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Abstract

This thesis consists of two parts concerning delocalization of eigenvectors: the behavior
of eigenvectors associated with quantum graphs from classically ergodic interval maps, and
a delocalization-localization transition in structured random matrices.

In the first part, we prove an analogue of the pointwise Weyl law for eigenvectors of
famillies of unitary matrices obtained from quantization of one-dimensional interval maps.
This quantization for interval maps was introduced by Pakoniski et al. [J. Phys. A 34 9303
(2001)] as a model for quantum chaos on graphs. We allow shrinking spectral windows in the
pointwise Weyl law analogue, which allows for a strengthening of the quantum ergodic theo-
rem for these models, and also allows for construction of randomly perturbed quantizations
that have approximately Gaussian eigenvectors in the semiclassical limit.

The second part is concerned with a localization-delocalization transition for structured
random matrices associated with d-regular graphs. This model includes both sparse and
non-sparse Gaussian matrices with 1 < d < N nonzero entries in each row or column,
such as random band matrices, as well as various models of interest in computer science
and combinatorics. For such matrices, Bandeira and van Handel [Ann. Probab. 44 2479
(2016)] showed that the norm undergoes a phase transition at d ~ log N. This transition
cannot in general be captured by localization or delocalization of the top eigenvectors, but
we show that the transition is captured instead by a localization-delocalization transition of

approximate top eigenvectors.
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CHAPTER 1

Overview

This thesis is concerned with eigenvector properties in two different models, and in par-
ticular with whether eigenvectors are delocalized or localized. Heuristically, a delocalized
eigenvector is one whose mass is spread roughly evenly throughout its coordinates, while
a localized vector is one which has much of its mass concentrated on relatively few coordi-
nates. As will be discussed further in this thesis, localization or delocalization of eigenvectors
has important implications in quantum systems and condensed matter physics, as well as
applications in combinatorics and computer science.

This thesis is comprised of two parts. Part 1 is adapted from [S21] arxiv.org/abs/
2110.15301. It is concerned with quantum chaos and the eigenvectors of unitary matrices
that are obtained by quantizing classically ergodic 1D interval maps. These matrices nu-
merically display quantum chaotic behavior, in particular appearing to have eigenvalues and
eigenvectors like those of circular unitary ensemble (CUE) matrices, despite that they can be
non-random and have a very simple and sparse structure. Motivated by these observations,
we will study the eigenvectors by proving a pointwise Weyl law, which has implications for
quantum ergodicity as well as for constructing random quantizations with approximately
Gaussian eigenvectors.

Part 2 of this thesis is joint work with Ramon van Handel, and involves a localization-
delocalization transition for structured random matrices. These are N x N symmetric ma-
trices Xy with d iid (modulo symmetry) Gaussian entries in each row and column, and zeros
everywhere else. Equivalently, one starts with a non-random d-regular graph on /N vertices,
and constructs the matrix Xy by placing iid standard Gaussian variables on the nonzero
entries in the adjacency matrix of the graph, modulo symmetry. For such matrices, Bandeira

and van Handel showed in [BvH16] that the norm undergoes a phase transition at d ~ log N.



We will show that while this transition is in general not captured by the localization or de-
localization of the top eigenvectors, it is instead captured by a localization-delocalization
transition of approximate top eigenvectors, where by approximate top eigenvector we will
mean a unit vector v with || Xyv||2 close to the maximum possible value || X y||.

Both parts of this thesis utilize projection matrix estimates to obtain eigenvector proper-
ties. In Part 1, we approximate the projection matrix of a unitary matrix U,, using a Fourier
series, which allows us to relate properties of powers of U, to properties of the projection
matrix. In Part 2, we approximate the projection matrix of a real symmetric matrix using
the Poisson kernel and resolvents, which allows us to use a local semicircle law to prove the
projection matrix estimates.

The estimates on the projection matrix entries provide information about the structure
of the subspace spanned by the corresponding eigenvectors. If one takes a unit vector cho-
sen uniformly at random (according to Haar measure) from this subspace, then for large
dimensions, Gaussian concentration ensures that it looks like a multivariate Gaussian whose
covariance matrix is just the orthogonal projection matrix times 1/n. We will use this in
Part 1 to construct random quantizations with approximately Gaussian eigenvectors, and in

Part 2 to show the existence of a delocalized approximate top eigenvector.

1.1. Quantum chaos on graphs

In Part 1 of this thesis, we will consider a quantization method for certain ergodic
piecewise-linear 1D interval maps S : [0,1] — [0,1], introduced by Pakoniski, Zyczkowski,
and Kus in [PZKO01] as a model for quantum chaos on graphs. Precise conditions for these
interval maps will be described in Section 2.2, but for simplicity, one can consider just the
doubling map, S(z) = 2z (mod 1). The quantization method associates to S a family of uni-
tary matrices U, where U, is a size n X n matrix, and n € N is taken in a subset of allowable
dimensions. These unitary matrices describe quantum dynamics on a directed graph, and
are considered “quantizations” in the sense they satisfy a classical-quantum correspondence

principle (Egorov theorem) as the dimension n — oo. For the doubling map, for n € 2Z,
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one can take the quantizations to be the n x n matrices

For large n, surprisingly this non-random unitary matrix U,, tends to have level spacings
that numerically look Wigner-Dyson, as well as eigenvector coordinates that numerically
look Gaussian (Figures 2.1 and 2.2), despite its simple, sparse structure uncharacteristic of
a typical CUE Haar unitary matrix. This behavior is however consistent with major open
conjectures in quantum chaos, that quantum systems corresponding to classically chaotic
ones should exhibit random matrix ensemble spectral statistics (BGS conjecture [BGS84])
and have eigenvectors that behave like Gaussian random waves [Ber77] in the semiclassical
limit.

Motivated by the above, we will study the eigenvectors of such unitary quantizations U,
constructed from allowable interval maps by proving a pointwise Weyl law, which consists
of estimates on the diagonal elements of spectral projection matrices. Because we allow
shrinking spectral windows, this will let us construct randomly perturbed quantizations with
eigenvectors that look Gaussian, and also obtain a strengthening of the quantum ergodic
theorem for these models.

For n in a set of allowable dimensions, and given the n xn unitary matrices U,, obtained as
a quantization of an appropriate interval map, denote the eigenvalues and eigenvectors of U,
by (ew("’j))j and (™), respectively. We will prove the following for spectral projections
onto shrinking arcs on the unit circle, which will be stated more precisely in Part 1 as
Theorem 2.1. Note although the spectral windows I(n) may shrink, they are not allowed
to shrink too fast, and in particular they will generally need to satisfy a condition like

|I(n)|logn — oo, related to an Ehrenfest time.

Theorem 1.1 (projection matrix estimates/pointwise Weyl law for U,). Let (I(n)) be a

sequence of intervals in R/(2wZ) that is allowed to shrink at a specific rate, and let P'™
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be the orthogonal projection onto span{t)™?) : 939 € I(n)}. Then for at least n(1 — o(1))

coordinates x € [n],

(1.11) PO, = Y ueap = L0 oy,

, 2
J:0mD el(n)

as n — 0o, for allowable dimensions n € N.

This also implies a Weyl law analogue, which counts the number of eigenvalues in a bin
I(n),
|£(n)|

27

#{j: 0" eI(n)} =n

(14 0(1)).

We will use the projection matrix estimates (1.1.1) to construct small random perturba-
tions of the original matrices U,, by randomly rotating eigenvectors within each shrinking bin
I(n). This produces a family of matrices V,,(/) with approximately Gaussian coordinates
in the semiclassical limit n — oo. These matrices V,,(f) still satisfy a classical-quantum
correspondence principle, and so in this sense can still be considered a quantization for the
classical ergodic dynamics. This provides an example of a quantization, in this sense, of
a classically ergodic system, whose eigenvectors have approximately Gaussian coordinate

statistics.

Theorem 1.2. The random matrices V,,(B) satisfy a classical-quantum correspondence prop-
erty, and with high probability, have empirical coordinate distributions that look Gaussian as

n — OQ.

We also use the projection matrix estimates directly to prove a stronger version of the
quantum ergodic theorem in this model. As will be explained more precisely in Part 1, a
quantum ergodic theorem ensures equidistribution of eigenvector coordinates for a limiting
density one set of eigenvectors. It however allows for an exceptional limiting density zero
set of eigenvectors that may not equidistribute over their coordinates. Using (1.1.1), we will
strengthen the quantum ergodic theorem proved for this model in [BKS07], to hold over a

limiting density one set within the shrinking sets /(n), which by the Weyl law contain only
11



a limiting density zero set of eigenvectors. This ensures that the original set of exceptional
eigenvectors that may not equidistribute cannot accumulate too strongly in one region I(n)

of the unit circle.

Theorem 1.3. Quantum ergodicity holds in a limiting density 1 set within shrinking bins.

1.2. Structured random matrices

In Part 2 of this thesis, we consider symmetric random matrices Xy obtained from (non-
random) d-regular graphs. These matrices can be defined via (Xx);; = 0;~;0i;, Where g;; are
iid standard Gaussian variables modulo symmetry, and ¢ ~ j indicates that nodes ¢ and j are
connected by an edge in the graph. Since the Gaussian entries are allowed to be arranged
in any such fixed (non-random) structure, these matrices are nonhomogeneous random ma-
trices. One notable example included in this model is 1D random band matrices, which
are of particular interest in mathematical physics in connection with random Schrodinger
operators.

We are interested in identifying the phase transition at d ~ log N using delocalization
properties of approximate top eigenvectors. Intuitively, for small enough d, one expects the
top eigenvectors to localize on large outliers, while for very large d, one expects them to
delocalize across many coordinates like the eigenvectors of Gaussian orthogonal ensemble
(GOE) matrices. However, as we will see, this transition is in general not captured by the
localization or delocalization of the top eigenvectors, but rather by that of approximate top
eigenvectors.

As there are many different notions and properties of delocalization, we will define pre-
cisely the notion we use in Section 6.1. Roughly speaking, a delocalized vector will be one
that does not have a constant fraction of the mass accumulate on just o(N) coordinates,
and otherwise the vector will be called localized. For d < log N, we will prove localization
in this sense using Gaussian concentration and suprema bounds. For d > log N, we will
use projection matrix estimates to guarantee that we can find a delocalized approximate top

eigenvector. Specifically, for a sequence ey — 0, we will look at the orthogonal projection
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of the N x N matrix Xy /v/d onto the interval [2 — e, b] for a fixed b > 2, which will be the
projection onto the top roughly O(N 5%2) = o(N) eigenvectors. The following theorem will

appear in Part 2 as Theorem 9.8.

Theorem 1.4 (projection matrix estimates). Let d > log N and let Py denote the projec-
tion matriz of Xy /v/d onto the interval [a,b]. Fiz b > 2. Then there is a sequence ey — 0
so that with probability at least 1 — o(1), the matriz Pa_., 5 has diagonal elements

2
(P[Z—eN,b])a:a: = 3_71_8:?\{2(1 + 0(1)>

Considering random rotations within the subspace, the estimates on (Pg_cy )2z can
be used to describe the expected ¢¢ norms of a randomly chosen vector for large N. In
particular, by considering large ¢, we can infer the existence of a vector in the subspace with
good delocalization properties. Combining with the localization statement, this results in
the following theorem, which is the main result of Part 2, and will be stated precisely as

Theorem 6.2.

Theorem 1.5. There is a localization-delocalization transition of approzimate top eigenvec-
tors at d ~ log N. Informally, with high probability, for d < log N, all top eigenvectors
and (1 — €)-approzimate top eigenvectors are localized, while for d > log N, there exists a

delocalized (1 — o(1))-approzimate top eigenvector.
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CHAPTER 2

Introduction, set-up, and main results

2.1. Introduction

In quantum systems, the eigenvectors and spectrum of the Hamiltonian capture the phys-
ical behavior of quantum particles in the system. The eigenfunction 1) defines a probability
density |¢|?, which describes how likely the particle is to be found in a certain region. Of
particular interest is determining whether eigenfunctions are localized in one area of space,
or delocalized and spread throughout the system. The former is associated with insulating
behavior, while the latter is associated with transport and metal-like behavior.

One specific example of generally delocalized eigenfunctions comes from systems that are
classically ergodic, such as ergodic billiards or geodesic flow on negatively curved compact
Riemannian manifolds. The correspondence principle from quantum mechanics suggests
this classical ergodic behavior should manifest itself in the associated quantum system in
the high-energy, semiclassical limit. For geodesic flow ¢; on manifolds, the associated quan-
tum Hamiltonian is the Laplacian, and the correspondence is given by the quantum ergodic
theorem of Shnirelman—Zelditch—de-Verdiere [Shn74, Zel87, dV85]. For ¢, ergodic, this guar-
antees, in the large eigenvalue limit, a density 1 subsequence of Laplace eigenfunctions that
equidistribute in all of phase space.

One also expects the spectrum of quantum Hamiltonians associated with classically
chaotic systems to look like that of a random matrix ensemble, a relationship first uti-
lized for heavy nuclei by Wigner in the 1950s, and conjectured to hold for any sufficiently
chaotic! system by Bohigas, Giannoni, and Schmit [BGS84]. In view of this BGS conjecture,

simpler systems such as quantum graphs have been used to investigate quantum chaotic

1 We will not address the ergodic hierarchy or definition of chaotic systems here, but refer the reader
to the textbook [CMO06], e.g. Appendix C. We also note that in the special case of arithmetic hyperbolic
surfaces there are exceptions (counterexamples) to the BGS conjecture, see [LS94, BGGS97].
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behavior of both spectral and eigenvector statistics. While quantum graphs have long been
used as models of idealized one-dimensional structures in physics, their use as simplified
models for studying complex phenomena such as Anderson localization and quantum chaos
is more recent to the last several decades [BK10].

The first evidence for quantum chaotic behavior in quantum graphs was given by Kottos
and Smilansky [KS97, KS99], who showed numerically that the spectral statistics of certain
families of quantum graphs behave like those of a random matrix ensemble. Further results
regarding convergence of spectral statistics to those of random matrix theory include [Tan01,
BSW02, BSW03, GA04, GA05|, among others.

In this part, we look at unitary operators on sequences of graphs obtained from piecewise
linear interval maps as constructed in [PZKO01]. Given a (Lebesgue) measure-preserving map
S :]0,1] — [0, 1] satisfying a number of conditions described in Section 2.2, one obtains a
sequence of graphs by partitioning [0, 1] into n equal atoms, and defining a Markov transition
matrix P, based on where S sends each atom. A quantization of the classical map S will
be a family of n X n unitary matrices that recover the classical dynamics in the limit as
an effective semiclassical parameter, in this case the reciprocal of the dimension, 1/n, tends
to zero. The quantization method used in [PZKO01, BKS07] applies to unistochastic Markov
matrices P,, which are matrices P, for which there is a unitary matrix U,, with the entrywise
relation? |(U,)zy|> = (Po)sy- The matrices U, are a quantization of the classical dynamics
described by P,, in the sense that they satisfy a correspondence principle (Egorov theorem,
[BKS07]) that relates unitary evolution under U, to the map S as n — oo. Physically, these
unitary matrices are related to wave propagation and scattering in the graphs.

As investigated in [PZKO01, Tan00, Tan01], if the graphs correspond to classically chaotic
systems, then the spectral properties of these matrices U, appear to behave like those of
CUE random matrices as n — oo. As for eigenvector statistics, quantum ergodicity for
these graphs with classically ergodic S was proved by Berkolaiko, Keating, and Smilansky

2 Note such a relation does not uniquely define Uy, if it exists, as one can always add additional phases
without changing unitarity or the entrywise relation |(U,)zy|?> = (Pn)zy. For example, given any ® € [0, 27)"

and defining the diagonal matrix '® := diag(e’®*,...,e'®"), then e!®U,, is also unitary and satisfies the same
entrywise norm-squared relation.
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in [BKS07]. They showed that in the large dimension limit, nearly all eigenvectors of U,

equidistribute over their coordinates: for sequences of allowable dimensions n, there is a

#An
n

sequence of sets A, C [n] :={1,...,n} with lim, = 1 so that for all sequences (j,)n

with j, € A,,, and appropriate quantum observables O,,(¢),

n—oo

(2.1.1) lim (™), O, (@)™ 7)) = / 1 ¢(z) dr,
0

where (™) is the jth eigenvector of U,. This is the analogue for these graphs of the
Shnirelman—Zelditch—de-Verdiere quantum ergodic theorem, which was originally stated for
ergodic flows on compact Riemannian manifolds. Quantum ergodicity has also been extended
to other settings such as torus maps [BD96, KR00, KR01, MOO05, Zel97] and other graphs
[AS19, AL15, Anal7]; see also [Anal8] for an overview and additional references.

In addition to the equidistribution from the quantum ergodic theorem, eigenfunctions
from a classically ergodic system are expected to follow Berry’s random wave conjecture
[Ber77], which asserts that the eigenfunctions should behave like Gaussian random waves in
the large eigenvalue limit. For graphs, instead of the large eigenvalue limit, one considers
as usual the large dimension limit. In this limit, [GKP08, GKP10] used supersymmetry
methods to study the eigenfunction statistics for quantum graphs in view of the random
wave conjecture.

In the specific discrete models from interval maps that we consider, one expects that the
empirical distribution of the coordinates {wg(cn’j ) »_, of an eigenvector of U, should behave
like a random complex Gaussian N¢ (0, %) for most eigenvectors. This is consistent with both
the random matrix ensemble behavior and the random wave conjecture. As an example, take

the simplest allowable interval map, the doubling map (drawn in Figure 2.3),

18



which is ergodic. For n € 2N, the Markov matrices P, along with a particularly simple

unitary quantization U, are

2.1.2 P, == REE N I A T1
( ) 9 1111 \/é 1111

11 T
Numerically, for large n not a power of 2, the eigenvalues of the U, above appear to have
CUE-like level statistics (Figure 2.1), despite the U,, being non-random and having a simple,
sparse structure. We note that we must exclude the special case n = 2%, as for these
dimensions, the spectrum of this particular U, is degenerate, cf. Section 4.2. However, with
a different choice of quantization, the level spacings still appear to look CUE as in Figure 2.1.

See also [PZKO01, Tan00, Tan01] for additional spectral statistics.

1.0 1.0 ’

0.8 I 0.8 l

0.6 0.6

0.4 A 0.4

0.2 ﬂ“ﬂ“ﬁk 0.2

0050 05 10 15 20 25 30 0000 o5 10 15 20 25 30

FIGURE 2.1. Left: Level spacings for the eigenvalues of U, in (2.1.2), for
n = 25000. Right: Level spacings for the eigenvalues of the matrix ¢’*U,,
for n = 2 = 16384 and ¢® = diag(e’®",...,e), for a randomly chosen
® € [0,2m)". For both plots, the histogram is of the angle differences of the
eigenvalues scaled by J-, and the solid curve is the Wigner GUE surmise’

) = Bt

Additionally, numerically the vast majority of eigenvectors of these U,, have coordinates
that look like a complex Gaussian N¢(0, %) Typical histograms for the coordinates of an
eigenvector of U,, from (2.1.2) are shown in Figure 2.2.

While we do not prove Gaussian behavior for the eigenvectors of these U, (except in a
very special case where the eigenspaces end up highly degenerate, see Section 4.2), as an

3While the Wigner surmise is not the exact level spacing for GUE or CUE matrices, it is generally a quite
adequate approximation for this type of purpose. For the actual level spacing distributions and comparison
with Wigner’s surmise, see [Meh04, HGK18].
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FIGURE 2.2. Plots for a randomly chosen eigenvector 1 (this one with eigen-
value —0.3061126 + 0.95199537) for n = 10000 and U, in (2.1.2). Left: His-
togram of the values (JRe),)129% plotted against the pdf of the real Gaussian

=1
N (0, 55655)- Center: Histogram of the values (Jm1),)229% plotted against the

pdf of N(0, 555=). Right: 2D histogram in C of the coordinates (), )25%.

