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Abstract We investigate a field theoretical approach to the
Jordan–Brans–Dicke (JBD) theory extended with a particu-
lar potential term on a cosmological background by starting
with the motivation that the Higgs field and the scale factor of
the universe are related. Based on this relation, it is possible
to come up with mathematically equivalent but two different
interpretations. From one point of view while the universe
is static, the masses of the elementary particles change with
time. The other one, which we stick with throughout the
manuscript, is that while the universe is expanding, particle
masses are constant. Thus, a coupled Lagrangian density of
the JBD field and the scale factor (the Higgs field), which
exhibit a massive particle and a linearly expanding space
in zeroth order respectively, is obtained. By performing a
coordinate transformation in the field space for the reduced
JBD action whose kinetic part is nonlinear sigma model,
the Lagrangian of two scalar fields can be written as uncou-
pled for the Higgs mechanism. After this transformation, as
a result of spontaneous symmetry breaking, the time depen-
dent vacuum expectation value (vev) of the Higgs field and
the Higgs bosons which are the particles corresponding to
quantized oscillation modes about the vacuum, are found.

1 Introduction

The concept of mass has been very important and challeng-
ing to understand at the fundamental level throughout the
advancement of modern physics. The particle physics as well
as the foundations of classical physics such as the dynam-
ics of particle motion and the phenomenon of gravitation, in
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fact depend on this concept. Lately by the discovery of the
Higgs boson [1], one of the most striking developments in
our understanding of this concept has been the fact that the
mass in physics is fundamentally resulting from the vacuum
expectation value of the Higgs field [2]. Also, all the elemen-
tary particles in the standard model obtain their masses by
this mechanism [3–5] which is only consistent in Minkowski
spacetime. Although from a historical perspective the con-
cept is divided into two as inertial and gravitational masses,
their equivalence which is known the weak equivalence prin-
ciple (WEP), is essential by experiments [6]. WEP ensures
test bodies follow the same path in a gravitational field regard-
less of their compositions. So, this equivalence was one of
the main motivations for Einstein to construct the general
theory of relativity which explains the gravitation in a purely
geometrical way. Another motivation was Mach’s principle
which relates an inertial force on a body to the gravitational
effects originating from the matter distribution of the uni-
verse. While Newton’s concept of absolute space defines a
special frame of reference and an inertial force is the result of
motion relative to this frame, Mach’s principle states that the
observable motion is the relative one and there is no a special
frame of reference. Thus, based upon Mach’s principle, a test
particle experiences an inertial force because of its relative
motion to the rest of the universe, or simply, the physical
space shaped by distant stars and galaxies. Furthermore, a
model which relates inertia to the gravitational potential of
the universe, has been proposed by Sciama [7]. In the rest
of this section, a novel connection between inertial mass and
the metric tensor is constructed by means of the Higgs field.
A similar model [8] has recently been introduced by two of
the authors and the more complete and the precise one in
terms of theoretical arguments and calculations is studied in
this manuscript.

In the general theory of relativity, motion of particles are
determined by the action

S = −m
∫

ds = −m
∫ √

gμνdxμdxν, (1)
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where m and ds are the mass of the particle and the length
of the Riemannian line element respectively. As is stated
earlier, since, from a field theoretical point of view, a particle
is gained mass because of its interaction with Higgs field φ,
the mass of the particle should be time dependent if the vev
of the Higgs field changes with time throughout the evolution
of the universe. However, the variation of the field must be at
a sufficiently slow rate so that the concept of mass is not put
under too much stress and the factor in front of the interaction
term is interpreted as mass in a field theoretical Lagrangian
density. So, once the solution of the Higgs field is obtained
in terms of the parameters of our model, it will be shown that
this condition is satisfied. Based on this motivation, the same
action in Eq. (1) can be written as

S = −m0

∫
φ(t)

φ0

√
gμνdxμdxν . (2)

Another fundamental understanding of the universe is the
concept of the expanding universe as described by the FLRW
metric tensor [9–12] for which the line element is given by

ds2 = a2(t)(−dt2 + dx2 + dy2 + dz2) (3)

where t is, in cosmological language, called conformal time.
Here and henceforth we will use units h̄ = c = 1. If the mass
is determined by the time dependent cosmological expecta-
tion value of the Higgs field, for a macroscopic theory one
can use Eq. (2) to embed the factor φ(t)/φ0 into the metric
and the line element becomes

ds2 = 〈φ(t)/φ0〉2ημνdx
μdxν (4)

as far as homogeneous and isotropic space-time is consid-
ered. Now, while φ/φ0 is representing the time dependence
of the mass, from another perspective, it can be considered
as a part of the metric tensor for a cosmological scenario by
the relation

a(t) = 〈φ(t)/φ0〉. (5)

Thus, roughly speaking, the scale factor a must be related
to the time dependent cosmological expectation value of the
Higgs field.

