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Abstract

Relativistic quantum degrees of freedom in their vacuum state endow geometric
backgrounds with an energy, as demonstrated by the Casimir Effect. We explore the
vacuum energy (or free energy at finite temperature) of (2+1)-dimensional ultrastatic
relativistic quantum field theories as a functional of their spatial geometry. These theo-
ries have physical realisations as, for example, the low-energy effective description of the
electronic structure of graphene: four free massless Dirac fermions. We define a UV-finite
unambiguous measure of free energy for these setups: the free energy difference. We com-
pute it for the free scalar with curvature coupling and free Dirac fermion using heat kernel
methods, deriving analytic expressions for perturbative and long-wavelength deformations
of maximally-symmetric two-spaces (namely the plane and the round sphere) and, using
a novel numerical approach, highly-accurate estimates in the case of large (axisymmetric)
deformations to the sphere. We find that for these theories, as with holographic confor-
mal field theories (CFTs) dual to vacuum Einstein gravity with a negative cosmological
constant, it is universally negative for non-trivial deformations of maximally-symmetric
two-spaces and can be made arbitrarily negative as the geometry becomes singular. In
fact, we find that the differenced heat kernel has a definite sign — a much stronger result.
We also observe a qualitative similarity between the (appropriately normalised) vacuum
energies of a conformal scalar, massless Dirac fermion and holographic CFT on deforma-
tions of the two-sphere, and a remarkably close quantitive agreement between the latter
two — very dissimilar in nature — theories. Finally, we show vacuum energy negativ-
ity for all perturbative deformations to Poincaré-invariant, power-counting-renormalisable
theories on the plane. Our results indicate that relativistic quantum degrees of freedom
universally disfavour smooth geometries and we note this effect has the potential to be
measured experimentally.
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Conventions

Units: Unless otherwise stated we use natural units, ~ = c = kB = 1 with c the ‘effective’
speed of light of the relativistic fields (not necessarily equal to the actual speed of light).

Metrics and Tensors: We take the Minkowski metric to have signature (�,+, . . . ,+).
and use Einstein summation convention (unless otherwise stated).

We (generally) use upper-case Latin letters (A,B, . . .), lower-case Greek letters
(µ, ⌫, . . .) and lower-case Latin letters (i, j, . . .) for bulk (normally four-dimensional),
spacetime (normally three-dimensional) and spatial (normally two-dimensional) indices,
respectively (the exception is Section 1.3 where the use should be clear from context).

Symmetrisation and antisymmetrisation over indices are normalised by the number
of terms, i.e.

A(µ1µ2...µn) ⌘
1

n!

X

�2Sn

Aµ�(1)µ�(2)...µ�(n))
and A[µ1µ2...µn] ⌘

1

n!

X

�2Sn

sgn(�)Aµ�(1)µ�(2)...µ�(n)

where Sn is the symmetric group of degree n.
We define the Riemann curvature tensor of a connection to be

Rµ
⌫⇢� = @⇢�

µ
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� @��µ
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+ �
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µ
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µ
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in a coordinate basis, where �
µ
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are the connection components and the Ricci curvature

tensor to be Rµ⌫ ⌘ R⇢
µ⇢⌫ .

Integrals: When integral measures are omitted the measure is understood to be given
by the natural volume form of the manifold.
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Introduction

The equilibrium configuration of a physical system is determined by competition between
several physical effects. Each effect has some energetic contribution that measures the
potential for work to be done on the system, inducing a force that attempts to minimise its
own contribution to the total energy. Identifying and understanding the nature and origin
of these forces has been key to pushing physics forwards. Ancient Greek philosophers were
aware of forces but their failure to account for friction left them unable to distill their effect
on particle motion. These misunderstandings were challenged intially by Galileo in what
eventually became the first of Newton’s universal laws of motion. Efforts to understand
the forces of electricity and magnetism resulted in Maxwell’s equations and hidden within
them was the idea of a force propagating at a finite speed of light. This was a key insight
that Einstein based his 1905 paper "On Electrodynamics on moving bodies" on, in which
he posited the special theory of relativity and, with it, the concept of ‘spacetime’ and
the famous equivalence of mass and energy [5]. Attempting to incorporate gravity into
this new framework led Einstein to his general theory of relativity — the remarkable idea
that gravity is best understood as a fictitious force with its effects attributed to spacetime
curvature induced by any energy and momentum present in the universe.

In the preceeding years our understanding of energy at the microscopic level had
also undergone a paradigm shift. The tension between spectra of black body radiation
and classical predictions led to the idea of energy being ‘quantised’. This was unified
with the Bohr model for electronic structure and wave-particle duality into a theory for
non-relativistic physics at atomic scales: quantum mechanics. Although this theory was
sufficient to explain why atoms radiate when subjected to an electromagnetic field, i.e.
stimulated emission, it could not account for the rate at which such a process happened
when no electromagnetic field was present. To do so, Dirac considered not only whether
the energy levels of an electron should be quantised but also the electromagnetic field
at each point in spacetime. This gave rise to what would eventually become quantum
electrodynamics (QED), the first example of a quantum field theory (QFT) — the most
successful theoretical framework we have for particle and condensed matter physics. Ul-
timately, it was the novel understanding of the ‘vacuum’ that came from applying the
principles of quantum mechanics to the relativistic field theory that accounted for the
spontaneous emission. The vacuum is the lowest energy state of the system and is empty
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in that it contains no particles. In quantum field theory, however, no space can be truly
empty. Just as in classical field theory, there are ‘fields’ that take some value at each
point in spacetime, the electric and magnetic fields in this instance. In contrast with
the classical case, these fields are subject to the laws of quantum mechanics, in particular
Heisenberg’s uncertainty principle, and thus must be constantly fluctuating — even in the
vacuum state. It is these quantum fluctuations that ‘stimulate’ the spontaneous emission
of photons and thus most of the light we see around us. The presence of vacuum fluctua-
tions suggests that the vacuum should have some kind of energy, however naïve attempts
to calculate the total energy of these modes by, for example, taking the vacuum expec-
tation value of the Hamiltonian, leads to a divergent sum. This is, of course, a generic
feature of QFTs. The canonical quantisation procedure leads to ambiguities in operator
ordering and therefore matrix elements of composite operators. To fix them we often use
prescriptions for operator ordering, such as normal ordering, that in the particular case
of the Hamiltonian set its vacuum expectation value, the vacuum energy, to zero, the
physical justification for this being that only energy differences are observable. However,
while this philosophy may be appropriate for microscopic systems, it is not universally
applicable in physics. Indeed, in trusting Einstein’s theory of general relativity, we sub-
scribe to the belief that all energy gravitates. This suggests that we should take the idea
that vacuum energy has some meaningful value, at least as a functional of the geometry
that supports it, seriously.

Among those who did was Hendrik Casimir. In 1948, he and Dik Polder presented
a series of cumbersome calculations to show that there is an attractive force between a
perfectly conducting plate and a well-separated neutral molecule and that a similar result
holds between two such molecules [6]. Casimir was struck by how simple the results were,
in contrast to the calculations themselves. He mentioned them to Niels Bohr who then,
according to Casimir himself, “mumbled something about zero-point energy” [7] which
was the catalyst for him to reformulate his results in terms of the energy of the QED
vacuum. Taking this idea further led to the seminal work [8] in which he predicted the
Casimir Effect, i.e. two parallel conducting plates placed nanometers apart in a vacuum
should exert a small, but measurable, attractive force on each other owing to the energy of
the QED vacuum, a phenomenon that has since been experimentally verified many times
over [9, 10]. This was an early example of the macroscopic physics induced by quantum
vacuum energy and, in particular, how the presence of a quantum field may back-react to
alter the geometry of a macroscopic system. Indeed, Einstein’s equation tells us that all
energy couples to spacetime curvature and so we should expect the existence of quantum
fields to have some effect on gravitational systems.

In cosmology, the kinematics of the universe from roughly 10
�37

s after the begin-
ning of the expansion until the present day are well established. However, the precise
physics behind it remains disputed. The Lambda-Cold Dark Matter (⇤-CDM) model is
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the dominant paradigm in modern cosmology due to its precise agreement with cosmo-
logical observations [11]. It assumes that on large scales the universe is homogeneous
and isotropic (the cosmological principle), so that the geometry is characterised by a sin-
gle function of time, the scale factor a(t), and that general relativity holds so we can
use the Einstein equation to map out its evolution. The input is then the matter con-
tent of the universe, whose contribution is characterised its abundance and equation of
state (P = w⇢). This is made up of three different species: ‘matter’ (w = 0) made up
baryons and cold dark matter, ‘radiation’ (w = 1/3) made up of photons and relativistic
neutrinos and ‘dark energy’ (w = �1), whose origins are as yet unknown. While matter
and radiation have a tendency to contract space, the negative pressure of dark energy
leads to accelerated expansion. Thus, when light measured from Type Ia supernovae re-
vealed that the expansion of the universe is accelerating [12, 13] it became accepted that
dark energy must form a significant part of the energy budget of the universe. Current
measurements [14] estimate that dark energy accounts for around 69% of the energy in
the universe, yet its fundamental nature is still an active area of research. Vacuum energy
is a very appealing candidate for several reasons. Firstly, it is a form of energy that does
not dilute with volume. Indeed, a change in volume dV leads change in energy ⇢vacdV

thus an equation of state w = �1. Secondly, vacuum energy is an intrinsic feature of the
quantum field theories that live throughout the cosmos, giving a natural argument for its
origin. Thirdly, its energy contribution to the universe should be calculable. However,
attempts to do so led to estimates of the dark energy that are up to 120 orders of mag-
nitude larger that what is observed — a disagreement that has come to be known as the
‘cosmological constant problem’.

Vacuum energy also finds its uses on the more theoretical end of the spectrum. A
wormhole is a geometrical connection between two distinct asymptotically flat1 regions.
These can be distant regions of the same universe or belong to separate universes entirely.
Wormholes have long been of interest to physicists and science fiction writers alike. The
first wormhole solution found in General Relativity was the Einstein-Rosen bridge between
the two asymptotically flat regions of Kruskal spacetime — the maximal analytic extension
of a Schwarzschild black hole. It is not possible, however, to send a signal from one end
of this wormhole to the other. What we should really be interested in are wormholes
solutions for which this is possible — traversable wormholes. Any solutions of Einstein’s
equations that satisfy the averaged null energy condition (ANEC), i.e. given a complete
null geodesic with tangent vector u and parameter �, the expectation value of the stress
tensor satisfies Z

1

�1

d�hTµ⌫iuµu⌫ > 0, (1)

cannot contain a traversable wormhole due to topological censorship [16–18]. ANEC is

1or asymptotically AdS, of particular interest due to the AdS/CFT correspondence [15].
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satisfied by classical matter thus, assuming Einstein gravity holds, some kind of exotic
matter is required to support stable traversable wormhole solutions. The QFT vacuum
can provide a source of negative energy (cf. the Casimir Effect) that permits the ANEC
violation required to support wormholes. This has been used to construct traversable
wormholes in four dimensions [19], however these wormholes are microscopic, and, as
such, further efforts are being made to extend these ideas to the construction of humanly
traversable wormholes [20]. As the only current lab confirmed form of exotic matter2,
quantum vacuum energy has a key role to play in the future development of exotic solu-
tions in general relativity.

Looking beyond Einstein gravity, there are many physical scenarios that involve
relativistic degrees of freedom on curved spaces embedded within a higher dimensional
geometry. In braneworld models of the universe [23, 24], initially theorised to solve the
Hierarchy Problem, the (3+1)-dimensional spacetime that we perceive is simply a 3-brane
embedded in a manifold with additional spatial dimensions on which the Standard Model
fields are localised. In the early universe, spontaneous symmetry breaking may have led to
the formation of domain walls defects — (2+1)-dimensional regions of high energy density
that are, effectively, topologically stabilised membranes that support quantum fields [25].

The purpose of this thesis will be to investigate the vacuum energy at zero temper-
ature, or free energy at finite temperature, of ultrastatic quantum field theories on (2+1)-
dimensional spaces as a functional of their spatial geometries. Our interest in these
particular theories owes itself to some intriguing results from holography.

The setting for this work is quantum field theory in curved spacetime, where first
principles computations are generically difficult. Through the AdS/CFT correspondence,
these computations can be reformulated as tractable problems in classical geometry, at
least for a large number of conformal field theories (CFTs) [26–28]. By probing these
theories, one may find qualitative features worthy of further investigation. For holographic
CFTs3 with closed spatial geometries, it follows from a geometric argument that the
renormalised CFT vacuum energy is found to be non-positive and zero if and only if the
background has constant curvature [29]. Following this, it was also proved that constant
curvature spaces are local maxima of vacuum energy for all unitary4 CFTs when the
spatial geometry is topologically R2 or S2 [30]. These results raise an obvious question:
how universal is vacuum/free energy non-positivity amongst (2+1)-dimensional QFTs?
This question merits investigation as a theoretical one alone but also has a relatively
straightforward connection to experiment. If true more generally, the negativity of free

2i.e. it does not obey many of the standard energy conditions assumed in general relativity to
prove physically sensible behaviour (such as the Penrose Singularity Theorem [21], no closed timelike
curves [22]).

3See Section 1.2 for a precise description of these theories
4‘Unitary’ here (and throughout the rest of this thesis when referring to CFTs) means that the col-

lection of physical states of the theory admit a positive-definite inner product and, in particular, form a
Hilbert Space.
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energy points to a peculiar property of (2+1)-dimensional QFTs — an energetic preference
for crumpled geometries over smooth ones.

Increasingly, (2+1)-dimensional QFTs have found physical realisations in con-
densed matter physics where some effective descriptions of the electronic structure of
two-dimensional crystalline materials have been in terms of quasi-relativistic quantum
fields. Graphene is, thus far, the most famous example of such a material. It is the closest
thing we have to a two-dimensional object — consisting of just a single layer of carbon
atoms arranged in a ‘honeycomb’ structure. Though it is thought to be a generic prod-
uct of rubbing graphite — i.e. using a pencil on paper — and thus ubiquitous, it took
until 2004 before it was isolated [31]. Other well known forms of carbon are constructed
from graphene: graphite is made from stacking layers of graphene on top of one another,
carbon nanotubes are graphene rolled up into cylindrical form and ‘buckyballs’ can be
made from graphene with the addition of some pentagons to the honeycomb lattice to
make a sphere [32]. Where industry see the mechanical stiffness, exceptionally high elec-
trical and thermal conductivity, strength and elasticity of graphene as an opportunity for
innovation in technology [33, 34], physicists see an opportunity to stress test QED. This
is because the low-energy effective description of the electronic structure matches that of
a relativistic QFT, namely four (2+1)-dimensional massless Dirac fermions propagating
at the Fermi velocity (⇡ 10

6
m/s) [35–37]. We will illustrate this here by reviewing some

analysis of the band structure of graphene that was first undertaken by P.R. Wallace in
1947 [38], long before the isolation of two-dimensional crystalline materials was thought
to be possible, as part of a toy model to understand graphite, and later on in 1984 by
Semenoff who made the connection between QED and the electronic structure of graphene
explicit [39].

A Physical Realisation: Graphene

The carbon atoms in graphene form a hexagonal lattice, best understood as two over-
laid triangular sublattices, with adjacent sites lying on different sublattices, as shown
in Figure 1, and whose sites are given by ⇤A =

�
n1a1 + n2a2|(n1, n2) 2 A ⇢ Z2

 
and

⇤B =
�
n1a1 + n2a2 + d|(n1, n2) 2 A ⇢ Z2

 
where the vectors a1 =

p
3a
⇣
1,�
p
3

⌘
/2

and a2 = �
p
3a
⇣
1,
p
3

⌘
/2 generate the sublattices, d = (0, a) moves between the

two, a (⇡ 1.42Å for graphene) is the lattice spacing and 2N ⌘ 2|A| is the total num-
ber of lattice sites. Each carbon atom has four electrons, three of which bond it to its
nearest neighbours, leaving one free electron from each — these give rise to the electronic
properties of graphene. The best model to probe the collective behaviour of these elec-
trons is the tight-binding model — the assumption being that each electron is ‘tightly
bound’ to an atom on the lattice and has some small chance of tunnelling to a neigh-
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Figure 1: A diagram showing the ‘honeycomb’ lattice structure of graphene. The sites
in the sublattice ⇤A are represented with blue nodes and sites in the sublattice ⇤B are
represented by orange nodes. The vectors a1 and a2 generate the sublattices and d moves
between them.

bouring atom. We will also neglect interactions between the electrons and only consider
nearest-neighbour hopping. A complete treatment can be found in [40] but the main
qualitative features are present in the leading order calculation, that will be covered in
the rest of this section.

Consider the behaviour of a single electron. Writing |r, �i to denote the state
representing the electron being bound to atomic site r with spin � leads to a Hamiltonian
of the form

H = �t
X

r2⇤A,�

|rA, �i
�
hrB + a1, �|+ hrB + a2, �|+ hrB, �|

�
+ h.c., (2)

where rA ⌘ r, rB ⌘ r+d and t ⇡ 2.8eV, which parametrises the probability of an electron
‘hopping’ to an adjacent side, is called the hopping parameter. This Hamiltonian has a
spectrum given by

E(k) = ±t
q
1 + 4 cos(3kya/2) cos(

p
3kxa/2) + 4 cos2(

p
3kxa/2). (3)

with k taking values in the first Brillouin zone. The Pauli exclusion principle then plays
a key role in the collective behaviour of all of the electrons. As electrons are fermions,
there can only be one electron with a given k and spin at any given time. The number of
permitted ‘momenta’ matches the number of unit cells in the lattice. For a honeycomb
lattice there are two atoms in each unit cell, thus providing precisely correct number of
electrons to fill the spin up and spin down slots available for each energy level with E(k) <

0. The relevant low energy behaviour, therefore, belongs to states with momenta close to
the solutions of E(k) = 0, namely K± = �2⇡

3a

⇣
±1, 1

p
3

⌘
. Suppressing spin labels for the
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time being and switching to a momentum space basis

|kA/Bi ⌘
1p
N

X

r

e
ik·r|rA/Bi, (4)

gives that the Hamiltonian density, H(k), near these modes is

H(k) ⌘
 
hkA|Ĥ|kAi hkA|Ĥ|kBi
hkB|Ĥ|kAi hkB|Ĥ|kBi

!
= ±~vF�i±pi +O(t(a|p|)2) (5)

where p = k�K±, �± = (�1,±�2
) and vF =

3t

2a~ ⇡ 10
6
m/s is the Fermi velocity of these

excitations. Thus, in the continuum/low-energy limit, the effective Hamiltonian is

h |H| i = ~vF
Z

d
2x +(x)

†�i
+
@i +(x)�  �(x)

†�i
�
@i �(x) (6)

where  ± are the position space wavefunctions that correspond to the modes near K±

respectively. Note that each of K± will give rise to two such wavefunctions — one for spin
up and one for spin down. Thus, in second quantised language, the low-energy effective
description of the electronic structure of graphene matches that of a relativistic QFT,
namely four (2+1)-dimensional massless Dirac fermions (spin up and down electrons at
each of K±) propagating at the Fermi velocity.

Further, this analysis can be extended to the case of curved graphene sheets [41]
to show the low-energy effective behaviour of the electrons is given by the curved space
Dirac equation5 (where the electrons experience a metric perturbation that is larger by a
factor of � ⇡ 3.3 [43]) — a bona fide QFT in curved spacetime. This opens the door for
a mutually beneficial relationship between two-dimensional materials and curved space
QFT, where the latter can seek to explain observed phenomena in the former, such as the
ripples observed in freely suspended graphene at room temperature [44], and the former
can be used to create analogue systems that test predictions of the latter, such as the
Unruh effect [45] and, of particular interest to us, any predictions one may have about
the relationship between quantum vacuum energy and its background geometry. Perhaps
even more promising on the experimental side of things is the growing interest in the use
of optical lattices. They mimic crystalline materials using potential wells generated by
the interference of lasers and the ultra-cold atoms they trap emulate charge carriers in a
material. The greater control over parameters, compared with physical materials, afforded
by optical lattices makes them an ideal candidate for experimental work. In particular,
one can choose the lattice structure and tune the depth of these various wells, and in doing
so create a system whose long-wavelength dynamics are governed by a (2+1)-dimensional
relativistic QFT, with a curved background of one’s choosing [46], offering a rare avenue

5We note that recent work suggests this may only hold subject to an (unnatural) fine tuning of the
geometry [42].
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for a testing (2+1)-dimensional curved space QFT predictions, in particular those given
in this thesis, in the lab.

Plan for the Thesis

Chapter 1 will serve as a technical introduction to the subject of vacuum energy in QFT
and exhibit the results that directly motivated the original work in the thesis. The
calculation of the Casimir Energy [8], the use of the AdS/CFT correspondence to show
the non-positivity of the vacuum energy of static (2+1)-dimensional holographic CFTs [29]
and the universality of this result for all unitary CFTs [30] will be reviewed.

Chapter 2 will review the theory behind calculating the free energy: heat kernel
methods. It will be shown how the partition function, and thus the free energy, of a
free theory on a curved space can be written in terms of a functional determinant of a
differential operator and then how heat kernel methods can be used to calculate it. The
heat kernel, and in particular the heat kernel expansion, will be introduced and used to
probe the free energy (or more generally the one-loop effective action) of a quantum field
theory on a curved space. The rest of the thesis will focus on calculating and bounding
the free energy of (2+1)-dimensional QFTs on a product of time with a static two-space
and is largely based on [1–4].

In Chapter 3, the study of non-conformal field theories will be initiated with an
analysis of free fields at finite temperature. A UV-finite, unambiguous measure of the free
energy, the free energy difference, �F , will be defined for free fields. The corresponding
differenced heat kernel, ��K, will then be shown to be negative for any small perturbation
of flat space to leading order in the perturbation parameter, indicating a negative �F

and, thus, a preference for crumpled geometries for all masses and at all temperatures.
It will then be shown how this quantum effect could have a non-negligible effect on the
shape of monolayer graphene. This chapter is based on work in [1, 3] and will closely
follow the presentation there.

In Chapter 4, it will be shown that the free energy difference described in Chapter 3
can be generalised to define a quantity that is UV finite and unambiguous for non-free
theories, for both compact and non-compact backgrounds. A review will be given of a
holographic calculation that shows, using this definition �F , small spatial-metric pertur-
bations also lower the free energy difference for flat holographic CFTs at finite temperature
to leading order and that the same is true for long-wavelength deformations to theories
that admit a hydrostatic description. A remarkable quantitative similarity between �F

for a free massless Dirac fermion and a strongly-coupled holographic CFT, a priori two
very different theories, will be noted. Finally, �F will be shown to be negative for free
scalar and fermion theories on weakly curved deformations of flat space. This will be
demonstrated by a derivation of an asymptotic expansion of �F to all orders in inverse
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powers of the curvature scale of the deformation. This chapter is based on [2] and will
closely follow the presentation there.

Chapter 5 will treat free fields on topologically spherical backgrounds. Just as in
Chapter 3 for flat backgrounds, ��K will be calculated and shown to be negative for
small perturbations of the background. The focus will then turn to the global behaviour
of �F as a functional of spatial geometry. It will be shown how pseudo-spectral methods
can be used to yield accurate estimates for the spectra of differential operators. These will
permit accurate numerical computations of ��K for large (axisymmetric) deformations
of the sphere that, along with some analytic results, will be used to provide a substantial
body of evidence for the conjecture that ��K (and thus �F for all masses and at all
temperatures) is negative for any non-trivial deformation of the geometry. Finally, the free
energy contribution of various singularities will be examined along with their implications
for graphene-like materials. This chapter is based largely on [3] and will closely follow the
presentation there.

In Chapter 6, the similarity between various field theories observed in Chapters 4
and 5 will be explored. For zero-temperature CFTs on topological two-spheres, the vac-
uum energy of holographic CFTs — computed numerically via the harmonic approach,
which will be reviewed — the Dirac fermion and the conformally-coupled scalar will be
compared for a range of large sphere deformations. A close qualitative similarity between
all three and, in parallel with what will be seen in Chapter 4, a striking and unexplained
close quantitative similarity between (appropriately normalised) Dirac fermion and holo-
graphic CFT vacuum energies will be observed. This chapter is based on [4] and will
closely follow the presentation there.

Chapter 7 will return to zero-temperature theories on flat space. Canonical QFT
methods will be used to compute the variation of the vacuum energy due small deforma-
tions of flat space. Assuming only power-counting renormalisability and Lorentz invari-
ance of the flat-space theory, we will show such perturbations always lower the vacuum
energy, thereby extending the previous results found for unitary CFTs and free theories.
It will be shown that this result is special to ultrastatic theories in (2+1)-dimensions —
the vacuum energy in higher dimensions is not necessarily unambiguous. This chapter is
based on work done in collaboration with Andrew Tolley and Toby Wiseman.

The thesis will then conclude with a summary of, and the questions posed by, the
work in this thesis.



Chapter 1

Calculating The Vacuum Energy

The vacuum energy is one the most basic quantities of a quantum field theory with a
globally-timelike Killing vector field but nevertheless, as is often the case for observables
in quantum field theory, is non-trivial to calculate from first principles. Given a generic
theory, it is an impossible task. The objective of this work is to probe the vacuum energies
of (2+1)-dimensional QFTs for as large a class of theories as possible. As such, previous
vacuum energy calculations can provide key insight into the technical challenges involved
in vacuum energy calculations and a steer in what is a priori an open-ended investigation
topic. In this chapter, we will review three such vacuum energy computations.

Firstly, the calculation of the Casimir Energy will be reviewed [8]. To do this, the
massless, free vector field will be quantised to show how the energy of its vacuum state
is modified by the presence of conducting plates. Following appropriate regularisation,
it is found that the vacuum energy is a increasing function of plate separation and thus
that there is an attractive force between the conducting plates. Further, this force is
purely quantum yet measurable for small plate separations [9, 10]. This setup gives a
realistic physical example of a quantum vacuum energy driving changes to macroscopic
geometry and, as the first quantum vacuum energy calculation of its kind, it serves as a
useful introduction to many of the technical aspects that are generically present in vacuum
energy computations.

In the latter half the chapter, the focus will turn to the subject of the rest of
thesis: the vacuum energy of static (2+1)-dimensional QFTs as a functional of their spatial
geometry. To initiate the investigation, we begin with a set of tractable theories. Thanks
to the AdS/CFT correspondence, we know there exist a certain class of strongly-coupled
CFTs with a large number of degrees of freedom whose renormalised stress tensor vacuum
expectation values can be deduced from the asymptotic behaviour of a ‘dual’ Einstein
metric with negative curvature. This gives a large number of static (2+1)-dimensional
theories whose energies can be probed through classical geometry. We will do so for such
theories with compact spatial geometry (⌃, ḡ). Under some reasonable assumptions, it
turns out that the vacuum energy of these holographic CFTs is zero when (⌃, ḡ) has

23
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constant curvature and is otherwise negative [29]. This raises the question of whether
a similar result holds for all static (2+1)-dimensional QFTs. Further progress has been
made in this area, with a proof that (2+1)-dimensional CFT vacuum energy is locally
maximised by flat space and the round sphere for (⌃, ḡ) topologically flat and spherical,
respectively [30]. These results will also reviewed in this chapter.

The plan for the chapter is as follows. In Section 1.1, a free massless vector in the
presence of two parallel conducting plates will be quantised and its vacuum energy com-
puted using cutoff, zeta and exponential regularisations. In Section 1.2, the AdS/CFT cor-
respondence will be introduced and the boundary stress tensor will be defined and related
to a renormalised CFT stress tensor for asymptotically locally AdS spaces. Section 1.3
will review the results on the non-positivity of vacuum energy for (2+1)-dimensional
holographic CFTs on static backgrounds with compact spatial slices [29]. Section 1.4 will
review the results on the local maximisation of (2+1)-dimensional CFT vacuum energy by
flat space and the round sphere among spatial geometries with flat and spherical topology,
respectively [30]. We conclude with a brief summary and discussion in Section 1.5.

1.1 The Casimir Effect

Consider a Maxwell field in the region between a pair of parallel conducting metal plates.
This is represented by a real vector field Aµ(x) and action

S =

Z
d
4xFµ⌫F

µ⌫ , (1.1)

with a U(1) gauge invariance Aµ 7! Aµ � @µ↵ where Fµ⌫ = @µA⌫ � @⌫Aµ is the gauge
invariant field strength tensor. We choose coordinates so that the plates lie in planes z = 0

and z = d where d measures the distance between the plates. Since the plates are
conducting the electric field must meet them right angles and the magnetic field must have
no normal component at them. To quantise we work in the Coulomb gauge A0 = r·A = 0

and find that in the Schrödinger picture
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between the plates, where the subscript k denotes the projection of vector onto the (x, y)

plane, kn = (k, ⇡n/d), E(kn) = |kn|, the "� are two orthonormal polarisation vectors
satisfying

kn · "�(kn) = 0 and
X

�

"�(kn)"
�T
(kn) = 1� knkT

n

k2
n

(1.4)



1.1. The Casimir Effect 25

for all k 2 R2, n 2 Z>1 and the annihilation and creation operators obey

h
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(k� p)

2�mn

d
(1.5)

with all other commutators vanishing, where we note the Coulomb gauge has residual
gauge freedom that has allowed the removal of the constant z mode in Âz. The vacuum
state |0i obeys a�(kn)|0i = 0 and the Hamiltonian is

H = d
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where ⇢ is a constant expressing the freedom to set the zero of the energy density. While in
many problems we would now normal order, and consequently renormalise the energy to
zero, this is not a valid operation in this setup. We wish to compare the energy at various
plate separations, each of which have different annihilation and creation operators. To
normal order would be to renormalise each plate separation differently thus rendering any
comparison between them invalid — we therefore use natural ordering here. With this
understanding, the energy per unit area of the plates in the vacuum state is given by

E(d) = d⇢+
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This quantity is highly divergent. The key point to note however is that, at least naïvely,
this quantity depends on the distance between the two plates — so there must be a
force exerted on the plates (changing the geometry) in an attempt to reach the lowest
energy configuration. To confirm this d dependence, we must compute this UV-divergent
quantity. When working in QFT there is always implicitly a cutoff energy, ⇤, up to which
we trust our description of the physics and as such modes with momenta exceeding this
cutoff should not be included in our calculations. Given that we are necessarily ignorant
of the UV description, we should hope to derive an answer that does not depend on it.
In this particular example, we expect that the presence of conducting plates should have
little effect on high frequency radiation and thus E(d) should be UV insensitive. Thus,
the quantity we are actually interested in is

E(d) = d⇢+
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where ⌘ 2 C1
(R>0, [0, 1]) is a non-increasing function with ⌘(0) = 1 that rapidly decays to

zero at infinity, acting as a ‘cutoff function’. For our final answer to be physical it cannot
depend on the exact form of ⌘ and must also be finite as ⇤ ! 1, indicating that E(d)
is a meaningful IR quantity insensitive to the UV details of the theory. The goal, then,
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is to probe the large ⇤ asymptotics of the energy and extract the well-defined UV-finite
part. There are many different ways of calculating this.

Cutoff Regularisation was the method of chosen by Casimir himself in the original
calculation [8]. As is intuitive, the idea is to directly calculate the cutoff dependence
of E(d) at large ⇤. Using the Euler-Maclaurin formula,
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where Bk are the Bernoulli numbers, for a smooth function f whose value and derivatives
vanish at x = N , a discrete sum over integer n can be expressed in terms of an integral
over real n and some corrections. Supposing further that ⌘(x) = 1 in some neighbourhood
of x = 0 and ⌘(x)|x>1 = 0, applying (1.9) to E(d) gives

E(d) = d

✓
⇢+

1

⇡2
C⌘,3⇤

4

◆
� 1

4⇡
⇤

3C⌘,2 �
1

720

⇡2

d3
+O

�
⇤

�1
�

(1.10)

where
C⌘,s =

Z
1

0

dx xs⌘(x). (1.11)

Interpreting each of these terms can now help us to extract the answer. Recall that an
ambiguity in the zero of energy density allows us to choose the value of ⇢ thus we may
choose it to cancel the O(⇤

4
) term — this is not physically relevant as it gives uniform

contribution to the energy density. Physically, the O(⇤
3
) term is a surface tension term;

it is independent of d and, therefore also irrelevant. In SI units, that leaves only

Ereg(d) = �
~c⇡2

720d3
(1.12)

as ⇤ ! 1, which we note is finite and insensitive to the precise details of the cutoff
function, confirming our previous intuition that the Casimir Energy is a meaningful IR
quantity. Thus, the closer the plates are to each other the lower the energy of the vacuum
between them — they are attracted to each other due to the vacuum of the electromag-
netic fields between them. Remarkably, this is a purely quantum (vanishes as ~ ! 0)
effect. While this does mean it is small effect the fact that E(d) ⇠ d�3 gave some hope
that it might be measurable at small plate separation. The reason why the divergence can
be neglected, and thus where the renormalised value of the Casimir energy comes from,
are clear from this method but it is not the most computationally efficient and, despite the
integrals being calculable in this simple example, is likely to run into difficulties for more
complex setups. There exist other techniques which can be used like a black box that
lean heavily on advanced mathematics to circumvent some of the complexity of harder
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problems and yield the answer more directly.

Zeta Function Regularisation uses complex analysis to extract Ereg(d). It originated
in number theory as a method to assign meaningful values to divergent series — a problem
that has since become very common in physics. Early proponents of the method include
Hawking [47], J.S.Dowker and Raymond Critchley [48] who used it to give finite values
to path integrals of curved space QFTs with quadratic actions. It can be applied to this
problem as follows. Suppose we introduce a complex parameter s and write

E(d, s,⇤) ⌘
1X

n=1

Z
d
2k

(2⇡)2

 
k2

+

✓
⇡n

d

◆2
!1/2�s

⌘(|kn|/⇤). (1.13)

Then after evaluating E(d, s,1) in some region of s at which it is finite, analytically
continuing this function to a region that contains s = 0 and evaluating this function
at s = 0, Ereg(d) is recovered since

1X

n=1

Z
d
2k

(2⇡)2

 
k2

+

✓
⇡n

d

◆2
!1/2�s

=

✓
⇡

d

◆3�2s
1

2⇡

1

2s� 3
⇣(2s� 3). (1.14)

and ✓
⇡

d

◆3�2s
1

2⇡

1

2s� 3
⇣(2s� 3)

�����
s=0

= � ⇡2

720d3
. (1.15)

To see why this works in this instance, consider evaluating E(d, s,⇤) for <(s) < 3/2 using
the Euler-Maclaurin formula (1.9). The summand in (1.13) is not necessarily smooth
at n = 0 so instead consider the telescoped partial sum

E(d, s,⇤)� E(d, s,⇤/2) =
1X

n=1

Z
d
2k

(2⇡)2

 
k2

+

✓
⇡n

d

◆2
!1/2�s �

⌘(|kn|/⇤)� ⌘(2|kn|/⇤)
�

(1.16)
and take

f(n) =

Z
d
2k

(2⇡)2

 
k2

+

✓
⇡n

d

◆2
!1/2�s �

⌘(|kn|/⇤)� ⌘(2|kn|/⇤)
�
. (1.17)

which is smooth everywhere and vanishing in a neighbourhood of n = 0. Applying (1.9)
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to this function gives

E(d, s, 2�m
⇤)� E(d, s, 2�m�1

⇤)

=
d

⇡2

✓
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◆4�2s
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(1.18)

Performing the sum over m > 0 leaves us with

E(d, s,⇤) = F (s) +
d

⇡2
⇤

4�2sC⌘,3�2s �
1

4⇡
⇤

3�2sC⌘,2�2s +O
�
⇤

�1
�

(1.19)

where F (s) is the finite part of the sum over the O
�
⇤

�1
�

terms and can be concretely
expressed as

F (s) = lim
⇤!1

✓
E(d, s,⇤)� d

⇡2
⇤

4�2sC⌘,3�2s +
1

4⇡
⇤

3�2sC⌘,2�2s

◆
. (1.20)

It can be shown that the error terms are such that this limit converges uniformly on
all compact subsets of {s 2 C : <(s) < 3/2}. It then follows from Morera’s Theorem
that F (s) is complex analytic on that set. Comparing with cutoff regularisation calcu-
lation we see that F (0) is the physically-meaningful value of the Casimir Energy. For
sufficiently large ⇤

C⌘,�s⇤
1�s

=
1

1� s
+

Z
⇤

1

dx x�s⌘(x/⇤) (1.21)

thus F (s) can also be rewritten as

F (s) = � d
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(1.22)

giving an analytic continuation to C \ {2, 3/2}. In particular, for <(s) > 2

F (s) = lim
⇤!1

E(d, s,⇤) =
1X

n=1
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d
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(2⇡)2
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✓
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d

◆2
!1/2�s

(1.23)

which is the function we naïvely analytically continued at the start (1.14). The result
being that introducing a complex parameter, calculating the sum in a region where the
sum converges and then analytically continuing back to value you want gives the UV-finite
part of the result.

Exponential Regularisation can also be used to extract Ereg(d). This is simply a case
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of choosing a particular cutoff function, namely ⌘(x) = e
�x, and using that to probe the

UV-finite part of the Casimir Energy. With this regulator,

E(d) = d⇢+
1X

n=1

Z
d
2k

(2⇡)2

s

k2 +

✓
⇡n

d

◆2

e
�|kn|/⇤, (1.24)

so the integral and sum are straightforward to perform analytically. After doing so, an
asymptotic expansion in ⇤ gives

E(d) = d

 
⇢+

3⇤
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⇡2

!
� ⇤

3

2⇡
� ⇡2

720d3
+O(⇤

�2
), (1.25)

thus reproducing the expected result. This is actually an example of a more general
prescription for calculating vacuum energy for theories with quadratic actions on man-
ifolds (with boundaries). Note the connection here to the cylinder kernel T (t) defined
in Chapter 2. Comparing (2.7) and (1.24) it is clear that the exponentially regulated
Casimir Energy per unit area is related to the local cylinder kernel of an operator with
spectrum {|kn| : k 2 R2, n 2 Z>1} (each with degeneracy 2)1 by

E(d) = d⇢� 1

2

dT̄ (t)

dt

�����
t=⇤�1

, (1.26)

where T̄ denotes the local cylinder kernel integrated over a single ray that is perpendicular
to the (x, y) plane2. The asymptotic structure of the cylinder kernel (2.23) then shows
how a UV-finite answer can be extracted from this definition. In the limit t! 0

+

T̄ (t) ⇠ 2d

⇡2t3
� 1

2⇡t2
+ ē4(�r2

)t+O(t2). (1.27)

The divergences are sourced by terms determined by heat kernel coefficients which are
local integrals of geometric invariants. Comparing with (1.26), it seems natural to take
the UV-finite Casimir Energy to be proportional to the coefficient of t in the asymptotic
expansion of the cylinder kernel. As mentioned in Chapter 2, this term is non-local and
thus, while the divergence structure can be deduced from local geometric data, the Casimir
Energy itself is non-local in its dependence on the geometry. This will turn out to be an
important feature of our vacuum energy calculations.

Armed with our insight into vacuum energy calculations from the Casimir Effect,
we now turn to vacuum energy as a functional of background geometry for QFTs in curved
spacetimes and the work that motivated the original work in this thesis. To do so, we

1The most straightforward example of which is given by a two copies of a Laplacian acting on a scalar
field on the Euclidean background R2 ⇥ [0, d] with Dirichlet boundary conditions.

2This quantity is (x, y) independent by symmetry.
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begin with a review of the framework that allowed for progress in this area: the AdS/CFT
correspondence.

1.2 The AdS/CFT Correspondence

The gauge/gravity duality is a conjectured duality between gravitational theories in (d+1)

dimensions and gauge theories in d dimensions that ‘live’ at the boundary. The most
developed instance of this duality is the AdS/CFT correspondence [26–28]. This involves
a string theory on a product of asymptotically (locally) AdSd+1 (AlAdS) space with a
compact manifold on one side and a CFT on the other. While there is no proof of the
correspondence, there is an overwhelming amount of evidence in its favour and, thus far,
it provides the most complete examples of quantum gravity theories. It is a strong/weak
duality — meaning that in the strong-coupling regime of the CFT the string theory is
weakly coupled, and vice-versa, allowing us to probe previously intractable sectors of each
theory. In particular, the challenging computations involved in strongly-coupled QFT in
curved spacetime can be exchanged in favour of working in classical gravity.

Our interest lies in how this correspondence can help us compute some vacuum
energies of QFTs on curved backgrounds. These CFTs generally have two parameters:
a coupling which measures the strength of interactions between the microscopic con-
stituents, �, and a measure of the number of degrees of freedom, the effective central
charge, cT — defined as the coefficient of the two-point function of the stress tensor on
flat space (as seen later in Equation (1.56)). While the full equivalence is between strings
propagating in AdS and the CFT with arbitrary parameters, we can simplify the dual
gravity theory by tuning the parameters of the string theory.

Consider a string theory on a space which is asymptotically locally AdS⇥X with
AdS length `, string coupling gs and string tension T = (2⇡↵0

)
�1, where X is a compact

manifold. By taking the string coupling gs ⌧ 1 we may ignore string loops and thus
enter the regime of semiclassical string theory. Looking further at ↵0 ⌧ gs`2 we lose
the ‘stringy’/↵0 corrections to the theory which, after compactifying on X, leaves behind
a (super)gravity theory whose details depend on X. The central charge of the CFT is
related to the string theory parameters as

cT ⇠
1

g2
s

 
`2

↵0

!4

(1.28)

so the classical gravity theory is dual to a CFT with a large number of degrees of free-
dom3. Further, these theories are generally strongly coupled — for example, the cou-

3This relation follows from Equation (1.36) after noting that G(d+1) = G10/Vol(X) where G10 ⇠ ↵04
g
2
s

and X typically has Vol(X) ⇠ `10�(d+1) [49, 50].
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pling � ⇠ (`2/↵0
)
2 in the case of IIB strings on spaces with AdS5 ⇥ S5 asymptotics. In

particular, there is an infinite class of strongly-coupled CFTs on d-dimensional curved
spacetimes, (R ⇥ ⌃, gCFT), that have (low-energy) sectors that are dual to (d + 1)-
dimensional solutions of Einstein gravity with negative cosmological constant

RAB = �d(d� 1)

2`2
gAB, (1.29)

subject to the condition that the conformal boundary of g is conformally equivalent
to gCFT, the so-called ‘universal sector’ of the AdS/CFT correspondence4. From here
on, we will refer to these theories as ‘holographic CFTs’. Certain observables of the CFT
on the boundary, such as the stress tensor, can be deduced from this ‘bulk’ spacetime
solution. In fact, many of them, including the vacuum energy, are determined by the
asymptotics of the bulk solution at the conformal boundary. This was used in [29] to
show that the vacuum energy of all such holographic CFTs on (2+1)-dimensional static
backgrounds with compact spatial slices are non-positive and zero only on spaces that are
locally conformal to a product of time with a constant-curvature space, and again in [30]
to show that, when the spatial slices are flat space or spheres, small perturbations to the
spatial geometry lower the vacuum energy for all CFTs. We will review this work in the
rest of the chapter. In each case, extracting the stress tensor of the CFT is key to proving
the result. Following [51–53], we will show how this can be done with a classical gravity
calculation.

Defining a local energy density for gravitational fields is not possible due to the
equivalence principle. A ‘quasi-local’ energy density defined locally on the boundary of a
spacetime region, however, can be. Inspired by Hamilton-Jacobi theory, Brown and York
proposed that the quasi-local stress tensor [54] for a spacetime region with action S and
prescribed boundary metric hµ⌫ should be

Tµ⌫ = �
2p
�h

�S

�hµ⌫
. (1.30)

This quantity, much like a QFT stress tensor when its UV regulator is taken to infinity,
suffers from divergences as the boundary is taken to infinity. In the case of AlAdS spaces
there is a prescription for subtracting the divergences [51] using local counterterms that
depend only on the intrinsic geometry of the boundary leaving a result that is finite and
unambiguous. It is this quantity that is dual to the expectation of the renormalised CFT
stress tensor in the AdS/CFT dictionary.

Consider an AlAdSd+1 space satisfying (1.29). For simplicity, we will consider
the case where d is odd so that there is no Weyl anomaly in the CFT stress tensor

4The precise details of the CFT depend on the details of the compact manifold and will not be of
interest here.
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and ultimately we are interested in the case d = 3. A more comprehensive analysis,
including even d, can be found in [53]. To calculate the boundary stress tensor, we can
use Fefferman-Graham coordinates5 [55] in a neighbourhood of the conformal boundary
to write the metric in the form

ds2 =
`2

z2
�
dz2 + hµ⌫(z, x)dx

µ
dx⌫
�
, (1.31)

where z > 0 is a ‘radial’ coordinate which measures distance from the conformal boundary
at z = 0 and xµ are local coordinates on the boundary and solve for hµ⌫(z, x) order by
order in z using the Einstein equation to find that

hµ⌫(z, x) = h̄µ⌫(x) + z2h(2)

µ⌫
(x) + . . .+ z2nh(2n)

µ⌫
(x) + . . .+ zdtµ⌫(x) +O(zd+1

) (1.32)

where h̄µ⌫ is the metric on the conformal boundary and h(n)

µ⌫ , 0 < n < d/2 are local
tensors on the conformal boundary built from h̄µ⌫ and its derivatives, for which some
explicit expressions can be found in [53] e.g.

h(2)

µ⌫
(x) =

1

d� 2

✓
Rµ⌫ [h̄]�

1

2(d� 1)
R[h̄]h̄µ⌫

◆
, (1.33)

where Rµ⌫ [h̄] and R[h̄] are the Ricci and scalar curvature of the boundary, respectively.
The asymptotic equations of motion alone do not completely determine tµ⌫ but do impose
that it must be trace free and conserved with respect to h̄ and its Levi-Civita connection,
respectively. The higher-order terms can all be expressed in terms of h̄µ⌫ and tµ⌫ . Fi-
nally, after ensuring that the action has been appropriately renormalised to subtract off
divergences6 the quasi-local boundary stress tensor for the conformal boundary is

Tµ⌫ =
d`d�1

16⇡G(d+1)

tµ⌫ (1.34)

where G(d+1) is Newton’s constant of gravitation in (d + 1) dimensions, and so the
AdS/CFT dictionary states that the expectation value of the dual CFT renormalised
stress tensor is

hTCFT

µ⌫
i = dchtµ⌫ , (1.35)

where ch is the ‘holographic’ central charge. This is related the central charge of the dual
CFT, cT , by

⇡2

48
cT = ch =

`d�1

16⇡G(d+1)

. (1.36)

From here, we may express the energy of the dual CFT in terms of bulk quantities.

5These coordinates are analogous to Gaussian normal coordinates for the conformal boundary of
AlAdS spaces.

6This is done using holographic renormalisation prescription [56].
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1.3 Vacuum Energy Non-positivity: Holographic CFTs

We now seek to use the AdS/CFT correspondence to probe the vacuum energy of (2+1)-
dimensional holographic CFTs with closed spatial geometries. The work presented in this
section is a review of the results in [29].

Given a CFT on a static background R⇥ ⌃ where the spatial geometry of ⌃ is a
closed Riemann two-manifold, the metric can be written in the form

ds2 = N(x)2
⇣
�dt2 + ḡij(x)dx

i
dxj

⌘
⌘ N(x)2gCFT(x) (1.37)

where v = @/@t is a globally timelike Killing vector field, xi are local coordinates on ⌃

and N(x) > 0 everywhere and is thus conformally equivalent to the ultrastatic met-
ric gCFT. The energy of the theory is the Noether charge that is conserved under time
translations:

E =

Z

⌃

hTCFT

µ⌫
inµv⌫ . (1.38)

where n is the unit normal to the spatial slices ⌃. There is no Weyl anomaly in odd
dimensions so the integrand here is a singlet under conformal transformations and thus
the energy is conformal invariant. So, WLOG, we can restrict our attention to ultrastatic
metrics. The energy of a (2+1)-dimensional holographic CFT is thus

E = 3ch

Z
d
2x
p
ḡttt(x). (1.39)

This holographic renormalisation and compactness of the spatial geometry guarantee that
this quantity is finite and scheme independent. This is a neat example of how the often
complex task of extracting finite observables in curved space QFT is greatly simplified in
AdS/CFT. We need only solve classical gravity equations to extract the energy of the dual
CFT. The AdS/CFT dictionary also tells us how to express the entropy and temperature
of the CFT in terms of bulk geometric quantities. This is ultimately what will allow us
to write a simple geometric inequality in terms of the CFT data and show that E 6 0 for
all holographic CFTs. Firstly, some assumptions need to made about the structure of the
bulk that, while allowing for analytic progress, are not so restrictive as to exclude cases
of interest. These will be explained in the following subsection.

1.3.1 Bulk Spacetime Structure

In [29], the following assumptions are also made:

(i) The dual bulk solution to the CFT at finite temperature, T , is static and smooth
away from the conformal boundary. Further, it may only have other boundaries at
smooth Killing horizons with Hawking temperature T with respect to @/@t.
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(ii) In the limit T ! 0
+, these bulks tend to the zero-temperature dual of the CFT

vacuum and the energy and entropy are well behaved7.

