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Abstract

This thesis consists of two parts concerning delocalization of eigenvectors: the behavior

of eigenvectors associated with quantum graphs from classically ergodic interval maps, and

a delocalization-localization transition in structured random matrices.

In the first part, we prove an analogue of the pointwise Weyl law for eigenvectors of

famillies of unitary matrices obtained from quantization of one-dimensional interval maps.

This quantization for interval maps was introduced by Pakoński et al. [J. Phys. A 34 9303

(2001)] as a model for quantum chaos on graphs. We allow shrinking spectral windows in the

pointwise Weyl law analogue, which allows for a strengthening of the quantum ergodic theo-

rem for these models, and also allows for construction of randomly perturbed quantizations

that have approximately Gaussian eigenvectors in the semiclassical limit.

The second part is concerned with a localization-delocalization transition for structured

random matrices associated with d-regular graphs. This model includes both sparse and

non-sparse Gaussian matrices with 1 ≪ d ≤ N nonzero entries in each row or column,

such as random band matrices, as well as various models of interest in computer science

and combinatorics. For such matrices, Bandeira and van Handel [Ann. Probab. 44 2479

(2016)] showed that the norm undergoes a phase transition at d ∼ logN . This transition

cannot in general be captured by localization or delocalization of the top eigenvectors, but

we show that the transition is captured instead by a localization-delocalization transition of

approximate top eigenvectors.
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CHAPTER 1

Overview

This thesis is concerned with eigenvector properties in two different models, and in par-

ticular with whether eigenvectors are delocalized or localized. Heuristically, a delocalized

eigenvector is one whose mass is spread roughly evenly throughout its coordinates, while

a localized vector is one which has much of its mass concentrated on relatively few coordi-

nates. As will be discussed further in this thesis, localization or delocalization of eigenvectors

has important implications in quantum systems and condensed matter physics, as well as

applications in combinatorics and computer science.

This thesis is comprised of two parts. Part 1 is adapted from [S21] arxiv.org/abs/

2110.15301. It is concerned with quantum chaos and the eigenvectors of unitary matrices

that are obtained by quantizing classically ergodic 1D interval maps. These matrices nu-

merically display quantum chaotic behavior, in particular appearing to have eigenvalues and

eigenvectors like those of circular unitary ensemble (CUE) matrices, despite that they can be

non-random and have a very simple and sparse structure. Motivated by these observations,

we will study the eigenvectors by proving a pointwise Weyl law, which has implications for

quantum ergodicity as well as for constructing random quantizations with approximately

Gaussian eigenvectors.

Part 2 of this thesis is joint work with Ramon van Handel, and involves a localization-

delocalization transition for structured random matrices. These are N ×N symmetric ma-

trices XN with d iid (modulo symmetry) Gaussian entries in each row and column, and zeros

everywhere else. Equivalently, one starts with a non-random d-regular graph on N vertices,

and constructs the matrix XN by placing iid standard Gaussian variables on the nonzero

entries in the adjacency matrix of the graph, modulo symmetry. For such matrices, Bandeira

and van Handel showed in [BvH16] that the norm undergoes a phase transition at d ∼ logN .
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We will show that while this transition is in general not captured by the localization or de-

localization of the top eigenvectors, it is instead captured by a localization-delocalization

transition of approximate top eigenvectors, where by approximate top eigenvector we will

mean a unit vector v with ‖XNv‖2 close to the maximum possible value ‖XN‖.
Both parts of this thesis utilize projection matrix estimates to obtain eigenvector proper-

ties. In Part 1, we approximate the projection matrix of a unitary matrix Un using a Fourier

series, which allows us to relate properties of powers of Un to properties of the projection

matrix. In Part 2, we approximate the projection matrix of a real symmetric matrix using

the Poisson kernel and resolvents, which allows us to use a local semicircle law to prove the

projection matrix estimates.

The estimates on the projection matrix entries provide information about the structure

of the subspace spanned by the corresponding eigenvectors. If one takes a unit vector cho-

sen uniformly at random (according to Haar measure) from this subspace, then for large

dimensions, Gaussian concentration ensures that it looks like a multivariate Gaussian whose

covariance matrix is just the orthogonal projection matrix times 1/n. We will use this in

Part 1 to construct random quantizations with approximately Gaussian eigenvectors, and in

Part 2 to show the existence of a delocalized approximate top eigenvector.

1.1. Quantum chaos on graphs

In Part 1 of this thesis, we will consider a quantization method for certain ergodic

piecewise-linear 1D interval maps S : [0, 1] → [0, 1], introduced by Pakoński, Życzkowski,

and Kuś in [PZK01] as a model for quantum chaos on graphs. Precise conditions for these

interval maps will be described in Section 2.2, but for simplicity, one can consider just the

doubling map, S(x) = 2x (mod 1). The quantization method associates to S a family of uni-

tary matrices Un, where Un is a size n×n matrix, and n ∈ N is taken in a subset of allowable

dimensions. These unitary matrices describe quantum dynamics on a directed graph, and

are considered “quantizations” in the sense they satisfy a classical-quantum correspondence

principle (Egorov theorem) as the dimension n → ∞. For the doubling map, for n ∈ 2Z,

9



one can take the quantizations to be the n× n matrices

Un =
1√
2




1 −1
1 −1

. . .
1 −1

1 1
1 1

. . .
1 1



.

For large n, surprisingly this non-random unitary matrix Un tends to have level spacings

that numerically look Wigner–Dyson, as well as eigenvector coordinates that numerically

look Gaussian (Figures 2.1 and 2.2), despite its simple, sparse structure uncharacteristic of

a typical CUE Haar unitary matrix. This behavior is however consistent with major open

conjectures in quantum chaos, that quantum systems corresponding to classically chaotic

ones should exhibit random matrix ensemble spectral statistics (BGS conjecture [BGS84])

and have eigenvectors that behave like Gaussian random waves [Ber77] in the semiclassical

limit.

Motivated by the above, we will study the eigenvectors of such unitary quantizations Un

constructed from allowable interval maps by proving a pointwise Weyl law, which consists

of estimates on the diagonal elements of spectral projection matrices. Because we allow

shrinking spectral windows, this will let us construct randomly perturbed quantizations with

eigenvectors that look Gaussian, and also obtain a strengthening of the quantum ergodic

theorem for these models.

For n in a set of allowable dimensions, and given the n×n unitary matrices Un obtained as

a quantization of an appropriate interval map, denote the eigenvalues and eigenvectors of Un

by (eiθ
(n,j)

)j and (ψ(n,j))j respectively. We will prove the following for spectral projections

onto shrinking arcs on the unit circle, which will be stated more precisely in Part 1 as

Theorem 2.1. Note although the spectral windows I(n) may shrink, they are not allowed

to shrink too fast, and in particular they will generally need to satisfy a condition like

|I(n)| log n→ ∞, related to an Ehrenfest time.

Theorem 1.1 (projection matrix estimates/pointwise Weyl law for Un). Let (I(n)) be a

sequence of intervals in R/(2πZ) that is allowed to shrink at a specific rate, and let P I(n)
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be the orthogonal projection onto span{ψ(n,j) : θ(n,j) ∈ I(n)}. Then for at least n(1 − o(1))

coordinates x ∈ [n],

(1.1.1) (P I(n))xx ≡
∑

j:θ(n,j)∈I(n)

|ψ(n,j)
x |2 = |I(n)|

2π
(1 + o(1)),

as n→ ∞, for allowable dimensions n ∈ N.

This also implies a Weyl law analogue, which counts the number of eigenvalues in a bin

I(n),

#{j : θ(n,j) ∈ I(n)} = n
|I(n)|
2π

(1 + o(1)).

We will use the projection matrix estimates (1.1.1) to construct small random perturba-

tions of the original matrices Un by randomly rotating eigenvectors within each shrinking bin

I(n). This produces a family of matrices Vn(β) with approximately Gaussian coordinates

in the semiclassical limit n → ∞. These matrices Vn(β) still satisfy a classical-quantum

correspondence principle, and so in this sense can still be considered a quantization for the

classical ergodic dynamics. This provides an example of a quantization, in this sense, of

a classically ergodic system, whose eigenvectors have approximately Gaussian coordinate

statistics.

Theorem 1.2. The random matrices Vn(β) satisfy a classical-quantum correspondence prop-

erty, and with high probability, have empirical coordinate distributions that look Gaussian as

n→ ∞.

We also use the projection matrix estimates directly to prove a stronger version of the

quantum ergodic theorem in this model. As will be explained more precisely in Part 1, a

quantum ergodic theorem ensures equidistribution of eigenvector coordinates for a limiting

density one set of eigenvectors. It however allows for an exceptional limiting density zero

set of eigenvectors that may not equidistribute over their coordinates. Using (1.1.1), we will

strengthen the quantum ergodic theorem proved for this model in [BKS07], to hold over a

limiting density one set within the shrinking sets I(n), which by the Weyl law contain only
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a limiting density zero set of eigenvectors. This ensures that the original set of exceptional

eigenvectors that may not equidistribute cannot accumulate too strongly in one region I(n)

of the unit circle.

Theorem 1.3. Quantum ergodicity holds in a limiting density 1 set within shrinking bins.

1.2. Structured random matrices

In Part 2 of this thesis, we consider symmetric random matrices XN obtained from (non-

random) d-regular graphs. These matrices can be defined via (XN)ij = δi∼jgij, where gij are

iid standard Gaussian variables modulo symmetry, and i ∼ j indicates that nodes i and j are

connected by an edge in the graph. Since the Gaussian entries are allowed to be arranged

in any such fixed (non-random) structure, these matrices are nonhomogeneous random ma-

trices. One notable example included in this model is 1D random band matrices, which

are of particular interest in mathematical physics in connection with random Schrödinger

operators.

We are interested in identifying the phase transition at d ∼ logN using delocalization

properties of approximate top eigenvectors. Intuitively, for small enough d, one expects the

top eigenvectors to localize on large outliers, while for very large d, one expects them to

delocalize across many coordinates like the eigenvectors of Gaussian orthogonal ensemble

(GOE) matrices. However, as we will see, this transition is in general not captured by the

localization or delocalization of the top eigenvectors, but rather by that of approximate top

eigenvectors.

As there are many different notions and properties of delocalization, we will define pre-

cisely the notion we use in Section 6.1. Roughly speaking, a delocalized vector will be one

that does not have a constant fraction of the mass accumulate on just o(N) coordinates,

and otherwise the vector will be called localized. For d ≪ logN , we will prove localization

in this sense using Gaussian concentration and suprema bounds. For d ≫ logN , we will

use projection matrix estimates to guarantee that we can find a delocalized approximate top

eigenvector. Specifically, for a sequence εN → 0, we will look at the orthogonal projection
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of the N ×N matrix XN/
√
d onto the interval [2− εN , b] for a fixed b > 2, which will be the

projection onto the top roughly O(Nε
3/2
N ) = o(N) eigenvectors. The following theorem will

appear in Part 2 as Theorem 9.8.

Theorem 1.4 (projection matrix estimates). Let d≫ logN and let P[a,b] denote the projec-

tion matrix of XN/
√
d onto the interval [a, b]. Fix b > 2. Then there is a sequence εN → 0

so that with probability at least 1− o(1), the matrix P[2−εN ,b] has diagonal elements

(P[2−εN ,b])xx =
2

3π
ε
3/2
N (1 + o(1)).

Considering random rotations within the subspace, the estimates on (P[2−εN ,b])xx can

be used to describe the expected ℓq norms of a randomly chosen vector for large N . In

particular, by considering large q, we can infer the existence of a vector in the subspace with

good delocalization properties. Combining with the localization statement, this results in

the following theorem, which is the main result of Part 2, and will be stated precisely as

Theorem 6.2.

Theorem 1.5. There is a localization-delocalization transition of approximate top eigenvec-

tors at d ∼ logN . Informally, with high probability, for d ≪ logN , all top eigenvectors

and (1 − ε)-approximate top eigenvectors are localized, while for d ≫ logN , there exists a

delocalized (1− o(1))-approximate top eigenvector.
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Part 1

Pointwise Weyl law for graphs from quantized

interval maps



CHAPTER 2

Introduction, set-up, and main results

2.1. Introduction

In quantum systems, the eigenvectors and spectrum of the Hamiltonian capture the phys-

ical behavior of quantum particles in the system. The eigenfunction ψ defines a probability

density |ψ|2, which describes how likely the particle is to be found in a certain region. Of

particular interest is determining whether eigenfunctions are localized in one area of space,

or delocalized and spread throughout the system. The former is associated with insulating

behavior, while the latter is associated with transport and metal-like behavior.

One specific example of generally delocalized eigenfunctions comes from systems that are

classically ergodic, such as ergodic billiards or geodesic flow on negatively curved compact

Riemannian manifolds. The correspondence principle from quantum mechanics suggests

this classical ergodic behavior should manifest itself in the associated quantum system in

the high-energy, semiclassical limit. For geodesic flow ϕt on manifolds, the associated quan-

tum Hamiltonian is the Laplacian, and the correspondence is given by the quantum ergodic

theorem of Shnirelman–Zelditch–de-Verdière [Shn74, Zel87, dV85]. For ϕt ergodic, this guar-

antees, in the large eigenvalue limit, a density 1 subsequence of Laplace eigenfunctions that

equidistribute in all of phase space.

One also expects the spectrum of quantum Hamiltonians associated with classically

chaotic systems to look like that of a random matrix ensemble, a relationship first uti-

lized for heavy nuclei by Wigner in the 1950s, and conjectured to hold for any sufficiently

chaotic1 system by Bohigas, Giannoni, and Schmit [BGS84]. In view of this BGS conjecture,

simpler systems such as quantum graphs have been used to investigate quantum chaotic

1 We will not address the ergodic hierarchy or definition of chaotic systems here, but refer the reader
to the textbook [CM06], e.g. Appendix C. We also note that in the special case of arithmetic hyperbolic
surfaces there are exceptions (counterexamples) to the BGS conjecture, see [LS94, BGGS97].
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behavior of both spectral and eigenvector statistics. While quantum graphs have long been

used as models of idealized one-dimensional structures in physics, their use as simplified

models for studying complex phenomena such as Anderson localization and quantum chaos

is more recent to the last several decades [BK10].

The first evidence for quantum chaotic behavior in quantum graphs was given by Kottos

and Smilansky [KS97, KS99], who showed numerically that the spectral statistics of certain

families of quantum graphs behave like those of a random matrix ensemble. Further results

regarding convergence of spectral statistics to those of random matrix theory include [Tan01,

BSW02, BSW03, GA04, GA05], among others.

In this part, we look at unitary operators on sequences of graphs obtained from piecewise

linear interval maps as constructed in [PZK01]. Given a (Lebesgue) measure-preserving map

S : [0, 1] → [0, 1] satisfying a number of conditions described in Section 2.2, one obtains a

sequence of graphs by partitioning [0, 1] into n equal atoms, and defining a Markov transition

matrix Pn based on where S sends each atom. A quantization of the classical map S will

be a family of n × n unitary matrices that recover the classical dynamics in the limit as

an effective semiclassical parameter, in this case the reciprocal of the dimension, 1/n, tends

to zero. The quantization method used in [PZK01, BKS07] applies to unistochastic Markov

matrices Pn, which are matrices Pn for which there is a unitary matrix Un with the entrywise

relation2 |(Un)xy|2 = (Pn)xy. The matrices Un are a quantization of the classical dynamics

described by Pn, in the sense that they satisfy a correspondence principle (Egorov theorem,

[BKS07]) that relates unitary evolution under Un to the map S as n→ ∞. Physically, these

unitary matrices are related to wave propagation and scattering in the graphs.

As investigated in [PZK01, Tan00, Tan01], if the graphs correspond to classically chaotic

systems, then the spectral properties of these matrices Un appear to behave like those of

CUE random matrices as n → ∞. As for eigenvector statistics, quantum ergodicity for

these graphs with classically ergodic S was proved by Berkolaiko, Keating, and Smilansky

2 Note such a relation does not uniquely define Un if it exists, as one can always add additional phases
without changing unitarity or the entrywise relation |(Un)xy|2 = (Pn)xy. For example, given any Φ ∈ [0, 2π)n

and defining the diagonal matrix eiΦ := diag(eiΦ1 , . . . , eiΦn), then eiΦUn is also unitary and satisfies the same
entrywise norm-squared relation.
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in [BKS07]. They showed that in the large dimension limit, nearly all eigenvectors of Un

equidistribute over their coordinates: for sequences of allowable dimensions n, there is a

sequence of sets Λn ⊆ [n] := {1, . . . , n} with limn→∞
#Λn

n
= 1 so that for all sequences (jn)n

with jn ∈ Λn, and appropriate quantum observables On(φ),

(2.1.1) lim
n→∞

〈ψ(n,jn), On(φ)ψ
(n,jn)〉 =

∫ 1

0

φ(x) dx,

where ψ(n,j) is the jth eigenvector of Un. This is the analogue for these graphs of the

Shnirelman–Zelditch–de-Verdière quantum ergodic theorem, which was originally stated for

ergodic flows on compact Riemannian manifolds. Quantum ergodicity has also been extended

to other settings such as torus maps [BD96, KR00, KR01, MO05, Zel97] and other graphs

[AS19, AL15, Ana17]; see also [Ana18] for an overview and additional references.

In addition to the equidistribution from the quantum ergodic theorem, eigenfunctions

from a classically ergodic system are expected to follow Berry’s random wave conjecture

[Ber77], which asserts that the eigenfunctions should behave like Gaussian random waves in

the large eigenvalue limit. For graphs, instead of the large eigenvalue limit, one considers

as usual the large dimension limit. In this limit, [GKP08, GKP10] used supersymmetry

methods to study the eigenfunction statistics for quantum graphs in view of the random

wave conjecture.

In the specific discrete models from interval maps that we consider, one expects that the

empirical distribution of the coordinates {ψ(n,j)
x }nx=1 of an eigenvector of Un should behave

like a random complex Gaussian NC(0,
1
n
) for most eigenvectors. This is consistent with both

the random matrix ensemble behavior and the random wave conjecture. As an example, take

the simplest allowable interval map, the doubling map (drawn in Figure 2.3),

T (x) =





2x, 0 ≤ x < 1
2

2x− 1, 1
2
≤ x ≤ 1

,

18



which is ergodic. For n ∈ 2N, the Markov matrices Pn along with a particularly simple

unitary quantization Un, are

Pn =
1

2




1 1
1 1

. . .
1 1

1 1
1 1

. . .
1 1


 , Un =

1√
2




1 −1
1 −1

. . .
1 −1

1 1
1 1

. . .
1 1



.(2.1.2)

Numerically, for large n not a power of 2, the eigenvalues of the Un above appear to have

CUE-like level statistics (Figure 2.1), despite the Un being non-random and having a simple,

sparse structure. We note that we must exclude the special case n = 2K , as for these

dimensions, the spectrum of this particular Un is degenerate, cf. Section 4.2. However, with

a different choice of quantization, the level spacings still appear to look CUE as in Figure 2.1.

See also [PZK01, Tan00, Tan01] for additional spectral statistics.

Figure 2.1. Left: Level spacings for the eigenvalues of Un in (2.1.2), for
n = 25 000. Right: Level spacings for the eigenvalues of the matrix eiΦUn,
for n = 214 = 16 384 and eiΦ = diag(eiΦ1 , . . . , eiΦn), for a randomly chosen
Φ ∈ [0, 2π)n. For both plots, the histogram is of the angle differences of the
eigenvalues scaled by n

2π
, and the solid curve is the Wigner GUE surmise3

p(s) = 32
π2 s

2e−4s2/π.

Additionally, numerically the vast majority of eigenvectors of these Un have coordinates

that look like a complex Gaussian NC(0,
1
n
). Typical histograms for the coordinates of an

eigenvector of Un from (2.1.2) are shown in Figure 2.2.

While we do not prove Gaussian behavior for the eigenvectors of these Un (except in a

very special case where the eigenspaces end up highly degenerate, see Section 4.2), as an

3While the Wigner surmise is not the exact level spacing for GUE or CUE matrices, it is generally a quite
adequate approximation for this type of purpose. For the actual level spacing distributions and comparison
with Wigner’s surmise, see [Meh04, HGK18].
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Figure 2.2. Plots for a randomly chosen eigenvector ψ (this one with eigen-
value −0.3061126 + 0.9519953i) for n = 10 000 and Un in (2.1.2). Left: His-
togram of the values (Reψx)

10 000
x=1 plotted against the pdf of the real Gaussian

N(0, 1
20 000

). Center: Histogram of the values (Imψx)
10 000
x=1 plotted against the

pdf of N(0, 1
20 000

). Right: 2D histogram in C of the coordinates (ψx)
10 000
x=1 .

Since this is fairly spherically symmetric, the overall choice of phase for the
eigenvector does not significantly impact the shape of the other plots.

application of our main result we will prove that for allowable S, there are many random

quantizations Vn with approximately Gaussian eigenvector coordinates. These quantizations

are not quantizations in the strict sense of |(Vn)xy|2 = (Pn)xy from [PZK01, BKS07], but

they will satisfy |(Vn)xy|2 = (Pn)xy + o(1) as well as an Egorov theorem, so they are still

quantizations of S in the sense that they recover the classical dynamics in the semiclassical

limit n→ ∞.

Our main result in this part of the thesis is Theorem 2.1, an analogue of the pointwise

Weyl law for the eigenvectors of the matrices Un under shrinking spectral windows, which

will have implications for quantum ergodicity and for constructing random perturbations

of Un with the desired Gaussian eigenvector behavior. Traditionally, a pointwise Weyl law

gives the leading order asymptotics of the spectral projection kernel ✶(−∞,t](−∆+ V )(x, x),

for x in M a compact Riemannian manifold. For the unitary matrices Un, we look at

the spectral projection onto arcs on the unit circle, PI =
∑

j:θ(n,j)∈I |ψ(n,j)〉〈ψ(n,j)| where
I ⊆ R/(2πZ). Then a pointwise Weyl law analogue would be a statement of the form
∑

j:θ(n,j)∈I(n) |ψ
(n,j)
x |2 = |I(n)|

2π
(1 + o(1)) for n → ∞ and appropriate intervals I(n). We will

show this holds for sequences of intervals I(n) shrinking at certain rates, and for at least

n(1 − o(|I(n)|)) coordinates x. The coordinates for which this statement may not hold

correspond to short periodic orbits in the graphs corresponding to S.
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We then present two applications of this pointwise Weyl law. The first is a strengthening

of the quantum ergodic theorem to apply to sets of eigenvectors in bins {ψ(n,j) : θ(n,j) ∈ I(n)}
with shrinking I(n). The second concerns random perturbations of the matrix Un to produce

a family of random matrices Vn(β
[n]) whose eigenvectors have the approximately Gaussian

NC(0,
1
n
) eigenvector statistics. These eigenvectors will also tend to satisfy a version of

quantum unique ergodicity (QUE), a notion introduced by Rudnick and Sarnak in [RS94],

and where all eigenvectors are considered in the limit (2.1.1), rather than just those in a

sequence of limiting density one sets.

2.2. Set-up

Here we state the assumptions on the map S and matrices Pn. Let S : [0, 1] → [0, 1] be

a piecewise-linear map that satisfies the following conditions:

(i) S is (Lebesgue) measure-preserving, µ(A) = µ(S−1(A)) for any measurable set A.

(ii) There exists a partitionM0 of [0, 1] intoM0 equal intervals (called atoms)A1, . . . , AM0 ,

with S linear on each atom Aj.

(iii) The endpoints E0 = E(M0) of the atoms have left and right limits satisfying

limx→e±0
S(x) ∈ E0 for e0 ∈ E0. This means the linear segments in S begin and

end in the grid E0 × E0. With (i) and (ii), this ensures the slope of S on each atom

must be an integer. For convenience, also assume S(e0) takes one of the values of

these one-sided limits.

(iv) The absolute value of the slope of S on each atom is at least two, i.e. the slope is

never ±1.

Conditions (i), (ii), and (iii) are essentially the same as in [PZK01, BKS07]. Condition (iv)

is there instead of the ergodicity assumption. It allows for some non-ergodic S such as those

corresponding to block matrices of various ergodic maps. Two examples of allowable ergodic

S are the doubling map and the “four legs map” shown in Figure 2.3. In general, conditions

for ergodicity of S would follow from results on piecewise expanding Markov maps, see for

example Chapter III in the textbook [Mañ87].
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0 1

1

0 1

1

Figure 2.3. The doubling map (left) and “four legs map” (right). For the
doubling map M0 = L0 = 2, while for the four legs map M0 = L0 = 4.

For n ∈ M0Z, partition [0, 1] into n equal atoms, Ex = (x−1
n
, x
n
) for x = 1, . . . , n, and

define the corresponding n× n Markov transition matrix Pn by

(2.2.1) (Pn)xy =





0, S(Ex) ∩ Ey = ∅
1

|S′(z)| , S(Ex) ∩ Ey 6= ∅, any z ∈ Ex

.

The matrix Pn looks at where S sends an atom Ex, and assigns a uniform probability

1
|S′(z)| to each atom Ey that S can reach from Ex. To generate the family of corresponding

unitary matrices Un as done in [PZK01, BKS07], it is required that Pn be unistochastic,

so that there are unitary matrices Un with the entrywise relation |(Un)xy|2 = (Pn)xy. In

general, characterizing which bistochastic matrices are unistochastic is difficult; however see

[PZK01, ZSKS03, BKS07] for some conditions and examples.

Let L0 be the least common multiple of the slopes in S, and let K̃(n) be the largest

power of L0 that divides n/M0, so n = M0L
K̃(n)
0 r and r does not contain any factors of L0.

The purpose of K̃(n) will be to keep track of how many powers of S we can take, while still

ensuring Sℓ behaves nicely with the partition into n atoms.

2.3. Main result and applications

With the above definitions, we state the main result:

Theorem 2.1 (pointwise Weyl law analogue). Let S : [0, 1] → [0, 1] satisfy assumptions

(i)–(iv). Consider a sequence (nk)k so that K̃(nk) → ∞, and suppose each nk × nk Markov

matrix Pnk
is unistochastic with corresponding unitary matrix Unk

. Let (I(nk)) be a sequence
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of intervals in R/(2πZ) satisfying

(2.3.1) |I(nk)|K̃(nk) → ∞, as k → ∞.

Then denoting the eigenvalues and eigenvectors of Unk
by (eiθ

(nk,j)
)j and (ψ(nk,j))j respectively,

there is a sequence of subsets Gnk
⊆ [1 : nk] with sizes #Gnk

= nk(1− o(|I(nk)|)) so that for

all x ∈ Gnk
,

(2.3.2)
∑

j:θ(nk,j)∈I(nk)

|ψ(nk,j)
x |2 = |I(nk)|

2π
(1 + o(1)), as k → ∞,

where the error term o(1) depends only on nk, |I(nk)|, and #Gnk
, and is independent of

x ∈ Gnk
. Additionally, Gnk

can be chosen independent of I(nk) or |I(nk)|.