Besides many successes of the general theory of relativity
in explaining some phenomena in the solar system as well as
in the standard model of cosmology such as the precession of
the mercury, gravitational lensing, proton–neutron ratio in the
early universe and the primordial nucleosynthesis, its insuf-
ficiency to solve the late-time accelerating expansion of the
universe and the galaxy rotation curves without adding dark
energy and dark matter as unknown exotic constituents led
to search for the modified or the alternative gravity theories
[13,14]. It also suffers from some conceptual issues [15,16]
related to Mach’s principle which it relies on. Whereas mod-
ified gravity theories satisfy WEP, the strong equivalence
principle (SEP) is violated as a result of the introduction

of a fifth force [15,17]. Thus, objects which have different
gravitational binding energies, move on different geodesics
of the space-time metric. In this sense, the general theory
of relativity is the only tensor theory which satisfies both
WEP and SEP. Among modified gravity theories, due to the
coupling of a simple scalar field to the geometry of space-
time, scalar–tensor theories are the more prevalent and flex-
ible alternatives. In this manuscript, we will consider the
Jordan Brans Dicke (JBD) theory [15,18–20] which is the
first scalar–tensor theory and seems to be a more complete
theory of gravitation with respect to Mach’s principle. Fur-
thermore, for our case, it is more suitable to show the relation
between the relativistic cosmology and the Higgs mechanism
by relating the scalar fields of two picture. In their original
paper, Brans and Dicke define the reciprocal of Newton’s
constant 1/G as the scalar field which has the dimension of
mass squared. Since our approach will mostly be field the-
oretical, it is better define a field to have the dimension of
mass. Thus, the JBD action extended with a potential term
(here, a massless JBD field is taken into account) turns out
to be

S =
∫

d4x
√−g

(
− ξ̃2

2
χ̃2R − 1

2
gμν∂μχ̃∂νχ̃ − λ̃

4
χ̃4

)
.

(6)

Here, R, χ̃ and ξ̃2 are the Ricci scalar, the JBD scalar field
and the dimensionless parameter respectively. As it will be
explained at the beginning of the next section, the use of
tilde sign in Eq. (6) is because of some dimensional concerns
for coordinate transformation in field space. Furthermore,
although the coupling parameter ω which is the original JBD
parameter, is more common in the literature, we prefer to
stick with the action form in Eq. (6). So, the relation between
two parameters is given by ξ̃2 = −1/4ω.

2 The Higgs field and the conformal factor in the JBD
theory

Since it is better fit this scalar–tensor theory into rela-
tively simpler form as the Lagrangian of two scalar field in
Minkowski spacetime, we use the following two relations
√−g = a4(t)

√−η = a4(t) (7)

R = 6
∂2

0a

a3 (8)

to write the Lagrangian density in Eq. (6) in terms of dimen-
sionless scalar fields χ and a as

L = −ξ2

2
χ2a∂2

0a + μ2

2
a2(∂0χ)2 − λ

4
a4χ4 (9)

where χ = χ̃/μ and it has undergone dimensional transmu-
tation. To make χ dimensionless, μ must have dimension of
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mass and so dimensionful constants are defined as ξ = μξ̃

and λ = μ4λ̃. Also, the factor of six in the Ricci scalar has
already been embedded within ξ2.

After the first term in Eq. (9) is expanded by applying
integration by parts, the Lagrangian density becomes

L = −ξ2

2

[
∂0(χ

2a∂0a) − 2aχ∂0a∂0χ − χ2(∂0a)2
]

+μ2

2
a2(∂0χ)2 − λ

4
a4χ4. (10)

At this point, since the first term in the square bracket is a total
divergence, it can be set to zero at the infinity in the action.
So, after disregarding this term, by addition and subtraction

of the term ξ2

2 a2(∂0χ)2 into the Lagrangian density, and then
taking the factor of a2χ2 outside the parenthesis, one ends
up with

L = ξ2

2
a2χ2

[(
∂0χ

χ

)2

+ 2
∂0a

a

∂0χ

χ
+

(
∂0a

a

)2
]

+μ2 − ξ2

2
a2(∂0χ)2 − λ

4
a4χ4. (11)

The plus sign in front of the bracket in which the terms cor-
respond the kinetic energy, implies the positivity of ξ2 but
negativity of the JBD parameter ω based upon our defini-
tion in the introduction. In order to simplify this expression,
the following relation for the terms inside the bracket and
the definitions (or the coordinate transformations in the field
space) for fields α and γ are very useful.