Any bulk solution satisfying these assumptions may written as a warped product of a
Riemannian manifold (M, g):

ds2 =
`2

Z(x)2

⇣
�dt2 + gijdx

i
dxj

⌘
(1.40)

where (M, g), known as the optical geometry [58] (the projections of the null geodesics
onto the optical geometry are geodesic), admits some local coordinates xi and has bound-
ary @M = ⌃ and Z > 0 everywhere apart from the conformal boundary where Z = 0

and dZ 6= 0. This bulk ends on the conformal boundary (R⇥⌃, gCFT) and NH > 0 Killing
horizon components with spatial sections H16J6NH

. Examining this optical geometry, in
particular its curvature at the boundaries, is the key to bounding the energy. From the
optical geometry’s point of view, the boundary at Z = 0 is a true boundary at which
the optical metric is ḡ and the NH Killing horizon components are asymptotic boundaries
with spatial geometries HJ .

1.3.2 Optical Geometry

Rewriting the Einstein equations (1.29) in terms of the optical Ricci curvature, Rij, the
optical scalar curvature, R, and their associated connection r gives that

Rij = �
2

Z
rirjZ (1.41)

R =
6

Z2

�
1� (rZ)2

�
(1.42)

where indices are raised, lowered and contracted with the optical metric. Using these
equations and the Bianchi identities, it follows that optical Ricci scalar satisfies the elliptic
equation

r2R = R2 � 3RijR
ij
= �3

✓
Rij �

1

3
Rgij

◆2

. (1.43)

The right-hand side of (1.43) is negative semidefinite for a smooth Riemannian optical
metric and zero if and only if gij is an Einstein metric (seen by evaluating its divergence).
Integrating this equation over (M, g) gives, via the divergence theorem, a left-hand side
that involves exclusively boundary terms:

Z

⌃

dAiriR +

X

16J6NH

Z

HJ

dAiriR = �3
Z

M

p
gd3x

✓
Rij �

1

3
Rgij

◆2

. (1.44)

7Note that this allows for some zero-temperature bulks that, while not smooth, are generic and have
‘good’ singularities e.g. toroidal-AdS, as described in [57].
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Each of these boundary terms can then be expressed in terms of near boundary geometric
quantities that can then be related to CFT data via the AdS/CFT dictionary. The first
term is evaluated at the boundary that supports the dual CFT and can be written as

Z

⌃

dAiriR = 18

Z

⌃

p
ḡttt =

6

ch
E, (1.45)

and integrals over the Killing horizon components can be written in terms of each of their
Euler characteristics, �(HJ), and entropy of the CFT, S, as

X

16J6NH

Z

HJ

dAiriR = � 6

ch
TS � 12⇡T

X

16J6NH

�(HJ). (1.46)

where we have used that ch = `2/(16⇡G(4)). Returning to the relationship (1.44) gives
that the free energy, F = E � TS, of the CFT satisfies

F

ch
� 2⇡T

X

16J6NH

�(HJ) = �
1

2

Z

M

p
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✓
Rij �

1

3
Rgij

◆2

. (1.47)

Ultimately, we are interested in the energy of the zero-temperature CFT vacuum. In the
limit T ! 0

+, F ! E and therefore, providing the assumptions given at the start of
Section 1.3.1 hold, we find that

E

ch
= �1

2

Z

M

p
gd3x

✓
Rij �

1

3
Rgij

◆2

(1.48)

and thus E 6 0 for (2+1)-dimensional holographic CFTs with spatial geometry (⌃, ḡ),
with equality if only if gij is an Einstein metric. Since limz!0 R[g] = 3R[ḡ], this inequality
is only saturated when (⌃, ḡ) has constant curvature.

1.4 Vacuum Energy Non-positivity: General CFTs

To generalise the result to further (2+1)-dimensional CFTs, we now investigate how the
vacuum energy of a unitary CFT behaves under small deformations to its spatial geometry.
This is most easily achieved by expressing the vacuum energy in terms of the partition
function of the theory. The work in this section is a review of results from [30].

For each Lorentzian QFT on an ultrastatic background (R⇥⌃,�dt2 + g) at finite
temperature, T , there is an equivalent Euclidean QFT on the background (S1 ⇥ ⌃, G ⌘
d⌧ 2 + g) with ⌧ ⇠ ⌧ + � the Euclidean time coordinate and � = T�1 the radius of the S1,
where the two are related by identifying t = �i⌧ and analytically continuing8. For the rest
of this section, we will use the Euclidean description. We will also restrict our attention to

8See Appendix A.1 for more details on this.
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perturbations of spaces that are (locally) conformally flat. This obviously includes (R2, �)

but also (S2,⌦), where ⌦ is the unit round sphere metric since (R3, �) and (R⇥S2, d⌧ 2+

⌦) are Weyl equivalent: taking Euclidean three-space with spherical polars (r, ✓,�) and
making a Weyl transformation !(r, ✓,�) = 1/r and change of coordinate r = e

⌧ gives a
space with metric

ds2 =
1

r2
�
dr2 + r2d⌦2

�
= d⌧ 2 + ⌦ijd✓

i
d✓j, (1.49)

i.e. (R ⇥ S2, d⌧ 2 + ⌦). We also assume that, in the zero-temperature limit, any vacuum
expectation value (VEV) on these spaces can be obtained via conformal transformations
of the corresponding VEV on flat space (i.e. no Weyl anomaly is present).

The QFT vacuum state is defined by its partition function,

Z[G] =

Z
D�e

�SE[G,�] (1.50)

where SE[G,�] is its Euclidean action and � represents all the quantum fields. The
thermal vacuum free energy F [g] = �T lnZ[G]

9 tends to E in the zero-temperature limit
so looking at variations of the partition function due to metric perturbations is tantamount
to calculating the change in E. The response of the partition function to changes in the
metric is measured by the VEV of the stress tensor:

hTµ⌫iG ⌘ �
2p
G

� lnZ[G]

�Gµ⌫
. (1.51)

Having started with a static Lorentzian CFT, we can reasonably expect that this VEV
is independent of Euclidean time ⌧ . To see that this definition of E[g] is equivalent to
the energy defined by Equation (1.38), note that a diffeomorphism that shifts G⌧⌧ by a
constant �G⌧⌧ induces a constant shift in the inverse temperature, �� = ��G⌧⌧�/2, so
that (by L’Hôpital)

E[g] = � lim
�!1

@ lnZ

@�
= � lim

�!1

Z

⌃

1p
G

� lnZ

�G⌧⌧

@G⌧⌧

@�
= �

Z

⌃

hT⌧⌧ iG
����
T=0

, (1.52)

which matches (1.38) upon analytic continuation to Lorentzian time. Under a perturba-
tion to the metric Gµ⌫ ! Gµ⌫ + "Hµ⌫ , the partition function varies as

lnZ[G+ "H] = lnZ[G] +
1

2
"

Z
d
3x
p
G(x)hTµ⌫(x)iG(Hµ⌫

(x)� "Hµ⇢
(x)H⇢

⌫
(x))

+
1

8
"2
Z

d
3xd3y

p
G(x)

p
G(y)hTµ⌫(x)T⇢�(y)iGHµ⌫

(x)H⇢�
(y) +O("3) (1.53)

where indices are raised and lowered with respect to the fiducial metric G and the two-

9Note this does not depend on any other sources which will remain the same as we vary G.
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point function is defined by

hTµ⌫(x)T⇢�(y)iG ⌘
4p

G(x)
p

G(y)

�2 lnZ[G]

�Gµ⌫(x)�G⇢�(y)
. (1.54)

Taking a functional derivative of (1.53) with respect to Hµ⌫
(x) gives that

hTµ⌫(x)iG+"H = hTµ⌫(x)iG � "hT�⌫(x)iGHµ

�
(x)� "hTµ⇢(x)iGH⇢

⌫(x)

+
"

2

Z
d
3y
p

G(y)hTµ⌫(x)T⇢�(y)iGH⇢�
(y) +O("2). (1.55)

In the zero-temperature case this equality takes on a very useful form. At zero tempera-
ture, and in the absence of any further sources, we know due to conformal symmetry of
the flat space vacuum that: (i) all one-point functions on the reference space must vanish
and (ii) the contribution of the stress tensor two-point function on conformally flat spaces
is determined up to the central charge, cT , of the CFT10. Thus

p
G(x)hTµ⌫(x)iG+"H/cT

is universal among all the CFTs we are considering at zero temperature (up to O("2)

corrections). For static perturbation to the spatial geometry, gij(x) ! gij(x) + "hij(x),
Equation (1.55) gives that

lim
�!1

1

�

Z
d
3x
p

g(x) hTij(x)ig+"hhij
(x)

= lim
�!1

"

2�

Z
d
3xd3y

p
g(x)

p
g(y)hTij(x)Tk`(y)ighij

(x)hk`
(y) +O("2) (1.58)

or, by noting the integrand on the LHS is constant in Euclidean time and can be performed
before taking the limit,

lim
�!1

1

�

Z
d
3x
p

g(x) hTij(x)ig+"hhij
(x)

=
"

2

Z
d
2xd3y

p
g(x)

p
g(y)hTij(x)Tk`(y)ighij

(x)hk`
(y)

����
�=1

+O("2) (1.59)

for any fixed Euclidean time x0. Thus, by comparing (1.58) and (1.59), it follows that
the change in vacuum energy, as given by the � ! 1 limit of (1.53), due to this static
perturbation to the spatial geometry can be written in terms of the VEV of the stress

10In particular, in conformally flat coordinates [59]
p
G(x)

p
G(y)hTµ⌫(x)T⇢�(y)iG =

cT

|x1 � x2|2
Iµ⌫,⇢�(x1 � x2) (1.56)

where
Iµ⌫,⇢�(x) ⌘ Iµ(⇢(x)I�)⌫(x)�

1

3
�µ⌫�⇢� and Iµ⌫(x) = �µ⌫ �

2xµx⌫

x2
. (1.57)
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tensor of the deformed theory:

E[g + "h] = E[g]� "

4

Z

⌃

d
2x
p

g(x) hTij(x)ig+"hhij
(x) +O("3). (1.60)

Having written E in this way, its clear that it may be computed in many different ways.
The universality of

p
G(x)hTµ⌫(x)iG+"H/cT at zero temperature for G conformally flat

means that we may straightforwardly deduce the result for all such CFTs from a single
example. Holographic CFTs provide a prescription for reading off the finite and unam-
biguous VEV of the renormalised CFT stress tensor on these backgrounds, and thus,
via (1.60), the change in E just from bulk quantities. This gives a simple path to the
solution that can be applied for both flat and spherical calculations11. In the following
two subsections, we will show how this is achieved for perturbations of flat space and the
round sphere.

1.4.1 Flat Space

Consider a static perturbation to the spatial geometry of a (2+1)-dimensional holographic
CFT (as described in Section 1.2) on flat space so that the metric becomes

gCFT = d⌧ 2 + (�ij + "hij(x))dx
i
dxj. (1.61)

The VEV of the stress tensor on this background can be deduced from the bulk gravity
solution. The flat space holographic CFT is dual to pure AdS4 with conformal bound-
ary R3,

ds2
AdS4

=
`2

z2

⇣
dz2 + d⌧ 2 + �ijdx

i
dxj

⌘
, (1.62)

so we seek the leading-order correction in " to this space that solves the Einstein equation
with conformal boundary metric gCFT. All two-spaces are (locally) conformally equiva-
lent to a flat metric so we can WLOG restrict our attention to perturbations that are
proportional to �ij and, as is often useful for linear problems, we decompose in harmonics
of the background space so that

hij(x) = 2f(x)�ij and f(x) =

Z
d
2kf̃(kj

)e
�ik

i
xi (1.63)

where f(k) = f(�k)? (since f is real). Assuming a static bulk we can solve the O(")

equations for a single Fourier mode f(x) = e
�ik

i
xi to get

ds2 = ds2
AdS4

+"
`2

z2

h
2(1 + kz)�ijdx

i
dxj � k2z2dz2 + ikkidx

i
dz
i
e
�kz

e
ik

i
xi +O("2). (1.64)

11Other methods involving, for example, the explicit form the two-point function of the stress tensor
and zeta function regularisation, are shown in [30].
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To deduce the stress tensor, we switch to Fefferman-Graham coordinates (Z,X i
) (1.31),

z = Z

2

41 + "

 
�k2

4
Z2

+
1

6
k3Z3

+O(Z4
)

!
e
�ik

i
xi

3

5+O("2) (1.65)

x = X i
+ "

✓
�1

6
ikkiZ3

+O(Z4
)

◆
e
�ik

i
xi +O("2), (1.66)

and read off the O(Z3
) terms in the metric. It follows that the VEV of a renormalised

CFT stress tensor on a space deformed by a single Fourier mode is

1

ch
hTij(x)i�+2"f� = "e�ik

i
xik
�
k2�ij � kikj

�
+O("2) (1.67)

and thus for the general deformation (1.63) is

hTij(x)i�+2"f� = "ch

Z
d
2kf̃(k)e�ik

i
xik
�
k2�ij � kikj

�
+O("2). (1.68)

Plugging this universal quantity into (1.60), we see that for any (2+1)-dimensional CFT
on flat space

E[� + "h] = E[�]� "2⇡
4cT
24

Z
d
2k|f̃(k)|2k3

+O("3). (1.69)

Thus, given that unitary CFTs must have positive central charge, any non-trivial pertu-
bation to the spatial geometry (i.e. not a rigid rescaling) must lower the vacuum energy
of the CFT at leading order in ". A similar argument can be copied for the round sphere.

1.4.2 S2

We will now consider a static perturbation to the spatial geometry of a (2+1)-dimensional
holographic CFT on (R⇥S2, d⌧ 2 +⌦). Just as in the flat space case we, WLOG, restrict
our attention to perturbations that are proportional to ⌦ij,

gCFT = d⌧ 2 +
⇣
1 + 2"f(✓k)

⌘
⌦ijd✓

i
d✓j. (1.70)

The vacuum state of the holographic CFT on (R⇥S2, d⌧ 2+⌦) is dual to pure AdS4 with
conformal boundary R⇥ S2,

ds2
AdS4

=
`2

z2

"
(1 + z2)d⌧ 2 +

dz2

1 + z2
+ ⌦ijd✓

i
d✓j
#
. (1.71)

We seek the leading-order correction in " to this space which solves the Einstein equation
with conformal boundary metric gCFT. Once again, we ask how this responds to a single
harmonic, in this case a spherical harmonic f(✓i) = Ylm(✓i), and deduce the general result
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from linearity. Note that the l = 0 mode is simply a rigid rescaling of the geometry and
thus, since we are working with a CFT, induces no change in E, and that the Ricci scalar
of the deformed geometry is

R = 2 + 2"(l � 1)(l + 2)Ylm +O("2) (1.72)

so the l = 1 modes do not alter the geometry at O(") — they each generate an isometry
that rotates the sphere. Thus, we will not consider modes with l = 0, 1. Assuming a
staticity, the leading-order correction to the bulk can be expressed in terms of a single
function

S(z) =
"

2F1

✓
� l + 1

2
,
l

2
;
1

2
;�z2

◆
z2 + 2pl 2F1

✓
� l

2
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2
;
3

2
;�z2

◆
z3
#
, (1.73)

where
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1
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2

, (1.74)

that solves the ODEs in z given by the Einstein equations at O("), gives regular behaviour
within the bulk and the correct asymptotic behaviour at the conformal boundary. In terms
of this function, the bulk metric is
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+O("2). (1.75)

and so changing to Fefferman-Graham coordinates (Z,⇥i
) defined implicitly by

z = Z
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1 +
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+ "(l + 2)(l � 1)
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4
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(1.76)

✓i = ⇥
i
+
"

3
pl⌦

ij@jYlmZ
3
+O(Z4

), (1.77)

and reading off the O(Z3
) terms from the metric gives that the VEV of a renormalised

CFT stress tensor on (R⇥ S2, d⌧ 2 + ⌦) deformed by a single spherical harmonic is

1

ch
hTiji(1+2"f)⌦ = 2"pl

�
[l(l + 1)� 1]⌦ij +rirj

 
Ylm +O("2), (1.78)
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where r is the Levi-Civita connection on the round sphere. By linearity, the result for
an arbitrary perturbation,

f(✓i) =
X

l>0

lX

m=�l

flmYlm(✓
i
), (1.79)

is
hTiji(1+2"f)⌦ = 2"ch

X

lm

flmpl
�
[l(l + 1)� 1]⌦ij +rirj

 
Ylm +O("2). (1.80)

Plugging this universal quantity into (1.60), we see that for any (2+1)-dimensional CFT
on R⇥ S2

E[⌦+ "h] = E[⌦]� "2⇡
2cT
48

X

lm

|flm|2pl(l + 2)(l � 1) +O("3). (1.81)

Thus, given that unitary CFTs must have positive central charge, any non-trivial pertur-
bation to the spatial geometry (i.e. not a rigid rescaling or a rotation) must lower the
vacuum energy of the CFT at leading order in ", just as on flat space.

1.5 Summary and Discussion

We have reviewed three vacuum energy calculations. Firstly, the vacuum energy of a
free Maxwell field in the presence of parallel conducting plates was calculated, revealing
the surprising result that there is a measurable attractive force between the plates driven
purely by quantum fluctuations in the vacuum. In doing this calculation we encountered
many steps that will be repeated through the original work in this thesis. An initial
attempt to compute the vacuum energy gave an answer with UV divergences. To resolve
this, the integral/sum needed to be regularised and there was some choice about how to do
this. A few of the different options were exhibited here: cutoff regularisation, zeta function
regularisation and exponential regularisation. Ultimately, care needed to be taken to make
sure that the final result was UV finite and scheme independent — necessary conditions for
a truly-physical quantity. The generic presence of UV divergences, need for appropriate
regularisation, and search for an unambiguous quantity and means of calculating it will
all feature prominently throughout the rest of this thesis. Next, we considered static
(2+1)-dimensional holographic CFTs with compact spatial geometry (⌃, ḡ). Under some
reasonable assumptions, the metrics of their dual spacetimes can be written as warped
products of Riemannian manifolds whose scalar curvatures (due to the Einstein equations
and Bianchi identities) have non-positive Laplacians. Via the divergence theorem, an
equation involving the curvatures at the (asymptotic) boundaries, whose terms can then
be expressed in terms of the CFT data, was derived. It followed from this equation that
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the vacuum energy of these holographic CFTs is zero when (⌃, ḡ) has constant curvature
and is otherwise negative.

The above is an exposition in how holographic intuition derived from the AdS/CFT
correspondence can lead to progress in field theory. Even the most basic questions in
QFT can be infamously difficult thanks to, for example, a lack of rigorous definition of
the path integrals and potential ambiguities that come with renormalisation. Holography
rephrased one of these questions in terms of simple classical gravity calculations leading
to a non-positivity bound on a finite, unambiguous vacuum energy for a certain class of
QFTs — raising the question of whether this result could hold more broadly. Further, it
was shown how holography was used directly to show that E is locally12 maximised by flat
space and round sphere for all unitary CFTs. Answering these questions that holography
has led us to will be the focus of the rest of this thesis.

To make further progress, we now move beyond the AdS/CFT correspondence and
the theories it describes. The simplest and most natural next step is to investigate ‘free’
theories. For that, we will make use of heat kernel methods.

12In the space of volume-preserving metrics.



Chapter 2

Heat Kernel Methods

The behaviour of a diffusion process encodes geometric data about the manifold it is
taking place on. As such, the fundamental solution to the heat equation, the heat kernel,
has been studied extensively by mathematicians and physicists alike. In particular, heat
kernels are an important tool for probing the spectra of Laplacian(-like) operators and
have proven useful in developing new results such as the Atiyah-Singer index theorem [60–
62]. Heat kernels also arise as an auxiliary function for various objects in quantum theory.
This was initially noted by Fock [63] who represented the Dirac Green’s function as an
integral of a heat kernel over ‘proper time’. Schwinger noted this parametrisation could
be used to perform gauge covariant computation in QED in the presence of background
fields [64]. DeWitt built on this by making the heat kernel a key tool in a manifestly-
covariant approach to QFT on curved space and quantum gravity [65–68], serving as a
platform for many results on quantum corrections to classical physics, such as first-order
corrections to black hole entropy [69], anomalies in chiral gauge theories [70] and the
Casimir Energy [71]. A key feature of these heat kernels is their asymptotics in small
proper-time [72, 73]. The structure of this asymptotic expansion has been established
in many cases, ranging from closed manifolds to manifolds with boundaries and exotic
boundary conditions. There are a number of techniques for calculating the expansion
coefficients. Notably, the coefficients are determined to a large extent by local geometric
data — depending on the the spin of the fields in a limited way — allowing for universal
results.

In this thesis, the vacuum, or free energy at finite temperature, of free theories
as a functional of spatial geometry will be calculated using heat kernel methods. This
chapter will review them, with a particular focus on the heat kernel coefficients that make
the analytic and numerical work possible. A more comprehensive review of heat kernel
methods with a particular focus on their asymptotic expansions, including many of the
results that will be presented in this chapter, can be found in [74].

We will begin by mapping out the path between fundamental solutions to a gen-
eralised form of the heat equation on a compact Riemannian manifold (with boundary)

43
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— where the Laplacian is replaced by a second-order differential operator, D, that is self
adjoint with respect to some inner product, (·, ·) — and the free energy of a Lorentzian
QFT with a quadratic action, (�, D�), at finite temperature. In short, the partition func-
tion of these QFTs can be evaluated exactly in terms of the functional determinant of D
— an object which, with the help of an auxiliary variable, can be written in terms a
heat kernel. The aforementioned heat kernel expansion and its properties will then be
introduced. Knowledge of the expansion coefficients alone is sufficient to extract data
from the corresponding QFT. Most importantly for this work, they explicitly predict the
UV divergences of partition functions, but they they can also detect quantum anomalies
— both of which will be shown here.

The plan for this chapter is as follows. In Section 2.1, the heat kernel will be defined
and it will be shown how to write the free energy of a Euclidean QFT in terms of it. The
closely related cylinder kernel will also be introduced. The heat kernel expansion will be
introduced in Section 2.2 and it will be shown how the heat kernel coefficients can be used
to regularise and compute quantum anomalies in Sections 2.3 and 2.4, respectively. The
chapter will then conclude with a summary in Section 2.5.

2.1 The Heat Equation

Consider a vector bundle V over some compact Riemannian manifold, (M, g). For our
purposes, a (local) heat kernel K(t, x, y,D)

1 is a solution to an equation of the form2

(@t +D)K = 0, with K(0, x, y,D) = �(x, y) (2.1)

for t 2 R+, x, y 2M and D is an operator of the form

D = �
�
gµ⌫rµr⌫ + E

�
(2.2)

where E is a linear map V ! V and r is the sum of the spin (!ab

µ
) and Riemannian (�

⇢

µ⌫
)

connections. D is self adjoint with respect to the inner product (·, ·). If M is a manifold
with a boundary there will also be some homogeneous boundary conditions. We write
these as B�|

@M
= 0, � 2 V where B = ⇧�+(rn+S)⇧+. Here ⇧� and ⇧+ are complemen-

tary projectors that select the components that obey the Dirichlet and Robin boundary
conditions, respectively, and rn denotes a normal derivative at the boundary. Provided
that D has non-negative spectrum {�}, we can write the solution to Equation (2.1) as

K(t, x, y,D) =

X

�

�†

�
(y)e�t���(x) (2.3)

1Note that t is not a coordinate on M.
2Note the similarity here to the Schrödinger equation in imaginary time.



2.1. The Heat Equation 45

where {��} is a complete orthonormal basis of eigenfunctions of D in V . Tracing over
the matrix indices and spacetime points then gives the global heat kernel:

Z
d
n x
p
gtrVK(t, x, x,D) =

X

�

e
�t�

(��,��) = TrL2

⇣
e
�tD

⌘
. (2.4)

From now on we will refer to the object

K(t,D) ⌘ TrL2

⇣
e
�tD

⌘
(2.5)

as the heat kernel, as opposed to the local heat kernel defined by (2.1). Similarly, solutions
to the partial differential equation

�
@2
t
�D

�
T (t, x, y,D) = 0, with T (0, x, y,D) = �(x, y), (2.6)

give the related cylinder kernel

T (t,D) ⌘ TrL2

⇣
e
�t

p
D

⌘
. (2.7)

These heat kernels are of interest in quantum theory because they can be used to evaluate
partition functions, and in particular the free energy, of QFTs on curved backgrounds.

Given a QFT on (M, g) consisting of a field � 2 V with an action S[g,�] = (�, D�)

its partition function is
Z[g] =

Z
D� e�S[g,�]. (2.8)

For actions of this form, the partition function can be evaluated via change of variables.
We will consider the case of a real scalar field, as an example. Each field configuration � 2
V can be expressed uniquely in terms of the complete orthonormal basis of eigenfunctions
of D, i.e. there are unique real {a�} such that

�(x) =
X

�

a���(x), (2.9)

thus we may make a change of variables from the values of � at each position in M to
its coefficients in this expansion. In terms of the new variables, the action can be written
as S[g,�] =

P
�
� a2

�
and the measure transforms as

R
D� !

Q
�

R
R da� (up to constant

that cancels out in the computation of any observable so is neglected here, as will any
further similar constants that arise in this calculation) so that the partition function is a
product of Gaussian integrals,

Z[g] =
Y

�

✓Z

R
da� e

��a
2

�

◆
=

Y

�

r
⇡

�
. (2.10)
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This is an example of the generic form the partition function for free theories, Z[g] =
Q

�
��

— even those for whom D is not a second-order operator. For example, repeating the
argument above for the Dirac operator gives Z[g] =

Q
�
�, with the integration over

Grassmann numbers accounting for the difference in power here. Thus, the partition
function of a theory with action of the form S[g,�] = (�, D�) can be written as

lnZ[g] = � ln detD. (2.11)

for some theory dependent constant �. This quantity that admits a representation in
terms of the heat kernel (2.5). Noticing that

ln� = �
Z

1

0

dt

t
e
�t� (2.12)

up to an infinite constant3, it follows from expressing ln detD in terms of the eigenvalues
of D that

ln detD = �
Z

1

0

dt

t
K(t,D). (2.13)

Recall from statistical mechanics that given some system in thermodynamic equilibrium
with partition function Z(�), its free energy is given by F = ���1

lnZ. Therefore,
when the Euclidean QFT described above matches that of a Lorentzian QFT at finite
temperature T = ��1 (and in the absence of any other dynamical fields) the free energy
of that thermodynamic system is given by

�F = �

Z
1

0

dt

t
K(t,D). (2.14)

Thus, we can calculate the free energy from the spectrum of D. We note that, while only
free theories are considered here, the treatment above can be adapted to show that the one-
loop correction to an effective action due to integrating out quantum fluctuations in the
presence of background fields can also be expressed in terms of a functional determinant,
and thus a heat kernel, in this way [74, 75]. Indeed, what we have presented here is just a
special case in which this correction is exact. This treatment is included in Appendix A.2.

As is typical for QFTs, there are divergences we have to deal with. Looking at
the definition of K(t,D), its clear that K(t,D) ! 1 as t ! 0

+, so the integral on the
right hand side of Equation (2.13) does not converge. Fortunately, the asymptotics of the
heat kernel in this region are well understood, which facilitates regulating this expression
a great deal.

3This can be shown by differentiating both sides of (2.12) with respect to �. The constant here does
not matter as we will only consider differences of the quantity on the RHS, where the constant cancels.
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2.2 The Heat Kernel Expansion

The ‘heat kernel expansion’ refers to the asymptotic expansion of K(t,D) as t ! 0
+.

For any D of the form (2.2) with (if applicable) boundary conditions on a compact4

Riemannian manifold of dimension n

K(t, f,D) ⇠
X

k>0

ak(f,D,B)t(k�n)/2 (2.15)

as t! 0
+, where K(t, f,D) is a generalised form of the heat kernel:

K(t, f,D) ⌘ TrL2

⇣
fe�tD

⌘
(2.16)

for any function f : M ! R [76]. We note here that the expression (2.15) generically
has (n + 1) terms that give divergences in (2.14). The expressions for the asymptotic
coefficients ak(f,D) are: (i) calculable, (ii) local integrals of mostly geometric invariants
and (iii) available for the most part in the literature for small k. More concretely,

ak(f,D,B) =
Z

M

d
nx
p
gf(x)ak(x,D,B) +

k�1X

j=0

Z

@M

d
n�1x
p
hf (j)ak,j(x,D,B) (2.17)

where ak(x,D,B) consists of dimension k terms built from E, the Riemann tensor Rµ
⌫⇢�,

the curvature two-form, ⌦, defined in terms of the ‘gauge’ part of the connection, !, as

⌦ ⌘ d! + ! ^ !, (2.18)

and their derivatives, f (j) denotes the j-th normal derivative of f at the boundary, h is
the induced metric on the boundary and ak,j(x,D,B) is built from dimension k � j � 1

combinations of E,Rµ
⌫⇢�,⌦, boundary quantities such as the extrinsic curvature Kab

and S, and their derivatives. The minor dependence on the vector bundle in which the
fields live is a real strength of these coefficients — one calculation can be used for different
theories on the same background. To illustrate their simplicity, here are the heat kernel

4It is also possible to define heat kernels on non-compact manifolds that also admit an asymptotic
expansion with coefficients (2.17) but a little more care in needed. A naïve treatment yields IR divergent
coefficients such as a0(f,D) (2.19). The local heat kernel and its coefficients carry over seamlessly to
the non-compact case thus to avoid such difficulties one can work with a ‘subtracted’ heat kernel where,
instead of just working with the global heat kernel K(t,D), one first subtracts an appropriate ‘reference’
local heat kernel, based on some other different operator, from it and then integrate up this subtracted
quantity. The same tools can then be used, such as the heat kernel expansion, but now with ‘subtracted’
quantities, such as subtracted heat kernel coefficients, as the subtraction renders them finite.
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coefficients ak(f,D,B) for 0 6 k 6 4 on manifolds with boundaries [74]:

a0(f,D,B) = 1

(4⇡)(n/2)

Z

M

d
n x
p
gtrV (f), (2.19)

a1(f,D,B) = 1

4(4⇡)(n�1)/2

Z

@M

d
n�1 x

p
htrV (�f) , (2.20)

a2(f,D,B) = 1

6(4⇡)(n/2)

Z

M

d
n x
p
gftrV (6E +R)

+

Z

@M

d
n�1 x

p
htrV (2fKaa + 3�rnf + 12fS)

�
, (2.21)

where R is the scalar curvature and � ⌘ ⇧+ � ⇧� and further for a manifold without a
boundary

a4(f,D) =
1

360(4⇡)(n/2)

Z
d
n x
p
gftrV

�
60r2E + 12r2R + 60RE + 180E2

+ 5R2 � 2Rµ⌫R
µ⌫

+ 2Rµ⌫⇢�R
µ⌫⇢�

+ 30⌦µ⌫⌦
µ⌫
�

(2.22)

and a2j+1(f,D) = 0 for all j, by dimensional analysis. As k increases, the number
of allowed terms in the integrand of ak(f,D,B) increases too, making their calculation
more complex. However, knowledge of only the leading order coefficients turns out to be
sufficient for regularising the partition function and computing quantum anomalies, as
well as estimating the heat kernel for small t.

The aforementioned global cylinder kernel also has an asymptotic expansion [71].
It is determined, in part, by the heat kernel coefficients of its operator:

T (t,D) ⇠
X

k>0

ek(D,B)tk�n
+

X

k>n+1;k�n odd

fk(D,B)tk�n
ln t (2.23)

where

ek(D,B) = 2
n�k

p
⇡
�

✓
n� k + 1

2

◆
ak(D,B), fk = 0 for k � n even or negative (2.24)

fk(D,B) = (�1)(k�n+1)/2
2
n�k+1

p
⇡�
⇣

k�n+1

2

⌘ak(D,B) for k � n odd and positive. (2.25)

but the rest of the coefficients are not determined by the heat kernel expansion — they
depend globally on the background.

2.3 Regularisation

As mentioned in Section 2.2, the heat kernel diverges at t = 0 so it must be regulated in
order to extract anything meaningful from it. To see where issues come from, we introduce
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a UV cutoff, ⇤. This is equivalent to changing the lower limit in the heat kernel integral
from 0! ⇤

�2 (by dimensional analysis5). For simplicity, we consider an odd-dimensional
manifold without boundary. To isolate the divergent pieces, rewrite the integral as

Z
1

⇤�2

dt

t
K(t,D) =

Z
1

⇤�2

dt

t

0

@K(t,D)�
X

n>k>0

ak(D)t(k�n)/2

1

A�
X

n>k>0

2ak(D)

k � n
⇤

n�k (2.26)

In the limit ⇤!1,
Z

1

⇤�2

dt

t
K(t,D) ⇠ �

X

n>k>0

2ak(D)

k � n
⇤

n�k
+O(⇤

0
). (2.27)

The RHS depends on the theory only through the heat kernel coefficients, which do not
depend on the dynamical fields. It follows that by introducing local counterterms into
the original action of the form

S[g,�]! S[g,�] + SCT[g]

= S[g,�] + �
X

n>k>0

2ak(D)

k � n
⇤

n�k (2.28)

that we get a finite lnZ:

lnZ[g] = ��
Z

1

0

dt

t

0

@K(t,D)�
X

n>k>0

ak(D)t(k�n)/2

1

A (2.29)

Alternatively, we can renormalise using zeta function regularisation. The fundamental
object in this setup is the the generalised zeta function, defined by

⇣(s, f,D) ⌘ Tr(fD�s
) =

1

�(s)

Z
1

0

dt

t
tsK(t, f,D) (2.30)

for <(s) > n/2. By comparing this with the expression for the functional determi-
nant (2.13), it follows that the renormalised functional determinant is given by the analytic
continuation of ⇣(s, f,D) to s = 0:

ln detD = � lim
s!0

µ2s⇣(s,D)�(s) (2.31)

where µ is a constant with mass dimension 1 and, as was the case for the heat ker-
nel, ⇣(s,D) ⌘ ⇣(s, 1, D). This analytic continuation can be carried out with the help of
heat kernels and their coefficients.

We begin by working in the region <(s) > n/2 and separating out the problematic

5The argument of the heat kernel has dimension [t] = �[�] = �[D] = �2
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terms in analogy with (2.26):

�(s)⇣(s, f,D) =
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0

dt

t
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X
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where ⌫ is some arbitrary parameter. The first set of terms here can then be integrated
up giving

�(s)⇣(s, f,D) =

X

n>k>0

ak(f,D)

s� (k � n)/2
⌫s�(k�n)/2
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1

A+
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⌫
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t
tsK(t, f,D). (2.33)

This expression has a potential pole at s = 0 with residue

an(f,D) = Ress=0

�
�(s)⇣(s, f,D)

�
= ⇣(0, f,D). (2.34)

For odd dimensions (where an(f,D) = 0) (2.33) can be analytically continued to s = 0.
Evaluating it at s = 0 and taking the arbitrary parameter ⌫ ! 1 gives a renor-
malised functional determinant that recovers the counterterm renormalised partition func-
tion (2.29). In even dimensions, there is generally a pole at s = 0 that would need to be
subtracted off in some way, leaving some scheme dependence behind. The takeaway from
this is that the heat kernel coefficients contain most of the data necessary for regularisa-
tion.

2.4 An Application: Quantum Anomalies

A quantum anomaly is a symmetry of a classical action that fails to be a symmetry of the
corresponding quantum theory for any renormalisation scheme. The canonical example
this phenomenon is the axial symmetry of a massless Dirac fermion coupled to a gauge
field in d = 4. Consider the example of QED with a massless electron, that is, a U(1)
gauge field coupled to massless Dirac fermion:

S[A, ] =

Z
d
4 x


�1

4
Fµ⌫F

µ⌫
+ i /D 

�
(2.35)

=

Z
d
4 x
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4
Fµ⌫F

µ⌫
+ i †

L
�µDµ L + i †

R
�µDµ R

�
(2.36)
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where F ⌘ dA, Dµ = @µ � ieAµ is the gauge covariant derivative and  = ( L, R). This
action is invariant under the global transformation  ! e

i↵�
5

 . However, in the quantum
theory the mass parameter of the fermion receives quantum corrections and thus axial
symmetry is broken. This is called a chiral anomaly. Another kind of symmetry which is
often broken by quantisation is conformal symmetry. Pure Yang-Mills theory

S = � 1

4g2
YM

Z
d
4 xF a

µ⌫
F aµ⌫ (2.37)

in four dimensions is classically scale invariant but the Yang-Mills coupling runs when
this theory is quantised [77, 78]. In some instances, the presence of an anomaly can have
grave consequences. For global symmetries, such as the chiral and conformal anomalies
described above, this is not the case. For a local symmetry, however, an anomaly leads to
a fundamental inconsistency. Gauge invariance is required to cancel unphysical degrees
of freedom and as such must be preserved by quantisation. This requirement that local
symmetries not be anomalous can lead to constraints on theories. As this is a truly
quantum effect, the one-loop effective action, and therefore the heat kernel, are useful tools
for deducing these constraints. The heat kernel expansion turns out to be particularly
suited to computing Weyl anomalies.

Consider a quantum field theory on an n-dimensional Riemannian manifold (M, g)

whose classical action is Weyl invariant i.e. invariant under a Weyl transformation gµ⌫ 7!
e
2⇢(x)gµ⌫ . The self-adjoint second-order differential operator that determines the one-loop

correction to the effective action, D, must transform as D 7! e
�2⇢(x)D. Whether this

symmetry is preserved at the quantum level is determined by the trace of the stress
tensor since

� lnZ = �1

2

Z

M

d
nx
p
ghTµ⌫i�gµ⌫ =

Z

M

d
nx
p
ghTµ

µi�⇢. (2.38)

Thus a quantum field theory is Weyl invariant at the quantum level if and only if hTµ

µi = 0.
By varying the expression for lnZ written in terms of the functional determinant (2.31),
we can deduce an expression for the trace of the renormalised stress tensor at one-loop.
Under an infinitesimal Weyl transformation �gµ⌫ = 2(�⇢)gµ⌫ , �D = �2�⇢D and so the
zeta function (2.30) varies as

�⇣(s,D) = 2s⇣(s, �⇢, D) (2.39)

giving a functional determinant (2.31) that varies unambiguously6 as

� ln detD = �2⇣(0, �⇢, D) = �2an(�⇢, D). (2.40)

6Even in the case of even-dimensional manifolds where the zeta function regularised partition function
is scheme dependent.
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Spin a b c d
0 1 1 30⇠ � 6 90(⇠ � 1/6)2
1

2
�7

2
�11 6 90

1 �13 62 18 0

2 212 0 0
717

4

Table 2.1: A table displaying the coefficients of the various terms of the four-dimensional
Weyl anomaly (2.42), as can be deduced from the heat kernel coefficients, for fields with
spin 0, 1/2, 1 and 2.

Comparing (2.38) with (2.40) gives that at one-loop the trace of the renormalised stress
tensor of a classically Weyl-invariant theory is determined by a heat kernel coefficient
density:

hTµ

µ
(x)i = �2�an(x,D), (2.41)

where � is a constant that depends on the spin of the field. While generally giving one-
loop results, this expression is exact for free theories. For example, it can be used to
read off the Weyl anomaly induced by placing free quantum fields on a four-dimensional
curved background [74],

hTµ

µ
(x)i = � �

1440⇡2

"
aCµ⌫⇢�C

µ⌫⇢�
+ b

✓
Rµ⌫R

µ⌫ � 1

3
R2

◆
+ cr2R + dR2

#
(2.42)

where Cµ⌫⇢� is the Weyl tensor and the coefficients a, b, c and d are given in Table 2.1 for
the scalar field, Dirac fermion, vector field and graviton. It can even be used to derive the
effective action in two dimensions, where all metrics are conformally flat. For example,
the effective action for a free scalar field on a Riemannian two-manifold (⌃, e2⇢�) with
scalar curvature R = �2e�2⇢@2⇢ varies as ��/�⇢(x) = �a2(x, e�2⇢@2) = @2⇢(x)/(12⇡)

under a change to the metric �g = 2�⇢g which can be integrated (subject to �|⇢=0 = 0)
and written covariantly to give

� = � 1

96⇡

Z

⌃

d
2x
p
g R

1

r2
R. (2.43)

This is of course the result of integrating out the quantum fluctuations of the bosonic
string propagating on flat space governed by the Polyakov action. A similar calculation
can also be performed to deduce the effective action for two dimensional QED [79].

2.5 Summary and Discussion

In this chapter, we have introduced heat kernel methods as a tool for quantum field theory
on curved space. We have shown that the partition function of Euclidean QFT (and thus
the free energy of a Lorentzian QFT at finite temperature) on a compact Riemannian
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manifold with a quadratic action, (�, D�), where D is an (elliptic) self-adjoint second-order
differential operator, can be expressed in terms of the (global) heat kernel, K(t, f,D),
integrated over the auxiliary parameter t. The asymptotics of K(t) as t! 0

+ were then
detailed for manifolds with boundaries, the key observation being that the coefficients
in the expansion are local integrals of geometric invariants and the potential terms, and
have a largely universal form, as demonstrated by the first few coefficients. While deriving
the form of the coefficients can be involved, they are calculable and readily available in
the literature. It was then shown how the heat kernel coefficients determine the UV
divergences and thus provide a route to renormalisation. Finally, we discussed quantum
anomalies and, in particular, how knowledge of a single heat kernel coefficient alone can
determine the Weyl anomaly.

The heat kernel coefficients considered in this chapter, on manifolds with bound-
aries, will be sufficient for most of the geometries discussed in this thesis. What is known
about them, however, goes far beyond the cases discussed here, with work detailing the
application of heat kernel coefficients to different backgrounds, such as those with coni-
cal [80] and domain wall [81] defects, and more general operators, such as those with more
derivatives [82, 83]. We refer the reader to [74] for a more comprehensive overview of the
heat kernel expansion and its applications.

Knowledge of heat kernel coefficients alone is sufficient to deduce some observables
in quantum theory but the vacuum energy is not one of them. While the locality of the
heat kernel coefficients is a strength for computing them, it limits them here since, as
observed in Chapter 1, vacuum energy is intrinsically non-local. Fortunately, heat kernel
methods methods also give a path to calculating the vacuum energy — via the heat kernel
itself and therefore the eigenvalues of D. These can seldom be solved for analytically but to
investigate the global behaviour of free energy as a functional of spatial geometry we need
to probe a wide range of theories. In this thesis, this will be achieved by using perturbation
theory and numerical methods to calculate the eigenvalues and thus the vacuum energy.
The heat kernel coefficients will then play an important role in extracting the UV-finite
part of the vacuum energy and, in the numerical work, ensuring a high degree of numerical
accuracy.



Chapter 3

Free Theories on Flat Space

The presence of matter gives a surface embedded in an ambient space an energy; it may be
external to the surface — like the pressure of air on a soap bubble — or may comprise the
material nature of the surface itself — like a membrane with surface tension and bending
energy. The equilibrium configuration of such a surface is determined by these energies.
For example, the presence of surface tension tends to make membranes favour (smooth)
minimal-area configurations, while finite-temperature thermodynamic effects may render
membranes unstable to crumpling or rippling [84–86]

In this chapter (based on work in [1, 3]) we initiate a study of the free energy
contribution to the equilibrium configuration of a surface due to free relativistic quantised
matter fields living on it. In particular, we include zero-temperature (Casimir) effects.
Recall from the Introduction that such relativistic quantum fields occur in various physical
settings: for example, in graphene and related materials, the electronic structure gives
rise to an effective description in terms of relativistic Dirac fermions propagating on the
two-dimensional crystal [35–37] and, with great experimental potential, optical lattices in
the lab [46].

The setting is then (2+1)-dimensional QFT on a product of time with a (static)
two-space. Aided by the heat kernel methods detailed in Chapter 2, we will study both
the free non-minimally-coupled scalar and the free Dirac fermion and see that such fields
lower the free energy of the surface on which they live when the surface is deformed (per-
turbatively) away from being intrinsically flat, as was shown to be case for unitary CFTs
in Section 1.4. This energy difference is UV finite (and thus well defined) and present at
any temperature including T = 0 (and thus a purely quantum vacuum energy) both for
massless and massive fields, and any scalar non-minimal coupling. It is then natural to
wonder: is a classical membrane action able to counteract this quantum preference for
crumpling? We will perform a naïve analysis of this question for monolayer graphene,
which is indeed seen to ripple on short scales [44, 87]. We will show that at room tem-
perature the quantum vacuum energy of the Dirac fermions give a scale at which one
would expect crumpling effects on the order of the lattice spacing. The effective mem-

54
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brane description that would validate our analysis breaks down at this scale but, while
our results make no definitive statement about the rippling of graphene, they indicate
that any proper treatment of equilibrium configurations of graphene-like materials should
account for these quantum effects — even at room temperature.

A plan for this chapter is as follows. Section 3.1 will detail how a UV-finite free
energy difference can be defined and expressed in terms of heat kernels for free fields on
our geometries of interest. Section 3.2 will set out how to compute the leading-order
perturbative corrections to these heat kernels for free theories on small deformations of
compact homogeneous spaces. The results of carrying out this calculation for our theories
to deduce the free energy difference for perturbations of flat space will be presented in
Section 6.3. Finally, we conclude with a discussion of the possible implications of these
results for the equilibrium geometries of membranes that support relativistic quantum
degrees of freedom in Section 3.4.

3.1 Free Energy Difference: Free Fields

We consider a spacetime that is a product of time with a two-space (⌃, g) (for now taken to
be general). Since we are interested in QFT at finite temperature T we work in Euclidean
time, so the metric is

ds2 = d⌧ 2 + gij(x)dx
i
dxj (3.1)

with ⌧ periodic with period � = 1/T . We consider a free scalar and a free Dirac fermion
with (Euclidean) actions

SE[g,�] =
1

2

Z
d⌧

Z
d
2x
p
g �(�r2

+ ⇠R +M2
)� and (3.2)

SE[g,  ̄, ] =

Z
d⌧

Z
d
2x
p
g  ̄(i /D � iM) , (3.3)

respectively, where ⇠ is a curvature coupling, M is a mass, r is the Levi-Civita connec-
tion, R is the scalar curvature and /D is understood as being defined by the spin connection
(our conventions can be found in Appendix A.3).

The free energy F [g] is a functional of the geometry (⌃, g) (and temperature T )
and is given in terms of the partition function, Z[g], as F [g] = �T lnZ[g]. We are specif-
ically interested in the difference between the free energy on (⌃, g) and some reference
background space (⌃, ḡ) at the same temperature, that satisfies

e
���F

=
Z[g]

Z[ḡ]
=

R
D� e

�SE[g,�]

R
D� e�SE[ḡ,�]

=

D
e
��SE

E

ḡ

, (3.4)

where � stands for the matter field (scalar or fermion) being integrated over in the path
integral, �F ⌘ F [g] � F [ḡ] and �SE ⌘ SE[g,�] � SE[ḡ,�] are the differences between
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the free energy and action on (S1 ⇥ ⌃, d⌧ 2 + g) and (S1 ⇥ ⌃, d⌧ 2 + ḡ), respectively, and
the expectation value is defined by the path integral on the background geometry (S1 ⇥
⌃, d⌧ 2 + ḡ). To evaluate �F , we recall from Section 2.1 that for free fields the path
integrals in (3.4) yield functional determinants. This goes through as in Section 2.1 for
the scalar. For the fermion, a direct path integral yields Z = det(i /D � iM) and by
exploiting the direct product structure of the metric (3.1) along with the fact that the
two-dimensional rotation group only has a single generator, we may eliminate the spinor
structure and reduce the determinant to that of an elliptic operator with the determinant
taken over the space of complex functions with antiperiodicity on the thermal circle. We
leave full details of this to Appendix A.3. The result being that the partition function in
each case can be written as

Z = (detL)� with L = �@2
⌧
+ L+M2, (3.5)

where � = �1/2 (+1) for the scalar (fermion), L is an elliptic self-adjoint scalar operator
on ⌃ given explicitly in (3.28) below, and the determinant is evaluated over Matsubara
frequencies on the thermal circle (with appropriate periodicity or antiperiodicity in the
scalar and fermion cases respectively).