Remark 2.3.1. (i) The coordinates x that we exclude from Gnk
correspond to those

with short periodic orbits in the graphs associated to Pnk
and Unk

. This is rem-

iniscent of the relationship between geodesic loops and the size of the remainder

in the Weyl law [DG75, Ivr80] or pointwise Weyl law [Saf88, SZ02, CG20], in the

usual setting on manifolds. For the sequences of coordinates that we exclude, we do

not expect the leading order approximation to necessarily be |I(nk)|
2π

in general, see

Section 5.1.

(ii) The condition (2.3.1) that |I(nk)| does not shrink too fast appears from error terms

from only considering powers of Unk
up to an Ehrenfest time K̃(nk) ∼ log nk. This

time is a common obstruction in semiclassical problems, and even in these discrete

models, our analysis does not go beyond this time. If the lengths |I(nk)| are larger

than required to satisfy (2.3.1), then more precise remainder terms than just o(1)

are obtained from the proof.

The proof details of Theorem 2.1 will be specific to our discrete case, where we have

sparse matrices Unk
and can analyze matrix powers and paths in finite graphs. We will start

by just taking a smooth approximation of the indicator function of the interval I(nk), and

estimating the left side of (2.3.2) by a Fourier series in terms of powers of Unk
. However,
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the properties of S ensure that we understand powers of Unk
well up to time K̃(nk). This

allows us to identify and exclude the few coordinates x that have short loops before a set

cut-off time. Using properties of the powers of Unk
again, the remaining coordinates will

then produce small enough Fourier coefficients that (2.3.2) holds.

Summing (2.3.2) over all x (separating x ∈ Gnk
from x 6∈ Gnk

) produces a Weyl law

analogue that counts the number of eigenvalues in a bin.

Corollary 2.2 (Weyl law analogue). Let S, (nk)k, Unk
, and I(nk) be as in Theorem 2.1,

including (2.3.1). Then as k → ∞,

(2.3.3) #{j : θ(nk,j) ∈ I(nk)} = nk
|I(nk)|
2π

(1 + o(1)),

where the remainder term depends on |I(nk)| but is independent of the particular location of

I(nk).

In the following subsections, we discuss implications of Theorem 2.1 on eigenvectors

of Un. We present the two applications, the first a strengthening of the quantum ergodic

theorem for this model, and the second a construction of random perturbations of Un with

approximately Gaussian eigenvectors. For the first application, using Theorem 2.1 with

shrinking intervals |I(nk)|, rather than the usual local Weyl law, in the standard proof

of quantum ergodicity naturally produces a stronger quantum ergodicity statement. For

the second, we take random unitary rotations of bins of eigenvectors, and apply results on

the distribution of random projections from [DF84, CM08, Mec09] to show the resulting

eigenvectors have approximately Gaussian value statistics.

2.3.1. Application to quantum ergodicity in bins. To state a quantum ergodic theo-

rem, we first define quantum observables as in [BKS07], as discretized versions of a classical

observable h ∈ L2([0, 1]). Given n ∈ N and h ∈ L2([0, 1]), define its quantization On(h) to

be the n× n diagonal matrix with entries

(2.3.4) On(h)xx =
1

|Ex|

∫

Ex

h(z) dz = n

∫

Ex

h(z) dz.
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Note that 1
n
trOn(h) =

∫ 1

0
h, the analogue of the local Weyl law. Quantum ergodicity for

this model, as proved in [BKS07], states there is a sequence of sets Λnk
⊆ [1 : nk] with

limnk→∞
#Λnk

nk
= 1 such that for all sequences (jnk

)k, jnk
∈ Λnk

and h ∈ C([0, 1]),

(2.3.5) lim
k→∞

〈ψ(nk,jnk
), Onk

(h)ψ(nk,jnk
)〉 =

∫ 1

0

h(x) dx.

This is equivalent to the decay of the quantum variance,

Vnk
:=

1

nk

nk∑

j=1

∣∣∣∣〈ψ(nk,j), Onk
(h)ψ(nk,j)〉 −

∫ 1

0

h(x) dx

∣∣∣∣
2

→ 0,

as k → ∞. Using Theorem 2.1 and an Egorov property from [BKS07], we will prove the

following concerning quantum ergodicity in bins.

Theorem 2.3 (Quantum ergodicity in bins). Let S satisfy (i)–(iv) and also be ergodic.

Let (nk)k, Unk
, and I(nk) be as in Theorem 2.1, including (2.3.1). Then for any Lipschitz

h : [0, 1] → C,

(2.3.6)
1

#{j : θ(nk,j) ∈ I(nk)}
∑

j:θ(nk,j)∈I(nk)

∣∣∣∣〈ψ(nk,j), Onk
(h)ψ(nk,j)〉 −

∫ 1

0

h(x) dx

∣∣∣∣
2

→ 0,

as k → ∞.

This decay of the quantum variance in a bin implies there is a sequence of sets Λnk
⊆

{j : θ(nk,j) ∈ I(nk)} with
#Λnk

#{j:θ(nk,j)∈I(nk)}
→ 1 such that (2.3.5) holds for all sequences (jnk

)k,

jnk
∈ Λnk

and continuous h : [0, 1] → C. Since we allow |I(n)| → 0, the bin sizes are o(n)

by the Weyl law analogue, and so Theorem 2.3 guarantees that the density 0 subsequence

excluded from the original quantum ergodic theorem cannot accumulate too strongly in one

region I(n) of the unit circle.

2.3.2. Application to random quantizations with Gaussian eigenvectors. The sec-

ond application of Theorem 2.1 will be to construct random perturbations of Un with eigen-

vectors that look approximately Gaussian. To construct the random perturbations, we first
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use results on low-dimensional projections from [DF84, Mec09, CM08] combined with esti-

mates on the matrix entries of the spectral projection matrix to prove:

Theorem 2.4 (Gaussian approximate eigenvectors). Let S, (nk)k, Unk
, and I(nk) be as in

Theorem 2.1, in particular assume (2.3.1) holds. Denote the eigenvalues and eigenvectors

of Unk
by (eiθ

(nk,j)
)j and (ψ(nk,j))j respectively. Then letting φ(nk) be a unit vector chosen

randomly according to Lebesgue measure from span(ψ(nk,j) : θ(nk,j) ∈ I(nk)), the empirical

distribution µ(nk) of the scaled coordinates

√
nkφ

(nk)
1 ,

√
nkφ

(nk)
2 , . . . ,

√
nkφ

(nk)
nk

,

converges weakly in probability to the standard complex Gaussian NC(0, 1) as k → ∞. In

fact, for any f : C → C bounded Lipschitz and ε > 0, there is k0 > 0 so that for k ≥ k0,

(2.3.7) P

[∣∣∣∣
∫
f(x) dµ(nk)(x)− Ef(Z)

∣∣∣∣ > ε

]
≤ 6 exp

(
−ε

2nk|I(nk)|
28π‖f‖2Lip

)
,

where ‖f‖Lip := supx 6=y
|f(x)−f(y)|

|x−y| , and Z ∼ NC(0, 1).

Then we construct random perturbations Vnk
(β[nk]) of Unk

by binning the eigenvalues of

Unk
and randomly rotating the eigenvectors within each bin. This idea of rotating small sets

of eigenvectors was used in different models in [Zel14, Van97, Map13, CG18] to construct

random orthonormal bases with quantum ergodic or quantum unique ergodic properties.

In our setting, Theorem 2.4 will additionally show that the coordinates of these randomly

rotated eigenvectors look approximately Gaussian. The matrices Vnk
(β[nk]) also satisfy the

entrywise relations |(Vnk
(β[nk]))xy|2 = (Pnk

)xy + o(1) as well as a weaker Egorov property

relating them to the classical dynamics, so that they can be viewed as a quantization of

the classical map S. Thus while we do not prove approximate Gaussian behavior for the

quantizations Unk
with |(Unk

)xy|2 = (Pnk
)xy, we prove it for the family of random matrices

Vnk
(β[nk]), which are alternative quantizations of the original classical dynamics of S.

Note also that S is not required to be ergodic here. In particular, we can take the direct

sum of two ergodic maps S1 and S2, whose resulting block matrix Unk
has eigenvectors
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localized on just half of the coordinates. Then Unk
will not have equidistributed or Gaussian

eigenvectors, though the randomly perturbed matrices Vnk
(β[nk]) still will.

Theorem 2.5 (Random quantizations with Gaussian eigenvectors). Let S satisfy (i)–(iv),

and let (nk)k be a sequence with K̃(nk) → ∞ and with each Markov matrix Pnk
unistochastic.

Then there exists a family of random unitary matrices Vnk
(β[nk]) in some probability spaces

(Ωnk
,Pnk

) with the following properties:

(a) Vnk
(β[nk]) is a small perturbation of Unk

, as in supβ[nk] ‖Vnk
(β[nk]) − Unk

‖ = o(1).

Additionally, for every β[nk], Vnk
satisfies an Egorov property; for Lipschitz h :

[0, 1] → C,

‖Vnk
Onk

(h)V −1
nk

−Onk
(h ◦ S)‖ = o(1) · ‖h‖Lip.

(b) (Gaussian coordinates). There is a sequence of sets Πnk
⊆ Ωnk

with P[Πnk
] → 1 with

the following property: Let (Ṽnk
)k be a sequence of matrices with Ṽnk

∈ Πnk
, and let

φ̃[nk,j] be the jth eigenvector of Ṽnk
, and µ[nk,j] = 1

nk

∑nk

x=1 δ√nkφ̃
[nk,j]
x

the empirical

distribution of the scaled coordinates of φ̃[nk,j]. Then for every sequence (jnk
)k with

jnk
∈ [1 : nk], the sequence (µ[nk,jnk

])k converges weakly to NC(0, 1) as k → ∞.

(c) (QUE). There is a sequence of sets Γnk
⊆ Ωnk

with P[Γnk
] → 1 such that for any

sequence of matrices (Ṽnk
)k with Ṽnk

∈ Γnk
, the eigenvectors φ̃[nk,j] of Ṽnk

equidis-

tribute over their coordinates. That is, for any sequence (jnk
)k with jnk

∈ [1 : nk],

and any h ∈ C([0, 1]),

(2.3.8) lim
k→∞

〈φ̃[nk,jnk
], Onk

(h)φ̃[nk,jnk
]〉 =

∫ 1

0

h(x) dx.

(d) For every β[nk], the spectrum of Vnk
(β[nk]) is non-degenerate.

(e) The matrix elements of Vnk
(β[nk]) satisfy supβ[nk] maxx,y

∣∣|Vnk
(β[nk])xy|2 − (Pnk

)xy
∣∣→

0 as k → ∞.

2.3.3. The doubling map. Finally, in Sections 4.1 and 4.2 we study the case when S is the

doubling map on R/Z and the specific quantization Un is the orthogonal one in (2.1.2). We
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study this case using similar arguments as in the general case, but with stronger estimates

from analyzing binary trees and bit shifts specific to the doubling map. Theorem 2.1 will

hold with any sequence of even n ∈ 2N, not just those with K̃(n) → ∞. Additionally,

when n = 2K , the spectrum of this specific quantization Un is degenerate with multiplicities

asymptotically 2K

4K
, and most every eigenbasis looks Gaussian (Theorem 4.6).

2.3.4. Outline. Chapter 3 contains the main proofs: Section 3.1 contains some lemmas

concerning properties of the map S and the corresponding Markov matrices Pn. Section 3.2

is the proof of the pointwise Weyl law analogue, Theorem 2.1. The first application, The-

orem 2.3 on quantum ergodicity in bins, is proved in Section 3.3. Section 3.4 covers the

second application on random perturbations of Un with approximately Gaussian eigenvec-

tors. Chapter 4 deals with the specific map the doubling map, especially with the degenerate

case of dimension a power of two. Chapter 5 contains additional remarks.
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CHAPTER 3

Proof of the main results

3.1. Properties of the map S and matrices Pn

In this section we gather some results about the relationship between the map S and the

Markov matrices Pn. The following lemma contains properties from [BKS07] and [PZK01],

stated here for a specific condition involving K̃(n).

Lemma 3.1 (powers of S, [BKS07, PZK01]). Assume (i)–(iii) and let the partition size be

n ∈M0Z with atoms E1, . . . , En. Then for 1 ≤ ℓ ≤ K̃(n) + 1,

(a) Sℓ is linear with integer slope on each atom Ex, and for endpoints e ∈ E, the right

and left limits satisfy limy→e± S
ℓ(y) ∈ E.

(b) If Sℓ(Ex)∩Ey 6= ∅, then Sℓ(Ex) ⊃ Ey. In fact Sℓ(Ex) is a union of several adjacent

atoms and some endpoints.

(c) (Pn)xτ1(Pn)τ1τ2 · · · (Pn)τℓ−1y 6= 0 iff there exists z ∈ Ex with Sℓ(z) ∈ Ey and Sj(z) ∈
Eτj for j = 1, . . . , ℓ− 1.

(d) If Sℓ(Ex) ∩ Ey = ∅ then (P ℓ
n)xy = 0. If Sℓ(Ex) ∩ Ey 6= ∅, then there is a unique

sequence τ = (τ1, τ2, . . . , τℓ−1) such that (Pn)xτ1(Pn)τ1τ2 · · · (Pn)τℓ−1y 6= 0.

The condition here with K̃(n) can be more restrictive than needed in [BKS07], but is

a concrete example of allowable powers ℓ and dimensions n. For completeness with these

concrete conditions, we include most of the proofs below.

Proof . (a) Both parts are done recursively. For example, if Sℓ−1 is linear on atoms Ex,

then for the first part of (a), it suffices to show for each x, Sℓ−1(Ex) ⊆ Aj for one of

the atoms Aj of the “base” partition M0 (depending on x), since then composition

with S shows Sℓ = S ◦ Sℓ−1 is linear on Ex. The inclusion Sℓ−1(Ex) ⊆ Aj holds for

any ℓ− 1 ≤ K̃(n), essentially because this image must avoid all endpoints e0 ∈ M0.
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Since L0 is the least common multiple of the slopes of S, then Lℓ−1
0 is a multiple of

the slopes of Sℓ−1, and so the preimages S−(ℓ−1)(e0) of a “base” partition endpoint

e0 ∈ E0 must live in the endpoints,1 not interior, of the size M0 · Lℓ−1
0 partition.

(b) follows from (a) since the linear segments in Sℓ start at points in E and have integer

slopes.

(c) The (⇐) direction is immediate from the definition of Pn. The (⇒) direction follows

from the relations

S(Ex) ⊃ Eτ1 , S(Eτ1) ⊃ Eτ2 , . . . , S(Eτℓ−1
) ⊃ Ey

and working backwards, taking zℓ−1 ∈ Eτℓ−1
with S(zℓ−1) ∈ Ey, and then zj ∈ Eτj

with S(zj) = zj+1.

(d) The first part follows from the above inclusions as well; note that if

(Pn)xτ1(Pn)τ1τ2 · · · (Pn)τℓ−1y 6= 0, then Sℓ(Ex) ⊃ Sℓ−1(Eτ1) ⊃ · · · ⊃ Ey. The unique

path part is Lemma 2 from [BKS07]: the proof is to suppose there are z1, z2 ∈ Ex

with Sℓ(z1), S
ℓ(z2) ∈ Ey but with Sr(z1) ∈ E1 and Sr(z2) ∈ E2 for some 1 < r < ℓ

and E1 6= E2. Then pick w ∈ Ey, and by part (b), then there is w1 ∈ E1 with

Sℓ−r(w1) = w and w2 ∈ E2 with S
ℓ−r(w2) = w. Again by (b) then there are v1 6= v2

in Ex with Sr(v1) = w1 and Sr(v2) = w2. But then Sℓ(v1) = Sℓ(v2) = w which

contradicts Sℓ being linear (with nonzero slope since S is measure-preserving) and

injective on Ex.

�

The next lemma shows how K̃(n) is used to ensure that small powers of P ℓ
n interact

nicely with the partition of [0, 1] into n atoms.

1If S−(ℓ−2)(e0) ⊂ 1

M0L
ℓ−2

0

Z and y ∈ S−1(S−(ℓ−2)(e0)), then S(y) = my + b ∈ 1

M0L
ℓ−2

0

Z for some m|L0

and b ∈ 1
M0

Z, so y ∈ 1

M0L
ℓ−2

0
m

⊆ 1

M0L
ℓ−1

0

Z.
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Lemma 3.2 (powers of Pn). Assume (i)–(iii) and let 1 ≤ ℓ ≤ K̃(n) + 1. Then

(3.1.1) (P ℓ
n)xy =





0, Sℓ(Ex) ∩ Ey = ∅
1

|(Sℓ)′(z)| , Sℓ(Ex) ∩ Ey 6= ∅, any z ∈ Ex

.

That is, for 1 ≤ ℓ ≤ K̃(n) + 1, we can compute P ℓ
n by drawing Sℓ and applying the same

procedure we used to define Pn from S.

Proof . From Lemma 3.1(a), partitioning [0, 1] intoM0 ·Lℓ−1
0 equal atoms ensures Sℓ is linear

on each atom. Since 1 ≤ ℓ ≤ K̃(n) + 1, then M0 · Lℓ−1
0 divides n so for these ℓ, the map

Sℓ is linear on each atom of the size n partition and the value 1
|(Sℓ)′(z)| is the same for any

z ∈ Ex. The matrix elements of P ℓ
n are (P ℓ

n)xy =
∑

τ :x→y(Pn)xτ1(Pn)τ1τ2 · · · (Pn)τℓ−1y. By

Lemma 3.1(d), for 1 ≤ ℓ ≤ K̃(n) + 1 and fixed x, y, this sum over τ collapses to either zero

or just a single term (Pn)xτ1 · · · (Pn)τℓ−1y. If this is nonzero, then by the definition of Pn,

(P ℓ
n)xy =

1

|S ′(Ex)||S ′(Eτ1)||S ′(Eτ2)| · · · |S ′(Eτℓ−1
)| .

By Lemma 3.1(c), there exists z ∈ Ex with S(z) ∈ Eτ1 , S
2(z) ∈ Eτ2 , . . . , S

ℓ(z) ∈ Ey, so

(P ℓ
n)xy =

1

|S ′(z)S ′(S(z)) · · ·S ′(Sℓ−1(z))| =
1

|(Sℓ)′(z)| .

�

The following lemma demonstrates the sparseness of the matrices P ℓ
n for times before

K̃(n). Essentially, this is because for these times, the nonzero entries of the matrix P ℓ
n are

placed by drawing Sℓ and an n× n grid in [0, 1]2, and then placing a nonzero entry in each

position in the grid that Sℓ passes through. As n increases, the grid becomes finer and

the (one-dimensional) graph of Sℓ in [0, 1]2 cannot pass through a very large fraction of the

boxes.

Lemma 3.3 (number of nonzero entries). Assume (i)–(iv) and let 1 ≤ ℓ ≤ K̃(n) + 1. Then

the diagonal of P ℓ
n contains at most 2M0L

ℓ−1
0 nonzero entries, and in total P ℓ

n has at most
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n · sℓmax nonzero entries, where smax is the maximum of the absolute values of the slopes in

S.

Proof . Pick an atom Ex. Since the maximum slope magnitude of S is smax, the interval

Sℓ(Ex) has length at most sℓmax · |Ex| and intersects at most sℓmax atoms Ey. Thus by

Lemma 3.2 the xth row of P ℓ
n has at most sℓmax nonzero entries, so in total P ℓ

n has at most

n · sℓmax nonzero entries.

Also by Lemma 3.2, nonzero diagonal elements of P ℓ
n occur exactly when Sℓ(Ex)∩Ex 6= ∅.

Let Q ⊂ [0, 1] × [0, 1] be the diagonal chain of squares Q =
⋃n−1
x=0(

x
n
, x+1

n
) × (x

n
, x+1

n
), so

that the nonzero diagonal elements (P ℓ
n)xx occur exactly when Sℓ intersects the xth square

(x
n
, x+1

n
)× (x

n
, x+1

n
) (Figure 3.1).

...

...

|Ii| = 1

M0·Lℓ−1
0

1
n

Figure 3.1. A line of slope 2 intersecting two (open) boxes in the diagonal Q.

Choose an interval Ii := ( i

M0L
ℓ−1
0

, i+1

M0L
ℓ−1
0

), an atom of the partition into M0L
ℓ−1
0 atoms.

This is the coarsest partition for Sℓ for which we can guarantee by Lemma 3.1(a) that Sℓ is

linear on each atom. Since ℓ ≤ K̃(n) + 1, the partition into n atoms Ex is a refinement of

this one. If the slope of Sℓ is negative on Ii, then S
ℓ can intersect at most one box in the

diagonal Q. If the slope of Sℓ is positive and at least two on Ii, then it can intersect at most

two boxes in Q (see Figure 3.1): Consider the slope one lines t± 1
n
in [0, 1]2, which bound a

parallelogram R ⊃ Q. Project the line segment Sℓ(Ii) ∩ R onto the x-axis. If Sℓ on Ii has

slope m > 1, then one can compute this projection is an interval of length ≤ 1
n

2
m−1

. For
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m ≥ 3, this bound is ≤ 1
n
so Sℓ(Ii) ∩ R can intersect at most two 1

n
× 1

n
boxes in Q. For

m = 2, the length can be 2
n
, but Sℓ(Ii) ∩ R can still only intersect at most two boxes in Q,

by using that Sℓ( j
n
) ∈ 1

n
Z since n is a multiple of M0L

ℓ−1
0 .

Then in total since there areM0L
ℓ−1
0 intervals I0, . . . , IM0L

ℓ−1
0 −1, there are at most 2M0L

ℓ−1
0

nonzero entries on the diagonal of P ℓ
n. �

Remark 3.1.1. Although the above argument works for slope −1, we do not allow slope

−1 in S since powers of S could then have segments with slope +1.

3.2. Proof of Theorem 2.1 pointwise Weyl law

In this section we prove Theorem 2.1 using a Fourier series approximation of the pro-

jection matrix, and properties of the Markov matrix Pn and quantization Un to identify

potentially bad coordinates x. We first make some remarks about the proof and statement.

For notational convenience, we will use n instead of nk.

Remark 3.2.1. Let r : N → N be any function such that r(m) < m, like r(m) = ⌊m/2⌋ or

⌊logm⌋. This is a cut-off function that determines which Fourier coefficients to examine for

bad coordinates with short loops.

(i) To show (2.3.2), we will show we can choose Gn (not depending on I(n)) so that

#Gn ≥ n− 2M0

L0−1
L
r(K̃(n))
0 , and for x ∈ Gn that

(3.2.1)

∣∣∣∣∣∣
∑

j:θ(n,j)∈I(n)

|ψ(n,j)
x |2 − |I(n)|

2π

∣∣∣∣∣∣

≤ |I(n)|
2π

[
2π|I(n)|−1K̃(n)−1 + (1 + 2π|I(n)|−1K̃(n)−1) · 6 · 2−r(K̃(n))/2

]
.

(ii) To ensure the right side of (3.2.1) is o(|I(n)|) and #Gn = n(1 − o(|I(n)|)), choose
r so that

r(K̃(n)) → ∞, K̃(n)− r(K̃(n))− logL0

1

|I(n)| → ∞, as K̃(n) → ∞.(3.2.2)
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Since |I(n)| · K̃(n) → ∞ by (2.3.1), then eventually 1
|I(n)| < K̃(n), so condition

(3.2.2) is always met if

(3.2.3) K̃(n)− r(K̃(n))− logL0
K̃(n) → ∞.

For example, r(K̃(n)) = ⌊K̃(n)/2⌋ or r(K̃(n)) = ⌊log K̃(n)⌋ always satisfy the

conditions on r.

(iii) We are interested in sequences of intervals I(n) where |I(n)| → 0. For the proof,

we will assume that |I(n)| is bounded away from 2π. If |I(n)| is near 2π, apply the

Theorem to the complement I(n)c or to a larger interval around I(n)c that satisfies

(2.3.1), to conclude

∣∣∣∣∣∣
∑

j:θ(n,j)∈I(n)

|ψ(n,j)
x |2 − |I(n)|

2π

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑

j:θ(n,j)∈I(n)c
|ψ(n,j)
x |2 − |I(n)c|

2π

∣∣∣∣∣∣
→ 0,

as |I(n)c| → 0.

3.2.1. Fourier series approximation. Let pI(n) be the function on the unit circle in C

defined by pI(n)(e
it) := χ

I(n)(t), so that pI(n)(U) is the projection

PI(n) := pI(n)(U) =
∑

j:θ(n,j)∈I(n)

|ψ(n,j)〉〈ψ(n,j)|.

The sum
∑

j:θ(n,j)∈I(n) |ψ
(n,j)
x |2 is the (x, x) coordinate of the projection matrix PI(n). To

approximate PI(n) by a polynomial in powers of Un, we approximate the indicator function

χ
I(n) by trigonometric polynomials.

These particular polynomials are based on an entire function B(z) introduced by Beurl-

ing, which satisfies sgn(x) ≤ B(x) for x ∈ R, and
∫
R
(B(x) − sgn(x)) dx = 1. The function

B(z) also satisfies an extremal property; it minimizes the L1 difference
∫
R
(f(x)− sgn(x)) dx

over entire functions f of exponential type 2π with f(x) ≥ sgn(x) for x ∈ R. By the

Paley–Wiener theorem, exponential of type 2π means that the Fourier transform of B(z) is
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supported in [−2π, 2π]. Selberg later used this function B(z) to produce majorants and mi-

norants of the characteristic function χI of an interval I, with compactly supported Fourier

transform.

Theorem 3.4 (Beurling–Selberg function). Let I ⊂ R be a finite interval and δ > 0. Then

there are functions g
(+)
I,δ and g

(−)
I,δ such that

(i) g
(−)
I,δ (x) ≤ χ

I(x) ≤ g
(+)
I,δ (x) for all x ∈ R.

(ii) The Fourier transforms ĝ
(+)
I,δ and ĝ

(−)
I,δ are compactly supported in [−δ, δ].

(iii)
∫
R
(g

(+)
I,δ (x)− χ

I(x)) dx = 2πδ−1 and
∫
R
(χI(x)− g

(−)
I,δ (x)) dx = 2πδ−1.

For references on Beurling and Selberg functions, see [Sel91, Chapter 45 ➜20], [Mon94],

or [Vaa85]. For I ⊂ R/(2πZ) with |I| < 2π, to take 2π-periodic functions, define

G
(+)
I,δ (x) =

∑

j∈Z
g
(+)
I,δ (x− 2πj), G

(−)
I,δ (x) =

∑

j∈Z
g
(−)
I,δ (x− 2πj),

whose Fourier series coefficients agree with the Fourier transform of g
(+)
I,δ or g

(−)
I,δ at integers,

Ĝ
(+)
I,δ (k) = ĝ

(+)
I,δ (k), Ĝ

(−)
I,δ (k) = ĝ

(−)
I,δ (k).(3.2.4)

Thus also using property (iii),

G
(±)
I,δ (x) =

|I| ± 2πδ−1

2π
+

⌊δ⌋∑

ℓ=1

(
ĝ
(±)
I,δ (ℓ)e

iℓx + ĝ
(±)
I,δ (−ℓ)e−iℓx

)
.(3.2.5)

These are trigonometric polynomials, sometimes called Selberg polynomials, that approxi-

mate χI well from above or below.

