The H-

can then be deflected by 90° through a dipole magnet and accelerated to a detector such as a CsI(Tl) crystal. 

Fig. 1. Schematic diagram showing the main concept of the experiment to measure the bound-beta decay 
of the neutron.
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4. Suitable sources of neutrons 

A further important consideration for the BoB experiment is the source of neutrons. The first requirement is an 
intensive thermal neutron source due to the very small expected branching ratio for the decay. A second 
requirement is a through-going beam tube to reduce neutron background in the detector (essentially to prevent the 
hydrogen detector from “seeing” the source) as the experiment will be very sensitive to neutron background. There 
are currently two facilities which meet these requirements: the FRMII in Garching (neutron flux ~1014 cm-2s-1) and 
the H6-H7 beam tube at the ILL in Grenoble (neutron flux ~5×1014 cm-2s-1). A further option would be the 
European Spallation Source (ESS) in Lund, where the possibility of constructing through-going beam tube is 
currently under discussion. For a through-going beam tube passing below the internal Be reflector and thus 
reducing the flux at the other beam ports by less than a few percent, it is estimated that the integrated thermal 
neutron flux at the centre of this beam tube would be ~2×1013 cm-2s-1 (Klinkby (2013)). Although the flux would be 
lower than at the FRMII or the ILL, the ESS has the further advantage of a pulsed beam. This would significantly 
benefit the BoB experiment allowing for measurement of background in the detector without using the electric 
field grids to chop the beam and, in the process, removing a certain proportion of H(2s) from the beam. 

5. Summary 

An experiment to measure the bound beta-decay of the neutron has been outlined. The experiment will rely on 
the detection of H(2s) atoms in order to measure the branching ratio of this so-far unobserved decay for the first 
time. A measurement of the hyperfine spin state populations of these atoms will then be measured, providing a 
novel method to directly observe the helicity of the neutrino and thus open up a new pathway to look for physics 
beyond the Standard Model. Our previous calculations (Schott (2006)) have shown that in the proposed experiment 
the upper limits of gS, gT, η and ξ can be reduced by a factor of ten. In addition to the sensitive detection of 
hydrogen atoms in the 2s state at 325.7 eV, another key requirement of this experiment will be an intense source of 
thermal neutrons with a through-going beam tube. In addition to the FRMII in Garching and the ILL in Grenoble, 
the ESS will provide such a facility having the further advantage of combining a high neutron flux with a pulsed 
beam.
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