The free energy can then be evaluated via heat kernel methods as shown in Chap-
ter 2: defining the heat kernel as KL(t) ⌘ Tr(e

�tL
) =

P
i
e
�t�i (with �i the eigenvalues

of L), gives that

��F = �

Z
1

0

dt

t
�KL(t), (3.6)

where �KL(t) ⌘ KL(t)�K
L
(t). This expression is UV divergent unless �KL(t) vanishes

at t = 0; this condition can be ensured by an appropriate choice of background (⌃, ḡ).
Specifically, the heat kernel expansion (2.15) gives

KL(t) = �

"
c1Vol[g]

t3/2
+

c2�(⌃) + c3Vol[g]M2

t1/2
+O(t1/2)

#
, (3.7)

where Vol[g] and �(⌃) are the volume1 and Euler characteristic of (⌃, g), respectively,
and c1, c2, and c3 are dimensionless constants independent of the geometry (though they
depend on the choice of matter field). Thus, requiring that �F be UV finite only imposes
that we choose a background geometry (⌃, ḡ) with the same volume and topology as (⌃, g).
It is worth emphasising that although the undifferenced functional determinant detL is
UV divergent, we do not need to invoke any renormalisation to evaluate the differenced
free energy2. It is also worth noting that in higher dimensions, the expansion (3.7) con-

1Suitably IR regulated if ⌃ is non-compact.
2Note that since detL is UV divergent, �F is not necessarily the same as a difference of separately

renormalised free energies on (⌃, g) and (⌃, ḡ), which could contain renormalisation ambiguities that
render it unphysical.
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tains non-topological curvature invariants of (⌃, g); thus obtaining a UV-finite free energy
difference would rely on a careful matching of these invariants on (⌃, g) and (⌃, ḡ) (in
contrast with the heuristic expectation that “energy differences are always UV finite”). It
turns out that choosing (⌃, g) and (⌃, ḡ) to have the same volume and topology renders
the differenced free energy a UV-finite object for general (2+1)-dimensional ultrastatic
setups — not just the free theories considered here. This will be shown later in Chapter 4.
The mass and temperature dependence can be factored out of the heat kernels using (3.5)
to give

��F = �

Z
1

0

dt

t
e
�M

2
t
⇥(T 2t)�KL(t), (3.8)

where the sum over Matsubara frequencies yields

⇥(⇣) =
1X

n=�1

e
�(2⇡)

2
(n��+1/2)

2
⇣ . (3.9)

Now we specialise to our case of interest. Ultimately, we wish to take (⌃, g) to
be a deformation of flat space, (⌃, ḡ). Since these are two dimensional we introduce
conformally flat coordinates xi, in terms of which the metrics on g and ḡ take the form

g = e
2f(x)�ijdx

i
dxj , ḡ = �ijdx

i
dxj. (3.10)

In order to have good control over the spectrum of L (which is essential for computing
the heat kernel), we compactify these to tori (T2, gd), (T2, ḡd) via the identifications xi ⇠
xi

+ di with d1 = d and d2 = rd. We consider a family of deformations fd(x) so that as
d ! 1 (with r fixed) we recover (3.10) with the xi uncompactified. Moreover, at any
finite d, we may choose fd such that Vol[gd] = Vol[ḡd]. By the arguments above, this
condition will ensure that for every d, the free energy difference between the deformed
and flat tori will be UV finite.3

Our object of interest is the free energy difference with this IR regulator removed:

��F1[f ] ⌘ � lim
d!1

Z
1

0

dt

t
�KL[fd; d](t), (3.11)

with �KL[fd; d](t) ⌘ KL[fd; d](t) � KL[0; d](t). For notational convenience we will now
suppress the arguments of these functionals and drop the subscripts d on fd and 1
on �F1. Using (3.5), we finally obtain

��F [f ] = � lim
d!1

Z
1

0

dt

t
e
�M

2
t
⇥(T 2t)�KL(t). (3.12)

3For finite d one may choose between periodic and antiperiodic boundary conditions for the fermion on
the torus cycles; since our torus is only an IR regulator, and this distinction vanishes in the limit d!1,
we take the (simpler) periodic boundary conditions.
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3.2 Perturbation Theory

For this section, we consider the case where (⌃, ḡ) is compact, homogeneous and of arbi-
trary topology and ⌃ = ⌃. The expression (3.8) for the differenced free energy in terms
of the heat kernel of L is convenient because it simply requires computing the variation
in the spectrum of L as the spatial geometry g is varied:

�KL(t) = Tr(e
�tL

)� Tr(e
�tL

) =

X

I

⇣
e
�t�I � e

�t�̄I

⌘
, (3.13)

where I indexes the eigenvalues of L and L. In this section, we will take the metric
on (⌃, g) to be conformal to (⌃, ḡ):

g = e
2f ḡ, (3.14)

where f is some scalar field on ⌃. We expand f = "f (1)
+ "2f (2)

+ O("3); the reference
metric corresponds to taking " = 0. The volume-preservation condition thus requires
that4 Z

d
2x
p
ḡ f (1)

= 0 and
Z

d
2x
p
ḡ

✓⇣
f (1)

⌘2
+ f (2)

◆
= 0. (3.15)

Similarly, we write the resulting expansion of L and of its eigenvalues �I and eigenvec-
tors hI as

L = L+ "L(1)
+ "2L(2)

+O("3), (3.16)

hI = h̄I + "h(1)

I
+ "2h(2)

I
+O("3), (3.17)

�I = �̄I + "�(1)
I

+ "2�(2)
I

+O("3). (3.18)

Hence from (3.13), the perturbed heat kernel is

�KL(t) = "�K(1)
(t) + "2�K(2)

(t) +O("3), (3.19)

where

�K(1)
(t) = �t

X

I

e
��̄I t�(1)

I
, and �K(2)

(t) = t
X

I

e
��̄I t

✓
t

2

⇣
�(1)
I

⌘2
� �(2)

I

◆
. (3.20)

Homogeneity of (⌃, ḡ) implies that the leading variation of �KL is quadratic5, so �K(1)
=

0 which we indeed find shortly. Now, defining the matrix elements

L(n)

IJ
⌘
D
h̄I

���L(n)

���h̄J

E
⌘
Z

d
2x
p
ḡ h̄⇤

I
L(n)h̄J , (3.21)

4The reason for giving f a non-trivial expansion in ", rather than just defining " via f = "f
(1) exactly,

is that the second-order volume preservation constraint fixes f
(1) = 0 exactly unless a non-zero f

(2) is
turned on as well.

5See Section 4.1 for further details
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a standard consistency condition in degenerate perturbation theory requires that L(1)

IJ
be

diagonal on any degenerate subspaces of L (that is, we must have L(1)

IJ
= 0 for any I, J

with I 6= J but �̄I = �̄J)6. Then standard perturbation theory yields the perturbations
of the eigenvalues:

�(1)
I

= L(1)

II
, �(2)

I
=

X

J

�̄J 6=�̄I

L(1)

IJ
L(1)

JI

�̄I � �̄J
+ L(2)

II
. (3.22)

It is important to note that while consistency of the perturbation theory requires an appro-
priate choice of the unperturbed eigenfunctions h̄I the final expression for the heat kernel
is insensitive to this choice. To see this, let us write the index I as the pair (`,m), with `
labeling each degenerate subspace of degeneracy b` and m indexing its elements7. Then
we may relate the eigenfunctions h̄`,m to any other basis h̃`,m by a unitary transformation
on each degenerate subspace:

h̄`,m =

X

m0

c`
m0mh̃`,m0 , (3.23)

where c`
m0m are the components of a unitary matrix chosen to ensure that L(1)

`,m,`,m0 = 0

for m 6= m0. We then have

L(n)

`,`0 = (c`)† eL(n)

`,`0c
`
0
, where eL(n)

`,m,`0,m0 ⌘
D
h̃`m
���L(n)

���h̃`0,m0

E
, (3.24)

where bold characters denote matrices on the degenerate subspaces, so that e.g. c` is
the b`⇥ b`-dimensional matrix with elements c`

m0m, L(1)

`,`0 is the b`⇥ b`0-dimensional matrix
with elements L(1)

`,m,`0,m0 , etc. Hence,

�K(1)
= �t

X

`

e
��̄`ttr

⇣
L(1)

`,`

⌘
= �t

X

`

e
��̄`ttr

⇣
eL(1)

`,`

⌘
(3.25)

with the final expression following from the basis-independence of the trace. Likewise, we
have

�K(2)
= t

1X

`

e
��̄`t

2

64
t

2

X

m

⇣
L(1)

`,m,`,m

⌘2
� tr

0

@L(2)

`,`
+

X

`0,`0 6=`

L(1)

`,`0L
(1)

`0,`

�̄` � �̄`0

1

A

3

75 , (3.26)

6Should L
(1) not be sufficient to break all degeneracy, then L

(2)
IJ must be diagonal on any remaining de-

generate subspaces, and so on to higher orders. Here we will only need to worry about the diagonalisation
of L(1).

7This choice of labels is of course in analogy with the indexing of the spherical harmonics Y`,m, which
are eigenfunctions of the Laplacian on the round sphere with degenerate eigenvalues �`, but this discussion
is completely general.
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but since L(1)

`,`
is required to be diagonal, the first sum in the square brackets can be

written simply as Tr((L(1)

`,`
)
2
). Then again using (3.24) and cyclicity of the trace, we find

that

�K(2)
= t
X

`

e
��̄`ttr

2

4 t

2

⇣
eL(1)

`,`

⌘2
� eL(2)

`,`
�
X

`0,`0 6=`

eL(1)

`,`0
eL(1)

`0,`

�̄` � �̄`0

3

5 . (3.27)

All dependence on c` has vanished due to the traces, and hence for the purposes of
computing the heat kernel we may compute the matrix elements eL(n)

`,m,`0,m0 in any desired
basis h̃`,m.

3.3 Results

We now specialise the case where (⌃, ḡ) is a flat torus as described at the end of Section 3.1.
In this case, the operators L are given explicitly in terms of f as

Ls = �e�2f

⇣
r2

+ 2⇠(r2

f)
⌘
, (3.28a)

Lf = Ls|⇠=1/4 � e
�2f

 
i ?̄ (df ^ d)� (rif)2

4

!
, (3.28b)

with r and ?̄ the covariant derivative and Hodge dual on the flat background f = 0, and
the subscripts s and f denoting the scalar and fermion.

In order to perform our computations we Fourier decompose the perturbation

f (1)
(x) =

(2⇡)2

rd2

X

N

f̃ (1)

N e
2⇡i(n1x

1
+n2x

2
/r)/d, (3.29)

!
Z

d
2k f̃ (1)

(k)eik·x as d!1, (3.30)

where the sum runs over all pairs of integers N = {n1, n2}, and the second line defines ki =
limd!1 2⇡ni/di.

An explicit calculation on the torus for fixed d reveals that (for both the scalar
and fermion) while the eigenvalues are indeed shifted at first order in ", their contribution
to the heat kernel, �K(1), vanishes. The leading-order perturbation to the heat kernel
is thus given by the second-order term �K(2). A lengthy but ultimately straightforward
calculation yields the finite-d expressions presented in Appendix A.4. In the limit d!1,
these become

�K(2)
(t) = t

Z
d
2k k4

���f̃ (1)
(k)
���
2

I(k2t) (3.31)
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with k = |k|,

Is(⇣) = �
⇡

4⇣2

2

46 + ⇣(1� 8⇠)�
 
6 + 2⇣(1� 4⇠) +

⇣2

2
(1� 4⇠)2

!
F
 p

⇣

2

!3

5 , (3.32a)

If(⇣) =
⇡

4⇣2

2

4(6 + ⇣)F
 p

⇣

2

!
� 6

3

5 , (3.32b)

and F(⇣) = ⇣�1
e
�⇣

2
R
⇣

0
d⇣ 0 e(⇣

0
)
2 . Thus, using (3.12) we find

�F = �"2
Z

d
2k a(k, T )

���f̃ (1)
(k)
���
2

, (3.33)

with
a(k, T ) ⌘ ��Tk4

Z
1

0

dt e�M
2
t
⇥(T 2t)I(k2t). (3.34)

A few comments are in order. Firstly, we see the leading variation in �F is quadratic
in ". Next, as d!1 the volume constraint Vol[gd] = Vol[ḡd] becomes the condition that
the variation of the volume

R
d
2x
p
g vanishes; for f (1) this simply imposes no constant

Fourier component. We have that I(⇣) is finite and ⇥(⇣) is O(⇣�1/2
) at small ⇣, and

thus �F is UV finite. Likewise, since I(⇣) and ⇥(⇣) are finite at large ⇣, �F is also
IR finite for M > 0; in fact, the large-⇣ decay of I(⇣) also implies IR finiteness in the
massless case M = 0 for both the fermion and minimally-coupled scalar (⇠ = 0)8. Finally,
a key physical point is that �I(⇣) < 0 for all ⇣ > 0 (and all ⇠ for the scalar). This can
be seen by explicitly plotting it9. Noting that ��Is(⇣) is a concave quadratic in ⇠ for
each ⇣, we can deduce negativity from a plot of its minimum value. This is presented,
along with ��If(⇣), in Figure 3.1. Because ⇥(⇣) > 0, the negativity of �I(⇣) implies that
for any (non-constant) f the free energy difference is strictly negative to leading order
in ": �F < 0.

The form of the expression (3.34), along with the asymptotic behaviours of ⇥(⇣)

and I(⇣), allows for the derivation of some scaling relations. Specifically, defining `M =

~/(cM) to be the (reduced) Compton wavelength, `T = ~c/(kBT ) to be a thermal wave-
length, and ` to be the characteristic length scale of f , �F scales as detailed in Table 3.1.
Thus, at small temperatures — in which �F becomes the energy difference �E — the
effect, as we observed for the classical Casimir Effect in Section 1.1, is a purely quantum
one: �E ⇠ �"2~c/` for `⌧ `M .

We note also that the small-temperature limit `T � max[`, `M ] is analytically

8For the massless scalar with non-minimal coupling ⇠ 6= 0, �Fs is IR divergent since the flat space
zero eigenvalue acquires a negative contribution due to the scalar curvature coupling. This is reflected in
the ln(`M/`) corrections mentioned in Table 3.1.

9It is possible to prove that If < 0 without resorting to plotting it; we have not been able to find as
elegant of a proof for Is.
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Figure 3.1: The plots of the �max⇠ �Is/f(⇣)⇣coth⇣ with �Is(⇣) given by (3.32a) (and � =

�1/2) plotted in blue and �If(⇣) given by (3.32b) (and � = +1) plotted in magenta.

��Fs/("2~c/`) ��Ff/("2~c/`)
`T � `� `M `M/` `M/`
`T � `M � ` 1 1

`� `T � `M `M/` `M/`
`� `M � `T `2

M
/(``T ) `T/`

`M � `T � ` 1 1

`M � `� `T `/`T `T/`

Table 3.1: The scaling of �F for the minimally-coupled free scalar field and Dirac fermion
for different relative magnitudes of `, `M , and `T . Note that for the non-minimally-coupled
scalar (i.e. ⇠ 6= 0), factors of ln(`M/`) appear in the last two rows.

tractable. Poisson resummation gives that ⇥(T 2t) = �/
p
4⇡t up to terms that are expo-

nentially suppressed in �2/t, allowing us to compute a(k) explicitly as10
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5 , (3.35a)
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+

 
1� 8M2

k2
� 48M4

k4

!
arccot

✓
2M

k

◆3

5 . (3.35b)

10In the massless limit these agree precisely with the energy in Equation (1.69) for the massless scalar
CFT (⇠ = 1/8) and free Dirac fermion CFT (with their appropriate central charges cs = (3/2)/(4⇡)2 and
cf = 3/(4⇡)2 respectively).
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3.4 Membrane Crumpling

In this chapter, we have shown that free (2+1)-dimensional relativistic degrees of freedom
on (small) deformations of flat space that have UV-finite free energy difference from
flat space always energetically prefer the deformation, for any temperature. Let us now
consider how this effect competes with a membrane’s bending energy (which at zero
temperature favours a flat geometry) if it carries such degrees of freedom.

Consider three-dimensional flat space with Cartesian coordinates {X i, Z} and
parametrise a surface in it by X i

= xi
+ "2vi(xj

), Z = "h(xi
). Then for small " and

suitable vi, the intrinsic metric on the membrane in the coordinates xi is as in Equa-
tion (3.10) with �r2

f = "2det(@i@jh)11. The bending energy due to extrinsic curvature
is

H = "2

Z
d
2x(r2

h)2, (3.36)

where  is the bending rigidity. When the membrane is deformed from flat over a region
of characteristic size ` ⌧ `M , then the (positive) bending energy EB and (negative)
vacuum energy EQ (at zero temperature) for N free relativistic quantum fields behave
parametrically as

EB ⇠ "2, EQ ⇠ �"4N
~c
`
. (3.37)

The ground state equilibrium configuration of the membrane should minimise E = EB +

EQ. At first glance, it may seem that, because EB is lower order in " than EQ, a pertur-
bative analysis guarantees that E > 0 for any deformation of flat space. The fact that EB

and EQ have different scale dependence, however, with EQ dominating at sufficiently-
small scales, invalidates this argument. Defining `crumple ⌘ N~c/ and noting that "
and `crumple/` are independent, if `/`crumple . "2 ⌧ 1 then EQ can be comparable to
and even dominate EB while still being in the perturbative regime. Whether or not E

actually decreases for (sufficiently-large) deformations of flat space — thus implying that
the membrane’s equilibrium configuration is crumpled at a sufficiently-small scale relative
to `crumple — depends on non-linear and higher-derivative contributions to its bending
energy and whether or not these are relevant at scales up to `crumple at amplitudes O("4).
Thus, `crumple defines a scale below which a membrane has the potential to crumple.

For illustrative purposes, we will consider the case of a graphene monolayer. In this
setup, the bending rigidity is  ⇠ 1 eV, the unit cell has size `cell ⇠ 1 Å, and the relativistic
fields are four Dirac fermions with effective speed c ⇠ clight/300, with clight the actual
speed of light [36, 41, 87, 88]. Our effective membrane description is valid for ` � `cell,
while from Table 3.1 the scaling properties (3.37) are valid at room temperature for `⌧
`T=300K ⇠ 10

3`cell. Computing the potential crumpling scale, we find `crumple ⇠ 10`cell.

11The constant part of f is not determined by this relation, thus we may choose it so that f
(1) has no

constant Fourier component.
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This is sufficiently close to `cell to make our effective membrane description suspect. Hence,
while this naïve analysis is insufficient to imply the existence of a crumpled equilibrium
configuration for graphene, it does indicate that long range quantum properties of the
conduction electrons in graphene are important for understanding the energetics of its
equilibrium monolayers even at room temperature; such effects are presumably difficult
to incorporate into Monte Carlo or ab initio quantum simulations. Indeed, it is intriguing
to note that for freely-suspended graphene at room temperature, low-amplitude ripples
are seen on short scales ⇠ 50 Å, close to our `crumple [44].

One of the obstructions to EQ competing with EB here is the suppression of EQ by
a further factor "2. For spherical (as opposed to planar) membranes, the vacuum energy
due an embedding comes in at the same order in " as the bending energy. Thus, EQ may
have a better chance of outcompeting EB on a spherical graphene monolayer. A more
detailed analysis of this setup will be carried out in Section 5.1.

For now, we turn to the question of whether, as with the free-field case we have con-
sidered in this chapter, a UV-finite free energy difference may be defined (and calculated)
for general (2+1)-dimensional QFTs.



Chapter 4

Free Energy Difference: A UV-Finite

Measure of Free Energy

The vacuum energy of a relativistic QFT on a static spacetime provides an energy measure
on the geometry. We might then ask what type of geometry a QFT prefers energetically.
An important subtlety is that the one-point function of the stress tensor must be renor-
malised, and this introduces ambiguity into the resulting energy. Typically, the leading
UV divergence in this VEV is removed and the ambiguity in the counterterm, a cos-
mological constant, is chosen so that the one-point function vanishes on flat spacetime.
However, there are subleading divergences which require local curvature counterterms to
remove. These counterterms trivially vanish on flat spacetime so their finite remainder
cannot be fixed by requiring that they vanish there. Thus, a notion of energy, or equiva-
lently at finite temperature, free energy, in curved spacetime is ambiguous unless one has
a UV-complete theory. Worse still, even on flat space if the theory is renormalised to have
vanishing energy at zero temperature, then the total free energy at finite temperature will
be IR divergent due to infinite volume, leading one typically to work instead with free
energy density.

While the free energy is ambiguous, and on a non-compact space will generally be
infinite, we can instead — guided by the intuition provided by the free field case in the
previous chapter — consider the free energy difference between two spacetimes. We will
consider (2+1)-dimensional QFT on an ultrastatic spacetime, so that the free energy is
a functional of temperature and the two-space. For free scalar and fermion fields it was
shown in Chapter 3 that the difference in free energy between two spaces with the same
volume and topology is a physical quantity that is UV finite. Indeed, it may be computed
without any renormalisation in this free-field setting. Further, it was shown that the
free energy difference for a two-space that is a perturbation of flat space, relative to a flat
space, is both UV and IR finite and quadratic in the amplitude of the metric perturbation,
and for any deformation and mass and at all temperatures (and curvature coupling for
the scalar) the sign of the free energy variation was the same — flat space is energetically

65
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disfavoured. For a general unitary (2+1)-dimensional CFT the same energetic revulsion
to flat space was shown at zero temperature in Section 1.4.

In this chapter (based on [2]), we will extend the arguments of Chapter 3. Con-
sidering relativistic (2+1)-dimensional QFTs on ultrastatic spacetimes we will carefully
define a free energy difference for arbitrary deformations of flat space relative to flat space
itself and argue this is generally UV finite. This will also be done, analogously, for de-
formations of compact spaces, where UV finiteness requires the volume of the deformed
and undeformed spaces to be equal. For perturbations of flat space, and under reasonable
assumptions, it is quadratic in the amplitude of the perturbation and can be computed
from the linear response of the one-point function of the stress tensor to the perturbation,
as was shown in the particular case of zero-temperature CFTs in Section 1.4.

As an illustration, we will then review two uses of this free energy difference.
Firstly, an AdS/CFT calculation to compute this for holographic CFTs1 will be reviewed.
Computing the holographic stress tensor one-point function following Section 1.2 gives a
similar result to that of the free field theories, namely that the leading variation of free
energy is negative for any (non-trivial) perturbation and at any temperature. After a
suitable normalisation by central charge, there is a rather remarkable similarity between
the strongly-coupled holographic CFT free energy variation and that of the free fermion
CFT (the massless Dirac case computed in Chapter 3). In the short-wavelength limit
(relative to the thermal scale) this perturbative holographic calculation yields the universal
zero-temperature result for a general CFT in Section 1.4. Secondly, a calculation of the
(opposite) long-wavelength limit in the general (2+1)-dimensional finite temperature QFT
case will be reviewed. In the holographic case, this limit can be solved using fluid/gravity
methods where the behaviour is governed by hydrodynamics [89, 90]. More generally, we
expect any (2+1)-dimensional QFT at finite temperature in our ultrastatic setting to have
a hydrostatic description. This suggests one may understand the free energy variation
in terms of a correction to the ideal-fluid stress tensor. We will identify the leading
correction as a four-derivative curvature term. In this hydrostatic, or low-curvature,
expansion setting, the free energy difference from flat space may be solved for in terms of
the integral of the squared Ricci scalar of the deformed space, with a coefficient that in
all the theories discussed above has definite sign. This implies that weakly-curved two-
spaces are favoured over flat two-spaces — even in the regime where the deformation is
not described by a small-amplitude metric perturbation.

For the free theories discussed in Chapter 3 we will then explicitly confirm this
weak-curvature limit which follows simply from the heat kernel expansion (2.15) of the
determinant that yields the partition function.

The plan for the chapter is as follows. In Section 4.1 we will define the UV-
finite free energy difference described above for general (2+1)-dimensional QFTs. We will

1As defined in Section 1.3.
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show that for perturbations of flat space the leading variation in free energy is quadratic
in the perturbation amplitude. Then, in Section 4.2 we will review a computation of
this quadratic variation for holographic CFTs at finite temperature, the derivation of
the fluid/gravity limit for the free energy difference and an argument that for general
(2+1)-dimensional QFTs the effect for low-curvature deformations of flat space can be
understood from hydrostatics. Finally, in Section 4.3 these low-curvature results will be
shown to be true for free fields. We will conclude with a summary and discussion of the
physical interpretation of our free energy difference observable in Section 4.4.

4.1 Free Energy Variation

We consider a relativistic (2+1)-dimensional QFT on a product of time with a static
Riemannian two-space, (⌃, g), in the finite temperature thermal vacuum state with tem-
perature T . Moving to Euclidean time, we may regard this quantum thermal system as
the QFT on the Riemannian geometry,

ds2 = ĝµ⌫dx
µ
dx⌫ = d⌧ 2 + gij(x)dx

i
dxj (4.1)

where ⌧ ⇠ ⌧ +� with � = 1/T . All (scalar) couplings are constant in spacetime, and held
fixed, and we do not turn on sources for any non-scalar operators (other than the stress
tensor). The partition function Z, which is a functional of gij and �, defines the thermal
vacuum free energy F as,

��F = lnZ[�, g] . (4.2)

Let us introduce a UV cutoff ⇤, and then write

Z[�, g] =

Z

⇤

D�e
�SE[�,g,�] (4.3)

with D� the integral over fields (obeying the thermal boundary conditions) and SE the
Euclidean action. The stress tensor one-point function of this theory in its thermal vac-
uum, defined as

hTµ⌫i = �
2p
ĝ

� lnZ

�ĝµ⌫
, (4.4)

is UV divergent without suitable renormalisation. Since the only inhomogeneous defor-
mation of the theory is due to the spatial geometry the divergences for a diffeomorphism-
invariant regulator are given by all possible local geometric tensors which are symmetric,
conserved and consistent with power counting, which in (2+1)-dimensions are a cosmo-
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logical term and an Einstein tensor term,

hTµ⌫iĝ = c1⇤
3ĝµ⌫ + c2⇤Ĝµ⌫ +O(⇤

0
), (4.5)

where Ĝµ⌫ is the Einstein tensor and c1,2 are dimensionless coefficients that depend on
the precise theory and its couplings, the nature of the cutoff and infrared mass scales.
For example, in a theory with a mass m, they will be functions going as c1,2(

m

⇤
) which

tend smoothly to a constant as ⇤ ! 1 (keeping the temperature and mass fixed). The
leading divergence going as ⇠ ⇤

3 leads to the famous ‘cosmological constant’ problem, but
there is also the subleading curvature-induced divergence going as ⇠ ⇤ too. The stress
tensor is renormalised by suitable local geometric counterterms in the Euclidean action
with coefficients that diverge as the cutoff is removed, in this case a cosmological and
an Einstein-Hilbert term,

R
d
3x
p
ĝ
⇣
a1⇤3 � 1

2
a2⇤R̂

⌘
, so that a1,2(

m

⇤
) are dimensionless

functions. In a renormalisable theory, by tuning these as ⇤ ! 1 we may remove the
divergences in the stress tensor one-point function (and other correlators) provided the
limits of ⇤3

(c1 � a1) and ⇤ (c2 � a2) as ⇤!1 exist and are finite. However, that leaves
a freedom in a1,2 corresponding to adding a finite contribution of these counterterms to
the action, i.e. a1 ! a1+↵1⇤

�3 and a2 ! a2+↵2⇤
�1 for any constants ↵1,2. Thus, one is

left with a finite ambiguity in the stress tensor given by these two local terms. In curved
spacetime QFT, one usually chooses a prescription to ensure that at zero temperature
the stress tensor vanishes in flat spacetime, and this fixes the finite part associated to
the coefficient a1. However, since the Einstein-Hilbert term vanishes in flat space, there
is no canonical choice for the finite part of a2. Hence, the renormalised stress tensor,
while finite in the ⇤!1 limit, suffers ambiguity parameterised by these pure-geometric
counterterms in the action.2 Computing, for example, the energy of a static curved space
(⌃, g), such as a sphere, gives a finite but ambiguous result, which explicitly depends on
the nature of the UV physics. In such a situation the energy of a given space (⌃, g) could
be arbitrarily negative or positive depending on what finite counterterm contribution the
UV theory chooses. Of course, at finite temperature on a non-compact space, such as
the case of deformations of flat space that we are interested in here, the free energy will
generally be IR divergent due to the non-zero thermal free energy density being integrated
over an infinite volume.

However, as discussed in Chapter 3, we may consider the free energy difference,
�F , between the theory on the ultrastatic spacetime with compact space (⌃, g) and
a compact reference space (⌃, ḡ) of the same topology and volume, and at the same

2We note that these ambiguities do not arise in the case of a (2+1)-dimensional holographic CFT if
the theory is only deformed by the metric, as we consider in later Section 4.2. However, we emphasise
that the discussion above is for a general relativistic (2+1)-dimensional QFT.
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temperature:

���F [�, g, ḡ] = lnZ[�, g]� lnZ[�, ḡ]. (4.6)

As shown in Chapter 3, for free scalar and fermion (2+1)-dimensional theories this differ-
ence is UV finite and, hence, an unambiguous low-energy quantity that is independent of
details of the UV completion of the theory. Furthermore in the non-compact setting, for
perturbations of flat space, this difference relative to flat space is also IR finite.

We may understand this quantity is UV finite for more general (2+1)-dimensional
QFTs using the stress tensor divergence structure above. We begin with the case that
our geometries of interest, (⌃, g) and (⌃, ḡ), are compact, as this will illustrate the idea.
However, we are also interested in the case that (⌃, ḡ) is flat space, and (⌃, g) is a defor-
mation of it. In this non-compact case there is an added subtlety we shall address after
the compact discussion.

Take a smooth one-parameter family of (compact) geometries (⌃, g(")) with g(0) =

ḡ. In local coordinates the metric on (⌃, g(")) is gij(x; ") with gij(x; 0) = ḡij(x). We may
define �F (") to be the difference of the free energy of (⌃, g(")) to that of (⌃, ḡ). Then,
from the definition of the stress tensor, (4.4), its VEV determines the derivative of the
partition function and hence the thermal vacuum free energy F as we deform in the
parameter ", as

dF

d"
=

1

2

Z
d
2x
p
ghTijig(")

dgij

d"
. (4.7)

This is the generalisation of the fundamental thermodynamic relation, dF = �pdV , as is
appropriate for this fixed-temperature setup. The above expression and those that follow
are written covariantly in the two-dimensional geometry unless otherwise explicitly stated.
Here, we have assumed that the one-point function of the stress tensor is independent of
Euclidean time, as we expect for a good vacuum state, allowing us to perform the time
integral trivially. If this were not the case, the Lorentzian continuation of the vacuum
would be time dependent, as could happen for a free tachyonic scalar field. The Ricci scalar
of ultrastatic metrics is simply that of their spatial geometry and so, since all two-spaces
are Einstein, (2+1)-dimensional ultrastatic metrics have Ĝij = 0. Thus, substituting our
ultrastatic geometry into the general (2+1)-dimensional divergence structure, (4.5), we
see that in our situation of interest the divergence in the spatial components of the stress
tensor becomes

hTijig = c1⇤
3gij +O(⇤

0
) (4.8)

and there is no contribution from the term involving c2. For our ultrastatic geometry
the corresponding Einstein-Hilbert counterterm simply becomes proportional to the Euler



70 Chapter 4. Free Energy Difference: A UV-Finite Measure of Free Energy

characteristic of ⌃, and hence in the variation of lnZ gives no contribution as the topology
of (⌃, g(")) is invariant in ". Thus, we see

dF

d"
= �c1⇤3

d

d"

✓Z
d
2x
p
g

◆
+O(⇤

0
) (4.9)

and, integrating along the flow,

�F = �c1⇤3
�
Vol[g]� Vol[ḡ]

�
+O(⇤

0
) (4.10)

and so provided the volume of the space (⌃, g), Vol[g], and reference geometry, Vol[ḡ], are
equal then �F is manifestly finite in the ⇤!1 limit. In computing �F one can use the
regularised (with a diffeomorphism-invariant regulator) but unrenormalised stress tensor
and the result will have no ambiguity due to the finite part of a1,2 cancelling entirely in
the difference.

We now turn our focus to the case where the reference space (⌃, ḡ) is flat Eu-
clidean two-space, and (⌃, g) is a perturbative metric deformation of this. This may be
computed, as in Chapter 3, by considering a perturbation on a compactified space, such
as a torus, and then taking the torus size to infinity keeping the perturbation scale fixed.
Alternatively, as we will show later, one may compute directly in the infinite volume set-
ting. Thus, we must now translate the argument above to this non-compact setting where
we must be more careful in handling the infinite volumes of (⌃, g) and (⌃, ḡ).

We begin in a similar manner, by taking a one parameter family of geometries
(⌃, g(")) such that (⌃, g(0)) = (⌃, ḡ) is flat space. Again, we take local coordinates
and write gij(x; ") with gij(x; 0) = ḡij(x). The subtlety is that the coordinates on the
manifold are fixed, and we wish to present both the geometries (⌃, g) and (⌃, ḡ) in these
same coordinates. Thus, we have two metrics and only one coordinate freedom. While the
geometry (⌃, ḡ) is fixed as flat space, the explicit metric components may be evolved in the
flow parameter " by a diffeomorphism relative to those of (⌃, g) and this may potentially
have physical effect. Thus, we write this metric as ḡij(x; ") with ḡij(x; 0) = ḡij(x). Hence,

dḡij(x; ")

d"
= 2r(ivj), (4.11)

where r is the connection of ḡij(") and vi(x, ") is a smooth one parameter family of vector
fields that generate the diffeomorphisms on ḡij(") along the flow.

We assume the vacuum on the reference flat space is static so we may use the
earlier relation (4.7). Further, we assume the spatial components of the stress tensor
one-point function on flat space are simply determined by the homogeneous pressure p,
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so

hTijiḡ = p ḡij(x; ") (4.12)

at the point " in the flow. Note that if the one-point function is not renormalised, the UV
divergence will be the same as in the earlier Equation (4.8) so p = c1⇤3

+ O(⇤
0
). Then

using Equation (4.7) we have

dF̄

d"
= �p d

d"
Vol[ḡ(")], (4.13)

where the volume functional is defined in terms of the metric ḡij(x, ") as Vol[ḡ(")] =
R
d
2x
p

ḡ("). Now consider this (divergent) volume functional on the flat space (⌃, ḡ). In
the compact case the volume is fixed for a given (⌃, ḡ) and cannot depend on the choice
of coordinates. However, in this non-compact deformed flat-space setting it may not be
fixed if ‘large diffeomorphisms’ are allowed. From its definition, we see that

d

d"
Vol[ḡ(")] =

Z
d
2x
p

ḡ(")riv
i
=

Z

@1M

dSiv
i, (4.14)

with dSi the outward directed length element of the asymptotic boundary, @1M, which is
understood as being defined via a suitable limit. Thus, if diffeomorphisms are allowed such
that this boundary term does not vanish then the variation of Vol[ḡ(")] in the parameter
" may be finite and non-vanishing. One could disallow such diffeomorphisms, but this
would put an unreasonably strong constraint on the allowed geometries (⌃, g). Hence, we
learn that the reference flat space free energy we subtract in the non-compact case may
have a coordinate dependence in ", although this is only through the variation of volume
due to large diffeomorphisms along the flow ".

An explicit example may serve to illustrate this further. Consider the flat reference
metric written in polar coordinates, ḡij(x)dxi

dxj
= dr2 + r2d✓2. Then we may deform

this along the flow by the large diffeomorphism

⇢2 = r2
 
1 + 2v(")r2 + r4

1 + r4

!
, ḡij(x, ")dx

i
dxj

=

✓
@⇢(r, ")

@r

◆2

dr2 + ⇢(r, ")2d✓2 , (4.15)

provided v(") > � 4

3
p
3
. This is still flat space. However, if we consider the variation of

the volume in " we find that

d

d"
Vol(ḡ, ") =

d

d"

Z
1

0

dr

Z
2⇡

0

d✓⇢(r, ")
@⇢(r, ")

@r
= 2⇡

Z
1

0

dr

 
4r3v0(")

(1 + r4)2

!
= 2⇡v0(") .

(4.16)

Thus, the coordinate transformation ⇢2 = r2 + 2v(") + O(
1

r
) ‘stretches’ the space (⌃, ḡ)
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relative to the fixed coordinate chart. While the volume itself is infinite, its variation in
" is finite and non-vanishing.

Now, we may proceed as before to find the UV behaviour, but being careful to
note in this non-compact case that the free energy functional evaluated on both (⌃, g("))

and the flat reference space depend on the flow parameter, " i.e. �F (") = � lnZ[g(")]

and �F̄ (") = � lnZ[ḡ(")] so that �F (") = F (") � F̄ ("). We have the same expression
as previously in Equation (4.9) for the UV divergence of dF (")/d", but now also have a
similar expression for dF̄ (")/d" leading to

d�F

d"
= �c1⇤3

✓
d

d"
Vol[g(")]� d

d"
Vol[ḡ(")]

◆
+O(⇤

0
) . (4.17)

While the reference geometry is fixed to be flat space, we may choose ‘large diffeomor-
phisms’ to adjust the change in volume dVol[ḡ(")]/d" to equal that of the geometry of
interest dVol[g(")]/d" — doing so then renders �F (") to be UV finite. Furthermore, since
the variation of the reference free energy F̄ (") only depends on the volume variation, as
we saw in Equation (4.13), this completely fixes the finite part of the reference space sub-
traction too. We have seen in the explicit example above that, by an appropriate choice
of the function v(") in Equation (4.15), we may always solve this condition for flat space
(at least in this example, we should be near enough to " = 0 that v(") > � 4

3
p
3

remains
true, but, of course, one could use other choices of ‘large diffeomorphism’). It may be
interesting to explore this for other non-compact spaces.

Thus, while in the compact case we require the volume of (⌃, g) and (⌃, ḡ) to be
equal to ensure a UV-finite free energy difference, the non-compact case is rather different.
Due to ‘large diffeomorphisms’ there is no volume constraint on the geometry (⌃, g) —
there could not be as the volumes of both (⌃, g) and (⌃, ḡ) are infinite and not well
defined. The key point is that these ‘large diffeomorphisms’ may be used to subtract the
‘correctly stretched’ flat reference geometry, (⌃, ḡ), in order to ensure �F is UV finite.
Note that had we not stretched the geometry (⌃, ḡ) appropriately, in order to have a
UV-finite free energy difference we would have had to restrict to deformations such that
dVol[g(")]/d" vanishes, which would be an unreasonably strong restriction on the allowed
deformed geometries gij(x, ") given a starting flat reference geometry metric ḡij(x).

Perhaps another more physical way to say this is as follows. In the compact case
one must compare a (⌃, g) and (⌃, ḡ) with the same volume, but there is always the
freedom to scale one or the other to achieve this volume condition. Such freedom should
also be present in the flat non-compact case. Since its volume is infinite, it does not make
much sense to scale the space, but instead this freedom to ‘match’ the two spaces (⌃, g)

and (⌃, ḡ) appropriately is implemented by these ‘large diffeomorphisms’ or ‘stretching’.
In Chapter 3, we found in the free field case that �F ⇠ O("2) and hence is

quadratic in the metric perturbation to flat space, rather than being linear which, naïvely,
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one might have expected. We shall now show how to compute �F generally for pertur-
bations of flat space from the variation of the stress tensor, and, in particular, we shall
see why the variation is quadratic. We also treat the compact case, which we will see may
also lead to the same quadratic behaviour.

Since the spatial geometry is two dimensional, we may choose coordinates so that
we write the deformation of the geometry, (⌃, g(")), as a Weyl deformation of the reference
geometry presented as ḡij(x), so

gij(x; ") = e
2f(x;")ḡij(x), (4.18)

where f is a one parameter family of smooth functions on ⌃ with f(x; 0) = 0 so that
g(0) = ḡ. We now expand about " = 0 as

f(x) = " f (1)
(x) + "2f (2)

(x) +O("3) . (4.19)

In response to this deformation, we write the perturbation to the VEV of the spatial part
of the stress tensor due to this metric deformation as

hTijig(") = �̄ij(x) + " ��ij(x) +O("2) . (4.20)

Following the discussion above, one may take this one-point function to be either renor-
malised or not, as any divergent parts will cancel in the final result. We view ��ij(x) as
the linear response of the spatial stress tensor to the metric deformation. Thus, we think
of ��ij as a linear functional of f (1), while it is of course independent of the higher orders
of the deformation, such as f (2). Again we assume the vacuum is static, in the sense that
hTijig(") has only spatial dependence and no dependence on (Euclidean) time. Then we
may use the earlier relation (4.7). We also assume that (⌃, ḡ) has a suitable translation
invariance so that �̄i

i
= �̄ij ḡij = const. We would certainly expect this for (⌃, ḡ) being

flat spacetime (when �̄i

i
= 2p) but also for other homogeneous (not necessarily isotropic)

spaces such as tori and spheres. We note that this disallows ‘striped’ phases of vacuum
(see for example [91]) although in the absence of sources for operators (other than a
curved metric) one would not expect the homogeneous vacuum to spontaneously break
this unless the theory possessed a tachyonic direction which would render it ill defined on
flat spacetime (although perhaps valid on suitably small compact spaces). Following our
assumptions, we use Equation (4.7) to write

dF

d"
= �1

2
�̄i

i

✓
d

d"
Vol[g(")]

◆
+ 2"

Z
d
2x
p
ḡ

✓⇣
f (1)

⌘2
�̄i

i
� 1

2
f (1) ��i

i

◆
+O

�
"2
�

(4.21)

where indices are raised and lowered using the reference metric ḡij(x). In the compact
case we choose the volume of (⌃, g(")) to equal that of (⌃, ḡ) to ensure UV finiteness, so
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dVol[g(")]/d" = 0, so we find

�F (") = "2
Z

d
2x
p
ḡ

✓⇣
f (1)

⌘2
�̄i

i
� 1

2
f (1) ��i

i

◆
+O

�
"3
�
. (4.22)

However, following our discussion above we obtain precisely the same expression in the
non-compact case for deformations of flat space, since for UV finiteness we choose ap-
propriate ‘large diffeomorphisms’ for ḡij(x, ") so that dVol[ḡ(")]/d" equals dVol[g(")]/d",
and F̄ (") evolves as in Equation (4.13). Hence, for deformations of both homogeneous
compact spaces and flat space, where the vacuum of the undeformed space is static and
has constant �̄i

i
, we arrive at a quadratic variation of our free energy difference. This

is determined in terms of the linear deformation of the metric, f (1), both explicitly and
implicitly through the response of the spatial stress components ��ij. If we chose to use
the unrenormalised stress tensor one-point function, from earlier Equation (4.8) we would
find that �̄i

i
= 2c1⇤3

+O(⇤
0
) and ��i

i
= 4c1⇤3f (1)

+O(⇤
0
), and hence the UV divergences

will cancel between the two terms above, leaving only a UV-finite result as expected. Note
that if we chose a reference geometry that was not homogeneous, and hence presumably
�̄i

i
would not be constant, then we would expect a linear variation in " instead. It is the

quadratic nature of the variation for homogeneous spaces that enables �F to potentially
have a definite sign.

We now specialise to the case of the reference space (⌃, ḡ) being flat space, and
choose natural coordinates so that ḡij = �ij. Then, we may decompose the leading metric
perturbation as a Fourier transform

f (1)
(x) =

Z
d
2k eikix

i
f̃(ki), (4.23)

where reality imposes f̃(�ki) = f̃(ki)?. On flat space the linear response of the trace of
the spatial stress tensor, ��i

i
, to the metric deformation is constrained by the rotational

and translational invariance. For a deformation by a single Fourier mode the response
will be proportional to that mode, with a coefficient depending on the wavevector ki only
through its magnitude, k =

p
kiki. Hence, the response for a general perturbation will be

��i

i
(x) =

Z
d
2k eikix

i
s(k)f̃(ki) (4.24)

and is characterised by the function s(k). Then, we may write the quadratic variation of
�F as,

�F (") = �"2
Z

d
2k a(k)

���f̃(ki)
���
2

+O
�
"3
�

(4.25)

where the function a(k) = (2⇡)2
�
1

2
s(k)� �̄i

i

�
characterises the variation, and again only

depends on the wavevector through its magnitude k. Note that as we have defined signs,
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modes which have positive a(k) give rise to a quadratic decrease in free energy relative to
flat space.

4.2 Review: Finite Temperature Holographic CFTs and
Hydrostatics

We now briefly review two calculations of the UV-finite free energy difference defined in
Section 4.1: firstly, a computation of the leading-order response of the free energy to a
small spatial deformation of a (2+1)-dimensional finite temperature holographic CFT on
flat space and, following that, the leading long-wavelength variation for a general (2+1)-
dimensional QFT that admits a hydrostatic description at finite temperature for weak
deformations of the spatial geometry from flat space. These calculations were performed
by my collaborators Krai Cheamsawat and Toby Wiseman [2].

Consider a (2+1)-dimensional holographic CFT on flat space. As explained in
Section 1.2, these theories admit a description in terms of solutions to Einstein’s equations
with a negative cosmological constant. Under some reasonable assumptions, the bulk dual
for a flat boundary at finite temperature T is planar AdS-Schwarzschild with metric

g(Sch)
AB

dxA
dxB

=
`2

z2

0

BB@

 
1�

✓
z

z0

◆3
!
d⌧ 2 + dx2

i
+

dz2

1�
⇣

z

z0

⌘3

1

CCA , (4.26)

where ` is the AdS length, z is the ‘radial’ coordinate, ⌧ ⇠ ⌧ + T�1 is the Euclidean time
coordinate, xi are local coordinates on the conformal boundary at z = 0 — where the
CFT is — and z0 = 3/(4⇡T ) is the position of the horizon. By taking flat space to be the
reference geometry with ḡij = �ij, considering Weyl perturbation,

gij(x; ") = e
2f(x;")�ij =

⇣
1 + 2"f (1)

(x)) +O("2)
⌘
�ij, (4.27)

to it, and finding the linear response of the bulk (and therefore the boundary stress tensor)
to this change in boundary metric it is found that the characteristic function of �F (4.25)
for a holographic CFT on flat space is

a(k, T ) =
⇡4cT
48

k3

✓
3k

4⇡T

◆�3

u3

✓
3k

4⇡T

◆
, (4.28)

where u3 is a dimensionless function determined by the ⇠ ⌘ z/z0 ! 0
+ asymptotics of a

function u(⇠),

u(⇠) ⇠ u0 �
k̃2

2
u0⇠

2
+

1

6
u3⇠

3
+O(⇠4), (4.29)
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Figure 4.1: Graph of the function a(k, T ) which characterises the quadratic variation of
the free energy difference from flat space, �F , normalised by the CFT central charge, cT ,
and by k3, against the dimensionless quantity 3k/(4⇡T ) for both the holographic CFT
(red curve) and free Dirac fermion CFT (blue curve).

that is given by solving the ODE

u00
(⇠)�

 
16� 24⇠3 + 36⇠6 � ⇠9
8� 6⇠3 � 3⇠6 + ⇠9

!
u0
(⇠)

⇠
� k̃2

1� ⇠3u(⇠) = 0, (4.30)

where k̃ ⌘ z0k, subject to boundary conditions corresponding to regularity of the metric at
the horizon and matching the boundary geometry of the CFT at ⇠ = 0. To determine u3,
and thus a(k, T ), the ODE (4.30) must be solved. This is possible analytically in the
low-temperature regime T ! 0

+, giving that u3(k̃) ⇠ 2k̃3 and hence a characteristic
function that agrees with the previous result for zero-temperature CFTs (1.69). Away
from T = 0, (4.30) can be solved numerically to give a characteristic function as plotted
in Figure 4.1.

The numerically determined a(k, T )/(cTk3
) for the holographic CFT is plotted

as a function of k̃ = 3k/(4⇡T ) in Figure 4.1. Plotted as well is the a(k, T )/(cTk3
) for

the massless Dirac fermion as a function of k̃ = 3k/(4⇡T ), determined by numerically
integrating (3.34) with I(k2t) given by (3.32b) and cT = cf = 3/(4⇡)2. As is expected,
these two curves match in the low-temperature limit k̃ ! 1, where the universal CFT
behaviour is observed. Two further interesting observations can also be made. Firstly, the
characteristic function for the holographic CFT is positive for all k̃ and thus the quadratic
variation of �F due to spatial perturbations is negative for all finite temperature strongly-
coupled holographic CFTs on flat space — thereby extending the analogous result for free
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theories shown in Chapter 3. Secondly, the two curves in Figure 4.1, and therefore �F for
the Dirac fermion and a strong-coupled holographic CFT, are remarkably similar. They
are so similar it is tempting to suggest that they are identical and that any difference
between them is caused by numerical error. However, the k̃ ! 0 behaviour of these
curves can be deduced analytically (4.31) and doing so shows that the curves differ by
a factor of 45/48 in this limit and so are indeed distinct. Nevertheless, the similarity is
intriguing in itself. A priori, there is no reason to think these curves should be so similar
— they arise from two theories that are qualitatively very different; one from a strongly-
coupled field theory with a large number of degrees of freedom and the other from a
free theory with a single degree of freedom. This similarity will be explored further in
Chapter 6.

As with previous holographic results, these calculations suggest another avenue for
progress. Much like the low-temperature limit, the defining ODE for u (4.30) admits an
analytic solution order by order in k̃ as k̃ ! 0

+. This corresponds to weak deformations of
the spatial geometry i.e. where the curvature length scale is much larger than the thermal
one. Solving the ODE (4.30) in this limit and taking k/T ⌧ 1 in the characteristic
function for the free scalar and fermion3 gives that

a(k, T ) =
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coth

✓
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k4, scalar
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⇡3

45T
k4, massless fermion

cT
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48T
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9
>>>>>>>>>>=

>>>>>>>>>>;

+O(k6
). (4.31)

Common to each of these theories is the fact that a ⇠ k4. This suggests that in each
case the non-trivial change to the stress tensor induced by the deformation involves four-
derivative curvature corrections to a perfect fluid stress tensor. In the holographic case,
this is the fluid/gravity limit of the correspondence in which it is known that theories
admit a hydrostatic description, but this also suggests the same is true for the free scalar
and fermion and possibly for a large class of theories. Assuming a hydrostatic description
at weak curvatures, as is expected to be true for any ultrastatic (2+1)-dimensional QFT
at finite temperature4, and taking (⌃, ḡ) to be flat space and (⌃, g) to be a weakly-curved
deformation of it, the spatial components the VEV of the stress tensor, in the absence
of any (other) sources or currents, on a (2+1)-dimensional ultrastatic background simply

3More details on this can be found in Section 4.3.
4Hydrodynamic descriptions normally necessitate interactions so should not be expected to apply to

free theories. Our systems are static and are kept at finite temperature by an external reservoir — thus
always admit a fluid description
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give

hTijig = p(T )gij + b(T )
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4
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◆
+O(@6) (4.32)

where R and r are the Ricci scalar and Levi-Civita connection on (⌃, g), respectively,
and the coefficients p and b are theory-dependent functions of T . After making a suitable
‘stretch’ of the reference space, this gives a free energy difference (4.7) that satisfies
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◆
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which can be integrated up to give

�F [g] = �b(T )

4

Z

⌃

d
2x
p
gR2

+ . . . . (4.34)

The sign of the free energy difference is thus determined by the sign of b(T ). This function
does not depend on the geometry, so it can be read off from the perturbative results in
the long-wavelength limit. Doing so gives that the characteristic function (4.25) for �F

is
a(k, T ) = 4⇡2b(T )k4

+O(k6
). (4.35)

Comparing this with the characteristic functions for the free scalar, free fermion and
holographic CFT (4.31) gives that b(T ) is positive in each case and therefore that the
negativity of �F extends to non-perturbative weak deformations of these theories.