’ 20000 a=1
Since this is fairly spherically symmetric, the overall choice of phase for the

eigenvector does not significantly impact the shape of the other plots.

application of our main result we will prove that for allowable S, there are many random
quantizations V,, with approximately Gaussian eigenvector coordinates. These quantizations
are not quantizations in the strict sense of |(Vy,)zy* = (Pn)zy from [PZKO01, BKS07], but
they will satisfy [(V,))zy|> = (P)zy + 0(1) as well as an Egorov theorem, so they are still
quantizations of S in the sense that they recover the classical dynamics in the semiclassical
limit n — oo.

Our main result in this part of the thesis is Theorem 2.1, an analogue of the pointwise
Weyl law for the eigenvectors of the matrices U,, under shrinking spectral windows, which
will have implications for quantum ergodicity and for constructing random perturbations
of U, with the desired Gaussian eigenvector behavior. Traditionally, a pointwise Weyl law
gives the leading order asymptotics of the spectral projection kernel 1(_o4(—A + V)(x, ),
for x in M a compact Riemannian manifold. For the unitary matrices U,, we look at

the spectral projection onto arcs on the unit circle, P; = Zjﬁ(w,)a |3p(3)) (1p(™3)| where

I € R/(27Z). Then a pointwise Weyl law analogue would be a statement of the form
> jtdel(n) |w§n’j)]2 = %(1 + o(1)) for n — oo and appropriate intervals I(n). We will
show this holds for sequences of intervals I(n) shrinking at certain rates, and for at least

n(l — o(|I(n)|)) coordinates x. The coordinates for which this statement may not hold

correspond to short periodic orbits in the graphs corresponding to S.
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We then present two applications of this pointwise Weyl law. The first is a strengthening
of the quantum ergodic theorem to apply to sets of eigenvectors in bins {17 : (™) ¢ I(n)}
with shrinking I(n). The second concerns random perturbations of the matrix U,, to produce
a family of random matrices V,,(8I") whose eigenvectors have the approximately Gaussian
N¢(0, %) eigenvector statistics. These eigenvectors will also tend to satisfy a version of
quantum unique ergodicity (QUE), a notion introduced by Rudnick and Sarnak in [RS94],
and where all eigenvectors are considered in the limit (2.1.1), rather than just those in a

sequence of limiting density one sets.

2.2. Set-up

Here we state the assumptions on the map S and matrices P,. Let S : [0,1] — [0,1] be

a piecewise-linear map that satisfies the following conditions:

(i) S is (Lebesgue) measure-preserving, p(A) = u(S71(A)) for any measurable set A.

(ii) There exists a partition M, of [0, 1] into My equal intervals (called atoms) Ay, ..., Ay,
with S linear on each atom A;.

(iii) The endpoints & = &E(My) of the atoms have left and right limits satisfying
lim, S S(z) € & for eg € &. This means the linear segments in S begin and
end in the grid & x &. With (i) and (ii), this ensures the slope of S on each atom
must be an integer. For convenience, also assume S(eg) takes one of the values of
these one-sided limits.

(iv) The absolute value of the slope of S on each atom is at least two, i.e. the slope is

never +1.

Conditions (i), (ii), and (iii) are essentially the same as in [PZK01, BKS07]. Condition (iv)
is there instead of the ergodicity assumption. It allows for some non-ergodic S such as those
corresponding to block matrices of various ergodic maps. Two examples of allowable ergodic
S are the doubling map and the “four legs map” shown in Figure 2.3. In general, conditions

for ergodicity of S would follow from results on piecewise expanding Markov maps, see for

example Chapter III in the textbook [Man87].
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0 1 0 1

FIGURE 2.3. The doubling map (left) and “four legs map” (right). For the
doubling map My = Ly = 2, while for the four legs map My = Ly = 4.

For n € MyZ, partition [0, 1] into n equal atoms, E, = (‘”T_l, £)for x = 1,...,n, and

define the corresponding n x n Markov transition matrix P, by

0, S(E.)NE, =10
(2.2.1) (P)ay =

‘S,—%Z)', S(E;)NE,#0, any z € E,

The matrix P, looks at where S sends an atom FE,, and assigns a uniform probability
m to each atom E, that S can reach from E,. To generate the family of corresponding
unitary matrices U, as done in [PZKO01, BKS07], it is required that P, be unistochastic,
so that there are unitary matrices U,, with the entrywise relation |[(U,)zy]* = (Pn)sy- In
general, characterizing which bistochastic matrices are unistochastic is difficult; however see
[PZKO01, ZSKS03, BKS07] for some conditions and examples.

Let Lo be the least common multiple of the slopes in S, and let K (n) be the largest
power of Ly that divides n/Mj, so n = M0L§(")r and r does not contain any factors of L.

The purpose of K (n) will be to keep track of how many powers of S we can take, while still

ensuring S* behaves nicely with the partition into n atoms.
2.3. Main result and applications
With the above definitions, we state the main result:
Theorem 2.1 (pointwise Weyl law analogue). Let S : [0,1] — [0, 1] satisfy assumptions

(i)-(iv). Consider a sequence (ny)y so that K(ng) — oo, and suppose each ny, x ny Markov

matriz P,, is unistochastic with corresponding unitary matriz U,, . Let (I(ny)) be a sequence
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of intervals in R/(277Z) satisfying
(2.3.1) 11(ng)| K (ng,) = 00, as k — oo.

Then denoting the eigenvalues and eigenvectors of Uy, by (ew(n’“’j))j and (Y™9)); respectively,
there is a sequence of subsets Gy, C [1 : ng| with sizes #G,, = ng(1 —o(|I(ng)|)) so that for

alz € G,

(2.3.2) S b = M(1 +o0(1)), ask — oo,

, 2w
§:0 kD) €1 (ny,)

where the error term o(1) depends only on ny, |I(ng)|, and #G,,, and is independent of

x € Gp,. Additionally, G, can be chosen independent of I(ny) or |I(ny)|.

Remark 2.3.1. (i) The coordinates = that we exclude from G, correspond to those
with short periodic orbits in the graphs associated to P, and U,,. This is rem-
iniscent of the relationship between geodesic loops and the size of the remainder
in the Weyl law [DG75, Ivr80] or pointwise Weyl law [Saf88, SZ02, CG20], in the
usual setting on manifolds. For the sequences of coordinates that we exclude, we do

not expect the leading order approximation to necessarily be %

in general, see
Section 5.1.

(ii) The condition (2.3.1) that |I(ny)| does not shrink too fast appears from error terms
from only considering powers of U, up to an Ehrenfest time K (ng) ~ logng. This
time is a common obstruction in semiclassical problems, and even in these discrete
models, our analysis does not go beyond this time. If the lengths |I(n;)| are larger

than required to satisfy (2.3.1), then more precise remainder terms than just o(1)

are obtained from the proof.

The proof details of Theorem 2.1 will be specific to our discrete case, where we have
sparse matrices U, and can analyze matrix powers and paths in finite graphs. We will start
by just taking a smooth approximation of the indicator function of the interval I(ny), and

estimating the left side of (2.3.2) by a Fourier series in terms of powers of U,,. However,
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the properties of S ensure that we understand powers of U,, well up to time K (ng). This
allows us to identify and exclude the few coordinates x that have short loops before a set
cut-off time. Using properties of the powers of U,, again, the remaining coordinates will
then produce small enough Fourier coefficients that (2.3.2) holds.

Summing (2.3.2) over all x (separating = € G, from x ¢ G,,) produces a Weyl law

analogue that counts the number of eigenvalues in a bin.

Corollary 2.2 (Weyl law analogue). Let S, (ng)k, Uy,, and I(ng) be as in Theorem 2.1,
including (2.3.1). Then as k — oo,

|1 ()|

(2.3.3) #{j: 009 € I(ng)} = my o

(1+0(1)),

where the remainder term depends on |I(ny)| but is independent of the particular location of

In the following subsections, we discuss implications of Theorem 2.1 on eigenvectors
of U,. We present the two applications, the first a strengthening of the quantum ergodic
theorem for this model, and the second a construction of random perturbations of U,, with
approximately Gaussian eigenvectors. For the first application, using Theorem 2.1 with
shrinking intervals |I(ny)|, rather than the usual local Weyl law, in the standard proof
of quantum ergodicity naturally produces a stronger quantum ergodicity statement. For
the second, we take random unitary rotations of bins of eigenvectors, and apply results on
the distribution of random projections from [DF84, CMO08, Mec09] to show the resulting

eigenvectors have approximately Gaussian value statistics.

2.3.1. Application to quantum ergodicity in bins. To state a quantum ergodic theo-
rem, we first define quantum observables as in [BKS07], as discretized versions of a classical
observable h € L*([0,1]). Given n € N and h € L*([0,1]), define its quantization O, (h) to

be the n x n diagonal matrix with entries

1
1Bl Jg,

(2.3.4) On(h)ss h(z)dz = n / W) dz.
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Note that %tr On(h) = fol h, the analogue of the local Weyl law. Quantum ergodicity for

this model, as proved in [BKS07], states there is a sequence of sets A,, C [1 : ny] with

limy,, 00 #:::’“ = 1 such that for all sequences (j,, )k, Jn, € An, and h € C([0,1]),
. . 1
(2.3.5) lim (rdng) O, () ing)y = / h(x) da.
—00 0

This is equivalent to the decay of the quantum variance,

2
— 0,

1
<¢(nk,j)70nk(h)¢(nk,j)>_/ h(z) dx
0

as k — o0o. Using Theorem 2.1 and an Egorov property from [BKS07], we will prove the

following concerning quantum ergodicity in bins.

Theorem 2.3 (Quantum ergodicity in bins). Let S satisfy (i)-(iv) and also be ergodic.
Let (ng)g, Un,, and I(ny) be as in Theorem 2.1, including (2.3.1). Then for any Lipschitz
h:[0,1 — C,

2
— 0,

1 , A 1
(nk,5) (nid)\ _
236 T eIy 000,00, = [ i) do
70\ el (ny)

as k — oo.

This decay of the quantum variance in a bin implies there is a sequence of sets A,, C

(e : #A, :
{j:009) € I(ng,)} with #{jze(”k’j)él(nk)} — 1 such that (2.3.5) holds for all sequences (jy, )k,

Jn, € Ay, and continuous h : [0,1] — C. Since we allow |I(n)| — 0, the bin sizes are o(n)

by the Weyl law analogue, and so Theorem 2.3 guarantees that the density 0 subsequence
excluded from the original quantum ergodic theorem cannot accumulate too strongly in one

region I(n) of the unit circle.

2.3.2. Application to random quantizations with Gaussian eigenvectors. The sec-
ond application of Theorem 2.1 will be to construct random perturbations of U,, with eigen-

vectors that look approximately Gaussian. To construct the random perturbations, we first

25



use results on low-dimensional projections from [DF84, Mec09, CMO08] combined with esti-

mates on the matrix entries of the spectral projection matrix to prove:

Theorem 2.4 (Gaussian approximate eigenvectors). Let S, (ng)g, Un,, and I(ny) be as in
Theorem 2.1, in particular assume (2.3.1) holds. Denote the eigenvalues and eigenvectors
of Uy, by (ew("’“’j))j and (YD), respectively. Then letting ¢™) be a unit vector chosen
randomly according to Lebesgue measure from span(y ™9 : §(wd) € [(ny)), the empirical

distribution ™) of the scaled coordinates

ViR g,
converges weakly in probability to the standard compler Gaussian N¢(0,1) as k — oo. In
fact, for any f : C — C bounded Lipschitz and € > 0, there is kg > 0 so that for k > kg,

(2.3.7) P H/f(g:) dp™) () —Ef(Z)‘ > 5] < 6exp (—%) ,

where || fl|Lip := sup,, %, and Z ~ N¢(0,1).

Then we construct random perturbations V;,, (8!) of U,,, by binning the eigenvalues of
U, and randomly rotating the eigenvectors within each bin. This idea of rotating small sets
of eigenvectors was used in different models in [Zell4, Van97, Map13, CG18] to construct
random orthonormal bases with quantum ergodic or quantum unique ergodic properties.
In our setting, Theorem 2.4 will additionally show that the coordinates of these randomly
rotated eigenvectors look approximately Gaussian. The matrices V,,, (8"]) also satisfy the
entrywise relations |(V;,, (B8)) > = (P, )y + 0(1) as well as a weaker Egorov property
relating them to the classical dynamics, so that they can be viewed as a quantization of
the classical map S. Thus while we do not prove approximate Gaussian behavior for the
quantizations U, with [(Uy,)zy|* = (Pa,)zy, We prove it for the family of random matrices
Vo (B "t]) | which are alternative quantizations of the original classical dynamics of S.

Note also that S is not required to be ergodic here. In particular, we can take the direct

sum of two ergodic maps S; and Sy, whose resulting block matrix U,, has eigenvectors
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localized on just half of the coordinates. Then U, will not have equidistributed or Gaussian

eigenvectors, though the randomly perturbed matrices V;,, (8I™]) still will.

Theorem 2.5 (Random quantizations with Gaussian eigenvectors). Let S satisfy (i)-(iv),
and let (ng)y be a sequence with K (ng) — co and with each Markov matriz P,, unistochastic.
Then there exists a family of random unitary matrices V,, (B"™)) in some probability spaces

(Qn,., P, ) with the following properties:

(a) Vi, (B7)) is a small perturbation of U,,, as in SUD glny] |V, (B — U, || = o(1).
Additionally, for every Bl Vi, satisfies an Egorov property; for Lipschitz h :
0,1] — C,

IV, On (M) V,,. " = Oy (R0 S)| = 0(1) - 1| uip-

(b) (Gaussian coordinates). There is a sequence of sets 11, C Q, with P[Il,,,] — 1 with
the following property: Let (\7,%);9 be a sequence of matrices with \7nk ell,,, and let
omedl be the jth eigenvector of \7%, and pleil = n—lkzn’“ 5

1 negl the empirical

o
N
distribution of the scaled coordinates of @™, Then for every sequence (Jny )i with
Jn € [1:my], the sequence (u™snl),. converges weakly to N¢(0,1) as k — oo.
(c) (QUE). There is a sequence of sets I',, C Q,, with P[I',,] — 1 such that for any
sequence of matrices (‘N/nk)k with XN/nk e I',,, the eigenvectors 5[”“] of ‘N/nk equidis-

tribute over their coordinates. That is, for any sequence (jn, )i with j,, € [1 : nygl,

and any h € C([0,1]),

1
(2.3.8) lim (g™l O, (h)@leInl)y = / h(x) dz.
0

k—o00

(d) For every B, the spectrum of V,, (8"]) is non-degenerate.
(e) The matriz elements of V,,, (ﬁ["k]) satisfy sup giny) Maxy,, “Vn,c (ﬁ["’f])%y|2 — (Pnk)gcy‘ —

0 as k — 0.

2.3.3. The doubling map. Finally, in Sections 4.1 and 4.2 we study the case when S is the

doubling map on R/Z and the specific quantization U, is the orthogonal one in (2.1.2). We
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study this case using similar arguments as in the general case, but with stronger estimates
from analyzing binary trees and bit shifts specific to the doubling map. Theorem 2.1 will
hold with any sequence of even n € 2N, not just those with K (n) — oo. Additionally,
when n = 2%, the spectrum of this specific quantization U, is degenerate with multiplicities

asymptotically iTi? and most every eigenbasis looks Gaussian (Theorem 4.6).

2.3.4. Outline. Chapter 3 contains the main proofs: Section 3.1 contains some lemmas
concerning properties of the map S and the corresponding Markov matrices P,. Section 3.2
is the proof of the pointwise Weyl law analogue, Theorem 2.1. The first application, The-
orem 2.3 on quantum ergodicity in bins, is proved in Section 3.3. Section 3.4 covers the
second application on random perturbations of U, with approximately Gaussian eigenvec-
tors. Chapter 4 deals with the specific map the doubling map, especially with the degenerate

case of dimension a power of two. Chapter 5 contains additional remarks.
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CHAPTER 3

Proof of the main results

3.1. Properties of the map S and matrices P,

In this section we gather some results about the relationship between the map S and the
Markov matrices P,. The following lemma contains properties from [BKS07] and [PZKO01],

stated here for a specific condition involving K (n).

Lemma 3.1 (powers of S, [BKS07, PZKO01]). Assume (i)-(iii) and let the partition size be
n € MyZ with atoms E1, ..., E,. Then for 1 </{ < [?(n) +1,

(a) S* is linear with integer slope on each atom E,, and for endpoints e € £, the right
and left limits satisfy lim, .+ S(y) € €.

(b) If S(E,)NE, # 0, then SY(E,) D E,. In fact S*(E,) is a union of several adjacent
atoms and some endpoints.

(¢) (P)ar,(Po)rimy *+ (Po)ry 1y # O iff there exists z € E, with S4(z2) € E, and S7(z) €
E. forj=1,... (-1

(d) If SY(E,) N E, = 0 then (PY),, = 0. If SE,) N E, # 0, then there is a unique
sequence T = (T1, T2, ..., Te—1) such that (Py)er (Pn)rir -+ (Pn)r_yy # 0.

The condition here with K (n) can be more restrictive than needed in [BKS07], but is
a concrete example of allowable powers ¢ and dimensions n. For completeness with these

concrete conditions, we include most of the proofs below.

Proof. (a) Both parts are done recursively. For example, if S~ is linear on atoms F,,
then for the first part of (a), it suffices to show for each x, S*!(E,) C A; for one of
the atoms A; of the “base” partition M, (depending on x), since then composition
with S shows S = S o 7! is linear on E,. The inclusion S‘~*(E,) C A; holds for

any £/ —1 < K (n), essentially because this image must avoid all endpoints eg € M.
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Since L is the least common multiple of the slopes of S, then Lf)_l is a multiple of
the slopes of S‘~!, and so the preimages S~ (ey) of a “base” partition endpoint
ep € & must live in the endpoints,! not interior, of the size M - Lg_l partition.

(b) follows from (a) since the linear segments in S¢ start at points in £ and have integer
slopes.

(c) The (<) direction is immediate from the definition of P,. The (=) direction follows

from the relations
S(E,) D E,, S(E,)DE,, ..., S(E,,)DE,

and working backwards, taking z,_; € E,, | with S(z.;) € E,, and then z; € E,
with S(z;) = 2zj+1.

(d) The first part follows from the above inclusions as well; note that if
(P)ar (Po) sy -+ (Po)ry iy # 0, then SYE,) D S“"Y(E,) D -+ D E,. The unique
path part is Lemma 2 from [BKSO07]: the proof is to suppose there are z1, 2, € E,
with S%(21), S*(22) € E, but with S"(z;) € E; and S"(22) € Es for some 1 < r </
and E; # E,. Then pick w € E,, and by part (b), then there is w; € E; with
S (wy) = w and wy € Ey with S (wy) = w. Again by (b) then there are vy # vy
in E, with S"(v;) = w; and S"(vy) = wy. But then S(v;) = S*(vy) = w which

contradicts S* being linear (with nonzero slope since S is measure-preserving) and

injective on F,.

The next lemma shows how K (n) is used to ensure that small powers of P¢ interact

nicely with the partition of [0, 1] into n atoms.

It §=(=2)(eg) WZ and y € STH(S™ 2 (ey)), then S(y) = my +b € WZ for some m/|Lg
1
Z

1 1
and b € -7, so c .
€t S0y E MoL§ *m = MoL§™ "
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Lemma 3.2 (powers of P,). Assume (i)-(iii) and let 1 < < K(n)+ 1. Then

0, SYE,)NE, =10
(3.1.1) (Pr)ay =

m> SYE,)NE,#0, any z € E,

That is, for 1 < £ < I?(n) + 1, we can compute P by drawing S* and applying the same

procedure we used to define P, from S.