3.2.2. Projection matrix estimates. Take δ = K̃(n), and define the functions on the

unit circle in C,

F
(±)

I(n),K̃(n)
(eit) := G

(±)

I(n),K̃(n)
(t).

35



Recall we also defined pI(n)(e
it) = χ

I(n)(t) and the projection PI(n) = pI(n)(Un), so that by

the spectral theorem,

F
(−)

I(n),K̃(n)
(Un)xx ≤ (PI(n))xx ≤ F

(+)

I(n),K̃(n)
(Un)xx.(3.2.6)

By (3.2.5) and the spectral theorem again,

(3.2.7) F
(±)

I(n),K̃(n)
(Un) =

|I(n)|
2π

(1± 2π|I(n)|−1K̃(n)−1) Id+

+

K̃(n)∑

ℓ=1

(
̂

g
(±)

I(n),K̃(n)
(ℓ)U ℓ

n ++
̂

g
(±)

I(n),K̃(n)
(−ℓ)U−ℓ

n

)
.

The identity term |I(n)|
2π

(1 ± 2π|I(n)|−1K̃(n)−1) Id has the values we want already since

|I(n)|−1K̃(n)−1 → 0 by (2.3.1), so to show (3.2.1) we want to show the rest of the terms are

small. Since

|ĝ(±)
I,δ (ℓ)| ≤

1

2π

∫

R

|g(±)
I,δ (x)| dx ≤ 1

2π
(|I|+ 2πδ−1),(3.2.8)

then for any x, y ∈ [n], the (x, y) element of the non-identity terms can be bounded as

(3.2.9)

∣∣∣∣∣∣

K̃(n)∑

ℓ=1

(
̂

g
(±)

I(n),K̃(n)
(ℓ)(U ℓ

n)xy +
̂

g
(±)

I(n),K̃(n)
(−ℓ)(U−ℓ

n )xy

)∣∣∣∣∣∣
≤

≤ |I(n)|
2π

(1 + 2π|I(n)|−1K̃(n)−1)

K̃(n)∑

ℓ=1

(|(U ℓ
n)xy|+ |(U ℓ

n)yx|).

3.2.3. Removing potentially bad points. Here we use properties of Un and Pn from

Section 3.1 to remove coordinates x where (3.2.9) may be large. For 1 ≤ ℓ ≤ K̃(n) + 1, by

Lemma 3.1(d) there is at most one path of length ℓ from a given x to itself (or to another

y), so

∣∣(U ℓ
n)xx

∣∣ =

∣∣∣∣∣∣
∑

τ :x
ℓ−→x

(Un)τ0τ1 · · · (Un)τℓ−1τℓ

∣∣∣∣∣∣
=
∣∣(Un)xτ1(Un)τ1τ2 · · · (Un)τℓ−1x

∣∣ = ((P ℓ
n)xx)

1/2.
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Since all slopes of S are at least 2 in absolute value, then all the slopes of Sℓ are at least 2ℓ in

absolute value, so by Lemma 3.2, |(U ℓ
n)xx| ≤ 2−ℓ/2 for all x ∈ [n]. In order to make the sum

2
∑K̃(n)

ℓ=1 |(U ℓ
n)xx| in (3.2.9) small then, we only need to be concerned with smaller ℓ, since

|(U ℓ
n)xx| decays exponentially in ℓ. As we will see, by Lemma 3.3, for small ℓ, (U ℓ

n)xx = 0 for

most coordinates x, so we can pick a cut-off for small ℓ and just throw out any coordinates

x where (U ℓ
n)xx 6= 0 below this cut-off.

Let r : N → N satisfy r(k) < k and (3.2.2); this will determine the cut-off for which ℓ are

“small”. Define the set of potentially bad coordinates as

(3.2.10) Bn := {x ∈ [n] : (U ℓ
n)xx 6= 0 for some ℓ ∈ [1 : r(K̃(n))]}.

For ℓ ≤ K̃(n) + 1, by Lemma 3.3, the diagonal of U ℓ
n contains at most 2 ·M0 · Lℓ−1

0 nonzero

entries, so there are not many bad points,

(3.2.11) #Bn ≤ 2M0

r(K̃(n))∑

ℓ=1

Lℓ−1
0 =

2M0

L0 − 1
(L

r(K̃(n))
0 − 1) = o(n|I(n)|),

using assumption (3.2.2) for the last equality. For x ∈ Gn := [n] \Bn, then

K̃(n)∑

ℓ=1

|(U ℓ
n)xx|+ |(U−ℓ

n )xx| = 2

K̃(n)∑

ℓ=r(K̃(n))+1

|(U ℓ
n)xx|(3.2.12)

≤ 2
∞∑

ℓ=r(K̃(n))+1

2−ℓ/2 = 2(1 +
√
2) · 2−r(K̃(n))/2.

Then for x ∈ Gn,

∣∣∣∣∣(PI(n))xx−
|I(n)|
2π

∣∣∣∣∣

(3.2.13)

≤ |I(n)|
2π

[
2π|I(n)|−1K̃(n)−1 + (1 + 2π|I(n)|−1K̃(n)−1) · 6 · 2−r(K̃(n))/2

]

= o(|I(n)|),

since |I(n)|K̃(n) → ∞ by (2.3.1). By (3.2.11), #Gn ≥ n(1− o(|I(n)|)). �

37



3.3. Quantum ergodicity in bins

In this section we prove Theorem 2.3 concerning quantum ergodicity in bins {j : θ(nk,j) ∈
I(nk)}, following the standard proof of quantum ergodicity that uses the Egorov property.

Theorem 3.5 (Egorov property, [BKS07]). Suppose S satisfies conditions (i)–(iv) and has

a corresponding n × n unitary matrix Un with eigenvectors (ψ(n,j))nj=1. Let On(h) be the

quantum observable corresponding to h : [0, 1] → C. If h is Lipschitz continuous on each

image S(Ex), and n ∈M0L0Z, then

(3.3.1) ‖UnOn(h)U
−1
n −Onk

(h ◦ S)‖ ≤ 1

2
L2
0M0 ·

max
x∈[n]

‖h‖Lip(S(Ex))

n
,

where the norm on the left side is the operator norm.

If t ≤ K̃(n) + 1, then by the same recursive argument as in Lemma 3.1(a), St−1 is linear

on each S(Ex), so h◦St−1 is Lipschitz on S(Ex) with Lipschitz constant ≤ ‖h‖LipLt−1
0 . Then

iterating (3.3.1) t times yields,

‖U t
nOn(h)U

−t
n −On(h ◦ St)‖

≤
t∑

r=1

‖U t−r
n (UnOn(h ◦ Sr−1)U−1

n )U−(t−r)
n − U t−r

n On(h ◦ Sr)U−(t−r)
n ‖

≤
t∑

r=1

‖UnOn(h ◦ Sr−1)U−1
n −On(h ◦ Sr)‖

≤
t∑

r=1

L2
0M0‖h‖LipLr−1

0

2n
≤ CS‖h‖Lip · Lt0

n
.(3.3.2)

If say t ≤ K̃(n)
2

, then Lt0 ≪ n, so the error bound is small, and the Egorov property (3.3.2)

relates the quantum dynamics U t
nOn(h)U

−t
n to the classical dynamics h ◦ St for t well before

the Ehrenfest time TE := K̃(n) . log n.
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3.3.1. Proof of Theorem 2.3. Since Onk
(h) − (

∫ 1

0
h) · Id = Onk

(h −
∫ 1

0
h), wlog assume

∫ 1

0
h = 0 and define the quantum variance for a fixed bin I(nk),

(3.3.3) Vnk
:=

1

#{j : θ(nk,j) ∈ I(nk)}
∑

j:θ(nk,j)∈I(nk)

∣∣〈ψ(nk,j), Onk
(h)ψ(nk,j)〉

∣∣2 ,

which we will show tends to zero as k → ∞. For a function g : [0, 1] → C, define [g]T :=

1
T

∑T−1
t=0 g ◦ St. Using that ψ(nk,j) are eigenvectors of Unk

, followed by the Egorov property

and averaging over t (stopping before K̃(nk)
2

),

〈ψ(nk,j), Onk
(h)ψ(nk,j)〉 = 〈ψ(nk,j), (U∗

nk
)tOnk

(h)U t
nk
ψ(nk,j)〉

= 〈ψ(nk,j), Onk
(h ◦ St)ψ(nk,j)〉+O

(‖h‖Lip · Lt0
nk

)

= 〈ψ(nk,j), Onk
([h]T )ψ

(nk,j)〉+O
(‖h‖Lip · LT0

Tnk

)
.

Then by Cauchy-Schwarz,

|〈ψ(nk,j), Onk
(h)ψ(nk,j)〉|2 ≤ |〈ψ(nk,j), Onk

([h]T )ψ
(nk,j)〉|2 +Oh

(
LT0
Tnk

)

≤ 〈ψ(nk,j), Onk
([h]∗T )Onk

([h]T )ψ
(nk,j)〉+Oh

(
LT0
Tnk

)
.(3.3.4)

For this quantization method, just a sup norm bound shows

|Onk
(ab)xx −Onk

(a)xxOnk
(b)xx| = n

∣∣∣∣
∫

Ex

(
a− 1

|Ex|

∫

Ex

a

)(
b− 1

|Ex|

∫

Ex

b

)∣∣∣∣

≤ ‖a‖Lip(Ex)‖b‖Lip(Ex)

n2
,

so that

(3.3.5) ‖Onk
(ab)−Onk

(a)Onk
(b)‖ ≤ max

x∈[1:nk]

‖a‖Lip(Ex)‖b‖Lip(Ex)

n2
k

.
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Taking T = ⌊ K̃(nk)
2

⌋, then for t ≤ T , St is linear on every Ex so that ‖ 1
T

∑T−1
t=0 h◦St‖Lip(Ex) ≤

1
T

∑T−1
t=0 ‖h‖Lipstmax = Oh(

sTmax

T
), and

(3.3.6) |〈ψ(nk,j), Onk
(h)ψ(nk,j)〉|2 ≤ 〈ψ(nk,j), Onk

(|[h]T |2)ψ(nk,j)〉+Oh

(
LT0
Tnk

)
.

Applying the above and Theorem 2.1 yields

1

#{j : θ(nk,j) ∈ I(nk)}
∑

j:θ(nk,j)∈I(nk)

∣∣〈ψ(nk,j), Onk
(h)ψ(nk,j)〉

∣∣2

≤ 2π

nk|I(nk)|(1 + o(1))

∑

j:θ(nk,j)∈I(nk)

〈ψ(nk,j), Onk
(|[h]T |2)ψ(nk,j)〉+Oh

(
LT0
Tnk

)

≤ 2π(1 + o(1))

nk|I(nk)|


 ∑

x∈Gnk

∑

j:θ(nk,j)∈I(nk)

|ψ(nk,j)
x |2Onk

(|[h]T |2)xx +
∑

x∈Bnk

‖h‖2∞


+ o(1)

≤ (1 + o(1)) ·
∫ 1

0

∣∣∣∣∣
1

T

T−1∑

t=0

h(St(y))

∣∣∣∣∣

2

dy +
C · Lr(K̃)

0 ‖h‖2∞
nk|I(nk)|

+ o(1)
k→∞−−−→ 0,

using the L2 ergodic theorem as T = ⌊ K̃(nk)
2

⌋ → ∞. �

The passage from decay of the quantum variance (2.3.6) to the density one statement is

by the usual method (for details see for example Theorem 15.5 in the textbook [Zwo12]).

To start, by Chebyshev–Markov with ε = V
1/4
nk , Theorem 2.3 implies for a single Lipschitz

function h, there is the sequence of sets Λnk
(h) ⊆ {j : θ(nk,j) ∈ I(nk)} with

(3.3.7)
#Λnk

(h)

#{j : θ(nk,j) ∈ I(nk)}
→ 1,

such that for all sequences (jnk
)k with jnk

∈ Λnk
(h),

(3.3.8) lim
k→∞

〈ψ(nk,jnk
), Onk

(h)ψ(nk,jnk
)〉 =

∫ 1

0

h(x) dx.

For a countable set of Lipschitz functions (hℓ)ℓ, since finite intersections of sets Λnk
satisfying

(3.3.7) also satisfy (3.3.7), we can assume Λnk
(hℓ+1) ⊆ Λnk

(hℓ) for all nk. Then for each hℓ,
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let N(ℓ) > 0 be large enough so that for nk ≥ N(ℓ),

(3.3.9)
#Λnk

(hℓ)

#{j : θ(nk,j) ∈ I(nk)}
≥ 1− 1

ℓ
.

Take N(ℓ) increasing in ℓ and let Λ∞
nk

:= Λnk
(hℓ) for N(ℓ) ≤ nk < N(ℓ+ 1), so (3.3.8) holds

for sequences in Λ∞
nk

and hℓ in the countable set. Then take (hℓ)ℓ to be a countable set of

Lipschitz functions that are dense in (C([0, 1]), ‖ · ‖∞), so that for any h ∈ C([0, 1]),

∣∣∣∣〈ψ(nk,jnk
), Onk

(h)ψ(nk,jnk
)〉 −

∫ 1

0

h

∣∣∣∣

≤
∣∣〈ψ(nk,jnk

), Onk
(h− hℓ)ψ

(nk,jnk
)〉
∣∣+

+

∣∣∣∣〈ψ(nk,jnk
), Onk

(hℓ)ψ
(nk,jnk

)〉 −
∫ 1

0

hℓ

∣∣∣∣+
∣∣∣∣
∫ 1

0

(hℓ − h)

∣∣∣∣ .

The terms on the right side are bounded by ‖h− hℓ‖∞ or are o(1) as k → ∞.

3.4. Random Gaussian eigenvectors

In this section we prove Theorems 2.4 and 2.5 on random unitary rotations of bins of

eigenvectors. To analyze the statistics of the rotated eigenvectors, we look at their coordinate

values, which can be expressed as one-dimensional random projections. The behavior of low-

dimensional projections of high-dimensional vectors has been well-studied since the 1970s

for its applications in analyzing large data sets; see for example the survey [Hub85] for an

overview of the early history and motivation of “projection pursuit” methods. The marginals

of high-dimensional random vectors are often known to look approximately Gaussian, with

precise conditions first proved by Diaconis and Freedman in [DF84].

3.4.1. Random projections and bases. For Theorem 2.4, we are interested in the coor-

dinate values of a random unit vector in the span of V := {ψ(n,j) : θ(n,j) ∈ I(n)}. Let MV

be the n × (dimV ) matrix whose columns are the basis (ψ(j)) in V . Then PI(n) := MVM
∗
V

is the projection onto this space, and a random unit vector φ in the span is chosen accord-

ing to ω ∼ NC(0, PI(n))/‖NC(0, PI(n))‖2 ∼ MV u for u ∼ Unif(SdimV−1
C

). The coordinates
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φ1 = 〈φ1, ex〉, φ2, . . . , φn are

〈u,M∗
V e1〉, 〈u,M∗

V e2〉, . . . , 〈u,M∗
V en〉

which is a 1-dimensional projection in the direction u ∈ CdimV of the data set

{M∗
V e1, . . . ,M

∗
V en} ⊂ CdimV . Since

∑n
x=1 |φx|2 = 1, we use the scaled data set

√
n{M∗

V e1, . . . ,M
∗
V en}. The following theorem due to Meckes [Mec09] and Chatterjee and

Meckes [CM08] is a quantitative version of the theorem from [DF84].

Theorem 3.6 (Complex version of Theorem 2 in [Mec09]). Let {xj}nj=1 be deterministic

vectors in Cd. Define σ2 = 1
nd

∑n
i=1 |xi|2 and suppose

1

n

n∑

i=1

∣∣∣∣
|xi|2
σ2

− d

∣∣∣∣ ≤ A(3.4.1)

sup
θ∈Sd−1

C

1

n

n∑

i=1

|〈θ, xi〉|2 ≤ B.(3.4.2)

For a point θ ∈ S
d−1
C

⊂ Cd, define the measure µ
(n)
θ := 1

n

∑n
j=1 δ〈θ,xj〉 on C. Then for

θ ∼ Unif(SCd−1), any bounded Lipschitz f : C → C with Lipschitz constant L = ‖f‖Lip :=

supx 6=y
|f(x)−f(y)|

|x−y| , and ε > 2L(A+3)
d−1

, there is the quantitative bound

(3.4.3) P

[∣∣∣∣
∫
f(x) dµ

(n)
θ (x)− Ef(σZ)

∣∣∣∣ > ε

]
≤ 6 exp

(
− ε2d

26L2B

)
,

where Z ∼ NC(0, 1). In particular, if A = o(d) and B = o(d) and σ2 = 1, then µ(n) converges

weakly in probability to NC(0, 1).

Proof . The proof is the same as the real version in [Mec09], except that the (multi-dimensional)

Theorem 3.7 written below from [CM08] replaces the single-variable version. The proof idea

from [Mec09] is to let F (θ) := 1
n

∑n
x=1 f(〈θ, xi〉) and write

P [|F (θ)− Ef(Z)| > ε] ≤ P [|F (θ)− EF (θ)| > ε− |EF (θ)− Ef(Z)|] .

Then one uses Theorem 3.7, a generalization of Stein’s method of exchangeable pairs for

abstract normal approximation, to bound |EF (θ) − Ef(Z)| with V = 〈θ, xI〉 where I ∼
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Unif[n], and then one can apply Gaussian concentration (Lemma 3.8, cf. Section 7.1) to F

which is (L
√
B)-Lipschitz. �

Theorem 3.7 (Theorem 2.5 for C in [CM08]). Let W be a C-valued random variable and

for each ε > 0 let Wε be a random vector such that L(W ) = L(Wε), with the property that

limε→0Wε = W almost surely. Suppose there is a function λ(ε) and measurable Γ,Λ such

that as ε→ 0,

(i) 1
λ(ε)

E[(Wε −W )|W ]
L1

−→ −W .

(ii) 1
2λ(ε)

E[|Wε −W |2|W ]
L1

−→ 1 + E[Γ|W ].

(iii) 1
2λ(ε)

E[(Wε −W )2|W ]
L1

−→ E[Λ|W ].

(iv) 1
λ(ε)

E|Wε −W |3 → 0.

Then letting Z ∼ NC(0, 1),

(3.4.4) dWass(W,Z) ≤ E|Γ|+ E|Λ|,

where dWass is the Wasserstein distance dWass(W,Z) = sup‖g‖Lip≤1 |Eg(X)− Eg(Z)|.

Lemma 3.8 (Gaussian concentration on the complex sphere). Let F : Cd → C be L-Lipschitz

and θ ∼ Unif(Sd−1
C

). Then

(3.4.5) P[|F (θ)− EF (θ)| ≥ t] ≤ 6 exp

(
− t2d

16L2

)
.

Applying Theorem 3.6 to our case immediately yields the following.

Theorem 3.9 (Complex projection version of Theorem 2 in [Mec09]). Let P (ν) be an n× n

self-adjoint projection matrix onto a d-dimensional subspace V (ν) of Cn, and suppose

n∑

x=1

∣∣∣∣‖P (ν)ex‖22 −
d

n

∣∣∣∣ ≤ A.(3.4.6)

Let ω = (ω1, . . . , ωn) be chosen uniformly at random from the (d − 1)-dimensional sphere

S(V (ν)) := {v ∈ V (ν) : ‖v‖ = 1}, and define the empirical distribution µ̃
(ν)
ω of the coordinates
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of ω scaled by
√
n,

µ̃(ν)
ω :=

1

n

n∑

x=1

δ√nωx
.

Then for f : C → C bounded Lipschitz and ε >
2‖f‖Lip(A+3)

d−1
,

(3.4.7) P

[∣∣∣∣
∫
f(x) dµ(ν)

ω (x)− Ef(Z)

∣∣∣∣ > ε

]
≤ 6 exp

(
− ε2d

26‖f‖2Lip

)
,

where Z ∼ NC(0, 1).

Remark 3.4.1. As will be shown by (3.4.13) and (3.4.11), Theorem 2.1 shows A = o(d)

with d = nk|I(nk)|
2π

(1 + o(1)), so the above theorem proves Theorem 2.4.

Proof . Let v1, . . . , vd be an orthonormal basis for V (ν), and let MV be the n× d matrix with

those vectors as columns. Then P (ν) =MVM
∗
V , and

‖M∗
V ex‖2Cd = 〈ex,MVM

∗
V ex〉2Cn = ‖P (ν)ex‖2Cn .

Apply Theorem 3.6 to the data set
√
nM∗

V e1,
√
nM∗

V e2, . . . ,
√
nM∗

V en in Cd. We can take

B = 1 since for any θ ∈ S
d−1
C

,

1

n

n∑

x=1

|〈θ,√nM∗
V ex〉|2 =

n∑

x=1

〈MV θ, ex〉〈ex,MV θ〉 = ‖MV θ‖2Cn = 〈θ,M∗
VMV θ〉Cd = ‖θ‖2

Cd .

If θ is uniform on S
d−1
C

⊂ Cd, then MV θ is uniform on S(V (ν)), so 1
n

∑n
j=1 δ〈θ,

√
nM∗

V ex〉 ∼
1
n

∑n
j=1 δ

√
nωx

. �

Theorem 3.9 provides a bound for the probability that a single randomly chosen vector

does not look Gaussian. Because the quantitative bound (3.4.7) decays quickly, a simple

union bound gives a bound on finding an entire orthonormal basis that looks Gaussian

(Corollary 3.11 below). This family of random orthonormal bases will then be used to

construct the unitary matrices Vnk
(β[nk]) in Theorem 2.5.

Lemma 3.10 (union bound for random ONB). Let B ⊂ S
d−1
C

and let σ be surface measure

on S
d−1
C

normalized so σ(Sd−1
C

) = 1. Then a random orthonormal basis of Cd (chosen from

Haar measure) avoids B with probability at least 1− dσ(B).

44



Proof . Let µ be normalized Haar measure on U(d). Then for any x ∈ S
d−1
C

, σ(A) = µ(g ∈
U(d) : g(x) ∈ A). By union bound, letting {ej} be the standard basis,

µ({g ∈ U(d) : g(ej) ∈ B for some j ∈ [1 : d]}) ≤ d · µ({g ∈ U(d) : g(e1) ∈ B})

= d · σ(B),

so µ({g ∈ U(d) : ∀j ∈ [1 : d], g(ej) 6∈ B}) ≥ 1− dσ(B). �

Corollary 3.11 (Random Gaussian basis). Let Cn = V [1] ⊕ · · · ⊕ V [κ], and let P [ℓ] be the

orthogonal projection onto the subspace V [ℓ]. Suppose there is A and d1, . . . , dκ ∈ R+ so that

(3.4.8)
n∑

x=1

∣∣∣∣‖P [ℓ]ex‖22 −
dℓ
n

∣∣∣∣ ≤ A, ∀ℓ ∈ [1 : κ].

Choose a random orthonormal basis (φ[j])j for Cn by choosing a random orthonormal basis

from each V [ℓ] (according to Haar measure), and let

µ[j] :=
1

n

n∑

x=1

δ√
nφ

[j]
x
,

the empirical distribution for the jth basis vector’s coordinates. Then for any f : C → C

bounded and Lipschitz and ε >
2‖f‖Lip(2A+3)

(min dℓ−A)−1
,

(3.4.9) P

[
max
j∈[n]

∣∣∣∣
∫
f(x) dµ[j](x)− Ef(Z)

∣∣∣∣ > ε

]
≤ 6n exp

(
−ε

2(min dℓ − A)

26‖f‖2Lip

)
,

where Z ∼ NC(0, 1).

Proof . The numbers dℓ need not be the dimensions of V [ℓ], but since

∣∣∣∣
dimV [ℓ]

n
− dℓ
n

∣∣∣∣ =
∣∣∣∣∣
1

n

n∑

x=1

(
‖P [ℓ]ex‖22 −

dℓ
n

)∣∣∣∣∣ ≤
1

n
A,(3.4.10)

then

(3.4.11)
n∑

x=1

∣∣∣∣‖P [ℓ]ex‖22 −
dimV [ℓ]

n

∣∣∣∣ ≤ 2A.
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Then Theorem 3.9 implies for ε >
2‖f‖Lip(2A+3)

min dℓ−A−1
≥ 2‖f‖Lip(2A+3)

min dimV [j]−1
, that Rℓ(f) := {ω ∈ S(V [ℓ]) :

∣∣∫ f(x) dµω(x)− Ef(Z)
∣∣ > ε} has small measure ≤ 6 exp(− ε2 dimV [ℓ]

26‖f‖2Lip
). By Lemma 3.10,

a random orthonormal basis for V [ℓ] avoids Rℓ(f) with probability at least 1 − dimV [ℓ] ·
6 exp(− ε2 dimV [ℓ]

26‖f‖Lip
). Thus letting Iℓ ⊂ [n] be the set of indices j corresponding to V [ℓ],

P

[
max
j∈[n]

∣∣∣
∫
f(x) dµ[j](x)− Ef(Z)

∣∣∣ > ε
]

≤
κ∑

ℓ=1

P

[∣∣∣∣
∫
f(x) dµ[j](x)− Ef(Z)

∣∣∣∣ > ε for some j ∈ Iℓ

]

≤
κ∑

ℓ=1

dimV [ℓ] · 6 exp
(
−ε

2 dimV [ℓ]

26‖f‖Lip

)

≤ 6n exp

(
−ε

2 min dimV [ℓ]

26‖f‖Lip

)
≤ 6n exp

(
−ε

2(min dℓ − A)

26‖f‖Lip

)
.

�

3.4.2. Proof of Theorem 2.5. Choose κ(nk) ∈ N so that if we divide [0, 2π] up into κ(nk)

equal sized intervals I1(nk), . . . , Iκ(nk)(nk), then (2.3.1) holds for |I(nk)| = 2π
κ(nk)

. Let ψ(nk,j)

be the jth eigenvector of Unk
. Like the method used in [CG18], construct Vnk

(β[nk]) by

taking a random unitary rotation (according to Haar measure) of the eigenvectors {ψ(nk,j) :

θ(nk,j) ∈ Iℓ(nk)} within each interval. Then perturb any degenerate eigenvalues to be simple,

while still keeping them in the same bin. Denote the resulting eigenvectors of Vnk
(β[nk]) by

φ
[nk,j]
(β) .