4.3 Long-Wavelength Limit: Free Scalar and Fermion

We now return to my own work. Having inferred that the free scalar and fermion QFTs
have a hydrostatic description from the behaviour a(k, T ) ⇠ k4, one might ask whether
this can be derived directly. We shall now show this is indeed the case. Recall that the
free energies of these theories can be evaluated as functional determinants of operators of
the form (3.28) and thus in terms of heat kernels. So, for these theories, the free energy
difference between (⌃, g) and an appropriately ‘stretched’ reference space, (⌃, ḡ), can be
evaluated using differenced heat kernels, as in (3.8). Heat kernels admit an asymptotic
expansion (2.15) from which it follows that the differenced heat kernels go as

�KL(t) ⇠
X

m>0

�d2m(L)t
m�1, (4.36)

as t ! 0
+, where d2m(L) are the heat kernel coefficients, and in our two-dimensional

context these are integrals of sums and products of the Ricci scalar and its derivatives
so that d2m(L) ⇠ `2�2m, where ` is the characteristic length scale of the deformation.
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Hence, this should be viewed as an expansion in the dimensionless quantity t/`2. In the
hydrostatic regime discussed above we have low curvature compared to the thermal scale,
so that `T � 1. Then, the integrand in Equation (3.8) is localised near t = 0 (where in
the scalar case we also require a non-zero mass such that `M � 1) and using the heat
kernel expansion gives,

�F ' �

2

1X

m=0

�ds,f
2m+4

(�1)m
T 2m+1

J (m)

s,f

 
M2

T 2

!
(4.37)

where,

Js(x) =
1p
x
coth

 p
x

2

!
, Jf(x) =

1p
x
tanh

 p
x

2

!
(4.38)

and we have used the fact that the first two heat kernel coefficients are proportional to
the volume and Euler characteristic of (⌃, g), respectively, and cancel in the free energy
difference when computed using the ‘stretched’ reference flat space metric, ḡij(x; "), as
detailed in Section 4.1. The first term in the expansion is then determined by the heat
kernel coefficients (2.2):

�ds
4
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1

240⇡

�
1� 10⇠ + 30⇠2

� Z
d
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p
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����
⌃

, �df
4
= � 1

960⇡

Z
d
2x
p
gR2

����
⌃

(4.39)

for the two-dimensional scalar and Dirac operators, respectively. These give a leading
contribution to �F that agrees precisely with the expressions obtained by using the
form derived from hydrostatics in Equation (4.34), and the value of the coefficient b(T )

determined from the perturbative results (4.31).

4.4 Summary and Discussion

We have defined the free energy difference �F (") = F (") � F̄ (") where the free energy
of a relativistic QFT on the product of time with a two-space (⌃, g(")) with metric
gij(x; ") = e

2f(x;")ḡij(x) is differenced with that on a reference geometry (⌃, ḡ(")) at the
same temperature. If the geometry is compact we require the reference geometry to
have metric ḡij(x) and choose the deformation f(x; ") so that the volumes Vol[g(")],
Vol[ḡ] are equal. In the non-compact case where (⌃, g(")) is a deformation of flat space,
we subtract an appropriately ‘stretched’ reference flat space with spatial metric ḡij(x; ")

(in the same coordinates as for gij) given by an "-dependent diffeomorphism of the flat
reference metric ḡij(x), with the diffeomorphism chosen so that the volume variations
dVol[g(")]/d" and dVol[ḡ(")]/d" are equal. For a (2+1)-dimensional QFT (although not
for higher dimensions) this quantity �F (") is UV finite, and, hence, independent of
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renormalisation ambiguity. We expect that for reasonable fall off of the perturbation this
will also be IR finite on non-compact spaces.

We have shown that for deformations that are perturbations of flat space, then,
under the assumption that for flat space the finite temperature spatial stress tensor is
governed by a homogeneous isotropic pressure, the variation of �F (") is quadratic in the
perturbation. We have also shown that the same holds for perturbations of homogeneous
compact spaces, where for the unperturbed homogeneous space the trace of the spatial
parts of the stress tensor, �̄i

i
, is constant — as, for example, we would expect on a sphere

or torus. This explains why the variation of free energy found on a torus in Chapter 3
was quadratic.

We have reviewed a computation of this variation for holographic CFTs, showing
that the quadratic variation is always negative at any temperature and for any perturba-
tion, as was previously found for free scalars and fermions in Chapter 3. Furthermore, it
is strikingly similar in functional form to that for the free massless Dirac fermion CFT
(the theory on the worldvolume of graphene). We have also reviewed an argument that
in any theory that has a hydrostatic limit for long-wavelength deformations of flat space
(but now not necessarily small in amplitude) relative to the temperature scale, then �F

is governed by a specific curvature correction to the stress tensor, and is negative for
the free scalar and fermion theories, as well as the holographic CFT. In particular, the
corrections to the free energy difference of the free scalar and fermion theories have been
derived to all orders in inverse powers of the curvature scale.

The differenced free energy defined here is a physically relevant quantity in both the
compact and non-compact cases. For example, for a compact two-dimensional membrane
on which degrees of freedom live that are governed by a relativistic QFT on the curved
ultrastatic geometry induced on the membrane, the compact �F (") precisely describes a
quadratic (in membrane metric perturbations) free energy contribution as the membrane
is perturbed, provided it is inextensible, or is deformed to preserve its area. In the non-
compact case, the generic a(k) ⇠ k4 behaviour observed for long wavelengths implies
that the quadratic variation of �F is dominated by shorter wavelength deformations and
suggests, therefore, that we may ultimately view our formal flat space quantity �F as
giving the short-distance response of thermal vacuum energy on scales shorter than the
characteristic curvature scale of the space that is perturbed5. The case for both of these
claims — hence the utility of the free energy difference as measure free energy — will be
presented more comprehensively for deformations of S2 in the following chapter.

5Note that for temperature to be relevant in this limit, it must also be large compared to the curvature
scale of the unperturbed space.



Chapter 5

Free Theories on S2

The round shape of a soap bubble arises from competition between its intrinsic surface
tension, which energetically prefers to collapse it, and a pressure differential between the
air inside and outside of the bubble. More generally, the competition between various
physical effects determines the shape of any physical membrane.

Of particular interest to us are membranes that support relativistic quantum de-
grees of freedom living on them. A fiducial example is that of a graphene monolayer,
whose energetics in a Born-Oppenheimer-like approximation can be split into a sum of
two contributions: one from the atomic background lattice and another from relativistic
excitations that propagate on this background. At scales well above the lattice spacing,
the lattice can be treated as a continuous membrane, and the free energy will depend on
its geometry. The contribution to this free energy from the background, interpreted as a
classical contribution Fc, is then captured by a Landau free energy constructed from its
embedding into an ambient flat space [84, 92, 93] (see [86] for a review). The effective rel-
ativistic excitations are four free massless Dirac fermions (with effective speed of light ce↵
given by the Fermi velocity ⇡ 10

6 m/s), and their free energy — interpreted as a quantum
contribution Fq that depends on the membrane’s intrinsic geometry — is computed via
an appropriate path integral. The classical contribution to the free energy is relatively
well-understood thus our goal is to understand the contribution from the Dirac fermions.

While graphene is our motivating physical system, there are other more exotic
examples of membranes supporting relativistic quantum fields, as mentioned in the Intro-
duction. Further, the results presented in Chapters 1, 3 and 4 have raised some questions
about general QFTs on these spaces. Consequently, in this chapter (based on [3]) our
main objective is to study the free energy of more general classes of relativistic QFTs
living on (2+1)-dimensional geometries, with the massless Dirac fermion corresponding
to graphene as a special case1.

The work presented in this thesis thus far has found that such relativistic quantum

1We note that studying the free energy on Euclidean three-dimensional geometries is also interesting
and has fascinating links to quantum cosmology [94, 95].

81



82 Chapter 5. Free Theories on S2

fields tend to energetically prefer deformed geometries. To briefly summarise, let us
assume that this field theory lives on R ⇥ M , where M = (⌃, g) is a two-dimensional
spatial manifold with metric g. Per the discussion above, Fq will depend on the intrinsic
geometry of M , i.e. on g. Because Fq is a free energy, it is extensive, and therefore in
order to sensibly discuss its dependence on the shape of M we should imagine keeping the
volume of M (computed with respect to g) fixed as we vary g2. We therefore consider the
‘background-subtracted’ free energy �Fq ⌘ Fq[g]�Fq[ḡ], with ḡ taken to be some fiducial
reference metric which endows ⌃ with the same volume as g. With this understanding �Fq

has been shown to be negative for many different theories when ḡ is taken to be the
round sphere or the flat plane, a result most well-established when the geometry on ⌃ is
perturbatively close to (⌃, ḡ)3. Note that �Fq remains non-zero even at zero temperature,
when it can be interpreted as a Casimir energy.

These observations naturally lead to the following question: if the free energy Fq

governs the equilibrium configuration of a membrane, does the fact that �Fq is always
negative lead to an instability of the round sphere or flat space? If so, will a membrane
settle down to some less-symmetric equilibrium configuration, or does this instability
ultimately lead to a runaway process (which presumably breaks down once a UV scale
is reached)? Answering this question will depend on how �Fq competes with other
contributions to the free energy; returning to the case of graphene, in Chapter 3 we
performed a parametric comparison of the competition between �Fq and the classical
bending free energy �Fc, finding that the typical curvature scale lcrit at which the negative
contribution of �Fq becomes dominant over the (positive) contribution of �Fc agrees with
the ‘rippling’ length scale lrip of graphene measured in experiments [44]. However, the
order of magnitude of this scale is only slightly above that of the lattice spacing, where the
effective Dirac fermion description breaks down, so the validity of our estimates for �Fq

and �Fc in this regime is suspect.
Moreover, the order-of-magnitude analysis of Chapter 3 was made subtle for two

reasons. Firstly, since ⌃ is a plane, its volume is infinite; hence one must be careful
in defining precisely what is meant by the condition that the volumes computed from g

and ḡ match. Secondly, the leading perturbation to �Fc is quadratic in the height function
amplitude " (as shown in Equation(3.36)), while �Fq is quartic in "; hence balancing these
two contributions requires a careful accounting of various orders-of-limits.

The first purpose of this chapter is, therefore, to repeat the perturbative analysis of
Chapter 3 — that is, the perturbative computation of �Fq for the non-minimally-coupled
free scalar and the free Dirac fermion — in the case where ⌃ has sphere topology, rather

2In other words, of course one can always make Fq arbitrarily large or small by simply varying the
volume of M arbitrarily, but this is a standard volume-dependence that can be eliminated by, say, a
classical tension term in Fc.

3We note also that non-positivity results have also been obtained on related quantities for holographic
theories for various (⌃, g), namely the local energy density [96] and the energy difference [97, 98].
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than a plane. This modification will alleviate both of the issues just mentioned, since
when ⌃ is a sphere it has finite volume and we will also find that the contributions �Fc

and �Fq are both quadratic in ". Again, we will find that the round sphere locally
maximises Fq.

Our second purpose is then to investigate the questions posed above: namely,
is the round sphere a global maximum of �Fq? Does �Fq eventually find some new
equilibrium configuration after a sufficiently large deformation to the sphere, or can it
decrease indefinitely? To address these questions, we will numerically compute �Fq for
large (axisymmetric4) deformations of the round sphere using the heat kernel methods
in Chapter 2. These numerical computations require highly-accurate estimates for the
relevant spectra and this will be achieved using pseudo-spectral differencing — which we
will review. We will find that �Fq is always negative, and in fact that it can be made
arbitrarily negative as the geometry becomes singular. Our conclusion, therefore, is that
the energetics of �Fq favour geometries that are not smooth. Surprisingly, we will also
find that the behaviour of �Fq for such large deformations is remarkably similar for the
scalar and the fermion when normalised by its perturbative expression.

In fact, our main result will be stronger: not only is �Fq always negative for the
deformations we will study, but the heat kernel �KL(t) which computes �Fq has definite
sign for all t. The fact that �KL(t) apparently has fixed sign for all t is therefore a
non-trivial statement about the behaviour of the eigenvalues of L. The universality of
this result leads us to conjecture that �KL(t) has fixed sign for any free field theory and
volume-preserving deformation of the sphere. This conjecture has already been made for
a free scalar field [100] — here, we will provide a significant body of further evidence for
this claim and the case for it to generalise to the Dirac and non-minimally-coupled scalar
cases.

The order-of-magnitude analysis of the competition between �Fc and �Fq will be
provided immediately below, in Section 5.1, for the sake of illustrating more clearly some of
the concepts discussed so far. We will then establish our setup, conventions, and formalism
in Section 5.2, focusing specifically on the computation of �Fq using heat kernels. We
will then present the perturbative calculation of �Fq for the free non-minimally-coupled
scalar and the free Dirac fermion in Section 5.3, along with some checks showing that
our results reproduce the CFT result of Section 1.4 and the flat-space result of Chapter 3
in appropriate limits. Section 5.4 will review pseudo-spectral methods for numerically
estimating the eigenvalues of a second-order linear differential operator. In particular,
the case of a one-dimensional non-periodic compact domain will be studied. We will
then present the numerical calculation of �Fq for large deformations of the sphere in

4For the scalar, preliminary follow-up numerical work in the non-axisymmetric case has thus far
produced similar results to the axisymmetric case [99]: fixed sign differenced heat kernels that com-
pute �Fq. Indeed, it appears that they give lower �Fq than their axisymmetric counterparts in the
minimally-coupled case.
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Section 5.5, focusing for simplicity on axisymmetric perturbations. Finding that Fq seems
to decrease monotonically as the amplitude of the deformation is increased, in Section 5.6
we will analyse its behaviour on extremely deformed geometries, showing that approaching
a conical singularity allows �Fq to become arbitrarily negative. Section 5.7 will round off
the chapter with a summary of our main conclusions and unexpected results.

5.1 A Perturbative Example: Graphene

For illustrative purposes, let us now study in some more detail the competition be-
tween �Fc and �Fq for two-dimensional crystalline materials such as monolayer graphene,
focusing on the case where (⌃, g) is a small deformation of a round sphere (for large defor-
mations, this competition will be discussed in Section 5.6.4). We note there is considerable
technological interest in producing spherical monolayer graphene (see for example [101]).
As mentioned above, at scales much larger than the lattice spacing this crystal can be
described as a smooth membrane, and the free energy will depend on the geometry of
this membrane. For simplicity, we will further assume that this effective description is
diffeomorphism invariant (although of course this is not expected to be the case for a
crystalline material like graphene [86]).

For an order-of-magnitude estimate of perturbations to the round sphere, we also
assume that the sphere minimises the classical bending contribution �Fc to the free
energy. Keeping only up to second derivatives, we may then write the Landau free energy
as

�Fc = 

Z
d
2x
p
g

✓
K � 2

r0

◆2

, (5.1)

where K is the mean curvature of (⌃, g),  is a bending rigidity, r0 is the radius of
the sphere that minimises �Fc, and no term containing the scalar curvature of g appears
because such a term is topological. Working perturbatively around the sphere of radius r0,
we write the ambient flat space in the usual spherical coordinates

ds2R3 = dr2 + r2
�
d✓2 + sin

2 ✓ d�2
�

(5.2)

and take {✓,�} as coordinates on ⌃ and embed (⌃, g) as r = r0(1 + "f(✓,�)), where " is
a dimensionless expansion parameter. To linear order in ", the induced metric on (⌃, g)

is in a gauge conformal to the round sphere,

ds2 = r2
0
(1 + 2"f)

�
d✓2 + sin

2 ✓ d�2
�
+O("2), (5.3)
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while the free energy (5.1) becomes5

�Fc = "2

Z
d✓ d� sin ✓

⇣
2f +r2

f
⌘2

+O("3), (5.4)

where r2 denotes the Laplacian on the round sphere of unit radius. We then decompose f
in spherical harmonics as

f =

X

`,m

f`,mY`,m, (5.5)

with the condition that the volume of (⌃, g) remain unchanged imposing that f0,0 = 0.
We thus obtain

�Fc = "2
X

`,m

|f`,m|2(`� 1)
2
(`+ 2)

2
+O("3). (5.6)

The general contribution of quantum scalar or Dirac fermionic fields to �Fq is obtained
in Section 5.3 below. To streamline the present analysis, let us take the relativistic
quantum fields living on (⌃, g) to be a CFT; this is the case for graphene when it is
slightly perturbed from a flat plane (additional gauge fields associated to the underlying
lattice structure vanish when the the metric is in a conformally-flat form) [35–37, 42, 102].
Here we assume the effective CFT description remains valid for small perturbations of the
round sphere. At zero temperature, the contribution of these degrees of freedom to �Fq

is as in Section 1.4:

�Fq = �"2
⇡2cT~ce↵
48r0
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+O("3), (5.7)

where ce↵ is the effective speed of light for these relativistic degrees of freedom and cT is the
central charge; in our conventions, the central charges of a conformally-coupled massless
scalar field and of a massless Dirac fermion are cT = (3/2)/(4⇡)2 and cT = 3/(4⇡)2,
respectively [95, 103]. Importantly, at large ` the coefficients in the sum grow like `3,
indicating that this contribution is non-local: that is, unlike �Fc it does not arise from
some local geometric functional. Also note that while technically (5.7) is only valid at
zero temperature, the leading corrections to it go like e

�l
2

T /(2l)
2 , where lT = ~ce↵/(kBT ) is

a thermal length scale and l is the typical length scale of the perturbation f ; hence (5.7)
holds for lT & 2l. (The corrections to the zero-temperature result will be discussed in
Section 5.5.3.)

The combined contribution to the free energy from the classical and quantum

5Breaking diffeomorphism invariance would allow for more general coefficients in front of the f2, fr2
f ,

and (r2
f)2 terms.



86 Chapter 5. Free Theories on S2

contributions therefore goes like
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where
� ⌘ �̄2⇡2cT~ce↵

48
(5.9)

is some characteristic length scale,
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and we have introduced a factor of �̄ to account for the fact that, for example, the Dirac
fermions on graphene see a metric perturbation that is factor of �̄ ⇡ 3.3 larger than the
true perturbation6 [43]. We would like to investigate whether this combined expression
can ever be negative in its regime of validity. This question can be investigated as follows:
first note that at large `, A(c)

`
goes like `4 while A(q)

`
only grows like `3, so the positive

classical free energy will always dominate at sufficiently high angular momentum quantum
number. We must, therefore, investigate the behaviour of the lowest modes7: ` = 0 does
not contribute since f0,0 = 0, while the contributions of ` = 1 modes to both �Fc and �Fq

vanish due to the fact that such deformations correspond to infinitesimal diffeomorphisms.
However, since A(c)

`
vanishes quadratically around ` = 1 while A(q)

`
only vanishes linearly,

it is clear that for sufficiently small `� 1 > 0, A(c)

`
� (�/r0)A

(q)

`
< 0. Since ` is an integer,

making �F negative therefore requires this to be true a ll the way to ` = 2, and hence

� > �crit ⌘
A(c)

`=2

A(q)

`=2

r0 =
32

3⇡
r0. (5.12)

6We note that factor was (erroneously) omitted in [3] and we correct that here.
7We note that this is the opposite regime to the one we considered in the flat-space case. This is

somewhat counterintuitive given that one expects the large-` behaviour on a sphere to approach flat-
space behaviour. The difference is owed to the fact that in the flat-space limit we must also take r0 !1
(while keeping `/r0 fixed). This limit eliminates the order "2 term considered here in �Fq i.e. this
term is not present for deformations of the plane. Concretely, the flat-space embedding with height
function h(x, y) that decays to zero as (x2 + y

2)!1 is obtained by setting (x, y) = (r0(✓ � ⇡/2), r0�),
f(✓,�) = h(r0(✓�⇡/2), r0�)/r0 and considering the limit in which r0/|h|!1 and |"|⌧ 1 with x and y

fixed. In this limit, �Fc for the perturbed sphere (5.4) approaches that of the perturbed plane (3.36). In
contrast, the leading correction to �Fq (5.7) is suppressed by a further factor of r�2

0 and so vanishes at
order "2. Indeed, the (exact) induced metric due to an embedding of this form is
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, (5.11)

so the metric is perturbed at order "2 and thus �Fq is perturbed at order "4, matching the behaviour
we saw when working directly in flat space. As well as being suppressed by a further factor of "2, this
term grows faster at large-` than its finite r0 counterpart as its sourced by a metric perturbation that
goes as (@h)2 rather than h.
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Since our analysis is only valid at scales well above the lattice spacing a, we also re-
quire r0 � a, which implies � � a.

For the particular case of graphene, typically the bending rigidity is taken as  ⇠
1 eV, a ⇠ 2.5 Å, ce↵ ⇠ 10

6 m/s [87], and cT = 4 ⇥ 3/(4⇡)2 (the factor of four coming
from the four massless Dirac fermions that describe the effective electronic structure of
graphene), from which one finds �/a ⇠ 0.4 (note that the numerical prefactors matter:
a purely-parametric estimate would give �/a ⇠ ce↵~/a ⇠ 10). Hence, for graphene it
does not seem likely that the quantum effect we have identified can ever compete with
the classical bending energy to render the round sphere unstable, even if one were to
keep more careful track of the precise form of the Landau free energy. In the absense of
fine-tuning, this result could have been expected: with no fine-tuning, the energy scale 
should be set by the lattice spacing and hence  ⇠ ~ce↵/a, from which it would follow
that �/a is order unity8. We therefore interpret the condition � � a as the required
fine-tuning of the membrane parameters (e.g. , ce↵) that makes it possible for �Fq to
dominate over �Fc. Given the great current interest in monolayer graphene-like materials,
conceivably such fine-tuned crystalline membranes could be engineered in a lab.

5.2 Setup

We consider thermal states of (2+1)-dimensional (unitary, relativistic) QFTs on the geom-
etry R⇥⌃, where ⌃ is a two-dimensional manifold with spherical topology. The Euclidean
continuation of this geometry is

ds2 = d⌧ 2 + gij(x)dx
i
dxj, (5.13)

with the period of Euclidean time ⌧ given by the inverse temperature � = 1/T , and we
have made explicit the fact that the spatial metric gij(x) on ⌃ is independent of ⌧ . The
free energy is thus a functional of gij and of �; to simplify notation, we will denote this
free energy simply as F [�, g] (i.e. without the subscript q as was used above).

5.2.1 Free Energy

In this chapter, our interest lies in the free energy of (2+1)-dimensional QFTs as a contri-
bution to an effective action describing the geometry of its supporting membrane. This
free energy, F , is determined by the Euclidean partition function Z, which will depend

8The large-` scaling of A(q)
` , which is necessary for this argument to go through, can be inferred by

noting that perturbations with large ` should be insensitive to the size of the sphere, and thus should
behave as in flat space. Interpreting k = `/r0 as a wave number for large `, and knowing that �Fq is
quadratic in the perturbation f , implies by dimensional analysis that �Fq must go like k

3.
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on both � and the spatial geometry gij:

Z[�, g] =

Z
D� e

�SE[�,g,�]
= e

��F [�,g], (5.14)

where SE is the Euclidean action and � schematically stands for the QFT fields in the
system. Of course, as written Z (and thus F ) is UV divergent, so we must regulate it.
Since we are only considering relativistic QFTs, any UV regulator (like, say, a lattice)
cannot break diffeomorphism invariance in the IR, and hence for simplicity we may use
a covariant UV regulator to ultimately compute UV-finite quantities. To that end, note
that for a UV cutoff ⇤, the most general covariant counterterms that can be added to the
Euclidean action are

SCT =

Z
d⌧

Z
d
2x
p
g
⇥
c1⇤

3
+ c2µ⇤

2
+ (c3µ

2
+ c4R)⇤

⇤
, (5.15)

where µ schematically stands for any parameter in the QFT with dimensions of energy,
if one exists (for instance, a mass), R is the Ricci scalar of g, and the theory-dependent
coefficients ci are dimensionless and independent of ⇤ and of the geometry. Hence, the
most general divergence structure of the free energy takes the form

F [�, g] = Vol[g](c1⇤
3
+ c2µ⇤

2
+ c3µ

2
⇤) + 4⇡c4�(⌃)⇤+ Ffin[�, g], (5.16)

where �(⌃) is the Euler characteristic of ⌃ and Ffin[�, g] is finite as ⇤!1. Note in par-
ticular that the divergence structure depends on g only through the volume Vol[g] of ⌃; in
the context of two-dimensional crystalline lattices discussed at the beginning of this chap-
ter one can think of these terms as contributing to some (UV-cutoff dependent) tension in
the classical membrane action. In other words, we may interpret the volume-preservation
condition as merely a convenient way of grouping the leading-order divergences in (5.16)
with the couplings in the classical membrane action.

Physical information about the free energy is contained in the finite part Ffin, but
this object is not uniquely defined by the expansion (5.16) (since a general change in
the UV cutoff can induce a change in Ffin). However, the differenced free energy �F ⌘
F [�, g] � F [�, ḡ] discussed in Sections 3.1 and 4.1 (in which ḡ is a reference metric such
that Vol[ḡ] = Vol[g]) is scheme-independent. This differenced free energy can be defined
via

e
���F

=

D
e
��SE

E

ḡ

, (5.17)

where �SE is the difference of the Euclidean actions constructed from g and ḡ and the
expectation value on the right-hand side is taken in the thermal vacuum state (of inverse
temperature �) associated to the geometry ḡ. In short, the UV-finite differenced free
energy defined in Section 4.22 is the appropriate physical measure of the free energy
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contribution of relativistic quantum degrees of freedom on a membrane to its effective
action.

5.2.2 Heat Kernels

Let us now restrict to the case where the QFT fields � are free. The free energy is then
conveniently evaluated via heat kernel methods, as detailed in Section 3.1. The massive
free scalar fields and Dirac fermions on which we focus have actions

SE[�] =
1

2

Z
d⌧

Z
d
2x
p
g �(�r2

+ ⇠R +M2
)�, (5.18a)

SE[ ̄, ] =

Z
d⌧

Z
d
2x
p
g  ̄(i /D � iM) , (5.18b)

where ⇠ is the curvature coupling of the scalar, M is a mass, and the spinor conventions are
as in Chapter 3. As in Chapter 3, by performing the path integral on the geometry (5.13)
one obtains

Z = (detL)� with L = �@2
⌧
+ L+M2, (5.19)

where � = �1/2 (+1) for the scalar (fermion) and L is a differential operator on ⌃. For
the non-minimally-coupled scalar we have simply L = �r2

+ ⇠R, which acts on functions
with spin weight zero. The case of the Dirac fermion is slightly more complicated and we
will give the full expression for L in (5.35) below, but the key idea is that the square of the
Dirac operator on the ultrastatic geometry (5.13) is diagonal in the spinor indices and L

is one of these two diagonal components, which acts on functions of spin weight 1/2.
Recall from Section 3.1, the differenced free energy can be obtained directly from

the difference �KL(t) between heat kernels corresponding to the spatial geometries (⌃, g)
and (⌃, ḡ):

��F = �

Z
1

0

dt

t
e
�M

2
t
⇥�(T

2t)�KL(t), (5.20)

and

⇥�(⇣) ⌘
1X

n=�1

e
�(2⇡)

2
(n��+1/2)

2
⇣ , (5.21)

which arises from a sum over Matsubara frequencies on the thermal circle and that as
long as (⌃, g) and (⌃, ḡ) have the same volume and topology, �F is UV finite. We will
be concerned with the case where ⌃ is a topological sphere, in which case it is natural to
take the reference metric ḡij to be that of a round sphere. Finally, we note that the heat
kernel expansion (2.15) for �KL(t) takes the form

�KL(t) ⇠ t
1X

n=0

�b2n+4t
n, (5.22)
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where the �b2n are the differences of the heat kernel coefficients between the geome-
tries (⌃, g) and (⌃, ḡ).

5.3 Perturbative Results

The expression (5.20) for the differenced free energy in terms of the heat kernel of L is
convenient because it simply requires computing the variation in the spectrum of L as
the spatial geometry g is varied:

�KL(t) = Tr(e
�tL

)� Tr(e
�tL

) =

X

I

⇣
e
�t�I � e

�t�̄I

⌘
, (5.23)

where I indexes the eigenvalues of L and L. An explicit computation of this perturbed
heat kernel was performed for deformations of flat space in Chapter 3, with the key
result being that for both the fermion and the scalar ��KL(t) is negative for all t to
leading non-trivial order in the perturbation parameter (and hence �F is negative for all
perturbations). In order to compare to our later results, we now repeat this calculation on
the perturbed round sphere (5.24). We remind the reader that the reasons for working on
the sphere are twofold: firstly, since the sphere is compact we do not have to deal with IR
divergences; secondly, we will find that for small perturbations of the round sphere, the
free energy of quantum fields is of the same order as the contribution from the classical
membrane free energy, and hence the two can consistently be compared.

In this section, we will take the metric on ⌃ to be conformal to the round sphere,
as in (5.3):

ds2 = e
2f
�
d✓2 + sin

2 ✓ d�2
�
, (5.24)

where f is some scalar field on the sphere and we are using units in which r0 = 1.
We use the formulae derived in Section 3.2, from which we recall that we expand f =

"f (1)
+ "2f (2)

+O("3), L = L+ "L(1)
+ "2L(2)

+O("3) and the perturbed heat kernel is

�KL(t) = "�K(1)
(t) + "2�K(2)

(t) +O("3). (5.25)

The explicit expressions for L(1) and L(2) in terms of f (1) and f (2) are provided in Ap-
pendix A.5.

5.3.1 Scalar

For the scalar, the operator L for general f is

L = e
�2f


�r2

+ 2⇠
⇣
1�r2

f
⌘�

, (5.26)
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with r the covariant derivative on the round sphere (f = 0). The unperturbed operator L
is �r2

+ 2⇠ and has eigenvalues �̄` = `(`+ 1) + 2⇠, with ` 2 {0, 1, 2, . . .} a non-negative
integer. For the computation of the matrix elements eL(n)

`,m,`0,m0 (from Section 3.2), we may
take the eigenfunctions h̃`,m to just be the usual spherical harmonics Y`,m. Since the
calculation is rather cumbersome and unilluminating, we relegate it to Appendix A.5; in
short, expanding f (1) in spherical harmonics as

f (1)
=

X

`,m

f`,mY`,m, (5.27)

for the non-minimally-coupled scalar one ultimately obtains �K(1)
= 0 and

�K(2)
(t) =

X

`,m

a`(t)|f`,m|2, a`(t) ⌘ t
1X

`0=0

e
��̄`0 t

�
↵`,`0 + �`,`0t

�
, (5.28)

with the general expressions for ↵`,`0 and �`,`0 given in (A.52) and (A.55) in the Appendix.
For the special case of odd `, the expressions simplify substantially to9

↵`,`0 =

8
>>>>><

>>>>>:

(2`0 + 1)(�̄`0 � ⇠`(`+ 1))
2

⇡`(`+ 1)

⇣
2+`

2

⌘

`0

⇣
`

2

⌘

�`0⇣
3+`

2

⌘

`0

⇣
1+`

2

⌘

�`0

, `0 <
`

2

0, `0 >
`

2

, (5.29a)

�`,`0 = 0, (5.29b)

where (x)n ⌘ �(x+ n)/�(x) are Pochhammer symbols. We will comment further on this
expression in Section 5.3.5 below.

5.3.2 Dirac Fermion

For the benefit of the reader, let us briefly summarise how to obtain the operator L for
the fermion; more details can be found in Appendix A.3. We first evaluate

(i /D + iM)(i /D � iM) = �D2
+

1

4
R +M2, (5.30)

where Dµ =
(3)rµ + !µabSab/2 is the spinor covariant derivative, with (3)rµ the usual

Levi-Civita connection on the full (three-dimensional) Euclidean geometry, !µab the spin
connection, and Sab the generators of the Lorentz group. Evaluating this object in the

9Technically this expression for ↵`,`0 , as well as that given in (A.55) for general `, was obtained by
evaluating (A.54) (which expresses ↵`,`0 as a finite sum) for various values of `, `0 and then inferring a
closed-form formula by using built-in sequence finders in Mathematica. Although we have checked that
the resulting formula is correct for all values of `, `0 from zero to 100, we are unable to provide a general
derivation.
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ultrastatic geometry (5.13), one finds that it is diagonal in its spinor indices:

(i /D + iM)(i /D � iM) = LPL + L⇤PR, (5.31)

where L is the operator introduced in (5.19) and PL,R are projectors onto left- and right-
helicity Weyl spinors on the two-dimensional geometry (⌃, g); it is this decomposition
that allows us to compute the fermion partition function from just the spectrum of the
(non-spinorial) operator L. The explicit form of the operator L defining L can be given
most easily by working in conformally flat coordinates on (⌃, g),

ds2 = e
2f̂
�
(dx1

)
2
+ (dx2

)
2
�
, (5.32)

in which case
L = �r2

+
1

4
R� i"ij

⇣
@if̂
⌘
@j +

1

4

⇣
rif̂

⌘2
. (5.33)

The expression adapted to the spherical coordinates of (5.24) can be obtained easily
by transforming from the conformally flat coordinates {x1, x2} to the spherical coordi-
nates {✓,�} via sin ✓ = sechx1, � = x2; then since f̂ = f + ln sin ✓, in terms of the
conformal factor f one ultimately obtains10

L = �e�2f


r2 � 1

2

⇣
1�r2

f
⌘
+ i"̄ij(rif)rj + i cot ✓ cosec✓ @�

�1

4

⇣
rif

⌘2
� 1

2
cot ✓ @✓f �

1

4
cot

2 ✓

�
, (5.35)

where as beforer is the covariant derivative on the round sphere. L acts on functions with
spin weight 1/2, and hence the unperturbed eigenfunctions h̃`,m can be taken to be the
spin-weighted spherical harmonics 1/2Y`,m of spin weight 1/2, where ` 2 {1/2, 3/2, 5/2, . . .}
is a positive half odd integer and as usual m 2 {�`,�` + 1, . . . , `}. The corresponding
unperturbed eigenvalues are �̄` = (`+ 1/2)2.

Again, we relegate the details of the computation of the heat kernel to Appendix A.5;
ultimately we obtain �K(1)

= 0 and

�K(2)
(t) =

X

`,m

a`(t)|f`,m|2, a`(t) ⌘ t
1X

`0=1/2

e
��̄`0 t

�
↵`,`0 + �`,`0t

�
, (5.36)

with the expressions for ↵`,`0 and �`,`0 given in (A.70). As for the scalar, taking ` to be

10A more covariant expression can be given by introducing the spin weight raising and lowering oper-
ators ð, ð̄, in terms of which

L = �e�2f


ðð̄ +

1

2

⇣
r2

f + (ð̄f)ð� (ðf)ð̄
⌘
� 1

4
(rif)

2

�
; (5.34)

more details are presented in Appendix A.5.
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odd substantially simplifies them:

↵`,`0 =

8
>>>>>><

>>>>>>:

�(2`0 + 1)
3

16⇡

⇣
2+`

2

⌘

`0+1/2

⇣
2+`

2

⌘

�(`0+1/2)⇣
1+`

2

⌘

`0+1/2

⇣
1+`

2

⌘

�(`0+1/2)

, `0 <
`

2

0, `0 > `

2

, (5.37a)

�`,`0 = 0. (5.37b)

5.3.3 Check: Conformal Field Theories

As a simple check of our results, let us compare to the results of Section 1.4, which com-
puted the zero-temperature perturbative energy difference �E(2) for any unitary confor-
mal field theory. There it was found that in any CFT, this leading-order energy difference
is

�E(2)

CFT
= �

X

`,m

A(CFT)

`
|f`,m|2, A(CFT)

`
=
⇡2cT
48

(`2 � 1)(`+ 2)

`

0

B@
�

⇣
`+1

2

⌘

�

⇣
`

2

⌘

1

CA

2

, (5.38)

with cT the central charge.
We now show that our expressions (5.28) and (5.36) reproduce (5.38) with the

correct central charges when the fields are conformal; we note that in this case, �̄`0 =

(`0 + 1/2)2 for both the scalar and the fermion (though the allowed values of `0 of course
still differ). To do so, first note that the free energy difference is given by inserting (5.28)
and (5.36) into (5.20); for simplicity we will restrict to perturbations f`,m with odd `, so
that we may use the more compact expressions (5.29) and (5.37). In the zero-temperature
limit, the integral over t can be performed explicitly by noting that Poisson resummation
gives (for both the scalar and the fermion)

lim
T!0

T ⇥�(T
2t) =

1p
4⇡t

(5.39)

for any t > 0; hence the zero-temperature perturbative energy difference for odd ` is

�E(2)|T=0 = �
X

`,m

A`|f`,m|2, (5.40)

where
A` = �

�p
4⇡

Z
1

0

dt

t3/2
a`(t) = �

�

2

X

`0

↵`,`0

(�̄`0)1/2
, (5.41)

where we used the fact that the sum over `0 is finite to integrate term-by-term (it is
understood that the sum over `0 runs over integers or half-integers depending on whether
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we are considering the scalar or the fermion, with ↵`,`0 the corresponding expression; we
also remind the reader that � = �1/2 for the scalar and � = 1 for the fermion). We
therefore have

A(scal)

`
=

1

2⇡

(`�1)/2X

`0=0

((`0 + 1/2)2 � `(`+ 1)/8)2

`(`+ 1)

⇣
2+`

2

⌘

`0

⇣
`

2

⌘

�`0⇣
3+`

2

⌘

`0

⇣
1+`

2

⌘

�`0

, (5.42)

A(ferm)

`
=

1

4⇡

(`�1)/2X

`0=0

(`0)2

⇣
2+`

2

⌘

`0

⇣
2+`

2

⌘

�`0⇣
1+`

2

⌘

`0

⇣
1+`

2

⌘

�`0

, (5.43)

where in the expression for A(ferm)

`
we shifted the index of summation by 1/2. While we

are unable to analytically show that these expressions reproduce the form (5.38) predicted
by CFT perturbation theory, by computing these sums exactly we find that they do, with
the correct central charges cT = (3/2)/(4⇡)2 and cT = 3/(4⇡)2 (we have checked up
to ` = 1001).

Interestingly, if ` is even then evaluating A` by integrating term-by-term produces
a divergent sum, presumably due to the fact that the (now infinite) sum over `0 in a`(t)

does not commute with the integration over t. Nevertheless, the behaviour of a`(t) for
even ` makes clear that the integral is indeed finite when performed after the summation,
and we have confirmed numerically that it reproduces (5.38) for a range of even `.

5.3.4 Check: The Flat Space Limit

As a final check of our results, let us consider the limit in which the radius of the sphere
is taken to be very large, and only modes with large `, m are excited. In this limit,
we expect the theory to be insensitive to the curvature of the sphere, and thus the heat
kernel should reproduce its flat space behaviour. This behaviour was computed for both
the scalar field and the Dirac fermion in Chapter 3, in which it was found that when the
perturbed metric is in the conformally flat form ds2 = e

2f�ijdxi
dxj, the perturbation to

the heat kernel is
�K(2)

(t) = t

Z
d
2k k4

���f̃(k)
���
2

I(k2t), (5.44)

where k is a wavevector defined by the Fourier decomposition of f (1) as

f (1)
(x) =

Z
d
2k f̃(k)eik·x, (5.45)
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k = |k| is its magnitude, and the functions I(⇣) are given for the scalar and fermion as

I(⇣) =

8
>>>>>><

>>>>>>:

� ⇡

4⇣2


6 + ⇣(1� 8⇠)

�
⇣
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2
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2
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⇡

4⇣2


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2

⌘
� 6

�
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(5.46)

with F(⇣) = ⇣�1
e
�⇣

2
R
⇣

0
d⇣ 0 e(⇣

0
)
2 .

We now introduce an appropriate flat-space scaling limit in which our expressions
for �K(2) reproduce (5.44). To do so, let us explicitly reintroduce the radius r0 of the
sphere, so that the deformed sphere metric (5.24) becomes

ds2 = r2
0
e
2f
�
d✓2 + sin

2 ✓ d�2
�
. (5.47)

The scaling limit is defined by “zooming in” on a point on the equator of the sphere by
introducing new coordinates x = r0(✓ � ⇡/2), y = r0� and then taking the limit r0 !1
with x, y held fixed. The resulting metric is in the desired conformally flat form,

ds2 ! e
2f
�
dx2

+ dy2
�
, (5.48)

with x and y having infinite range. Restoring r0 to the expressions (5.28) and (5.36), we
obtain

�K(2)
(t) =

X

`,m

a`(t)|f`,m|2, a`(t) =
t

r2
0

X

`0

e
��̄`0 t/r

2

0

✓
↵`,`0 + �`,`0

t

r2
0

◆
, (5.49)

with ↵`,`0 and �`,`0 unchanged. Now let us again focus on the case where f (1) only contains
modes with odd `, so �`,`0 vanishes and the sum over `0 runs to `/2. In order to consider
modes with large `, we define k = `/r0 and k0

= `0/r0 and keep k and k0 fixed as we
take r0 !1. As we show in Appendix A.6, in this limit we find that

ar0k(t)!
r2
0
t

4⇡2
k4I(k2t) (5.50)

with I(⇣) precisely the functions given in (5.46); assuming ar0k(t) is continuous in k

in this scaling limit, we may now remove the restriction to modes with odd r0k. We
also find that as long as f (1)

(x, y) vanishes at large (x, y) (i.e. f (1)
(✓,�) vanishes away

from (✓ = ⇡/2,� = 0)), f`,m = fr0k,r0ky becomes

fr0k,r0ky !
2⇡

r2
0

p
k

(k2 � k2
y
)1/4

✓
f̃(
q

k2 � k2
y
, ky)± f̃(�

q
k2 � k2

y
, ky)

◆
, (5.51)
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where f̃(kx, ky) is the Fourier transform of f (1)
(x, y), the upper (lower) signs correspond

to even (odd) (k + ky)r0, and we are neglecting an overall phase that will cancel out.
Inserting these expressions into (5.49) and decomposing the sum over ` = kr0 into sums
over even and odd kr0, we finally obtain precisely the flat-space expression (5.44) given
in Chapter 3:

�K(2) ! t

Z
d
2k k4I(k2t)

���f̃(k)
���
2

. (5.52)

We note this result supports the claim we made in Chapter 4 (based on the long-
wavelength behaviour of free energy difference) that we may view the flat-space �F

we defined there as giving the short-distance response of the thermal vacuum energy on
scales that are small relative to the characterstic curvature scale of the space that has
been deformed.

It is perhaps worth emphasising that computing the perturbation to the free energy
of a perturbation of flat space is rather subtle due to the requirement that the perturbed
and unperturbed geometries have the same volume: since the volume of flat space is infi-
nite, an IR divergence is introduced, and the volume-preservation condition is interpreted
as controlling this IR divergence to yield a finite differenced free energy. In Chapter 3,
this problem was addressed by computing the heat kernel on a torus and then taking the
limit in which the cycles of the torus go to infinity; this is analogous to the procedure
performed here, where we computed the heat kernel on the sphere and then took a flat-
space scaling limit. In these regularisation schemes, the ‘extra’ bits of the torus or the
sphere that get sent to infinity in the flat space limit essentially deform in such a way as to
ensure that the leading-order UV divergences in (5.16) cancel out between the deformed
and undeformed geometries. It is, however, possible to ensure that the UV-divergent
terms in (5.16) cancel out even without such a compactification: as shown in Chapter 4,
one can introduce a one-parameter family of large diffeomorphisms on flat space (that is,
diffeomorphisms that do not vanish in the asymptotic region) in order to ensure that the
differenced free energy is UV and IR finite.

Though the final result obtained in the flat-space limit of both the torus and the
sphere is the same, we note the interesting difference that on the finite-size torus, the
Dirac fermion has a negative mode for which �KL does not have fixed sign, and in fact
even renders �F positive11; as we now discuss, this is not the case for the sphere.

11Explicitly, consider the deformed torus ds2 = e2f [(dx1)2 + (dx2)2], where x
1 and x

2 both have
periodicity �x, and we take f = " cos(2⇡x1

/�x) + O("2). The perturbative heat kernel for the Dirac
fermion on a deformed torus is computed in Chapter 3, and in this case comes out to be

�K
(2) = �2t

✓
2⇡

�x

◆2X

n1,n22Z
e�(2⇡/�x)2(n2

1+n2
2)t

 
(n2

1 + n
2
2 � 1/4)2 + n

2
2/4

2n1 � 1
+

1

16

!
. (5.53)

This expression is positive for t > t⇤ for some t⇤, and with T = 0, M = 0 the differenced free energy (5.20)
comes out positive as well.
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5.3.5 Negativity of �K

Our results imply that for any non-trivial deformation of the round sphere, ��K is strictly
negative for all t to leading non-trivial order in " (because �a`(t) is) and thus �F is too.
This is easiest to see when f (1) contains only modes with odd `: in this case, it is clear
from the expressions (5.29) and (5.37) that �↵`,`0 is negative when ` is odd and greater
than one, and hence so too is ��K(2)

(t) for all t (recall that � = �1/2 for the scalar
and � = 1 for the fermion). When ` = 1, a`(t) = 0 for both the scalar and the fermion, and
hence �K(2) vanishes; this is due to the fact that ` = 1 deformations generate infinitesimal
diffeomorphisms of the sphere and therefore do not change its intrinsic geometry to leading
order in ". We will show this explicitly in Section 5.5.2.

The case of even ` is more subtle. For the scalar, it follows from the full expres-
sion (A.55) that �↵`,`0 can be positive for `0 > `/2; likewise, for the fermion it follows
from (A.70b) that ��`,`0 is positive. Hence, in both cases the sign of a`(t) is not im-
mediately clear. However, note that the large-` behaviour of a`(t) can be obtained in
the flat-space scaling limit discussed above, and is given in (5.50); assuming ar0k(t) is
continuous in k as r0 ! 1, we therefore conclude that for all large ` (whether even or
odd), �a`(t) is negative. We therefore need only investigate the sign of �a`(t) for small
even ` (i.e. before the transition to the flat-space behaviour). The result is shown in
Figure 5.1, which verifies that �a`(t) < 0 for all t.

Thus ��K(2)

L
(t) is indeed negative for all t. This implies, of course, that small,

non-trivial deformations of the round sphere all lower the free energy of the scalar and
of the fermion (for any mass, temperature, and curvature coupling), but it is in fact a
much stronger result: negativity of �F does not require that the heat kernel �KL(t)

itself be everywhere negative. We now investigate whether this stronger result continues
to hold even for large volume-preserving deformations of the sphere. To probe �KL(t) at
values of t that cannot be accessed analytically, it is essential we obtain highly-accurate
estimates for the eigenvalues of L. This is made possible by pseudo-spectral methods,
which we review in following section.

5.4 Review: Pseudo-Spectral Methods

Pseudo-spectral methods are a class of techniques for solving differential equations nu-
merically. In contrast with finite difference methods, they are global methods — they use
information about a function on the entirety of its domain to estimate its derivatives.
Given that derivatives are determined by the local behaviour of a function, it seems coun-
terintuitive to use function values from the whole domain to estimate them. Done in the
right way, however, such methods can achieve far better global accuracy for a commen-
surate number of grid points. This global accuracy is key to our hope of numerically
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Figure 5.1: The function a`(t) for even ` for the minimally-coupled scalar (left) and the
Dirac fermion (right); from dark to light grey, the curves correspond to ` = 2 to ` = 40.
The dashed red curve is the flat-space limit given by (5.50). The convergence of a`(t) to
the flat-space limit for the non-minimally-coupled scalar is analogous.

approximating the heat kernels of free quantum field theories where it is essential that
very accurate estimates of eigenvalues are used. In this section, we will detail how pseudo-
spectral methods can be used to accurately estimate the eigenvalues of second-order linear
ordinary differential operators subject to boundary conditions, using as an example the
case of a compact non-periodic domain. The practical application of these methods are
covered extensively in [104] and the particular case of Chebyshev interpolation on compact
non-periodic domains we will review in this section will merely touch upon the content
in [105, 106].

5.4.1 Interpolation

To numerically solve a differential equation on a continuous interval, some kind of discreti-
sation procedure must be undertaken. In pseudo-spectral methods, functions are sampled
at a finite number of points in their domains and that data alone is used to construct an
appropriate approximating function. There are a variety of ways to do this. For example,
for a function of a periodic domain one may take the approximating function to be the
truncated Fourier series. Alternatively, one could instead work with the finite Fourier sum
that interpolates the function i.e. with Fourier coefficients that are the discrete Fourier
transform (DFT) of the function values. This function is then used to obtain globally
accurate estimates for the function and its derivatives on the whole domain. Here we will
work with an interpolating function. The optimal method of interpolation depends on
a number of factors such as, for example, whether the domain is compact, whether the
domain is periodic and any boundary conditions. We will consider a domain which is
non-periodic and compact. Other cases include periodic domains that are best served by
the DFT of the function sampled on a uniform grid [107].
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Figure 5.2: The plots of the Runge function (5.55) and its interpolants p4(x), p8(x)
and p16(x) (5.54) for uniform grid; from dark to light grey, the solid curves correspond
to N = 4, 8 and 16. The dashed blue curve is f(x) and the red dots are points on this
curve for a uniform grid with 16 points.