[∂0(ln χ + ln a)]2 = [∂0(ln χa)]2 = [∂0 ln α]2 (12)

α = χa (13)

γ = ln χ (14)

Then, the Lagrangian density can be put in the form

L = ξ2

2
(∂0α)2 + μ2 − ξ2

2
α2(∂0γ )2 − λ

4
α4. (15)

Based upon the equation of motion of γ , since

∂L
∂γ

= 0, (16)

∂L
∂(∂0γ )

= (μ2 − ξ2)α2∂0γ (17)

must be equal to a constant. Thus,

∂0γ = C

(μ2 − ξ2)α2 . (18)

After some algebra, Hamiltonian density is found as

H = ξ2

2
(∂0α)2 + μ2 − ξ2

2
α2(∂0γ )2 + λ

4
α4, (19)

and using Eq. (18) in Eq. (19) yields

H = ξ2

2
(∂0α)2 + C2

2(μ2 − ξ2)

1

α2 + λ

4
α4. (20)

Before obtaining the equation of motion of α, one must
have the Hamiltonian density in terms of the field and its
canonical momentum. In our case, it will be equal to

H = 1

2ξ2 π2
α + C2

2(μ2 − ξ2)

1

α2 + λ

4
α4, (21)

where the canonical momentum is

πα = ξ2∂0α. (22)

Furthermore, since the equation of motion is given by

− ∂H
∂α

= ∂0πα, (23)

and the left hand side of Eq. (23) is

− ∂H
∂α

= C2

(μ2 − ξ2)

1

α3 − λα3, (24)

after some algebraic manipulation one can easily get the
equation of motion as

∂2
0 α − C2

ξ2(μ2 − ξ2)

1

α3 + λ

ξ2 α3 = 0. (25)

In Eq. (21), last two terms behave as an effective potential,
so one may write

H = ξ2

2
(∂0α)2 + Vef f , (26)

where

Vef f = C2

2(μ2 − ξ2)

1

α2 + λ

4
α4. (27)

To determine the vacuum expectation value of the field, the
derivative of the potential with respect to α must be equal to
zero

∂Vef f
∂α

= 0. (28)

This simple procedure gives the vev of α

α0 =
(

C2

λ(μ2 − ξ2)

)1/6

. (29)

After substituting Eq. (29) in Eq. (18) in order to solve the
field γ at the vacuum

∂0γ = C

(μ2 − ξ2)α2
0

=
(

λC

(μ2 − ξ2)2

)1/3

= D, (30)

γ is found

γ = ln χ = Dt + E, (31)
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where D and E are another constants which must be deter-
mined. Then, on the basis of the definition in Eq. (14), the
JBD scalar field, is obtained at the vacuum as

χ = eDt+E . (32)

Since the temporal evolution of the universe is designated by
the scale factor which also gives the time dependence of the
Higgs field in our theoretical model, we can take advantage
of the definition of α at its vev

α0 = aχ, (33)

to find

a = α0

eDt+E
= exp[−D(t − t0)], (34)

where

α0e
−E = eDt0 , (35)

in which t0 is the age of the universe to make the scale factor
equal to one today. As it is seen, Eq. (35) implies an expo-
nential expansion for space-time intervals but this is true in
comoving time. After one switches to the cosmological time
which will be represented with t ′ throughout the manuscript,
and arrange constants accordingly to be able to set today’s
value of a to one, a linear expansion is obtained

a(t ′) = t ′

t ′0
. (36)

We have already learned the evolution of the fields with
time at the vev of α. Now, a small perturbation can be added
to α

α = α0(1 + ε(t)), (37)

and insert this into Eq. (25) to get

∂2
0 ε(t) − C2

ξ2(μ2 − ξ2)
α−4

0 (1 + ε(t))−3

+ λ

ξ2 α2
0(1 + ε(t))3 = 0. (38)

Since the perturbation is small in comparison with α0, the
second and the third terms in Eq. (38) can be expanded by
keeping only the zeroth and the first order terms and it turns
out to be