Proof. From Lemma 3.1(a), partitioning [0, 1] into My - L5 equal atoms ensures S* is linear

on each atom. Since 1 < /¢ < I?(n) + 1, then M, - Lf;’l divides n so for these ¢, the map

S’ is linear on each atom of the size n partition and the value m is the same for any

z € E,. The matrix elements of P! are (P),, = > riwsy(Pr)en (Pu)rimy = (Pa)ry_yy- By
Lemma 3.1(d), for 1 < ¢ < K(n) + 1 and fixed x,y, this sum over 7 collapses to either zero

or just a single term (P,)yr, - - - (Pn)r,_,y. If this is nonzero, then by the definition of P,,

"o 1
o = S B ISE IS B 15 B )T

By Lemma 3.1(c), there exists z € E, with S(z) € E,,,S5*(2) € E,,,...,S5%z) € E,, so

Y4 _ 1 = !
e = [9G9EE) - SET @) 1EVEN

O

The following lemma demonstrates the sparseness of the matrices P’ for times before
K (n). Essentially, this is because for these times, the nonzero entries of the matrix P’ are
placed by drawing S* and an n x n grid in [0, 1]?, and then placing a nonzero entry in each
position in the grid that S passes through. As n increases, the grid becomes finer and

the (one-dimensional) graph of S* in [0, 1] cannot pass through a very large fraction of the

boxes.

Lemma 3.3 (number of nonzero entries). Assume (i)—(w) and let 1 < £ < K(n)+ 1. Then

the diagonal of Pt contains at most 2MyL§™ nonzero entries, and in total P has at most
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n- s’ mnonzero entries, where Smax 15 the mazimum of the absolute values of the slopes in

max
S.

Proof. Pick an atom F,. Since the maximum slope magnitude of S is syay, the interval

SY(E,) has length at most s, - |E.| and intersects at most s’ atoms FE,. Thus by

max max

4

¢ . nonzero entries, so in total P¢ has at most

Lemma 3.2 the zth row of P’ has at most s

n - st nonzero entries.

max

Also by Lemma 3.2, nonzero diagonal elements of P! occur exactly when SY(E,)NE, # 0.
Let Q C [0,1] x [0,1] be the diagonal chain of squares Q@ = [J'_}(Z,ZFL) x (2, 2H) 5o

n’ n n’> n

that the nonzero diagonal elements (PY),, occur exactly when S¢ intersects the xth square

(£, 28y % (£ 28 (Figure 3.1).

n’ n n’ n

([

I = 5
Mo-L§

FIGURE 3.1. A line of slope 2 intersecting two (open) boxes in the diagonal Q.

i i+l
MoLS™Y MoL§™!

Choose an interval I; := ( ), an atom of the partition into MyL5™" atoms.
This is the coarsest partition for S* for which we can guarantee by Lemma 3.1(a) that S* is
linear on each atom. Since ¢ < K (n) + 1, the partition into n atoms E, is a refinement of
this one. If the slope of S* is negative on I;, then S? can intersect at most one box in the
diagonal @. If the slope of S’ is positive and at least two on I;, then it can intersect at most
two boxes in @ (see Figure 3.1): Consider the slope one lines ¢ + £ in [0, 1]?, which bound a
parallelogram R D Q. Project the line segment S*(I;) N R onto the z-axis. If S¢ on I; has
2

slope m > 1, then one can compute this projection is an interval of length < %— For
m—1
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m > 3, this bound is < % so S¢(I;) N R can intersect at most two % X % boxes in (). For
m = 2, the length can be %, but S*(I;) N R can still only intersect at most two boxes in @Q,
by using that SZ(%) € 17 since n is a multiple of MLy

Then in total since there are MOLf;_1 intervals I, ..., IMOL€_1_1, there are at most 2M0L€_1

nonzero entries on the diagonal of P.. O

Remark 3.1.1. Although the above argument works for slope —1, we do not allow slope

—1 in S since powers of S could then have segments with slope +1.

3.2. Proof of Theorem 2.1 pointwise Weyl law

In this section we prove Theorem 2.1 using a Fourier series approximation of the pro-
jection matrix, and properties of the Markov matrix P, and quantization U, to identify
potentially bad coordinates x. We first make some remarks about the proof and statement.

For notational convenience, we will use n instead of ny.

Remark 3.2.1. Let 7 : N — N be any function such that r(m) < m, like r(m) = |m/2] or
|logm]. This is a cut-off function that determines which Fourier coefficients to examine for

bad coordinates with short loops.

(i) To show (2.3.2), we will show we can choose G,, (not depending on I(n)) so that

#G, >n— 53{01 LS(K(n)), and for x € G,, that

(nj))12 _ [L(n)]
B21) | Y WIP- 5
j:G(”J)EI(n)
[1(n)] “1777. \—1 “1777 \—1 —r(K(n))/2
< 5 2r|I(n)| 7 K(n) + (14 2x|I(n)]" K(n)"")-6-2 i
m

(ii) To ensure the right side of (3.2.1) is o(|/(n)|) and #G,, = n(1 — o(|I(n)|)), choose

r so that

(3.2.2) r(K(n)) = oo, K(n)—r(K(n))— log;, T — 00, as K(n) = .
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Since |I(n)| - K(n) — oo by (2.3.1), then eventually m < K(n), so condition

(3.2.2) is always met if

(3.2.3) K(n) —r(K(n)) —log; K(n) — oo.

For example, r(K(n)) = |K(n)/2] or r(K(n)) = |log K(n)| always satisfy the
conditions on r.

(iii) We are interested in sequences of intervals I(n) where |I(n)| — 0. For the proof,
we will assume that |I(n)| is bounded away from 2. If |I(n)]| is near 27, apply the
Theorem to the complement /(n)¢ or to a larger interval around [(n)¢ that satisfies
(2.3.1), to conclude

> e - H s peap T

, 27 . 2
§:0(m9) el (n) §:0miel(n)e

as |[I(n)°| — 0.

3.2.1. Fourier series approximation. Let p;,) be the function on the unit circle in C

defined by prgm(€) := Xy (t), so that pr,)(U) is the projection

Piy i=pimy(U) = > )],

5:000D) €1 (n)

The sum 3 g erim) "2 is the (z,) coordinate of the projection matrix Priny. To
approximate Py, by a polynomial in powers of U,,, we approximate the indicator function
X1(n) by trigonometric polynomials.

These particular polynomials are based on an entire function B(z) introduced by Beurl-
ing, which satisfies sgn(z) < B(z) for z € R, and [ (B(x) —sgn(x))dz = 1. The function
B(z) also satisfies an extremal property; it minimizes the L' difference [, (f(x) —sgn(z)) dz
over entire functions f of exponential type 27 with f(x) > sgn(z) for z € R. By the

Paley—Wiener theorem, exponential of type 27 means that the Fourier transform of B(z) is
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supported in [—27, 27]. Selberg later used this function B(z) to produce majorants and mi-
norants of the characteristic function X; of an interval I, with compactly supported Fourier

transform.

Theorem 3.4 (Beurling—Selberg function). Let I C R be a finite interval and 6 > 0. Then

there are functions g}? and gg;) such that

(i) gﬁ;)(a:) < Xi(z) < H)( ) for all z € R.

/\/\

(+) )

(ii) The Fourier transforms g; s and 91;5 are compactly supported in [—4,d].

(iii) [o(g55 (@) = Xp(2)) dz = 206" and [, (X;(z) — g\ (x)) da = 275,

For references on Beurling and Selberg functions, see [Sel91, Chapter 45 §20], [Mon94],
or [Vaa85|. For I C R/(27Z) with |I| < 27, to take 2m-periodic functions, define

=Y g —2mj), G =>4} (- 2m)),

JEZ JEZ
whose Fourier series coefficients agree with the Fourier transform of gﬁ;) or ggg) at integers,

(3.2.4) G (k) =g (k),  GLk) = g3 (k).

Thus also using property (iii),

ET]
I+ 216" e P B
(3.2.5) G (x) = HT +3° (g%’(é)e g g (e ) .
/=1

These are trigonometric polynomials, sometimes called Selberg polynomials, that approxi-

mate X; well from above or below.

3.2.2. Projection matrix estimates. Take § = K(n), and define the functions on the

unit circle in C,



Recall we also defined py(n)(e”) = Xy (¢) and the projection Pr,y = prmy(Uy), so that by

the spectral theorem,

) < )
By (3.2.5) and the spectral theorem again,
(3.2.7) F(i) (U,) = |]<n)|(1ﬂ:27T|I(n)|’lf~((n)*1>IdJr
I(n),K (n) 2w
K(n) —
¢ ) _Ny-*
+Z( OV + 501 7 K)U”)'

The identity term (1 £ 27|I(n)| 'K (n)~")Id has the values we want already since
[I(n)|" K (n)™* = 0 by (2.3.1), so to show (3.2.1) we want to show the rest of the terms are

small. Since

(3.2.8) 93 (e / 095 ()| de < (11| + 267,

then for any z,y € [n], the (z,y) element of the non-identity terms can be bounded as

K

()| 1 W .
< o (L 2w () K (1)) D (U] + 1(U)yel).
/=1

3.2.3. Removing potentially bad points. Here we use properties of U, and P, from
Section 3.1 to remove coordinates z where (3.2.9) may be large. For 1 < ¢ < K(n) + 1, by

Lemma 3.1(d) there is at most one path of length ¢ from a given z to itself (or to another

y), so

‘(Url;)rz‘ = Z (Un)ToTl T (Un)’rzfﬂe - |(Un)f671 (Un)Tﬂz T (Un>7'ef1z‘ = ((Pﬁ)zw)l/z'

VA
TiIZ—>x
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Since all slopes of S are at least 2 in absolute value, then all the slopes of S are at least 2¢ in

absolute value, so by Lemma 3.2, |(U%),.| < 272 for all € [n]. In order to make the sum

22@ |(U O)ez| in (3.2.9) small then, we only need to be concerned with smaller ¢, since

|(Uf) 42| decays exponentially in £. As we will see, by Lemma 3.3, for small £, (Uf),,

=0 for

most coordinates x, so we can pick a cut-off for small ¢ and just throw out any coordinates

x where (U!),. # 0 below this cut-off.

Let r : N — N satisfy r(k) < k and (3.2.2); this will determine the cut-off for which ¢ are

“small”. Define the set of potentially bad coordinates as

(3.2.10) By i=A{z € [n]: (U')4e # 0 for some ¢ € [1: r(K(n))]}.

For ¢ < K(n) + 1, by Lemma 3.3, the diagonal of U contains at most 2 - My - L™

entries, so there are not many bad points,

r(R(n)
(3.2.11) #B, <2My Y Li' =
(=1

2M,

= L = 1) = o(mlI(m)]),

using assumption (3.2.2) for the last equality. For x € G,, := [n] \ B, then

(3.2.12) STHU D wal 10U aal =2 Y (U
=1 t=r(K(n))+1

<2 Y 272=2(1+4v2) 27 &™)

t=r(K(n))+1

Then for x € G,
(3.2.13)

nonzero

< M)l [27r|f(n)|—1i€(n)—1+(1+27r|1(n)|—11’%(n)—1) 62RO/

= o([I(n)]),

since |1(n)| K (n) — oo by (2.3.1). By (3.2.11), #G» > n(1 — o(|I(n)])).
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3.3. Quantum ergodicity in bins

In this section we prove Theorem 2.3 concerning quantum ergodicity in bins {j : (") €

I(ny)}, following the standard proof of quantum ergodicity that uses the Egorov property.

Theorem 3.5 (Egorov property, [BKS07]). Suppose S satisfies conditions (i)-(iv) and has

a corresponding n x n unitary matriz U, with eigenvectors (1/)(”’j))?:1. Let O,,(h) be the

quantum observable corresponding to h : [0,1] — C. If h is Lipschitz continuous on each

image S(E,), and n € MyLoZ, then

max ||h||Lip(s(z,))
1 €T n z
(3.3.1) [UnOn (W)U, = On (0 S)| < 5LEMo - <l ,

n

where the norm on the left side is the operator norm.

Ift < [?(n) + 1, then by the same recursive argument as in Lemma 3.1(a), S*! is linear
on each S(E,), so hoS*~!is Lipschitz on S(E,) with Lipschitz constant < ||h||pi, Ly . Then

iterating (3.3.1) ¢ times yields,

1UOn(M)U," = On(ho S|

n

n

t
< UL (UL On(h o ST ) = UL Oy (ko STYUL )|

r=1

t
<D UaOu(ho S™HUL = O(ho 57|

r=1
t
LMo||hlluipLy " _ Csl[h|uip - Lt
3.3.2 < 0 0 < £ 0
( ) - ; 2n - n
If say t < f(é"), then L < n, so the error bound is small, and the Egorov property (3.3.2)

relates the quantum dynamics ULO,,(h)U,* to the classical dynamics ho S* for ¢ well before

the Ehrenfest time Ty := K (n) < logn.
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3.3.1. Proof of Theorem 2.3. Since O,, (h) — (fol

h)-1d = O, (h — fol h), wlog assume

fol h = 0 and define the quantum variance for a fixed bin I(ny),

1 . o
(333) Vo 1= g > @O0 (M)
k . (nk,) k
#{j . Qi e](nk)}jze(nwg(nk)

which we will show tends to zero as k — oo. For a function ¢ : [0,1] — C, define [g]7 :=

T tT:_Ol g o St. Using that (™) are eigenvectors of U,,, followed by the Egorov property
and averaging over t (stopping before @),

(W49, 0y, (B0 ) = (W), (U, ) O (WU, 01

- (w(nk,j)’ Oy, (ho St)w(”’“’j)> +0 (M)

ng
= (0,0, gyt + 0 (e 18,
Then by Cauchy-Schwarz,
(D) 0, (W) 2 < (50D, O, ()™ )2 + O, (f—n)
(3:3.4) < (D, 0y ((K]5) Oy ()6 ™) + O, (f—n) .

For this quantization method, just a sup norm bound shows

femi o) o m )

lallLip(e) 10l Lip(2.)

|Onk (ab)m — Oy, (a)mOnk (b):m:| =n

< 2 ,
so that
i bl|Li
(3:35) 101, (08) ~ O (0)0,, ()] < pax 1Nl Vbt
z€[ling] n
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Taking T' = [K(”’“)J then for ¢t < T, S is linear on every E, so that || % = —o PoSHLip(e,) <
ST
T Z |hHL1pSmaX = Oh( Hjl“ax)? and

T
(3.3.6) ‘(@D(nk’j)» Onk (h>w(nk7j)>|2 < <¢(nk,j)’ Onk<| [h]T|2)w(nkJ)> + O, (%) .

Applying the above and Theorem 2.1 yields
1 A o
(sd) O, (R)afy k)
{5 00wd) € T(ng)} Z (D, O (R)p1") |

§:0 kD) €1 (ny,)

2m (i) (i) Ly
< TGNy S WOl ou ()

§:0k9) €T (ny,)

S% S RO (e + Y R | + o)

T€Gn, j-e(nkﬂj)e[(nk) T€Bp,,
c- LI |2 koo
1+ o h(S*(y dy + 9 = +0o(1) — 0,
= Z ‘ welfo)
using the L? ergodic theorem as T' = LK(”’“ | — 0. O

The passage from decay of the quantum variance (2.3.6) to the density one statement is
by the usual method (for details see for example Theorem 15.5 in the textbook [Zwo12]).
To start, by Chebyshev—Markov with ¢ = ank/ ! Theorem 2.3 implies for a single Lipschitz

function h, there is the sequence of sets A, (h) C {j : 009 € I(n,,)} with

# A, (h)
3.3.7 : 1
(8:37) (00 € I(ng)}
such that for all sequences (jn, )i with j,, € A, (h),
A 1
(3.3.8) lim (im0, () ing)y = / h(x) da.
— 00 0

For a countable set of Lipschitz functions (hy),, since finite intersections of sets A,,, satisfying

(3.3.7) also satisfy (3.3.7), we can assume A, (he11) C Ay, (he) for all ny,. Then for each hy,
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let N(¢) > 0 be large enough so that for ny > N(¢),

#{j : 0D € I(ny)}

Take N(f) increasing in £ and let Ay := A, (hy) for N(£) < np < N(£+ 1), so (3.3.8) holds

(3.3.9) >1—

|

for sequences in A;’f]’c and h, in the countable set. Then take (h), to be a countable set of

Lipschitz functions that are dense in (C([0,1]), ]| - ||«), so that for any h € C(]0, 1]),

1
<¢(nk,jnk)7 Onk(h)w(nk,jnk)> _ / h‘
0
< ‘(w(nk,jnk)’ Onk<h _ hg)w(nk»]'nk)ﬂ +
+

/Ol(m—m'.

The terms on the right side are bounded by ||h — hy||« or are o(1) as k — oo.

1
+ ‘<w(”k7jnk)’Onk(he)w(”kvjnk)> _/ hy

0

3.4. Random Gaussian eigenvectors

In this section we prove Theorems 2.4 and 2.5 on random unitary rotations of bins of
eigenvectors. To analyze the statistics of the rotated eigenvectors, we look at their coordinate
values, which can be expressed as one-dimensional random projections. The behavior of low-
dimensional projections of high-dimensional vectors has been well-studied since the 1970s
for its applications in analyzing large data sets; see for example the survey [Hub85| for an
overview of the early history and motivation of “projection pursuit” methods. The marginals
of high-dimensional random vectors are often known to look approximately Gaussian, with

precise conditions first proved by Diaconis and Freedman in [DF84].

3.4.1. Random projections and bases. For Theorem 2.4, we are interested in the coor-
dinate values of a random unit vector in the span of V := {49 : §("3) € I(n)}. Let My
be the n x (dim V') matrix whose columns are the basis () in V. Then P, := My M,
is the projection onto this space, and a random unit vector ¢ in the span is chosen accord-

ing to w ~ Nc(0, Priny)/IINc(0, Pyl ~ Myu for u ~ Unif(SE™V~!). The coordinates
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¢1 = <¢17 ew)? ¢27 cee 7¢n are
(u, Myer), (u, Myrea), ..., (u, Myep)

which is a 1-dimensional projection in the direction v € C4™V of the data set
{Myey,...,Mpe,} < CHmV. Since " |¢.]> = 1, we use the scaled data set
V{Meq, ..., Mye,}. The following theorem due to Meckes [Mec09] and Chatterjee and

Meckes [CMO08] is a quantitative version of the theorem from [DF84].

Theorem 3.6 (Complex version of Theorem 2 in [Mec09]). Let {x;}5_, be deterministic

- d 2 _ 1y 2
vectors in C*. Define 0* = —= > 1" | |2;]* and suppose

(3.4.1) 1 En: [l gl < 4
h n =1 02 a
1 n
(3.4.2) sup — Y |(6, ;)] < B.
068%71 n i=1

For a point 0 € Sfé’l C C4, define the measure ,uén) = 1 2?21 00.0;y on C. Then for

0 ~ Unif(Sca-1), any bounded Lipschitz f : C — C with Lipschitz constant L = || f||Lip :=

SUpP,z, W, and € > %, there is the quantitative bound

2d
SGeXp<— - )

= %28

(3.43) F||[ 1@l @) - Bs02)

where Z ~ Ne(0,1). In particular, if A = o(d) and B = o(d) and 0% = 1, then u™ converges

weakly in probability to N¢(0,1).

Proof. The proof is the same as the real version in [Mec09], except that the (multi-dimensional )
Theorem 3.7 written below from [CMO08]| replaces the single-variable version. The proof idea

from [Mec09] is to let F'(0) := 15" f({0,2;)) and write

PIFO) —Ef(Z2)] > e] <P[|F(0) - EF(0)] > ¢ - [EF(0) - Ef(Z)]].