Let f : [�1, 1] ! R be a smooth function. Suppose we wish to approximate this
function using a polynomial. Given N + 1 distinct points 1 > x0 > x1 > . . . > xN�1 >

xN > �1 there is a unique degree N polynomial that interpolates {(xi, f(xi))}Ni=0
, namely

pN(x) =
NX

i=0

f(xi)Ci(x) (5.54)

where Ci(x) ⌘
Q

j 6=i

x�xj

xi�xj
is the degree N Cardinal polynomial satisfying Ci(xj) = �ij.

This gives an efficient mapping between f and the data that determines its interpolant.
Moreover, as long as we use the same basis functions, such as Cardinal polynomials for
a non-periodic interval, the approximations of the derivatives of f at the grid can be
expressed as a function independent linear map on the function values at the grid points.
This gives a computationally efficient method for mapping a linear differential operator
to a matrix equation. However, it remains to be seen whether these approximations are
accurate. Indeed, if we were to use a uniform grid then we could encounter the Runge
Phenomenon. We will illustrate this with an example. Consider the Runge function

f(x) =
1

1 + 25x2
. (5.55)

This function and its interpolants p4, p8 and p16 can be seen in Figure 5.2. Note that as
the grid is refined the interpolating polynomials, while becoming better approximations
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in the centre of the domain, begin to oscillate wildly near its boundaries and so become
a very poor approximation to the function and its derivatives. This behaviour gets even
worse as N !1. It can be shown that, provided we select a uniform grid,

lim
N!1

kf(x)� pN(x)k1 =1, (5.56)

where k · k1 is the uniform norm on [�1, 1] [108]. In order to compute the spectra
of differential operators it is important that our approximations work well globally. To
minimise the error, we turn to the Cauchy Error Theorem12 which gives that

f(x)� pN(x) =
f (N+1)

(⇠(x))

(N + 1)!

NY

i=0

(x� xi) (5.58)

where ⇠(x) 2 (�1, 1) depends on f . From this, it is clear that the optimal grid is the
one that minimises

���
Q

N

i=0
(x� xi)

���
1

. It follows from Chebyshev’s equioscillation theorem
that a monic polynomial of degree 6 N+1 that minimises the uniform norm is 2�NTN+1(x)

where TN+1(x) is the Chebyshev polynomial of the first kind. Thus, an optimal choice for
the grid points are the roots of the Chebyshev polynomials of the first kind,

xi = cos

✓
⇡(2i+ 1)

2(N + 1)

◆
where i = 0, 1, . . . , N. (5.59)

For problems involving boundary conditions — like the one we wish to solve — it is
helpful to choose a grid that includes the boundary points. Thus, for the rest of this
section we will instead use the (closely-related) locations of the extrema of the Chebyshev
polynomials: the Chebyshev-Gauss-Lobatto (CGL) points,

xi = cos

✓
⇡i

N

◆
where i = 0, 1, . . . , N. (5.60)

In the following section, we will show how using them achieves spectral accuracy.

5.4.2 Spectral Accuracy

A key feature of pseudo-spectral methods is that they are very accurate, with their ap-
proximations converging to true values at an exponential rate as N !1. We will show
explicitly that this is the case for smooth functions on [�1, 1] when interpolating through

12This follows from (iteratively) applying Rolle’s Theorem between the N + 2 � k roots of the k
th

derivative of the function

�(x0) ⌘ f(x0)� pN (x0)� c(x)
NY

i=0

(x0 � xi) (5.57)

for k = 0, 1, . . . , N , where x 2 [�1, 1] \ {xi} and c(x) = (f(x) � pN (x))/
QN

i=0(x � xi) is chosen so
that �(x) = 0, giving that there exists some ⇠(x) 2 (�1, 1) such that �(N+1)(⇠(x)) = 0, hence the result.
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Figure 5.3: A diagram showing the distribution of Chebyshev-Gauss points (5.59) on the
interval [�1, 1] with N = 16.

CGL points, but the method and results are mirrored in other examples e.g. the discrete
Fourier transform on a periodic domain.

Chebyshev polynomials of the first kind are a basis for Lipschitz continuous func-
tions on [�1, 1]. Therefore, there exist unique (↵n)

1

n=0
such that

f(x) =
1X

n=0

0↵nTn(x). (5.61)

where
P

0 denotes that the first term is halved. The coefficients (↵n)
1

n=0
are given explicitly

in terms of f by

↵n =
1

⇡
(2� �n,0)

Z
1

�1

dxp
1� x2

f(x)Tn(x). (5.62)

The Chebyshev polynomials of degree 6 N form a basis for polynomials of degree 6 N

so there exist unique {an}Nn=0
satisfying

pN(x) =
NX

n=0

00anTn(x) (5.63)

where
P

00 denotes that the first and last terms are halved. The two sets of coefficients
are related by13

an = ↵n +

1X

j=1

�
↵n+2jN + ↵�n+2jN

�
. (5.64)

Using also that |T (k)

n (x)| 6 n2k for 0 < k < N/2, it follows that pN estimates f and its
derivatives with error

kf (k) � p(k)
N
k1 6 2

1X

n=N+1

|↵n|n2k. (5.65)

Just as with Fourier transforms, the coefficients ↵n decay very quickly for smooth func-
tions. Indeed, by writing x = cos ✓ and F (✓) ⌘ f(cos ✓) in (5.62) and integrating by

13 This can be verified by evaluating pN at each of the N + 1 CGL points and checking agreement
with (5.61) using the fact that T2jN±n(cos(⇡i/N)) = cos(⇡ni/N) = Tn(cos(⇡i/N)).
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Figure 5.4: The plots of the Runge function (5.55) and its interpolants p4(x), p8(x)
and p16(x) (5.54) for a Chebyshev-Gauss grid ; from dark to light grey, the solid curves
correspond to N = 4, 8 and 16. The dashed blue curve is f(x) and the red dots are points
on this curve for a Chebyshev-Gauss grid with 16 points.

parts m times gives that

↵n =
(�1)m
nm

1

⇡
(2� �n,0)

Z
⇡

0

d✓F (m)
(✓)

(
sinn✓, m odd
cosn✓, m even

(5.66)

and therefore ↵n = O(n�m
) for all m > 0 as n ! 1. This gives that polynomial

interpolation of a smooth function using N +1 CGL points yields an approximation that
satisfies

kf (k) � p(k)
N
k1 = O(N�m

) for k,m = 0, 1, 2, . . . (5.67)

This exceptionally fast uniform convergence of pN and its derivatives to f is the real
strength of spectral methods — allowing us to obtain globally accurate estimates with
high accuracy. We will now turn our focus to numerical implementation.

5.4.3 Differentiation Matrices

Having shown that pseudo-spectral methods can accurately approximate the derivatives
of smooth functions, we now show how to take advantage of this numerically to solve for
eigenvalues of second-order linear differential operators.

We seek eigenvalues of a differential operator, L : C1
([�1, 1])! C1

([�1, 1]), with
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Robin boundary conditions:

Lu = p(x)
d
2u

dx2
+ q(x)

du

dx
+ r(x)u(x) with

a�1u(�1) + b�1u0
(�1) = 0

a1u(1) + b1u0
(1) = 0.

(5.68)

By working with a pseudo-spectal approximation to u, we can map this to a numerically
tractable matrix eigenvalue problem. Firstly, we sample u(x) at a set of appropriate grid
points, in this case N + 2 CGL points, and write them in a column vector14:

ū =

0

BBBBB@

u0

u1

...
uN+1

1

CCCCCA
where uI ⌘ u(xI) (5.69)

For the remainder of the section upper-case Latin letters will be assumed to range from 0

to N + 1 and lower-case Latin letters from 1 to N . Each component of the differential
operator can then be expressed as a linear map on the vector ū. The pointwise multi-
plication by a function g(x) maps to matrix multiplication by GIJ = �IJg(xJ) (no sum).
Derivatives are more subtle and depend on the grid chosen and the boundary conditions.
In this case, the pseudo-spectral approximation to the derivative of u at the CGL points
is pN+1(x) and so the differentiation matrix D̄ is defined by

N+1X

j=0

D̄IJuJ ⌘ p0
N
(xI) =

N+1X

J=0

uJC
0

J
(xI) (5.70)

so that the derivative operator is represented by matrix multiplication by the differentia-
tion matrix

D̄IJ = C 0

J
(xI) =

X

M 6=J

1

xJ � xM

Y

K 6=M,J

xI � xK

xJ � xK

where xI = cos

✓
⇡I

N + 1

◆
(5.71)

The boundary conditions are then used to eliminate u0 and uN+1 as

(a�1 + b�1D̄0,0)u0 + b�1D̄0,N+1uN+1 = �
NX

j=1

D̄0,juj (5.72)

b1D̄N+1,0u0 + (a1 + b1D̄N+1,N+1)uN+1 = �
NX

j=1

D̄N+1,juj. (5.73)

This degeneracy is then used to reduce this (N+2)⇥(N+2) matrix problem to an N⇥N

14We will later wish to consider a reduced grid consisting of the N interior points of the grid given by
the N + 2 CGL points. To this end, we will denote quantities defined the extended grid with ‘bars’ to
distinguish them from quantities defined only on the interior points.
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one. Let u = (ui). Solving the linear system to express u0 and uN+1 as linear functions
of u so that uI = AIjuj for I = 0, N + 1 and inserting that back into the derivative
operator then gives a new N ⇥ N matrix which incorporates the boundary conditions.
This new differentiation matrix is defined by (Du)16i6N ⌘ (D̄ū)16i6N and given explicitly
by

Dij = D̄ij + D̄i,0A0,j + D̄i,N+1AN+1,j (5.74)

where

A0,j =
b�1D̄0,N+1D̄N+1,j � (a1 + b1D̄N+1,N+1)D̄0,j

(a�1 + b�1D̄0,0)(a1 + b1D̄N+1,N+1)� b�1D̄0,N+1b1D̄N+1,0

(5.75)

AN+1,j =
b1D̄N+1,0D̄0,j � (a�1 + b�1D̄0,0)D̄N+1,j

(a�1 + b�1D̄0,0)(a1 + b1D̄N+1,N+1)� b�1D̄0,N+1b1D̄N+1,0

. (5.76)

Similarly, the second derivative operator is given by

D(2)

ij
= D̄(2)

ij
+ D̄(2)

i,0
A0,j + D̄(2)

i,N+1
AN+1,j (5.77)

where D̄(2)

IJ
= C 00

J
(xI). Thus the eigenvalues of L with the associated boundary condi-

tions (5.68) are approximated by the eigenvalues of the matrix

L = PD(2)
+QD +R (5.78)

where Pij, Qij and Rij are given by p(xi)�ij, q(xi)�ij and r(xi)�ij (no sum), respectively.
By using the formula

D̄00 =
2N2

+ 1

6
, D̄NN = �2N2

+ 1

6
, (5.79)

D̄JJ = � xJ

2(1� x2

J
)
, J = 1, . . . , N � 1, (5.80)

D̄IJ =
cI
cJ

(�1)I+J

(xI � xJ)
, I 6= J, I, J = 0, . . . N (5.81)

for the order N + 1 Chebyshev differentiation matrix [109], where cI = 1 + �I,0 + �I,N ,
Chebyshev differentiation matrices and hence matrix approximations to differential oper-
ators can be generated efficiently. The differentiation matrices for arbitrary intervals can
then be derived from D̄(n)

IJ
via a rescaling.

The same procedure can be used to derive the differentiation matrices for other
pseudo-spectral approximation schemes. The differentiation matrices they derive are usu-
ally available within packages for most high-level programming languages. For example,
the ‘MATLAB Differentiation Suite’ developed by Weideman and Reddy [110] consists
of functions that output differentiation matrices for Fourier, Chebyshev and Hermite in-
terpolation. The Chebyshev differencing found there and in Mathematica will prove an
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essential tool for probing the differenced heat kernel beyond the perturbative regime con-
sidered thus far.

5.5 Non-perturbative Results

In Section 5.3, we found that small perturbations of the round sphere always yield a
negative ��KL(t) (and hence also free energy �F ) for both the scalar and fermion at
any temperature, mass, or curvature coupling. This observation naturally prompts a
question: is the free energy maximised globally by the round sphere, as it is for holographic
CFTs at zero temperature, as detailed in Section 1.3? Or do there exist sufficiently large
deformations of the round sphere at which the free energy eventually increases above its
value on the round sphere? If the free energy is globally maximised, does the stronger
result that the differenced heat kernel has fixed sign continue to hold? Our purpose now
is to examine these questions. To do so, we will ultimately need to use numerics in order
to evaluate the heat kernel (3.13) for large deformations of the round sphere. However,
we will first examine the behaviour of �KL(t) at large and small t, which is tractable
analytically even for large deformations.

5.5.1 Heat Kernel Asymptotics

Recall that the small-t behaviour of the differenced heat kernel is given by the heat kernel
expansion (5.22):

�KL(t) = t�b4 +O(t2). (5.82)

The leading-order coefficient �b4 is given by (2.2)

�b(scal)
4

=
1

1440⇡
(5(6⇠ � 1)

2
+ 1)

Z
d
2x
�p

g R2 �
p
ḡ R̄2

�
, (5.83a)

�b(ferm)

4
= � 1

960⇡

Z
d
2x
�p

g R2 �
p
ḡ R̄2

�
, (5.83b)

where R̄ is the Ricci scalar of the round sphere. But it follows from volume preservation,
the Gauss-Bonnet theorem, and the fact that R̄ is constant that

Z
d
2x
�p

g R2 �
p
ḡ R̄2

�
=

Z
d
2x
p
g(R� R̄)

2 > 0 (5.84)

with equality if and only if R = R̄, i.e. if gij is the metric of the round sphere. Hence for
both the scalar and fermion, ��KL(t) is strictly negative at sufficiently small t for any
non-trivial deformation of the sphere, regardless of the size of the deformation.

To inspect the large-t behaviour, we instead recall that the differenced heat kernel
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can be expressed in terms of the eigenvalues �I , �̄I of the operators L and L:

�KL(t) =
X

I

⇣
e
�t�I � e

�t�̄I

⌘
. (5.85)

The large-t behaviour of this expression — particularly its sign — is clearly dominated by
the smallest eigenvalue of either L or L, so we must compare the low-lying spectra of these
two operators. For the scalar, this comparison can be performed by using a Rayleigh-Ritz
formula for the lowest eigenvalue of L:

�min = inf
�

J [�], J [�] ⌘
Z

d
2x
p
g �2

��1 Z
d
2x
p
g �(�r2

+ ⇠R)�, (5.86)

with the infimum taken over all (square-integrable) test functions �. Thus �min can be
bounded from above by taking � to be a constant function; then again using the Gauss-
Bonnet theorem and volume preservation, we have

�min 6 J [const.] =
4⇡⇠�(⌃)

Vol[g]
= �̄min (5.87)

with equality if and only if a constant function is an eigenfunction of L, which for ⇠ 6= 0

is only the case if R is a constant and thus gij is the metric of the round sphere. Hence
for ⇠ 6= 0 and a non-trivial perturbation of the sphere, the lowest eigenvalue of L is always
strictly less than any eigenvalue of L, and �KL(t) is positive at sufficiently large t. On
the other hand, when ⇠ = 0 constant functions are always eigenfunctions of L = �r2, and
hence the lowest eigenvalues of L and L are identical. The large-t behaviour of �KL(t) is
then controlled by the next-lowest eigenvalue �next of �r2, which is known to be bounded
by [111]

�next 6
8⇡

Vol[g]
= �̄next. (5.88)

Hence, for the case ⇠ = 0 we again find that �KL(t) is positive at sufficiently large t.
We come to a similar conclusion for the fermion by invoking a theorem from [112]:

namely, given that ⌃ is a two-dimensional manifold of genus zero, all eigenvalues of the
squared Dirac operator are bounded below by 4⇡/Vol[g] = �̄min, with equality only holding
if gij is the metric of the round sphere. Hence we, again, conclude that at sufficiently
large t, ��KL(t) is negative.

We have therefore established that ��KL(t) is always negative at sufficiently
small or large t, regardless of the size of the perturbation to the sphere. To analyse the
intermediate-t regime, and in particular to determine whether �F decreases arbitrarily
as the size of the perturbation grows, we turn to numerics.
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5.5.2 Numerical Results

The advantage of using heat kernels to evaluate the differenced free energy is that com-
puting the (differenced) heat kernel (3.13) amounts to computing the spectrum of L.
Moreover, only the smallest few eigenvalues of L are needed to obtain a good approxi-
mation for �KL(t) everywhere except near t = 0 — but small t is precisely the region in
which the heat kernel expansion gives a good approximation. The heat kernel expansion
therefore provides both a check of the numerics as well as a tractable way of computing the
differenced free energy (which requires the behaviour of �KL(t) to be known for all t). In
short, we compute �KL(t) numerically to a sufficient accuracy that at sufficiently small t
it agrees with the leading linear behaviour �b4t of the heat kernel expansion, and we then
sew these two behaviours together to perform the integration over all t that gives �F .
This requires a very high level of accuracy which is achieved through approximating the
eigenvalues of L using the pseudo-spectral methods described in Section 5.4. We present
more information on the numerical method used, as well as details of these checks, nu-
merical errors, and computation of �F , in Appendix B.1. Here, we describe the setup
and the results.

Firstly, note that on sufficiently deformed backgrounds the Ricci scalar will become
negative somewhere, and hence the spectrum of L for the non-minimally-coupled scalar
may become negative. If these eigenvalues are sufficiently larger in magnitude than M2

(as will always occur if M is fixed and the sphere is deformed more and more extremely),
their presence introduces tachyonic instabilities, implying that the theory becomes ill de-
fined. Consequently, we will restrict to numerical analysis of only the minimally-coupled
scalar (⇠ = 0), that, as we showed in the previous section, always has a non-negative spec-
trum. No restriction is required on the fermion, since as mentioned above the spectrum
of L for the fermion is always positive.

A numerical analysis can only by used to study a specific subset of deformations
of the round sphere. Here, we will consider certain classes of axisymmetric deformations.
We begin by considering deformed spheres embedded in R3 via r = R(✓), corresponding
to the induced metric15

ds2 = R(✓)2

2

4
 
1 +

R0
(✓)2

R(✓)2

!
d✓2 + sin

2 ✓ d�2

3

5 . (5.89)

Specifically, we will take
R`,"(✓) = c`,"

�
1 + "Y`,0(✓, 0)

�
, (5.90)

where c`," is a (positive) constant that ensures the volume of the sphere remains unchanged
as " is varied. It is straightforward to see that to linear order in ", the metric (5.89) ob-

15Such an embedding restricts ⌃ to be star-shaped in the technical sense that any ray fired from r = 0
intersects ⌃ precisely once.
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Figure 5.5: Cross-sections of the geometries we consider; these should be rotated around
the dotted axis to generate the corresponding deformed sphere. The dotted blue circle
is the unperturbed sphere; from light to dark grey, each curve corresponds to " ranging
in steps of 0.1"max (or 0.1"min) from 0.1"max (0.1"min) to 0.9"max (0.9"min). For odd `,
negative " is related to positive " by a parity transformation which turns the cross-section
“upside-down”, leaving the geometry unchanged.
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tained from these embedding functions is in the form (5.24) conformal to the round sphere,
and hence the behaviour of �KL(t) to leading non-trivial order in " should be the same as
that obtained in Section 5.3 (with f (1)

= Y`,0). However, higher-order effects in " break the
conformal form of the metric. We will consider deformations (5.90) with ` = 1, 2, . . . , 6,
while the range of " 2 ("min, "max) is fixed by the condition that R`," > 0 everywhere; we
show cross-sections of the embeddings of these surfaces into R3 in Figure 5.5. Note that for
odd ` it suffices to consider only " > 0, since positive and negative " are related by a parity
transformation: the transformation (✓,�)! (⇡�✓,�+⇡) sends Y`,0 ! (�1)`Y`,0 = �Y`,0,
and thus since Y`,0 always appears with a factor of ", we find that R",` ! R�",` for odd `.
It is also worth noting that the ` = 1 embedding does not appear to change the shape
of the sphere much at all until " is relatively large; as mentioned above, this is because
the ` = 1 deformation is an infinitesimal diffeomorphism, and thus the deformation of
the intrinsic geometry is trivial to linear order in ". This can be seen explicitly by noting
that since Y1,0(✓) = p cos ✓ (with p =

p
3/4⇡), the induced metric (5.89) with R = R1,"

becomes

ds2 = c2
1,"
(1 + p" cos ✓)2

⇥
(1 + p2"2 sin2 ✓)d✓2 + sin

2 ✓ d�2
⇤
+O("3); (5.91)

converting to a new coordinate # defined by ✓ = #� p" sin#+ p2"2 sin# cos#+O("3), we
get

ds2 =

 
1� "2p

20⇡
Y2,0(#)

!
⇥
d#2

+ sin
2 # d�2

⇤
+O("3), (5.92)

so the induced metric to linear order in " is diffeomorphic to the round sphere, as claimed.
The non-trivial perturbation comes in at order "2 and takes the form of those considered
in Section 5.3 with f (1)

= �Y2,0/
p
20⇡; the differenced heat kernel should thus be O("4).

In Figures 5.6 and 5.7, we show the differenced heat kernels �KL(t) for the
minimally-coupled scalar and for the Dirac fermion normalised by "2 (or by "4 in the
case of ` = 1) along with the perturbative results derived in Section 5.3. Note that we
only plot �KL down to t = 0.0005; this is because in the small-t regime more and more
eigenvalues of L contribute to �KL leading to difficulty in controlling the numerics. But
as discussed above, the small-t regime is controlled by the heat kernel expansion, which
guarantees the sign of ��KL to be negative there. We therefore see that ��KL(t) is
negative for all t even for large deformations of the sphere. Interestingly, �KL(t) appears
to grow with " at sufficiently small fixed values of t; this is due to the fact that as the
geometry becomes more singular, its Ricci curvature grows, causing the heat kernel co-
efficient �b4 defined in (5.83) to grow as well. This growth is especially pronounced in
the deformations with odd ` and those with even ` and " < 0; comparing to Figure 5.5,
these deformations all limit towards a connected geometry with a cusp-like defect (the
geometries with even ` and " > 0, on the other hand, pinch off into separate disconnected
components as "! "max). This growth of �KL at small t should lead to a corresponding
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Figure 5.6: The differenced heat kernel �KL(t) as a function of t for the minimally-
coupled scalar on the deformed spheres given by (5.90). Each plot shows the rescaled
heat kernel ���KL/"2 (except for ` = 1, which shows ���KL/"4), with the dashed blue
line corresponding to the perturbative result (5.28) and the grey lines to the numerical
results for the deformations shown in Figure 5.5 (hence light to dark grey corresponds to
increasing |"|, with " 2 [0.9"min, 0.9"max]).

growth in the free energy �F ; we now investigate this free energy, and then more carefully
investigate the divergence structure associated to the limiting singular geometries.

5.5.3 Behaviour of the Free Energy

At zero mass and temperature, the differenced free energy �FT=0 = �E may be com-
puted by using (5.39) and then integrating the heat kernel with (5.20); more details on the
computation can be found in Appendix B.1. In Figure 5.8 we show �E for the deforma-
tions described above, normalised by the perturbative result �Epert. As expected, |�E|
grows monotonically with increasing |"|, though this may not be apparent from Figure 5.8
as the curves are normalised by a factor of "2 (or "4 for ` = 1) contained in �Epert. This
is shown more clearly by the non-normalised �E plots shown in Figure 5.9. Due to the
growth of �K at small t as " approaches "min or "max, we only show �E for a range
of " within which the error in �E is no greater than a few percent (this corresponds
to " up to 0.8"max for ` = 1 and up to 0.5"max for ` = 6). Nevertheless, the growth in
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Figure 5.7: The differenced heat kernel �KL(t) as a function of t for the Dirac fermion on
the deformed spheres given by (5.90). Each plot shows the rescaled heat kernel���KL/"2

(except for ` = 1, which shows���KL/"4), with the dashed blue line corresponding to the
perturbative result (5.36) and the grey lines to the numerical results for the deformations
shown in Figure 5.5 (hence light to dark grey corresponds to increasing |"|, with " 2
[0.9"min, 0.9"max]).

the small-t behaviour of the heat kernel makes clear that �E should continue to grow
as the geometry is successively deformed; we will investigate this growth in more detail
in the following section. For now, let us note the remarkable feature that �E/�Epert

looks extremely similar for both the scalar and fermion, despite the fact that the corre-
sponding heat kernels in Figures 5.6 and 5.7 are more substantially different. It therefore
appears that the theory-dependence of �E is contained almost completely in the pertur-
bative contribution �Epert: the ratio �E/�Epert is almost entirely theory-independent
(we highlight almost : the difference between the curves is larger than numerical error,
so they are genuinely different). This feature is interestingly reminiscent of the results
of [95], which study the free energy of the massless Dirac fermion, the conformally-coupled
scalar, and holographic CFTs on a squashed Euclidean three-sphere; they found that for
small and modest squashings, the free energies of all of these theories agree more closely
than should be expected from CFT considerations alone. Indeed, there is a conjecture and
good evidence that the subleading term in the perturbative expansion of the free energy
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Figure 5.8: The zero-temperature differenced energy �E normalised by its perturbative
behaviour �Epert on the deformed spheres given by (5.89) and (5.90). Solid lines show
results for the massless Dirac fermion, while dashed lines are for the massless minimally-
coupled scalar (points are numerical data; the curves are drawn to guide the eye). From
black to light grey, the curves corresponds to ` = 1, 3, 5 (left) and ` = 2, 4, 6 (right). It is
striking that the Dirac fermion and scalar give very similar curves.

in the squashing parameter, determined by the three-point function of the stress tensor, is
surprisingly universal for all three-dimensional CFTs [113, 114]. This link will be explored
in more detail in Chapter 6 where the behaviour of �E/�Epert for the massless Dirac
fermion, the conformally-coupled scalar, and holographic CFTs (the three-dimensional
CFTs considered in [95, 113]) on a product of time with static deformation of a two-
sphere will be calculated, allowing for a more direct comparison with these results in
Section 6.4.

In fact, this theory independence becomes exact in a long-wavelength limit. Specif-
ically, let l be the typical curvature scale of the deformed geometry; then the heat kernel
coefficient �b2n scales like l�2n for n > 2. The heat kernel expansion (5.22) then implies
that for l � T�1,M�1, the free energy (5.20) can be expressed as an expansion in powers
of 1/(T l) or 1/(Ml)16. Indeed, for general M , T we can derive (as we did for flat space
in Section 4.3) that

�F = �
1X

n=0

(�1)n�b2n+4

T 2n+1
J (n)

 
M2

T 2

!
, (5.93)

where J (n) is the nth derivative of the function given by

J(⇣) =
1

2
p
⇣

8
><

>:

coth

⇣p
⇣

2

⌘
, scalar,

tanh

⇣p
⇣

2

⌘
, fermion.

(5.94)

16In fact, for the scalar such an expansion necessarily requires lM � 1, whereas for the fermion it
is sufficient for either Ml or T l to be large. This is due to the fact that at large T , ⇥�(T 2

t) falls off
exponentially for the fermion but approaches a non-zero constant for the scalar.
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Figure 5.9: The zero-temperature differenced energy �E (in units of one over the radius
of the reference round sphere) on the deformed spheres given by (5.89) and (5.90). Solid
lines show results for the massless Dirac fermion, while dashed lines are for the massless
minimally-coupled scalar (points are numerical data; the curves are drawn to guide the
eye). From black to light grey, the curves corresponds to ` = 1, 3, 5 (left) and ` = 2, 4, 6
(right).

For M ⇠ T , (5.93) is clearly an expansion in 1/(T l)2. For M � T , it instead becomes

�F =
�p
4⇡M

1X

n=0

�b2n+4

M2n
�

✓
n+

1

2

◆
1 +O

⇣
e
�M/T

⌘�
, (5.95)

which is an expansion in 1/(Ml)2. On the other hand, for M ⌧ T we have

�F = �
1X

n=0

�b2n+4

8
>><

>>:

T

M2

n!

M2n
, scalar

(�1)nJ (n)
(0)

T 2n+1
, fermion

9
>>=

>>;

h
1 +O

�
M2/T 2

�i
, (5.96)

which is an expansion in 1/(Ml)2 for the scalar and 1/(T l)2 for the fermion.
The point is that as long as l � T�1,M�1, the leading-order behaviour of the

differenced free energy is governed by the lowest heat kernel coefficient �b4:

�F = �
�b4
T

J

 
M2

T 2

!
+ · · · , (5.97)

where · · · denotes subleading terms. The theory dependence of �F can be seen by
expanding

�b4 = �b(2)
4
"2 +O("3), (5.98)

from which we have
�F

�Fpert

=
�b4

�b(2)
4
"2

+ · · · . (5.99)
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Figure 5.10: The ratio �F/�Fpert at various temperatures and masses for the Dirac
fermion on the deformed spheres given by (5.90), for the representative case ` = 2. In
both figures, the black curves correspond to the massless, zero-temperature result, while
the dashed red line is the long-wavelength behaviour given by (5.99). From black to light
grey, the left figure shows temperatures T = 0, 0.5, 1, 2, 4, and 8, while the right figure
shows masses M = 0, 0.5, 1, 2, 4, 8 and 16 (points are numerical data; the curves are
drawn to guide the eye). The range of the x-axis goes from "min to "max; the data shown
here takes |"| sufficiently small that the numerical error in �F is no greater than one
percent.

But from (5.83), the ratio �b4/�b(2)
4

is the same for the fermion and the scalar, so
to leading order �F/�Fpert is independent of the theory (as well as of the mass and
temperature).

At intermediate masses and temperatures, �F interpolates between the massless
zero-temperature behaviour shown in Figure 5.8 and the behaviour given by (5.97). As
a representative example, we show this interpolation in Figure 5.10 for the case of the
fermion and the deformed spheres (5.90) with ` = 2 (results for the scalar and higher ` are
analogous). We also show the non-normalised �F for the same deformations in Figure 5.11
to exhibit more clearly the monotonic dependence on |"|. The takeaway is that for any
mass and temperature, large deformations of the sphere appear to decrease �F arbitrarily.
The deformations considered here tend to ‘pinch off’ the sphere somewhere, and hence
to better understand the behaviour of �F under such extreme deformations, we now
examine more closely the behaviour of the heat kernel near these transitions.

5.6 Towards Singular Geometries

As remarked above, the deformations shown in Figure 5.5 fall into roughly two classes:
the left two columns (corresponding to odd ` and even ` with " < 0) limit to a connected
geometry that ‘pinches’ somewhere, while the geometries shown in the right column (cor-
responding to even ` with " > 0) tend to disconnect as " ! "max, with the individual
connected pieces each potentially having a defect near the transition. In both classes,
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Figure 5.11: The differenced free energy �F (in units of one over the radius of the
reference round sphere) at various temperatures and masses for the Dirac fermion on the
deformed spheres given by (5.90), for the representative case ` = 2. From black to light
grey, the left figure shows temperatures T = 0, 0.5, 1, 2, 4, and 8, while the right figure
shows masses M = 0, 0.5, 1, 2, 4, 8 and 16 (points are numerical data; the curves are
drawn to guide the eye). The range of the x-axis goes from "min to "max; the data shown
here takes |"| sufficiently small that the numerical error in �F is no greater than one
percent.

we expect the gradient of �KL to diverge at t = 0 as " ! "min,max because the heat
kernel coefficient �b4 diverges as the geometry becomes singular due to the Ricci scalar
becoming unbounded near the pinch-off17. However, the behaviour of �KL at small non-
zero t differs between these two classes. The class with even ` and " > 0 is perhaps
most intuitive: the case ` = 2 looks like a change in topology from one sphere to two,
while for ` > 4 the singular geometry also exhibits conical defects near the transition (in
addition to the divergence of the Ricci scalar there). An isolated conical defect (with no
curvature singularity) can be studied analytically, so we begin with a discussion of the
associated divergences.

5.6.1 Conical Defects

In the vicinity of a conical defect on some manifold ⌃, the geometry takes the form

ds2 =
⇥
dr2 + r2d�2

⇤ �
1 +O(r)

�
(5.100)

where � has periodicity ↵ (with ↵ = 2⇡ corresponding to a smooth geometry). Recall
that a conical deficit (corresponding to ↵ < 2⇡) can be embedded in R3, while an excess
(corresponding to ↵ > 2⇡) cannot. The differenced free energy, of course, depends only on

17This unboundedness of the Ricci scalar renders the asymptotic series (5.20) no longer valid. The heat
kernel may still admit a Frobenius expansion around t = 0 when " = "min,max, but the coefficients in
this expansion cannot be given by integrals of successively higher-derivative curvature invariants, because
these diverge.
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the intrinsic geometry, so we may still analyse its behaviour regardless of the existence of
any embedding. In the presence of such a defect, the corresponding heat kernel expansion
exhibits an additional constant term associated to it [80]:

�KL(t) =
�Vol[g]

4⇡t
� �(⌃)

12
� (2⇡ � ↵)2

48⇡↵
+O(t). (5.101)

The differenced heat kernel thus satisfies

��KL(t) = �
(2⇡ � ↵)2
48⇡↵

+O(t), (5.102)

which clearly leads to a UV divergence in �F . Importantly, note that this divergence has
fixed sign: it always contributes negatively to ��KL(t), and hence to �F .

Interestingly, for a cone (that is, the geometry (5.100) with vanishing subleading
corrections), the sign of the divergence of the energy depends on whether the defect
corresponds to a conical excess or deficit. For example, in the case of a conformally-
coupled scalar at zero temperature, the energy density of a cone is [115]

⇢ ⌘ hT00i =
G(↵)

r3
, (5.103)

where G(↵) < 0 for ↵ < 2⇡ and G(↵) > 0 for ↵ > 2⇡. Hence the differenced free energy
between a cone and a planar geometry with no conical defect is negatively UV divergent18

when ↵ < 2⇡, and positively divergent when ↵ > 2⇡. One might have naïvely expected
the behaviour (5.103) to have been universal near conical defects (at least for QFTs with
UV fixed points, which are CFTs in the UV), but the heat kernel expansion (5.101) shows
that the behaviour of the stress tensor near such defects must be sensitive to the global
properties of (⌃, g) (and in particular, if ⌃ is compact, it follows from (5.102) that the
difference �F is always negatively UV divergent, whether the defect is an excess or a
deficit).

To manifestly illustrate such deformations, as well as to connect to the deforma-
tions considered in Section 5.5, consider a one-parameter family of spatial geometries that
interpolates from a smooth geometry to one with a conical defect at a pole. An explicit
axisymmetric example of such a family is given by the embedding

R"(✓) = c"

✓
1 +

1

4

q
1 + 40 sin

2
�
✓/2
�
� 1

4

q
(1� ")2 + 50 sin

2
�
✓/2
�◆2

, (5.104)

where c" is a volume-preserving constant that fixes the volume to 4⇡, i.e. the volume of
the round unit sphere. For any " < 1, this geometry is everywhere smooth, and for " = 1,
it exhibits a conical defect at ✓ = 0 with angle ↵ = 2⇡/

p
3 and a Ricci scalar which is

18We are ignoring potential IR divergences associated with the fact that a cone is not compact.
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Figure 5.12: Cross-sections of the geometries described by the embedding function (5.104);
these should be rotated around the dotted axis to generate the corresponding deformed
spheres. From grey to black, we show " = 0 to 1 in intervals of 0.2; the " = 1 embedding
exhibits a conical defect at the pole.

bounded everywhere excluding the defect; see Figure 5.12. For " < 1 we may therefore
numerically compute the heat kernel as described in the previous section; we show these
in Figure 5.13. As expected, the differenced heat kernel vanishes linearly at small t for
any " < 1, but its gradient there diverges as " ! 1. In the limit " ! 1, the heat kernel
clearly approaches a function that goes to a non-zero value at t = 0, consistent with the
expectation from (5.102):

lim
t!0+

lim
"!1�

��KL(t) = �
2
p
3� 3

36
, (5.105)

with the right-hand side just the ↵ = 2⇡/
p
3 case of (5.102).

We can investigate a conical excess analogously by specifying the deformed sphere
geometry directly rather than considering an embedding. To that end, consider the family
of deformed spheres given by

ds2 = c"
⇣
d✓2 + e

2f" sin
2 ✓ d�2

⌘
, with f"(✓) =

ln(↵/2⇡)

sec2(✓/2) + (1� ")2cosec2(✓/2) , (5.106)

where c" is again a volume-preserving constant. For " < 1, these geometries are smooth,
while the " = 1 geometry exhibits a conical defect of angle ↵ at the pole ✓ = 0 and
a Ricci scalar which is bounded everywhere excluding this pole. The small-t behaviour
of the differenced heat kernels for ↵ = 3⇡ is shown in Figure 5.14; note that in the
limit " ! 1, these too approach the t = 0 value expected from (5.102). Moreover, one
again finds ��KL appears positive for all t. In particular, these results confirm that on a
topological sphere with a conical defect, both a deficit and an excess contribute negatively
to the free energy, in contrast with the expectation from (5.103) for planar geometries.
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Figure 5.13: The small-t behaviour of �KL for the minimally-coupled scalar (left) and
the Dirac fermion (right) on the geometries described by the embedding (5.104). From
lightest to darkest, the curves correspond to " = 0.9, 0.95, 0.96, 0.97, 0.98, 0.99, and 0.995.
The red dot indicates the t = 0 value (5.105) expected on the conical defect geometry
corresponding to " = 1.

5.6.2 Even `, " > 0

Let us now return to the case of the deformed spheres shown in the right-hand column
of Figure 5.5. As a representative example, in Figure 5.15 we show the small-t behaviour
of �K for the ` = 2 deformation (5.90) near " = "max. As expected, the heat kernel always
vanishes linearly at t = 0 for any " < "max but its gradient there diverges as " ! "max.
More interestingly, �K appears to stabilise to a function that approaches a finite non-zero
value at t = 0. This behaviour is quite evident in the case of the fermion, though it is a
bit less obvious for the scalar as the successive change in �KL appears to grow with each
successive step in ".

We might hope to understand this behaviour by using the heat kernel expansion,
but as mentioned above, for " = "max this expansion breaks down due to the unbounded
Ricci scalar near the pinch-off point. We therefore should not expect the expansion (5.101)
to capture quantitative details of the small-t behaviour near the transition. However, it
is interesting to note that it does capture some qualitative features; for instance, the
differenced heat kernel appears to be approaching a function that limits to a non-zero
constant at t = 0, similarly to the hear kernels shown in Figures 5.13 and 5.14. Moreover,
note that the ` = 2, " = "max geometry does not have a conical defect and can be
thought of as a transition from one to two topological spheres. This transition doubles
the Euler characteristic from � = 2 to � = 4, which from the heat kernel expansion would
correspond to a differenced heat kernel of

��KL(t) = �
1

6
+O(t); (5.107)

this limiting value of �1/6 is surprisingly very close to the limiting behaviour for the
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Figure 5.14: The small-t behaviour of �KL for the minimally-coupled scalar (left) and the
Dirac fermion (right) on the geometries (5.106) with ↵ = 3⇡. From lightest to darkest, the
curves correspond to " = 0.9, 0.95, 0.96, 0.97, 0.98, 0.99, and 0.995. The red dot indicates
the t = 0 value �1/144 expected on the conical defect geometry with " = 1.
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Figure 5.15: The behaviour of �KL at small t for ` = 2 and " > 0 for the minimally-
coupled scalar (left) and the Dirac fermion (right). From lightest to darkest, the curves
correspond to "/"max = 0.9 to 0.99 in intervals of 0.01.

fermion shown in Figure 5.15b, even though a priori the heat kernel expansion should not
be applicable (the scalar heat kernel in Figure 5.15a, on the other hand, does not appear
to approach this limiting value of �1/6, though this is more difficult to verify conclusively
because the scalar heat kernel does not appear to be growing linearly in " near " = "max).

5.6.3 Odd ` and Even `, " < 0

For odd ` and even ` with " < 0, the limiting geometry instead has a cusp. The corre-
sponding behaviour of the differenced heat kernels (for ` = 2) is shown in Figure 5.16; note
that now the heat kernel itself, rather than just its gradient, appears to grow at small t
as the geometry becomes singular. As shown in Figure 5.17, at intermediate values of t
this growth appears to go roughly like t�1/2, but does not appear to be maintained to
arbitrarily small t. Indeed, the difficulty in inferring the limiting small-t behaviour is
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Figure 5.16: The behaviour of �KL at small t for ` = 2 and " < 0 for the minimally-
coupled scalar (left) and the Dirac fermion (right). From lightest to darkest, the curves
correspond to "/"min = 0.9 to 0.99 in intervals of 0.01.
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Figure 5.17: The same as Figure 5.16, normalised by a factor of
p
t. At small-but-not-

too-small t, �KL appears to go like t�1/2. It is unclear what happens at much smaller t
due to lack of numerical precision there.

presumably due to the breakdown of the heat kernel expansion in the singular limit —
that is, it is unclear whether or not

p
t�KL vanishes at t = 0 in the singular limit, and

therefore whether �KL actually approaches a finite non-zero constant at t = 0 like it does
for the cone or whether �KL genuinely diverges there. Nevertheless, we note that the
scaling as t�1/2 is interesting as such a scaling of the heat kernel is expected on manifolds
with boundary (2.19). This behaviour suggests that perhaps the cusp can be interpreted
as a sort of boundary.

5.6.4 Implications for Graphene-Like Materials

The fact that �KL(t) approaches a non-zero constant at small t could have interesting
consequences for materials like graphene, that, as discussed at the beginning of this chap-
ter, may exhibit a competition between a classical membrane free energy �Fc and the
contribution �Fq from effective QFT degrees of freedom. Indeed, note that (5.20) implies
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that on a geometry with a conical defect, �Fq has a linear UV divergence:

�Fq = �B⇢�1
+O(⇢0), (5.108)

where ⇢ is a short-distance cutoff that resolves the conical singularity (imposed by re-
stricting to t > ⇢2) and B is a positive constant. On the other hand, the Landau free
energy �Fc given in (5.1) merely has a logarithmic divergence that is due to its scale-
invariance: near ✓ = 0 the mean curvature of the embedding (5.104) with " = 1 diverges
as ✓�1, and hence

�Fc =
eB ln ⇢�1

+O(⇢0), (5.109)

with eB a positive constant. Interpreting (1 � ") ⇠ ⇢ as the resolution parameter of the
cone, it therefore follows that �Fc must grow more slowly with " than �Fq, and hence a
deformation with " sufficiently close to 1 will have �Fc +�Fq < 0. This argument will
fail, of course, once " is so close to 1 that UV effects from the ‘tip’ of the cone — that
presumably are how the divergences in (5.108) and (5.109) are resolved — change the
relative growth of �Fc and �Fq with ".

On the other hand, per the analysis of Section 5.1, for graphene we have that at
small ", �Fc+�Fq > 0. So although competition between �Fc and �Fq does not render
the round sphere locally unstable, it appears that sufficiently large deformations of the
round sphere may be preferred to the round sphere itself, even after accounting for the
Landau free energy of the membrane. Whether this is actually the case will depend on
the details of when our analysis breaks down.

5.7 Summary and Discussion

We have provided evidence that for a (minimally- or non-minimally-coupled) free scalar
field and for a Dirac fermion living on (R ⇥ ⌃,�dt2 + g), with ⌃ a two-dimensional
manifold with sphere topology and endowed with metric g, the free energy is maximised
when g is the metric of the round sphere. This observation applies to any mass and at
any temperature. We demonstrated this result perturbatively around the round sphere for
any non-trivial perturbation to the geometry, while for non-perturbative deformations we
focused on a class of axisymmetric deformations. We found, in fact, not just that the free
energy difference �F is negative, but that the (differenced) heat kernel �KL(t) itself has
fixed sign — a much stronger result than merely negativity of �F . We have also shown
that the free energy difference �F between an arbitrary g and the round sphere metric
is unbounded below, diverging as g develops a conical defect. This property implies that
any dynamics of the membrane driven by this free energy will tend to drive the membrane
to a singular geometry (that presumably gets regulated by UV effects).

As an application of our results, we have also briefly investigated their relevance
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to (2+1)-dimensional crystalline systems like graphene, in which there are several con-
tributions to the free energy. Specifically, in a Born-Oppenheimer approximation, the
free energy we have calculated is that of the low-energy effective field theory of quantum
excitations propagating on a fixed background determined by the atomic lattice; it sim-
ply corresponds to studying QFT on a curved background. The contribution to the free
energy from this background is governed by a classical Landau free energy, and in this
approximation it is the sum of these two that gives the total free energy of the membrane
configuration. Consequently, understanding whether the negative free energy of QFTs
on the membrane is sufficient to render the geometry singular depends on how well this
quantum effect can compete with the Landau free energy of the underlying lattice. In the
case of graphene at sufficiently low temperatures, we performed an analysis of this com-
petition and found that with the simplifying assumption of a diffeomorphism-invariant
Landau free energy, the membrane energy dominates for small perturbations of the round
sphere, rendering the round sphere stable. However, in Section 5.1 we provided a more
general diagnostic (5.12) for when the QFT free energy can make the round sphere unsta-
ble. This constraint depends on parameters like the bending rigidity, lattice spacing, and
details of the effective QFT fields living on the membrane. Since these parameters are
presumably experimentally tuneable from one type of crystalline membrane to another, it
is plausible that a system can be engineered in which the QFT free energy does dominate
that of the Landau free energy, and hence one should be able to experimentally observe
the preference of such a membrane to deform to a singular effective geometry. Even
without such engineering, the fact that integrating out the QFT fields gives a non-local
contribution to the free energy (as opposed to the classical contribution from the geomet-
ric membrane action, which is local) suggests that perhaps the QFT contribution could
be experimentally teased out from the classical piece, even if it never actually dominates
the free energy.

More importantly, for large deformations of the sphere, we have shown that both �Fq

and �Fc can be made arbitrarily large as the geometry becomes singular, with �Fq neg-
ative and growing faster than �Fc. Hence, it is conceivable that even if the round sphere
is locally stable, it is not globally stable, and large deformations are preferred. Verifying
whether this is indeed the case requires understanding, for instance, how large " must be
in the one-parameter family (5.104) before our analysis breaks down due to UV effects.

One unanswered question from this chapter concerns the quantitative behaviour
of �F : what underlying mechanism is responsible for the similarity of �F between the
minimally-coupled scalar and the Dirac fermion at small deformation parameter? As
discussed in Section 5.5.3, this mechanism can be understood well in a long-wavelength
limit, but we do not yet understand why the zero-temperature curves shown in Figure 5.8
are remarkably similar. In turns out that, in addition to the sign of �F , its behaviour as
a functional of the deformation exhibits rather striking universal behaviour, not only for
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free theories, but also for holographic CFTs. This will be explored further in Chapter 6.



Chapter 6

A Surprising Similarity Between

Holographic CFTs and a Free Fermion

Holography in the form of AdS/CFT (as described in Section 1.2) is a very powerful
tool for probing features of certain strongly-coupled field theories that would otherwise
be intractable using conventional field-theoretic methods — as exhibited, for example,
by the holographic results presented in Section 1.2 to which the intuition for the subject
matter of this thesis is owed. While, in principle, the dual gravitational description of such
holographic field theories always exists as a full quantum theory of gravity, in practice
holography can only give insights into the field theory when the gravitational theory is
in a semiclassical regime. This regime corresponds to a small Planck length in the bulk,
and hence a large number of degrees of freedom in the field theory. While the ‘real’ field
theories in which we might typically be interested do not have arbitrarily many degrees
of freedom (nor necessarily even a holographic dual description), there has nevertheless
been a large effort in using holography to describe physics for theories with relatively few
degrees of freedom, or even in theories without holographic duals. An example of such
an application is to heavy ion physics motivated by the resemblance between QCD and
certain Yang-Mills theories which do possess (at least conventional) dual gravitational
descriptions, and under the assumption that three colours in QCD is ‘close’ to large N

in Yang-Mills for the purposes of computing observables of interest (see e.g. [116] for a
review).

When pushing holography beyond its obvious regime of validity, a phenomenolog-
ical question then arises: how similar is the behaviour of holographic field theories to
conventional ones? In this chapter (based on [4]), we will explore this question in the
context of the computation of vacuum energies of (2+1)-dimensional CFTs on ultrastatic
backgrounds. Specifically, we will compare the vacuum energy of two free CFTs — the
massless Dirac fermion and the conformally-coupled scalar — to that of a holographic
CFT as a functional of their spatial geometries. As in Chapter 5, we will take the CFTs
to live on a product of time with a topological two-sphere.
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While simple, this setting is of physical interest — recall that the free massless
fermion is an effective description of the behaviour of electrons in monolayer graphene
(and generalisations thereof) near Dirac points, with the geometry on which the fermion
lives given by (a slight modification of) the geometry of the monolayer [35–37, 43]. The be-
haviour of the vacuum energy of the free Dirac fermion on these geometries may therefore
be relevant to technological applications. From a different perspective, various statements
about the vacuum energy and energy density in the holographic theory in this setting can
be proved using elegant geometric arguments — for example, for deformations of the two-
sphere for which there exists an infilling bulk geometry, the vacuum energy is globally
maximised by the round sphere, as demonstrated in Section 1.3. In Section 5.5, we pre-
sented evidence this may also be true for free field theories, suggesting this might be a
universal behaviour among a large class of field theories, even beyond CFTs.