(a) Let Ũnk
be the perturbation of Unk

obtained by reassigning all eigenvalues in the same

bin Iℓ(nk) to a single value eiΘℓ in the bin. Then

‖(Unk
− Ũnk

)v‖22 =
n∑

j=1

|eiθ(j) − eiΘℓ(j)|2|〈ψ(j), v〉|2 ≤ C
(2π)2

κ(nk)2
‖v‖22,

since the reassigned eigenvalues are still in the same bin. Also, ‖Ũnk
−Vnk

(β[nk])‖ ≤ C 2π
κ(nk)

by the same computation, since Ũnk
has degenerate eigenspaces that can be rotated to

match the eigenvectors of Vnk
(β[nk]). Thus for any random Vnk

(β[nk]), ‖Unk
−Vnk

(β[nk])‖ ≤
C 2π
κ(nk)

= o(1). The Egorov property for Unk
, Theorem 3.5, then implies the weaker Egorov
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property for Vnk
(β[nk]), since if A and B are unitary, then

‖AMA−1 − BMB−1‖ = ‖(A− B)MA−1 +BM(A−1 − B−1) ≤ 2‖A− B‖‖M‖,

and this also holds if we replaceM withM−c · Id for any c ∈ C like c =
∫ 1

0
h or c = h(0).

(b) To show Gaussian behavior, we first show there is ε(nk) → 0 so that for any bounded

Lipschitz f : C → C, as k → ∞,

(3.4.12)

P

[
max
j∈[1:nk]

∣∣∣∣
∫
f(x) dµ

[nk,j]
β (x)− Ef(Z)

∣∣∣∣ > ‖f‖Lipε(nk)
]
≤ 6nk exp(−Cn1/2

k |I(nk)|1/2),

where Z ∼ NC(0, 1). A density argument followed by tightness will then complete the

proof of (b).

To show (3.4.12), note that for any W [ℓ] = span{ψ(nk,j) : θ(j) ∈ Iℓ(nk)} and P [ℓ] the

orthogonal projection onto W [ℓ], the pointwise Weyl law Theorem 2.1 implies

n∑

x=1

∣∣∣∣‖P [ℓ]ex‖22 −
|I(nk)|
2π

∣∣∣∣ ≤
∑

x∈Gnk

|I(nk)|
2π

o(1) +
∑

x∈Bnk

2 = o(nk|Iℓ(nk)|),(3.4.13)

so the quantity A in Corollary 3.11 can be taken to be o(nk|Iℓ(nk)|). Let µ
[nk,j]
(β) be

the coordinate distribution of the jth eigenvector φ
[nk,j]
(β) of Vnk

(β[nk]). Then applying

Corollary 3.11 with all dℓ =
nk|I(nk)|

2π
and

(3.4.14) ε(nk) = max
( 4A+ 6

(dℓ − A)− 1
,

1

(nk|I(nk)|)1/4
)
→ 0,

this yields for Z ∼ NC(0, 1),

P

[
max
j∈[1:nk]

∣∣∣
∫

C

f(x) dµ
[nk,j]
(β) (x)−Ef(Z)

∣∣∣ > ‖f‖Lipε(nk)
]

≤ 6nk exp

(
−ε(nk)

2(nk|I(nk)| − 2πA)

27π

)

≤ 6nk exp

(
−
n
1/2
k |I(nk)|1/2(1− 2πA

nk|I(nk)|)

27π

)
.(3.4.15)
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Now let (fℓ)ℓ be a countable set of Lipschitz functions with compact support that are

dense in Cc(C), and set

(3.4.16) Πnk
=
{
Vnk

(β[nk]) : ∀ℓ ∈ [1 : nk], j ∈ [1 : nk],
∣∣∣∣
∫

C

fℓ(x) dµ
[nk,j]
(β) − Efℓ(Z)

∣∣∣∣ ≤ ‖fℓ‖Lipε(nk)
}
.

Then

(3.4.17) P[Πc
nk
] ≤ 6n2

k exp(−Cn1/2
k |I(nk)|1/2) → 0,

since by (2.3.1), n
1/2
k |I(nk)|1/2 ≫ 2 log nk. For a sequence of matrices (Ṽnk

)k with Ṽnk
∈

Πnk
, let µ̃[nk,j] be the scaled coordinate distribution of the jth eigenvector φ̃[nk,j] of Ṽnk

.

By definition of Πnk
, we know for any fℓ that

∫
fℓ dµ

[nk,jnk
] → Efℓ(Z) as k → ∞, for

any sequence (jnk
)k with jnk

∈ [1 : nk]. Denseness of (fℓ)ℓ shows that this holds for all

f ∈ Cc(C) as well. Then (µ̃[nk,jnk
])k is tight, and with the vague convergence we get weak

convergence of µ̃[nk,jnk
] to NC(0, 1).

(c) To show QUE, like in (b), we first show there is ε(nk) → 0 so that for any bounded

Lipschitz h : [0, 1] → C, as k → ∞,

(3.4.18) P

[
max
j∈[1:nk]

∣∣∣∣〈φ
[nk,j]
(β) , Onk

(h)φ
[nk,j]
(β) 〉 −

∫ 1

0

h(x) dx

∣∣∣∣ > ‖h‖∞ε(nk)
]

≤ Cnk exp(−cn1/2
k |I(nk)|1/2).

This is done by the same argument presented in [CG18] using the Hanson–Wright in-

equality [RV13]. After proving (3.4.18), part (c) follows from density like in (b).

For W [ℓ] with dimension d, let MW [ℓ] be an n × d matrix whose d columns form an

orthonormal basis for W [ℓ]. Then φ[nk,j] chosen randomly from S(W [ℓ]) is distributed like

MW [ℓ]u for u ∼ Unif(Sd−1
C

), and

(3.4.19) 〈φ[nk,j], Onk
(h)φ[nk,j]〉Cn ∼ 〈u, (M∗

W [ℓ]Onk
(h)MW [ℓ])u〉Cd .
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The Hanson–Wright inequality combined with subgaussian concentration on the

norm ‖NC(0, Id)‖2 shows that 〈u, (M∗
W [ℓ]Onk

(h)MW [ℓ])u〉 concentrates around its mean

1
d
tr(M∗

W [ℓ]Onk
(h)MW [ℓ]) (see [CG18], Theorem 4.1 for details), which by the pointwise

Wey law Theorem 2.1 is
∫ 1

0
h+R(nk, h) with |R(nk, h)| ≤ R(nk)‖h‖∞, some R(nk) → 0.

In particular, for any ε > 2|R(nk, h)|,

(3.4.20) P

[∣∣∣∣〈φ
[nk,j]
(β) , Onk

(h)φ
[nk,j]
(β) 〉 −

∫ 1

0

h

∣∣∣∣ > ε

]
≤ C1 exp

(
−C2 min(

ε2

4‖h‖2∞
,

ε

2‖h‖∞
) · d

)
.

Then taking ε(nk) = max
(
2R(nk),

1
(nk|I(nk)|)1/4

)
and applying a union bound like with

Lemma 3.10 yields (3.4.18), using that eventually min(ε(nk)
2, ε(nk)) = ε(nk)

2.

Next, taking (hℓ)ℓ to be a countable dense set of Lipschitz functions in C([0, 1]), let

(3.4.21) Γnk
=

{
Vnk

(β[nk]) : ∀ℓ ∈ [1 : nk], j ∈ [1 : nk],

∣∣∣∣〈φ
[nk,j]
(β) , Onk

(hℓ)φ
[nk,j]
(β) 〉 −

∫ 1

0

hℓ(x) dx

∣∣∣∣ ≤ ‖hℓ‖∞ε(nk)
}
.

Then P[Γcnk
] ≤ C1n

2
k exp(−C2n

1/2
k |I(nk)|1/2) → 0, and denseness shows that for

sequences (Ṽnk
)k with Ṽnk

∈ Γnk
and with eigenvectors denoted by φ̃[nk,j], that

〈φ̃[nk,jnk
], Onk

(h)φ̃[nk,jnk
]〉 →

∫ 1

0
h for all f ∈ C([0, 1]) as well.

(d) To make the spectrum simple, we simply perturbed any degenerate eigenvalues while

keeping them in the same bin.

(e) This follows from ‖Unk
− Vnk

(β[nk])‖ ≤ C · 2π
κ(nk)

, since for any matrices U and V with

entries | · | ≤ 1,

∣∣|Vxy|2 − |Uxy|2
∣∣ ≤ 2 ||Vxy| − |Uxy|| ≤ 2|Vxy − Uxy| ≤ 2‖V − U‖.

�
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CHAPTER 4

The doubling map

4.1. The doubling map with any even n

Recall if S : [0, 1] → [0, 1] is the doubling map, then for any n ∈ 2N, the n × n Markov

matrix Pn along with a specific quantization Un can be taken as in (2.1.2). For general maps

S, in Theorem 2.1, we restricted to dimensions n ∈ M0Z with K̃(n) → ∞. This ensured

that enough powers of Pn behaved nicely with the partitions (Lemma 3.2). For the doubling

map, M0 = 2 and we can take all n ∈ 2Z, not just those with the largest power of two

dividing n tending to infinity. The statement is as follows (note that the quantization Un

does not have to be the orthogonal one in (2.1.2)).

Theorem 4.1 (pointwise Weyl law analogue for the doubling map). For n ∈ 2N, let Pn

be the matrix in (2.1.2), and let Un satisfy |(Un)xy|2 = (Pn)xy. Denote the eigenvalues and

eigenvectors of Un by (eiθ
(n)
j )j and (ψ(n,j))j respectively for j ∈ [n]. Let (I(n)) be a sequence

of intervals in R/(2πZ) satisfying

(4.1.1) |I(n)| log n→ ∞, as n→ ∞.

Then there is a sequence of subsets Gn ⊆ [n] with sizes #Gn = n(1 − o(|I(n)|)) so that for

all x ∈ Gn,

(4.1.2)
∑

j:θ(n,j)∈I(n)

|ψ(n,j)
x |2 = |I(n)|

2π
(1 + o(1)),

where the error term o(1) depends only on n, |I(n)|, and #Gn, and is independent of x ∈ Gn.

Additionally, Gnk
can be chosen independent of I(nk) or |I(nk)|.

The proof is the same as Theorem 2.1, except that Lemma 3.3, which bounds the number

of nonzero entries on the diagonal of P ℓ
n, is proved differently. To analyze the matrix powers
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P ℓ
n, instead of viewing them in terms of Sℓ, we count paths of length ℓ in the directed graph

associated with the Markov matrix Pn. The proof of Theorem 4.1 then follows from the

following lemma and by replacing all instances of K̃(n) + 1 by K := ⌊log2 n⌋ in the proof of

Theorem 2.1.

Lemma 4.2 (number of nonzero entries for the doubling map). For n ∈ 2N, let Pn be as

in (2.1.2) and let 1 ≤ ℓ ≤ K. Consider the directed graph with n nodes 1, 2, . . . , n, whose

adjacency matrix is 2Pn. Then:

(i) For any coordinates x, y, there is at most one path of length ℓ from x to y in the

graph.

(ii) The diagonal of P ℓ
n contains at most 2 · 2ℓ nonzero entries.

(iii) In total, P ℓ
n has exactly n · 2ℓ nonzero entries.

Proof . All possible paths starting at a node x and of length ℓ can be represented as paths in

a binary tree of height ℓ with root node x. (Figure 4.1.) The nodes 1, 2, . . . , n of the graph

may be listed multiple times in the binary tree. If we always put the descendant 2x − 1

on the left and put 2x on the right, then the list of nodes in each row of the tree will be

consecutive increasing in Z/nZ. Thus if ℓ ≤ K := ⌊log2 n⌋, the ℓth row of the tree will

contain 2ℓ ≤ n nodes, so that for any two nodes x and y, there is at most one path of length

ℓ from x to y, proving part (i).

2

3 4

5

3 1

6

4 2

1

5 3

2

6 4

n = 6

Figure 4.1. Start of a binary tree for n = 6 (K = 2). This tree describes all
paths of length 3 that start at node 2.

Applying part (i), the total number of nonzero entries on the diagonal of P ℓ
n is the total

number of paths of length ℓ ≤ K with the same start and end point x. Similarly, the total

51



number of nonzero entries in P ℓ
n is the total number of length ℓ paths from any x to any y.

The collection of all paths of length ℓ can be represented by the paths in a forest of n binary

trees each of depth ℓ, one tree for each possible starting node x ∈ [n]. (Figure 4.2.) The ℓth

row contains 2ℓ · n numbers, showing part (iii).

1 2

2ℓ 2ℓ

. . . . . .

[1, 2, . . . . . . n][1, 2, . . .][

. . . . . .

. . .

. . .

s n

. . . , n]

ℓ

Figure 4.2. All paths of length ℓ as paths in a forest.

These 2ℓ ·n numbers at the bottom of the forest are 2ℓ copies of the sequence (1, 2, . . . , n).

To show (ii), we will show that for each copy Cj of (1, 2, . . . , n), there can be at most two

paths with the same start and end point that end in this copy.

Let F (j) be the set of starting nodes that have descendants in the jth copy Cj of

(1, 2, . . . , n). (The last node in F (j) may overlap with the first node in F (j + 1).) Con-

sider just the paths that start in F (j) and end in Cj, and suppose there is a length ℓ path

x → x. We claim that only either x − 1 or x + 1 in F (j) can also have a loop of length ℓ.

(See Figure 4.3.)

Let Lℓ(x) be the left-most descendant of x in Cj, and let Rℓ(x) be the right-most descen-

dant of x in Cj.

(a) If Lℓ(x) < x < Rℓ(x), then no other y ∈ F (j) has a path y → y. (Use Lℓ(x +

1) ≥ x + 2 and Rℓ(x − 1) ≤ x − 2, and then continue for the rest of F (j) using

Lℓ(y + 1) ≥ Lℓ(y) + 2 and Rℓ(y − 1) ≤ Rℓ(y)− 2.)

(b) Similarly, if Lℓ(x) = x, then only also x− 1 has a path x− 1 → x− 1.

(c) If Rℓ(x) = x, then only also x+ 1 has a path x+ 1 → x+ 1.

Thus in total there are at most 2 · 2ℓ paths of length ℓ that start and end at the same

point, proving part (ii). �
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(a)

x

xx+ 1x− 1 (b)

x− 1 x

xx+ 1x− 1 (c)

x x+ 1

x+ 1x− 1x

Figure 4.3. The possible cases if there is a loop x→ x.

4.2. The doubling map with n = 2K

When n = 2K , the corresponding graphs from the doubling map are the de Bruijn graphs

on two symbols. Orbits in these graphs have been studied in the context of quantum chaos

in for example [Tan00, Ler05, GO13, HH20]. In these dimensions, the particular matrices

Un from (2.1.2), despite coming from the doubling map, exhibit some behavior like that of

integrable systems. Any choice of eigenbasis still satisfies the quantum ergodic theorem since

the doubling map is ergodic, but the eigenvalues of Un in these dimensions are degenerate

and evenly spaced in the unit circle. As a result of the degeneracy, we will be able to show

that random eigenbases look approximately Gaussian. This will follow from properties of the

spectral projection matrix of an eigenspace combined with the results on random projections

used in Section 3.4.

We start by showing the eigenvalues of Un are 4Kth roots of 1 if K is even, and 4Kth

roots of −1 if K is odd.

Proposition 4.3 (Repeating powers of Un). Let Un be as in (2.1.2) with n = 2K. Then

(a) U4K
n = (−1)KI.

(b) U r
n = (−1)K(U4K−r

n )T , for 1 ≤ r ≤ 4K−1. More generally, U r
n = (−1)Kw(U4Kw−r

n )T ,

for 1 ≤ r ≤ 4Kw − 1.

Proof . Part (b) follows from (a) and unitarity (orthogonality) of Un. For part (a), view the

doubling map on [0, 1] as the left bit shift on a sequence {0, 1}N corresponding to the binary

expansion of x ∈ [0, 1]. If we partition [0, 1] into 2K atoms Ei = ( i
2K
, i+1
2K

), i = 0, . . . , 2K − 1,

then we can identify atom Ei with the length K bit string corresponding to the binary
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expansion of i
2K

. Then z ∈ Ei iff the first K digits of its binary expansion match the length

K bit string for Ei. The Markov matrix Pn then takes an atom indexed by i = (i1, . . . , iK)

and sends it to the atoms indexed by (i2, . . . , iK−1, 0) and (i2, . . . , iK−1, 1), the result of the

left bit shift. Thus for 1 ≤ ℓ ≤ K, there is at most one length ℓ path from i = (i1, . . . , iK)

to j = (j1, . . . , jK), which is described by the sequence (i1, . . . , iℓ, j1, . . . , jK) and requires

iℓ+1, iℓ+2, · · · , iℓ+(K−ℓ) = j1, j2, . . . , jK−ℓ. Note this recovers Lemma 3.1(d).

Now considering the signs in U2K and viewing the indices i, j as length K bit strings, if

there is an edge i→ j, then

(U2K )ij = 2−1/2





−1, i1 = 0, jK = 1

1, else

.

Thus if there is a length K path τ : i→ j, then

(4.2.1) (UK
2K )ij = (U2K )iτ1(U2K )τ1τ2 · · · (U2K )τK−1j = 2−K/2

K∏

m=1

(−1)(1−im)jm ,

since (τm)1 = im and (τm)K = jm. This is the structure of a tensor product,

(4.2.2) UK
2K = 2−K/2

K⊗

m=1


1 −1

1 1


 ,

so that

(4.2.3) U2K
2K =

K⊗

m=1


0 −1

1 0


 , U4K

2K =
K⊗

m=1


−1 0

0 −1


 = (−1)KI2K .

�

Remark 4.2.1. Proposition 4.3 can also be proved (although with significantly more effort)

by analyzing paths in the corresponding de Bruijn graph. As in Section 4.1, possible paths

can be described using trees, but the edges in the trees carry a sign to keep track of the

negative signs in the matrix U2K .
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Since the eigenvalues of U2K are 4K-th roots of 1 or −1, instead of eigenvectors from

eigenvalues in an interval I(n) ⊆ R/(2πZ) like in Theorem 2.1, we are just interested in all

the eigenvectors from a single eigenspace. A stronger version of Theorem 2.1 for this specific

case controls the spectral projection onto a single eigenspace.

Theorem 4.4 (Eigenspace projection when n = 2K). For n = 2K, let Un be as in (2.1.2),

and let P (n,j) be the projection onto its jth eigenspace. Let r(K) : N → N be any function

satisfying r(K) < K, r(K) → ∞, and K − r(K)− log2K → ∞ as K → ∞. Then there are

sets GK ⊆ [1 : 2K ] and GPK ⊆ [1 : 2K ]2 with

#GK ≥ 2K
(
1− 4

2K−r(K)

)
= 2K

(
1− o

( 1

4K

))
(4.2.4)

#GPK ≥ (2K)2
(
1− 8

2K−r(K)

)
= (2K)2

(
1− o

( 1

4K

))
,(4.2.5)

such that the following hold as K → ∞.

(a) For x ∈ GK and any j,

∣∣∣∣‖P (n,j)ex‖22 −
1

4K

∣∣∣∣ ≤
1

4K
· 10 · 2−r(K)/2.(4.2.6)

(b) For pairs (x, y) ∈ GPK and any j,

|〈ey, P (n,j)ex〉| ≤
10 · 2−r(K)/2

4K
.(4.2.7)

Using (4.2.6) and summing over all x, we also obtain:

Corollary 4.5 (Eigenspace degeneracy). The degeneracy of each eigenspace of U2K is 2K

4K
(1+

o(1)).

Returning to eigenvectors, Theorem 4.4(a) applied to Corollary 3.11 shows that taking a

random basis within each eigenspace produces approximately Gaussian eigenvectors.

Theorem 4.6 (Gaussian eigenvectors when n = 2K). For K ∈ N, let (ψ(2K ,j))2
K

j=1 be a

random ONB of eigenvectors chosen according to Haar measure in each eigenspace of Un.
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Let µ(2K ,j) := 1
2K

∑2K

x=1 δ√2Kψ
(2K,j)
x

be the empirical distribution of the scaled coordinates of

ψ(2K ,j). Then there is ε(K) → 0 so that for any bounded Lipschitz f : C → C with ‖f‖Lip ≤ 1,

as K → ∞,

(4.2.8) P

[
max
j∈[1:2K ]

∣∣∣∣
∫
f(x) dµ(2K ,j)(x)− Ef(Z)

∣∣∣∣ > ε(K)

]
→ 0,

where Z ∼ NC(0, 1). In particular, each µ(2K ,j) converges weakly in probability to NC(0, 1)

as K → ∞.

Proof (of Theorem 4.6). Theorem 4.4 shows we can take dℓ =
n
4K

, and A in Corollary 3.11

to be o( n
4K

). Then similar to Subsection 3.4.2, take

(4.2.9) ε(K) = max

(
4A+ 6

(dℓ − A)− 1
,
K1/4

n1/4

)
→ 0,

and note that 6n exp
(
− n1/2

K1/2

(1−o(1))
28

)
→ 0. �

The rest of this section is the proof of Theorem 4.4.

4.2.1. Polynomial for eigenspace projection. Instead of using trigonometric polyno-

mials to approximate the spectral projection matrix like in the proof of Theorem 2.1, we use

a polynomial with zeros at 4K-th roots of 1 or −1 to get exact formulas. Let Un be as in

(2.1.2) with n = 2K . First consider K even, so U4K
n = I and the eigenvalues of Un are 4K-th

roots of unity. Since x4K−1
x−1

= 1 + x + x2 + · · · + x4K−1 is zero at all 4K-th roots of unity

except for x = 1, the polynomial

(4.2.10) pK,j(x) = 1 +
4K−1∑

ℓ=1

(e−2πij/(4K))ℓxℓ

is zero at all 4K-th roots of unity except for e2πij/(4K), where it takes the value 4K. Writing

Un =
4K−1∑

α=0

e2πiα/(4N)
∑

λ=e2πiα/(4K)

|ψ(λ)〉〈ψ(λ)|,
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the spectral projection onto the eigenspace of e2πij/(4K) is

P (n,j) =
∑

λ=e2πij/(4K)

|ψ(λ)〉〈ψ(λ)| = 1

4K
· pK,j(Un) =

1

4K

(
I +

4K−1∑

ℓ=1

(e−2πij/(4K))ℓU ℓ
n

)
.

If K is odd, then U4K
n = −I and the eigenvalues of Un are 4K-th roots of −1. These are

exp(i π
4K

+2πij
4K

) for j ∈ [0 : 4K−1]. For notational convenience, let γ(K) :=





eiπ/(4K), K odd

1, K even

,

so we can write for any K ∈ N,

(4.2.11) P (n,j) :=
∑

λ=e2πij/(4K)γ(K)

|ψ(λ)〉〈ψ(λ)| = 1

4K

(
I +

4K−1∑

ℓ=1

(e−2πij/(4K)γ(K))ℓU ℓ
n

)
.

4.2.2. Powers of Un. To estimate the matrix elements of (4.2.11), we need some prop-

erties on the powers of Un. Since by Proposition 4.3(b), U2K+r
n = (−1)K(U2K−r

n )T for

r = 0, . . . , 2K − 1, to understand all the powers Un, U
2
n, . . . , U

4K−1
n , it is enough to know the

powers Um
n for m ∈ [1 : K] ∪ [2K : 3K]. We will only need to know where the entries of Um

n

are nonzero, which follows from matrix multiplication:

Lemma 4.7 (Powers up to K). Let n = 2K. For m ≤ K, let Am be the set of real n × n

matrices A such that

|Aij| =





1, j ∈ {2mi, 2mi− 1, . . . , 2mi− (2m − 1)} mod 2K

0, else

.

Am consists of matrices whose nonzero entries are ±1 arranged in 2m descending “staircases”

with steps of length 2m. Then for m ≤ K − 1 and A ∈ Am,

A ·
√
2Un ∈ Am+1.

In particular, since 21/2Un ∈ A1, then for m ≤ K,

2m/2Um
n ∈ Am.

57



Between 2K and 3K, Um
n has a flipped staircase structure:

Corollary 4.8 (Powers from 2K to 3K). Let n = 2K. For m ≤ K, let Bm be the set of n×n
matrices B such that the matrix A defined by Aij := B(n−i)j is in Am. Then for m ≤ K − 1

and B ∈ Bm,
B ·

√
2Un ∈ Bm+1.

In particular, using that U2K
n is a “flipped diagonal” matrix with nonzero entries ±1, so that

21/2U2K+1
n ∈ B1, then for m ∈ [1 : K],

2m/2U2K+m
n ∈ Bm.

Proof . If Aij = B(n−i)j, then (BUn)(n−i)j =
∑n

ℓ=1Aiℓ(Un)ℓj = (AUn)ij, and since
√
2 ·AUn ∈

Am+1, then
√
2 ·BUn ∈ Bm+1. That U

2K
n is a “flipped diagonal” matrix with nonzero entries

±1 along the flipped diagonal (i, n − i) follows from equation (4.2.3). Then the matrix A

defined by

Aij := (U2K
n · 21/2Un)(n−i)j = 21/2

n∑

ℓ=1

±δi,ℓ(Un)ℓj = (±1)21/2(Un)ij

is in A1 so 21/2U2K+1
n ∈ B1. �

4.2.3. Removing potentially bad points. This mirrors Subsection 3.2.3 from the proof

of Theorem 2.1, although due to the structure of U ℓ
n here, we consider 1 ≤ ℓ ≤ 4K instead

of just 1 ≤ ℓ ≤ K̃ + 1. (Figure 4.4.)

Let the set of potentially bad coordinates be

(4.2.12) BK := {x ∈ [n] : (Um
n )xx 6= 0 for some m ∈ [1 : r(K)] ∪ [2K − r(K) : 2K]}.

Indexing the 2K atoms of [0, 1] by length K bit strings as in the proof of Proposi-

tion 4.3, we see that for 1 ≤ ℓ ≤ K, the entry (U ℓ
n)xx is nonzero iff x is of the form

(x1, . . . , xℓ, x1, . . . , xℓ, x1, . . .), that is x corresponds to a periodic orbit of length ℓ. There are

2ℓ choices for the sequence (x1, x2, . . . , xℓ), so the diagonal of U ℓ
n contains exactly 2ℓ nonzero

entries for ℓ ∈ [1 : r(K)]. Additionally, by the staircase structure from Corollary 4.8, the
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1 4K2KK 3K

r(K) r(K) r(K) r(K)

nonzero
|(Um

n )ij| : 2−
1
2 , . . . , 2−

K−1
2 , 2−

K
2 , 2−

K−1
2 , . . . , 2−

1
2 , 1, 2−

1
2 , . . . , 2−

K−1
2 , 2−

K
2 , 2−

K−1
2 , . . . , 2−

1
2 , 1

Figure 4.4. Eliminating bad coordinates in regions where the nonzero entries
of Um

n are large. By Proposition 4.3(b), we only need to consider powers up
to 2K in the definition of BK , since the powers reflect across 2K.

diagonal of U ℓ
n has at most 22K−ℓ nonzero entries for ℓ ∈ [2K − r(K) : 2K − 1]. Thus

(4.2.13) #BK ≤ 2

r(K)∑

ℓ=1

2ℓ = 4(2r(K) − 1) = o(2K/K).