Then one uses Theorem 3.7, a generalization of Stein’s method of exchangeable pairs for

abstract normal approximation, to bound |EF(0) — Ef(Z)| with V' = (0,z;) where I ~
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Unif[n], and then one can apply Gaussian concentration (Lemma 3.8, cf. Section 7.1) to F

which is (Lv/B)-Lipschitz. O

Theorem 3.7 (Theorem 2.5 for C in [CMO08]). Let W be a C-valued random variable and
for each € > 0 let W be a random vector such that L(W) = L(W,), with the property that
lim. o W, = W almost surely. Suppose there is a function A(¢) and measurable I'; A such
that as € — 0,
(i) SHEIW. = W)W) 2 —w.

(ii) gisBlIW. — WW] £ 1+ E[T|W).

(iii) s EI(W. — W2IW] £ E[A|W].

(iv) ﬁE]WE - W —0.

Then letting Z ~ N¢(0,1),
(3.4.4 dyas(W, Z) < EIT| + EJA,
where dwass is the Wasserstein distance dwass(W. Z) = supy,. <1 [Eg(X) — Eg(Z)].

Lemma 3.8 (Gaussian concentration on the complex sphere). Let F' : C¢ — C be L-Lipschitz

and 0 ~ Unif(SEY). Then

(3.4.5) P[|F(0) —EF(0)| > t] < 6exp (—%) :

Applying Theorem 3.6 to our case immediately yields the following.

Theorem 3.9 (Complex projection version of Theorem 2 in [Mec09]). Let P™) be an n x n

self-adjoint projection matriz onto a d-dimensional subspace V) of C*, and suppose

n

d
3.4.6 PWe |2 — =] < A.
(3.46) > |1Pvel -7 <
Let w = (w1, ...,wy) be chosen uniformly at random from the (d — 1)-dimensional sphere

S(V®Y :={v e V¥ : ||v|| = 1}, and define the empirical distribution i) of the coordinates
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of w scaled by \/n,

v 1

: ; ; 2| fllLip(A43)
Then for f : C — C bounded Lipschitz and & > I&T)

(3.4.7) P H/f(x) A (z) — Ef(Z)‘ > 5] < Gexp ( . %Hii—ﬁ%p)

where Z ~ N¢(0,1).

Remark 3.4.1. As will be shown by (3.4.13) and (3.4.11), Theorem 2.1 shows A = o(d)

with d = %5?’“)'(1 + 0(1)), so the above theorem proves Theorem 2.4.

Proof. Let vy, ..., vq be an orthonormal basis for V)| and let My be the n x d matrix with

those vectors as columns. Then P") = M M, and
1MV es s = (e, My Miea)En = | PWes|2n.

Apply Theorem 3.6 to the data set \/nM;ey, /nMes, ..., /nMe, in CL. We can take
B =1 since for any § € S& !,

n

1 & § .
=Y ORGP = D (MO, e0) (er, Myb) = [ Myl = (0, My MyO)ca = [[6]]2.
x=1

z=1
If 6 is uniform on SE' C C% then My#@ is uniform on S(V®)), so 237" 6 marse,) ~
7 2 =1 O, .

Theorem 3.9 provides a bound for the probability that a single randomly chosen vector
does not look Gaussian. Because the quantitative bound (3.4.7) decays quickly, a simple
union bound gives a bound on finding an entire orthonormal basis that looks Gaussian

(Corollary 3.11 below). This family of random orthonormal bases will then be used to

construct the unitary matrices V;,, (8!) in Theorem 2.5.

Lemma 3.10 (union bound for random ONB). Let B C S& ! and let o be surface measure
on S& normalized so o(S&*) = 1. Then a random orthonormal basis of C* (chosen from

Haar measure) avoids B with probability at least 1 — do(B).
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Proof. Let p be normalized Haar measure on U(d). Then for any x € S&, o(A) = u(g €
U(d) : g(x) € A). By union bound, letting {e;} be the standard basis,

1({g € U(d) : g(ej) € B for some j € [1:d]}) < d-u({g € U(d) : g(ex) € B})

:dU(B)7

so u({g € U(d) :Vj € [1:d], g(e;) € B}) = 1—do(B). O

Corollary 3.11 (Random Gaussian basis). Let C* = VI @ ... @ VI8 and let P be the

orthogonal projection onto the subspace V. Suppose there is A and dy, ..., d,. € Ry so that

n

(3.4.8) >

=1

[PYe, |2 — L] < A, Ve[l

Choose a random orthonormal basis (oY) ); for C™ by choosing a random orthonormal basis

from each VW (according to Haar measure), and let

p? Z 0 gl

the empirical distribution for the jth basis vector’s coordinates. Then for any f : C — C

2[|fllLip(24+3)
(mindy—A)—1"~

29[| fIIZsp

bounded and Lipschitz and € >

JE€M]

(3.4.9) [max

where Z ~ N¢(0,1).

Proof. The numbers d; need not be the dimensions of V4, but since

dim V¥ d, 1< 1
(3.4.10) == (||P[” x||2——> <-4
=1
then
n . [g]
(3.4.11) S |Pte 3 — SV <0
z=1
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Then Theorem 3.9 implies for ¢ > 2%!};;?ij ) > 121|1|1{1 ||(;$1(‘2/,é]+31’ that Ry(f) := {w € S(V1) :

|[ f(z)dp,(z) —Ef(Z)| > €} has small measure < 6exp(—$”h¥”). By Lemma 3.10,
Lip

a random orthonormal basis for VI avoids R,(f) with probability at least 1 — dim V4

Gexp(—%m”ff). Thus letting I, C [n] be the set of indices j corresponding to V14,
ma)]< / flo)du (z) — E f(Z)‘ > e}
j€ n

<ZIPH/f ) dpl(z) Ef(Z)‘>5for somejelg}

e2dim V1
< E dim V1 - 6 exp <——>
= 6 .
p 28] f1lLip

<6 ( £? min dim VM) <6 ( e?(mind, — A))
< 6nexp | — < 6nexp | — .
201 fllwip 2901 fllwip

U

3.4.2. Proof of Theorem 2.5. Choose x(ny) € N so that if we divide [0, 27r] up into K (nyg)

equal sized intervals Iy (ng), ..., Lum,)(ne), then (2.3.1) holds for |I(ny)| = . Let ¢p(me:d)

be the jth eigenvector of U,,. Like the method used in [CG18], construct Vnk (B]) b

taking a random unitary rotation (according to Haar measure) of the eigenvectors {(™7) :

9(3) € I,(ny,)} within each interval. Then perturb any degenerate eigenvalues to be simple,

while still keeping them in the same bin. Denote the resulting eigenvectors of Vnk(ﬁ[nk]) by

9"

(a) Let (7% be the perturbation of U,, obtained by reassigning all eigenvalues in the same
bin I,(ny) to a single value ¢*©¢ in the bin. Then

2
|(Un — T ol = Z! 9 _ 002 (0 ) < 022
k k — K(nk)2

since the reassigned eigenvalues are still in the same bin. Also, || Unk Vo, (B || < C -2 e

by the same computation, since Unk has degenerate eigenspaces that can be rotated to

match the eigenvectors of V;,, (8"]). Thus for any random V,,, (8], ||U,,, —V,,, (8™ || <

2 y = o(1). The Egorov property for U, , Theorem 3.5, then implies the weaker Egorov

K(ng

46



property for V,,, (8"]), since if A and B are unitary, then
[AMA™ — BMB™Y| = (A= B)MA™! + BM(A™" — B™") < 2||A - BJ|[|M]],

and this also holds if we replace M with M —c-Id for any ¢ € C like ¢ = fol h or ¢ = h(0).
(b) To show Gaussian behavior, we first show there is €(ng) — 0 so that for any bounded
Lipschitz f : C — C, as k — oo,
(3.4.12)

max
Le[l )

/f nk J] )—Ef(Z)‘ > Hf”Lipg(nk)] < 6ny exp(—Cn}c/2|I(nk)|1/2)7

where Z ~ N¢(0,1). A density argument followed by tightness will then complete the
proof of (b).

To show (3.4.12), note that for any W = span{ty)(™) : 9U) € I,(n;)} and P the
orthogonal projection onto W, the pointwise Weyl law Theorem 2.1 implies

| PWe, |2 — @’ < Z @0(1) + Z 2 = o(ng|Le(ny)]),

z€Gn, T€Bn,,

n

(3.4.13) >

r=1

so the quantity A in Corollary 3.11 can be taken to be o(ng|l,(ng)|). Let /L(ﬂ) edl e
the coordinate distribution of the jth eigenvector qb[(z’;’j] of Vj, (B™). Then applying
Corollary 3.11 with all dy = ") anq

(3.4.14) e(ng) = max <<d 44 +6 !

(—A) -1 (nkll(nz@)l)”4> -

this yields for Z ~ N¢(0, 1),

wx | [ 10 a5 @)D > 1 ipe(m)]

maX
2 I _ 2 A
< 6ny exp (_g(nk> (nk|2<7”k)’ T ))
Y
1/2|I( )|1/2(1_ 2w A )
T
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Now let (f¢)¢ be a countable set of Lipschitz functions with compact support that are

dense in C,(C), and set

(3.4.16) an:{v,ﬂkw[ﬂﬂ) Veel:ng,jel:nl,
[ 50ty - B2 < Uit}
Then
(3.4.17) P[II%, ] < 6n2 exp(—Cny/*|1(ng)| /) — 0,

since by (2.3.1), 1/2|I(nk)]1/2 > 2logny. For a sequence of matrices (Vnk)k with ‘7,% €
IL,,, let "3l be the scaled coordinate distribution of the jth eigenvector (Z[”’f’j] of Vnk
By definition of II,,, we know for any f, that [ f,dul™n) — Ef,(Z) as k — oo, for
any sequence (j,, )r with 7, € [1 : ng]. Denseness of (fy), shows that this holds for all
f € C,(C) as well. Then (zzl™nxl), is tight, and with the vague convergence we get weak
convergence of il to N¢(0,1).

(¢) To show QUE, like in (b), we first show there is £(ny) — 0 so that for any bounded

Lipschitz h : [0,1] — C, as k — o0,

JE[Liny]

(3.4.18) P[max (O On, (R)p ") — / h(z) da
0

> hllcelo)

< Cny, exp(—cni/2|](nk)|l/2).
This is done by the same argument presented in [CG18] using the Hanson—Wright in-
equality [RV13]. After proving (3.4.18), part (c) follows from density like in (b).
For W with dimension d, let Myyiq be an n x d matrix whose d columns form an

orthonormal basis for W, Then ¢l chosen randomly from S(W ) is distributed like
My for u ~ Unif(SE), and

(3.4.19) (@), O, (R)!™ ) e~ (u, (Mg Oy (h) My )
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The Hanson-Wright inequality combined with subgaussian concentration on the

norm || Nc(0, Ig)|l2 shows that (u, (M, On, (h) My)u) concentrates around its mean

(M

110 O0ny, (h) Myyia) (see [CG18], Theorem 4.1 for details), which by the pointwise

Wey law Theorem 2.1 is fol h+ R(ng, h) with |R(ng, h)| < R(ng)||h]|e, some R(ng) — 0.

In particular, for any € > 2|R(ng, h)|,

4 . 1 g2 €
3.4.20) P H ol 0, (h)le] —/ h‘ > 5} < Cjexp (—C’ min , )d) .
( (@ On(M)e™) = | ! T ERETI

Then taking e(n;) = max (2R(nk), W) and applying a union bound like with
Lemma 3.10 yields (3.4.18), using that eventually min(e(ny)?, e(ny)) = e(ng)?.

Next, taking (hy), to be a countable dense set of Lipschitz functions in C([0, 1]), let

(34.21) T, = {Vnk(ﬂ[nﬂ) Ve l:mg],je(l:ng,

(57, 0us ol — [ it o] < HheHooe(nk)} .

Then P[] < Cin2 exp(—Con?[I(ng)]?) — 0, and denseness shows that for
sequences (Vnk)k with Vnk € I',, and with eigenvectors denoted by g”k’ﬂ, that
(@rdnil Oy, (h)glreindy — [ 1 for all f € C([0,1]) as well.

(d) To make the spectrum simple, we simply perturbed any degenerate eigenvalues while

keeping them in the same bin.

(e) This follows from ||U,, — Vo, (8"))|| < C'- 2= since for any matrices U and V with

k(ng)’

entries |- | <1,

“Vﬂcy|2 - |Uwy|2} <2 ||ny| - |U:vy|| < 2|ny - nyl < 2||V - U”
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CHAPTER 4

The doubling map

4.1. The doubling map with any even n

Recall if S : [0,1] — [0, 1] is the doubling map, then for any n € 2N, the n x n Markov
matrix P, along with a specific quantization U,, can be taken as in (2.1.2). For general maps
S, in Theorem 2.1, we restricted to dimensions n € MyZ with K(n) — oco. This ensured
that enough powers of P, behaved nicely with the partitions (Lemma 3.2). For the doubling
map, My = 2 and we can take all n € 2Z, not just those with the largest power of two
dividing n tending to infinity. The statement is as follows (note that the quantization U,

does not have to be the orthogonal one in (2.1.2)).

Theorem 4.1 (pointwise Weyl law analogue for the doubling map). For n € 2N, let P,
be the matriz in (2.1.2), and let U, satisfy |(Un)ay|® = (Pn)sy. Denote the eigenvalues and
eigenvectors of U, by (e¢9§") ); and (™), respectively for j € [n]. Let (I(n)) be a sequence

of intervals in R/(27Z) satisfying
(4.1.1) |I(n)|logn — oo, asn — oo.

Then there is a sequence of subsets G, C [n] with sizes #G,, = n(1 — o(|I(n)|)) so that for

all x € G,

(1.1 > weop =10 o)

7:0(m9) el (n)

where the error term o(1) depends only onn, |I(n)|, and #G,,, and is independent of v € G,,.

Additionally, Gy, can be chosen independent of 1(ny) or |I(n)|.

The proof is the same as Theorem 2.1, except that Lemma 3.3, which bounds the number

of nonzero entries on the diagonal of P, is proved differently. To analyze the matrix powers
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P!, instead of viewing them in terms of S*, we count paths of length £ in the directed graph
associated with the Markov matrix P,. The proof of Theorem 4.1 then follows from the
following lemma and by replacing all instances of K (n)+ 1 by K := |log,n] in the proof of
Theorem 2.1.

Lemma 4.2 (number of nonzero entries for the doubling map). For n € 2N, let P, be as
in (2.1.2) and let 1 < ¢ < K. Consider the directed graph with n nodes 1,2, ... ,n, whose

adjacency matrix is 2P,. Then:

(i) For any coordinates x,y, there is at most one path of length ¢ from x to y in the
graph.
(ii) The diagonal of P’ contains at most 2 - 2 nonzero entries.

(iii) In total, P has exactly n - 2° nonzero entries.

Proof . All possible paths starting at a node x and of length ¢ can be represented as paths in
a binary tree of height ¢ with root node z. (Figure 4.1.) The nodes 1,2, ..., n of the graph
may be listed multiple times in the binary tree. If we always put the descendant 2z — 1
on the left and put 2z on the right, then the list of nodes in each row of the tree will be
consecutive increasing in Z/nZ. Thus if ¢ < K := |log,n|, the ¢th row of the tree will
contain 2¢ < n nodes, so that for any two nodes = and y, there is at most one path of length

¢ from z to y, proving part (i).

2
n=6 /N
3 4
a /N
6 1 2
VAN
6 1 2

3 4

/

3

=~ — Ot

5

FIGURE 4.1. Start of a binary tree for n = 6 (K = 2). This tree describes all
paths of length 3 that start at node 2.

Applying part (i), the total number of nonzero entries on the diagonal of P’ is the total

number of paths of length ¢ < K with the same start and end point z. Similarly, the total
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number of nonzero entries in P! is the total number of length ¢ paths from any z to any y.
The collection of all paths of length ¢ can be represented by the paths in a forest of n binary
trees each of depth ¢, one tree for each possible starting node x € [n]. (Figure 4.2.) The (th

row contains 2° - n numbers, showing part (iii).

. ) o 0
A A A ...... A}e

L2 oo ALl ]
of o

F1GURE 4.2. All paths of length ¢ as paths in a forest.

These 2°-n numbers at the bottom of the forest are 2 copies of the sequence (1,2, ...,n).
To show (ii), we will show that for each copy C; of (1,2,...,n), there can be at most two
paths with the same start and end point that end in this copy.

Let F(j) be the set of starting nodes that have descendants in the jth copy C; of
(1,2,...,n). (The last node in F(j) may overlap with the first node in F'(j + 1).) Con-
sider just the paths that start in F(j) and end in C;, and suppose there is a length ¢ path
x — x. We claim that only either x — 1 or z + 1 in F(j) can also have a loop of length ¢.
(See Figure 4.3.)

Let L*(z) be the left-most descendant of x in C}, and let R*(x) be the right-most descen-

dant of z in Cj.

(a) If L(x) < < RY(x), then no other y € F(j) has a path y — y. (Use Lf(x +
1) > 2+ 2 and Rz — 1) < 2 — 2, and then continue for the rest of F(j) using
L'y +1) > L(y) + 2 and R'(y — 1) < R'(y) - 2.)

(b) Similarly, if L*(z) = z, then only also # — 1 has a path z — 1 — z — 1.

(c) If RY(x) = x, then only also x + 1 has a path x + 1 — = + 1.

Thus in total there are at most 2 - 2¢ paths of length ¢ that start and end at the same

point, proving part (ii). O
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N AN AN

r—1ar+1 r—1lxx+1 r—1lxx+1

FIGURE 4.3. The possible cases if there is a loop © — .

4.2. The doubling map with n = 2%

When n = 2 the corresponding graphs from the doubling map are the de Bruijn graphs
on two symbols. Orbits in these graphs have been studied in the context of quantum chaos
in for example [Tan00, Ler05, GO13, HH20]. In these dimensions, the particular matrices
U, from (2.1.2), despite coming from the doubling map, exhibit some behavior like that of
integrable systems. Any choice of eigenbasis still satisfies the quantum ergodic theorem since
the doubling map is ergodic, but the eigenvalues of U, in these dimensions are degenerate
and evenly spaced in the unit circle. As a result of the degeneracy, we will be able to show
that random eigenbases look approximately Gaussian. This will follow from properties of the
spectral projection matrix of an eigenspace combined with the results on random projections
used in Section 3.4.

We start by showing the eigenvalues of U,, are 4Kth roots of 1 if K is even, and 4Kth
roots of —1 if K is odd.

Proposition 4.3 (Repeating powers of U,,). Let U, be as in (2.1.2) with n = 2X. Then
(a) U = (=D"I.
(b) Ur = (—=1)K(UE=")T for1 <r <4K—1. More generally, U’ = (—1)Kw(UiEw=—")T

for1 <r <4Kw —1.

Proof. Part (b) follows from (a) and unitarity (orthogonality) of U,,. For part (a), view the
doubling map on [0, 1] as the left bit shift on a sequence {0, 1} corresponding to the binary

expansion of z € [0, 1]. If we partition [0,1] into 2% atoms E; = (5%, 5%), i =0,...,25 — 1,

then we can identify atom F; with the length K bit string corresponding to the binary
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expansion of ZLK Then z € F; iff the first K digits of its binary expansion match the length
K bit string for E;. The Markov matrix P, then takes an atom indexed by i = (i1, ...,ik)
and sends it to the atoms indexed by (ia,...,ix-1,0) and (ig,...,ix_1, 1), the result of the
left bit shift. Thus for 1 < ¢ < K, there is at most one length ¢ path from i = (i1,...,ik)
to j = (J1,...,JK), which is described by the sequence (i1, ...,is,J1,-..,Jx) and requires
Qo415 %042, b (K—0) = J1,J2, - - -» jk—¢. Note this recovers Lemma 3.1(d).