For a (2+1)-dimensional CFTs (as all the theories we will consider in this chapter
are), the energy on the round two-sphere vanishes, and one is naturally led to ask how
the energy varies as the sphere is deformed. Since the dependence of the free energy
on the volume of the deformed sphere is trivial, we will restrict to perturbations that
leave this volume unchanged. For small such deformations, we noted in Section 1.4 that
the vacuum energy is universal for all CFTs, depending only on the theories through
their central charge. For large deformations, one would instead naïvely expect different
behaviours for different theories. However, in the previous chapter we observed that for
fixed-volume deformations, the vacuum energies of the minimally-coupled scalar (which
is not a CFT) and of the Dirac fermion actually were not only always negative relative to
the round sphere, but also qualitatively very similar. Perhaps this is not too surprising
— the scalar and fermion are both free theories, after all. Our purpose in this chapter is
to compare the free-field results to those of a holographic CFT, which on the other hand
is strongly coupled.

We will find that the behaviours of the vacuum energies of the scalar, fermion,
and holographic CFTs are all qualitatively very similar. In fact, our comparison of these
energies yields a surprise: for a wide range of non-perturbative deformations of the sphere
(with its volume held fixed), the vacuum energy of the holographic theory is remarkably
quantitatively close to that of the free fermion. While they are not identical, the surprising
closeness of these energies is somewhat of a mystery and perhaps suggests the presence
of some underlying mechanism responsible for this fine-tuning. Moreover, such a close
agreement between the fermion and the holographic CFT has also been exhibited in
entropic computations like the entanglement entropy corner function [117, 118] and the
ratio cs/cT , where cs is the coefficient in the thermal entropy density of a CFT in flat
space: s = csT 2 [119]. We do note, however, that this similarity in the vacuum energy does
not extend to other closely-related deformations. For instance, if we were to turn on a finite
temperature, the confining nature of the holographic CFT would lead to a temperature-
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independent free energy at sufficiently-low temperature with a corresponding first-order
deconfinement transition [120], whereas the free theories would exhibit free energies with a
non-trivial and smooth temperature dependence, as demonstrated in Chapter 5. Likewise,
in Euclidean signature the analogue of the free energy is the partition function, which
was computed in [95] for these three CFTs on the Euclidean squashed (Berger) three-
sphere (which does not have a Lorentzian interpretation). In that case the fermion and
holographic CFT yield different behaviours of the partition function, and in fact even
the partition functions of the scalar and of the fermion are qualitatively different (for
example, for large enough perturbations of the three-sphere, the partition function of the
fermion is larger than that of the unsquashed sphere, while that of the scalar is always
smaller). These observations naturally prompt the question of why the fermion, scalar,
and holographic CFT vacuum energies are all so similar for the classes of deformations
we will study in this chapter.

A plan for the chapter is as follows. Firstly, in Section 6.1 we will introduce the
physical setup and the fixed-volume sphere deformations we will consider. In Section 6.2
we will review the harmonic approach to numerically constructing static solutions to the
(Euclidean) Einstein equation with a non-positive cosmological constant [121–123], the
approach used by my collaborators to construct the bulk geometries of interest in this
chapter. We will also review their novel method for extracting the vacuum energy much
more accurately than the entire vacuum stress tensor itself. In Section 6.3 we will then
compare the vacuum energies of the various deformations we will consider and briefly
conclude in Section 6.4.

6.1 Physical Setting

As remarked above, we take our (2+1)-dimensional CFTs to be in vacuum on the space-
time with manifold R⇥ ⌃ and metric

ds2 = �dt2 + hijdy
i
dyj, (6.1)

where (⌃, h) is a (time-independent) two-dimensional Riemannian manifold with spherical
topology. We do not turn on any other sources for local CFT operators. Consequently,
the vacuum energy E[h] is a functional only of the geometry h. Note that because we are
considering the vacuum state of CFTs, all dimensionful scales are set by the geometry;
therefore a rigid rescaling h ! �2h (for some constant �) causes the vacuum energy to
scale trivially as E[h] ! ��1E[h]. Hence, WLOG we fix the volume of (⌃, h) to be that
of the unit round two-sphere: Vol[h] = 4⇡.

On the ultrastatic geometry (6.1), the vacuum energy E[h] can be defined as the
integral over (⌃, h) of the energy density hTtti, where hTµ⌫i is the VEV of the stress tensor.
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For a general QFT there are counterterm ambiguities when renormalising the stress tensor
on curved spacetime, but for a three-dimensional CFT the counterterms required by power
counting — corresponding to a cosmological constant and an Einstein-Hilbert term in the
action — both must vanish as they are not Weyl invariant. Hence, E[h] is an unambiguous
physical quantity. We further note that the vacuum energy vanishes when (⌃, h) is the
round sphere (S2,⌦), which can be seen most easily by noting that the corresponding
Euclidean spacetime R ⇥ S21 is conformally equivalent to Euclidean flat space R3 on
which the vacuum stress tensor vanishes. The lack of any conformal anomaly means that
the same must be true on the original geometry R⇥ S2, and hence E[⌦] = 0

2.
We will consider three CFTs: a conformally-coupled scalar, a free Dirac fermion,

and a holographic CFT in the regime in which its geometric dual is classical Einstein
gravity (i.e. the limit of large central charge and strong coupling). These have central
charges cs = 3/(4⇡)2, cf = (3/2)/(4⇡)2, and 48ch/⇡2, respectively, and we recall that ch =

`2/(16⇡G) with ` and G the dual AdS length and Newton’s constant. Because we are
turning on no sources besides the metric, for the holographic CFT we will take the dual
gravity theory to be four-dimensional pure gravity with negative cosmological constant,
whose solutions may be embedded in various top-down models in explicit cases such as
e.g. the ABJM theory [124]. In principle, there could be situations in which bulk matter
fields spontaneously condense. However, we will not consider such situations here.

Now, when (⌃, h) is a small deformation of the round sphere, we may write its
metric in a form conformal to the round sphere as

h =
�
1 + 2"f(✓,�)

� �
d✓2 + sin

2 ✓ d�2
�
, (6.2)

with |"| ⌧ 1. Recall that the leading-order behaviour of the vacuum energy in " is,
decomposing f in spherical harmonics as f =

P
l,m

fl,mYl,m(✓,�), from Section 1.4, is

E[h] = �"2⇡
2cT
48

X

l,m

��fl,m
��2 (l

2 � 1)(l + 2)

l

0

B@
�

⇣
l+1

2

⌘

�

⇣
l

2

⌘

1

CA

2

+O("3), (6.3)

with cT the central charge of the theory, as given above. To compute the vacuum energy
for general h we must instead use numerical computations. To make this more tractable
we restrict to the case where (⌃, h) is axisymmetric; hence we take the metric to be

h = b(✓)d✓2 + s(✓) sin2 ✓ d�2 (6.4)

1With standard metrics.
2Thus, alternatively, we may view E[h] as a differenced free energy, as defined in Chapter 4, between

the vacuum energy on (⌃, h) and the vacuum energy on the unit round sphere — which we have shown
to be UV-finite and unambiguous, and therefore physically meaningful.
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(with the usual identification � ⇠ �+2⇡) with smoothness at the poles ✓ = 0, ⇡ requiring
that the functions b(✓) and s(✓) be smooth in ✓ there, as well as b(0) = s(0) and b(⇡) =

s(⇡).
An appropriate transformation of ✓ allows us to write (6.4) in a form conformal to

the round sphere; hence the space of axisymmetric geometries in which we are interested
is parametrised by a single function of ✓. This space is impossible to comprehensively
explore numerically; we will therefore be satisfied with considering various one-parameter
families of geometries that smoothly deform from the round sphere at " = 0 to a singular
geometry at some " 6= 0. We will focus on two classes of such geometries:

Type 1 Geometries are embedded in R3 as surfaces of revolution given by an embedding
function r = R"(✓) in the usual (r, ✓,�) spherical coordinates. These embeddings lead to
the metric

h = (R"(✓)
2
+R0

"
(✓)2)d✓2 +R2

"
(✓) sin2 ✓ d�2. (6.5)

Specifically, we will consider the one-parameter families of embedding functions given by

R"(✓) = al,"
�
1 + "Yl,0(✓)

�
(6.6)

for various l, with al," a constant chosen to keep the volume fixed to 4⇡. As we will briefly
discuss in Section 6.2, restricting to parity-symmetric geometries allows us to reach greater
accuracy in the holographic CFT computations. Therefore, we will make this restriction
from now on, corresponding to considering only even l. For each l, the range of " is
bounded as "min < " < "max (arising from the requirement that R"(✓) > 0 for all ✓);
as " ! "min the geometry remains connected but develops a cusp-like singularity, while
as " ! "max the geometry pinches off into disconnected components. In Figure 6.1 we
plot these embeddings for the range of " for which we will present numerical results in
Section 6.3.

Type 2 Geometries are given by

h = ãn,"
�
d✓2 +Hn,"(✓) sin

2 ✓ d�2
�
, (6.7)

where now
Hn,"(✓) = 1 + " sin2

(n✓) (6.8)

for various n, and again ãn," is chosen to fix the volume to be 4⇡. These have even parity
for n 2 Z, and now " 2 (�1,1). Note that these geometries are not embeddable in R3 for
all n and "; in Figure 6.2 we show those that are. As "! �1 the geometry tends to pinch
off into disconnected components, while as " ! 1 it remains connected but develops a
cusp-like singularity.
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l = 2
�0.51 < x < 0

l = 2
0 < x < 0.6

l = 4
�0.34 < x < 0

l = 4
0 < x < 0.37

l = 6
�0.28 < x < 0

l = 6
0 < x < 0.3

Figure 6.1: Embeddings of the geometries (6.5) in R3 for l = 2, 4, and 6; the full geometries
are surfaces of revolution obtained by rotating about the dotted vertical line. The red
dotted circle represents the undeformed round sphere, while from light grey to black the
other curves show even spacings in x for the labeled range with x related to " as in (6.9).
The black curves, corresponding to the extremal values of x for each l, show the largest
values of x for which we will present results in Section 6.3.

The Type 1 geometries (6.5) are those previously explored in Section 5.5 for the
free scalar field and Dirac fermion. Here, we are limited by the accuracy of the holographic
calculations so the deformations considered are less extreme than those in Section 5.5.
We also consider the Type 2 geometries (6.7) partly for variety, but also partly to ensure
that the phenomena we see are not specifically tied to considering geometries that are
embeddable in R3. Moreover, the numerical methods perform slightly better on the Type 2
geometries than on Type 1 due to the simpler form of the metric functions. We also note
that for both types of geometry, it will be useful to introduce a modified deformation
parameter

x =
"

A"+B
, (6.9)

with A and B chosen so that x 2 (�1, 1)3.
Our primary purpose in this chapter is to compare the vacuum energy of a holo-

graphic CFT for these classes of geometries, with the results obtained for the conformally-
coupled scalar and the massless free Dirac fermion. These latter two CFTs have Euclidean
actions given by

SE[�] =
1

2

Z
d
3x
p
g �

✓
�r2

+
1

8
R

◆
�, (6.10a)

SE[ ̄, ] = i

Z
d
3x
p
g  ̄ /D ; (6.10b)

the reader is once again referred to Appendix A.3 for more on our conventions. The
computation of the vacuum energy of these free theories is as described in the previous
chapter. In short, the vacuum energy can be expressed in terms of the heat kernel defined
by the spatial part of the equations of motion of the actions (6.10). Evaluating this

3Explicitly, for the Type 1 geometries we take A = ("max + "min)/("max � "min), B =
�2"min"max/("max � "min), while for the Type 2 geometries we take A = 1, B = 2.
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n = 1
�0.905 6 x 6 1/7

n = 2
�0.422 6 x 6 1/25

n = 3
�0.178 6 x 6 1/55

Figure 6.2: Axisymmetric embeddings of the geometries (6.7) in R3 for n = 1, 2, and 3 for
the range of x for which embeddings exist; the full geometries are surfaces of revolution
obtained by rotating about the dotted vertical line. The red dotted circle represents
the round sphere x = 0, while the other curves show even spacings in x; lines go from
light to dark with increasing x, with only the black lines corresponding to positive x.
At positive x, embeddings fail to exist for x > 1/(1 + 6n2

), corresponding to the Ricci
curvature becoming negative at the poles (no axisymmetric embedding can have negative
curvature at the poles). For negative x, corresponding to the lighter grey lines, the
smallest values of x for which embeddings exist is determined numerically, except for the
case n = 1 for which embeddings exist all the way to x = �1 when the sphere pinches off
into two pieces (the lowest value x = �0.905 shown here is the smallest value of x reached
in the numerics discussed in Section 6.3).

heat kernel amounts to computing the spectrum of the spatial part of the equations of
motion, which can be done numerically using the pseudo-spectral methods described in
Section 5.4. An improvement on the approximations used to calculate the vacuum energies
in Chapter 5 is made possible by the restriction to zero temperature here. For more details
on these computations, we refer the reader to Appendix B.4 where we give some details
on the implementation and quantify its accuracy. Our focus now turns to the evaluation
of the vacuum energy of the holographic CFT. This was carried out by my collaborators.

6.2 Holographic Gravity Solutions

Because we are considering CFTs dual to pure gravity, obtaining bulk solutions requires
us to solve the vacuum Einstein equation with negative cosmological constant,

RAB = � 3

`2
gAB, (6.11)

for a static locally asymptotically AdS metric whose conformal boundary matches (6.4).
Note that when the boundary sphere is deformed in an axisymmetric manner, we expect
the static bulk to inherit this axisymmetry [125], so we will restrict to axisymmetric bulk
solutions. For convenience, we also now choose units in which the AdS length ` = 1.

In numerically constructing the bulk solutions, the harmonic approach of [121–123]
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was followed. We will briefly summarise this here.

6.2.1 The Einstein DeTurck Equation

Suppose we seek static solutions to the Euclidean Einstein equations (6.11). We would
expect such equations to be elliptic. However, when considered as a differential operator
acting on metric perturbations the static Euclidean Einstein equations eliminate pure-
gauge modes (i.e diffeomorphisms) and thus fail to be elliptic. Ellipticity is restored,
however, when they are restricted to only act on physical degrees of freedom. This causes
issues when attempting to numerically solve these equations using standard techniques for
elliptic PDEs, most of which are relaxation methods. These start from an initial guess in
configuration space and from there move in a (method dependent) direction that reduces
the residual error. This step is then iterated until a sufficiently small error is achieved. To
implement this numerically the metric components must be approximated by functions on
a lattice — an approximation that is only accurate for functions which are smooth on the
scale of the lattice spacing. As far as the relaxation method is concerned there is no cost
to ‘enhancing’ a guess by short-wavelength gauge modes so they are not damped. They
do, however, increase the discretisation error. These errors then accumulate and squander
any hope of convergence. Therefore, the gauge freedom must be removed. The harmonic
approach gives a covariant method for lifting the gauge freedom in the Einstein equations
for static geometries giving an elliptic PDE. It proceeds as follows in the non-positive
cosmological constant case.

To lift the gauge invariance we require a gauge-fixing condition. Let ḡ be smooth
(static) fiducial metric and �

A

BC
[ḡ] its Levi-Civita connection. Then ⇠A = 0, where

⇠A ⌘ gBC

⇣
�
A

BC
[g]� �

A

BC
[ḡ]
⌘

(6.12)

is the DeTurck vector, is a valid gauge fixing constraint [121]. The challenge then is to
solve this constraint simultaneously with the Einstein equations. This can be done by
solving the related Einstein DeTurck equation,

RAB � ⇤gAB = r(A⇠B), (6.13)

where ⇤ is a non-positive constant, provided an appropriate choice of ḡ is made. By
contracting the free index of the contracted Bianchi identity with ⇠A it follows that any
solution to (6.13) satisfies the elliptic inequality

r2⇠2 + ⇠ArA⇠
2
= rA⇠BrA⇠B � 2⇤⇠2 > 0. (6.14)

Thus, ⇠2 is subject to a maximum principle that guarantees ⇠2 can only attain max-
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ima on a boundary of its domain and its outward normal derivatives, @n⇠2, at these
maxima are strictly positive. So as long as ⇠2 = 0 or @n⇠2 = 0 on each boundary
then ⇠2 = 0 everywhere. Choosing a ḡ that obeys the same boundary conditions as g

ensures that ⇠2 = 0 or @n⇠2 = 0 on each boundary [122] and thus that any solution to
the Einstein DeTurck equations (6.13) is also a solution to the Einstein equations (6.11)
subject to the constraint ⇠A = 0. Crucially, the Einstein DeTurck equations have prin-
cipal part �1

2
gCD@C@DgAB and so are elliptic on static geometries and thus amenable to

standard numerical methods for elliptic PDEs. My collaborators Krai Cheamsawat and
Toby Wiseman used these to solve the Einstein DeTurck equations to find the bulk duals
of the boundary geometries described in Section 6.1, finding the metric functions with a
pointwise accuracy of one part in 10

6 or better. More details on these numerics can be
found in [4].

Having found the bulk solutions, these can then be used to deduce the vacuum
energy of the boundary CFTs. The most direct route the CFT energy is via integrating
the boundary stress tensor (1.39) over the boundary. However, using this method com-
promises accuracy on two counts. Firstly, computing the boundary stress tensor requires
third-order derivatives of the metric and, secondly, because this integral involves a lot
of cancellation. This is evident from the perturbative case in Section 1.4 where we have
seen that despite the stress tensor being perturbed at linear order the vacuum energy
only varies quadratically. For these reasons, my collaborators extracted the energy via an
alternative method, by using Equation (1.48):

E = �ch
2

Z

M

d
3x
p
g̃

����R̃IJ �
1

3
R̃ g̃IJ

����
2

, (6.15)

where (M, g̃) is the optical geometry R̃IJ and R̃ is the Ricci curvature of the optical metric,
as defined in Section 1.4. The integrand here is at most second order in derivatives of the
bulk metric, avoiding the need to compute third derivatives, and manifestly non-negative,
bypassing the cancellation that occurs in computing (1.39). This formula, therefore, can
be used to make much more accurate estimates of the holographic CFT energies.

6.3 Results

We now compare the vacuum energy of the holographic CFT, computed from numerical
solutions using (6.15), to that of the conformally-coupled scalar and of the free Dirac
fermion. Because the bulk geometries become more difficult to obtain as the boundary
spheres approach becoming singular, we only present results for which we are confident
in the holographic CFT calculation to about 0.01% or better (the accuracy of the results
we present is limited by the holographic computations; the vacuum energies of the free
fields can be obtained comfortably to larger deformations, as was done in Chapter 5).
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Figure 6.3: The vacuum energy for the conformal scalar, Dirac fermion, and holographic
CFT on the Type 1 geometries (6.5); orange, magenta, and blue correspond to l = 2, 4,
and 6, respectively. The energies are normalised by the perturbative behaviour (6.3),
hence all the curves cross through 1 at x = 0 by design. Note that the data for the
holographic CFT and the fermion cannot be distinguished by eye on this plot. Also note
that for visual clarity we show only the restricted domain x 2 (�0.6, 0.7) (all other plots
in this chapter show the full domain x 2 (�1, 1)).

In Figure 6.3 we show the vacuum energy of the Type 1 deformations for l = 2, 4,
and 6, normalised by the perturbative expectation (6.3). Outside the range of x for which
we show data, either the gravity solutions have significant numerical error at the maxi-
mum resolutions used, it was not possible to find solutions at all. It is thought, however,
that these do solution do in fact exist and the failure to find them is due to limitations
of the numerics. Likewise, in Figure 6.4 we show the vacuum energy of the Type 2 de-
formations for n = 1, 2, and 3, again normalised by the perturbative expectation (6.3).
Note that in this case larger values of x are reached than those shown in Figure 6.3;
in part this is simply because the Type 2 deformations grow more slowly with x than
the Type 1 ones. To illustrate this more explicitly, in Figure 6.5 we show the differ-
ence (Rmax�Rmin)/R0 between the maximum and minimum Ricci scalar of the boundary
geometries (6.5) and (6.7), normalised by the value R0 = 2 for the round sphere. An
important feature to note is that over the range of x shown in Figures 6.3 and 6.4, the
Ricci scalar varies by about two orders of magnitude, so these deformations are far from
the perturbative regime4.

It is worth noting that for large deformations, the conformal scalar may develop
a negative eigenvalue of �r2

+ R/8, that renders the theory ill defined. For the ranges
of x shown here this occurs for the positive-x Type 2 geometries. Indeed, in Figure 6.4
the scalar energies extend to smaller (positive) values of x than those of the Dirac and

4That our most extreme deformations are well outside the perturbative regime can also be seen more
intuitively but more qualitatively by noting that the embeddings shown in Figure 6.1 simply look like
large deformations of the round sphere.
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Figure 6.4: The vacuum energy for the conformal scalar, Dirac fermion, and holographic
CFT on the Type 2 geometries (6.7); orange, magenta, and blue correspond to n = 1, 2,
and 3, respectively. The energies are normalised by the perturbative behaviour (6.3),
hence all the curves cross through 1 at x = 0 by design; note also an additional normali-
sation factor of (1� x)�1, introduced to clarify the behaviour near x = 1. We emphasise
that the data for the holographic CFT and the fermion cannot be distinguished by eye
on this plot. We note that the scalar theory has less extent in the positive x sense than
the other theories as it ceases to exist when the conformal Laplacian �r2

+R/8 fails to
be positive.

holographic theories for precisely this reason. An interesting point is that the results
of [126]5 show that when the conformal Laplacian �r2

+R/8 has a negative eigenvalue,
there does not exist a Weyl rescaling of the full (2+1)-dimensional spacetime to another
static spacetime with positive Ricci scalar. But, as far as we are aware, the only arguments
for the existence of bulk gravity solutions in our setting require a static Weyl frame with
positive boundary scalar curvature [125]. Since my collaborators were able to construct
holographic bulk solutions beyond the regime in which the conformal scalar is well defined,
their results show that bulk solutions apparently continue to exist even when there is no
conformal frame where the boundary metric has positive curvature.

Returning to the vacuum energies, the first striking feature of Figures 6.3 and 6.4
is how similar the behaviour of the vacuum energy is between the three theories. This
similarity had already been observed in Chapter 5 between the fermion and the minimal
scalar, even at non-zero temperature and mass (at high temperature, the similarity can be
explained by a hydrodynamic expansion). Here, we see that the similarity extends to the
conformal scalar and to the holographic CFT. Perhaps more striking is the fact that the
Dirac fermion and the holographic CFT almost perfectly coincide: in Figures 6.6a and 6.7a
we show the ratio c�1

f
EDirac/c

�1

h
Eholo of the vacuum energies of the Dirac fermion and the

5In fact, the proof of the result as it stated in [126] is not quite correct for the (2+1)-dimensional case
we are interested in. However, following some minor modifications to arguments used there, the result
can be shown in this case. This argument is detailed in Appendix C.
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Figure 6.5: The difference (Rmax�Rmin)/R0 between the maximum and minimum values
of the Ricci scalar on the geometries (6.5) and (6.7), normalised by the value on the round
sphere R0 = 2; solid orange, magenta, and blue correspond to the l = 2, 4, and 6 Type 1
geometries, while dashed orange, magenta, and blue correspond to the n = 1, 2, and 3
Type 2 geometries.

holographic CFT normalised by their central charges, noting that they agree to ⇠ 0.1%
for most of the deformations, and still to better than 1% for the entire range we are able
to accurately construct; this is reminiscent of the similarity seen in Chapter 4 between
the Dirac fermion and holographic CFTs on deformations of flat space, that persisted
to non-zero temperatures. Importantly, the difference shown in Figures 6.6a and 6.7a is
substantially larger than any of our numerical uncertainties (which recall we restricted to
be no larger than roughly 0.01%), indicating that despite the close quantitative agreement,
the fermion and the holographic CFT do not coincide exactly. We do not know of an
explanation for this behaviour; a putative explanation may well require some kind of
fine-tuning. We also note that while we fix the volume of the deformations to that of
the undeformed sphere, this is irrelevant for the ratio of energies plotted in Figures 6.6a
and 6.7a, due to the scale invariance of the theories.

For comparison, in Figures 6.6b and 6.7b we also show the ratio c�1

s
Escalar/c

�1

h
Eholo

of the vacuum energies of the conformally-coupled scalar and the holographic CFT nor-
malised by their central charges; this ratio is much larger than that with the fermion.
Notably, for the Type 2 deformations shown in Figure 6.7b this ratio becomes quite
large for the most extreme deformations at positive x, indicating a substantial deviation
between the behaviour of the scalar field and the holographic CFT — this deviation is pre-
sumably related to the aforementioned fact that at large x, the conformal scalar becomes
ill defined due to �r2

+R/8 acquiring a negative eigenvalue.
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Figure 6.6: The ratio between the vacuum energy of the holographic CFT and the free
fields on the geometries (6.5); orange, magenta, and blue correspond to l = 2, 4, and 6,
respectively. Note that the variation between the Dirac fermion and the holographic CFT
is less than ⇠ 0.1% for all the deformations shown here, while the variation between the
scalar and the holographic CFT reaches up to ⇠ 8%.

6.4 Discussion

We have numerically computed the vacuum energy of two types of CFTs, the massless
Dirac fermion and conformally-coupled scalar, whose spatial geometries are given by the
deformed spheres (6.5) and (6.7), and we have seen that even for large deformations of
the sphere the behaviour of the vacuum energy is remarkably qualitatively similar, both
to each other and to that of a holographic CFT. This similarity is perhaps even more
surprising given that the scalar and Dirac fields are free theories, while the holographic
theory is strongly coupled. Moreover, the agreement between the Dirac fermion and the
holographic CFT is generally better than 0.1%, and everywhere better than 1% for the
deformations that were constructed and over which there was good numerical control.
The strongest deviations are found for the most singular geometries where it becomes
challenging to construct the gravity solutions, and also preserve good accuracy for the
free theories. This close agreement between a free theory and a strongly-coupled one
deserves a better understanding, especially in light of related results showing that the free
massless fermion and the holographic CFT dual to Einstein gravity show close agreement
in other ways, e.g. in the entanglement entropy corner function [117, 118] and in the
ratio cs/cT [119].

One natural guess is that conformal invariance somehow enforces the behaviour of
the vacuum energy to be universal beyond the leading perturbative order (6.3). This is
clearly not consistent with our results: the subleading behaviour of the vacuum energy
of perturbations of the round sphere is captured by the behaviour of Figures 6.6 and 6.7
around x = 0, and the non-zero slope there indicates that the vacuum energies of the
three theories do not agree exactly beyond leading order. Nevertheless, it is worth noting
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Figure 6.7: The ratio between the vacuum energy of the holographic CFT and the free
fields on the geometries (6.7); orange, magenta, and blue correspond to n = 1, 2, and 3,
respectively. Note that the variation between the Dirac fermion and the holographic CFT
is less than ⇠ 1% for all the deformations shown here, while the variation between the
scalar and the holographic CFT reaches up to ⇠ 50% for the most extreme deformations.

that in certain contexts there can be close agreement between the free fermion, conformal
scalar, and holographic CFTs dual to pure Einstein gravity beyond leading perturbative
order. Indeed, the partition function of CFTs on the squashed Euclidean three-sphere S3

↵

has been studied in e.g. [95, 113, 114, 127]:

lnZ[S3

↵
]� lnZ[S3

↵=0
] = c

�
a2↵

2
+ a3↵

3
�
+O(↵4

), (6.16)

where ↵ is a squashing parameter, c is the central charge, a2 is theory-independent due
to conformal invariance, and a3 is constructed from the three-point function of the stress
tensor on the round sphere. In fact, for a large class of holographic CFTs a3 is proportional
to the three-point function charge t4 (defined in [128]; see also [59]), while numerical
results suggest that this proportionality also holds for the massless Dirac fermion and the
conformal scalar [114]. For holographic CFTs dual to Einstein gravity, a3 vanishes, while
for the massless fermion and the conformal scalar it is non-zero but of order 10�3. Hence,
the subleading behaviour of the squashed sphere partition function (6.16) almost agrees
for all three of these theories, reminiscent of the small but non-zero difference between the
free energies of the holographic CFT and of the fermion shown in Figures 6.6a and 6.7a.

However, the results of [95] on the squashed three-sphere merely exhibited a sur-
prising similarity between the partition functions of the scalar, fermion, and holographic
CFT for small squashings; for non-perturbatively large squashings, the fermion behaves
very differently from the holographic CFT (in fact, the fermion partition function can
even change sign relative to that of the unperturbed sphere, whereas that of the holo-
graphic CFT always has fixed sign). Hence, the close quantitative agreement between
the Dirac fermion and the holographic CFT we have seen here must somehow rely on
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the particular structure of the deformations we have considered. One might therefore
conclude that perhaps our results are merely an odd coincidence, potentially due to the
symmetries we have imposed to make the computations numerically tractable; namely:
ultrastaticity, axisymmetry, and parity.

In any case, we note the behaviour of the vacuum energy exhibited by non-
perturbative Type 2 deformations of the two-sphere in this chapter provides further
evidence that QFTs on (2+1)-dimensional ultrastatic backgrounds universally disfavour
maximally-symmetric spatial geometries. In the following chapter, we will begin to make
steps towards finding out why this vacuum energy negativity appears to hold so broadly.



Chapter 7

Power-Counting-Renormalisable

Theories on Flat Space

The vacuum energy of (2+1)-dimensional QFTs as a functional of their spatial geometries
is maximised locally by symmetric spaces — for flat and spherical topologies — for a
broad selection of theories. This universal behaviour is exhibited by a diverse range of
theories, from non-interacting massive particles to strongly-coupled CFTs with a large
number of degrees of freedom. Because of the differences between them, the optimal
approach for calculating the vacuum energy has been different for each type of theory
— our treatment of free theories appealed to heat kernel methods while all holographic
results have relied on constructing solutions to classical gravity equations. While the
qualitative diversity of the theories we have considered is interesting — it suggests that
vacuum energy non-positivity may hold rather generally — it could be said that the ad-
hoc approach to calculating the vacuum energy, though necessary to probe the global
aspects of the vacuum energy functional that are intractable for a generic theory, has
not been conducive to revealing the fundamental reason why vacuum energy negativity
seems to hold so broadly. A less theory-dependent approach could help to gain insight
into this issue. Our purpose, therefore, is to adopt a new theory-independent approach to
computing the vacuum energy and gain some insight into the seemingly universal vacuum
energy non-positivity of (2+1)-dimensional QFTs on ultrastatic geometries.

In this chapter (based on work done in collaboration with Andrew Tolley and
Toby Wiseman), we will adopt a new approach to computing vacuum energy in (2+1)-
dimensional QFT which will then used to show vacuum energy non-positivity for all
power-counting-renormalisable relativistic QFTs with a mass gap on a product of time
with a small deformation of flat R2. This set of theories include the massive free scalar
and fermion theories studied in Chapter 3 and also many other interacting theories, such
as Yang-Mills, but are, of course, disjoint from CFTs (that have already been accounted
for by the results of Section 1.4). As such, we further extend the set of (2+1)-dimensional
QFTs whose vacuum energy we know is maximised locally by flat space.

139
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In contrast to previous chapters, our analysis will be carried out using canonical
methods. As noted in Chapter 4, the response of the vacuum energy on a d-dimensional
space with metric g, E[g], due to a change in g is determined by the VEV of the stress
tensor on that space. When perturbing flat space, it turns out that the leading-order
non-local contribution to the variation of E[g] is given in terms of the time-ordered two-
point function of the stress tensor on flat space. Provided the theory is Lorentz invariant,
we will find that the two-point function of stress tensors on flat space makes a universal
contribution to the vacuum energy, with all the theory dependence captured by two
spectral densities. Further, we will find that the positive definiteness of Hilbert Space
norms necessitates that these functions are non-negative and, therefore, that the time-
ordered two-point function makes a negative non-local contribution to the variation of E[g]

for all non-trivial perturbations to g. In the special case of d = 2 this is sufficient to deduce
that the vacuum energy is negative since, after appropriate regularisation, E[g] is a finite
and unambiguous — i.e. it is insensitive to renormalisation-scheme ambiguities that are
usually associated with local terms — measure of vacuum energy. This work assumes very
little about the theories in question and, in doing so, highlights a property that potentially
plays a key role in the negativity of E[g]: the Poincaré invariance of flat spacetime.

The plan for this chapter is as follows. The setup of the problem will be established
in Section 7.1 with particular attention paid to the definition of the vacuum energy and
the geometries for which a finite and unambiguous measure of the vacuum energy can
be obtained. Section 7.2 will set out the steps to calculate the perturbative variation of
the vacuum energy due to spatial metric perturbations around flat space — including
the case of non-diffeomorphism-invariant regulation. The spectral decomposition of the
two-point function of the stress tensor for power-counting-renormalisable theories on flat
space with a mass gap will be illustrated in Section 7.3 with explicit examples given in the
case of free massive scalars with curvature coupling and Dirac fermions. In Section 7.4,
the implications of this decomposition for the variation of the vacuum energy will be
discussed. The chapter will then conclude with a summary in Section 7.5.

7.1 Setup

We consider a QFT on an n = (d+1)-dimensional Lorentzian manifold that is a product
of time with a static d-space, (⌃, g),

ds2 = ĝµ⌫dx
µ
dx⌫ = �dt2 + gijdx

i
dxj, (7.1)

in its vacuum state. For a theory with matter fields � and action S[g,�], the energy of
the theory in the vacuum state is the integral of the energy density over a spatial slice of
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the background,
E[g] =

Z
d
dx
p
ghTtt(t, x)ig, (7.2)

where the stress tensor is defined by Tµ⌫(t, x) ⌘ �(2/
p

|ĝ|)(�S/�ĝµ⌫(t, x)) and correla-
tion functions are defined with respect the path integral Z[g] ⌘

R
D�e

iS[g,�], so that, in
particular,

hTµ⌫(t, x)ig =
1

Z[g]

Z
D�Tµ⌫(t, x)e

iS[g,�]. (7.3)

We note that, due to time translation invariance, the VEV of Tµ⌫ and therefore E[g]

are time independent. As ever, it is key that we consider a quantity that is finite and
unambiguous. In Chapter 3, we showed that with a diffeomorphism-invariant regula-
tor, �E[g] = E[g] � E[ḡ] is such a quantity in (2+1) dimensions — provided that ḡ

endows ⌃ with a volume matching that of g. Here, we also treat regulation that is not
diffeomorphism invariant. Along with the counterterms required to renormalise the flat-
space theory1, renormalising the theory on a general curved space (⌃, g) involves local
geometric counterterms2,

SCT =

Z
⇤

d
nx
p

|ĝ|
⇣
a0 + a2R + . . .+ abn/2cR

bn/2c

⌘
, (7.4)

and also non-diffeomorphism-invariant counterterms whose finite parts are fixed by the
requirement that the renormalised stress tensor is finite and conserved i.e.

h�|Tµ⌫ | i is finite and rµh�|Tµ⌫ | i = 0 (7.5)

for all |�i and | i. These conditions do not determine the finite parts of the a2i coefficients.
This is as much progress as we can make without any further assumptions the dimension d.
Our case of interest is when ⌃ is topologically R2. It is conventional to renormalise the
VEV of the stress tensor to vanish on flat space3 so that E[�] = 0. This fixes the value
of a0 as the regulator is removed. Further, a2 is the coefficient of the (vanishing) Euler
characteristic for two-dimensional ⌃, and thus a2 makes no contribution. Power counting
in d = 2 rules out contributions from further relevant local geometric counterterms and
thus the vacuum energy, E[g], as defined by (7.2) is finite, unambiguous and corresponds
to the physical energy difference from flat space considered in Chapter 4 provided we
renormalise as set out above. For d > 2 this quantity is ambiguous — not only is the
Einstein-Hilbert term no longer topological but there are finite ambiguities coming from
the coefficients of the further relevant higher-derivative terms.

1As before, no sources other than the metric will be varied here.
2Here R

bn/2c schematically represents 2bn/2c derivative higher curvature terms.
3This is possible because homogeneity and isotropy imply that hTµ⌫ig / (const.)ĝµ⌫ and thus the

constant can be tuned to zero by a0.



142 Chapter 7. Power-Counting-Renormalisable Theories on Flat Space

7.2 Perturbation Theory

We are interested in the local behaviour of E[g] near (R2, �). We consider perturbations
about flat space, (⌃, ḡ), so that

gij(") = ḡij � "hij, gij(") = ḡij + "hij + "2hikh
k
j +O("3) (7.6)

where |"| ⌧ 1, hij(x) is a time independent metric perturbation and indices are raised
and lowered with respect to the reference metric ḡ. We work perturbatively in ". For
deformations of this form with ḡij = �ij, the counterterms are of the form

Stot

CT
[g] =

Z
⇤

d
nx
⇣
b(0) + "b(1)

ij
hij

+ "2hijb(2)
ij,k`

hk`
+O("3)

⌘
(7.7)

where b(0) is a constant and b(1)
ij

and b(2)
ij,kl

are differential operators that depend on the reg-
ulator and the physical parameters. They will include both contributions from geometric
counterterms, such as the cosmological term

Z
⇤

d
nx
p
ga0 = a0

Z
d
nx

✓
1 + "

1

2
�ijh

ij
+ "2

1

8
hij
⇥
�ij�k` + �ik�j` + �i`�jk

⇤
hk`

+O("3)

◆

(7.8)
and the Einstein-Hilbert term
Z

d
nx
p
ga2R = a2"

2

Z
d
nx

✓
hij

h�
�k(i�j)` � �ij�k`

 
@2

��k(i@j)@` � �`(i@j)@k + �ij@k@` + �k`@i@j
⇤
hk`

+O("3)
⌘
, (7.9)

and the counterterms required to impose diffeomorphism invariance. Recall from Equa-
tion (4.7) that under such a deformation the vacuum energy varies as

dE

d"
= �1

2

Z
d
2x
p
g(")hTij(0, x)ig(")hij

(x) . (7.10)

Thus, the variation of the vacuum energy is determined by the VEV of the stress tensor
on (⌃, g). Under a deformation to the geometry (7.6) the stress tensor varies as

p
g(x)Tij(t, x) =

p
ḡ(x)T ij(t, x) + "

p
ḡ(x)Oij,k`(t, x)h

k`
(x) +O("2) (7.11)

and the action is deformed from S[ḡ,�] 7! S[g("),�] so that it is the sum of the reference
space action and a correction, S[g("),�] = S[ḡ,�] +�S[",�], that is given explicitly by

�S[",�] =
1

2
"

Z
d
nx
p
ḡ(x)hij

(x)T ij(t, x) +O("2) (7.12)
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where T µ⌫(t, x) is the renormalised stress tensor of the flat-space theory, i.e. it satis-
fies (7.5), and Oµ⌫,⇢� is a local4 flat-space operator satisfying Oµ⌫,⇢� = O(µ⌫),⇢� = O⇢�,µ⌫ .
These operators contain the counterterms that renormalise the theory, both for g = ḡ and
deformations of it, as described in Section 7.1. The b(1)

ij
and b(2)

ij,k`
terms in Equation (7.7)

are part of the T ij and Oij,k` operators in �S, respectively (b(0) is part of S[ḡ,�]). In
particular, the O(") term in Equation (7.8) is part of the T ij term in Equation (7.12) and
the O("2) terms are part of Oij,k` (and the O("0) term is part of S[ḡ,�]). Since (⌃, ḡ)

is maximally symmetric i.e. is both homogeneous and isotropic, we can tune a0 so
that hT ij(t, x)iḡ = 0 (which, we note, also sets hT tt(t, x)iḡ = 0). We can then express the
VEV of the stress tensor on (⌃, g) in terms of flat space theory quantities by expanding
the action and the stress tensor in Equation (7.3) about " = 0:

hTij(0, x)ig(") =
 Z

D� e
iS[ḡ,�]


1 +

i"

2

Z
dt ddy

p
ḡ(y)hk`

(y)T k`(t, y) +O("2)

�


T ij(0, x)�

1

2
"hkk

(x)T ij(0, x) + "Oij,k`(0, x)h
k`
(x) +O("2)

�!

 Z
D� e

iS[ḡ,�]


1 +

i"

2

Z
dt ddy

p
ḡ(y)hk`

(y)T k`(t, y) +O("2)

�!�1

(7.13)

which, after using that the VEV of the stress tensor vanishes on flat space, gives

hTij(0, x)ig(") =
i"

2

Z
dt ddy

p
ḡ(y)hT T ij(0, x)T k`(t, y)iḡhk`

(y)+"hOij,k`(0, x)iḡhk`
(x)+O("2).

(7.14)
where T is the time-ordering operator. Inserting this expression for hTij(0, x)ig(") into
Equation (7.10) and integrating term by term in " gives

E[g] = � i"2

8

Z
dt ddxddy

p
ḡ(x)

p
ḡ(y)hij

(x)hT T ij(0, x)T k`(t, y)iḡhk`
(y)

� "2

4

Z
d
dx
p
ḡ(x)hij

(x)hOij,k`(0, x)iḡhk`
(x) +O("3) (7.15)

or
E[g] = �"

4

Z
d
dx
p

ḡ(x)hTij(0, x)ig(")hij
(x) +O("3), (7.16)

where we note the difference in prefactor with the similar looking relation in Equa-
tion (7.10). This is due to the fact that hTijiḡ = 0 so that hTij(0, x)ig(") is O(") and
has been integrated up, giving a result that is, critically, correct up to O("3).

In order for E[g] to be diffeomorphism invariant we must have that the VEV of the
stress tensor on (⌃, g) is conserved and therefore that the combination of the time-ordered

4We assume that when the theory is deformed from flat the curved-space stress tensor (and there-
fore Oµ⌫,⇢�) remains local.
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two-point function of the stress tensor on flat space and the VEV of Oijk` on flat space
as written in (7.14) must be too. The two-point function written here consists of a finite
part but also local divergences that will be canceled by the counterterms that have been
absorbed into the Oij,k` operator. Having renormalised so that E[g] is diffeomorphism
invariant, we, in particular, wish to extract the part of this two-point function that is
finite and conserved. We will use a canonical approach here: the Hilbert Space of the
theory will be central to our treatment and make manifest the positivity of the spectral
densities that are essential to demonstrating the negative-definite nature of this two-point
function. In this formulation the time-ordering operator is given by

T T µ⌫(x)T ⇢�(y) ⌘ ⇥(x0 � y0)T µ⌫(x)T ⇢�(y) +⇥(y0 � x0
)T ⇢�(y)T µ⌫(x). (7.17)

and does not, for example, give rise to time-ordered stress tensor two-point functions that
are conserved a priori. This differs from the covariant time-ordering, T ?, that emerges
from a path integral approach with covariant regulation, but only by local contact terms
which parametrise renormalisation-scheme ambiguity [129]. For CFTs, we note that con-
formal symmetry eliminates all VEVs and constrains the form of the time-ordered two-
point function to be (the analytic continuation to Lorentzian time of) Equation (1.57)
which, when appropriately UV regulated as in [30], recovers the CFT negativity result of
Section 1.4 via Equation (7.15). Here, we consider theories with a mass gap.

7.3 Spectral Decomposition

Our goal is to show that the static two-point function of flat space stress tensors make
a negative contribution to the vacuum energy of deformed spaces when d = 2. Since we
will only consider theories on flat space, the bars that had previously been used to denote
flat space stress tensor will be dropped. This section will keep the dimension general,
with discussion of the particular case of d = 2 restricted to matters of renormalisation5.
The positivity properties of two-point functions are best seen via their Källén-Lehmann
spectral representation [130, 131], which we will derive here. We will consider theories
with a mass gap. Consider the Wightman function in momentum space

fWµ⌫⇢�(p) ⌘
Z

d
d+1x e�ip·xh0|Tµ⌫(x)T⇢�(0)|0i. (7.18)

where |0i is the unit-norm vacuum state. Since our theories are invariant under the
Poincaré group ISO(d, 1), we may choose the Hilbert Space basis to consist of states with

5We have already established that ambiguities are present for d > 2 in Section 7.1.



7.3. Spectral Decomposition 145

definite rest mass m�, d-momentum p and spin s6 so that:

1 = |0ih0|+
X

�,s

Z
d
dp

(2⇡)d
1

2E�(p)
|�,p, sih�,p, s| (7.19)

where E�(p) =
p

m2

�
+ p2 and, in particular, |�, 0, si form a unitary representation of the

compact group SO(d) and so, by the Peter-Weyl Theorem, can be arranged into irreducible
finite-dimensional unitary representations of SO(d). Assuming we have renormalised the
VEV of Tµ⌫ to zero, inserting this complete set of states gives that

fWµ⌫⇢�(p) ⌘
X

�,s

(2⇡)�(p0 � E�(p))

2E�(p)
h0|Tµ⌫(0)|�,p, sih�,p, s|T⇢�(0)|0i, (7.20)

from which it is evident that fWµ⌫⇢�(p) only has support for timelike p with p0 > 0.
For these p, we can choose to work in the frame with p = 0. By translation invari-
ance h0|Tµ⌫(x)|�,p, si = h0|Tµ⌫(0)e

ip·x|�,p, si so it follows from the conservation of the
stress tensor that h0|T0⌫(0)|�, 0, si = 0 and thus that the only non-zero components of
the Wightman function in the rest frame are

fWijk`(p
0, 0) ⌘

X

�,s

(2⇡)�(p0 �m�)

2m�

h0|Tij(0)|�, 0, sih�, 0, s|Tk`(0)|0i. (7.21)

The stress tensor has only spin-0, Tii, and spin-2, T̂ij ⌘ Tij�Tkk�ij/d parts, so only spin-0
and spin-2 states contribute. The spin-0 states give a contribution proportional to �ij�kl.
The spin-2 representation spaces are traced over thus

X

�

(2⇡)�(p0 �m�)

2m�

h0|T̂ij(0)|�, 0, 2ih�, 0, 2|T̂k`(0)|0i (7.22)

is an isotropic SO(d) tensor of rank 4 that is symmetric in its first and last pairs of indices.
This determines the tensorial structure of the spin-2 contributions7 to be, along with the
spin-0 terms,

X

�

(2⇡)�(p0 �m�)

2m�

h0|Tij(0)|�, 0, 0ih�, 0, 0|Tk`(0)|0i = ↵(0)
(p0)p

4

0

�
�ij�kl

�
, (7.23a)

X

�

(2⇡)�(p0 �m�)

2m�

h0|T̂ij(0)|�, 0, 2ih�, 0, 2|T̂k`(0)|0i = ↵(2)
(p0)p

4

0

✓
�i(k�l)j �

1

d
�ij�kl

◆
,

(7.23b)

6The spin here corresponds the eigenvalue under the operator J2 = JabJab/2 where Jab, 1 6 a 6= b 6 d,
are the rotation operators i.e. we say a (rest frame) state | i has spin s if J2| i = s(s+ d� 2)| i.

7Also using that T̂ij is trace free.
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for some functions ↵(0) and ↵(2). These expressions can be written in an explicitly Lorentz
covariant form by introducing projectors onto the spin-0 and spin-2 parts of (2, 0) tensors,

⇧
(0)

µ⌫⇢�
(p) ⌘ Sµ⌫S⇢� and ⇧

(2)

µ⌫⇢�
(p) ⌘ Sµ(⇢S�)⌫ �

1

d
Sµ⌫S⇢� (7.24)

where Sµ⌫ = pµp⌫ � p2⌘µ⌫ (and hence satisfies pµSµ⌫ = 0), respectively. In the rest frame
all the time components of fWµ⌫⇢�(p0, 0) vanish, Sij = p2

0
�ij and Sµ0 = 0 so the covariant

form of the Wightman function on positive energy timelike p is

fWµ⌫⇢�(p) = ↵(0)
(

p
�p2)⇧(0)

µ⌫⇢�
(p) + ↵(2)

(

p
�p2)⇧(2)

µ⌫⇢�
(p). (7.25)

This can be written as an expression that is valid for all p by using the fact that fWµ⌫⇢�(p)

is only non-zero for positive energy timelike p to write

↵(0/2)
(

p
�p2) =

Z
1

0

dµ c(0/2)(µ)D̃(p;µ) where D̃(p;µ) ⌘ (2⇡)�(p0 � Eµ(p))

2Eµ(p)
, (7.26)

is the momentum space Wightman function and c(0/2)(µ) ⌘ µ↵(0/2)
(µ)/⇡ for µ > 0, and

thus obtain the spectral representation of fWµ⌫⇢�:

fWµ⌫⇢�(p) =

Z
1

0

dµ
⇣
c(0)(µ)⇧(0)

µ⌫⇢�
(p) + c(2)(µ)⇧(2)

µ⌫⇢�
(p)
⌘
D̃(p;µ) (7.27)

where the spectral densities are given by the expressions8

c(0)(µ) =
1

d2µ4

X

�

�(µ�m�)|h0|Tii(0)|�, 0i|2 and (7.28a)

c(2)(µ) =
2

(d+ 2)(d� 1)µ4

X

�

�(µ�m�)|h0|T̂ij(0)|�, 0i|2. (7.28b)

Crucially, for a given µ the states being summed over have fixed energy and so these
expressions have no UV divergences. Thus, the expressions (7.28) are finite implying that
the spectral functions c(0/2)(µ) are real and non-negative. Having a completeness relation
of the form (7.19) was key to obtaining the universal expression (7.27) for the two-point
function in terms of these two non-negative univariate functions. We owe this relation to
two fundamental properties of our theories: (i) their symmetry under the Poincaré group
and (ii) the positivity of their Hilbert Space norms. Utilising the representation theory
of ISO(d, 1) was key to deriving the functional form of the two-point function and the
non-negativity of the spectral densities is owed to the positivity of Hilbert Space element
norms.