Let the set of good coordinates be GK := [n] \ BK . For x ∈ GK , then (U ℓ
n)xx = 0 for

ℓ ∈ [1 : r(K)] ∪ [2K − r(K) : 2K] (and also for ℓ ∈ [2K : 2K + r(K)] ∪ [4K − r(K) : 4K]),

so that for any j ∈ [0 : 4K − 1],

‖P (n,j)ex‖22 =
1

4K

(
1 +

2K−r(K)−1∑

ℓ=r(K)+1

(e−2πij/(4K)γ(K))ℓ(U ℓ
n)xx+

+

4K−r(K)−1∑

ℓ=2K+r(K)+1

(e−2πij/(4K)γ(K))ℓ(U ℓ
n)xx

)

=
1

4K
(1 +O(2−r(K)/2)),(4.2.14)

since
∣∣∣∣∣∣

2K−r(K)−1∑

ℓ=r(K)+1

(e−2πij/(4K)γ(K))ℓ(U ℓ
n)xx

∣∣∣∣∣∣
≤ 2

K∑

ℓ=r(K)+1

2−ℓ/2 ≤ 10 · 2−r(K)/2,(4.2.15)

and similarly for the second sum. This proves (4.2.6).
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4.2.4. Removing potentially bad pairs of points. Let the set of potentially bad pairs

of coordinates be

(4.2.16) BPK := {(x, y) ∈ [n]2, x 6= y : (U ℓ
n)xy 6= 0 for some

ℓ ∈ [1 : r(K)] ∪ [2K − r(K) : 2K + r(K)] ∪ [4K − r(K) : 4K − 1]}.

The matrix U ℓ
n contains 2ℓ · n nonzero entries (n entries in each staircase and 2ℓ staircases)

for ℓ ∈ [1 : r(K)], and 22K−ℓ · n nonzero entries for ℓ ∈ [2K − r(K) : 2K − 1] (and the same

for flipping ℓ across 2K). Then

(4.2.17) #BPK ≤ 4

r(K)∑

ℓ=1

2ℓ · n = 8(2r(K) − 1) · n = o(n2),

and for good pairs (x, y) ∈ GPK := ([n]2 \ {(x, y) : x = y}) \BPK ,

|〈ey, P (n,j)ex〉| =

∣∣∣∣∣∣
1

4K






2K−r(K)−1∑

m=r(K)+1

+

4K−r(K)−1∑

m=2K+r(K)+1


 (e−2πij/(4K)γ(K))m(U ℓ

n)xy



∣∣∣∣∣∣

≤ 10 · 2
−r(K)/2

4K
,(4.2.18)

by the same estimates as before. �
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CHAPTER 5

Additional remarks

5.1. Coordinates that fail the pointwise Weyl law

We give a specific example where not all coordinates satisfy the pointwise Weyl law

(2.3.2). For n ∈ 2N, let

Un =
1√
2




1 −1
1 −1

. . .
1 −1

1 1
1 1

. . .
1 1



.

Letting P
(n)
I be the spectral projection matrix of Un onto the arc I = [−π/2, π/2] on the

unit circle, we will show that

(5.1.1) (P
(n)
I )11 ≥ 0.89182655 + o(1) 6= 1

2
(1 + o(1)).

Thus for I(n) = [−π/2, π/2], the sequence of coordinates (xn)n with just xn = 1 does not

satisfy the pointwise Weyl law. Note the coordinate x = 1 was one of the “bad” points that

was removed during the proof of the pointwise Weyl law, since it always has the very short

periodic loop consisting of just itself.

To approximate (P
(n)
I )11 from below, we use the piecewise linear approximation h∆ on

R/(2πZ) in Figure 5.1, defined by

h∆(x) =





1, −π
2
+∆ ≤ x ≤ π

2
−∆

1
∆

(
x+ π

2

)
, −π

2
≤ x ≤ −π

2
+∆

− 1
∆

(
x− π

2

)
, π

2
−∆ ≤ x ≤ π

2

0, |x| ≥ π
2

.
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π
2

−π
2

0

∆ ∆π − 2∆

Figure 5.1. Plot of h∆.

Since this I(n) = [−π/2, π/2] is not shrinking, we don’t need further smoothness of the

approximation, and the piecewise linear h∆ has Fourier coefficients that are easy to work

with. We only need continuity and absolutely summable Fourier coefficients, so that the

Fourier series converges uniformly to h∆. For convenience we also use the same notation h∆

or χ[−π/2,π/2] to denote the corresponding function on the unit circle in C (via R/2πZ ∋ t↔
eit ∈ S1). Since pointwise h∆(t) ≤ χ

[−π/2,π/2](t) for any ∆ ≥ 0, then by the spectral theorem

(h∆(Un))xx ≤ χ
[−π/2,π/2](Un)xx = (P

(n)
I )xx for any coordinate x ∈ [n].

To approximate h∆(Un), we compute its Fourier coefficients (ĥ∆)j =
1
2π

∫ π
−π h∆(x)e

−ijx dx,

(ĥ∆)j =
2

πj2∆
sin

(
j(π −∆)

2

)
sin

(
j∆

2

)
, j 6= 0(5.1.2)

(ĥ∆)0 =
π −∆

2π
.(5.1.3)

Since the Fourier coefficients are absolutely summable, the partial sums
∑

j∈Z(ĥ∆)je
ijx con-

verge uniformly to h∆, with the Kth partial sum SKh∆(x) :=
∑

|j|≤K(ĥ∆)je
ijx having error

bound

‖SKh∆ − h∆‖∞ ≤
∞∑

j=K+1

4

πj2∆
≤ 4

πK∆
.(5.1.4)

As long as ∆ ≫ K−1, this is o(1), and then

|〈y|SKh∆(Un)− h∆(Un)|x〉| =
∣∣∣∣∣
n∑

j=1

(
SKh∆(e

iθ(n,j)

)− h∆(e
iθ(n,j)

)
)
〈y|ψ(n,j)〉〈ψ(n,j)|x〉

∣∣∣∣∣

≤ ‖SK(h∆)− h∆‖∞
(

n∑

j=1

|ψ(n,j)
y |2

)1/2( n∑

j=1

|ψ(n,j)
x |2

)1/2

= o(1).
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So then

(P
(n)
I )11 ≥ (h∆(Un))11 = ((SKh∆)Un)11 + o(1).

As usual, we take K = ⌊log2 n⌋, and consider

(SKh∆)(Un)11 =
π −∆

2π
+

K∑

j=1

2

πj2∆
sin

(
j(π −∆)

2

)
sin

(
j∆

2

)(
(Un)

j
11 + (Un)

−j
11

)
.(5.1.5)

Take K−1 ≪ ∆ ≪ K−1/2, for example ∆ = K−3/4. We split up the sum over j in (5.1.5)

into two regions, first from j = 1 to
√
K, and then from

√
K + 1 to K. In the first region,

j∆ ≤
√
K∆ ≪ 1, so we can Taylor expand the sine terms and evaluate the sum. In the

second region, the exponential decay from (Un)
j
11 = 2−j/2 (for j ≤ ⌊log2 n⌋, there is only the

path 1 → 1 → · · · → 1 that starts and ends at 1 and has length j) will make the sum o(1)

as K → ∞.

For j∆ ≪ 1, we have sin(j∆/2) = j∆
2
+O(j2∆2) and

sin

(
j(π −∆)

2

)
=





− j∆
2
+O(j3∆3), j = 0 mod 4

1− j2∆2

4
+O(j4∆4), j = 1 mod 4

j∆
2
+O(j3∆3), j = 2 mod 4

−1 + j2∆2

4
+O(j4∆4), j = 3 mod 4

.

Thus

(SKh∆)(U)11 =
1

2
−O(∆) +

√
K∑

j=1

2

πj2∆
sin

(
j(π −∆)

2

)
sin

(
j∆

2

)
2 · 2−j/2 +

K∑

j=
√
K+1

O(2−j/2)

=
1

2
+

√
K∑

j=1
j odd

2

πj

(
(−1)((j mod 4)−1)/2 +O(j∆)

)
· 2−j/2 +

√
K∑

j=1
j even

O(j2∆2)

j2∆
2−j/2 + o(1)

=

(
1

2
+

2

π

√
K∑

j=1
j=1 mod 4

(
1

j2j/2
− 1

(j + 2)2(j+2)/2

))
+ o(1)

=

(
1

2
+

1

π

(
√
K−1)/4∑

ℓ=0

5 + 4ℓ

(1 + 4ℓ)(3 + 4ℓ)2(1+4ℓ)/2

)
+ o(1).
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Numerically,

1

π

∞∑

ℓ=0

5 + 4ℓ

(1 + 4ℓ)(3 + 4ℓ)2(1+4ℓ)/2
≈ 0.39182655,

so that

(5.1.6) (P
(n)
I )11 ≥ (SKh∆)(U)11 + o(1) ≥ 0.89182655− o(1) 6= 1

2
(1 + o(1)).

Remark 5.1.1. A similar statement can be shown with phases eiΦUn for the interval [t0 −
π
2
, t0+

π
2
] for a t0 depending on Φ. The only difference in (5.1.5) is that the

(
(Un)

j
11 + (Un)

−j
11

)

term becomes
(
e−it0j(eiΦUn)

j
11 + eit0j(eiΦUn)

−j
11

)
. For j ≤ ⌊log2 n⌋, (eiΦUn)j11 = eijΦ12−j/2 and

(eiΦUn)
−j
11 = e−ijΦ12−j/2, so taking t0 = Φ1 reduces this Fourier series back to just (5.1.5).

5.2. Logarithmic factors in ℓp norms

5.2.1. From pointwise Weyl law. The pointwise Weyl law gives some logarithmic factors

on sums of ℓp norm bounds of eigenvectors for 2 < p < ∞. (Since the pointwise Weyl law

doesn’t have to hold for all coordinates x, we do not obtain the immediate ℓ∞ estimate.)

Fix 2 < p <∞. By Hölder and |ψ(n,j)
x | ≤ 1, there are the general bounds

1

np/2−1
≤ ‖ψ(n,j)‖pp ≤ 1,

with the lower bound corresponding to a completely delocalized vector and the upper bound

corresponding to a completely localized vector. For p > 2, ℓp norm comparison gives

(∑

j∈J
|ψ(n,j)
x |p

)1/p
≤
(∑

j∈J
|ψ(n,j)
x |2

)1/2
.

To average ‖ψ(n,j)‖pp over a window I(n), apply the pointwise Weyl law, choosing the function

r(K̃(n)) in (3.2.2) sufficiently small so that the set Bn = [n] \ Gn of “bad coordinates” is
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small enough that the resulting error term below is lower order,1

1

#{j : θ(n,j) ∈ I(n)}
∑

j:λ(n,j)∈I(n)

‖ψ(n,j)‖pp =
2π(1 + o(1))

n|I(n)|
∑

j:λ(n,j)∈I(n)

n∑

x=1

|ψ(n,j)
x |p

≤ 2π

|I(n)|

( |I(n)|
2π

)p/2
(1 + o(1)) +

2π(1 + o(1)) ·#Bn

n|I(n)|

=

( |I(n)|
2π

)p/2−1

(1 + o(1)).

At best this decays a bit slower than something like (log n)1−p/2 by choosing |I(n)| close to

smallest allowed size |I(n)| ≫ K̃(n)−1, and assuming n is chosen so K̃(n) ∼ log n. This

is still very far from what we expect from numerics and the random wave conjecture, even

with an average over many eigenvectors.

5.2.2. From small-scale quantum ergodicity. Logarithmic factors in ℓp norms can be

obtained using the small-scale ergodicity argument from [HR16], this time in a limiting

density one set without having to average over eigenvectors in an interval I(n), though

possibly with a worse power of log n. The setting in [HR16] is much more complicated on

manifolds, but the small-scale quantum ergodicity idea carries over to this simpler discrete

case if we have an estimate on decay of correlations or the rate of convergence in the L2-

ergodic theorem for certain functions.2 For example, for S the doubling map and A ⊆ [0, 1]

an interval, direct computation shows,

(5.2.1)
∣∣µ(S−t(A) ∩ A)− µ(A)2

∣∣ =
∣∣∣∣
∫ 1

0

χ
A(2

tx)χA(x) dx− |A|2
∣∣∣∣ ≤ C|A|2−t,

1For example, if r(K̃(n)) = logL0
n, then #Bn ≤ CK̃(n), so #Bn

n|I(n)| ≤ CK̃(n)2

n ≤ C(logL0
n)2

n ≪
1

(logn)p/2−1
≪ |I(n)|p/2−1.

2For general functions, nothing can be said about the rate of convergence [KP81], but for small-scale
ergodicity we only need to consider indicator functions of intervals (or possibly their smooth approximations).
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which then implies

∫ 1

0

∣∣∣∣∣
1

T

T−1∑

t=0

χ
A(2

tx)− |A|
∣∣∣∣∣

2

dx =
1

T 2

∞∑

t,r=0

∫ 1

0

(
χ
A(2

|t−r|x)χA(x)− |A|2
)
dx(5.2.2)

≤ 1

T 2

T−1∑

t,r=0

2−|t−r|C|A| ≤ C|A|
T

.

From the above one gets a quantitative decay of the quantum variance in the quantum ergodic

theorem, which allows taking n-dependent intervals A = An. Taking An = [xn
n
, xn+αn

n
] ⊆ [0, 1]

for some xn ∈ [0 : n− 1] and αn ∈ [1 : n− 1], and using [BKS07, Lemma 5], which holds for

any L2 observable, shows for T = ⌊log2 n⌋,

Vn(χAn) :=
1

n

n∑

j=1

∣∣∣〈ψ(n,j), On(χAn)ψ
(n,j)〉 − |An|

∣∣∣
2

=
1

n

n∑

j=1

∣∣∣∣
∑

x∈nAn

|ψ(n,j)
x |2 − |An|

∣∣∣∣
2

≤
∫ 1

0

∣∣∣∣∣
1

T

T−1∑

t=0

χ
An(2

tx)− |An|
∣∣∣∣∣

2

dx ≤ C|An|
T

.

Then we follow the standard the proof of quantum ergodic theorem, except we have to choose

|An| and error terms more carefully due to the changing |An| and the need for more and

more intervals of length |An| to cover [0, 1], similar to [HR16, ➜3]. The Chebyshev–Markov

bound shows

1

n
·#
{
j :
∣∣∣
∑

x∈nAn

|ψ(n,j)
x |2 − |An|

∣∣∣ > εn|An|
}
≤ 1

ε2n|An|2
Vn(χAn)

≤ C

ε2n
· 1

|An|⌊log2 n⌋
.(5.2.3)

Take |An| = αn

n
→ 0 but satisfying αn ≫ n√

logn
so that |An| ≫ 1√

logn
, and set ε2n =

|An|−1⌊log2 n⌋−1/2 which tends to zero as n → ∞. Cover [0, 1] with bn :=
⌈

1
|An|

⌉
intervals

A
(1)
n , . . . , A

(bn)
n , each of the form [xk

n
, xk+αn

n
] for xk ∈ Z/n, and of the same length |An| = α

n
.
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Let Λn(A
(k)
n ) :=

{
j :
∣∣∣
∑

x∈nA(k)
n

|ψ(n,j)
x |2 − |A(k)

n |
∣∣∣ ≤ εn|A(k)

n |
}

be the set of good indices

j ⊆ [n] associated with A
(k)
n . With the choice of |An| and εn, (5.2.3) implies

#Λn(A
(k)
n )c ≤ Cn

⌊log2 n⌋1/2
.

Take

Λ̃n := Λn(A
(1)
n ) ∩ Λn(A

(2)
n ) ∩ · · · ∩ Λn(A

(bn)
n ),

which by union bound has size

#Λ̃n ≥ n− C

|An|
· n

⌊log2 n⌋1/2
= n(1−O(εn)).

For any j ∈ Λ̃n and k ∈ [1 : bn],

∑

x∈nA(k)
n

|ψ(n,j)
x |2 = |An|(1 +O(εn)),

with the error term independent of k. Thus for any sequence (jn)n with jn ∈ Λ̃n,

‖ψ(n,jn)‖pp =
n∑

x=1

|ψ(n,jn)
x |p ≤

bn∑

k=1

∑

x∈nA(k)
n

|ψ(n,jn)
x |p ≤

bn∑

k=1


 ∑

x∈nA(k)
n

|ψ(n,jn)
x |2



p/2

≤ 1

|An|
(|An|(1 +O(εn)))

p/2 = |An|p/2−1(1 + o(1)),

which decays a bit slower than something like (
√
log n)1−p/2 by choosing |An| ≫ 1√

logn

close to the smallest allowable by this method. We had to take |An| ≫ 1√
logn

to ensure

#Λ̃cn ≤ bn ·#Λn(A
(k)
n ) ∼ 1

|An|
Cn

ε2n|An| logn = o(n).

5.3. Other miscellaneous remarks

(i) The condition K̃(n)|I(n)| → ∞ for the pointwise Weyl law is essentially optimal

without further restrictions, as the example for the doubling map when n = 2K shows

(Section 4.2). In this case, if |I(n)|
2π

< 1
4K

, then one can take an interval that avoids the

spectrum entirely and thus produces a projection matrix filled with zeros.
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(ii) The same method to estimate the diagonal entries of the projection matrix PI(n) can

also be used to estimate the off-diagonal entries of PI(n). In this case, the constant term

in the Fourier series expansion is zero, and then one can use similar arguments to show

that the higher order terms are small. Alternatively, one can also obtain some bounds

using that by the Weyl law,
∑

x,y∈[n](PI(n))
2
xy = trP 2

I(n) = trPI(n) =
n|I(n)|

2π
(1 + o(1)).

(iii) For a Markov transition matrix Pn, one usually views the indices of Pn as corresponding

to vertices in a directed (pseudo)graph. (Loops are allowed but multi-arcs are not.)

However, one can sometimes view the indices of Pn as corresponding to directed edges

in a digraph instead, similar to a vertex scattering matrix on a quantum graph. In this

case, a path ij corresponds to edge i followed by edge j, which can describe scattering

from edge i, through the shared vertex, and out through edge j.

However, not every Markov transition matrix Pn corresponds naturally to a Markov

chain on the directed edges of a digraph. For a directed pseudograph G = (V,E),

the line digraph L(G) is the directed pseudograph with vertex set E and an edge

between e, f ∈ E iff e and f are incident (with correct orientations) in G. A directed

pseudograph is called a line digraph if it is some directed pseudograph’s line digraph.

From the following classification of line digraphs, not all digraphs can be realized as

the line digraph of a digraph:

Theorem 5.1 (Line digraph classification, see Theorem 11.2.3 in the book [GS18]).

Let D be a directed pseudograph with no multiple arcs. Then D is a line digraph iff

every pair of rows (or of columns) of its adjacency matrix M are either identical or

orthogonal.

In particular, the digraphs from the doubling map on [0, 1] are line digraphs. How-

ever, the digraphs from the four-legs map are not.

5.4. Numerics for other interval maps

Numerics for the doubling map and one of its unitary quantizations were displayed in

Figures 2.1 and 2.2. Similar results appear for the “four legs map” F (drawn in Figure 2.3)
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and the tripling map T (x) = 3x (mod 1),

F (x) =





2x, 0 ≤ x < 1
4

4
(
x− 1

4

)
, 1

4
≤ x < 1

2

4
(
x− 1

2

)
, 1

2
≤ x < 3

4

2x− 2, 3
4
≤ x ≤ 1

, T (x) =





3x, 0 ≤ x < 1
3

3
(
x− 1

3

)
, 1

3
≤ x < 2

3

3
(
x− 2

3

)
, 2

3
≤ x ≤ 1

.

For the four legs map F , the corresponding Markov matrix P
(F )
n and a particularly simple

unitary (orthogonal) quantization U
(F )
n given in [PZK01, Appendix B] for n ∈ 4N are

P (F )
n =

1

4




2 2
2 2

. . .
2 2

0
1 1 1 1

1 1 1 1 · · · · · ·
1 1 1 1

1 1 1 1
1 1 1 1 · · · · · ·

1 1 1 1

0
2 2

. . .
2 2




,(5.4.1)

U (F )
n =

1

2




√
2 −

√
2 √

2 −
√
2

. . . √
2 −

√
2

0
1 1 1 1

1 1 1 1 · · · · · ·
1 1 1 1

1 1 −1 −1
1 1 −1 −1 · · · · · ·

1 1 −1 −1

0

√
2 −

√
2

. . . √
2 −

√
2




.(5.4.2)
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For the tripling map, the corresponding Markov matrix P
(T )
n and a simple unitary quantiza-

tion U
(T )
n (using a 3× 3 DFT matrix) for n ∈ 3N are

(5.4.3)

P (T )
n =

1

3




1 1 1
1 1 1

. . .
1 1 1

1 1 1
1 1 1

. . .
1 1 1

1 1 1
1 1 1

. . .
1 1 1




, U (T )
n =

1√
3




1 e
2πi
3 e−

2πi
3

1 e
2πi
3 e−

2πi
3

. . .

1 e
2πi
3 e−

2πi
3

1 e−
2πi
3 e

2πi
3

1 e−
2πi
3 e

2πi
3

. . .

1 e−
2πi
3 e

2πi
3

1 1 1
1 1 1

. . .
1 1 1




.

As plotted in Figures 5.2 and 5.3, the unitary matrices U
(F )
n and U

(T )
n appear to have

CUE-like level spacings and eigenvectors with approximately Gaussian coordinate statistics.

Figure 5.2. Four legs map numerics for U
(F )
n for n = 20 000. Top left:

angle level spacing distribution against Wigner surmise for GUE. Top right:
2D coordinate histogram in C for a randomly chosen eigenvector ψ (this one
with eigenvalue 0.972610 − 0.232443i). Bottom left: Histogram of the values
(Reψx)

20 000
x=1 against the pdf of N(0, 1

40 000
). Bottom right: Histogram of the

values (Imψx)
20 000
x=1 against the pdf of N(0, 1

40 000
).

We note that the main focus in [PZK01] was on spectral statistics averaged over phases

Φ ∈ [0, 2π)n that appear through multiplication by the diagonal matrix eiΦ := diag(eiΦ1 , . . . , eiΦn)
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to form the ensemble of unitary matrices eiΦUn. With averaging over these phases, the spec-

tral statistics agree even more closely with those of CUE matrices. It was also observed

there that the spectral statistics for just a single unitary matrix corresponding to the four

legs map still continued to exhibit CUE-like spectral behavior, which we also see for the level

spacings of the matrices here.

Figure 5.3. Tripling map numerics for U
(T )
n for n = 20 001, as in Fig-

ure 5.2, with randomly chosen eigenvector (this one with eigenvalue 0.546244+
0.837691i).
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Part 2

Localization-delocalization transition for

nonhomogeneous random matrices



CHAPTER 6

Introduction and main result

6.1. Introduction

Understanding the eigenvectors of large random matrices, and particularly whether they

are delocalized or localized, is of interest in many areas including mathematical physics,

computer science, and combinatorics. A delocalized vector has roughly equal mass spread

throughout its coordinates, while a localized vector has much of its mass concentrated on

relatively few coordinates. A prime example of generally delocalized vectors is a uniform

random vector from the unit sphere. This describes for example eigenvectors of rotationally

invariant ensembles like the classical Gaussian orthogonal ensemble (GOE). Properties of the

uniform distribution on the sphere are then a benchmark for measuring how delocalized other

vectors are in comparison. Much work has been done to show delocalization of eigenvectors

of general Wigner-type matrices. For a summary and many references, see the book [EY17]

or survey [OVW16].

In contrast to delocalized vectors, the most localized vectors are simply the coordinate

directions, with all mass concentrated on a single coordinate. These arise as eigenvectors

of diagonal matrices, such as a diagonal matrix with iid diagonal Gaussian entries. To

interpolate between the two extremes of a diagonal matrix and a GOE matrix, one can

consider models of varying degrees of sparseness. One such model of interest in mathematical

physics is random band matrices, which (for 1D) are zero outside of a band around the

diagonal, and undergo a transition depending on the band width; see [Bou18] for a survey.

In this part of the thesis we will consider Gaussian matrices arising from d-regular graphs,

which includes the above mentioned Gaussian models (GOE, diagonal, and band1), as well

as many other matrices with a fixed structure. As we will see in Section 6.2, the matrix norm

1If one considers periodic band matrices, which have nonzero entries in the corners as well, then these
matrices have d nonzero entries in each row and column.
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of such matrices is known to undergo a phase transition at d ∼ logN [BvH16]. We will show

this transition is detected not by the localization or delocalization of the top eigenvectors,

but by that of approximate top eigenvectors, by which we will mean a unit vector v with

‖Xv‖2 close to ‖X‖.
Localization and delocalization of vectors can be described by various non-equivalent

notions, such as the ℓ∞ norm or other ℓp norms [ESY09b, ESY09a], joint distribution of

coordinates [TV11], or no-gaps delocalization [RV16]; see also [OVW16] for a survey including

results on different notions of delocalization. Here we will use the complementary notion of

the (L, η)-localization used in [ESY09b, ➜7]. A vector delocalized in this sense will be one

that has no large “peaks” in a small set of coordinates.

Definition 1 (delocalization). Call a vector v ∈ SN−1 (L, κ)-delocalized if for every set

A ⊂ [N ] of size |A| = L, we have
∑

j∈A v
2
j ≤ κ2. The set of (L, κ)-delocalized vectors will be

denoted by

DL,κ :=

{
v ∈ S

N−1 : ∀A ⊂ [N ], |A| = L,
∑

j∈A
|vj|2 ≤ κ2

}
.

Thus a vector in DL,κ is one that has no peaks of mass > κ2 supported on size ≤ L. The

condition becomes stricter for smaller κ and larger L. Since for very small L, the condition to

be in DL,κ becomes very weak, we will typically take L to be proportional to N , say L = νN

(or more precisely L = ⌊νN⌋) for some 0 < ν < 1. In this case we will always assume ν < κ2

otherwise DvN,κ = ∅. Thus colloquially we will refer to a vector, or more precisely a sequence

of vectors, as delocalized if it is (L, κ)-delocalized for some L proportional to N as N → ∞,

and otherwise we will refer to it as localized. In this sense, a delocalized vector is one that is

not concentrated in a vanishing fraction of the coordinates.

Since a uniform random vector on the sphere is the benchmark example of a delocalized

vector, the example in Section 7.2 will show that such a vector is indeed (νN, κ)-delocalized

with high probability for a ν chosen depending on κ.
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6.2. Structured matrices from d-regular graphs

We will look at eigenvectors and approximate eigenvectors for the largest eigenvalues of

structured random matrices arising from d-regular graphs. These matrices can be sparse and

can behave very differently from traditional Wigner matrices. Given an undirected graph

G = (V,E) with vertices V = [N ], let x ∼ y mean that nodes x and y are connected by

an edge. Here self-loops are allowed (and counted as a single edge) but multi-edges are

not allowed. Define the random N × N symmetric matrix X by Xxy = δx∼ygxy, where

gxy are iid standard normal random variables modulo the symmetry requirement gxy = gyx.

This assigns an independent standard normal variable to each edge (xy). For example, the

complete graph on N vertices corresponds to an N ×N GOE matrix, while the graph of N

isolated points with self-loops corresponds to a diagonal matrix with independent N (0, 1)

variables on the diagonal. Note these are not random graphs, but fixed graphs with Gaussian

entries on the adjacency matrix.