∂2
0 ε(t) − C2

ξ2(μ2 − ξ2)
α−4

0 (1 − 3ε(t))

+ λ

ξ2 α2
0(1 + 3ε(t)) = 0. (39)

Since the zeroth order terms give

− C2

ξ2(μ2 − ξ2)
α−4

0 + λ

ξ2 α2
0 = 0, (40)

we are left with the equation to solve

∂2
0 ε(t) +

(
3C2

ξ2(μ2 − ξ2)
α−4

0 + 3λ

ξ2 α2
0

)
ε(t) = 0. (41)

The constant term in the parenthesis has the dimension of
mass squared so it may be redefined to write the equation as

∂2
0 ε(t) + m2ε(t) = 0, (42)

where

m2 =
(

3C2

ξ2(μ2 − ξ2)
α−4

0 + 3λ

ξ2 α2
0

)
. (43)

Using the vev of α from Eq. (29) makes m2 to be equal to

m2 = 6(λC)2/3

ξ2(μ2 − ξ2)1/3 , (44)

then the solutions for ε and α, around the vacuum, are found
as

ε(t) = ε0(e
imt + e−imt ), (45)

α = α0(1 + ε0(e
imt + e−imt )). (46)

Ultimately, we are interested in the solutions of the fields χ

and a. We can follow the same procedure as before by finding
γ first, then χ and a. To do that Eq. (46) is placed into Eq.
(18) again by ignoring second and higher order terms of ζ

∂0γ = C

(μ2 − ξ2)α2 = C

(μ2 − ξ2)
α−2

0 (1 − 2ε(t)) , (47)

then by using the definition of constant D and integrating

∂0γ = D(1 − 2ε(t)), (48)

γ is gained as

γ = Dt + F + i2D

m
ε0(e

imt − e−imt ). (49)

Here, F is another integration constant which must be
defined. Using the relations γ = ln χ and α = aχ one more
time in order results in

χ(t) = exp

(
Dt + F + i2D

m
ε0(e

imt − e−imt )

)
, (50)

a(t) = α0(1 + ε(t))

× exp

(
−Dt − F − i2D

m
ε0(e

imt − e−imt )

)
. (51)

Once again the higher order terms are disregarded because
of the fact that ε � 1 and constant F is selected to be equal
to E in Eq. (31) (since a(t0) = 1), so the evolution of the
universe in the conformal time is

a(t) = exp

(
−D(t − t0) + ε0

((
1 − i2D

m

)
eimt

+
(

1 + i2D

m

)
e−imt

))
, (52)
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and in the cosmological time is

a(t ′) =
(
t ′

t ′0
+ ε0

((
1 − i2D

m

)
eimt ′

+
(

1 + i2D

m

)
e−imt ′

))
. (53)

At this point, it is important to note that for the quantization
of oscillation modes of ε, it can be written in terms of creation
and annihilation operators A and A† like

ε(t) = ε0(Ae
imt + A†e−imt ). (54)

3 Coordinate transformation in field space

From a non-static cosmological perspective, once the metric
is defined as gμν = a2(t)ημν , one can rewrite the action in
Eq. (6) more explicitly as

S =
∫

d4x

[
1

2

(
ξ2χ2(∂0a)2 + 2ξ2aχ∂0a∂0χ

+μ2a2(∂0χ)2
)

− λ

4
a4χ4

]
. (55)

It is easily seen that this action defines a non-linear σ model
[21,22] in which a potential term is added, and can be repre-
sented as

S = 1

2

∫
d4x

(
Gbc(ψ)∂0ψ

b∂0ψ
c − V (ψ)

)
(56)

where �b,c corresponds to a and χ . In addition, the metric
in Eq. (56) is given by

Gbc =
(

ξ2χ2 ξ2aχ

ξ2aχ μ2a2

)
(57)

whose scalar curvature can be found zero after straightfor-
ward calculations. Since the metric is flat, the kinetic term of
this action can be converted to that of Klein–Gordon action
by a coordinate transformation in field space. In this way, one
can investigate the action in Eq. (55) from the perspective of
the Higgs mechanism. Also, when the following transforma-
tion between Gbc and Ĝbc is achieved, it means we have a
non-linear sigma model in the JBD picture.