Now considering the signs in Usx and viewing the indices ¢, 7 as length K bit strings, if
there is an edge ¢ — j, then

-1, 11=0jr=1
(UQK)Z']' — 271/2 .

1, else
Thus if there is a length K path 7:¢ — j, then

K
(4'2'1) (UQI%)Z] = (U2K)i71 (UZK)7172 T (U2K)TK71J' = 27K/ H (_1)(1*im)jm’

m=1

since (Tyn)1 = tm and (7,,)k = Jjm. This is the structure of a tensor product,

K K/2 a L -1
(4.2.2) Uge =275 (X) :
m=1 ]. 1
so that
K K
0 -1 -1 0
(4.2.3) Uy =@ . U= = (= 1% Ly«
m=1 1 0 m=1 O —1

Remark 4.2.1. Proposition 4.3 can also be proved (although with significantly more effort)
by analyzing paths in the corresponding de Bruijn graph. As in Section 4.1, possible paths
can be described using trees, but the edges in the trees carry a sign to keep track of the

negative signs in the matrix Usx.
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Since the eigenvalues of Uyx are 4K-th roots of 1 or —1, instead of eigenvectors from
eigenvalues in an interval I(n) C R/(27Z) like in Theorem 2.1, we are just interested in all
the eigenvectors from a single eigenspace. A stronger version of Theorem 2.1 for this specific

case controls the spectral projection onto a single eigenspace.

Theorem 4.4 (Eigenspace projection when n = 2%). For n = 25 let U, be as in (2.1.2),
and let P™) be the projection onto its jth eigenspace. Let r(K) : N — N be any function
satisfying r(K) < K, r(K) — oo, and K —r(K) —logy K — 00 as K — oo. Then there are
sets G C [1:25] and GPx C [1: 25]? with

(4.2.4) #G e > 2K (1 - ﬁ) — 9K (1 - 0<%>)
(4.2.5) #GPg > (25)° (1 - %) = (2")? (1 - o(%)) ,

such that the following hold as K — oo.
(a) For x € Gk and any j,

1

4.2. Prie |2 - | < _—.10.27"F)/2
(426) 1Py = | < 10
(b) For pairs (z,y) € GPx and any j,
y 10 - 2—"(K)/2
(4.2.7) (e, P™De,)| < —

Using (4.2.6) and summing over all z, we also obtain:

Corollary 4.5 (Eigenspace degeneracy). The degeneracy of each eigenspace of Uyx is %(1—1—

o(1)).

Returning to eigenvectors, Theorem 4.4(a) applied to Corollary 3.11 shows that taking a

random basis within each eigenspace produces approximately Gaussian eigenvectors.

2K

Theorem 4.6 (Gaussian eigenvectors when n = 25). For K € N, let (¢(2K’j))j:1 be a

random ONB of eigenvectors chosen according to Haar measure in each eigenspace of U,.
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Let p@*9) = %Ziil 5\/2—Kw(gx,j> be the empirical distribution of the scaled coordinates of

WD) Then there is e(K) — 0 so that for any bounded Lipschitz f : C — C with || f||Lip < 1,

as K — oo,

(4.2.8) P [ max

jE[1:2K]

/f(w) dp*" 9 (z) — Ef(2)

> e(K)} — 0,

where Z ~ N¢(0,1). In particular, each 1259 converges weakly in probability to N¢(0,1)

as K — oo.

Proof (of Theorem 4.6). Theorem 4.4 shows we can take d, = and A in Corollary 3.11

n
4K

to be o(f%). Then similar to Subsection 3.4.2, take

4A+6  KYA
(4.2.9) ¢(K) = max <(d£ - [ i ) -0,
and note that 6nexp <—%//22(1*2$) 0. -

The rest of this section is the proof of Theorem 4.4.

4.2.1. Polynomial for eigenspace projection. Instead of using trigonometric polyno-
mials to approximate the spectral projection matrix like in the proof of Theorem 2.1, we use
a polynomial with zeros at 4K-th roots of 1 or —1 to get exact formulas. Let U, be as in

(2.1.2) with n = 2% First consider K even, so U = I and the eigenvalues of U,, are 4K-th

roots of unity. Since 5”4;:1 =1+4+z+ 22+ -+ 2*71is zero at all 4K-th roots of unity

except for x = 1, the polynomial

4K—1
(4.2.10) pry(z) =1+ Z <€f2ﬂij/(4K))€xz
=1

is zero at all 4K-th roots of unity except for e>™/(45) where it takes the value 4K . Writing

4K—1
Un _ Z e2m’a/(4N) Z |¢(/\)><1/}()\)’7
a=0 A=e27ia/(4K)
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the spectral projection onto the eigenspace of 279/(4K) ig

4K -1
; 1 1 .
(n.j) — E N (M| = —_ . , - E —2mij/(4K)\ Lt

A=e2mij/(4K)
If K is odd, then U*! = —I and the eigenvalues of U,, are 4K-th roots of —1. These are

3 e/ UE) K odd
exp(i=+2) for j € [0 : 4K —1]. For notational convenience, let y(K) := ,

1, K even

so we can write for any K € N,

4K—1
(211)  PeD =S o) = 2 (I+ Z<e-2“f/<4f<>v<f<>>ﬂvﬁ).
/=1

A=e2mid/(AK) 5 () K
4.2.2. Powers of U,. To estimate the matrix elements of (4.2.11), we need some prop-
erties on the powers of U,. Since by Proposition 4.3(b), UK+ = (—1)K(U2E=")T for
r=0,...,2K — 1, to understand all the powers U,, U2, ... U*~1 it is enough to know the
powers U for m € [1 : K|U[2K : 3K]. We will only need to know where the entries of U™

are nonzero, which follows from matrix multiplication:

Lemma 4.7 (Powers up to K). Let n = 25. For m < K, let A,, be the set of real n X n

matrices A such that

w 1, je{2mi,2mi—1,...,2mi — (2" —1)} mod 2K
Aij = .

0, else

A, consists of matrices whose nonzero entries are =1 arranged in 2™ descending “staircases”

with steps of length 2™. Then form < K —1 and A € A,,,
A-V2U, € Ay
In particular, since 22U, € Ay, then for m < K,

MM € A,
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Between 2K and 3K, U]" has a flipped staircase structure:

Corollary 4.8 (Powers from 2K to 3K). Let n = 2K. Form < K, let B,, be the set of nxn
matrices B such that the matriz A defined by A;j := Bn—); is in Ay,. Then form < K —1
and B € B,,,

B -V2U, € By 1.

In particular, using that U*X is a “flipped diagonal” matriz with nonzero entries &1, so that

21202641 ¢ By then form € [1: K],
omi22KEm e B

Proof . If Aij = Bu—iyj, then (BU,)(m-iy; = >opey Aie(Un)e; = (AU, )5, and since v/2 - AU, €
Api1, then /2- BU, € B,,.1. That UK is a “flipped diagonal” matrix with nonzero entries
+1 along the flipped diagonal (i,n — i) follows from equation (4.2.3). Then the matrix A
defined by

Ay = (UK 220, ) gy = 217 4600(Un)ey = (£1)2Y2(Un),

/=1

is in A, so 22U+ ¢ By, O

4.2.3. Removing potentially bad points. This mirrors Subsection 3.2.3 from the proof
of Theorem 2.1, although due to the structure of U’ here, we consider 1 < ¢ < 4K instead
of just 1 </ < K+ 1. (Figure 4.4.)

Let the set of potentially bad coordinates be

(4.2.12) Bk :={z € [n]: (U})ze # 0 for some m € [1: r(K)]U[2K — r(K) : 2K]}.

n

Indexing the 2% atoms of [0,1] by length K bit strings as in the proof of Proposi-
tion 4.3, we see that for 1 < ¢ < K, the entry (U!),, is nonzero iff x is of the form
(x1,...,T¢, X1, ..., Tq,T1,...), that is x corresponds to a periodic orbit of length ¢. There are
2¢ choices for the sequence (1, s, ..., z¢), so the diagonal of U’ contains exactly 2¢ nonzero

entries for ¢ € [1 : r(K)]. Additionally, by the staircase structure from Corollary 4.8, the
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nonzero 1
|(U77Ln)ij|22_§, e, 2707227

FIGURE 4.4. Eliminating bad coordinates in regions where the nonzero entries
of U™ are large. By Proposition 4.3(b), we only need to consider powers up
to 2K in the definition of B, since the powers reflect across 2K.

diagonal of U! has at most 225~¢ nonzero entries for ¢ € 2K — r(K) : 2K — 1]. Thus

r(K)
(4.2.13) #Bi <2 20 =42 —1) = 0(2"/K).
/=1

Let the set of good coordinates be Gx = [n] \ Bg. For x € Gk, then (Uf),, = 0 for
Cel:r(K)U2K —r(K):2K] (and also for ¢ € 2K : 2K + r(K)|U 4K — r(K) : 4K]),
so that for any j € [0: 4K — 1],

(n,5) 2 1 B —2mij /(AK) T T\\E(TT¢
[P De |3 =—{14+ Y (e V(E)) (ULt

4K
l=r(K)+1
AK —r(K)—1
F Y ..
(=2K+r(K)+1
1
(4.2.14) = e+ 02702,
since
2K —r(K)—1 K
(4.2.15) S (TR (U <2 Y 272 <10 2702,
{=r(K)+1 l=r(K)+1

and similarly for the second sum. This proves (4.2.6).
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4.2.4. Removing potentially bad pairs of points. Let the set of potentially bad pairs

of coordinates be

(4.2.16) BPr :={(z,y) € [n]} 2 #y: (U.)4y # 0 for some

tell:r(K)URK —r(K): 2K +r(K)|JUM4K —r(K) : 4K — 1]}.

The matrix Uf contains 2¢ - n nonzero entries (n entries in each staircase and 2° staircases)
for £ € [1:7r(K)], and 225-¢. n nonzero entries for ¢ € [2K — r(K) : 2K — 1] (and the same

for flipping ¢ across 2K'). Then

r(K)

(4.2.17) #BP <4 2'-n=8(2"") —1).n=o(n?),
=1
and for good pairs (z,y) € GPx := ([n]*\ {(z,y) : * = y}) \ BPkx,
1 2K—r(K)-1 4K—r(K)-1

e Pl == [+ 2 ] e e my .,
m=r(K)

+1  m=2K+r(K)+1

2—r(K)/2
4.2.18 <10-
(1.2.15) <102
by the same estimates as before. O
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CHAPTER 5

Additional remarks

5.1. Coordinates that fail the pointwise Weyl law

We give a specific example where not all coordinates satisfy the pointwise Weyl law

(2.3.2). For n € 2N, let

1
U, = — 1-1
V2t
T
Letting Pj(n) be the spectral projection matrix of U, onto the arc I = [—n/2,7/2] on the
unit circle, we will show that
1
(5.1.1) (Pf")11 > 0.89182655 + o(1) # 5 (14 o(1)).
Thus for I(n) = [-7/2,7/2], the sequence of coordinates (x,), with just z,, = 1 does not

satisfy the pointwise Weyl law. Note the coordinate x = 1 was one of the “bad” points that
was removed during the proof of the pointwise Weyl law, since it always has the very short
periodic loop consisting of just itself.

To approximate (PI(”))H from below, we use the piecewise linear approximation ha on

R/(27Z) in Figure 5.1, defined by

7

—_

hA<I)

N\
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FIGURE 5.1. Plot of ha.

Since this I(n) = [—m/2,7/2] is not shrinking, we don’t need further smoothness of the
approximation, and the piecewise linear ha has Fourier coefficients that are easy to work
with. We only need continuity and absolutely summable Fourier coefficients, so that the
Fourier series converges uniformly to ha. For convenience we also use the same notation ha
Or X[—x/2,x/2] t0 denote the corresponding function on the unit circle in C (via R/27Z > t <
e € S'). Since pointwise ha(t) < X[_r/2.x/9(t) for any A > 0, then by the spectral theorem
(ha(Un))zz < Xer/2,7/2)(Up) 2z = (PI("))m for any coordinate x € [n].

To approximate ha (U, ), we compute its Fourier coefficients (ha); = = 7 ha(z)e " dz,

(5.1.2) (ha); = szA sin <J'(7r . A)) i (%) 20
(5.1.3) (ha)o = ”;WA.

Since the Fourier coefficients are absolutely summable, the partial sums ), (/ﬁA) ;€97 con-
verge uniformly to ha, with the Kth partial sum Sgha(z) := ZUKK@A)WW having error

bound

4 4
1.4 ha —h <
(5.1.4) | Sicha A”w—j;mm KA

As long as A > K!, this is o(1), and then

n

3 (Sicha(e™) = hale™™)) (a1 ™) (0" |z)

=1

n /2 /5 1/2
< ISk (ha) = halls (Z |1/135”’j)|2> (Z |¢§n,j)|2>
j=1 j=1

= o(1).

[(W]Skcha(Un) = ha(Un)lz)| =
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So then
(P11 2> (ha(Un)i1 = ((Sxha)Un)u + o(1).

As usual, we take K = |log,n|, and consider

(5.1.5) (Sxha)(Un)1 = W;WA + f: me sin (j<” _ A)) sin (E) (U1 + (Ua)i]) -

j=1
Take K~' < A < K~'/2 for example A = K3/, We split up the sum over j in (5.1.5)
into two regions, first from j = 1 to V'K, and then from v K + 1 to K. In the first region,
JA < VKA < 1, so we can Taylor expand the sine terms and evaluate the sum. In the
second region, the exponential decay from (U, )!, = 279/2 (for j < |log, n], there is only the
path 1 — 1 — --- — 1 that starts and ends at 1 and has length j) will make the sum o(1)
as K — oo.
For jA < 1, we have sin(jA/2) = 22 + O(;2A?) and

(

_jTA+O(j3A3)’ j=0 mod4

. (j(?T—A)) 1—#+O(j4A4), j=1 mod4
sin | ——= .

%A—i-(?(j?’A:%), j=2 mod4

14+ L2 4 O(*A%), j=3 mod 4

Thus
VK . . K
1 2 . (ilm=A)\ . [jA —5/2 —j/2
(Sxha)(U)n = 5 O(A) + Z A sin (T sin - 2.279/% 4 Z o277
J=1 j=VE+1
VK VK .
1 2  mod O) . » O(*A%),
S 2 ((=1)(( mod 4)—1)/2 A)) - 279/2 Z = J9-i/? 1
2+le.(( ) +0(jA)) +Zl A +o(1)
jj(:dd jje;en
42 £ (oot v
=|z+= — — . 0
2 T = j23/2 (] + 2)2(]+2)/2
7=1 mod 4
_ 1+l(ﬁ§)/4 o at +o(1)
C\2 7 — (14 40)(3 4 40)20+40)/2 '
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Numerically,

m e (1440)(3 + 40)20+40/2 77 :

so that
(5.1.6) (P11 > (Sicha)(U) + o(1) > 0.89182655 — of1) # %(1 +o(1).

Remark 5.1.1. A similar statement can be shown with phases ¢!®U, for the interval [, —
7. to+ %] for a ty depending on ®. The only difference in (5.1.5) is that the ((Un)]l1 + (Un)l_f)
term becomes (eI (iU, ){| + eI (e!®U,) ;7). For j < |logyn], (e'*U,)]; = €¥®1279/2 and

(e'®U,);] = e 9%1279/2 50 taking ty = ®; reduces this Fourier series back to just (5.1.5).

5.2. Logarithmic factors in /% norms

5.2.1. From pointwise Weyl law. The pointwise Weyl law gives some logarithmic factors
on sums of ¢? norm bounds of eigenvectors for 2 < p < co. (Since the pointwise Weyl law
doesn’t have to hold for all coordinates x, we do not obtain the immediate (> estimate.)

Fix 2 < p < co. By Holder and \wg(c"’j )| < 1, there are the general bounds

1 i
T = [P < 1,
with the lower bound corresponding to a completely delocalized vector and the upper bound

corresponding to a completely localized vector. For p > 2, ¢ norm comparison gives
(Sweop)™ < (o)™
j€J j€J
To average ||¢)(™7) ||g over a window I (n), apply the pointwise Weyl law, choosing the function

r(K(n)) in (3.2.2) sufficiently small so that the set B, = [n] \ G, of “bad coordinates” is
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small enough that the resulting error term below is lower order,*

1 o 2n(1+o(1 oo
feTy o W= S S ey

j:A("’j>EI(n) j:/\("'j>61(n) z=1

o ([ I(n)]\""* 27(1 4 0(1)) - #B,
< i () oty + R
n)\ P2t
_ (' 2(7r)|> (1+0(1)).

At best this decays a bit slower than something like (logn)'™?/2 by choosing |I(n)| close to
smallest allowed size [I(n)| > K(n)™!, and assuming n is chosen so K(n) ~ logn. This
is still very far from what we expect from numerics and the random wave conjecture, even

with an average over many eigenvectors.

5.2.2. From small-scale quantum ergodicity. Logarithmic factors in 7 norms can be
obtained using the small-scale ergodicity argument from [HR16], this time in a limiting
density one set without having to average over eigenvectors in an interval I(n), though
possibly with a worse power of logn. The setting in [HR16] is much more complicated on
manifolds, but the small-scale quantum ergodicity idea carries over to this simpler discrete
case if we have an estimate on decay of correlations or the rate of convergence in the L?-
ergodic theorem for certain functions.? For example, for S the doubling map and A C [0, 1]

an interval, direct computation shows,

(5.2.1) (5™ A) = (4P| = | [ Xal2) () da = |AF| < L2

o =~ K (n)- o n)?
'For example, if r(K(n)) = logy, n, then #B, < CK(n), so #B, o CK(n)* _ Clogyyn)

1 n|I(n)] — n < -
TogmreT K |I(n)[P/2-1,

2For general functions, nothing can be said about the rate of convergence [KP81], but for small-scale
ergodicity we only need to consider indicator functions of intervals (or possibly their smooth approximations).

<
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which then implies

1 1 T-1
(5.2.2) /0 ?ZXA(Qt \A] dr = — T2 Z/ Xa (252X a () — AP) da
=0

t,r=0

1 T-1

<27 =rlolAl <

t,r=0

C\A!

From the above one gets a quantitative decay of the quantum variance in the quantum ergodic
theorem, which allows taking n-dependent intervals A = A,,. Taking A,, = [z, Z2tan] C [0, 1]
for some z,, € [0: n— 1] and «, € [1: n — 1], and using [BKS07, Lemma 5], which holds for

any L? observable, shows for T' = |log, n|,

Valta,) = Z! 9, 0,04, )9 ~ 1 4,][

:%Z

j=1

d/q 1 T-1
=T
0 t=0

> el

TENAn

ClAy|
< .