Concerning the largest eigenvalue magnitude, for such matrices that come from a d-

regular graph in the method described above, it was shown in [BvH16] that E‖X‖ ≍
√
d +

√
logN .

Theorem 6.1 ([BvH16]). Let X = (Xxy)xy be a symmetric N×N matrix corresponding to a

d-regular graph, with d→ ∞ and Xxy = δx∼ygxy, where gxy are iid N (0, 1) modulo symmetry

requirements. Then for any ε > 0,

(6.2.1) max
{
(2− o(1))

√
d, C

√
logN

}
≤ E‖X‖ ≤ (2 + ε)

√
d+Kε

√
logN.

In particular, if d/ logN → ∞, then

(6.2.2) (2− o(1))
√
d ≤ E‖X‖ ≤ (2 + o(1))

√
d.

The upper bound is Theorem 1.1 in [BvH16]. The lower bound up to a constant is Lemma

3.14 in [BvH16]. The specific constant (2− o(1))
√
d in the lower bound can be obtained by

the moment method or semicircle law, see for example [BvH16, ➜4.1] or [vH17, ➜4.2].
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Based on this theorem, one can expect a phase transition to occur at d ∼ logN , where

the dominating term in the norm bound changes. In the extreme case of a diagonal matrix

(d = 1), the matrix norm is simply the largest (in magnitude) diagonal entry, which is of

order
√
logN , and the eigenvectors are just the coordinate directions. In the other extreme

where d = N , X is GOE and has matrix norm of order 2
√
N = 2

√
d with delocalized

eigenvectors. Equation (6.2.1) suggests that for d ≪ logN , we might obtain the largest

eigenvalue by taking an eigenvector that is localized on the large outliers of order
√
logN .

On the other hand, for d≫ logN , we might obtain the largest eigenvalue by instead taking

a delocalized vector as in the GOE case.

However, this intuition cannot be entirely correct, as can be seen in the example of a block

Wigner matrix X =
⊗N/d

i=1 Y
(d)
i , where each (Y

(d)
i )i is a d×d symmetric Wigner matrix with

iid N (0, 1) entries, and independent of other Y
(d)
i s. Then X is block diagonal with blocks

size d × d, and so its eigenvectors are localized to each block of size d. Then if d ≫ logN

but d ≪ νN , the eigenvectors will not be (νN, κ)-delocalized. However, if d ≫ logN we

can create a delocalized approximate largest eigenvector by taking the top eigenvector of

each block and averaging them. In this context, recall we consider an approximate largest

eigenvector to be a unit vector v such that ‖Xv‖2 is close to achieving the maximum possible

value ‖X‖. Motivated by this block Wigner matrix example, we will look for whether or

not we can find near-maximizers of the norm with good delocalization properties, in order

to identify the phase transition at d ∼ logN .

6.2.1. Main result.

Theorem 6.2 (localization-delocalization transition). Let XN be a sequence of symmetric

N ×N matrices, each from a d = d(N)-regular graph, with (XN)xy = δx∼ygxy, where gxy are

iid N (0, 1) modulo symmetry requirements.

(i) Localization for d = o(logN): Fix 0 < ε < 1 and 0 < κ < 1− ε. If

(6.2.3) E sup
v∈DνN,κ

‖XNv‖ ≥ (1− ε)E‖XN‖,
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then ν .ε,κ
d

logN
. In particular, if d = o(logN), then ν → 0 as N → ∞.

(ii) Delocalization for d ≫ logN : Let 0 < κ < 1 and 0 < ν < cκ2

log e
κ
, where c > 0 is an

absolute constant. If d≫ logN , then with probability 1− o(1),

(6.2.4) sup
v∈DνN,κ

‖XNv‖2 ≥ (1− o(1))E‖XN‖.

Also

(6.2.5) E sup
v∈DνN,κ

‖XNv‖2 ≥ (1− o(1))E‖XN‖.

Remark 6.2.1. (a) Morally, part (i) says that if d = o(logN), then vectors v such

that ‖XNv‖2 is even within just a constant fraction of the top eigenvalue must be

localized. Thus not only are the top eigenvectors localized in this regime, but all

approximate top eigenvectors must be localized as well. In contrast, part (ii) says

that if d ≫ logN , then we can find a good approximation to an eigenvector for

‖XN‖ ≈ 2
√
d by searching in the set DνN,κ of (νN, κ)-delocalized vectors, even if

the actual eigenvectors are localized.

(b) The condition 0 < ν < cκ2

log e
κ
in (ii) is equivalent, up to constant factors, to that

which is required for high probability delocalization of the uniform distribution of

the sphere; see Remarks 7.2.1 and 9.4.1. Thus in the sense of delocalization in

Definition 1, the delocalized approximate largest eigenvector guaranteed by (ii) is

roughly just as delocalized as a typical vector chosen uniformly from the sphere.

(c) For equation (6.2.4), we will prove a lower bound of (2 − o(1))
√
d, which by The-

orem 6.1 is (1 − o(1))E‖XN‖. We first note that obtaining a lower bound of just

(2 − ε)
√
d for ε > 0 and some ν = ν(ε) > 0 is much simpler, because one can

take the top αN eigenvectors of XN , and just use that given any αN orthonormal

vectors, their span must contain a (νN, κ)-delocalized vector for sufficiently small

ν. This works even if the αN vectors are all coordinate vectors, but no longer works

if we consider only o(N) vectors. In order to get the (2 − o(1))
√
d bound, we will

consider a number o(N) of the top eigenvectors, and use projection matrix estimates
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to show that their span contains a delocalized vector. We mention that by [BGP14,

Theorem 2.9], the top eigenvectors of XN cannot be too localized in this regime,

and so this makes the possibility of an o(1) term seem intuitively plausible, as long

as the top eigenvectors do not cluster together too strongly in one area.

(d) Besides block Wigner matrices, another example where d≫ logN but all eigenvec-

tors can be localized are the (1D) band matrices [FM91, Sch09]. In this case, the

proof of Theorem 6.2(ii) implies the top eigenvectors cannot all be concentrated in

too few of the same coordinates, since their span must contain a delocalized vector.

The proof for (i) is to split up a vector v in DνN,κ into its large entries, which are

controlled by delocalization, and its smaller entries, which can be controlled by subgaussian

estimates.

For (ii), the proof idea is to consider the eigenvectors of XN/
√
d with eigenvalues at

least 2− o(1) for some o(1) term, and show that there is a delocalized vector in their span.

Then this delocalized vector automatically satisfies ‖XNv‖2 ≥ (2− o(1))
√
d. Finding such a

delocalized vector is done by approximating the diagonal entries of the associated projection

matrix using resolvents and a (weak) local semicircle law. The estimates on the diagonal

entries will provide Gaussian moment bounds, and these moments restrict how much mass

can accumulate in just νN coordinates.

6.2.2. Outline. In Chapter 7, we review several facts about subgaussian random variables,

discuss the semicircle law, and give the example of delocalization for uniform random vectors

on the sphere. In Chapter 8, we prove part (i) of Theorem 6.2, the localization for d =

o(logN). In Chapter 9, we prove part (ii), starting with proving a (weak) local semicircle

law for the Green’s function in Section 9.1. Then in Section 9.2 we approximate the spectral

projection matrix onto [2−εN , b] in terms of the Green’s function. In Section 9.3, we take the

spectral projection matrix approximation and replace the Green’s function with the Stieltjes

transform of the semicircle law, using the local semicircle law and Gaussian concentration.

This gives the asymptotics for the matrix entries of the spectral projection matrix, which
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are then used in Section 9.4 to show we can pick ν > 0 that ensures a (νN, κ)-delocalized

vector v exists with ‖XNv‖2 ≥ (2− o(1))
√
d.
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CHAPTER 7

Background

7.1. Gaussian concentration and suprema

We gather several useful properties concerning subgaussian random variables. For further

background, see for example the books and notes [BLM13, vH16, Ver18, Wai19]. Recall a

real random variable X is σ2-subgaussian if E[et(X−EX)] ≤ eσ
2t2/2 for all t ∈ R. Tail bounds

follow from the Chernoff bound, for any λ, t > 0,

P[X − EX ≥ t] = P[eλ(X−EX) ≥ eλt] ≤ E[eλ(X−EX)]

eλt
≤ e

σ2λ2

2
−λt,

by taking λ = t/σ2 to minimize the bound, yielding for t ≥ 0,

(7.1.1) P[X − EX ≥ t] ≤ e−
t2

2σ2 .

By symmetry, −X is subgaussian if and only if X is subgaussian, so one also obtains for

t ≥ 0,

(7.1.2) P[EX −X ≥ t] ≤ e−
t2

2σ2 .

The tail bounds give moment bounds, for any p > 0,

E|X − EX|p =
∫ ∞

0

ptp−1
P[|X − EX| > t] dt

≤ 2

∫ ∞

0

ptp−1e
−t2

2σ2 dt = p2p/2σpΓ(p/2).(7.1.3)

One can use this and the series expansion of etx to show that if X satisfies (7.1.1) and (7.1.2),

then X is subgaussian, though possibly with a possibly larger variance proxy σ̃2. Thus up to

constants, subgaussian variables can be characterized using the moment generating function

bound, tail bounds, or moment bounds. They can also be characterized by the ψ2-condition,
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that there exists s > 0 so that EesX
2 ≤ 2, with the subgaussian norm ‖X‖ψ2 := inf{t > 0 :

E exp(X2/t2) ≤ 2}, for details see [Ver18, ➜2].

One can get better constants for p = 1, 2 than in (7.1.3) by using the series expansion

of etx. Letting Y = X − EX, then by Fubini or dominated convergence, since E[e|t||Y |] ≤
E[e|t|Y ] + E[e−|t|Y ],

E[etY ] =
∞∑

n=0

tnEY n

n!
≤ eσ

2t2/2 = 1 +
σ2t2

2
+O(t3).

Since EY = 0, this yields

EY 2

2
+O(t) ≤ σ2

2
+O(t),

so taking t→ 0 yields VarX = EY 2 ≤ σ2, and by Cauchy–Schwarz, E|X − EX| ≤ σ.

An important property of Gaussian random variables is the following classical concen-

tration of measure statement.

Theorem 7.1 (Gaussian concentration). Let X1, . . . , Xn be iid N (0, 1), and let f : Rn → R

be L-Lipschitz with respect to the Euclidean norm. Then f(X)−E[f(X)] is subgaussian with

parameter σ2 ≤ L2, and so

(7.1.4) P
[
|f(X)− E[f(X)]| ≥ t

]
≤ 2e−

t2

2L2 , for all t ≥ 0.

There are several different proofs of Gaussian concentration. A standard one is via the

entropy method and log-Sobolev inequalities, see [BLM13, ➜5.4] or [vH16, ➜3]. A very direct

proof is given in [AT07, ➜2.1] on the way to proving the Borell-TIS inequality, an important

result that suprema of Gaussian processes concentrate. Here though we only deal with finite

sets of Gaussians and will not really need concentration of the maximum anyway.

Note, one cannot replace the Gaussian X1, . . . , Xn with general independent sub-

gaussian random variables, in particular [LT91, ➜1.1/p.25] shows (7.1.4) can fail for

Rademacher/Bernoulli random variables. However, concentration with bounded random
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variables holds with additional convexity assumptions on f , see [BLM13, ➜6.6] or [vH16,

➜4.3].

Gaussian concentration implies concentration of the norm ‖X‖2 for X ∼ N (0, In), as it

is 1-Lipschitz, as well as concentration on the sphere.

Corollary 7.2 (norm concentration and concentration on the sphere).

• Let X ∼ N (0, In). Then for any t ≥ 0,

(7.1.5) P
[∣∣‖X‖2 −

√
n
∣∣ ≥ t

]
≤ 2e−ct

2

,

where c > 0 is an absolute constant. Note that E‖X‖2 =
√
2Γ(n+1

2
)/Γ(n

2
) ≈ √

n.

• Let θ ∼ Unif(Sn−1), so θ ∼ X/‖X‖. Then for any f : Rn → R L-Lipschitz and

t ≥ 0,

(7.1.6) P [|f(θ)− Ef(θ)| ≥ t] ≤ Ce−
ct2n
L2 ,

where c, C > 0 are absolute constants.

Example 7.1 (quantities that concentrate). Useful functions of a random Gaussian matrix

that concentrate include the norm, the largest eigenvalue, and the Green’s function. Let H

be an N ×N real symmetric matrix with some pattern of independent N (0, 1) entries, and

view a function f(H) as a function of the matrix entries, R▽ → R, where R▽ corresponds

to the nonzero entries in the upper triangular part of H. (For the matrices coming from

d-regular graphs, these entries are the (i, j) so that i ∼ j and j ≥ i.)

• For the operator norm f(H) = ‖H‖ = sup‖v‖=1〈v,Hv〉, note that for H and H ′ with the

same sparsity pattern corresponding to entries from R▽,

∣∣∣∣sup
v∈V

〈v,Hv〉 − sup
w∈V

〈w,H ′w〉
∣∣∣∣ ≤ sup

v∈V
|〈v,Hv〉 − 〈v,H ′v〉|

≤ sup
v∈V

‖H −H ′‖F
(

N∑

i,j=1

v2i v
2
j

)1/2

= ‖H −H ′‖F ≤
√
2‖H −H ′‖R▽ ,
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where ‖·‖F is the Frobenius or Hilbert–Schmidt norm, which is the Euclidean norm on the

matrix entries. Thus the norm is
√
2-Lipschitz, and concentrates according to Theorem 7.1.

• More generally, for an L-Lipschitz function F : RN → R, the corresponding function

f(H) := F (λ1(H), . . . , λN(H)) is L-Lipschitz with respect to the Frobenius/Hilbert–

Schmidt norm. This follows from the Hoffman–Wielandt inequality
∑N

i=1(λi(H) −
λi(H

′))2 ≤ tr [(H −H ′)2] = ‖H − H ′‖2F (for ordered eigenvalues of real symmetric or

hermitian matrices), and covers quantities like the norm, largest eigenvalue, and trace of

the resolvent. For details see [AGZ09, Ch.2].

• The Green’s function GH(z; x, y) is the kernel of the resolvent RH(z) := (H−z)−1, defined

as GH(z; x, y) := 〈x|(H−z)−1|y〉. It is complex-valued, but Theorem 7.1 applies to its real

and imaginary parts. For H self-adjoint, since ‖(H − z)−1‖ = dist(z, σ(H)) ≤ | Im z|−1,

then using the second resolvent identity shows,

|GH(z; x, y)−GH′(z; x, y)| =
∣∣〈x|(H − z)−1(H −H ′)(H ′ − z)−1|y〉

∣∣

≤ ‖H −H ′‖F
(∑

ℓ,m

|〈x|RH(z)|ℓ〉|2 · |〈m|RH′(z)|y〉|2
)1/2

= ‖H −H ′‖F (|〈x|RH(z)RH(z)|x〉| · |〈y|RH′(z)RH′(z)|y〉|)1/2

≤ ‖H −H ′‖F
1

| Im z|2 ≤ ‖H −H ′‖R▽

√
2

| Im z|2 ,

so the Green’s function has Lipschitz constant L ≤
√
2

| Im z|2 , and

P[|GH(z; x, y)− EGH(z; x, y)| ≥ t] ≤ P[ReGH(z; x, y)− EReGH(z; x, y)| ≥ t/
√
2]

+ P[| ImGH(z; x, y)− E ImGH(z; x, y)| ≥ t/
√
2]

≤ 4 exp

(
−1

8
t2| Im z|4

)
.

• For considering delocalization for the uniform distribution on the sphere, a useful (non-

matrix) quantity that concentrates is sup A⊂[N ]
#A=νN

(∑
x∈A v

2
x

)1/2
. For a vector w ∈ RN , let

the jth largest coordinate in absolute value be w(j) := j-max(|w1|, . . . , |wN |), and define
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the function f(w) =
(∑νN

j=1w
2
(j)

)1/2
. Then f is 1-Lipschitz, using the reverse triangle

inequality and that if w̃ and ỹ are the sorted vectors (w(1), . . . , w(N)) and (y(1), . . . , y(N))

respectively, then ‖w̃−ỹ‖2 ≤ ‖w−y‖2. (If two entries are out of order, then swapping them

decreases the norm.) Concentration on the sphere then shows that for w ∼ Unif(SN−1),

(7.1.7) P

[∣∣∣∣∣

( νN∑

j=1

w2
(j)

)1/2

− E

( νN∑

j=1

w2
(j)

)1/2
∣∣∣∣∣ ≥ t

]
≤ Ce−ct

2N .

Next, an upper bound on the maximum of a finite number of subgaussian random vari-

ables will be useful in Section 8.

Theorem 7.3 (maximum of a finite number of subgaussians). Suppose X1, . . . , Xn are all

mean zero and σ2-subgaussian. Then

E

[
max
i=1,...,n

Xi

]
≤
√

2σ2 log n.

Proof . For the first part, by Jensen,

E

[
sup
t∈T

Xt

]
≤ 1

λ
logE

[
eλ supt∈T Xt

]
≤ 1

λ
log
∑

t∈T
E
[
eλXt

]

≤ 1

λ

(
log |T |+ σ2λ2

2

)
≤
√
2σ2 log |T |,

by optimizing over λ > 0 to take λ = σ−1
√
2 log |T |. Note this does not require independence.

�

Finally, for looking at the uniform distribution on the sphere in Section 7.2, it will be

useful to have bounds on the expected value of the kth order statistics as well.

Theorem 7.4 (Gaussian order statistics). Let Z ∼ N (0, In), and let Z(k) denote the absolute

values of the entries of Z sorted in decreasing order, Z(1) ≥ Z(2) ≥ · · · ≥ Z(N) ≥ 0. Then for

any 1 ≤ k ≤ n
2
,

(7.1.8) c

√
log

n

k
≤ EZ(k) ≤ C

√
log

n

k
,
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where c, C > 0 are absolute constants.

See also [GLSW06, Example 10], which includes bounds for n
2

≤ k ≤ n. Here, for

1 ≤ k ≤ n
2
, if one does not care about the constants, the proof can be done using union

bound and various estimates on the normal cdf.

7.2. Unit sphere delocalization

For a GOE matrix, the eigenvectors are uniformly distributed on the unit sphere by rota-

tional symmetry. As this is our benchmark example of delocalized vectors, we demonstrate

that with high probability such vectors satisfy the (νN, κ)-delocalization definition. There

are several ways to show this for uniform random vectors on the sphere, e.g. by Gaussian

concentration, estimating integrals, or using order statistics. For this example we start with

Gaussian concentration. Much more precise information on the distributions can be found

in [OVW16, ➜2].

Lemma 7.5 (unit sphere delocalization). Let v be distributed uniformly on the unit sphere

SN−1 ⊂ RN . Fix 0 < κ < 1. Then there are ν = ν(κ) > 0 and β = β(ν) = β(κ) > 0 such

that

(7.2.1) PSN−1 [x ∈ DνN,κ] ≥ 1− 2e−β(ν)N .

Proof . Let g ∼ N (0, IN), so that g
‖g‖2 ∼ Unif(SN−1). Estimating by union bound and using

coordinate symmetry of g,

P

[
g

‖g‖2
6∈ DνN,κ

]
= P

[
∃A ⊂ [N ], #A = νN :

∑

j∈A

g2j
‖g‖22

≥ κ2

]

≤
(
N

νN

)
P

[
νN∑

j=1

g2j ≥ κ2‖g‖22

]

≤
( e
ν

)νN
(
P

[
νN∑

j=1

g2j ≥ κ2
N

2

]
+ P

[
‖g‖22 ≤

N

2

])
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Since the norm concentrates, P
[
‖g‖2 ≤

√
N/2

]
≤ e−cN , for some c > 0, and similarly (for

2ν < κ2),

P

[
νN∑

j=1

g2j ≥
κ2

2ν
· νN

]
≤ exp

(
−c
( κ√

2ν
− 1
)2
νN

)
.

For ν < κ2

8
,
(

κ√
2ν

− 1
)√

ν ≥ κ
2
√
2
. Then by taking ν sufficiently small, we can ensure

the term (e/v)νN term from the union bound is small enough so that
(
e
ν

)νN
(2e−

c
8
κ2N) =

2e−[
c
8
κ2−ν log e

ν ]N with β(ν) := c
8
κ2 − ν log e

ν
> 0. �

Remark 7.2.1. The condition ν log e
ν
< cκ2 required above is around the best we can

hope to get, since from Gaussian order statistics or [OVW16, Theorem 2.7], we expect that

sup A⊂[N ]
#A=νN

∑
x∈A v

2
j ≈ Θ(ν log 1

ν
) for ν small.

One can see this using the order statistics bounds in Theorem 7.4 as follows. As described

in (7.1.7), the function f : SN−1 → R defined by f(w) =
(∑νN

j=1w
2
(j)

)1/2
concentrates around

its mean. Estimates on the mean will follow from (7.1.8), using norm concentration and that

each hj(z) := j-max(|z1|, . . . , |zn|), which gives the jth largest entry, is also 1-Lipschitz. The

general estimate is that for Z ∼ N (0, In),

1

N

νN∑

j=1

(EZ(j))
2 ≍ C ′

N
log

νN∏

j=1

N

j
=
C ′

N
log

(
N νN

(νN)!

)
,

and by Stirling’s formula, assuming νN ≥ 1,

ν log
e

ν
− o(1) ≤ 1

N
log

(
N νN

(νN)!

)
≤ ν log

e

ν
,

with the o(1) term as N → ∞, so that

1

N

νN∑

j=1

(EZ(j))
2 ≍ C ′ν log

e

ν
+ o(1).

Using concentration to replace ‖Z‖2 with N , and EZ2
(j) with (EZ(j))

2, up to some errors that

may just affect the constants then yields for w ∼ Unif(SN−1),

c

√
ν log

e

ν
− o(1) ≤ E

( νN∑

j=1

w2
(j)

)1/2

≤ C

√
ν log

e

ν
+ o(1).
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Thus for a typical w ∼ Unif(Sn−1), we expect that f(w)2 = sup A⊂[N ]
#A=νN

∑
x∈Aw

2
x is around

Cν log e
ν
.

7.3. Semicircle law

If XN corresponds to a d-regular graph with d→ ∞, it is known to follow the semicircle

law, meaning that when scaled as XN/
√
d, its empirical eigenvalue distribution µN converges

weakly in probability to the (non-random) semicircle distribution ρsc(x) = 1
2π

√
(4− x2)+.

As usual, this can be done using the resolvent method (see for example ➜2.4.1 in the book

[AGZ09]), with self-consistent equations (9.1.4), or by the moment method. The Stieltjes

transform Sµ(z) =
∫
R

1
x−z dµ(x) of the semicircle law ρsc will be denoted

Sρsc(z) ≡ msc(z) = −z
2
+

√
z2 − 4

2
,

which branch cut taken in (−2, 2) and
√
z2 − 4 ≈ z for large z. The semicircle law is

equivalent to the statement that the Stieltjes transform SµN (z) = 1
N
tr
(
XN/

√
d − z

)−1
of

the empirical eigenvalue distribution µN converges in probability to msc(z) for any fixed

z ∈ H the upper half-plane. Note that the semicircle law does not predict the largest

eigenvalue or norm ‖XN‖, since one can have a vanishing fraction of eigenvalues escape the

semicircle. However, estimating ‖XN‖ can be done instead by comparing moments as in

Theorem 6.1.

Going beyond the above global semicircle law, a local semicircle law states that SµN (z)−
msc(z) is uniformly small for all z ∈ H with Im z ≥ δN for some δN → 0. It is also often

useful to know that the Green’s function GN(z; x, x) :=
(
XN/

√
d−z

)−1

xx
is close to msc(z) for

all coordinates x = 1, . . . , N , and we will need that here as well. The parameter δN represents

the “spectral resolution”, or roughly how large a window ImSµN (z) sees. Since δN → 0,

a local semicircle law then states that the empirical eigenvalue distribution still looks like

ρsc(x) at a shrinking window of scale δN . Since eigenvalues typically have separation distance

N−1, the optimal δN is any δN ≫ N−1. For general Wigner matrices, local semicircle laws

have been proved on the essentially optimal scale Im z ≫ N−1, first for Wigner matrices in
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[ESY09a], and later improved and generalized to other cases in many papers, see the notes

[BGK16] for background and references in this direction.

In our model which allows for many different matrix structures and can be very sparse,

one cannot hope to understand the spectrum at such a small scale. However, we will only

actually need a weak local semicircle law that allows for Im z → 0 at some (possibly highly

non-optimal) rate.
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CHAPTER 8

Proof of localization for d≪ logN

The proof for localization will only require Gaussian concentration and suprema bounds.

We first prove the following lemma.

Lemma 8.1. Let X be a symmetric N × N matrix with Xxy = δx∼ygxy, where gxy are

iid N (0, 1) modulo symmetry requirements. Let d be the maximum degree of the associated

graph, i.e. the maximum number of nonzero entries in a row. Then

(8.0.1) E sup
v∈DνN,κ

‖Xv‖ ≤ 3

√
d√
ν
+ κE‖X‖.

Proof . Let L = νN and split up the vector v via

E sup
v∈DL,κ

‖Xv‖ ≤ E sup
v∈DL,κ

‖X(v✶|vj |≤ 1√
L
)‖+ E sup

v∈DL,κ

‖X(v✶|vj |> 1√
L
)‖.(8.0.2)

The term with |vi| ≤ 1√
L
will be bounded by the supremum bound for subgaussian random

variables, while the term with |vi| > 1√
L
will be bounded using the definition of DL,κ.

We start with E supv∈DL,κ
‖X(v✶|vi|> 1√

L
)‖. For a unit vector v, the set A := {i : |vi| > 1√

L
}

has cardinality ≤ L. If v ∈ DL,κ, then

‖(v✶|vi|> 1√
L
)‖2 =

∑

i:|vi|> 1√
L

v2i ≤ κ2,

so that

sup
v∈DL,κ

‖X(v✶|vi|> 1√
L
)‖ ≤ sup

v∈DL,κ

‖X‖‖(v✶|vi|> 1√
L
)‖ ≤ κ‖X‖.(8.0.3)

For the other term, write

sup
v∈DL,κ

‖X(v✶|vi|≤ 1√
L
)‖ ≤ sup

w∈SN−1

sup
‖v‖∞≤ 1√

L

〈w,Xv〉 = 1√
L

sup
w∈SN−1

max
v:vi=±1

〈Xw, v〉,
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since the supremum of 〈Xw, v〉 over ‖v‖∞ ≤ 1√
L
occurs when vi =

1√
L
sgn((Xw)i). Thus

sup
v∈DL,κ

‖X(v✶|vi|≤ 1√
L
)‖ ≤ 1√

L
max
v:vi=±1

‖Xv‖2.