Gbc =
(

ξ2χ2 ξ2aχ

ξ2aχ μ2a2

)
←→ Ĝbc =

(
1 0
0 1

)
(58)

Since we are looking for a transformation of the Lagrangian
density from the JBD picture to the Higgs picture, the starting
point is to write the line element of the target space as

ds2 = 1

2
[ξ2χ2(da)2 + 2ξ2aχdadχ + μ2a2(dχ)2]. (59)

Adding and subtracting the term ξ2a2(dχ)2 in Eq. (59),
and then taking the factor of ξ2a2χ2 outside the parenthesis

results in

ds2 = 1

2
ξ2a2χ2

[(
dχ

χ
+ da

a

)2

+ μ2 − ξ2

ξ2

(
dχ

χ

)2
]

.(60)

Relating a and χ to new fields α and γ as we did before in
Eqs. (13) and (14), gives

a(α, γ ) = αe−γ , (61)
da

a
= dα

α
− dγ, (62)

χ(γ ) = eγ , (63)
dχ

χ
= dγ, (64)

the line element in Eq. (60) turns out to be

ds2 = 1

2
ξ2

(
dα2 + μ2 − ξ2

ξ2 α2dγ 2
)

. (65)

At this point, another transformation is needed to get rid of
the factors and the following ones are useful to accomplish
this.

α(ρ) = ρ

ξ
(66)

dα = dρ

ξ
(67)

γ (θ) = ξ√
μ2 − ξ2

θ (68)

dγ = ξ√
μ2 − ξ2

dθ (69)

Substitution of Eqs. (67) and (69) into Eq. (65) yields

ds2 = 1

2
dρ2 + 1

2
ρ2dθ2. (70)

Here, ρ and θ correspond to spherical coordinates. To get
Ĝμν in Eq. (59), it is straightforward to define them as

ρ(φ3, φ5) =
√

φ2
3 + φ2

5 , (71)

θ(φ3, φ5) = arctan
φ5

φ3
. (72)

When these new coordinates are used in Eq. (70), one can
write the line element as desired from the very beginning of
this section and it is

ds2 = 1

2
(dφ2

3 + dφ2
5). (73)

To write the coordinates a and χ in terms of φ3 and φ5, all the
transformations can be applied one by one from the beginning
to the end. First of all, after implementing Eq. (66) and Eq.
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(68) into Eqs. (61) and (63), a and χ can be expressed like

a(ρ, θ) = ρ

ξ
exp

(
− ξ√

μ2 − ξ2
θ

)
, (74)

χ(θ) = exp

(
ξ√

μ2 − ξ2
θ

)
. (75)

Then, the transformation from the spherical coordinates to
the cartesian ones results in

a(φ3, φ5) =
√

φ2
3 + φ2

5

ξ

× exp

(
− ξ√

μ2 − ξ2
arctan

(
φ5

φ3

))
, (76)

χ(φ3, φ5) = exp

(
ξ√

μ2 − ξ2
arctan

(
φ5

φ3

))
. (77)

At this point, it is also possible to state φ3 and φ5 in terms
of a and χ by carrying out all the transformations back in
order. To start with, because of the spherical ones which have
lastly been obtained, φ3 and φ5 are

φ3(ρ, θ) = ρ cos θ, (78)

φ5(ρ, θ) = ρ sin θ. (79)

Thanks to Eqs. (66) and (68), ρ and θ are found

ρ(α) = ξα, (80)

θ(γ ) =
√

μ2 − ξ2

ξ
γ, (81)

and then using Eqs. (80) and (81) in Eqs. (78) and (79) gives

φ3(α, γ ) = ξα cos

(√
μ2 − ξ2

ξ
γ

)
, (82)

φ5(α, γ ) = ξα sin

(√
μ2 − ξ2

ξ
γ

)
. (83)

Since, on the basis of Eqs. (61) and (63), α and γ are

α(a, χ) = aχ, (84)

γ (χ) = ln χ, (85)

substituting these into Eqs. (82) and (83) gives the scalar
fields of the Higgs picture φ3 and φ5 in terms of those of the
JBD picture a and χ as

φ3(a, χ) = ξaχ cos

(√
μ2 − ξ2

ξ
ln χ

)
, (86)

φ5(a, χ) = ξaχ sin

(√
μ2 − ξ2

ξ
ln χ

)
. (87)

Therefore, in terms of φ3 and φ5, the Lagrangian density
in Eq. (55) can be stated as

L = 1

2
(∂0φ3)

2 + 1

2
(∂0φ5)

2 − κ

4
(φ2

3 + φ2
5)2 (88)

where κ = λξ−4.