2
> X, (2) — A d

Then we follow the standard the proof of quantum ergodic theorem, except we have to choose

|A,| and error terms more carefully due to the changing |A,| and the need for more and
more intervals of length |A,| to cover [0, 1], similar to [HR16, §3]. The Chebyshev-Markov

bound shows

. 1
P E (n.j)|2 _ - -
#{] : ’ || ’An" > 5n‘An‘} < E%’AHIQV”<XAWL)

rENAy
C 1

2. _
(5:23) <2 TAllosn)

Take [A,| = %= — 0 but satisfying o, > i SO that |A,| > ﬁ, and set €2 =
|A,| "' [logy 7] 712 which tends to zero as n — oo. Cover [0, 1] with b, LA |-‘ intervals

AP AP each of the form [Ze, &atan) for x;, € Z/n, and of the same length |4, | = £
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Let A, (A% := {j : ‘ZzenA;’” {2 — ]A%k)w < an\A,(f)\} be the set of good indices
J C [n] associated with AP With the choice of |A,| and €,, (5.2.3) implies

Cn
B [log, 1] v

Take

which by union bound has size

n

A>n——.
#ha 21T Tlogyn ]2

— (1 - O(e.).
For any j € A, and k € [1 : b,],
D P = 1A (1 4 O(en)),
xenAgc)

with the error term independent of k. Thus for any sequence (j,), with j, € Kn,

p/2

) HP—ZW” Py Y ’”“)rp<Z > P

k=1 ;EEnA(k) xEnAgbk)

< |An| (|4 (1 + Oen)))™? = |AulP/*71 (1 + 0(1)),

which decays a bit slower than something like (y/logn)'~?/2 by choosing |A,| > x/liﬂ

close to the smallest allowable by this method. We had to take |A,| > \/— to ensure
HAC < by #A (AL ~ Cn— = o(n).

n| €| An|logn

5.3. Other miscellaneous remarks

(i) The condition K (n)|I(n)] — oo for the pointwise Weyl law is essentially optimal
without further restrictions, as the example for the doubling map when n = 2% shows

(Section 4.2). In this case, if \1 )l < Ev then one can take an interval that avoids the

spectrum entirely and thus produces a projection matrix filled with zeros.
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(ii) The same method to estimate the diagonal entries of the projection matrix Py, can
also be used to estimate the off-diagonal entries of Py(,). In this case, the constant term
in the Fourier series expansion is zero, and then one can use similar arguments to show
that the higher order terms are small. Alternatively, one can also obtain some bounds

using that by the Weyl law, > (Pr(n))z, = tr Pf,y = tr Prny = Il 4 o(1)).

( T

(iii) For a Markov transition matrix P,, one usually views the indices of P, as corresponding

z,y€(n]

to vertices in a directed (pseudo)graph. (Loops are allowed but multi-arcs are not.)
However, one can sometimes view the indices of P, as corresponding to directed edges
in a digraph instead, similar to a vertex scattering matrix on a quantum graph. In this
case, a path ij corresponds to edge 7 followed by edge j, which can describe scattering
from edge 7, through the shared vertex, and out through edge j.

However, not every Markov transition matrix P, corresponds naturally to a Markov
chain on the directed edges of a digraph. For a directed pseudograph G = (V| E),
the line digraph L(G) is the directed pseudograph with vertex set £ and an edge
between e, f € F iff e and f are incident (with correct orientations) in G. A directed
pseudograph is called a line digraph if it is some directed pseudograph’s line digraph.
From the following classification of line digraphs, not all digraphs can be realized as

the line digraph of a digraph:

Theorem 5.1 (Line digraph classification, see Theorem 11.2.3 in the book [GS18]).
Let D be a directed pseudograph with no multiple arcs. Then D is a line digraph iff
every pair of rows (or of columns) of its adjacency matriz M are either identical or

orthogonal.

In particular, the digraphs from the doubling map on [0, 1] are line digraphs. How-

ever, the digraphs from the four-legs map are not.

5.4. Numerics for other interval maps

Numerics for the doubling map and one of its unitary quantizations were displayed in

Figures 2.1 and 2.2. Similar results appear for the “four legs map” F' (drawn in Figure 2.3)
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and the tripling map 7'(z) = 3z (mod 1),

(
2z, 0<z<3 .
3x 0<z<i
’ = 3
d(r—1), 1Sv<3
F(z) = L T@) =331y, l<p<?
d(r—3), 3<z<]
— 2 2< <l
K2x—2, 1<z<1

For the four legs map F, the corresponding Markov matrix PTELF) and a particularly simple

unitary (orthogonal) quantization Ui given in [PZKO01, Appendix B] for n € 4N are

22

22 O
22
1111
1111
1 T
(5.4.1) P = 2 1111 |,
411111
1111
111
22
O 22
V2 -2
Vi V2 0
V2 -2
11 1 1
111 1
1
(F) — —
(5.4.2) U, 5 PR 11 1 1
1111
11 -1 -1
Vi-vE
U NCR
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For the tripling map, the corresponding Markov matrix Pn(T) and a simple unitary quantiza-

tion U™ (using a 3 x 3 DFT matrix) for n € 3N are

(5.4.3)
2me _ 2mi
1 e3 e i i
Lt P
111 1 e e
i 2mi  _ 2mi
111 111 s . 1 e 3 e 3
T T
1e 3 3
P(T) — 1 R U(T) — 1 ¢ © _2mi 27
n - 3 . ) n - \/g le 3 e3
111 111
tit 1B E
1 1 1
. 1 1 1
111
1 1 1

As plotted in Figures 5.2 and 5.3, the unitary matrices UT(LF) and U,(LT) appear to have

CUE-like level spacings and eigenvectors with approximately Gaussian coordinate statistics.
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FIGURE 5.2. Four legs map numerics for U for n = 20000. Top left:
angle level spacing distribution against Wigner surmise for GUE. Top right:
2D coordinate histogram in C for a randomly chosen eigenvector ¢ (this one
with eigenvalue 0.972610 — 0.232443:). Bottom left: Histogram of the values
(Re1),)2290° against the pdf of N(0, ;5555). Bottom right: Histogram of the

values (Jm1,)229% against the pdf of N(0, —40500).

We note that the main focus in [PZKO01] was on spectral statistics averaged over phases

® € [0,27)" that appear through multiplication by the diagonal matrix ¢‘® := diag(e
70
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to form the ensemble of unitary matrices e!*U,. With averaging over these phases, the spec-
tral statistics agree even more closely with those of CUE matrices. It was also observed
there that the spectral statistics for just a single unitary matrix corresponding to the four
legs map still continued to exhibit CUE-like spectral behavior, which we also see for the level

spacings of the matrices here.

1.0 0.020
08 A 0.015
: 0.010
0.6 h 0.005
0.000
0.4 —0.005
—0.010
0.2 Jﬂf —0.015
0.0 —0.020
00 05 10 15 20 25 30 —0.02 —-0.01 000 0.01 0.02
80 - 80 p
70 I 70 f
60 60
50 50
40 40
30 30
20 20
10 10

o
-0.01 0.00 0.01 0.02 —0.02 —-0.01 0.00 0.01 0.02

FiGURE 5.3. Tripling map numerics for U for n = 20 001, as in Fig-

ure 5.2, with randomly chosen eigenvector (this one with eigenvalue 0.546244 +
0.8376917).

71






Part 2

Localization-delocalization transition for

nonhomogeneous random matrices



CHAPTER 6

Introduction and main result

6.1. Introduction

Understanding the eigenvectors of large random matrices, and particularly whether they
are delocalized or localized, is of interest in many areas including mathematical physics,
computer science, and combinatorics. A delocalized vector has roughly equal mass spread
throughout its coordinates, while a localized vector has much of its mass concentrated on
relatively few coordinates. A prime example of generally delocalized vectors is a uniform
random vector from the unit sphere. This describes for example eigenvectors of rotationally
invariant ensembles like the classical Gaussian orthogonal ensemble (GOE). Properties of the
uniform distribution on the sphere are then a benchmark for measuring how delocalized other
vectors are in comparison. Much work has been done to show delocalization of eigenvectors
of general Wigner-type matrices. For a summary and many references, see the book [EY17]
or survey [OVW16].

In contrast to delocalized vectors, the most localized vectors are simply the coordinate
directions, with all mass concentrated on a single coordinate. These arise as eigenvectors
of diagonal matrices, such as a diagonal matrix with iid diagonal Gaussian entries. To
interpolate between the two extremes of a diagonal matrix and a GOE matrix, one can
consider models of varying degrees of sparseness. One such model of interest in mathematical
physics is random band matrices, which (for 1D) are zero outside of a band around the
diagonal, and undergo a transition depending on the band width; see [Boul8|] for a survey.

In this part of the thesis we will consider Gaussian matrices arising from d-regular graphs,
which includes the above mentioned Gaussian models (GOE, diagonal, and band'), as well

as many other matrices with a fixed structure. As we will see in Section 6.2, the matrix norm

1f one considers periodic band matrices, which have nonzero entries in the corners as well, then these
matrices have d nonzero entries in each row and column.
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of such matrices is known to undergo a phase transition at d ~ log N [BvH16]. We will show
this transition is detected not by the localization or delocalization of the top eigenvectors,
but by that of approximate top eigenvectors, by which we will mean a unit vector v with
| Xvl2 close to || X||.

Localization and delocalization of vectors can be described by various non-equivalent
notions, such as the ¢*° norm or other % norms [ESY09b, ESY09a|, joint distribution of
coordinates [TV11], or no-gaps delocalization [RV16]; see also [OVW16] for a survey including
results on different notions of delocalization. Here we will use the complementary notion of
the (L, n)-localization used in [ESY09b, §7]. A vector delocalized in this sense will be one

that has no large “peaks” in a small set of coordinates.

Definition 1 (delocalization). Call a vector v € SN=! (L, k)-delocalized if for every set
A C [N] of size |A| = L, we have 3., v7 < x%. The set of (L, x)-delocalized vectors will be

denoted by

Dy, = {UESN_IZVAC[ Al =L, Z|UJ|2</£}

jeA

Thus a vector in Dy, is one that has no peaks of mass > x? supported on size < L. The
condition becomes stricter for smaller x and larger L. Since for very small L, the condition to
be in Dy, . becomes very weak, we will typically take L to be proportional to IV, say L = v N
(or more precisely L = [vN]) for some 0 < v < 1. In this case we will always assume v < 2
otherwise D, = (). Thus colloquially we will refer to a vector, or more precisely a sequence
of vectors, as delocalized if it is (L, k)-delocalized for some L proportional to N as N — oo,
and otherwise we will refer to it as localized. In this sense, a delocalized vector is one that is
not concentrated in a vanishing fraction of the coordinates.

Since a uniform random vector on the sphere is the benchmark example of a delocalized
vector, the example in Section 7.2 will show that such a vector is indeed (v N, k)-delocalized

with high probability for a v chosen depending on k.
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6.2. Structured matrices from d-regular graphs

We will look at eigenvectors and approximate eigenvectors for the largest eigenvalues of
structured random matrices arising from d-regular graphs. These matrices can be sparse and
can behave very differently from traditional Wigner matrices. Given an undirected graph
G = (V, FE) with vertices V = [N], let x ~ y mean that nodes = and y are connected by
an edge. Here self-loops are allowed (and counted as a single edge) but multi-edges are
not allowed. Define the random N x N symmetric matrix X by X,, = 0zygsy, Where
Jzy are iid standard normal random variables modulo the symmetry requirement g,, = gy.-
This assigns an independent standard normal variable to each edge (xy). For example, the
complete graph on N vertices corresponds to an N x N GOE matrix, while the graph of N
isolated points with self-loops corresponds to a diagonal matrix with independent A(0, 1)
variables on the diagonal. Note these are not random graphs, but fixed graphs with Gaussian
entries on the adjacency matrix.

Concerning the largest eigenvalue magnitude, for such matrices that come from a d-

regular graph in the method described above, it was shown in [BvH16] that E||X|| < v/d +

Vd1og N.

Theorem 6.1 ([BvH16]). Let X = (X,).y be a symmetric N x N matriz corresponding to a
d-regular graph, with d — 00 and Xy = Oymyzy, where gu,, are iid N'(0,1) modulo symmetry

requirements. Then for any € > 0,

(6.2.1) max {(2 — o(1))Vd, C'\/log N} <E|X| < (2 +e)Vd+ K.\/log N.

In particular, if d/log N — oo, then
(6.2.2) (2 — o(1))Vd < E||X|| < (2 + o(1))Vd.

The upper bound is Theorem 1.1 in [BvH16]. The lower bound up to a constant is Lemma
3.14 in [BvH16]. The specific constant (2 — 0(1))v/d in the lower bound can be obtained by

the moment method or semicircle law, see for example [BvH16, §4.1] or [vH17, §4.2].
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Based on this theorem, one can expect a phase transition to occur at d ~ log N, where
the dominating term in the norm bound changes. In the extreme case of a diagonal matrix
(d = 1), the matrix norm is simply the largest (in magnitude) diagonal entry, which is of
order y/log N, and the eigenvectors are just the coordinate directions. In the other extreme
where d = N, X is GOE and has matrix norm of order 2v/N = 2v/d with delocalized
eigenvectors. Equation (6.2.1) suggests that for d < log N, we might obtain the largest
eigenvalue by taking an eigenvector that is localized on the large outliers of order y/log N.
On the other hand, for d > log N, we might obtain the largest eigenvalue by instead taking
a delocalized vector as in the GOE case.

However, this intuition cannot be entirely correct, as can be seen in the example of a block
Wigner matriz X = ®5V:/1d Yi(d), where each (Yi(d))i is a d x d symmetric Wigner matrix with
iid NV(0, 1) entries, and independent of other Y;(d)s. Then X is block diagonal with blocks
size d x d, and so its eigenvectors are localized to each block of size d. Then if d > log N
but d < vN, the eigenvectors will not be (vN, k)-delocalized. However, if d > log N we
can create a delocalized approxrimate largest eigenvector by taking the top eigenvector of
each block and averaging them. In this context, recall we consider an approximate largest
eigenvector to be a unit vector v such that || Xwv||s is close to achieving the maximum possible
value || X||. Motivated by this block Wigner matrix example, we will look for whether or

not we can find near-maximizers of the norm with good delocalization properties, in order

to identify the phase transition at d ~ log V.
6.2.1. Main result.

Theorem 6.2 (localization-delocalization transition). Let Xy be a sequence of symmetric
N x N matrices, each from a d = d(N)-regqular graph, with (Xn)zy = OzmyGuy, where gq, are

iid N(0,1) modulo symmetry requirements.

(1) Localization for d =o(logN): Fixr 0 <e <1l and 0 <k <1—e. If

(6.2.3) E sup || Xyl = (1 —2)E[| Xy,

’UED,JN’,.i
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then v <_, —%_

~EK log N *

In particular, if d = o(log N), then v — 0 as N — oc.

1) Delocalization for d > log N: Let 0 < k <1 and 0 < v < o wphere ¢ > 0 is an
(ii) g

log €

absolute constant. If d > log N, then with probability 1 — o(1),

(6.2.4) sup || Xnv|l2 > (1 —o(1)E| Xn||-
vED,,Nm
Also
(6.2.5) E sup |[[Xnvl2>(1—0(1))E|XN].
'UEDVN,N
Remark 6.2.1. (a) Morally, part (i) says that if d = o(log V), then vectors v such

that || Xnv||2 is even within just a constant fraction of the top eigenvalue must be
localized. Thus not only are the top eigenvectors localized in this regime, but all
approximate top eigenvectors must be localized as well. In contrast, part (ii) says
that if d > log N, then we can find a good approximation to an eigenvector for
| Xn|| = 2V/d by searching in the set D,y of (vN, k)-delocalized vectors, even if

the actual eigenvectors are localized.

The condition 0 < v < 15225 in (ii) is equivalent, up to constant factors, to that
which is required for high probability delocalization of the uniform distribution of
the sphere; see Remarks 7.2.1 and 9.4.1. Thus in the sense of delocalization in
Definition 1, the delocalized approximate largest eigenvector guaranteed by (ii) is
roughly just as delocalized as a typical vector chosen uniformly from the sphere.

For equation (6.2.4), we will prove a lower bound of (2 — 0(1))v/d, which by The-
orem 6.1 is (1 — o(1))E||Xy||. We first note that obtaining a lower bound of just
(2 — e)V/d for ¢ > 0 and some v = v(g) > 0 is much simpler, because one can
take the top alN eigenvectors of X, and just use that given any a/N orthonormal
vectors, their span must contain a (vN, k)-delocalized vector for sufficiently small
v. This works even if the aN vectors are all coordinate vectors, but no longer works
if we consider only o(N) vectors. In order to get the (2 — o(1))v/d bound, we will

consider a number o(N) of the top eigenvectors, and use projection matrix estimates
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to show that their span contains a delocalized vector. We mention that by [BGP14,
Theorem 2.9], the top eigenvectors of Xy cannot be too localized in this regime,
and so this makes the possibility of an o(1) term seem intuitively plausible, as long
as the top eigenvectors do not cluster together too strongly in one area.

(d) Besides block Wigner matrices, another example where d > log N but all eigenvec-
tors can be localized are the (1D) band matrices [FM91, Sch09]. In this case, the
proof of Theorem 6.2(ii) implies the top eigenvectors cannot all be concentrated in

too few of the same coordinates, since their span must contain a delocalized vector.

The proof for (i) is to split up a vector v in D,y , into its large entries, which are
controlled by delocalization, and its smaller entries, which can be controlled by subgaussian
estimates.

For (ii), the proof idea is to consider the eigenvectors of Xy /v/d with eigenvalues at
least 2 — o(1) for some o(1) term, and show that there is a delocalized vector in their span.
Then this delocalized vector automatically satisfies | Xyv||2 > (2 — o(1))v/d. Finding such a
delocalized vector is done by approximating the diagonal entries of the associated projection
matrix using resolvents and a (weak) local semicircle law. The estimates on the diagonal
entries will provide Gaussian moment bounds, and these moments restrict how much mass

can accumulate in just vN coordinates.

6.2.2. Outline. In Chapter 7, we review several facts about subgaussian random variables,
discuss the semicircle law, and give the example of delocalization for uniform random vectors
on the sphere. In Chapter 8, we prove part (i) of Theorem 6.2, the localization for d =
o(log N). In Chapter 9, we prove part (ii), starting with proving a (weak) local semicircle
law for the Green’s function in Section 9.1. Then in Section 9.2 we approximate the spectral
projection matrix onto [2—e&y, b] in terms of the Green’s function. In Section 9.3, we take the
spectral projection matrix approximation and replace the Green’s function with the Stieltjes
transform of the semicircle law, using the local semicircle law and Gaussian concentration.

This gives the asymptotics for the matrix entries of the spectral projection matrix, which
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are then used in Section 9.4 to show we can pick v > 0 that ensures a (vN, k)-delocalized

vector v exists with || Xyv|l2 > (2 — o(1))Vd.
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CHAPTER 7

Background

7.1. Gaussian concentration and suprema

We gather several useful properties concerning subgaussian random variables. For further
background, see for example the books and notes [BLM13, vH16, Ver18, Wail9]. Recall a
real random variable X is o2-subgaussian if E[e/X~EX)] < ¢7**/2 for all ¢ € R. Tail bounds

follow from the Chernoff bound, for any A, ¢ > 0,
P[X — EX > t] = P[MXEX) > M) <

by taking A = t/0? to minimize the bound, yielding for ¢ > 0,

+2

(7.1.1) PX —EX > 1] < e 22,

By symmetry, —X is subgaussian if and only if X is subgaussian, so one also obtains for

t>0,

+2

(7.1.2) PEX — X >t] <e 22,
The tail bounds give moment bounds, for any p > 0,
E|X —EX]P = /Ooptp—lpnx —EX| > t]dt
0
(7.1.3) <2 /OO ptp—leﬁ dt = p2P/?6PT (p/2).
0

One can use this and the series expansion of €' to show that if X satisfies (7.1.1) and (7.1.2),
then X is subgaussian, though possibly with a possibly larger variance proxy 2. Thus up to
constants, subgaussian variables can be characterized using the moment generating function

bound, tail bounds, or moment bounds. They can also be characterized by the 1s-condition,
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that there exists s > 0 so that Ee*X” < 2, with the subgaussian norm || X||y, := inf{t > 0 :
Eexp(X?/t?) < 2}, for details see [Verl8, §2].