For ‖v‖∞ ≤ 1, f(X) := ‖Xv‖2 is 2d-subgaussian on (R▽, ‖·‖2), since for symmetric matrices

M = (xij), M
′ = (x′ij),

|f(M)− f(M ′)|2 ≤ ‖(M −M ′)v‖2 =
N∑

i=1

(∑

j:j∼i
(xij − x′ij)vj

)2

≤
N∑

i=1

∑

j:j∼i
(xij − x′ij)

2 · d

≤ 2d
N∑

i=1

∑

j:j∼i
j≥i

(xij − x′ij)
2 = 2d‖M −M ′‖2

R▽ ,

where ‖ · ‖R▽ denotes the Euclidean norm on the nonzero entries in the upper triangular

part of the structured matrix (these are the (i, j) so that i ∼ j and j ≥ i). Since there are

2N possible v’s to maximize over, the supremum bound for subgaussian variables yields

1√
νN

E max
vi=±1

‖Xv‖2 ≤
1√
νN

E max
vi=±1

(|‖Xv‖ − E‖Xv‖|+ E‖Xv‖)

≤ 1√
νN

(√
4d log 2N +

√
Nd
)
≤ 3

√
d√
ν
,

where we also used that

max
vi=±1

E‖Xv‖ = max
vi=±1

E

√√√√
N∑

j=1

∣∣∣∣∣
∑

k:k∼j
Xjkvk

∣∣∣∣∣

2

≤ max
vi=±1

√√√√
N∑

j=1

E|N (0, d)|2 =
√
Nd.

Then with (8.0.3) we obtain (8.0.1). �

Proof of Theorem 6.2(i). If (6.2.3) holds, then

(1− ε)E‖X‖ ≤ E sup
v∈DL,κ

‖Xv‖ ≤ 3

√
d√
ν
+ κE‖X‖.(8.0.4)

Isolating E‖X‖ and using E‖X‖ ≥ C
√
logN yields

√
ν ≤ 3

1− ε− κ

√
d

E‖X‖ ≤ 3

1− ε− κ
·

√
d

C
√
logN

.(8.0.5)
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CHAPTER 9

Proof of delocalization for d≫ logN

9.1. Somewhat local semicircle law

We start to prove Theorem 6.2(ii). Recall GN(z; x, y) =
(
XN/

√
d − z

)−1

xy
is the Green’s

function. In this section, we state a (weak) local semicircle law, which will state that

EGN(z; x, x) is close to msc(z), on a somewhat local scale. This will allow us to replace

EGN(z; x, x) in approximations by the explicit and x-independent msc(z), as long as z does

not approach the real line too quickly. This local semicircle law follows from a general re-

sult in [BBvH21] using free probability, or by a bootstrap method using the self-consistent

equations like that described in [EY17, ➜7].

9.1.1. As a consequence of free probability. Consider an N × N random matrix of

the form X =
∑n

i=1 giAi, for gi iid N (0, 1) and Ai self-adjoint N × N matrices over C.

Define the free analogue Xfree :=
∑n

i=1Ai ⊗ si, for s1, . . . , sn a free semicircular family in a

C∗-probability space (B, τ). The following was shown in [BBvH21].

Theorem 9.1 ([BBvH21], special case of Theorem 2.8). For the above model, for z ∈ H,

define the Stieltjes transforms G(z), Gfree(z) as

G(z) = E(X − z)−1, Gfree(z) = (id⊗τ)[(Xfree − z ⊗ ✶B)
−1] ∈MN×N(C).

Define ṽ(X)2 := ‖Cov(X)‖ ·
∥∥∑n

i=1A
2
i

∥∥1/2. Then

(9.1.1) ‖G(z)−Gfree(z)‖ ≤ ṽ(X)4| Im z|−5.
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In our case where XN is associated with a d-regular graph and X = XN√
d
, we have XN√

d
=

∑
(i,j):i∼j
i≥j

gijA(i,j), where gij are iid N (0, 1), and A(i,j) :=
1√
d
(|i〉〈j|+ δi 6=j|j〉〈i|). Then

∥∥∥
∑

(i,j):i∼j
i≥j

A2
(i,j)

∥∥∥ =
1

d

∥∥∥
∑

(i,j):i∼j
i≥j

|i〉〈i|+ δi 6=j|j〉〈j|
∥∥∥

=
1

2d

∥∥∥
∑

(i,j):i∼j
|i〉〈i|+ |j〉〈j|

∥∥∥ =
1

2d
‖2d · Id‖ = 1,

and ‖Cov(XN/
√
d)‖ = 1

d
, so that ṽ(X)4 = 1

d
. Then it remains to find Gfree(z). The Stieltjes

transform Gfree(z) satisfies the matrix equation (cf. [HT05, equation (1.5)]),

∑

(i,j):i∼j
i≥j

A(i,j)Gfree(z)A(i,j)Gfree(z) + zGfree(z) + IdN = 0,

which can be re-written using E[gijgkℓ] = δ(i,j),(k,ℓ) as

−zGfree(z)−
1

d
E [XNGfree(z)XN ]Gfree(z) = IdN .(9.1.2)

This is a matrix equation of the form VW + η(W )W = I, considered in e.g. [HFS07], with

W = −iGfree(z), V = −iz Id, and η(W ) = 1
d
E [XNWXN ]. Note thatWsc(z) := −imsc(z) IdN

satisfies equation (9.1.2) for W = −iGfree(z). By [HFS07, Theorem 2.1], this is then the

unique solution with ReW > 0. Note for z ∈ H, that ImGfree(z) is positive since Xfree is

self-adjoint and τ is completely positive. Then Re(−iGfree(z)) = ImGfree(z) > 0, and so by

uniqueness we must have Gfree(z) = msc(z) IdN .

Thus for any z ∈ H, (9.1.1) reads

(9.1.3)
∥∥(XN/

√
d− z)−1 −msc(z)IdN

∥∥ ≤ 1

d| Im z|5 .

9.1.2. Bootstrap method. This kind of method has been used often to prove local semi-

circle laws in random matrix theory, see for example the book [EY17, ➜7], or [EKYY13a, ➜3],

[EKYY13b], among others. Our case is simpler and can be done with expectation values.

The general idea is to obtain self-consistent equations for the Green’s function with an error
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term, and then prove a stability result that implies the Green’s function must be close to

the error-term-free solution msc(z), as the error term tends to zero. For our case, this can

be done in the following steps.

(1) Prove stability (|EGN(z; x, x)−msc(z)| is very small) for large Im z using the self-

consistent equations.

(2) Use the self-consistent equations again to prove a dichotomy result, that the quantity

|EGN(z; x, x)−msc(z)| is either somewhat large or very small.

(3) Bootstrap down from larger Im z using the dichotomy result: Start with the large

Im z where |EGN(z; x, x) − msc(z)| is very small, and use Lipschitz continuity to

conclude the same must hold for sufficiently close z by the dichotomy. Continue

extending by bootstrapping small distances away from these new z.

Lemma 9.2 (self-consistent equations). For z ∈ C \ R and x, y ∈ [N ], let GN(z; x, y) :=
(
XN√
d
− z
)−1

xy
. Then

(9.1.4) zEGN(z; x, x) = −1− EGN(z; x, x) ·
1

d

∑

ℓ:ℓ∼x
EGN(z; ℓ, ℓ) + ΦXN ,d,z,x,x, ∀x ∈ [N ],

with |ΦXN ,d,z,x,x| ≤ d−1(| Im z|−2 + 2| Im z|−3). For the off-diagonal terms x 6= y,

(9.1.5) zEGN(z; x, y) = −EGN(z; x, y) ·
1

d

∑

ℓ:ℓ∼x
EGN(z; ℓ, ℓ) + ΦXN ,d,z,x,y, ∀x, y ∈ [N ],

with |ΦXN ,d,z,x,y| ≤ d−1(| Im z|−2 + 2| Im z|−3).

The proof is the standard one for Gaussian matrices, using integration by parts and

concentration, just keeping track of the individual entries instead of taking the trace. The

details are written in Appendix A.1.

As long as d → ∞, (9.1.4) implies the global semicircle law since the matrix S, defined

as 1
d
times the adjacency matrix of the graph, is bistochastic. For a local semicircle law, we

need to estimate how much each diagonal element EGN(z; x, x) deviates from msc(z), the

unique solution in H (cf. [AEK19, Theorem 2.1]) to (9.1.4) when ΦXN ,d,z,x,x = 0.
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Notation: Let z = E + iη, and let gN,x(z) := EGN(z; x, x) and g̃N,x(z) := EGN(z; x, x)−
msc(z). Let gN and g̃N be the vectors (gN,x)

N
x=1 and (g̃N,x)

N
x=1, respectively. If z is fixed or

its value is clear we may omit it in gN,x, gN , g̃N,x, g̃N , or msc.

Lemma 9.3 (Large η bound). Suppose (9.1.4) holds for a z with η ≥ 2. Then for this z,

(9.1.6) max
x=1,...,N

|gN,x(z)−msc(z)| ≤
Cz
d
,

where Cz <∞ is a z-dependent constant independent of N .

Proof . Same as in random matrix papers. The self-consistent equation (9.1.4) can be rear-

ranged to read

gN,x =
−1 + ΦXN ,d,z,x,x

z + (SgN)x
.

Then using that msc(z) = − 1
z+msc(z)

,

g̃N,x =
−1 + ΦXN ,d,z,x,x

z +msc(z) + (Sg̃N)x
+

1

z +msc(z)
=

(z +msc(z))ΦXN ,d,z,x,x + (Sg̃N)x
(z +msc(z) + (Sg̃N)x)(z +msc(z))

.

The denominator can be bounded from below, using |z +msc(z)| = |msc(z)
−1| ≥ | Im z| and

|(Sg̃N)x| ≤ 2
| Im z| , to obtain for | Im z| ≥ 2,

|g̃N,x(z)| ≤
(|z|+ 1) · ΦXN ,d,z,x,x + |(Sg̃N(z))x|

(| Im z| − 2
| Im z|)| Im z| ≤ 1

2
(|z|+ 1)

| Im z|+ 2

| Im z|3d +
1

2
max
k

|g̃N,k|.

Taking the maximum over x yields (9.1.6) with Cz = (|z|+ 1)(| Im z|+ 2)| Im z|−3. �

The next lemma says that either maxx g̃N,x is somewhat large or very small. In particular,

if we can show maxx |g̃N,x| is not very large then it must be very small.

Lemma 9.4 (Dichotomy). Let Ω be the rectangle Ω = {E + iη : b1 ≤ E ≤ b2, 0 < η ≤ b3},
and by Lemma A.1 let c > 0 be chosen so that 1− |msc(z)|2 ≥ c Im z in Ω. For a z ∈ Ω, if

both (9.1.4) and maxx |g̃N,x(z)| ≤ c
2
| Im z| hold, then

(9.1.7) max
x

|g̃N,x(z)| ≤
2
c
(b3 + 2)

d| Im z|4 .
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Proof . Using zmsc(z) = −1−msc(z)
2 along with (9.1.4) yields the self-consistent equations

for g̃N = gN −msc,

(9.1.8) zg̃N,x = − (g̃N,x(Sg̃N)x +msc(Sg̃N)x +mscg̃N,x) + ΦXN ,d,z,x,x,

with the same error term |ΦXN ,d,z,x,x| ≤ CΩ

d| Im z|3 , where CΩ := b3 + 2. Then taking absolute

values and maximums yields,

|z +msc||g̃N,x| ≤ |g̃N,x||(Sg̃N)x|+ |msc||(Sg̃N)x|+
CΩ

d| Im z|3

≤ max
k

|g̃N,k|2 + |msc|max
k

|g̃N,k|+
CΩ

d| Im z|3 .

Taking the maximum over x and multiplying through by |msc| ≤ 1,

max
x

|g̃N,x|(1− |msc|2) ≤ max
x

|g̃2N,x|+
CΩ

d| Im z|3 ,

and then using 1− |msc(z)|2 ≥ c Im z and maxx |g̃N,x| ≤ c
2
Im z yields

max
j

|g̃N,x|(c Im z −max
x

|g̃N,x|) ≤
CΩ

d| Im z|3

max
x

|g̃N,x| ≤
2CΩ

cd| Im z|4 .

�

Stability for z with η < 2 will then follow by bootstrapping the bound in Lemma 9.3 to

smaller η using Lemma 9.4.

Proposition 9.5 (Diagonal stability). Suppose (9.1.4) holds in the rectangle Ω = {E + iη :

b1 ≤ E ≤ b2, 0 < η ≤ b3} where b3 ≥ 2, and let c > 0 be chosen so that 1−|msc(z)|2 ≥ c Im z

in Ω. Then there is a constant C(Ω) so that for any z ∈ Ω and d ≥ 4C(Ω)
c| Im z|5 ,

(9.1.9) max
x=1,...,N

|gN,x(z)−msc(z)| ≤
C(Ω)

d| Im z|4 .

Proof . Take C(Ω) := max
(

2
c
(b3 + 2), (1 +

√
max(b21, b

2
2) + b23)(b3 + 2)b3

)
. Then Lemma 9.3

covers the case when | Im z| ≥ 2, since C(Ω)
| Im z|4 ≥ supz∈Ω,| Im z|≥2Cz. Fix z = E+ iη with η < 2,
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and let Ωη := Ω ∩ {w ∈ C : Imw ≥ η}. Since

(9.1.10) sup
w∈Ωη

∣∣∣∣
∂EGN(w; x, y)

∂w

∣∣∣∣ ≤
1

η2
, sup

w∈Ωη

∣∣∣∣
∂msc(w)

∂w

∣∣∣∣ ≤
1

2

(
1 +

supw∈Ωη
|w|

√
2η

)
,

each |g̃N,x| is Lipschitz on Ωη with some Lipschitz constant L(η,Ω), and thus so is the function

maxx∈[N ] |g̃N,x|. Let z0 = E + 2i and set α := cη
4L(η,Ω)

the step size. Set zk = zk−1 − αi for

k = 1, . . . , kf , stopping at zkf := z = E + iη (the last step size may be smaller than α), so

that kf ≤ ⌈2−η
α
⌉ <∞. We show by induction that

(9.1.11) max
x∈[N ]

|g̃N,x(zk)| ≤
C(Ω)

dη4
,

for each k. The base case k = 0 is covered by Lemma 9.3. If (9.1.11) holds for k − 1, then

since maxx |g̃N,x| is L(η,Ω)-Lipschitz in z,

max
x∈[N ]

|g̃N,x(zk)| ≤ |zk − zk−1|L(η,Ω) + max
x∈[N ]

|g̃N,x(zk−1)|

≤ cη

4
+
C(Ω)

dη4
≤ cη

2
,

so Lemma 9.4 implies maxx |g̃N,x(zk)| ≤ C(Ω)
dη4

. �

Proposition 9.6 (Off-diagonal stability). Suppose (9.1.5) holds for all z in the rectangle

Ω = {E + iη : b1 ≤ E ≤ b2, 0 < η ≤ b3} where b3 ≥ 2, and let c and C(Ω) be defined as in

Proposition 9.5. Then there is C ′(Ω) so that for any z ∈ Ω and d ≥ max
(

4C(Ω)
c| Im z|5 ,

2C(Ω)
| Im z|4

)
,

(9.1.12) |EGN(z; x, y)| ≤
C ′(Ω)

d| Im z|3 , x 6= y.

Proof . Recall the self-consistent equations for the off-diagonal terms is (9.1.5). Using Propo-

sition 9.5, (9.1.5) becomes

zEGN(z; x, y) = −EGN(z; x, y) · (msc(z) + ΞXN ,d,x(z)) + ΦXN ,d,z,x,y,(9.1.13)

with

|ΞXN ,d,x(z)| ≤
C(Ω)

d| Im z|4 ≤ 1

2
.
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Thus

|EGN(z; x, y)| =
|ΦXN ,d,z,x,y|

|z +msc(z)| − |ΞXN ,d,x(z)|
≤ 4 + 2| Im z|

d| Im z|3 ,

since |z +msc(z)| > 1. �

9.2. Projection matrix approximation

Let P[2−εN ,b] be the projection matrix of XN/
√
d onto the subspace spanned by the

eigenvectors {ψ(N,j) : λ(N,j) ∈ [2− εN , b]}, where b > 2 is a fixed number like b = 10. We will

estimate the matrix elements of P[2−εN ,b] using expressions involving resolvents.

Let aN = 2 − εN , and approximate the indicator function of [aN , b] using arctangents,

which will then involve the Green’s function which will be close to msc(z). One motivation

for the approximation is Stone’s formula, or alternatively just properties of the Poisson kernel

on H.

Proposition 9.7 (Stone’s formula). If H is self-adjoint, as δ → 0

(9.2.1)
1

π

∫ b

a

Im
1

H − (λ+ iδ)
dλ

s−→ 1

2
(P(a,b) + P[a,b]),

where convergence is in the strong operator topology.

For the diagonal matrix elements, if we have enough control on the convergence of

EGN(z; jN , jN) → msc(z), then we can replace EGN(z; jN , jN) by msc(z) and compute the

expected projection matrix elements as N → ∞ using msc(z). More specifically, let

aN = 2− εN

a−N = 2− εN − γN

a+N = 2− εN + γN ,
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where we will take δN ≪ γN ≪ εN , and set

A−
N,δ =

1

π

∫ b

a−N

Im

( X√
d
− z
)−1

dλ(9.2.2)

A+
N,δ =

1

π

∫ b

a+N

Im

( X√
d
− z
)−1

dλ.(9.2.3)

A−
N,δ approximates the projection matrix diagonal elements roughly mostly from above, while

A+
N,δ approximates the projection matrix diagonal elements roughly mostly from below. We

will take δN → 0 so that (A−
N,δN

)xx and (A+
N,δN

)xx are close to (P[aN ,b])xx, but will take δN → 0

sufficiently slowly that we can guarantee GN(λ + iδN ; x, x) is close to msc(λ + iδN). In the

following estimates we use the asymptotic tan−1 x = π
2
− 1

x
+O(x−3) as x→ ∞, and relation

0 ≤ tan−1
(
b−λ(j)
δ

)
− tan−1

(
a−λ(j)
δ

)
≤ π for a ≤ b.

Assume the spectrum of XN/
√
d is bounded away below b. For example, take b = 10, so

the largest eigenvalue is < b with very high probability, by Theorem 6.1 and matrix norm

concentration. By the spectral theorem, we can compute (A±
N,δ)xy as follows, using

∫ b

a

Im
1

λ(j) − E − iδN
dE =

∫ b

a

δN
(λ(j) − E)2 + δ2N

dE

= tan−1

(
b− λ(j)

δN

)
− tan−1

(
a− λ(j)

δN

)
.

9.2.1. Diagonal entry estimates. For the upper approximation, neglecting the sum over

λ(j) < aN which is nonnegative, and then using the asymptotic for arctangent, yields,

(A−
N,δN

)xx =


 ∑

j:λ(j)≥aN

+
∑

j:λ(j)<aN


 1

π

(
tan−1

(
b− λ(j)

δN

)
− tan−1

(
aN − γN − λ(j)

δN

))
|ψ(j)
x |2

(9.2.4)

≥
∑

j:λ(j)≥aN

1

π

(π
2
−O(δN)−

(
−π
2
+O(δN/γN)

))
|ψ(j)
x |2

≥
∑

j:λ(j)≥aN

(1−O(δN/γN)) |ψ(j)
x |2

= (P[aN ,b])xx(1−O(δN/γN))
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since if λ(j) ≥ aN then aN−γN−λ(j)
δN

≤ −γN
δN

→ −∞ if δN ≪ γN .

For the lower approximation,

(A+
N,δN

)xx =


 ∑

j:λ(j)<aN

+
∑

j:λ(j)≥aN


 1

π

(
tan−1

(
b− λ(j)

δN

)
− tan−1

(
aN + γN − λ(j)

δN

))
|ψ(j)
x |2

(9.2.5)

≤
∑

j:λ(j)<aN

1

π

(
tan−1

(
b− λ(j)

δN

)
− tan−1

(
aN + γN − λ(j)

δN

))
|ψ(j)
x |2 + (P[aN ,b])xx

=
∑

j:λ(j)<aN

1

π

[π
2
−O(δN)−

(π
2
−O(δN/γN)

)]
|ψ(j)
x |2 + (P[aN ,b])xx

= O(δN/γN) + (P[aN ,b])xx.

since if λ(j) < aN then aN+γN−λ(j)
δN

> γN
δN

→ +∞.

Thus if maxλ(j) ≤ β < b and δN ≪ γN , then

(9.2.6) (A+
N,δ)xx −O

( δN
γN

)
≤ (P[aN ,b])xx ≤ (A−

N,δ)xx

(
1 +O

( δN
γN

))
.

We will see later that (P[aN ,b])xx ≈ 2
3π
ε
3/2
N , so in order for the error terms above to be o(ε

3/2
N ),

we will need δNγ
−1
N ≪ ε

3/2
N .

9.3. Replacement with semicircle law

Next, we want to replace the Green’s function in the integral expression of A±
N,δN

with

the Stieltjes transform msc(z) of the semicircle law. The estimates for this are the weak local

semicircle stability results from Section 9.1, and Gaussian concentration for the Green’s func-

tion. These estimates control the error terms from replacing GN(z; x, x) with EGN(z; x, x)

and then with msc(z). Then evaluating the integral in A±
N,δN

with msc(z) instead yields the

desired result.
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Theorem 9.8 (Projection matrix elements). Suppose d/ logN → ∞ and suppose that for

each fixed z ∈ H, that

(9.3.1) max
x∈[N ]

|EGN(z; x, x)−msc(z)| → 0, as N → ∞.

Let P[a,b] be the spectral projection matrix of XN/
√
d onto the interval [a, b]. Then there is a

sequence εN → 0 so that with probability at least 1 − o(1), the matrix P[2−εN ,b] has diagonal

elements

(P[2−εN ,b])xx =
2

3π
ε
3/2
N (1 + o(1)),(9.3.2)

with the error term uniform in x ∈ [N ].

9.3.1. Proof of Theorem 9.8. A uniform continuity argument (Lemma A.3) shows that

(9.3.1) implies the existence of a sequence δ̃N > 0, δ̃N → 0, so that as N → ∞,

(9.3.3) E(N, δ̃N) := sup
δ̃N≤γ≤1

sup
λ∈[0,b]

max
x∈[N ]

|EGN(λ+ iγ; x, x)−msc(λ+ iγ)| → 0.

Any sequence αN → 0 with αN ≥ δ̃N will also satisfy E(N,αN) → 0. Then take

δN := max

((
16 logN

d

)5/22

, δ̃N

)
(9.3.4)

εN ≫ max(E(N, δN)2, δ2/5N ), εN → 0(9.3.5)

tN := δ
1/5
N(9.3.6)

γN := ε
1/2
N δ

1/5
N ,(9.3.7)

so that tN ≪ ε
1/2
N , and δN ≪ δ

2/5
N ≪ γN ≪ εN , and

δN
γN

≪ ε
3/2
N . Since δN → 0, this will

allow us to approximate P[2−εN ,b] well using A
±
N,δN

which has the Green’s function. Then we

replace the Green’s function with its expectation by concentration of measure, and then since

E(N, δN) ≤ E(N, δ̃N) → 0, this will then let us replace the Green’s function with msc(z).
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Remark 9.3.1. Equations (9.1.3) or (9.1.9) from the (somewhat) local semicircle law give

a quantitative bound on E(N, δN), which allows us to take any sequence εN > 0 satisfying

(9.3.8) εN → 0, εN ≫ δ
2/5
N ∼ max

[(
logN

d

)1/11

,
1

d2/25

]
,

by taking for example

δN := max

((
16 logN

d

)5/22

,

(
4C(Ω)

cd

)1/5
)

(9.3.9)

tN := δ
1/5
N , γN := ε

1/2
N δ

1/5
N ,(9.3.10)

where the constants C(Ω) and c are the same as in Propositions 9.5.

Returning to the proof of Theorem 9.8, we start with the estimate for replacingGN(z; x, y)

by its expectation.

Lemma 9.9 (Green’s function concentration). For any t ≥ 0, z ∈ H, and x, y ∈ [N ],

P [|GN(z; x, y)− EGN(z; x, y)| ≥ t] ≤ 4 exp

(
−1

8
t2d| Im z|4

)
.(9.3.11)

Proof . The Lipschitz constant for f(X) = 〈x|(X/
√
d− z)−1|y〉 is bounded above by

√
2√

d| Im z|2

by Example 7.1. �

By Lemma 9.9 and a union bound,

P

[
max
x∈[N ]

∣∣GN(λ+ iδN ; x, x)− EGN(λ+ iδN ; x, x)
∣∣ ≥ tN

]

≤ 4N exp

(
−1

8
t2Ndδ

4
N

)

= 4 exp

(
− logN

[
1

8
t2Nδ

4
N

d

logN
− 1

])

≤ 4 exp (− logN) =
4

N
,

where we used (9.3.6) and the first term in the max() in the definition (9.3.4) of δN . Thus

with probability at least 1− 4
N
, all GN(λ+ iδN ; x, x) are within tN of their expected values.
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From (9.3.3), the expected value EGN(λ + iδN ; x, x) will be close to msc(λ + iδN). For

⋆ ∈ {+,−}, write

(9.3.12) (A⋆N,δN )xx =
1

π
Im

∫ b

a⋆N

msc(λ+ iδN) dλ+

+
1

π
Im

∫ b

a⋆N

EGN(λ+ iδN ; x, x)−msc(λ+ iδN) dλ+

+
1

π
Im

∫ b

a⋆N

GN(λ+ iδN ; x, x)− EGN(λ+ iδN ; x, x) dλ.

The two error terms are bounded as follows. For N sufficiently large that δN ≤ 1, then by

(9.3.3) and (9.3.5), the first error term is

∣∣∣∣∣
1

π
Im

∫ b

a⋆N

EGN(λ+ iδN ; x, x)−msc(λ+ iδN) dλ

∣∣∣∣∣ ≤
εN + γN

π
E(N, δN) = o(ε

3/2
N ).(9.3.13)

For the second error term, with probability at least 1− 4
N
,

max
x=1,...,N

∣∣∣∣∣
1

π
Im

∫ b

a⋆N

GN(λ+ iδN ; x, x)− EGN(λ+ iδN ; x, x) dλ

∣∣∣∣∣ ≤
εN + γN

π
· tN = o(ε

3/2
N ).

(9.3.14)

For δN ≪ ε2N , the integration of msc is (computation in Lemma A.2)

1

π
Im

∫ b

a⋆N

msc(λ+ iδN) dλ =
2

3π
ε
3/2
N (1 + o(1)).

Thus with probability at least 1− 4
N
, for ⋆ ∈ {+,−} and any x ∈ [N ],

(9.3.15) (A⋆N,δN )xx =
2

3π
ε
3/2
N (1 + o(1)),

with the error term uniform in x. Combining with (9.2.6), noting that δN
γN

= o(ε
3/2
N ), then

with probability at least 1− o(1),

(9.3.16) (P[2−εN ,b])xx =
2

3π
ε
3/2
N (1 + o(1)),

with the error term uniform in x, which is (9.3.2).
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9.4. Delocalized random vector

Since P[2−εN ,b] is the projection matrix onto the space spanned by the eigenvectors with

eigenvalues in [2− εN , b], any vector in this subspace will satisfy ‖XNv‖2 ≥ (2− εN)
√
d. We

just need to find a vector in this subspace that is delocalized. This will follow from Theo-

rem 9.8, which describes the covariance matrix of a random Gaussian from this subspace,

and the following consequences.