The spectral densities have dimension d � 2 so c(0/2)(µ)/µd�2 are dimensionless

8In the following expressions we have absorbed the spin labels into �.
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functions of µ/Mi, where Mi are the physical mass parameters of the theory. Having
renormalised the theory, we know that in the limit µ ! 1 the spectral densities must
be insensitive to the precise values of the Mi and thus c(0/2)(µ) are at most O(µd�2

)

as µ!1.
From here we may derive the spectral representation of the finite and conserved

part of the time-ordered two-point function on flat space,

GF

µ⌫⇢�
(p) ⌘ i

Z
d
d+1x e�ip·xh0|T Tµ⌫(x)T⇢�(0)|0i, (7.29)

that, due to the time-ordering, is not conserved, i.e. pµGF

µ⌫⇢�
(p) = local terms 6= 0. Note

that we may obtain this by replacing the Wightman function in Equation (7.27) with the
Feynman propagator,

D̃(p;µ)! D̃F(p;µ) = �
i

p2 + µ2 � i"
, (7.30)

(and a similar replacement yields the Euclidean correlator [132]) and that this representa-
tion is indeed finite and conserved when d = 2. This, however, obscures the regularisation
steps taken along the way thus we will set out the calculation here in full.

From the definition of the time-ordering operator (7.17), we see that GF

µ⌫⇢�
(p) is

the sum of two convolutions and therefore

GF

µ⌫⇢�
(p) = �

Z
1

�1

d⇠

(2⇡)


1

p0 � ⇠ + i"
fWµ⌫⇢�(⇠,p) +

1

�p0 + ⇠ + i"
fWµ⌫⇢�(�⇠,�p)

�
,

(7.31)
which can then be simplified using the spectral representation of the Wightman func-
tions (7.27). The spin-0 and spin-2 projectors are invariant under p 7! �p, ⇧(0/2)

µ⌫⇢�(�p) =
⇧

(0/2)

µ⌫⇢�(p), and the �-function in D̃(p;µ) can be used to perform the integrals over ⇠. This
requires interchanging order of the

R
dµ and

R
d⇠ integrals and, although this is operation

is not strictly valid, the resulting expression differs only by local terms, so it has the same
non-local part that we are interested in. In swapping the order of integration we implicitly
neglect local divergences present in (7.31) that, in any case, cancel with terms in Oij,k` in
Equation (7.15). Having quantised in a non-covariant way, we obtained a time-ordered
two-point function on flat space that was not conserved. To extract the part that is finite
and conserved — and thus appropriate for deducing the diffeomorphism-invariant observ-
able E[g] — it is necessary to separate out non-conserved divergent terms. These have
finite parts and are fixed by the requirement that the renormalised two-point function is
conserved. This gives that the time-ordered two-point function in momentum space is
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given by

GF

µ⌫⇢�
(p) = �

Z
1

0

dµ
⇣
c(0)(µ)⇧(0)

µ⌫⇢�
(p) + c(2)(µ)⇧(2)
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(p)
⌘

1

2Eµ(p)

 
1

p0 � Eµ(p) + i"
� 1

p0 + Eµ(p)� i"

!
+ 2Ĩµ⌫⇢�(p) (7.32)

or
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µ⌫⇢�
(p) =

Z
1

0

dµ
⇣
c(0)(µ)⇧(0)

µ⌫⇢�
(p) + c(2)(µ)⇧(2)

µ⌫⇢�
(p)
⌘

1

p2 + µ2 � i"
+ 2Ĩµ⌫⇢�(p). (7.33)

where Ĩµ⌫⇢�(p) are non-conserved local divergences. Recall that c(0/2)(µ) = O(µd�2
), so

for d = 2 this integral in Equation (7.33) is finite and conserved. Further details on
the renormalisation of this two-point function, including an explicit expression for the
divergences when d = 2, are given in Appendix A.7. We note that for d > 2, this integral
is conserved but not finite and crucially, unlike d = 2, requires the introduction of local
geometric covariant counterterms (with scheme-dependent finite parts) to render it so.

7.3.1 Example: Scalar Field

A scalar field with mass m and curvature coupling ⇠ has stress tensor

Tµ⌫ = @µ�@⌫��
1

2
⌘µ⌫
�
(@�)2 +m2�2

�
+ ⇠

�
⌘µ⌫@

2 � @µ@⌫
�
(�2

). (7.34)

For this theory, we can choose the complete set of states to consist of states with definite
particle number. The only such states that have non-zero overlap with Tµ⌫ |0i are two-
particle states — the projector onto them is given by

12 =
1

2

Z
d
2u

(2⇡)22E(u)

d
2v

(2⇡)22E(v)
|u,vihu,v| (7.35)

where |u,vi is the relativistically normalised two-particle state with particles of momen-
tum u and v and E(u) =

p
u2 +m2. For comparison with the sum over states used to

compute the spectral densities (7.28) we make a change of variables, choosing instead to
label two-particle states in terms of their total momentum, p = u+v, the rest mass of the
state, µ, and the direction of one of the particles in the centre of mass (COM) frame, ✓.
This induces a change of measure

1

2

Z
d
2u

(2⇡)22E(u)

d
2v

(2⇡)22E(v)
=

1

4(2⇡)2

Z
1

0

dµ

Z
2⇡

0

d✓

Z
d
2p

(2⇡)22E(p)
. (7.36)
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So the sum over the zero momentum states required to compute the spectral densities has
measure X

�

=
1

4(2⇡)2

Z
1

0

dµ

Z
2⇡

0

d✓. (7.37)

We choose to normal order the stress tensor Tµ⌫ so that its VEV vanishes in flat space
(thus excluding the need for a cosmological counterterm). When acting on zero momentum
two-particle states, the normal-ordered stress tensor gives

h0| :Tij(0): |q,�qi = (E(q)2(8⇠ � 1)�m2
)�ij + (2qiqj � �ijq2

). (7.38)

when decomposed into spin-0 and spin-2 parts. In COM frame variables q̂ = (cos ✓, sin ✓)

and µ = 2E(q) so the matrix elements (7.38) can be plugged into (7.28) to give the
spectral functions for a free scalar of mass m with curvature coupling ⇠:

c(0)
s
(µ) =

1

64(2⇡)
⇥(µ� 2m)

 
1� 8⇠ +

4m2

µ2

!2

and (7.39)

c(2)
s
(µ) =

1

64(2⇡)
⇥(µ� 2m)

 
1� 4m2

µ2

!2

, (7.40)

which are — as expected — finite, non-negative and O(µ0
) as µ!1. We note also that

limit ⇠ ! 1/8, m! 0, in which a CFT is recovered, the spin-0 density vanishes and the
spin-2 is a constant.

7.3.2 Example: Dirac Fermion

For a Dirac fermion, the two-particle states also consist of a two particles with spatial
momenta that are equal in magnitude and opposite directions. In this case, they must be
a particle-antiparticle pair and each of the particles also has a spin state. Thus

X

�

=
1

2(2⇡)2

Z
1

0

dµ

Z
2⇡

0

d✓
X

r,s

(7.41)

where µ and ✓ are as before and r, s index the spins of the particles. As in the scalar
case, we normal order the stress tensor. The calculations here are an exercise in spinor
manipulation, the details of which are covered in Appendix A.8. The key difference with
the scalar case is the sum over spin states which yields

X

r,s

h0| :Tij(0,0): |q, s, r,pi2h0| :Tk`(0,0): |q, s, r,pi?2

=
1

2
(u� v)(i(uv

T
+ vuT

+ 2E(q)2�j)(`)(u� v)k) (7.42)
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where |q, s, r,pi is the state with a particle and an antiparticle with spins s and r, re-
spectively, total momentum p, and where the particle has momentum q in the rest frame
and u and v are the momenta of the particle and antiparticle, respectively. Now putting
p = 0; then uµ

= (E(q),q) and vµ = (E(q),�q) and writing µ = 2E(q) for the rest mass
of the states we can use this result to deduce that

X

r,s

|h0| :Tii(0): |q, s, r, 0i2|2 = m2µ2

 
1� 4m2

µ2

!
and (7.43a)

X

r,s

|h0| :T̂ij(0): |q, s, r, 0i2|2 =
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. (7.43b)

from which it follows that spectral functions for a free Dirac fermion on mass m are

c(0)
f
(µ) =

1

8(2⇡)
⇥(µ� 2m)

m2

µ2

 
1� 4m2
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!
(7.44)

c(2)
f
(µ) =

1

32(2⇡)
⇥(µ� 2m)
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! 
1 +

4m2

µ2

!
(7.45)

which are — as expected — finite, non-negative and O(µ0
) as µ ! 1. We note also

that in the limit m! 0 in which a CFT is recovered, the spin-0 density vanishes and the
spin-2 is a constant.

7.4 Non-positivity of Vacuum Energy

The time-ordered two-point function of the stress tensor on flat space enters the vacuum
energy E[g] (7.15) as the static propagator, which in momentum space is �iGF

ijk`
(0,p).

Plugging this into the perturbative expression for E[g] (7.15) gives

E[g] = �"
2
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where

hij
(x) =

Z
d
2p e�ip·xh̃ij

(p) and �(x)Iijk`(@) ⌘
Z

d
2p

(2⇡)2
e
�ip·xĨijk`(0,p). (7.47)
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Index symmetries, homogeneity and isotropy constrain the VEV of the term involv-
ing Oij,k` to satisfy

h0|Oij,k`(0,x) + Iijk`(@)|0i = c1�i(k�`)j + c2�ij�k` (7.48)

where c1 and c2 are some renormalised (possibly differential operator) coefficients. Dif-
feomorphisms must leave E[g] invariant. These take the form h̃ij(p) = p(iṽj)(p) for some
vector field ṽ and thus eliminate the transverse projectors which characterise the non-local
contribution to (7.46), leaving a local contribution that vanishes if and only if c1 = c2 = 0.
Further, using the fact that in two spatial dimensions 2⇧

(0)

ijk`
(0,p) = ⇧

(2)

ijk`
(0,p), the

leading-order perturbation to the vacuum energy of a renormalisable QFT on (2+1)-
dimensional flat space under a deformation gij 7! �ij � "hij can be written as

E[g] = �"
2⇡2

2

Z
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(p)Sij(0,p)|2
Z

1

0
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1

2
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This expression is finite and manifestly negative for any non-trivial perturbation provided
the spectral functions are non-negative, non-zero somewhere and finite in the limit µ !
1. These requirements are fulfilled by the non-negativity of Hilbert Space norms, non-
emptiness and renormalisability of the theory, respectively. A quick consistency check of
this formula is provided by the fact that the spectral densities (7.39) and (7.44) reproduce
the vacuum energies derived in Chapter 3 for the free the scalar and Dirac fermion,
respectively.

It is clear from this expression for the vacuum energy that the non-negativity of
the spectral densities and thus the non-negativity of Hilbert Space norms of the flat-space
theory are key to negativity. Indeed, the corresponding expression derived for CFTs (1.69)
in Chapter 1 supports this hypothesis — the result there shows that CFTs that have
(sufficiently many) negative-norm states, and therefore possibly negative central charge,
can have positive vacuum energy.

7.5 Summary and Discussion

We have shown that for all (2+1)-dimensional power-counting-renormalisable Poincaré
invariant QFTs on flat space the vacuum energy is lowered when the spatial geometry is
deformed (perturbatively) away from being flat — thereby extending the result that was
shown to hold for CFTs, in Section 1.4, and free theories, in Chapter 3. Further, showing
this provided some insight into the — thus far elusive — question of why so many of
the vacuum energies considered in this thesis are negative, with the proof leaning on two
properties of the theory: dimensionality and Lorentz invariance.

Such observations were a facilitated by using a canonical approach to calculate the
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vacuum energy. The vacuum energy on a d-dimensional spatial geometry (⌃, g), E[g],
was defined as the integral of the energy density over a spatial slice of the background. It
was noted that provided the theory is renormalised so that E[�] = 0 and observables are
diffeomorphism invariant then E[g] is a UV-finite and unambiguous measure of vacuum
energy when d = 2, matching the free energy difference defined in Chapter 4. For d > 2,
these conditions are not sufficient to remove all ambiguities, thus highlighting the impor-
tance of the two-dimensionality of the spatial geometry. By writing the action and the
stress tensor as expansions about their flat space values, the VEV of the stress tensor on d-
dimensional (⌃, g), and thus the variation of E[g], was expressed in terms of the Hilbert
Space and operators of the QFT on a flat reference space (⌃, ḡ). Small deformations of
this space induce a leading-order perturbation to the vacuum energy that is characterised
by the time-ordered two-point function of the stress tensor on (⌃, ḡ). The Poincaré in-
variance enjoyed by the QFT on (⌃, ḡ) permits a universal spectral representation of this
two-point function that only depends on the theory through two functions that count the
number of degrees of freedom that couple to the stress tensor at a given energy scale — the
spectral densities, functions that are non-negative thanks to the positivity of Hilbert Space
norms. For d = 2 this representation gave rise to a scheme-independent conserved finite
time-ordered two-point function and, in turn, an unambiguous diffeomorphism-invariant
UV-finite vacuum energy that is characterised entirely by a negative-definite combination
of the spectral functions. Requiring that the time-ordered two-point function is conserved
is not sufficient to remove all its scheme dependence when d > 2.

While the arguments presented in this chapter are only valid for theories with a
mass gap, the fact that identical results hold for CFTs rule this out as being necessary
for vacuum energy negativity. We do know, however, that for many (2+1)-dimensional
QFTs on spaces that are not topologically flat, the vacuum energy is maximised locally
by (⌃, g) that do not benefit from Poincaré invariance. In particular, for ⌃ that are
deformed spheres we have seen in Chapters 1 and 5 that this is the case for a free scalar
with a curvature coupling, a free Dirac fermion and all CFTs (with positive central charge)
— all theories whose vacuum energies are maximised by round two-spheres. This raises
the question of whether the arguments of this chapter can be adapted to show perturbative
vacuum energy negativity for round-sphere backgrounds. It follows from the arguments in
Section 7.1 (as in Chapter 4 for diffeomorphism-invariant regulation) that a UV-finite and
unambiguous vacuum energy can be obtained for theories on compact (⌃, g) (topological
spheres and tori) by considering the differenced vacuum energy with a reference space
of the same volume and topology (for which natural choices are the round sphere and
flat torus). The question then is: what can be said about the time-ordered two-point
function without the symmetry of the whole Poincaré group? Our treatment explicitly
used boost covariance which no longer applies here. Hilbert Space axioms ensure that
— before renormalisation — the two-point function is positive definite, but the fact that
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there are perturbations of the flat torus that raise the vacuum energy of the Dirac fermion
— shown in Equation (5.53) — suggests that some amount of symmetry is necessary to
yield a positive-definite static propagator after renormalisation. Indeed, it is possible the
isometry group of (the product of time with) the two-sphere is sufficient, especially given
that the time-ordered two-point function contributes to the vacuum energy through the
static propagator on spatial legs — an object that manifestly breaks Lorentz invariance
in the flat-space case. This promising direction for future research could also help show
vacuum energy negativity for perturbations of flat space theories at finite temperature,
for which there is also a commensurate body of evidence and a smaller (but significant)
symmetry group.



Closing Remarks

The vacuum energy — or free energy at finite temperature — of ultrastatic (2+1)-
dimensional QFTs has proven to be an intriguing investigation topic. Within the realm of
vacuum energy in curved space QFT, it is special. We found that, subject to appropriate
regularisation, there is an unambiguous UV-finite measure of (2+1)-dimensional free en-
ergy as a functional of spatial geometry: the free energy difference, �F . It does not suffer
renormalisation-scheme ambiguities that are generically present in vacuum energy calcu-
lations and is thus a well-defined observable of the QFT. Motivated by extant holographic
results on the negativity of this vacuum energy, we calculated the free energy for a vari-
ety of QFTs on a range of deformations to maximally-symmetric spatial geometries, the
results of which are summarised in Table 7.1. In parallel, analogous results were derived
for holographic theories [2, 97, 98]. The key takeaway from this being that �F is lowered
by all volume-preserving deformations to maximally-symmetric two-spaces (namely the
plane and the round sphere) for all the theories we have considered. This quantity is
exists both at finite temperature and at zero temperature, where it is purely quantum.
Further, �F was shown to be even more negative the more the space is deformed. In short,
(2+1)-dimensional relativistic quantum degrees of freedom seem to disfavour smooth spa-
tial geometries: a somewhat unexpected result. For the free theories, we computed the
free energy using heat kernel methods. By computing the eigenvalues of a positive definite
second-order linear differential operator, we were able to evaluate �F both analytically
for perturbative deformations, by finding the perturbative corrections to the eigenvalues,
and numerically for large deformations, by adopting a novel numerical approach that uses
pseudo-spectral methods to obtain highly accurate estimates of the eigenvalues. �F is a
meaningful physical quantity, parametrising a non-local contribution to the free energy of
a physical membrane that, due to relativistic degrees of freedom on them, seeks to crum-
ple them. Using our novel numerical methods, we observed an unexpected quantitative
similarity between a free massless Dirac fermion and a holographic CFT. In summary, the
exploration of (2+1)-dimensional vacuum energy has led to a number of surprising results
with interesting physical implications and a new technique for computing vacuum energy,
a generically difficult computation, that works for a range of geometries. It is hoped that
the work in this thesis can provide both a technical and motivational platform for further
progress in this area.
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Theory (⌃, g) Temp. Result Ref.
Unitary CFT (S2, ḡ + "h) or (R2, ḡ + "h) T = 0 �Fq 6 0 Section 1.4

Free scalar or fermion (R2, ḡ + "h) T > 0 �Fq 6 0 Chapter 3
Free scalar or fermion (R2, long wavelength) T > 0 �Fq 6 0 Chapter 4
Free scalar or fermion (S2, ḡ + "h) T > 0 �Fq 6 0 Chapter 5
Free scalar or fermion (S2, g)⇤ T > 0 �Fq 6 0 Chapter 5
Free scalar or fermion (S2, long wavelength) T > 0 �Fq 6 0 Chapter 5

Renormalisable (R2, ḡ + "h) T = 0 �Fq 6 0 Chapter 7

Table 7.1: A summary of new results presented in this thesis for the free energy Fq for
various types QFTs at various temperatures. The scalar refers to a scalar field of any
mass and curvature coupling; and the fermion refers to a Dirac fermion of any mass.
ḡ is always taken to be the maximally-symmetric geometry on the manifold ⌃ (so ḡ is
the round sphere metric when ⌃ = S2 and the flat metric when ⌃ = R2), and when
we write ḡ + "h it is understood that the result holds to leading non-trivial order in the
perturbative expansion parameter ". ‘Long wavelength’ refers to metrics whose curvature
is small compared to the temperature and/or mass of the field. ‘Renormalisable’ here
is short for power-counting renormalisable. All inequalities on �Fq are saturated if and
only if g = ḡ. * indicates conjecture based on a significant amount of numerical evidence
in the case of axisymmetric deformations.

We conclude with a summary of some of the open questions posed by the work
presented here, of which there two distinct categories. On the one hand, there are many
theoretical problems that are yet to be understood. Firstly, does the differenced heat
kernel of any free field theory on a deformed sphere always have fixed sign? This is essen-
tially a purely geometric inquiry, as one can define a heat kernel associated to any elliptic
differential operator L. Presumably arguments like the ones we used in Section 5.5.1
to show that ��KL is negative at sufficiently small and large t could be used to gain
control over the asymptotics of �KL for general L, but we do not know how to extend
that analysis to intermediate values of t even in the case of the Dirac fermion and scalar
studied here (though we note that renormalised determinants of free field operators are
rigorously studied in mathematics [133]). Nevertheless, we conjecture that (under the
condition that the spectrum of L is positive, to ensure that the free field theory defined
by L is stable) the differenced heat kernel does indeed always have a fixed sign. For the
Laplacian, this conjecture has already been made in mathematical literature [100] solely
based on the small- and large-t arguments given in Section 5.5.1. Here, we have presented
a significant amount of evidence in its favour and, given that a similar body of evidence
exists for the Dirac operator, have sufficient reason to believe it may hold in the more
general case. Secondly, is the differenced free energy �F of any unitary, relativistic QFT
on a deformed maximally-symmetric two-space negative? As shown in Table 7.1, this
differenced free energy has been shown to be negative for a large range of theories, pro-
viding tantalising evidence that perhaps it is some universal feature of general QFTs. The
generality of this picture suggests that there must be a universal underlying mechanism;
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it would be extremely interesting to uncover what this mechanism must be. It is possible
hints may lie within extending the perturbative flat-space proof of Chapter 7 — that
only assumed power-counting renormalisability and Lorentz invariance of the flat-space
theory — to the sphere, which would also be an interesting problem in itself. Perhaps the
answer is related to the F -theorem, that requires �F on the Euclidean three-sphere to
decrease under RG flow induced by spin-zero operators. A potential connection between
the present results and the F -theorem is not obvious, however, both for the simple reason
that the topologies we considered are not deformed three-spheres, but also because the
free energy need not behave monotonically under deformations of the three-sphere’s ge-
ometry (corresponding to spin-two deformations), as found in [95]. Further, the fact there
is a (small) deformation of the torus that renders the vacuum energy of the free massless
Dirac fermion positive remains a curious footnote to this story that could yet provide
some insight. Lastly, a number of unanswered questions remain about the remarkably
close quantitative agreement shown between the (appropriately normalised) vacuum en-
ergies of the free Dirac fermion and a holographic CFT considered in Chapter 6. The
closeness is suggestive of some underlying reason for the universality: what is it? This
is but one of an growing list of unexplained similarities in observables between these two
very different theories [117–119]. Improving the numerical methods to allow an accurate
determination of the vacuum energies closer to the singular limits of the geometries, where
the biggest differences occur, may be enlightening. Further, the results of [95] confirm
that breaking ultrastaticity, as the Euclidean three-sphere does, is enough to break the
close matching between the fermion and the holographic CFT. Why? And what happens
under the breaking of parity symmetry or axisymmetry? It would be informative to check
whether such deformations exhibit vacuum energies with similar behaviour.

On the other hand, the behaviour of �F is suggestive of some phenomenological
implications for the geometry of physical membranes that support relativistic quantum
degrees of freedom. These certainly merit further exploration. Our analysis in Chapter 5
concluded that �F , while too small to imply the existence of a crumpled equilibrium con-
figuration for graphene, nevertheless gave rise to an important non-local contribution that
should be factored into any quantum simulations that hope to understand the energetics
of monolayer graphene, and could influence the equilibrium geometry of an appropriately
finely-tuned material. How feasible would it be to engineer materials that actually exhibit
this negative �F , either as a genuine instability of the round sphere, or as a non-local
contribution to an effective description of a membrane’s dynamics? Failing that, the pos-
sibility remains that optical lattices — given their capacity to be finely tuned — offer
a route to engineering a setup in which the effects of �F are observable. As such, it
is a distinct possibility that the peculiar properties of (2+1)-dimensional vacuum energy
exhibited in this work become one of the very few effects of QFT on curved space to be
realisable in the lab.
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Appendix A

Analytic Work

A.1 Thermal Field Theory in Curved Spacetime

In this section, we sketch the argument that static Lorentzian QFTs at finite temperature
have Euclidean QFT duals, more on which can be found in, for example, [134].

Consider a Lorentzian Quantum Field Theory at temperature ��1 with Hamilto-
nian H[�] on a (d + 1)-dimensional manifold R⇥M. Statistical Mechanics tells us that
the partition function for this system is

Z = Tr

⇣
e
��H

⌘
. (A.1)

This can be written in terms of field eigenstates, |'i1, as

Z =

Z
D' h(�)F'|e��H |'i. (A.2)

where F = 0/1 for a bosonic/fermionic field, whose integrand can be re-written sugges-
tively as h(�)F'|e�i(�i�)H |'i. This amplitude looks a lot like the transition amplitude
from the state ' back to itself in a time �i�. In path integral language, this amplitude is

h(�)F'|e�i(�i�)H |'i =
Z

M'

D� exp
 
�i
Z

�i�

0

dt

Z

M

L(�)
!

(A.3)

where L is the Lagrangian density and M' denotes the space of all (analytically continued)
field configurations which satisfy �(0, x) = (�)F�(i�, x) = '(x). So transforming to
imaginary time, ⌧ = it,

h(�)F'|e�i(�i�)H |'i =
Z

M'

D�E e

�
Z

�

0

d⌧

Z

M

LE(�E)

=

Z

M'

D�E e
�SE[�E] (A.4)

1These are time independent as we are in thermodynamic equilibrium.
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where

SE[�] =

Z
�

0

d⌧

Z

M

LE(�E) (A.5)

is the action of this new Euclidean theory. When the amplitude, in this form, is inserted
back into the partition function, the integral over the eigenstates then softens the restric-
tion on the �E integral to field configurations which satisfy �E(x, 0) = (�)F�E(x, �), so
the partition function is

Z =

Z
D�E e

�SE[�E] (A.6)

which matches that of a Euclidean QFT with action SE on a background S1⇥M with pe-
riodic time coordinate 0 6 ⌧ < � and fields satisfying (anti)periodic boundary conditions
in ⌧ for a (fermionic) bosonic field. This allows you the freedom to use any techniques
you know for analysing Euclidean QFTs to calculate quantities which can then be ana-
lytically continued back to Lorentzian time in order the probe Lorentzian QFT at finite
temperature.

A.2 One-Loop Effective Action

In this section, we detail the derivation of the one-loop effective action in terms of a
functional determinant for relativistic quantum degrees of freedom in the presence of
background fields as seen in, for example, [75]. For this section, ~ will be reinstated.

Consider a field theory with an action, S[�, ] on a Riemannian manifold (M, g)

of dimension n, where � is some quantum field and  is all other fields. If we wish to do
quantum field theory with this action, we integrate over all field configurations weighted
by e

�S/~ to obtain the path integral
Z

D D� e�S[�, ]/~. (A.7)

While, in theory, it is possible to deduce anything you would want to know about this
theory simply working with this object, there are more practical objects for certain ap-
plications. For example, we may be interested in the behaviour of the geometry of some
membrane which has � living on it. It is not important precisely what � is doing, so, for
our purposes, it is sufficient to integrate it out. Its effect will then be represented as a self
interaction term for the out of plane displacements. This can be done by working with
the quantum effective action. This is defined as the Legendre Transform of the energy
functional W [J, ] = �~ lnZ[J, ], where Z[J, ] is obtained by adding a source to the
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action,

Z[J, ] =

Z
D� e�(S[�, ]+(J,�))/~ (A.8)

where (· , ·) is an inner product on the vector bundle in which � lives,

(�1,�2) =

Z
d
n x
p
g�

1
�2 (A.9)

and � is a conjugation that makes the integrand a scalar. Thus the effective action �[�, ]

is

�[�, ] = W [J(�, )]�
�
J(�, ),�

�
(A.10)

where J(�, ) is defined implicitly by the equation

�(x) ⌘ 1p
g(x)

�W

�J(x)
(A.11)

From here on, all dependence on  will be suppressed. The effective action has all the loop
corrections built in — thus it is fully quantum corrected. Whereas the action S is a purely
classical object, the effective action takes quantum effects into account, thus may be used
to probe purely quantum effects such as anomalies and energy due to vacuum fluctuations.
Generically, it is not possible to solve analytically for J in terms of �, however, progress
can be made by expanding � in powers of ~ and solving iteratively, order by order. In the
limit ~ ! 0, Z[J ] is dominated by the field configuration which minimises the exponent
in the integrand i.e. where the classical equations of motion for �,

�S

��(x)
= �

p
g(x)J(x) (A.12)

are satisfied. We denote this solution as �cl. This means that in the limit ~! 0,

1p
g(x)

�W

�J(x)
! �cl (A.13)

so �(x) and �cl coincide (as functions of J) to leading order in ~. Now change variables
in the path integral � = �cl + ⌘,

W [J ] = S[�cl] + (J,�cl)� ~ ln
✓Z

D⌘ exp
⇥
�(⌘, D⌘)/~+O(~�1⌘3)

⇤◆
(A.14)
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where the operator D is

D =
1

2
p

g(x)

Z
d
n y

�2S

��(x)��(y)
. (A.15)

This is a second order differential operator that is self-adjoint with respect to (· , ·). From
before, we know the integral in (A.14) is dominated by the region where ⌘ is small. In
particular, the region where ⌘ = O(~1/2), thus ignore the O(⌘3~�1

) terms so

W [J ] = S[�cl] + (J,�cl)� �~ ln detD. (A.16)

where � is some number that depends on the vector bundle the field � lives in. Then,

�[�] = S[�cl]� �~ ln detD + (J,�cl)� (J,�). (A.17)

J was introduced as a tool for doing the calculation, but in the end we can set J to 0 since
we are not interested in the dynamics of field we have just integrated out. At J = 0 , �cl

is the solution to the unsourced equations of motion for � and so the one-loop effective
action is (reinserting  dependence)

�[�, ] = S[�cl, ]� �~ ln detD[�cl, ]. (A.18)

for � � �cl = O(~). Thus, the computation of the one-loop effective action has been
reduced to calculating ln detD which can be expressed in terms of a heat kernel.

While the derivation above shows that ��~ ln detD is the one-loop correction to
the effective action, for any free theory i.e. theory quadratic in the field �, it is the full
correction, as there are no contributions from higher orders.

A.3 Fermion Partition Function

In this section, we set out the conventions for and details on the Euclidean Dirac fermion
calculations in Chapters 3, 5 and 6, closely following the treatment in [1].

We will follow the Clifford algebra conventions of [135]: in Euclidean signature,
the Clifford algebra is

{�a, �b} = 2�ab, (A.19)

which allows us to take the �a to be Hermitian. With such conventions, a natural choice
of representation of the gamma matrices in three dimensions is �a = �a with �a the
Pauli matrices, though we note that none of our statements will depend on such a choice.
Scalars are formed from spinors �,  as the bilinears �̄ with �̄ = �†, and the massive
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Euclidean Dirac action on a curved space with metric gµ⌫ is

SE[ ̄, ] =

Z
d
3x
p
g  ̄(i /D � iM) , (A.20)

where /D = �a(ea)µDµ with {(ea)µ} for a = 1, 2, 3 a vielbein,

Dµ = rµ +
1

2
!µabS

ab, (A.21)

rµ the usual Levi-Civita connection compatible with gµ⌫ , Sab
= [�a, �b]/4 the genera-

tors of the Lorentz group, and !µab = (ea)⌫rµ(eb)⌫ the spin connection. Note that the
operator i /D is self adjoint, but the i in the mass term renders the Euclidean action non-
Hermitian. This factor of i is necessary to ensure that the action obeys the Osterwalder-
Schrader positivity conditions; see e.g. [136] for a discussion of such subtleties associated
with spinors in Euclidean space.

The Dirac fermion path integral has solvable a path integral (as noted in Sec-
tion 2.1):

Z =

Z
D ̄D e

�SE [ ̄, ]
= det(i /D � iM). (A.22)

i /D is self adjoint and thus has real eigenvalues. Moreover, in the direct-product ge-
ometry (3.1), eigenspinors of i /D can be decomposed into Fourier modes  = e

�i⌦n⌧ ⌃,
with  ⌃ a spinor on ⌃ and ⌦n = (2n+ 1)⇡/� a Matsubara frequency (with n 2 Z). It is
then straightforward to show that if e�i⌦n⌧ ⌃ is an eigenspinor of i /D with eigenvalue �,
then e

i⌦n⌧�⌧ ⌃ is an eigenspinor with eigenvalue ��. Hence, the spectrum of i /D on the
background (3.1) is symmetric about zero2, allowing us to write

Z2
= det(i /D � iM)det(�i /D � iM) = det( /D

2 �M2
). (A.23)

(See e.g. [138] for more on this trick in d = 4.) By expressing the metric on (⌃, g) in the
conformally flat form (3.10), we may evaluate /D

2 �M2. Noting that there is only one
generator S12

= (i/2)�⌧ of rotations in two dimensions, we obtain

/D
2 �M2

= �LPL � L⇤PR, (A.24)

where PL,R = (1 ± �⌧ )/2 are left and right Weyl projectors on (⌃, g) and L is as given
in (3.5). Decomposing  = e

�i⌦n⌧ ⌃, we see that L and L⇤ act only on left- and right-
helicity Weyl spinors PL ⌃, PR ⌃, respectively. As these spinors only have one component
each, we may interpret L and L⇤ as acting only on complex functions (albeit with an-

2Note that the direct product structure of (3.1) was crucial; in a general odd-dimensional geometry
the spectrum of i /D need not be symmetric [137].
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tiperiodic boundary conditions on the thermal circle). This therefore allows us to write

det(�LPL � L⇤PR) = det(�L)det(�L⇤
) = (detL)2, (A.25)

where in the second expression we take the determinants only over the space of functions
on which L and L⇤ act, and in the last equality we noted that because L is self adjoint (with
respect to the usual L2 norm), L and L⇤ have the same spectrum (and thus determinant).
Hence, the partition function for the fermion can be evaluated by taking the functional
determinant of a scalar differential operator acting on complex functions, thus aligning it
with more closely with the scalar case.

A.4 Finite-d Heat Kernels on the Torus

In this section, we provide more details on the computation of the heat kernel at finite d

for Section 3.3, closely following the treatment in [1]. Firstly, in order to deal with
the issue of eigenfunction degeneracy, it is convenient to take r2 irrational (which limits
the degeneracy of each eigenvalue �̄I to be less than or equal to four) and choose the
label I to consist of {N+,S}, where N+

= {n+

1
, n+

2
} is a pair of non-negative integers

and S = {s1, s2} is a pair of signs, with si = ±1 if n+

i
6= 0 and si = 0 if n+

i
= 0. The

eigenspaces of �r2 have eigenvalues �̄N+ = (2⇡/d)2((n+

1
)
2
+ (n+

2
)
2/r2) (and are thus

labelled by N+) and the values of S index these degenerate subspaces, each of which have
degeneracy bN+ = (2� �

n
+

1
,0
)(2� �

n
+

2
,0
) and the eigenfunctions are written as

h̄N+,S(x) =
1p
r d

X

S0

c(N
+
)

SS0 e
2⇡i

P
2

j=1
s
0
jn

+

j x
j
/dj , (A.26)

where the sum runs over all bN+ possible choices of S0 and for fixed N+, c(N
+
)

SS0 is an
arbitrary bN+ ⇥ bN+ unitary matrix. In other words, for given N+ the h̄N+,S form an
arbitrary orthonormal basis of the degenerate subspace of �r2 with eigenvalue �̄N+ ;
the freedom to choose this basis is what allows us to satisfy the perturbation theory
consistency conditions on h̄N+,S.

Using this formalism, we may compute the second-order corrections to the heat
kernels at finite d using (3.20) which, after some rearrangement, are found to be

�K(2)

s
(t) = t

4(2⇡)4
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2

4 t

2

X

N+

e
��̄N+ t

X
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6=S

���f̃ (1)
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���
2 �
�̄N+ � ⇠�̄�SN+

�2

+

X

N,N0

���f̃ (1)

N

���
2

e
��̄N0 t

�
�̄N0 � ⇠�̄N

�
 
���̄N0 ,�̄N�N0 + ��̄N0 6=�̄N�N0

�̄N0 � ⇠�̄N
�̄N�N0 � �̄N0

!3

5 , (A.27a)
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�K(2)
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+
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���
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e
��̄N0 t

✓
3
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�̄N � �̄N0

+��̄N0 6=�̄N�N0

�
�̄N0 � �̄N/4 +DN,N0

� �
�̄N�N0 � �̄N/4�DN,N0

�

�̄N�N0 � �̄N0
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5 , (A.27b)

where we defined SN+ ⌘ {s1n+

1
, s2n

+

2
}, �SN+ ⌘ (S � S0

)N+,
DN,N0 = i(2⇡)2 (n1n0

2
� n0

1
n2) /(2d1d2), and ��̄N0 6=�̄N�N0 = 1 if �̄N0 6= �̄N�N0 and 0 oth-

erwise. Note that the precise form of the matrices c(N
+
)

SS0 does not matter since they cancel
out in traces (as seen in Section 3.2), but the presence of the sums over degenerate sub-
spaces in the first terms in the above expressions is an artefact of needing to treat the
degenerate subspaces properly.

We now take the limit d!1. The first term in each expression above vanishes in
this limit (essentially because d�4

P
N ! d�2

R
d
2k ! 0); for the same reason, the terms

containing ��̄N0 ,�̄N�N0 also vanish. This results in Equation (3.31) with

Is(k
2t) =

4

k4
P
Z

d
2q e�q

2
t
(q2 � ⇠k2

)
2

k2 � 2q · k , (A.28a)

If(k
2t) =

4

k4
P
Z

d
2q e�q

2
t

 
� 1

16
k2

+
(q2 � k2/4)2 + (k⇥ q)2/4

k2 � 2q · k

!
, (A.28b)

where q = |q|, k = |k|, k ⇥ q = k1q2 � k2q1, and P denotes a Cauchy principal value
(that comes about since terms in which the denominator vanishes are excluded in the
discrete sums). These integrals may then be performed analytically, yielding the expres-
sions (3.32a) and (3.32b).

A.5 Details on the Perturbative Results for the Sphere

In this section we present the details on the perturbative calculation of the heat kernel
for the scalar and the fermion in Chapter 5, closely following the treatment in [3].

A.5.1 Spin-Weighted Spherical Harmonics

In what follows, we will make use of the spin-weighted spherical harmonics sY`,m. We refer
to the original papers [139, 140] for more details and explicit formulae; here we merely list
the properties of these functions needed to make this section self-contained. Essentially, a
function ⌘ associated to a tensorial structure on the sphere is said to have spin weight s if
under a local rotation of orthonormal frame by angle  , ⌘ transforms like ⌘ ! e

is ⌘. Scalar
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fields of course are not tensorial and have spin weight zero, while the components of the
Dirac spinor have spin weight 1/2. The spin-weighted spherical harmonics sY`,m constitute
an orthonormal basis for the space of spin weight-s functions on the sphere (hence the
usual spherical harmonics are just the special case of spin weight zero: Y`,m = 0Y`,m).
The index ` takes values ` 2 {|s|, |s| + 1, |s| + 2, . . .} with s an integer or half-integer,
and m 2 {�`,�` + 1, . . . , `}. We also note that they obey sY ⇤

`,m
= (�1)s+m

�sY`,�m as
well as the addition theorem

`X

m=�`

sY
⇤

`,m sY`,m =
2`+ 1

4⇡
. (A.29)

It will be convenient for later to introduce the spin weight raising and lowering
operators ð and ð̄, which act on a function ⌘ with spin weight s as

ð⌘ = � sin
s ✓
�
@✓ + icosec✓ @�

� �
sin

�s ✓ ⌘
�
, (A.30a)

ð̄⌘ = � sin
�s ✓

�
@✓ � icosec✓ @�

�
(sin

s ✓ ⌘) ; (A.30b)

ð⌘ then has spin weight s + 1 and ð̄⌘ has spin weight s � 1. These operators obey the
Leibniz rule (even on products of functions of different spin weights) and hence are bona
fide derivative operators, and are also total derivatives in the sense that when ð⌘ or ð̄⌘
has spin weight zero, its integral over the round sphere vanishes. Moreover, they relate
spin-weighted spherical harmonics of different spin weight to each other:

ð sY`,m =

p
(`� s)(`+ s+ 1) s+1Y`,m, (A.31a)

ð̄ sY`,m = �
p

(`+ s)(`� s+ 1) s�1Y`,m. (A.31b)

(It then follows that the spin-weighted spherical harmonics with integer s can be generated
from the ordinary spherical harmonics Y`,m by successive applications of ð.)

The triple overlap of spin-weighted spherical harmonics can be expressed in terms
of 3j symbols (see e.g. [141, 142]3):

Z

S2

s1
Y`1,m1 s2

Y`2,m2 s3
Y`3,m3

=

r
(2`1 + 1)(2`2 + 1)(2`3 + 1)

4⇡

 
`1 `2 `3

�s1 �s2 �s3

! 
`1 `2 `3

m1 m2 m3

!
, (A.32)

where here and in what follows we will leave the volume element sin ✓ d✓ d� in integrals

implied. The 3j symbol

 
`1 `2 `3

m1 m2 m3

!
vanishes unless the usual rules for angular

3Technically [141, 142] only give expressions for the triple integral of Wigner D-matrix elements, but
the sY`,m are precisely proportional to these matrix elements [140].
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momentum addition are satisfied: that is, mi 2 {�`i,�`i + 1, · · · , `i} for each i, m1 +

m2+m3 = 0, the `i obey the triangle condition |`1�`2| 6 `3 6 `1+`2, and finally `1+`2+`3
must be an integer (in fact an even integer if all the mi vanish). Moreover, the 3j symbols
have the following properties:

X

m

(�1)`�m

 
` ` `0

m �m 0

!
=
p
2`+ 1 �`0,0, (A.33)

X
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m1 m2 m3

! 
`1 `2 `0

3

m1 m2 m0
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!
=
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2`3 + 1
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0
3
{`1 `2 `3},

(A.34)
X
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(2`1 + 1)
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m1 m2 m3
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`1 `2 `3

m1 m0

2
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!
= �m2,m

0
2
�m3,m

0
3
, (A.35)

 
`2 `1 `3

m2 m1 m3

!
=

 
`1 `2 `3

�m1 �m2 �m3

!
= (�1)`1+`2+`3

 
`1 `2 `3

m1 m2 m3

!
(A.36)

where {`1 `2 `3} = 1 if the `i obey the triangle condition and zero otherwise, ev-
ery sum over mi is understood to run from �`i to `i, and (A.36) holds for any other
odd permutation of the columns. Finally, integrating ð( s1

Y`1,m1 s2
Y`2,m2 s3

Y`3,m3
) and

ð̄( s1
Y`1,m1 s2

Y`2,m2 s3
Y`3,m3

) and using the relations (A.31) and the integration formula (A.32)
gives the recursion relations

0 =

p
(`1 ⌥ s1)(`1 ± s1 + 1)

 
`1 `2 `3

s1 ± 1 s2 s3

!

+

p
(`2 ⌥ s2)(`2 ± s2 + 1)
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s1 s2 ± 1 s3

!

+

p
(`3 ⌥ s3)(`3 ± s3 + 1)

 
`1 `2 `3

s1 s2 s3 ± 1

!
. (A.37)

A.5.2 Scalar

For the non-minimally-coupled scalar, the operator L was given in (5.26), which we repeat
here:

L = e
�2f


�r2

+ 2⇠
⇣
1�r2

f
⌘�

; (A.38)

hence the operators L(n) introduced in (3.16) are

L(1)
= 2f (1)r2 � 2⇠

⇣
2f (1)

+r2

f (1)

⌘
, (A.39)

L(2)
= 2

⇣
f (2) � (f (1)

)
2

⌘
r2 � 2⇠


2

⇣
f (2) � (f (1)

)
2

⌘
� 2f (1)r2

f (1)
+r2

f (2)

�
. (A.40)
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Decomposing f (1) in spherical harmonics as in (5.27), reality of f (1) requires that f ⇤

`,m
=

(�1)mf`,�m, while the volume-preservation condition (3.15) requires that f0,0 = 0. Then
the matrix elements eL(1)

`,m,`0,m0 are given by

eL(1)

`,m,`0,m0 =

Z

S2

Y ⇤

`,m
L(1)Y`0,m0 (A.41)

= �2
X

`00,m00

f`00,m00
�
�̄`0 � ⇠C`00

� Z

S2

Y`00,m00Y ⇤

`,m
Y`0,m0 , (A.42)

where C` = `(` + 1) are the eigenvalues of �r2 (and the eigenvalues of L are �̄` =

`(`+ 1) + 2⇠). Using (A.32), we thus find

eL(1)

`,m,`0,m0 = �2(�1)m
X
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4⇡

 
` `0 `00

0 0 0

! 
` `0 `00

m �m0 m00

!
. (A.43)

From (A.33) and the fact that f0,0 = 0, it then follows that TreL(1)

`,`
vanishes, and hence so

does the linear correction to the heat kernel: �K(1)
= 0.

To compute the second-order correction, we need the traces TreL(2)

`,`
and Tr

⇣
eL(1)

`,`0
eL(1)

`0,`

⌘
.

To compute the former, we use the addition theorem (A.29), and hence
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(A.44)

=
2`+ 1

⇡

Z

S2
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(1)
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2
+ ⇠f (1)r2

f (1)

⌘
, (A.45)

=
2`+ 1

⇡

X

`0,m0

|f`0,m0 |2(�̄` � ⇠C`0), (A.46)

where in the first line the Laplacian r2

f (2) vanishes since it is a total divergence, in the
second line we used the volume-preservation condition (3.15) to replace the remaining f (2),
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and in the final line we used (5.27). To compute Tr

⇣
eL(1)

`,`0
eL(1)

`0,`

⌘
, we use (A.43):
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=
(2`+ 1)(2`0 + 1)

⇡

X

`1,m1,`2,m2

f`1,m1
f`2,m2

⇥
p

(2`1 + 1)(2`2 + 1) (�̄`0 � ⇠C`1)(�̄` � ⇠C`2)
 
` `0 `1

0 0 0

! 
`0 ` `2

0 0 0

!

⇥
X

m,m0

(�1)m+m
0

 
` `0 `1

m �m0 m1

! 
` `0 `2

m �m0 �m2

!
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where we used (A.36). Now, because the 3j symbols vanish unless the sum of the m quan-
tum numbers is zero, m and m0 must be related by m0

= m+m1. We may therefore replace
the phase (�1)m+m

0 with (�1)m1 , which we may combine with f`1,m1
to give f ⇤

`1,�m1
. Then

using the orthogonality relation (A.34) to evaluate the final sum, we obtain
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the diagonal part of this result gives

Tr
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We may now insert (A.46), (A.49), and (A.50) into (3.27) to obtain the second-
order correction to the heat kernel; one obtains the expression (5.28) given in the main
text with

↵`,`0 = �
(2`0 + 1)(�̄`0 � ⇠C`)

⇡

2

41 +
X

`1,`1 6=`
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0 0 0

!2
3

5 , (A.51)

�`,`0 =
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. (A.52)

The sum in the expression for ↵`,`0 can be simplified slightly by noting that by (A.35),

1 =
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` `0 `1

0 0 m1

!2

=

X
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` `0 `1
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!2

, (A.53)
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and hence one can write

↵`,`0 = �
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The sum over `1 in ↵`,`0 is a finite sum due to the triangle condition |`� `0| 6 `1 6
`+ `0; by calculating this sum exactly for several values of `, `0 and using some sequence-
finding functions in Mathematica, we are able to infer the closed-form expression
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(A.55)

where (x)n ⌘ �(x + n)/�(x) are Pochhammer symbols and Hn are harmonic numbers.
Though we are unable to provide a general derivation, we have verified that this result
agrees with (A.54) for all values of ` and `0 from zero to 100.

Finally, note that the 3j symbols in the expressions (A.52) and (A.55) are only
non-vanishing if `+ 2`0 is an even integer, implying that whenever ` is odd, �`,`0 vanishes
for all `0 and ↵`,`0 vanishes for all `0 > `/2. Thus the case of odd ` reproduces the
expressions (5.29) given in the main text.

A.5.3 Dirac Fermion

For the fermion, we obtain the L(n) by expanding L given in (5.35). In fact, having
introduced the spin weight raising and lowering operators ð, ð̄ in (A.30) above, it is now
natural to re-express L in terms of them using the fact that f has spin weight zero and L

acts on the space of functions with spin weight 1/2. We ultimately obtain

L = �e�2f


ðð̄ +

1

2

⇣
r2

f + (ð̄f)ð� (ðf)ð̄
⌘
� 1

4
(rif)

2

�
(A.56)
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(we could also write r2

f = ðð̄f and (rif)2 = (ðf)(ð̄f), but this rewriting will not be
needed), and hence the unperturbed operator and the corrections L(n) are

L = �ðð̄, (A.57)

L(1)
= 2f (1)ðð̄� 1

2

⇣
r2

f (1)
+ (ð̄f (1)

)ð� (ðf (1)
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, (A.58)
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= 2
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f (2)

+ (f (1)
)
2

⌘
ðð̄� 2f (1)L(1)

+
1

4
(rif

(1)
)
2, (A.59)

where to simplify L(2) we took f (2) to be a constant; there is no loss of generality in this
simplification, since the purpose of f (2) is only to ensure that the volume-preservation
condition (3.15) can be satisfied for non-trivial f (1).