One can get better constants for p = 1,2 than in (7.1.3) by using the series expansion

tx

of ef*. Letting Y = X — EX, then by Fubini or dominated convergence, since E[e!Vl] <

E[el"] + E[e~"],

EYT o 22
Ele™] =) —— <P =14+ 0(t")
n=0
Since EY = 0, this yields
]EY2 2
—+0() < % +O®),

so taking ¢ — 0 yields Var X = EY? < ¢?, and by Cauchy-Schwarz, E|X — EX| < 0.
An important property of Gaussian random variables is the following classical concen-

tration of measure statement.

Theorem 7.1 (Gaussian concentration). Let Xi,..., X, be tid N'(0,1), and let f : R" — R
be L-Lipschitz with respect to the Euclidean norm. Then f(X)—E[f(X)] is subgaussian with

parameter 0 < L?, and so
(7.1.4) P[|f(X) —E[f(X)]| >t] <2722,  forallt>0.

There are several different proofs of Gaussian concentration. A standard one is via the
entropy method and log-Sobolev inequalities, see [BLM13, §5.4] or [vH16, §3]. A very direct
proof is given in [AT07, §2.1] on the way to proving the Borell-TIS inequality, an important
result that suprema of Gaussian processes concentrate. Here though we only deal with finite
sets of Gaussians and will not really need concentration of the maximum anyway.

Note, one cannot replace the Gaussian Xi,..., X, with general independent sub-
gaussian random variables, in particular [LT91, §1.1/p.25] shows (7.1.4) can fail for

Rademacher/Bernoulli random variables. However, concentration with bounded random
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variables holds with additional convexity assumptions on f, see [BLM13, §6.6] or [vH16,
§4.3].
Gaussian concentration implies concentration of the norm || X ||y for X ~ N(0,1,,), as it

is 1-Lipschitz, as well as concentration on the sphere.

Corollary 7.2 (norm concentration and concentration on the sphere).

o Let X ~N(0,1,). Then for anyt > 0,
(719 B [[[1X]l — Vi > 1] < 2,

where ¢ > 0 is an absolute constant. Note that E| X |, = v2I(2)/T(2) ~ V/n.
o Let 0 ~ Unif(S"™1), so 0 ~ X/||X|. Then for any f : R® — R L-Lipschitz and

t >0,
(7.1.6) B(I/(60) ~ Ef(6)] = ] < Ce T,

where ¢, C' > 0 are absolute constants.

Example 7.1 (quantities that concentrate). Useful functions of a random Gaussian matrix
that concentrate include the norm, the largest eigenvalue, and the Green’s function. Let H
be an N x N real symmetric matrix with some pattern of independent N (0, 1) entries, and
view a function f(H) as a function of the matrix entries, RV — R, where RV corresponds
to the nonzero entries in the upper triangular part of H. (For the matrices coming from
d-regular graphs, these entries are the (7, j) so that i ~ j and j > i.)

e For the operator norm f(H) = ||H| = supy,=; (v, Hv), note that for H and H’ with the

same sparsity pattern corresponding to entries from RV,

sup (v, Hv) — sup(w, H'w)| < sup [(v, Hv) — (v, H'v)|
veV weV veV

N 1/2
< sup||H — H'|[¢ (Z )
veV ij=1

= |H - H'||r < V2|H — H'|[zv,
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where ||- || is the Frobenius or Hilbert—Schmidt norm, which is the Euclidean norm on the
matrix entries. Thus the norm is v/2-Lipschitz, and concentrates according to Theorem 7.1.

e More generally, for an L-Lipschitz function F' : RY — R, the corresponding function
f(H) == F(M(H),...,An(H)) is L-Lipschitz with respect to the Frobenius/Hilbert—
Schmidt norm. This follows from the Hoffman-Wielandt inequality Zfil(}\i(H ) —
N(H))? < tr[(H — H")?] = ||H — H'|%2 (for ordered eigenvalues of real symmetric or
hermitian matrices), and covers quantities like the norm, largest eigenvalue, and trace of
the resolvent. For details see [AGZ09, Ch.2].

e The Green’s function G (z; x,y) is the kernel of the resolvent Ry (z) := (H —2)!, defined
as Gy (z;2,y) := (x|(H — 2z)"|y). It is complex-valued, but Theorem 7.1 applies to its real
and imaginary parts. For H self-adjoint, since |[(H — 2)7!|| = dist(z,0(H)) < | TJm 2|7},

then using the second resolvent identity shows,

Gulz2,y) = Gu(z2,y)| = [(w(H — 2)7(H — H)(H' — 2)7'[y)]

1/2
<||H - H'|p (Z (2| R (2)|O)]" - !<m|RHf(Z)|y>I2)

= |H = H'|¢ (|(2| R (2) Rt (2)|2)| - || Rie (2) R (2) ) )
1 V2

! !
<||H-H ”FW <||H-H ||Rv‘jm—z|2,

so the Green’s function has Lipschitz constant L < and

V2
| Jm 2|2

PGz ,y) — EGu(z;x,y)| > t] < PRe Gz 2,y) — ERe Gu(z;x,y)| > t/V2]

+P[| Im Gy(z;2,y) — EImGy(z; z,y)| > t/V2]
1
< 4exp (—§t2| 3mz\4> )
e For considering delocalization for the uniform distribution on the sphere, a useful (non-
matrix) quantity that concentrates is sup acpn (er A Ug)l/ ?. For a vector w € RV , let

#A=vN
the jth largest coordinate in absolute value be w;) := j-max(|wq],...,|wn|), and define
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1/2
the function f(w) = (Z;']:Vl w?j)> . Then f is 1-Lipschitz, using the reverse triangle
inequality and that if w and y are the sorted vectors (wqy, ..., wny) and (yay, - -, Yw))
respectively, then [[w—ylls < [Jw—yl2. (If two entries are out of order, then swapping them

decreases the norm.) Concentration on the sphere then shows that for w ~ Unif(SV¥™1),

vN 1/2 vN 1/2
(7.1.7) P ”(Zwﬁj)) —E(Zw@.))
j=1 j=1

Next, an upper bound on the maximum of a finite number of subgaussian random vari-

>t < Qe N,

ables will be useful in Section 8.

Theorem 7.3 (maximum of a finite number of subgaussians). Suppose X,..., X, are all

mean zero and o?-subgaussian. Then

Proof. For the first part, by Jensen,

1 Sup;cr Xt 1 t
E[igj}?Xt] < XlogE[e’\ Pic X] < —log;E[e’\X]
212

1 A
<1 (1og|T! + 7 ) < /2o Tog T,

by optimizing over A > 0 to take A = 0~'/21log |T'|. Note this does not require independence.
|

Finally, for looking at the uniform distribution on the sphere in Section 7.2, it will be

useful to have bounds on the expected value of the kth order statistics as well.

Theorem 7.4 (Gaussian order statistics). Let Z ~ N(0,1,,), and let Zy denote the absolute
values of the entries of Z sorted in decreasing order, Zny > Zy > -+- > Zny 2 0. Then for

any 1 <k < 3,

(7.1.8) ey /log% <EZy < Cy/log %
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where ¢, C' > 0 are absolute constants.

See also [GLSWO06, Example 10], which includes bounds for § < k < n. Here, for
1 <k < 7, if one does not care about the constants, the proof can be done using union

bound and various estimates on the normal cdf.

7.2. Unit sphere delocalization

For a GOE matrix, the eigenvectors are uniformly distributed on the unit sphere by rota-
tional symmetry. As this is our benchmark example of delocalized vectors, we demonstrate
that with high probability such vectors satisfy the (v N, k)-delocalization definition. There
are several ways to show this for uniform random vectors on the sphere, e.g. by Gaussian
concentration, estimating integrals, or using order statistics. For this example we start with
Gaussian concentration. Much more precise information on the distributions can be found

in [OVW16, §2].

Lemma 7.5 (unit sphere delocalization). Let v be distributed uniformly on the unit sphere
SN C RN, Fiz 0 < k < 1. Then there are v = v(k) > 0 and 3 = B(v) = B(k) > 0 such
that

(7.2.1) Psv-1[z € Dy ] > 1 —2e POV,

Proof. Let g ~ N (0, Iy), so that W ~ Unif(SV~1). Estimating by union bound and using

coordinate symmetry of g,

P |:L g DVN,KZ:| =P

JA N A=vN:
ol CINL #A=vN: )

2 —
2 Tlol3

2
9; >/<;2]
vIN

N 2 2 2

<(v)F [Zg > ||g||2]
vIN

e\ "N N
< (= P 2> R2—
<()" (e[
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Since the norm concentrates, P [HgHQ < \/N/Q} < e N for some ¢ > 0, and similarly (for

v < k),

IS sy )N
> — v <ex —c(—— )1/ )
Yoz sen (5

For v < “— (T ) > ﬁi Then by taking v sufficiently small, we can ensure
the term (e/v)"" term from the union bound is small enough so that (£)” v (207 55Ny =

2e—[§8°—vlog £IN i B(v) = §I€ —vlog £ > 0. 0

Remark 7.2.1. The condition vlog < < ck? required above is around the best we can
hope to get, since from Gaussian order statistics or [OVW16, Theorem 2.7], we expect that
SUD ACN] D opea Vs A O(vlog 1) for v small.

#A=vN

One can see this using the order statistics bounds in Theorem 7.4 as follows. As described

1/2

in (7.1.7), the function f : S¥=! — R defined by f(w) = (ZJ”]:VI w(Qj)> concentrates around
its mean. Estimates on the mean will follow from (7.1.8), using norm concentration and that

each hj(z) := j-max(|z1,...,|2n|), which gives the jth largest entry, is also 1-Lipschitz. The

general estimate is that for Z ~ N(0, I,,),

vIN vIN
1 ' N NVN
S (EZ,) = g [[ = = o1
N £ EZ5))" = § Ogjzl ;TN Og((VN)!)’

and by Stirling’s formula, assuming v N > 1,

1 NZ/N
l/logg—o(l)g—log( ) Sylogi,
v ! v

with the o(1) term as N — oo, so that

vN
1
NZ(EZ( )2 AC"ylog + o(1).

Jj=1

Using concentration to replace || Z||* with N, and ]EZ( with (EZ;))?, up to some errors that

may just affect the constants then yields for w ~ Unif(SV~1),

1/2
Ul/log——o <E(Zw(j) §C’1/ylogi—|—0(1).
v
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Thus for a typical w ~ Unif(S"!), we expect that f(w)? = sup acn D ,cq w2 is around
#A=vN
Cvlog <.

7.3. Semicircle law

If X corresponds to a d-regular graph with d — oo, it is known to follow the semicircle
law, meaning that when scaled as X/ V/d, its empirical eigenvalue distribution py converges

weakly in probability to the (non-random) semicircle distribution pe(z) = 5-4/(4 — 22).
As usual, this can be done using the resolvent method (see for example §2.4.1 in the book
[AGZ09]), with self-consistent equations (9.1.4), or by the moment method. The Stieltjes

transform S, (z) = [ = du(x) of the semicircle law py. will be denoted
z
Spee(2) = Mie(2) = =5 + ———,

which branch cut taken in (—2,2) and /22 —4 a z for large 2. The semicircle law is
equivalent to the statement that the Stieltjes transform S, (2) = + tr (Xy/Vd — z)_l of
the empirical eigenvalue distribution puy converges in probability to mg.(z) for any fixed
z € H the upper half-plane. Note that the semicircle law does not predict the largest
eigenvalue or norm || X ||, since one can have a vanishing fraction of eigenvalues escape the
semicircle. However, estimating || Xy| can be done instead by comparing moments as in
Theorem 6.1.

Going beyond the above global semicircle law, a local semicircle law states that S, (z) —
Mmse(z) is uniformly small for all z € H with Jm z > 0y for some oy — 0. It is also often
useful to know that the Green’s function Gy (z; x,z) = (XN/\/E— z);xl is close to mg.(z) for
all coordinates z = 1,..., N, and we will need that here as well. The parameter dy represents
the “spectral resolution”, or roughly how large a window Jm S, (z) sees. Since oy — 0,
a local semicircle law then states that the empirical eigenvalue distribution still looks like
psc() at a shrinking window of scale dy. Since eigenvalues typically have separation distance

N~1, the optimal dy is any dy > N~!. For general Wigner matrices, local semicircle laws

have been proved on the essentially optimal scale Jm z > N~1, first for Wigner matrices in

88



[ESY09a], and later improved and generalized to other cases in many papers, see the notes
[BGK16] for background and references in this direction.

In our model which allows for many different matrix structures and can be very sparse,
one cannot hope to understand the spectrum at such a small scale. However, we will only
actually need a weak local semicircle law that allows for Jm z — 0 at some (possibly highly

non-optimal) rate.

89



CHAPTER 8

Proof of localization for d < log N

The proof for localization will only require Gaussian concentration and suprema bounds.

We first prove the following lemma.

Lemma 8.1. Let X be a symmetric N x N matriz with Xy = 0zyfay, where g, are
iid N'(0,1) modulo symmetry requirements. Let d be the mazimum degree of the associated

graph, i.e. the mazimum number of nonzero entries in a row. Then

d
(8.0.1) E sup [ Xof <3Y% 1 em|X|

'UGDVN,H - \/;

Proof. Let L = vN and split up the vector v via

(8.0.2) B sw [X0| SE sup X011 ) +B swp X010 0

veED] « veED] «

The term with |v;| < \%L will be bounded by the supremum bound for subgaussian random
variables, while the term with |v;| > \% will be bounded using the definition of Dy .
We start with Esup,ep, | X(vL, > )|| For a unit vector v, the set A := {i : |v;| > f}

has cardinality < L. If v € Dy, then

||(Uﬂm|>%)||2 = ) i<k

i:|vi|>ﬁ
so that
(0.3 sup X (01,0 ) < sup X[ (000 )l < 5IX]
'UGDLN GD N

For the other term, write

1
sup || X (vl < )H< sup  sup (w,Xv) =—= sup max (Xw,v),

vED Lok weSN-1 HUHOOSﬁ L weSN-1 viw;==+1
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since the supremum of (Xw, v) over ||[v]|o < \/LZ occurs when v; = \/LZ sgn((Xw);). Thus

1
sup HX(U]llvl )|| < — max ||Xv||2

’UEDLK \/zv

For [|v]|e < 1, f(X) := || Xv]|2 is 2d-subgaussian on (RY, || -||2), since for symmetric matrices

M = (zy5), M' = (x7;),

F) = FOO)E < (M =Ml = 3 (ij - w;jm) <D0 D (=) d

i=1 \Jjij~i

< de Z Lij — 2] = QdHM M/HRV’

i=1 jij~i
J=i

where || - ||gw denotes the Euclidean norm on the nonzero entries in the upper triangular

part of the structured matrix (these are the (i, 7) so that i ~ j and j > 7). Since there are

2N possible v’s to maximize over, the supremum bound for subgaussian variables yields

1 1
——FE max [| Xvl||y < —=FE max (||| Xv|| — E|| Xv||| + E|| Xv
=B max [IXvll: < ——E max (||[Xv] - E|IXvl|| + B[ Xv])

1 ~ Vd
< \/W(\/WJM/W) <3

where we also used that

2

N
max E|| Xv| = max Zl < max ZEU\/ (0,d)]? = vV Nd.

E ]kvk
k:k~j

Then with (8.0.3) we obtain (8.0.1). O

Proof of Theorem 6.2(i). If (6.2.3) holds, then

d
(8.0.4) (1—o)E|X|| <E sup [|Xv| < Ve, KE||X]|.
WGDLN \/—

Isolating E|| X || and using E|| X || > C'v/log N yields

(8.0.5) Vv < 5 Vi < 5 : Vd :
l—e—rkE|X|| " 1—e—k CylogN
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CHAPTER 9

Proof of delocalization for d > log N

9.1. Somewhat local semicircle law

We start to prove Theorem 6.2(ii). Recall Gy(z;x,y) = (XN/\/E - z);yl is the Green’s
function. In this section, we state a (weak) local semicircle law, which will state that
EGn(z;2,x) is close to mg.(z), on a somewhat local scale. This will allow us to replace
EGy(z; z,z) in approximations by the explicit and z-independent myg.(2), as long as z does
not approach the real line too quickly. This local semicircle law follows from a general re-
sult in [BBvH21] using free probability, or by a bootstrap method using the self-consistent

equations like that described in [EY17, §7].

9.1.1. As a consequence of free probability. Consider an N x N random matrix of
the form X = Y " ¢;A;, for g; iid NV(0,1) and A; self-adjoint N x N matrices over C.
Define the free analogue Xyee := Z?:l A; ® s;, for sq,...,s, a free semicircular family in a

C*-probability space (B, 7). The following was shown in [BBvH21].

Theorem 9.1 ([BBvH21]|, special case of Theorem 2.8). For the above model, for z € H,
define the Stieltjes transforms G(2), Ggee(2) as

G(2) =E(X —2)",  Gree(2) = ({d37)[(Xree — 2 @ 15) '] € My»n(C).
Define 5(X)? := || Cov(X)| - || S0, 42||'%. Then

(9.1.1) 1G(2) — Gireo(2)|| < B(X)Y] Tm 2|75,
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In our case where X is associated with a d-regular graph and X = \/87 we have fN =

Z(i’@iﬁj 9ijA¢i j), where g;; are iid M(0,1), and A ) = \/Lg (18) (J] + diz5|7)(¢]). Then
i>j

| S At =] = sl
(4,9)sir] (4,9)zir]
12>] i>7

gl 1
:ﬁ” |Z><Z|+|J><J|H = oll2d 1| =1,

(6,5):i~g
and || Cov(Xyn/Vd)| = %, so that 5(X)* = L. Then it remains to find Gpee(2). The Sticltjes

transform Gpee(2) satisfies the matrix equation (cf. [HT05, equation (1.5)]),

E A(i,j)Gfree(Z)A(i,j)Gfree(z) + ZGfree<Z) + IdN = 07
(4,5):i~j
(2]

which can be re-written using E[g;;gxe] = O(i,j),(ke) S
1
(912) —ZGfree(Z) — ZZE [XNGfree(Z)XN] Gfree(Z) = IdN .

This is a matrix equation of the form VW + n(W)W = I, considered in e.g. [HFS07], with
W = —iGee(2), V = —iz1d, and n(W) = dIE [XnW Xn]. Note that Wi.(2) := —img.(2) Idy
satisfies equation (9.1.2) for W = —iGpee(2). By [HFS07, Theorem 2.1], this is then the
unique solution with Re W > 0. Note for z € H, that IJm Gpeo(2) is positive since X 18
self-adjoint and 7 is completely positive. Then Re(—iGee(2)) = IM Gee(2) > 0, and so by
uniqueness we must have Gie(2) = mg.(2) Idy.

Thus for any z € H, (9.1.1) reads
1
-1

9.1.2. Bootstrap method. This kind of method has been used often to prove local semi-
circle laws in random matrix theory, see for example the book [EY17, §7], or [EKYY13a, §3],
[EKYY13b], among others. Our case is simpler and can be done with expectation values.

The general idea is to obtain self-consistent equations for the Green’s function with an error
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term, and then prove a stability result that implies the Green’s function must be close to
the error-term-free solution mg.(z), as the error term tends to zero. For our case, this can

be done in the following steps.

(1) Prove stability (|[EGy(z;z,2) — ms(z)] is very small) for large Jm z using the self-
consistent equations.

(2) Use the self-consistent equations again to prove a dichotomy result, that the quantity
|EGN(z; 2, 2) — mg.(2)] is either somewhat large or very small.

(3) Bootstrap down from larger Jm z using the dichotomy result: Start with the large
Jmz where |[EGy(z;2,2) — my(2)] is very small, and use Lipschitz continuity to
conclude the same must hold for sufficiently close z by the dichotomy. Continue

extending by bootstrapping small distances away from these new z.