4 The Higgs picture

The Lagrangian density of the Higgs field in doublet form is
taken to be

L = ∂μ�†∂μ� − V (�) (89)

with � = 1√
2

(
φ1 + iφ2

φ3 + iφ4

)
where φa corresponds to scalar

fields and a = 1, 2, 3, 4. Furthermore, the potential term can
be defined as

V (�) = −1

2
m̄2�†� + κ

4
(�†�)2 (90)

where dimensionless constant κ > 0 and the scalar fields
have dimension of mass. In addition, the mass term has a
minus sign so that for a time-independent expectation value,
spontaneous symmetry breaking occurs. In terms of the fields
φa , the Lagrangian density can be written as

L = 1

2
∂μφa∂

μφa − κ

4
(φaφ

a)2 (91)

where we put m̄ = 0 so that the potential term in Eq. (91) is
purely quartic.

Note that the symmetry of this Lagrange density is SO(5)
which is larger than the gauge symmetry SU (2)×U (1) of the
standard model. We will extend this Lagrangian by adding
an additional scalar field φ5, so that now

a = 1, 2, 3, 4, 5.

Since the rotational symmetry is spontaneously broken, a
fluctuation emerges about the minimum. Breaking the sym-
metry annihilates three of four components of � such that

φ1 = φ2 = φ4 = 0. (92)

Moreover, the fields can be independent of spatial coordi-
nates to be transformable to those of the Jordan–Brans–Dicke
theory. Then one obtains the Lagrangian density in Eq. (88).

At this point, applying field space coordinate transforma-
tions in Eqs. (86) and (87) to the vacuum expectation values
and their quantum fluctuations of the fields of the JBD theory
in order to find their correspondence in the Higgs mechanism
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gives

φ3 = ξχ0 cos(H(t))

(
1 + ε0

(
Aeimt + A†e−imt)

−i

√
2

3
tan(H(t))ε0

(
Aeimt − A†e−imt)) (93)

φ5 = ξχ0 sin(H(t))

(
1 + ε0

(
Aeimt + A†e−imt)

+i

√
2

3
cot(H(t))ε0

(
Aeimt − A†e−imt)) (94)

where

H(t) =
√

μ2 − ξ2

ξ
(Dt + E), (95)

and

χ0 = eDt0+E (96)

which is the today’s value of the JBD field.
We note that the system can be quantized by imposing the

commutation relation[
A, A†

]
= 1. (97)

Here, A and A† are the creation and annihilation operators
of the quantum particles and the vucuum expectation values
of φ3 and φ5 are given by

〈φ3〉 = ξχ0 cos

(√
μ2 − ξ2

ξ
Dt

)
, (98)

〈φ5〉 = ξχ0 sin

(√
μ2 − ξ2

ξ
Dt

)
. (99)

Here, the temporal evolution of the vev of the Higgs field is
given by the argument of cosine in Eq. (98), i.e. the parameter
D. As it can be checked by relating the scale factors in two
different time scales (conformal and cosmological time) in
Eqs. (34) and (36), D = − 1

t ′0
in which t ′ is the age of the

universe in cosmological time. Thus, in our model D and the
evolution of the Higgs field are very slow and the condition
about the particle masses, which has been mentioned before
Eq. (2) in the introduction, is satisfied.

5 Conclusion

A cosmological model in which the expansion of the uni-
verse is related to the time dependent vev of the Higgs field
has been proposed. Based upon Eq. (1), the time dependent
inertial mass may have another interpretation such that the
time dependence of the Higgs field is part of the metric ten-
sor. With this approach, the Higgs field has been taken into
account as a conformal factor and related to the scale factor

of the FLRW metric. Since it is a more complete theory of
gravitation with respect to Mach’s principle, the JBD theory
has been considered and only the scalar mode of the theory
has been studied. By taking the action of the scale factor a(t)
and the JBD field χ(t) as depending only on time, the relation
between the JBD cosmology and the Higgs mechanism has
been established with the field space coordinate transforma-
tions (Eqs. (76), (77), (86) and (87)) for negative values of the
JBD parameter. Although solar system experiments predict
the original JBD parameter ω to be a big positive number
[23,24], scenarios based on its negative values [25–30] are
viable and quite common in the literature for cosmological
scales. In addition to this, negative values of the coupling
parameter are encountered in the applications of the low-
energy effective action of the string theory [31,32] such that
the dilatonic coupling constant is chosen as ω = −1 for the
string frame [33–35]. Finally, oscillation modes about the
vacuum in both pictures have been found and it has been
shown that they are quantizable.
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