From (A.31), it follows that sY`,m is an eigenfunction of ðð̄:

ðð̄ sY`,m = �(`+ s)(`� s+ 1) sY`,m. (A.60)

Hence since L acts on the space of functions with spin weight 1/2, the 1/2Y`,m form a
basis of eigenfunctions of L with eigenvalues �̄` = (` + 1/2)2, and we may compute the
matrix elements eL(n)

`,m,`0,m0 by taking the unperturbed eigenfunctions to be h̃`,m = 1/2Y`,m.
Proceeding in this manner, first we obtain (again by expanding f (1) in spherical harmonics
as in (5.27))4
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��
. (A.61)

We may then use the rules (A.31) to replace the derivatives of the spherical harmonics with
spherical harmonics of different spin weights, and finally (using sY ⇤

`,m
= (�1)s+m

�sY`,�m)
we may use (A.32) to perform the remaining integrals, thereby obtaining

eL(1)

`,m,`0,m0 =
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` `0 `00

�m m0 m00

!
A`,`0,`00 , (A.62)

4Technically for the fermion we should be careful to denote the limits of summation, since the in-
dex ` can either range over all non-negative integers, as it does for the decomposition of f (1) in terms of
spin weight-zero spherical harmonics, or over positive half-odd integers 1/2, 3/2, . . ., as for the eigenfunc-
tions h̃`,m. We assume it is clear from context what the appropriate limits of each summation should
be.
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where to slightly compactify notation we have defined

A`,`0,`00 ⌘
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, (A.63)
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⌘ ` `0 `00

1/2 �1/2 0

!
, (A.64)

with the second expression obtained from the first by using (A.37) and (A.36).
As for the scalar, it follows immediately from (A.33) and the fact that f0,0 = 0

that TreL(1)

`,`
= 0, and hence �K(1)

= 0 as well. To get the second order term, we first
compute

TreL(2)

`,`
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16⇡
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=
2`+ 1

16⇡

X

`00,m00

C`00 |f`00,m00 |2 � 2

X

m,`0,m0

eL(1)

`0,m0,`,m

Z

S2

1/2Y
⇤

`,m
f (1)

1/2Y`0,m0 , (A.66)

where to get the first line we used the addition formula (A.29) and the volume-preservation
condition (3.15), and to get to the second line we integrated by parts in the first integral
and inserted a resolution of the identity in terms of the 1/2Y`0,m0 in the second. The
remaining integral can be performed using (A.32), followed by using the expression (A.62)
and the orthogonality relations (A.34) and (A.35) to collapse most of the sums (note that
the orthogonality relation (A.35) is implemented most directly by writing A`,`0,`00 in the
longer form (A.63)); the final result is
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16⇡

X
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|f`00,m00 |2
�
16�̄` � 3C`00

�
. (A.67)

The same manipulations, again using (A.62), also yield
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⌘
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16⇡
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and hence also
Tr
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(eL(1)

`,`
)
2

⌘
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(2`+ 1)
2

16⇡
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`00,m00

|f`00,m00 |2A2

`,`,`00 . (A.69)

Inserting these into the expression for the second-order correction to the heat kernel and
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using (A.64), we thus obtain (5.36) with

↵`,`0 = �
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Note that as for the scalar, �`,`0 vanishes whenever ` is odd. The sum in ↵`,`0 is again a
finite sum since the 3j symbol vanishes unless |`� `0| 6 `00 6 `+ `0; by evaluating the sum
exactly for various values of `, `0 we are able to infer the expression
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(A.71)

which for odd ` reproduces the result (5.37) given in the main text. Though we are not
able to give a derivation of this result, we have checked its agreement with (A.70a) for all
values of ` up to 100 and all values of `0 up to 201/2.

A.6 Flat-Space Scaling Limit

Here we provide some more details on the flat-space scaling limit performed in Sec-
tion 5.3.4. Firstly, to obtain the limiting behaviour (5.50), note that for odd r0k we
have from (5.49)

ar0k(t) =
t

r2
0

k/2X

k0

e
�(k

0
)
2
t↵r0k,r0k

0 = r2
0
t

Z
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dk0
e
�(k

0
)
2
tH(k, k0

) +O(r0), (A.72)
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where we have defined H(k, k0
) = limr0!1 ↵r0k,r0k

0/r3
0

and re-expressed the sum as an
integral in the r0 !1 limit. The function H(k, k0

) can be obtained from the closed-form
expressions (5.29) and (5.37) by using the fact that for x > 0,

�(x+ 1/2)

�(x)
=
p
x+O(x�1/2

), (A.73)

from which we find
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) =
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>>>:
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(A.74)

Using these expressions to perform the integral in (A.72), we recover (5.50) as promised.
We now remove the restriction that r0k be odd.

Next, to obtain (5.51), we must keep track of how the mode decomposition of f (1)

in spherical harmonics behaves in the r0 ! 1 scaling limit. To this end, we need the
appropriate scaling behaviour of the spherical harmonics; to obtain it, first define as
above k = `/r0 and in addition ky = m/r0. Expressing the spherical harmonics in terms
of Legendre polynomials Pm

`
(x), we immediately have

Ykr0,kyr0
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2
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◆
e
ikyy, (A.75)

where Nkr0,kyr0 is a normalisation constant. The functional form of P r0ky

r0k
as r0 !1 can

be inferred from the scaling limit of Legendre’s differential equation (as well as from the
symmetry properties of Pm

`
(x) about x = 0), from which we then find that

Ykr0,kyr0
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2
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k2 � k2

y
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◆
e
ikyy (A.76)

for even (k+ ky)r0, and the same expression with a sine (instead of a cosine) for odd (k+

ky)r0. Here eNkr0,kyr0 is some new constant, which can be obtained up to an overall phase
by the normalisation condition

1 =

X

`0,m0

Z
Y ⇤

`0,m0(✓,�)Y`,m(�, ✓) sin ✓ d✓ d� (A.77)
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for any ` = kr0 and m = kyr0, where the domain of integration in k0 and k0

y
comes from
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the restriction that `0 > 0 and �`0 6 m0 6 `0. Performing the integrals finally gives that
up to an overall phase,
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e
ikyy (A.79)

for even (k + ky)r0 and the same expression with a sine for odd (k + ky)r0.
Hence in the r0 ! 1 scaling limit, the coefficients f`,m give the desired expres-

sion (5.51):
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with the upper (lower) sign for even (odd) (k + ky)r0 (and we are neglecting an overall
phase that will cancel out). We remind the reader that f̃(kx, ky) is the Fourier transform
of f (1)

(x, y), and the assumption that f (1)
(x, y) vanishes at large (x, y) (i.e. f (1)

(✓,�)

vanishes away from (✓ = ⇡/2,� = 0)) is what allows us to take the scaling limit of the
integrand before evaluating the integral.

Finally, decomposing �K(2) into contributions based on the parity of (k+ky)r0 as

�K(2) ! �K(2)

even
+K(2)

odd
, (A.84)

we have
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with the upper (lower) sign for �K(2)

even (�K(2)

odd
). Note that the factor of 1/2 comes from

the fact that for fixed kr0, we are only summing over kyr0 with a given parity, and thus the
spacing in ky is 2/r0. We now first switch the integrals around by taking the range of the ky
integral to be (�1,1) and the range of the k integral to be (|ky|,1), after which we
change to a new variable kx =

p
k2 � k2

y
which has range (0,1). Since dkx = (k/kx)dk,
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we thus have
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with the latter expression obtained by expanding out the square and redefining kx !
�kx as appropriate. Hence adding �K(2)

even and �K(2)

odd
we obtain the flat-space expres-

sion (5.52).

A.7 Details on the Renormalisation of the Time-Ordered
Two-Point Function of the Stress Tensor on Flat
Space

In this section, we examine the precise divergence structure of the momentum space time-
ordered two-point function of the stress tensor on flat space considered in Section 7.3.
We will explicitly compute the necessary counterterms for its spatial legs. A similar
calculation can be performed for the other components but since they do not contribute
to our vacuum energy calculation we will not consider them here. Let ⇤ be a UV cutoff.
We wish probe the large ⇤ asymptotics of

GF

ijk`
(p) = �
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⇠<|⇤|
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�
. (A.89)

The spatial legs of Wijk`(⇠,p) are even in p so making the change of variables ⇠ ! �⇠ in
the second term and noting that Wijk`(⇠,p) is only non-zero for positive energy timelike
arguments gives that

GF

ijk`
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The i" terms do not influence the divergences so we take "! 0 and we can then write

GF
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�
fWijk`(⇠,p). (A.91)

The divergences are given the large ⇠ behaviour of fWijk`(⇠,p) which is determined by
the asymptotics of the spectral densities and the dependence of the spin-0 and spin-2
projectors on ⇠. The spatial legs on the projector are

⇧
(0)

ijk`
(⇠,p) = ⇠4�ij�k` + ⇠2

⇥
Sij(p)�k` + Sk`(p)�ij

⇤
+O(⇠0) and (A.92a)
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where Sij(p) ⌘ pipj � �ijp2, so for spectral densities (7.28) with asymptotics
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the ⇤!1 asymptotics of GF
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(p) when d = 2 are
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(A.94)

To cancel these divergences non-covariant counterterms are required (a necessary condi-
tion for covariance is that piGF

ijk`
(0,p) = 0) so the finite parts of the counterterms needed

to recover a conserved GF

µ⌫⇢�
(p) are determined and thus is there is no ambiguity associ-

ated with the conserved time-ordered two-point function of the stress tensor when d = 2

here. Practically, the conserved and finite part of the two-point function, G̃F

µ⌫⇢�
(p), is

obtained via dimensional regularisation. For <(d) < �3 the expression
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(A.95)
is finite in the limit ⇤ ! 1. Further, after taking this limit and writing fWµ⌫⇢� in its
spectral representation (7.27) the swap in integration order

R
d⇠ $

R
dµ is valid. Using

the �-function to evaluate the ⇠ integral gives
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, (A.96)

which can then be analytically continued to d = 2.

A.8 The Fermion

In this section, we provide the details behind the calculation of the spectral densities for
a free Dirac fermion of mass m for Chapter 7.

Firstly, we derive the stress tensor for a massive Dirac fermion on a (d + 1)-
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dimensional curved ultrastatic Lorentzian spacetime. On a space with vielbeins {eµa}, µ, a =

1, . . . , d+ 1 satisfying eµae⌫b⌘ab = gµ⌫ , this theory has action

S =

Z
d
d+1x(det e) ̄

�
i�aeµ

a
Dµ �m

�
 (A.97)

where det e ⌘ det eµa, D is the spin connection which acts on spinors as

Dµ = @µ +
1

2
!µabS

ab , (A.98)

!ab

µ
= e⌫arµe⌫b is the spin connection, Sab

= [�a, �b]/4 and {�a} are N ⇥ N matrices
satisfying

{�a, �b} = �2⌘ab1N and �a† = �0�a�0 (A.99)

where N = 2
b(d+1)/2c. This has momentum conjugates given by
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� ̇
= i
p
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so the Hamiltonian is
H =

Z
d
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p
g ̄(�i�i@i +m) . (A.101)

This action depends explicitly on the vielbeins so need to express the stress tensor as
variations with respect to them. Let Aµ

a
= (det e)�1 �S/�eµa. Since �g⇢� = (�⇢
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Taking

Tµ⌫ = Aµ
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�S

�eµa
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a (A.105)

should work. This theory should be invariant under a local Lorentz transformation
i.e. �S = 0 when �ea = �abeb for any antisymmetric matrix �ab(x). So
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(A.106)
for arbitrary antisymmetric �, so require A[ba]

= eµ[bAµ

a]
= 0 and Tµ⌫ symmetric. Under
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an infinitesimal diffeomorphism �ea = L⇠ea = ⇠ � dea + d (⇠ � ea)
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so for diffeomorphism invariance we require that

rµAµ

a
+ !µ

a

b
Aµb

= 0, (A.109)

which after contracting with e⌫a gives rµTµ⌫ = 0. So to have a theory that is invariant
under local Lorentz transformations and diffeomorphisms, the stress tensor must be sym-
metric and conserved. These are constraints on the quantum stress tensor operator. We
now derive this operator for the free Dirac fermion. To do so, its conventient express the
action in the more symmetric form
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where �abc = {�a, Sbc}/2 is totally antisymmetric in its indices. The (Heisenberg) equa-
tions of motion for  imply that L = 0, so we need not consider this term. Looking in
more detail at the variation of the spin connection
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bDµ�e⌫b (A.115)
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aD⇢�e
µ
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which with the constraint T[µ⌫] = 0 gives
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with the constraint
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Noting that
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we see the constraint is satisfied. Moreover,

(�i /D +m)(i /D +m) = (�D2 �R/4 +m2
) = 0 (A.124)

which gives that rµTµ⌫ = 0.

A.8.1 Matrix elements

The stress tensor for the massive Dirac fermion of mass m is

Tij(x; ✏) =
i

2
 ̄
⇣
�(i@j) �
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@ (j�i)

⌘
 . (A.125)

Now we wish to quantise the Dirac field using the interaction picture. To this, we seek
the classical solutions to the Dirac equation in flat space. Firstly, positive frequency
solutions  (x) = u(p)eip·x with p0 = E(p) =

p
p2 +m2 must have

(/p+m)u(p) = 0, (A.126)
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and negative frequency solutions  (x) = vs(p)e�ip·x with p0 = E(p) =
p

p2 +m2

(/p�m)v(p) = 0, (A.127)

solutions to which are boosts of the solutions to

(1N � �0)u(0) = 0 and (1N + �0)v(0) = 0. (A.128)

Using the representation of gamma matrices

�0 = �1 ⌦ 12 ⌦ 12 ⌦ . . . (A.129)

�1 = i�2 ⌦ 12 ⌦ 12 ⌦ . . . (A.130)

�2 = i�3 ⌦ �1 ⌦ 12 ⌦ . . . (A.131)

�3 = i�3 ⌦ �2 ⌦ 12 ⌦ . . . (A.132)

. . . = . . . (A.133)

its easy to see that

Rank(1N ± �0) = Rank

 
1 ±1

±1 1

!
Rank(12)

b(d+1)/2c�1
= N/2, (A.134)

and thus the number of solutions for us
(p) and vs(p) is Nullity(1N±�0) = N�N/2 = N/2

each. These spinors can be chosen to form an orthogonal basis of eigenstates for the
hermitian matrix �0, satisfying

u†u = 2m and v†v = 2m, (A.135)

then using the eigenvalue equations to introduce �0 to the inner product and boosting to
a frame with momentum p gives that

ūs
(p)ur

(p) = 2m�sr, v̄s(p)vr(p) = �2m�sr and v̄s(p)ur
(p) = 0. (A.136)

Note also that the operators (1N ± �0)/2 project onto the postive and negative frequency
parts of the zero momentum solutions, respectively. These projections can also be rep-
resented in terms of the bases of the space that they project onto right multiplied by �0

and then boosted to give

X

s

us
(p)ūs

(p) = �/p+m and
X

s

vs(p)v̄s(p) = �/p�m. (A.137)
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The Dirac field operator satisfies the Dirac equation so can be written as

 (t,x) =

Z
d
dk

(2⇡)d

X

s

1

2E(k)

⇣
bs(k)us

(k)eik·x + cs†(k)vs(k)e�ik·x

⌘
(A.138)

where the relativistically normalised creation and annihilation operators satisfy

{bs(p), bs†(q)} = {cs(p), cs†(q)} = �s,rp,q ⌘ (2⇡)d2E(p)�s,r�
(d)
(p� q) (A.139)

and the compact notation
X

k,s

⌘
Z

d
dk

(2⇡)d

X

s

1

2E(k)
(A.140)

has been used. The normal-ordered stress tensor operator is then

:Tij(0,0):=
1

4

X

k,p,s,r

(kj +pj)v̄
s
(k)�iv

r
(p)cs(k)cr†(p)+(kj +pj)(ū

s
(k)�iu

r
(p)br(p)bs†(k))

+ (kj � pj)(v̄
s
(k)�iu

r
(p)cs(k)br(p)� ūs

(k)�iv
r
(p)bs†(k)cr†(p)) + (i$ j).

To calculate the spectral densities in Section 7.3.2 we require the contractions of the stress
tensor with the vacuum and the two-particle states. The two-particle states consist of a
particle and antiparticle with some momenta, uµ

= (E(u),u) and vµ = (E(v),v), and
some spins, s and r, respectively:

|u, s;v, ri = bs†(u)cr†(v)|0i, (A.141)

that therefore give matrix elements

h0| :Tij(0,0): |u, s;v, ri =
1

2
(v � u)(iv̄

r
(v)�j)u

s
(u). (A.142)

From the spin-sum formulae (A.137) it follows that

X

s,r

h0| :Tij(0,0): |u, s;v, rih0| :Tk`(0,0): |u, s;v, ri? =

1

4
(u� v)(ktr

�
�`)(�/v �m)�(j(/u+m)

�
(u� v)i). (A.143)

Using the anticommutation relations between the � matrices (A.99) and, in particular,
the fact that traces of odd numbers of spatial gamma matrices are zero and

tr
�
�j�`�a�b

�
= N

�
�j`�ab � �ja�`b + �jb�`a

�
, (A.144)
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it follows that Aijkl(u,v) ⌘ (u� v)i(u� v)ktr(�j(�/u+m)�`(�/v �m)) can be expressed
in terms the momenta of the particles as

Aijkl(u,v) = N(u� v)i(u� v)k


u`vj + v`uj �

1

2
(u+ v)2�j`

�
(A.145)

and therefore

X

s,r

h0| :Tij(0,0): |u, s;v, rih0| :Tk`(0,0): |u, s;v, ri? =
1

4
A(ij)(k`)(u,v)

=
N

4
(u� v)(i(uv

T
+ vuT � 1

2
(u+ v)2�j)(`)(u� v)k). (A.146)

Taking d = 2 and relabelling the two-particle in states in terms of their total spatial
momentum and the spatial momentum of the particle in the rest frame gives the key
result (7.42) in Section 7.3.2.



Appendix B

Numerical Methods

In the following sections, we describe the numerical methods used to compute the heat
kernels and free energy in Section 5.5 and Section 5.6, closely following the work in [3].

B.1 Setup

We will always restrict to axisymmetric deformations of the sphere; almost all will be
metrics of the form (5.89) obtained from an embedding r = R(✓), though we will also
consider metrics of the form (5.106) to allow us to consider conical excesses (which cannot
be embedded in R3). In what follows, it will be convenient to work with the function f =

lnR, so that the deformed metric (5.89) can be written as

ds2 = e
2f

h�
1 + f 0

(✓)2
�
d✓2 + sin

2 ✓ d�2

i
. (B.1)

We will always use spherical coordinates {✓,�} with ranges ✓ 2 [0, ⇡] and � 2 [0, 2⇡).
To compute the differenced heat kernel we use the form given in (3.13),

�KL(t) =
X

I

⇣
e
�t�I � e

�t�̄I

⌘
. (B.2)

Due to the axisymmetry, the eigenfunctions of L are separable and can thus be written
as h(✓,�) = w(✓)eim�, where m takes integer values for the scalar and half-integer values
for the fermion. We then have that L(we�im�

) = e
�im�Dmw, with Dm a second-order

ordinary differential operator given explicitly on the geometry (B.1) by

Dmw = e
�2f

2

4� w00

1 + (f 0)2
+

f 00f 0 � cot ✓
�
1 + (f 0

)
2
�

�
1 + (f 0)2

�2 w0

+
�
A(✓) +mB(✓) +m2

cosec
2✓
�
w

�
, (B.3)
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where for the scalar

A(✓) = �2⇠
�
f 00 � (f 0

)
2 � 1

�
(1� cot ✓f 0

)
�
1 + (f 0)2

�2 , (B.4)

B(✓) = 0, (B.5)

while for the fermion

A(✓) = �1

2

�
f 00 � (f 0

)
2 � 1

�
(1� cot ✓f 0

)
�
1 + (f 0)2

�2 +
1

4

(cot ✓ + f 0
)
2

1 + (f 0)2
, (B.6)

B(✓) = �cosec✓ (cot ✓ + f 0
)p

1 + (f 0)2
. (B.7)

The operator Dm on the conical geometry (5.106) can be obtained analogously, so we do
not explicitly write it here.

We index the eigenvalues �I as follows. Since �I is an eigenvalue of L if and
only if it is also an eigenvalue of Dm for some allowed m, it is natural to take m to
index the corresponding subspaces of eigenvalues. Within each subspace (that is, for each
fixed m), we then introduce an integer l > 0 to index the eigenvalues of the operator Dm

in ascending order. We therefore label the eigenvalues as �m,l: for any given m, the �m,l

for l = 0, 1, . . . are all the eigenvalues of Dm. With this notation, the eigenvalues of L (on
the sphere with unit radius) are given by

�̄m,l =

8
<

:
(|m|+ l)(|m|+ l + 1) + 2⇠, scalar,
�
|m|+ l + 1

2

�2
, fermion;

(B.8)

in other words, the usual quantum number ` is replaced by |m| + l, enforcing that for a
fixed m, ` > |m|.

The eigenvalues �m,l are determined numerically by discretising the operators Dm

over the interval ✓ 2 [0, ⇡] using standard pseudo-spectral differencing from Section 5.4
with a Chebyshev grid of N +2 lattice points including the two boundary points ✓ = 0, ⇡

(see for example [104]). One subtlety is the appropriate treatment of the poles ✓ = 0 and
⇡. Regularity of the metric (B.1) requires that f 0

(0) = 0 = f 0
(⇡), and hence an expansion

of f around these points has a vanishing linear term. Using (B.3) for the scalar field, it
then follows from a Frobenius expansion that near ✓ = 0 any solution to Dmw = �m,lw

admits a regular behaviour that goes like

w = ✓|m|
�
w0 + ✓2w2 + · · ·

�
(B.9)

with w0 6= 0, in addition to a singular behaviour that goes like ✓�|m|. At the other pole,
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we have an analogous behaviour:

w = (⇡ � ✓)|m|

⇣
w̃0 + (⇡ � ✓)2 w̃2 + · · ·

⌘
. (B.10)

Hence when we difference the operators Dm with m 6= 0, we impose Dirichlet boundary
conditions at the poles, while when we difference the operator D0 we impose Neumann
boundary conditions. On the other hand, for the fermion we instead have the allowed
behaviours

w = ✓|m�
1

2
| �w0 + ✓2w2 + · · ·

�
, (B.11)

w = (⇡ � ✓)|m+
1

2
|
⇣
w̃0 + (⇡ � ✓)2 w̃2 + · · ·

⌘
. (B.12)

Thus for |m| 6= 1/2 we discretise with Dirichlet boundary conditions at both poles, while
for m = 1/2 we take a Neumann boundary condition at ✓ = 0 and Dirichlet at ✓ = ⇡,
and likewise for m = �1/2 a Neumann condition at ✓ = ⇡ and Dirichlet at ✓ = 0.

Thus for each m we obtain an N⇥N matrix representing the discretisation of Dm;
for large N , the N eigenvalues of this matrix should approximate the eigenvalues �m,l for
sufficiently low l < N . Of course, a finite N will not be able to keep track of eigenvalues
with m too large, so some cutoff on m must be imposed. A natural one is suggested by the
spherical harmonics: on the round sphere, we might wish to keep all eigenvalues up to a
fixed ` = |m|+l; since l < N , the strongest constraint is obtained by considering the lowest
allowed |m|, which fixes a cutoff ` < N . Implementing this same cutoff procedure on the
deformed sphere leads us to keeping all eigenvalues satisfying |m|+l < N : for each allowed
(i.e. integer or half-integer) m with |m| < N , we compute the eigenvalues of the discretised
operator Dm and keep only the ones with l < N � |m|. The actual computation of the
eigenvalues of the discretised Dm is conveniently done with the Arnoldi algorithm which
is implemented in the Mathematica matrix eigenvalue finder. We also note that for the
minimally-coupled scalar (i.e. ⇠ = 0), we explicitly drop the lowest eigenvalue m = 0, l = 0

because as discussed in Section 5.5.1 it is the same for both L and L and thus cancels
exactly in the differenced heat kernel.

For a given N , a truncated differenced heat kernel can then be defined:

�K(N)

L
(t) =

X

|m|<N

X

l<N�|m|

✓
e
�t�

(N)

m,l � e
�t�̄m,l

◆
, (B.13)

where �(N)

m,l
are the eigenvalues of the discretised operators Dm, as described above. In-

creasing N should yield a better approximation to the exact heat kernel. We expect this
approximation to be best at large t, in which the sum is dominated by the smallest eigen-
values, while the approximation should fail for sufficiently small t, when many eigenvalues
make non-trivial contributions to the sum. Since the heat kernel time t can be thought of
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as an inverse square of a length scale, we expect that for a fixed N the agreement should
fail for t smaller than order ⇠ `�2

max
⇠ N�2.

However, the differenced free energy is sensitive to the small-t behaviour of the
differenced heat kernel. To accurately compute the free energy, we therefore implement
a cutoff time tcut above which we integrate (5.20) with the truncated heat kernel �K(N)

L
,

and below which we integrate (5.20) using the leading-order behaviour �b4t from the heat
kernel expansion (5.22). For each N and choice of cutoff tcut, this gives an approximation
to the free energy:

�F (N,tcut) = �T

 
�b4

Z
tcut

0

dt e�M
2
t
⇥�(T

2t) +

Z
1

tcut

dt

t
e
�M

2
t
⇥�(T

2t)�K(N)

L
(t)

!
.

(B.14)
The accuracy of this approximation relies on �K(N)

L
being well-approximated by the linear

behaviour �b4t around t = tcut, so that �F (N,tcut) is in fact independent of tcut. With our
choice of N = 600, the truncated heat kernel �K(N)

L
gives a good approximation down

to t ⇠ 2 ⇥ 10
�4. For moderate deformations of the sphere (up to around " = 0.5-0.7

for the deformations (5.90), depending on `), �K(N)

L
agrees well with the leading-order

behaviour �b4t around this lowest value of t, and we may therefore compute the free
energy as described. In this case, typically we take tcut = 2.5⇥10

�4, and then varying tcut

gives an estimate of the systematic error in �F (N,tcut) (for all plots in Chapter 5, this
error is no greater than a few percent). For larger deformations, however, �K(N)

L
is not

well-approximated by the leading-order behaviour of the heat kernel expansion around t ⇠
2 ⇥ 10

�4, and therefore we are unable to accurately compute the differenced free energy
for such deformations.

We now discuss in more detail the convergence of �K(N)

L
with N , agreement with

the heat kernel expansion at small t, and agreement with the perturbative results for
small deformations of the sphere.

B.2 Convergence

Since we are using pseudo-spectral differencing, we expect the error in a given eigenvalue
to fall exponentially with N until a limit from machine precision is reached. Since the
truncated differenced heat kernel is constructed directly from the eigenvalues, it too should
converge to �KL exponentially until hitting machine precision. This convergence is fast
at large t, since there �KL is sensitive to only the smallest eigenvalues, whereas at small t
convergence (which is still exponential) requires larger N to achieve the same accuracy.

To exhibit this convergence, let us order the eigenvalues of L in ascending order;
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Figure B.1: Plots of estimated fractional error (B.15) for the eigenvalues of L on the
geometry given by the embedding (5.90) with ` = 3 and "/"max = 0.5. From dark to light
grey, each curve corresponds to the ith eigenvalue of L with i = 2, 10, 25, 100, 200, 400.

for a given resolution N , we then define the fractional error in the ith eigenvalue as

Err
(N)

�i
=

�����
�(N)

i
� �(Nmax)

i

�(Nmax)

i

����� , (B.15)

where the maximum resolution we use is Nmax = 600. We plot this fractional error in
Figure B.1 for several eigenvalues in the geometry corresponding to the ` = 3, " = 0.5"max

embedding (5.90). This corresponds to a non-linearly deformed sphere, although one
that still is not very close to being singular. We see that all the eigenvalues converge
exponentially with N until reaching machine precision around N ⇠ 100. As we would
expect, it is the lower eigenvalues that suffer most from machine precision limitations in
terms fractional error since they have a smaller absolute value (roughly the magnitude
of the eigenvalues goes as �i ⇠ i). The data indicates that at the resolution Nmax = 600

used in Chapter 5, the eigenvalues have a fractional error less than ⇠ 10
�8 compared to

their exact values.
We may likewise define the fractional error in the differenced heat kernel as

Err
(N)

�KL(t)
=

�����
�K(N)

L
(t)��K(Nmax)

L
(t)

�K(Nmax)

L
(t)

����� . (B.16)

This fractional error is shown in Figure B.2 (in the same ` = 3, " = 0.5"max geome-
try (5.90)) for several different values of t. Again, we observe initial exponential con-
vergence before we become machine precision limited by N ⇠ 80. Note that smaller t

requires a larger N to reach the same accuracy, but the rate of convergence is roughly
independent of t. We can estimate that for t > 0.05 the fractional error in the differenced
heat kernel at Nmax = 600 is better than ⇠ 10

�7, which is commensurate with the error
in the individual eigenvalues.
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Figure B.2: The fractional error (B.16) in the differenced heat kernel on the geometry
given by the embedding (5.90) with ` = 3 and "/"max = 0.5; from dark to light grey, the
curves correspond to t = 0.05, 0.1, 0.2, 1, 2, 4, 8.

B.3 Comparison to Heat Kernel Expansion and to Per-
turbative Results

In addition to allowing us to compute the differenced free energy via (B.14) as described
above, verifying that the heat kernel approaches the behaviour predicted from the heat
kernel expansion at small t also provides a check of our numerical methods. To that
end, in Figure B.3 we compare the small-t behaviour of �K(N)

L
for various N to the

linear behaviour �b4t expected from the heat kernel expansion; again we are taking
the ` = 3, " = 0.5"max embedding (5.90) as a typical example. There are two features to
highlight. Firstly, even the lowest value N = 40 recovers the heat kernel well above t ⇠ 0.1,
but computing the heat kernel accurately at very small t clearly requires using larger
values of N . In particular, with the choice of Nmax = 600 used in Chapter 5, we can
reliably compute the heat kernel down to t ⇠ 2 ⇥ 10

�4 (with some variation depending
on the deformation). Second, while the linear approximation �b4t does agree with the
truncated heat kernel for sufficiently large N , for even moderate deformations of the
sphere this agreement is only valid for very small t (for the case shown here, the fractional
error between the linear behaviour and the heat kernel is less than about two percent
for t < 5 ⇥ 10

�4, but grows much larger for larger t). For larger deformations this
agreement moves to smaller and smaller t, eventually leaving the domain in which we can
reliably approximate the exact heat kernel. It is for this reason that (B.14) cannot be
used to approximate the differenced free energy for very large deformations.

As an additional check of our numerical method, we may compare the truncated
heat kernel for very small deformations of the sphere to the perturbative heat kernels (5.28)
and (5.36). We show this agreement in Figure B.4, again for the ` = 3 embedding (5.90)
but now only with a weak deformation of " = 0.01. Even for modest N , �K(N)

L
is very
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Figure B.3: Small-t behaviour of the truncated differenced heat kernel �K(N)

L
for var-

ious N ; as in Figures B.1 and B.2, here we show the result for the geometry given by
the embedding (5.90) with ` = 3 and "/"max = 0.5. From light to dark grey, the curves
correspond to N = 40, 60, 100, 200, 400, while the dashed red line shows the linear be-
haviour �b4t expected from the heat kernel expansion. Note that the linear behaviour only
approximates the differenced heat kernel for quite small t, and we need to take N & 400

to reach this linear regime.

close to the perturbative result for reasonably large t. Increasing N gives agreement
with the perturbative results to smaller t, as expected. We also show a comparison with
the leading-order heat kernel expansion; unlike the moderate deformation "/"max = 0.5

shown in Figure B.3, here we see good agreement with the expected linear behaviour up
to almost t ⇠ 0.1.

B.4 Details on Calculating the Vacuum Energy

In this section (based on [4]) we include more details on the numerics in Chapter 6,
discussing specifically the heat kernel approach to computing the vacuum energies of the
free theories, and commenting on the accuracy of our numerical computations.

For the free scalar and fermion, the Casimir energy is computed from heat kernels
as described in Chapter 5. In short, because for a CFT the renormalised Casimir energy
of the round sphere vanishes, the renormalised Casimir energy of the deformed sphere
can be defined as a difference between the energies of the deformed sphere and the round
sphere. This difference is given by

E[h] =
�p
4⇡

Z
1

0

dt

t3/2

h
Tr e

�tL � Tr e
�tL

i
, (B.17)

where � = �1/2 for the scalar and +1 for the fermion, L is an elliptic differential operator
on ⌃, and L is the same differential operator on the round sphere. To obtain the Casimir
energy, we therefore need to compute the spectrum of L numerically and then perform the
above integral (the spectrum of L is known). This is done as in Appendix B.1 but with a
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Figure B.4: The convergence of the numerically-computed truncated heat kernel �K(N)

L

to the perturbative results, for the ` = 3 deformation (5.90) with " = 0.01. The blue
dashed curves show the perturbative heat kernels (5.28) and (5.36), while the dark to
light grey curves show the truncated differenced heat kernel for N = 10, 20, 40, 80. As in
Figure B.3 we see that accuracy at small t requires larger N . We also show the leading
linear behaviour �b4t from the heat kernel expansion (dashed, red).

minor enhancement allowed by the restriction to zero temperature. For the metrics (6.5)
and (6.7), the lowest-lying eigenvalues in the spectrum of L are obtained by exploiting
the axisymmetry and using standard pseudo-spectral methods on a grid of 800 points
in ✓, which allows us to approximate the above traces by summing over the first & 10

5

eigenvalues. Performing the integral over t is more subtle, as the traces in (B.17) do not
commute with the integral. Moreover, the small-t behaviour of the integrand is sensitive
to the contributions of many eigenvalues of L; hence for any approximation in which we
truncate to the lowest-lying eigenvalues of L, we are not able to accurately evaluate the
integrand of (B.17) all the way to t = 0. Instead, we again make use of the heat kernel
expansion to approximate the behaviour of the traces at small t (2.15):

Tr e
�tL � Tr e

�tL
= at

Z
d
2y
p
h
�
R� R̄

�2
+O(t2), (B.18)

where R and R̄ are the Ricci scalars of the deformed and round spheres, and a is a theory-
dependent (but geometry-independent) constant. We then evaluate (B.17) by introducing
a cutoff t⇤: for t > t⇤ we directly integrate the integrand of (B.17) using the (many)
numerically-calculated lowest-lying eigenvalues of L, but for t < t⇤ we instead integrate
the expected linear small-t behaviour (B.18):

Et⇤ ⌘
�p
4⇡

"
2a
p
t⇤

Z
d
2y
p
h
�
R� R̄

�2
+

Z
1

t⇤

dt

t3/2

⇣
TrN e

�tL � TrN e
�tL

⌘#
, (B.19)

where the subscripts on the traces indicate that they are approximated by using only
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Figure B.5: Example behaviour of �t1,t2
for the Dirac fermion (the behaviour for the

scalar is very similar). (a) shows the Type 1 deformation (6.5) with l = 6, while (b)
shows the Type 2 deformation (6.7) with n = 1. For both we use a grid size of N = 800

and t1 and t2 are adjacent elements from the set {0.000125, 0.00025, 0.0005, 0.001, 0.002}
with t2 < t1; from light grey to black the curves correspond to decreasing t1, t2.

the lowest eigenvalues of L, as described above. Note here that integral involving the
eigenvalues can be performed analytically, in contrast with the finite temperature case.
The above procedure was implemented using MATLAB.

For Et⇤ to be a good approximation to the actual value of the Casimir energy, we
must include sufficiently many eigenvalues in the traces in (B.19) that the integrand in
the second line recovers the linear behaviour (B.18) at t ⇠ t⇤; this is the reason we must
include hundreds of thousands of eigenvalues (and therefore use a large grid size of 800
points). For a given geometry, at a fixed and sufficient grid size N , decreasing t⇤ should
then show convergent behaviour before we eventually reach values of t⇤ smaller than those
accessible at the given resolution, and the convergence should cease. In this way we may
determine the optimal cutoff t⇤ for a given N . To quantify this behaviour, we define

�t1,t2
=

����1�
Et⇤=t1

Et⇤=t2

���� (B.20)

as the relative change between two choices of cutoff. In Figure B.5 we show examples of
how �t1,t2

varies as t1 and t2 are decreased for the Dirac fermion at our fiducial grid size
of N = 800; Figure B.5a shows the worst behaviour of any of our deformations, while
Figure B.5b shows the best. The scalar field exhibits analogous behaviour, so we do not
include additional plots showing it. It is worth noting that while the holographic gravity
solutions generally limit the range of geometries we can access for all the theories, even
in the free cases systematic error can become large for the more singular geometries as
illustrated in B.5a for x ⇠ �1.

As an additional check of the numerics, we also perform the same computation of
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(a) Type 1, l = 6
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(b) Type 2, n = 1

Figure B.6: The relative error �↵ of the fermion Casimir energy for ↵ = ±0.2 for two
representative deformations, computed with a resolution of N = 800. Figure (a) shows
the Type 1 deformation with l = 6, while Figure (b) shows the Type 2 deformation
with n = 1.

the energy under a change of coordinates

✓0 = ✓ + ↵ sin
3
(2✓), (B.21)

where ↵ is a parameter we are free to vary. Of course the energy should be independent of
any change of coordinates (and therefore independent of ↵); any variation with ↵ therefore
offers another estimate of numerical accuracy. We therefore introduce the relative error

�↵ ⌘
����1�

E↵

E↵=0

���� , (B.22)

where E↵ denotes the Casimir energy computed using the deformed coordinate ✓0 defined
by (B.21). In Figure B.6 we show this relative error for the fermion for two representative
deformations. While the values of ↵ = ±0.2 naïvely seem quite small, if one looks
explicitly at the transformed metric function b(✓0), s(✓0) in the new coordinate ✓0, they
are very substantially changed from those in the original ✓ coordinate. The good numerical
independence on ↵ is then excellent confirmation that the results are reliable and accurate.



Appendix C

The Lorentzian Yamabe Problem

Here, we present some minor modifications to the arguments presented in [126] in order
to show that (2+1)-dimensional ultrastatic geometries whose conformal Laplacians have
a negative eigenvalue are not Weyl equivalent to any static spacetimes with positive Ricci
scalar — this is relevant to the discussion in Section 6.3.

Consider Lorentzian manifolds R⇥⌃, where ⌃ = (S2, h), with ultrastatic geometry

g = �dt2 + hij(y)dy
i
dyj. (C.1)

Let r⌃ and R⌃ be the Levi-Civita connection on ⌃ and Ricci scalar, respectively. Under
a Weyl transformation g 7! ḡ = '4g where ' 2 C1

(⌃,R>0), the Ricci scalar transforms
as

1

8
R̄'s�1

= L⌃' (C.2)

with s = 6 where
L⌃' = �r2

⌃
'+

1

8
R⌃'. (C.3)

The task to determine for which geometries ⌃ there exist R̄ smooth and positive such
that (C.2) admits a smooth positive solution for '. An auxiliary problem (that turns out
to be equivalent) is to find which ⌃ admit positive smooth solutions for ' when R̄ is a
positive constant. This is closely related to the Yamabe problem [143] and can be proven
in an identical way using a small modification of a result in [144].

Theorem C.1. Let s 2 (2,1) and

Qs
: L2

1
(⌃) \ {0}! R

f 7! Qs
[f ] =

Z

⌃

hij@if@jf + a3R⌃f
2

kfk2
s

,

where k · ks is the Ls norm on ⌃ and a3 = 1/8. Then we have the following:

204
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(i) f is a critical point of Qs iff f is a weak solution to L⌃f =
Q

s
[f ]

kfk
s�2
s

f s�1

(ii) There exists a ' 2 C1
(⌃,R>0) with k'ks = 1 that minimises Qs, thus satisfies

L⌃' = �s(⌃)'s�1 where �s(⌃) = inff2L2

1
(⌃) Qs

[f ].

Proof. Note that Qs
[c'] = Qs

['] for any positive constant c. Hölder’s inequality implies
that ����

Z

⌃

R⌃'
2

���� > k'k2skR⌃k s
s�2

(C.4)

so Qs is bounded below by �a3kR⌃k s
s�2

and thus �s = inf'2L2

1
(⌃)\{0} Qs

['] is finite.
Let (ui)

1

i=1
be a sequence of L2

1
(⌃) \ {0} functions such that Qs

[ui] ! �s(⌃) mono-
tonically and kuiks = 1. Since ui 2 L2

1
(⌃) ) |ui| 2 L2

1
(⌃) and Qs

[|ui|] = Qs
[ui] means

that we can choose such a sequence with ui > 0 and since

kuik21,2 =
Z

⌃

@kui@`uih
k`
+ u2

i
(C.5)

= Qs
[ui] +

Z

⌃

(1� a3R⌃) u
2

i
(C.6)

6 sup
i>1

Qs
[ui] + k1� a3R⌃k s

s�2

(C.7)

(ui) is a bounded a sequence in L2

1
(⌃) (a Hilbert Space) so by the Banach-Alaoglu The-

orem, has a subsequence which converges weakly to some 's 2 L2

1
(⌃). L2

1
(⌃) is com-

pactly embedded in Ls (Kondrachov Embedding Theorem C.3), thus the subsequence
converges strongly to 's 2 Ls

(⌃) and k'sks = 1 (norms are continuous). By Hölder’s
inequality, k · k1 6 Ck · ks for some positive constant C, so

R
R⌃u2

i
!
R
R⌃'2

s
and weak

convergence in L2

1
(⌃) means that
Z

⌃

(r⌃'s)
2
= lim

i!1

Z

⌃

r⌃'s ·r⌃ui

6 lim
i!1

✓Z

⌃

(r⌃'s)
2

◆1/2✓Z

⌃

(r⌃ui)
2

◆1/2

and thus Z

⌃

(r⌃'s)
2 6 lim

i!1

Z

⌃

(r⌃ui)
2

and so the non-negative function |'| 2 L2

1
(⌃) ⇢ Ls

(⌃) satisfies Qs
[|'s|] = Qs

['s] 6
lim
i!1

Qs
[ui] = �s(⌃) so |'s| is extremal and thus is a weak solution of (C.2) with R̄ = �s(⌃).

By the Regularity Theorem C.6, |'s| is strictly positive and smooth.

A key consequence of this result is that we can always Weyl transform an ultra-
static metric to a static geometry with constant Ricci scalar. Moreover, any given static
geometry can only have either static geometries with positive Ricci scalar or static ge-
ometries with non-positive constant Ricci scalar within its conformal class. Indeed, the
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Ricci scalar, R̃, of a Weyl transformed static metric, g̃ 7! ⌦
4g with

g = �A2
dt2 + hk`(y)dy

k
dy`, (C.8)

A,⌦ 2 C1
(⌃,R>0) and Ricci scalar R > 0, satisfies

� 1

A
p
h
@k
⇣
Ahk`

p
h@`⌦

⌘
=

1

8
R̃⌦

5 � 1

8
R⌦ (C.9)

which after integrating over any constant t hypersurface gives
Z p

hAR̃⌦
5
=

Z p
hAR⌦ > 0. (C.10)

Thus R̃ must be positive somewhere. Therefore, our family of metrics partitions into
those which are Weyl equivalent to a static metric with positive Ricci scalar and those
which are Weyl equivalent to a static metric with non-positive constant Ricci scalar. To
deduce whether a metric is Weyl equivalent to a static metric with positive Ricci scalar,
we need only compute the lowest eigenvalue of L⌃. This is because of the following result
from [126]. Let µ(⌃) be the lowest eigenvalue of L⌃ and  2 C1

(⌃) its corresponding
eigenfunction. Using that µ(⌃) is a lower bound for the Rayleigh quotient of the oper-
ator L⌃ and �s(⌃) is a lower bound of Qs, evaluating Qs at its minimiser, ', and  ,
respectively, gives that

µ(⌃)
k'k2

s

k'k2
2

6 �s(⌃) 6 µ(⌃)
k k2

2

k k2
s

(C.11)

and thus the lowest of eigenvalue of L⌃ has the same sign as �s(⌃).
Thus, the Lorentzian manifold R ⇥ ⌃ is conformally equivalent to a static metric

with positive Ricci scalar if and only if the lowest eigenvalue of L⌃ = �r2

⌃
+ R⌃/8 is

positive. Interestingly, these are the precisely the geometries that support a conformal
scalar theory.
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C.1 Glossary

Lp
(M) ⌘

⇢
f : M ! R s.t.

Z

M

|f |p <1
�

Lp

k
(M) ⌘ Functions in Lp

(M) with k weak derivatives (Sobolev space)

Ck
(M) ⌘ Functions that are k times differentiable on M with continuous kth derivative

Ck,↵
(M) ⌘ Ck functions for which kfkk,↵ =

kX

i=0

sup
M

|ri

M
f |+ sup

x,y2M

|rk

M
f(x)�rk

M
f(y)|

|x� y|↵

is finite, where comparison is made between different points by parallel transport

along radial geodesics

C.2 Useful Theorems

We include here for reference some useful theorem for the proof of Theorem C.1 from [145].

Theorem C.2 (Sobolev Embedding Theorem). Suppose 0 < ↵ < 1, and

1

q
6 k � ↵

n
. (C.12)

Then Lq

k
(M) is continuously embedded in C0,↵

(M).

Theorem C.3 (Kondrachov Embedding Theorem). Let M be a compact manifold of
dimension n, k > ` and k�n/p > `�n/q. Then Lp

k
(M) is compactly embedded in Lq

`
(M).

Theorem C.4 (Global Elliptic Regularity). Let M be a compact Riemannian manifold
and suppose u 2 L1

loc
(M) is a weak solution to �u = f .

(i) If f 2 Lq

k
(M), then u 2 Lq

k+2
(M) and

kukq,k+2 6 C(kukq,k + kukq) (C.13)

(ii) If f 2 Ck,↵
(M), then u 2 Ck+2,↵

(M) and

kukCk+2,↵(M) 6 C(kukCk,↵(M) + kukC↵(M)) (C.14)

Theorem C.5 (Strong Maximum Principle). Suppose h is non-negative, smooth function
on a connected manifold M , and u 2 C2

(M) satisfies (� + h)u > 0. If u attains its
minimum m 6 0, then u is constant on M .

Theorem C.6 (Regularity Theorem). Let ' 2 L2

1
(M) be a non-negative weak solution

of (C.2) with 2 > s. If ' 2 Ls
(M) then ' is either identically zero or strictly positive

and C1.
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Proof. 's�1 2 L
s

s�1 (⌃) so by the Elliptic Regularity Theorem ' 2 L
s

s�1

2
(⌃) ⇢ C0,2/s

(⌃).
Thus 's�1 2 C0,2/s

(⌃) and so elliptic regularity gives that ' 2 C2,2/s.
Taking m0 = max{0, sup

⌃

�
a3R⌃ � �s's�2

�
}, (�+m0)' > 0 then by the strong

maximum principle ' must either be zero everywhere (therefore smooth) or positive ev-
erywhere. In the latter case we also get that 's�1 2 C2,2/s

(⌃) and repeated application of
elliptic regularity gives that ' is smooth.


	List of Tables
	List of Figures
	Conventions
	Introduction
	A Physical Realisation: Graphene
	Plan for the Thesis

	Calculating The Vacuum Energy
	The Casimir Effect
	The AdS/CFT Correspondence
	Vacuum Energy Non-positivity: Holographic CFTs
	Bulk Spacetime Structure
	Optical Geometry

	Vacuum Energy Non-positivity: General CFTs
	Flat Space
	S2

	Summary and Discussion

	Heat Kernel Methods
	The Heat Equation
	The Heat Kernel Expansion
	Regularisation
	An Application: Quantum Anomalies
	Summary and Discussion

	Free Theories on Flat Space
	Free Energy Difference: Free Fields
	Perturbation Theory
	Results
	Membrane Crumpling

	Free Energy Difference: A UV-Finite Measure of Free Energy
	Free Energy Variation
	Review: Finite Temperature Holographic CFTs and Hydrostatics
	Long-Wavelength Limit: Free Scalar and Fermion
	Summary and Discussion

	Free Theories on S2
	A Perturbative Example: Graphene
	Setup
	Free Energy
	Heat Kernels

	Perturbative Results
	Scalar
	Dirac Fermion
	Check: Conformal Field Theories
	Check: The Flat Space Limit
	Negativity of K

	Review: Pseudo-Spectral Methods
	Interpolation
	Spectral Accuracy
	Differentiation Matrices

	Non-perturbative Results
	Heat Kernel Asymptotics
	Numerical Results
	Behaviour of the Free Energy

	Towards Singular Geometries
	Conical Defects
	Even , > 0
	Odd  and Even , < 0
	Implications for Graphene-Like Materials

	Summary and Discussion

	A Surprising Similarity Between Holographic CFTs and a Free Fermion
	Physical Setting
	Holographic Gravity Solutions
	The Einstein DeTurck Equation

	Results
	Discussion

	Power-Counting-Renormalisable Theories on Flat Space
	Setup
	Perturbation Theory
	Spectral Decomposition
	Example: Scalar Field
	Example: Dirac Fermion

	Non-positivity of Vacuum Energy
	Summary and Discussion

	Closing Remarks
	Bibliography
	Analytic Work
	Thermal Field Theory in Curved Spacetime
	One-Loop Effective Action
	Fermion Partition Function
	Finite-d Heat Kernels on the Torus
	Details on the Perturbative Results for the Sphere
	Spin-Weighted Spherical Harmonics
	Scalar
	Dirac Fermion

	Flat-Space Scaling Limit
	Stress Tensor Two-Point Function Renormalisation on Flat Space
	The Fermion
	Matrix elements


	Numerical Methods
	Setup
	Convergence
	Comparison to Heat Kernel Expansion and to Perturbative Results
	Details on Calculating the Vacuum Energy

	The Lorentzian Yamabe Problem
	Glossary
	Useful Theorems