Lemma 9.10 (Gaussian moments). For N ∈ N, let P (N) be orthogonal projection onto a

subspace V (N) ⊂ RN of dimension mN with mN → ∞ as N → ∞, and suppose

(9.4.1) (P (N))xx ≡
mN∑

j=1

|ψ(N,j)
x |2 = mN

N
(1 + o(1)),

with error term uniform in x ∈ [N ]. Choose q > 2. If w ∈ V (N) is a unit vector chosen

randomly from Haar measure on the unit sphere of V (N), then as N → ∞,

(9.4.2) E

[
N∑

x=1

|wx|q
]
=

Cq
N q/2−1

(1 + o(1)),

where Cq = E|g|q = 2q/2Γ( q+1
2 )√

π
with g ∼ N (0, 1).

Proof . Let (ψ(N,j)) be an orthonormal basis for V (N), and write w =
∑mN

j=1 αjψ
(N,j), where

α ∼ Unif(SmN−1). Since w is essentially multivariate Gaussian 1

m
1/2
N

N (0, P (N)), (9.4.1) fol-

lows from computing multivariate Gaussian moments.

More carefully, N (0, P (N)) ∼ rw, where r2 ∼ χ2(mN) is independent of w.1 Then

E|wx|q = 1
Erq

E|Zx|q, for (Z1, . . . , Zn) ∼ N (0, P (N)). The chi-square distribution χ2(m) has

probability density function

fm(t) =





tm/2−1e−t/2

2m/2Γ(m
2 )
, t ≥ 0

0, t < 0

,

1For A(N) theN×mN matrix whose columns are the vectors ψ(N,j), then N (0, P (N)) ∼ A(N)N (0, ImN
) ∼

rA(N)α ∼ rw, where α ∈ Unif(SmN−1), and r and α are independent by writing the density of N (0, ImN
) in

polar coordinates which factors.
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so that

Erq =

∫ ∞

0

tq/2
tmN/2−1e−t/2

2mN/2Γ
(
mN

2

) dt = 2q/2
Γ
(
mN+q

2

)

Γ
(
mN

2

) ∼ m
q/2
N , as mN → ∞.

Since (Z1, . . . , Zn) ∼ N (0, P (N)), each Zx by itself is centered normal with variance P
(N)
xx , so

E|Zx|q = (P (N)
xx )q/2E|g|q = (P (N)

xx )q/2Cq,

where g ∼ N (0, 1). Thus

E|wx|q = Cq(P
(N)
xx )q/2

Γ
(
mN

2

)

2q/2Γ
(
mN+q

2

) =
Cq
N q/2

(1 + o(1)).

�

Since the qth moment of some w is bounded (after suitable scaling), this lets us find a ν >

0 for delocalization. Essentially, if we had to take ν → 0 to ensure sup A⊂[N ]
#A=νN

∑
x∈A |wx|2 ≤

κ2, then all qth moments of
√
Nw divided by N must diverge as N → ∞ for q > 2.

Corollary 9.11 (delocalization and moments). Fix 0 < κ < 1, and let P (N) and V (N) be

as in Lemma 9.10, including (9.4.1). There for any 0 < ν < cκ2

log 1
κ

, where 0 < c < 1 is

an absolute constant, and for sufficiently large N , there is a (νN, κ)-delocalized unit vector

w ∈ V (N).

Proof . Let q = 4 log e
κ

≥ 4. By Lemma 9.10, there is a unit vector w ∈ V (N) so that

N q/2−1
∑N

x=1 |wx|q ≤ Cq + o(1) as N → ∞. By Hölder, then for any set A ⊂ [N ] with

#A = νN ,

∑

x∈A
|wx|2 ≤ (νN)1−2/q

(∑

x∈A
|wx|q

)2/q

≤ ν1−2/qC2/q
q + o(1).(9.4.3)

By Stirling’s formula inequality,

C2/q
q =

2
(
Γ
(
q+1
2

))2/q

π1/q
≤ 2(q − 1)

(2e)1−1/q
e

1
3q(q−1) ≤ 8 log e

κ

(2e)3/4
e1/36 = C log

e

κ
.
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So for ν ≤ cκ2

log e
κ
,

ν1−2/qC2/q
q ≤ c1−2/q(κ2)1−2/q

(log e
κ
)1−2/q

· C log
e

κ
≤ c1/2Cκ2 · (log

e
κ
)2/q

(κ2)2/q
.

Since q = 4 log e
κ
, then (log e

κ
)2/q = exp

(
1

2 log e
κ
log log e

κ

)
≤ C̃, since the expression is contin-

uous in κ and tends to 1 as κ→ 0 or κ→ 1. Similarly,

(κ2)2/q = exp

( − log 1
κ

1 + log 1
κ

)
≥ 1

e
,

since 0 < log 1
κ
< ∞. Thus ν1−2/qC

2/q
q ≤ c1/2CC̃eκ2, so choosing c a sufficiently small

absolute constant ensures that (9.4.3) becomes,

sup
A⊂[N ]
#A=νN

∑

x∈A
|wx|2 < (1− δ)κ2 + o(1), for some δ > 0,

which will eventually be ≤ κ2. Thus for sufficiently large N (depending on κ and ν), a w

chosen in this way is (νN, κ)-delocalized. �

Remark 9.4.1. (a) We compare the condition ν < cκ2

log e
κ
here to the condition Cν log e

ν
<

κ2 from Lemma 7.5 for delocalization on the sphere. If ν = cκ2

log e
κ
, then for small ν

and κ, the two conditions are essentially equivalent up to constants, since

ν log
e

ν
=

cκ2

log e
κ

log

(
e log e

κ

cκ2

)
= 2cκ2

(
1 +O

(C + log log e
κ

log e
κ

))
,

and conversely, if Cν log e
ν
= κ2, then

κ2

log e
κ

=
2Cν log e

ν

log
(

e2

Cν log e
ν

) = 2Cν

(
1 +O

(C + log log e
ν

log e
ν

))
.

Thus up to constants, the vector w chosen here is essentially just as delocalized as

a typical random unit vector from the sphere.

(b) The choice q = 4 log e
κ

was taken by (approximately) optimizing the condition

ν1−2/qC
2/q
q < κ2 over q. The approximation was applying Stirling in Cq before
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optimizing, and then assuming q large, and choosing convenient factors so that

q ≥ 4.

Proof of Theorem 6.2(ii). The condition for Theorem 9.8 is met by the weak local semicircle

law in Section 9.1. Then choosing P[2−εN ,b] as in Theorem 9.8, with probability 1−o(1), there
are the projection matrix estimates (9.3.2), and the rank of P[2−εN ,b] is mN = 2

3π
ε
3/2
N N(1 +

o(1)). Then Corollary 9.11 implies for sufficiently large N , there is a (νN, κ)-delocalized

vector vN in the span of {ψ(N,j) : λ(N,j) ∈ [2 − εN , b]}. By construction, ‖XNvN‖2 ≥
(2 − εN)

√
d. Since E‖XN‖ ≤ (2 + rN)

√
d for some rN = o(1) by Theorem 6.1, then taking

δN := 1− 2−εN
2+rN

= o(1) shows (2− εN)
√
d = (1− δN)(2 + rN)

√
d ≥ (1− o(1))E‖XN‖. �
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APPENDIX A

A.1. Proof of Lemma 9.2

This is the standard proof with Gaussian integration by parts and concentration (e.g.

see [AGZ09]), with keeping track of the error terms. As in the usual semicircle law proof for

Gaussian matrices, start with

(XN√
d
− z
)−1

= −z−1 + z−1XN√
d

(XN√
d
− z
)−1

,

then take expectations using Gaussian integration by parts E[Xijf(X)] = E
[
∂Xij

f(X)
]
and

the relation ∂xY
−1 = −Y −1(∂xY )Y −1. Then

(A.1.1) zE
(XN√

d
− z
)−1

xy
=

− δxy −
1

d
E

[∑

ℓ:ℓ∼x

(XN√
d
− z
)−1

ℓℓ

(XN√
d
− z
)−1

xy
+
(XN√

d
− z
)−1

ℓx

(XN√
d
− z
)−1

ℓy
✶ℓ 6=x

]
.

The last term in (A.1.1) is bounded as

1

d

∑

ℓ:ℓ∼x

(XN√
d
− z
)−1

ℓx

(XN√
d
− z
)−1

ℓy

≤ 1

d

(∑

ℓ:ℓ∼x

∣∣∣∣
(XN√

d
− z
)−1

ℓx

∣∣∣∣
2
)1/2(∑

ℓ:ℓ∼x

∣∣∣∣
(XN√

d
− z
)−1

ℓy

∣∣∣∣
2
)1/2

≤ 1

d

(
N∑

ℓ=1

∣∣∣∣
(XN√

d
− z
)−1

ℓx

∣∣∣∣
2
)1/2( N∑

ℓ=1

∣∣∣∣
(XN√

d
− z
)−1

ℓy

∣∣∣∣
2
)1/2

=
1

d

(∣∣∣
〈
x
∣∣∣
(XN√

d
− z
)−1(XN√

d
− z
)−1∣∣∣x

〉∣∣∣
∣∣∣
〈
y|
(XN√

d
− z
)−1(XN√

d
− z
)−1∣∣∣y

〉∣∣∣
)1/2

≤ 1

d| Im z|2 ,
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since ‖(XN/
√
d− z)−1‖ ≤ | Im z|−1.

It remains to distribute the expectation over the product in the term

E

[(
XN√
d
− z
)−1

xy

∑
ℓ:ℓ∼i

(
XN√
d
− z
)−1

ℓℓ

]
, which can be done via Gaussian concentration

applied to
∑

ℓ:ℓ∼x

(
XN√
d
− z
)−1

ℓℓ
. Using the second resolvent identity and several instances of

Cauchy-Schwarz, for symmetric matrices A and B, (or one can compute the gradient)

∣∣∣∣∣
∑

ℓ:ℓ∼x
〈ℓ|(A− z)−1|ℓ〉 − 〈ℓ|(B − z)−1|ℓ〉

∣∣ =
∣∣∣∣∣
∑

ℓ:ℓ∼x
〈ℓ|(A− z)−1(B − A)RB(z)|ℓ〉

∣∣∣∣∣

≤ ‖A− B‖F




N∑

j,k=1

∣∣∣∣∣
∑

ℓ:ℓ∼x
〈ℓ|RA(z)|j〉〈k|RB(z)|ℓ〉

∣∣∣∣∣

2



1/2

= ‖A− B‖F
(

N∑

j,k=1

∑

ℓ:ℓ∼x
〈ℓ|RA(z)|j〉〈k|RB(z)|ℓ〉

∑

m:m∼x
〈j|RA(z)|m〉〈m|RB(z)|k〉

)1/2

= ‖A− B‖F
(∑

ℓ:ℓ∼x

∑

m:m∼x
〈ℓ|RA(z)RA(z)|m〉〈m|RB(z)RB(z)|ℓ〉

)1/2

≤ ‖A− B‖F


∑

ℓ:ℓ∼x

( ∑

m:m∼x
|〈ℓ|RA(z)RA(z)|m〉|2

)1/2( ∑

m:m∼x
|〈ℓ|RB(z)RB(z)|m〉|2

)1/2



1/2

≤ ‖A− B‖F
(∑

ℓ:ℓ∼x
〈ℓ|(RA(z)RA(z))

2|ℓ〉1/2〈ℓ|(RB(z)RB(z))
2|ℓ〉1/2

)1/2

≤ ‖A− B‖F
(∑

ℓ:ℓ∼x

1

| Im z|4

)1/2

≤
√
2‖A− B‖R▽

√
d

| Im z|2 ,

where ‖ · ‖R▽ is the Euclidean norm on the upper triangular elements that are nonzero

in the sparsity pattern of the matrix. (These are the (i, j) such that i ∼ j and i ≥ j.)

Thus
∑

ℓ:ℓ∼x

(
XN√
d
− z
)−1

ℓℓ
is
√
2/| Im z|2-Lipschitz, and its standard deviation is bounded by
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2/| Im z|2, so that using Cauchy–Schwarz,

∣∣∣∣∣E
[(XN√

d
− z
)−1

xy

∑

ℓ:ℓ∼x

(XN√
d
− z
)−1

ℓℓ

]
− E

(XN√
d
− z
)−1

xy
E
∑

ℓ:ℓ∼x

(XN√
d
− z
)−1

ℓℓ

∣∣∣∣∣

≤ 2

| Im z|2 ·
[
E

∣∣∣∣
(XN√

d
− z
)−1

xy

∣∣∣∣
2
]1/2

≤ 2

| Im z|3 .

Thus (A.1.1) becomes

(A.1.2) zE
(XN√

d
− z
)−1

xy
= −δxy − E

(XN√
d
− z
)−1

xy
· 1
d

∑

ℓ:ℓ∼i
E

(XN√
d
− z
)−1

ℓℓ
+ ΦXN ,d,z,x,y

with

(A.1.3) |ΦXN ,d,z,x,y| ≤
1

d| Im z|2 +
2

d| Im z|3 .

A.2. Semicircle law computations

Let msc(z) = − z
2
+

√
z2−4
2

the Stieltjes transform of the semicircle law, with branch cut

taken in (−2, 2) and
√
z2 − 4 ≈ z for large z. With the standard square root branch, this is

msc(z) = − z
2
+

√
z−2

√
z+2

2
at least for z 6∈ R−.

Lemma A.1 (Norm bounds). For z ∈ H,

|msc(z)| < 1.(A.2.1)

For a bounded set R ⊂ H, there is a constant c > 0 (depending on R) so that for all z ∈ R,

1− |msc(z)|2 ≥ c Im z.(A.2.2)

The above estimates are well-known and simply an application of the formula for msc(z).

We provide proofs here for completeness since they are generally not written. There is no

effort to obtain a good bound on the constant.

Proof . From the self-consistent equation, |msc(z)||z +msc(z)| = 1. For |z| large, |z +

msc(z)| ≈ |z| > 1 and then |msc(z)| < 1. Since |msc(z)| is continuous, to show that
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|msc(z)| < 1 for all z, it is enough to show that for any z ∈ H, |msc(z)| 6= |z + msc(z)|.
Let w := 1

2

√
z − 2

√
z + 2, so |msc(z)| = 1

2
|z − w| and |z + msc(z)| = 1

2
|z + w|. Then

|z − w| = |z + w| iff Re zw = 0. However, Re zw > 0 for any z ∈ H:

For z = E + iη,

(A.2.3) 2Re(z
√
z − 2

√
z + 2) =

E
√

((E − 2)2 + η2)1/2 + (E − 2)
√

((E + 2)2 + η2)1/2 + (E + 2)−

− E
√

((E − 2)2 + η2)1/2 − (E − 2)
√

((E + 2)2 + η2)1/2 − (E + 2)+

+ η
√

((E − 2)2 + η2)1/2 + (E − 2)
√
((E + 2)2 + η2)1/2 − (E + 2)+

+ η
√

((E + 2)2 + η2)1/2 + (E + 2)
√
((E − 2)2 + η2)1/2 − (E − 2)

This is unchanged under E 7→ −E so it suffices to consider E ≥ 0.

The last two terms (starting with η) are always positive, so we just check the first term

is larger than the second. This is clear for E ≥ 2. For 0 ≤ E ≤ 2, then E − 2 < 0. Letting

ξ = E − 2 and ω = E + 2, the first two terms then are

(A.2.4) E
√

(ξ2 + η2)1/2 − |ξ|
√

(ω2 + η2)1/2 + ω − E
√

(ξ2 + η2)1/2 + |ξ|
√

(ω2 + η2)1/2 − ω.

Note (ξ2+η2)1/2−|ξ| > (ω2+η2)1/2−ω since (x2+η2)1/2−x is (strictly, for η > 0) decreasing

in x. Similarly, (ω2+η2)1/2+ω > (ξ2+η2)1/2+ |ξ| since (x2+η2)1/2+x is (strictly, for η > 0)

increasing in x. (e.g. check by derivatives). Thus, Re(zw) > 0 so |msc(z)| 6= |z + msc(z)|
and |msc(z)| < 1 for all z ∈ H.

For (A.2.2), since |z + w|2 − |z − w|2 = 4Re zw, then using |z − w||z + w| = 4,

1− |msc(z)|2 = 1− 1

4
|z − w|2 = Re zw

|z + w|+ |z − w| |z − w|.(A.2.5)

Since |z| is bounded, 1 < |z + w| ≤ C and thus 1
C
≤ |z − w| < 1. Then

1− |msc(z)|2 = 1− 1

4
|z − w|2 ≥ 1

C(C + 1)
Re(zw).(A.2.6)
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By casework, there will be c > 0 so that

Re(z
√
z − 2

√
z + 2) ≥ c Im z.(A.2.7)

• E ≥ 2: Since for 0 ≤ α, β ≤ 1,

(A.2.8)
√
1 + α

√
1 + β −

√
1− α

√
1− β =

2(α + β)√
1 + α

√
1 + β +

√
1− α

√
1− β

≥ C(α + β),

then the first two terms of (A.2.3) are bounded below by

CE(ω2 + η2)1/4(ξ2 + η2)1/4
[

ξ

(ξ2 + η2)1/2
+

ω

(ω2 + η2)1/2

]
≥ CE(E − 2) + C ′Eη1/2,

where C ′ depends on the maximum possible η in the region R.

• 1 ≤ E ≤ 2: Again with just the first two terms of (A.2.3). Note for 0 ≤ x ≤ b and

Cb :=
√
b+1−1
b

,

(A.2.9) 1 + Cbx ≤
√
1 + x ≤ 1 +

x

2
.

Then

(A.2.10) E
√

(ξ2 + η2)1/2 − |ξ|
√

(ω2 + η2)1/2 + ω − E
√

(ξ2 + η2)1/2 + |ξ|
√

(ω2 + η2)1/2 − ω

≥ E
√

(ξ2 + η2)1/2 − |ξ|
√
2ω − E

√
η + 2|ξ| η√

2ω
.

Since Re(zw) > 0 in all of H, it suffices to consider small η, since Re(zw) ≥ c > 0 on

any bounded region with η bounded away from zero (by compactness). If η ≤ 2|ξ|,
then by (A.2.9), along with 3 ≤ ω ≤ 4 and 0 ≤ |ξ| ≤ 1,

√
(ξ2 + η2)1/2 − |ξ| ≥ η

|ξ|1/2

(√
5− 1

4

)1/2

,

so for sufficiently small η,

2Re(z
√
z − 2

√
z + 2) ≥ Eη√

ω|ξ|

[
3
√
2
√
C4 − |ξ| − 1√

2

√
η|ξ|
]
≥ cη.(A.2.11)
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If η ≥ 2|ξ|, then
√

(ξ2 + η2)1/2 − |ξ| ≥
√
η − η

2
=

√
η

2
.

• 0 ≤ E ≤ 1: The fourth term of (A.2.3) is at least 2
√
2 · η. (Usually we can’t really

use the 3rd and 4th terms since they can be at least order η3/2 ≪ η for small η, but

for E away from ±2 the 4th term is order η.)

�

Lemma A.2 (Semicircle integration). Let a⋆N be 2−εN+γN or 2−εN−γN where γN = o(εN),

and suppose δN ≪ ε2N . Then

(A.2.12)
1

π
Im

∫ b

a⋆N

msc(λ+ iδN) dλ =
2

3π
ε
3/2
N (1 + o(1)).

Proof . Compute

(A.2.13) Im

∫ b

a⋆N

−λ+ iδN
2

+

√
λ+ iδN − 2

√
λ+ iδN + 2

2
dλ

= O(εNδN) +
1

2
Im

∫ b

a⋆N

√
λ+ iδN − 2

√
λ+ iδN + 2.

Computing antiderivatives,

(A.2.14) Im

∫ b

a⋆N

√
λ+ iδN − 2

√
λ+ iδN + 2 dλ

= Im

[
1

2
(λ+ iδN)

√
(λ+ iδN)− 2

√
(λ+ iδN) + 2−

− 2 log
(
λ+ iδN +

√
(λ+ iδN)− 2

√
(λ+ iδN) + 2

)]b

a⋆N

For the terms with b, Taylor expansion in δN yields,

Im

[
1

2
b
√
b2 − 4− 2 log[b+

√
b2 − 4]− i

√
b2 − 4 · δN − b

2
√
b2 − 4

δ2N +O(δ3N)

]

= O(δN) = o(ε2N).
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For the terms with a⋆N , first a useful computation. For notational convenience, let ε be

εN + γN or εN − γN . Then

√
(2− ε+ iδN)− 2

√
(2− ε+ iδN) + 2

=
√
ε
√
4− ε

√
−1 + i

δN
ε

√
1 + i

δN
4− ε

= 2
√
ε

(
i+

δN
ε

+O(δ2Nε
−2)

)(
1− 1

8
ε+O(ε2)

)
(1 + iO(δN))

= 2i
√
ε− i

4
ε3/2 +O(δNε

−1/2 + ε5/2)

since for α > 0,
√
−1 + αi = i + α

2
+ O(α2), e.g. by Taylor expanding several times

√
−1 + αi =

√
1 + α2 exp(i(π − tan−1 α)). Using that O(δNε

−1/2) = O(δNε
−1/2
N ) = o(ε

3/2
N ),

the non-logarithm term involving a⋆N in (A.2.14) is then

− Im
1

2
(λ+ iδN)

√
(λ+ iδN)− 2

√
(λ+ iδN) + 2

∣∣∣∣
λ=a⋆N

= −1

2
(2− ε)

[
2ε1/2 − 1

4
ε3/2 + o(ε

3/2
N )

]

= −2ε1/2 +
5

4
ε3/2 + o(ε

3/2
N ).

For the logarithm term,

log(2− ε+ iδ+
√
−ε+ iδ

√
4− ε+ iδ)

= log((2− ε+ iδ) + log

(
1 +

1

2− ε+ iδ
(2i

√
ε− i

4
ε3/2 + o(ε

3/2
N ))

)

= log 2− ε

2
+ i

√
ε+

i

24
ε3/2 +O(δ) + o(ε

3/2
N ).

The end logarithm term is then

Im 2 log
(
λ+ iδ +

√
(λ+ iδN)− 2

√
(λ+ iδ) + 2

)

= 2

(√
ε+

1

24
ε3/2
)
+ o(ε3/2) = 2ε1/2 +

1

12
ε3/2 + o(ε3/2).

115



Thus in total, (A.2.13) is

1

π
· 1
2

(
5

4
+

1

12

)
ε3/2 + o(ε

3/2
N ) =

2

3π
ε3/2 + o(ε

3/2
N ).

Since ε = εN(1± o(1)), this is 2
3π
ε
3/2
N (1 + o(1)) as desired. �

This agrees to leading order with what we expect from the semicircle law,

1

2π

∫ 2

2−ε

√
4− x2 dx ≈ 2

3π
ε3/2,

e.g. by using that msc(z) is the Stieltjes transform of the semicircle density and applying

Fubini and Taylor expanding.

A.3. Stability without quantitative stability

In Section 9.1, we obtained a quantitative bound on the rate of convergence of EGN(z; x, y)

to δxymsc(z). This makes it easy to choose a sequence δN → 0 such that

max
λ∈[0,b]

max
x∈[N ]

|EGN(λ+ iδN ; x, x)−msc(λ+ iδN)| → 0,

since the quantitative bound doesn’t depend on λ or x. (Remark 9.3.1.) If we did not have

such a quantitative bound, but only knew that for any fixed z = λ+ iδ,

max
x∈[N ]

|EGN(λ+ iδ; x, x)−msc(λ+ iδ)| → 0

as N → ∞, with no knowledge of the convergence rate or dependence on δ, we can still

find a sequence δN → 0 with the desired property. We will use the fact that for func-

tions on a compact metric space, pointwise convergence plus equicontinuity implies uniform

convergence.

Lemma A.3. Suppose maxx∈[N ] |EGN(λ+ iδ; x, x)−msc(λ+ iδ)| → 0 as N → ∞, for any

fixed z = λ+ iδ with δ > 0. Then there is a positive sequence δN → 0 so that

(A.3.1) E(N, δN) := sup
δN≤γ≤1

sup
λ∈[0,b]

max
x∈[N ]

|EGN(λ+ iγ; x, x)−msc(λ+ iγ)| → 0,
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as N → ∞. Additionally, any sequence (αN) satisfying αN ≥ δN will also satisfy E(N,αN) →
0.

Proof . The “additionally” statement is immediate from the supδN≤γ≤1 and E(N, δN) →
0. For (A.3.1), define g̃N,x(z) = EGN(z; x, x) − msc(z) and let Rδ be the compact region

[0, b] × i[δ, 1] in C. Then |g̃N,x(z)| is Lipschitz continuous for z ∈ Rδ with some Lipschitz

constant L(δ), since using the first resolvent identity,

∣∣|EGN(z; x, x)−msc(z)| − |EGN(w; x, x)−msc(w)|
∣∣

≤ |EGN(z; x, x)− EGN(w; x, x)|+ |msc(z)−msc(w)|

≤ |z − w|E(RN(z)RN(w))xx + |z − w| sup
δ≤Im z≤1

∣∣∣∣
d

dz
msc(z)

∣∣∣∣

≤ |z − w| 1

Im z Imw
+ |z − w|1

2

(
1 +

1 + |b|√
2δ

)
.

Since taking a maximum doesn’t change the Lipschitz constant, fN(z) := maxx∈[N ] |g̃N,x(z)|
also has Lipschitz constant L(δ) in the region Rδ. By assumption fN(z) → 0 pointwise in z

as N → ∞. Because there is the uniform Lipschitz constant L(δ), {fN}N is equicontinuous

and so the pointwise convergence turns into uniform convergence,

lim
N→∞

‖fN‖C(Rδ) = lim
N→∞

sup
z∈Rδ

max
x∈[N ]

|EGN(z; x, x)−msc(z)| = 0.

Now for any δ > 0, define

D(N, δ) := sup
n≥N

E(N, δ),

which is decreasing in N (and finite, < 2
δ
, by resolvent bound). By the above, then

limN→∞D(N, δ) = lim supN→∞ ‖fN‖C(Rδ) = 0. Choose δN as follows: First take δ1 = 1

and a parameter (which tracks the convergence rate) m = 2. Take δN = δN−1 until N is

large enough so that D(N, 1
m
) < 1

m
. In that case take δN = 1

m
and increment m, then repeat.

Since D(N, δ) is decreasing in N , this method guarantees once D(N, δN) <
1
m
, that this

inequality holds for all subsequent N as well.
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Then δN → 0 since they eventually will be smaller than any 1
m
. Also, D(N, δN) → 0

since it will eventually be smaller than any 1
m
. �
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