Lemma 9.2 (self-consistent equations). For z € C\ R and z,y € [N], let Gy(z;2,y) =

—1
X
<TZ — z)zy. Then

1
(9.1.4) 2EGn(z;2,2) = =1 —EGN(2;2,2) - p Z EGnN(20,0) + Pxy dznws V€ [N],
Lilrz

with |Pxy.dzeel < d7H|Tmz|"2 +2|Im2|73). For the off-diagonal terms x # y,

1
(9.1.5) 2EGyn(z;z,y) = —EGn(z;2,y) - p Z EGN(2;0,0) + Pxy dray VT,y € [N],
Ll

with | Pxy.d-my] < d7H|TImz]72 4 2| Tm z|73).

The proof is the standard one for Gaussian matrices, using integration by parts and
concentration, just keeping track of the individual entries instead of taking the trace. The
details are written in Appendix A.1.

As long as d — o0, (9.1.4) implies the global semicircle law since the matrix S, defined
as é times the adjacency matrix of the graph, is bistochastic. For a local semicircle law, we
need to estimate how much each diagonal element EGy(z;z,z) deviates from mg.(2), the

unique solution in H (cf. [AEK19, Theorem 2.1]) to (9.1.4) when ®x, 4,2, = 0.
95



Notation: Let z = E +in, and let gy .(z) := EGy(z; 2, x) and gy (2) := EGn(z; 2, 2) —

mg.(2). Let gy and gy be the vectors (gn )2, and (gy.)N

21, respectively. If z is fixed or

its value is clear we may omit it in gy 4, 9N, GNz: N, OF M.

Lemma 9.3 (Large n bound). Suppose (9.1.4) holds for a z with n > 2. Then for this z,

C,

_ < 2
(9.1.6) Jmax lgne(z) = ms(2)] < =,

where C, < o0 is a z-dependent constant independent of N.

Proof. Same as in random matrix papers. The self-consistent equation (9.1.4) can be rear-

ranged to read
-1 + (I)XN,dzxz
24 (Sgn)z

INaz =

1
z+msc(z)”’

Then using that mg.(2) = —

-1 + q)XN,d,z,x,$ 1 _ (Z + msc(z))(I)XN,d,z,x,a; + (SgN)x
24+ Mmee(2) + (SON)e 2+ mee(2) (24 mee(2) + (Sgn)2) (2 + Mmee(2))

gNaz =

The denominator can be bounded from below, using |z + mg.(2)| = |ms(2) 7! > | Im z| and

[(Sgn)z| < |§mz|7 to obtain for |Jmz| > 2,

~ (!Z!+1)'<DXNdzm+\(5§N( Vel ] plamzf+2 1
2(2)] < : =(|% ——=— % + -max .
Taking the maximum over z yields (9.1.6) with C, = (|z| + 1)(| IJm z| + 2)| Jm z| 3. O

The next lemma says that either max, gy, is somewhat large or very small. In particular,

if we can show max, |gn, ;| is not very large then it must be very small.

Lemma 9.4 (Dichotomy). Let Q0 be the rectangle Q = {E +in: b < E <by,0 < n < bs},
and by Lemma A.1 let ¢ > 0 be chosen so that 1 — |mg.(2)]* > cImz in Q. For a z € Q, if
both (9.1.4) and max, |gn.(2)| < §|Imz| hold, then

2(bs+2)

< Gamap
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Proof . Using zmg.(z) = —1 — my.(2)? along with (9.1.4) yields the self-consistent equations

for gN = gN — M,
(918) ZEN,Z = — (5]\[,2;<S§N>m + msc<S§N)m + mscgN,x) + q)XN,d,z,x,m

with the same error term |®Px, 4.0 < where Cq := b3 + 2. Then taking absolute

Co
d|Tm z|3>

values and maximums yields,

~ ~ ~ . Ca
sC x < T S x sC S T I~ 12
|2 + Mscl[gne| < [gnal[(SGN)a| + [mse||(Sgn) |+d|jmz|3
~ - Cao
2
< mkax|gN7k| + ]msc| m’?X |gN7k| + W

Taking the maximum over z and multiplying through by |mg.| < 1,

max (Gl (1= Imel?) < max |G| + G0,

and then using 1 — [mg(2)|* > ¢Im z and max, [gn| < §TIm 2 yields

~ ~ ~ Co
mjax |gN|(cTmz — Hl;iX |gn2|) < W
max ‘~ ’ < &
S IIN ] = cd| Jm z|*

O

Stability for z with n < 2 will then follow by bootstrapping the bound in Lemma 9.3 to

smaller 1 using Lemma 9.4.

Proposition 9.5 (Diagonal stability). Suppose (9.1.4) holds in the rectangle Q = {E +in :

by < E < by,0<n < b3} wherebs > 2, and let ¢ > 0 be chosen so that 1 —|mg.(2)|> > c¢Imz

in Q2. Then there is a constant C(2) so that for any z € Q and d > c??nggzl|)5’
C(Q)
1. - < .
(9.1.9) Jmax gno(2) —mso(2)] < A 3m ]t

Proof . Take C'(f2) := max (%(bg +2), (1 + /max(b3, b2) + b2) (b3 + 2)b3>. Then Lemma 9.3

C(Z) > SUD,eq | gmz(z2 Cr Fix 2 = E+in withn < 2,

[Jmzf =
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and let 2, = QN {w e C:Imw > n}. Since

IEG y (w; 1 OMe 1 SUPeq. |W
(9.1.10) Sup N(w,x,y)‘ <= sw |2 (w)‘ <5 <1 e o | ’> ,
wey, ow n we, ow 2 277

each |gn ;| is Lipschitz on €2, with some Lipschitz constant L(n, 2), and thus so is the function
Maxge(N] |gnz|- Let 20 = E + 2 and set a := % the step size. Set z, = 2,1 — «i for
k=1,... kg, stopping at 2, := 2z = E + in (the last step size may be smaller than @), SO
that k; < [21] < co. We show by induction that

- C(9)
. <
(9.1.11) max [gn2(21)| < R

for each k. The base case k = 0 is covered by Lemma 9.3. If (9.1.11) holds for k& — 1, then

since max; |gn .| is L(n, Q)-Lipschitz in z,

max |Gy (2r)| < 2k — 2k—1|L(n, Q) + 5}61% |gn,2(26—1)]

z€[N]
<@, A0 o
4 dn?* 2
so Lemma 9.4 implies max, |gn.(zx)| < CdSZ). O

Proposition 9.6 (Off-diagonal stability). Suppose (9.1.5) holds for all z in the rectangle
Q={E+in:b < E <by,0<n<bs} where by > 2, and let ¢ and C(QY) be defined as in
Proposition 9.5. Then there is C'(Q) so that for any z € Q and d > max (L(Q) m),

c|Imz[®? | Jmz|4

()
| < ;
d|Jm z|3

(9.1.12) [EGn(z;x,y) xr #y.

Proof.. Recall the self-consistent equations for the off-diagonal terms is (9.1.5). Using Propo-
sition 9.5, (9.1.5) becomes

(9.1.13) EGN(z7,y) = —EGN(212,9) - (Mse(2) + Exyaa(2)) + Pxydzay:
with
cQ 1
Expae(?)] < Lo < =
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Thus

EG Z,:L’, — vaz,_:y < —
G ) = o o = B = d3m 2P

since |z + mg.(2)| > 1. O

9.2. Projection matrix approximation

Let Py .y be the projection matrix of Xy/ V/d onto the subspace spanned by the
eigenvectors {1V7) 1 \(N9) € [2 — ey, b]}, where b > 2 is a fixed number like b = 10. We will
estimate the matrix elements of P,_. 5 using expressions involving resolvents.

Let ay = 2 — ey, and approximate the indicator function of |ay,b] using arctangents,
which will then involve the Green’s function which will be close to mg.(z). One motivation
for the approximation is Stone’s formula, or alternatively just properties of the Poisson kernel

on H.

Proposition 9.7 (Stone’s formula). If H is self-adjoint, as 6 — 0

1 1 s

b
(921) —/a Jmﬁd)\—)

1
_Pa Pa )
. xv i) A7 g Han * Flos)

where convergence is in the strong operator topology.

For the diagonal matrix elements, if we have enough control on the convergence of
EGN(z; N, JN) — mse(z), then we can replace EGy(2; jn, jn) by mg.(z) and compute the

expected projection matrix elements as N — oo using mg.(z). More specifically, let
anN = 2 — EN
ay =2—¢en— N

af =2—en +n,
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where we will take dy < vv < e, and set

_ 1 . /X -1

a;\, d
1 [ X -1
(9.2.3) A}yé = —/ Jm|—=—2 dA.
T Jat <\/E )

Ay s approximates the projection matrix diagonal elements roughly mostly from above, while
A]J(,’ s approximates the projection matrix diagonal elements roughly mostly from below. We
will take o — 0 so that (14](,75N)m and (AEKSN)m are close to (Pgy ¢ )z, but will take oy — 0
sufficiently slowly that we can guarantee G (A + idy; 2, ) is close to mg.(A + idy). In the
following estimates we use the asymptotic tan™' z = 7 — % +O(x73) as ¥ — oo, and relation
0 < tan™! (%) — tan™! (#) < 7 for a <b.

Assume the spectrum of Xy / V/d is bounded away below b. For example, take b = 10, so
the largest eigenvalue is < b with very high probability, by Theorem 6.1 and matrix norm

concentration. By the spectral theorem, we can compute (Aﬁ s)ay as follows, using

b 1 b SN
J . dE = - dFE
/a TN ZE —ioy / (A0 —E) 102,

= tan b AV — tan™* 0=\
B on on '

9.2.1. Diagonal entry estimates. For the upper approximation, neglecting the sum over

AU < an which is nonnegative, and then using the asymptotic for arctangent, yields,

(9.2.4)

_ 1 _ b— \U) L fan—7 —\@ ]
(AN,(sN)m = Z + Z ; (tan 1( o ) — tan 1( N 511\7\/ )> |¢9(EJ)|2

JAD>ay  jAD<ay

> 3 (506w~ (-5 +06w/m)) 0P
JiAW) >ay

> Z (1= 0@ /v)) WP
A >an

= (Play p])zz(1 = O0n/7N))
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e (i A
since if AU) > a then W <

—g—x — —oo if dy < N

For the lower approximation,

(9.2.5)

1 (L (b= 20 L fan + = AV |
(AE,JN)xx = Z + Z ; (tan ! ( 5N ) — tan ! < 5N >) \1/1;9)\2

jid<an  jAO>an

1 (b= 2D L fan +n — A :
< Z ; <tan ! ( 5 ) —tan~ ! ( Sn )) |wa(cj)|2 + (P[aN,b]>:r:p

A0 <an N
17 - |
N mg;w P [5 —O(ow) = (5 - 0(%/%))} WD+ (Pay i) ax

= O(on /) + (Play b)) az-

~v—AW)

since if AW < ay then 23FU > W — +oo.
N N

Thus if maxA\Y) < 8 < b and dy < 7y, then
+ ON — on
(9.2.6) (sl = O(Z") < Plyiler < (Ashae (1+0(5) ).
We will see later that (P )2z =~ %6%2, so in order for the error terms above to be 0(5%2),

we will need dyvy' < 6%2.

9.3. Replacement with semicircle law

Next, we want to replace the Green’s function in the integral expression of Aﬁ’ 5y With
the Stieltjes transform mg.(z) of the semicircle law. The estimates for this are the weak local
semicircle stability results from Section 9.1, and Gaussian concentration for the Green’s func-
tion. These estimates control the error terms from replacing Gy(z; z, z) with EGy(z; z, x)
and then with mg.(z). Then evaluating the integral in A]j\j 5y With mg(2) instead yields the

desired result.
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Theorem 9.8 (Projection matrix elements). Suppose d/log N — oo and suppose that for

each fized z € H, that

(9.3.1) e EGNn(z;2,2) — mge(2)| =0, as N — oo.
fAS

Let P4 be the spectral projection matriz of Xn/Vd onto the interval [a,b]. Then there is a
sequence ey — 0 so that with probability at least 1 — o(1), the matriz Po_. y has diagonal

elements

2
(932) (P[Q—aN,b])m: - 375%2(1 + O(1>>7

with the error term uniform in x € [N].

9.3.1. Proof of Theorem 9.8. A uniform continuity argument (Lemma A.3) shows that

(9.3.1) implies the existence of a sequence Sn >0, 0n — 0, so that as N — oo,

(9.3.3) E(N, gN) = sup sup max|EGy(\+iv;z,2) — me (N +iv)| — 0.
Sn<y<1 Aefo,p] 2E€IN]

Any sequence ay — 0 with ay > gN will also satisfy E(N, an) — 0. Then take

5/22
(9.3.4) Sy = max ((%) ,5N>

(9.3.5) en > max(E(N, 0x),677), ex =0
(9.3.6) ty =0y
(9.3.7) v = en 26N’

so that ty < 5}\{2, and oy < (5]2\,/5 < Yv X epn, and % < 6%2. Since dny — 0, this will

allow us to approximate P 3 well using Aﬁ 5, Which has the Green’s function. Then we
replace the Green’s function with its expectation by concentration of measure, and then since

E(N,by) < E(N,dy) — 0, this will then let us replace the Green’s function with mg(z).
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Remark 9.3.1. Equations (9.1.3) or (9.1.9) from the (somewhat) local semicircle law give

a quantitative bound on £(NV, dy), which allows us to take any sequence ey > 0 satisfying

1 N 1/11 1
(9.3.8) ex =0, ey > 6% ~ max [( o8 ) ,

d " J2/25

by taking for example

S I

(9310) ty = (5]1\[/5, YN = 5}\{25]1\[/5,

where the constants C'(2) and ¢ are the same as in Propositions 9.5.

Returning to the proof of Theorem 9.8, we start with the estimate for replacing Gy (z; x, y)

by its expectation.

Lemma 9.9 (Green’s function concentration). For anyt >0, z € H, and x,y € [N],
1
(9.3.11) Pl|Gn(z;2,y) — EGN(2z;2,y)| > t] < dexp (—§t2d| 3mz!4> :

Proof. The Lipschitz constant for f(X) = (z|(X/v/d—z)~'|y) is bounded above by %

by Example 7.1. U

By Lemma 9.9 and a union bound,

z€[N]

P | max ‘GN()\ +idn;x, ) — EGn(A + i5N;x,x)‘ > tN}

1
< 4N exp (—gt?\,d(ﬁl\,)

1 d
< 4exp(—logN) 1
exp(— 10 = —
g p g N’

where we used (9.3.6) and the first term in the max() in the definition (9.3.4) of dy. Thus

with probability at least 1 — %, all Gn (A4 idy; 2z, x) are within ¢y of their expected values.
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From (9.3.3), the expected value EGy (A + idy;z,z) will be close to mg.(A + idy). For

* € {+,—}, write

1 b
(9312) (Aiyg)ee = = Im / e\ + i0x) dA+
1 b
—i——’Jm/ EGN()\—FZ(SN,[E,QT)—msc()\+25N)d)\‘|‘
7r o,
1 b
+ ;jm/ Gy A+ iy z,2) — EGN(A+ idn; z, z) dA.

The two error terms are bounded as follows. For N sufficiently large that 5 < 1, then by
(9.3.3) and (9.3.5), the first error term is

1 b
(9.3.13) |- Jm/ EGx (A + ibx; 7, 7) — mee(A +idn) dA| < XTI e(N, 63) = o(e¥2).
m a* m
N
For the second error term, with probability at least 1 — %,
(9.3.14)
L. . - EN + N 3/2
max | — Jm Gy A+ idy;z,2) —EGNy(A+idn;z,2) dN| < ————— -ty = o(ey’).
x=1,..., v a* v
N

For dy < €%, the integration of my. is (computation in Lemma A.2)

1 b 2 3/
-J A+ i0n)dN = — 1 1)).
- m/ayvm (A +idy) 37T€N( +0(1))

Thus with probability at least 1 — +, for x € {4+, —} and any z € [N],
A% _ 2 3
(9.3.15) (AN sy )z = 3—7T€N (14 0(1)),

with the error term uniform in x. Combining with (9.2.6), noting that % = 0(6%2), then

with probability at least 1 — o(1),

2
(9.3.16) (Pa-cxi)es = 5 -2 (L+ 0(1),

with the error term uniform in x, which is (9.3.2).
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9.4. Delocalized random vector

Since Pjp_. ) is the projection matrix onto the space spanned by the eigenvectors with
cigenvalues in [2 — ey, b], any vector in this subspace will satisfy || Xyv|l2 > (2 —en)vd. We
just need to find a vector in this subspace that is delocalized. This will follow from Theo-
rem 9.8, which describes the covariance matrix of a random Gaussian from this subspace,

and the following consequences.

Lemma 9.10 (Gaussian moments). For N € N, let P™N) be orthogonal projection onto a

subspace VIN) ¢ RN of dimension my with my — 0o as N — 0o, and suppose
(9.4.1) Jow = Z PP = T (14 o(1),

with error term uniform in x € [N]. Choose ¢ > 2. If w € VIN) is a unit vector chosen

randomly from Haar measure on the unit sphere of V™), then as N — oo,

(9.4.2)

B> w] — (1 o(1),

q/2p( 9+1
where Cy, = Elg|? = # with g ~ N(0,1).

Proof. Let (™)) be an orthonormal basis for V) and write w = > a; ™D where
a ~ Unif(S™¥~1). Since w is essentially multivariate Gaussian T/QN (0, PN, (9.4.1) fol-
lows from computing multivariate Gaussian moments. -

More carefully, N (0, P™)) ~ rw, where 72 ~ X%(my) is independent of w.! Then
Elw, | = £5E|Z,|9, for (Zy,...,Z,) ~ N(0, P™). The chi-square distribution x?(m) has

probability density function

gm/2=1—t/2

., t2>0
om/2p(m Y ? —
fm(t) = (%)
0, t<0
IFor AN the N xmy matrix whose columns are the vectors (M7 then A'(0, PN)) ~ ANIN(0, Iy ) ~

rAMN) o ~ rw, where a € Unif(S”V 1), and r and « are 1ndependent by writing the density of N(0, I, ) in
polar coordinates which factors.
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so that

Er = / % T gt = 902L (*5) a/2
o e T T )

Since (Z1,...,Z,) ~ N(0, P™), each Z, by itself is centered normal with variance ngiv), SO
E|Z|" = (PL))"?Elg|" = (PG7)"*C,,

where g ~ N(0,1). Thus

Elw,|” = Cy(PR))""?

O

Since the gth moment of some w is bounded (after suitable scaling), this lets us find a v >

0 for delocalization. Essentially, if we had to take v — 0 to ensure sup aciny >

A=v

xEAwap S

k2, then all gth moments of v/ Nw divided by N must diverge as N — oo for ¢ > 2.

Corollary 9.11 (delocalization and moments). Fiz 0 < k < 1, and let P™) and V) be

as in Lemma 9.10, including (9.4.1). There for any 0 < v < o’ where 0 < ¢ < 1 is

bg%’

an absolute constant, and for sufficiently large N, there is a (vN, k)-delocalized unit vector

we VW),

Proof. Let ¢ = 4log< > 4. By Lemma 9.10, there is a unit vector w € V) 5o that
N2 g9 < Oy 4 0(1) as N — oo. By Hélder, then for any set A C [N] with
#A=vN,

2/q
(9.4.3) D fwe]? < (vN) e (Z |wx|q> < pIT2aC29 4 o(1).

TEA z€A

By Stirling’s formula inequality;,

2 (0 (1))

2
Wlm

2/q __
Cq/q _



2
So for v < el
Og;

(log £)%/4
(52)2/q ’

U1—2/q02/q _ 01—2/q(ﬁ2)1—2/q
T (log )

K

e
-C'log — < M2OK?
K
Since ¢ = 4log £, then (log %)2/‘1 = exp (ﬁ log log %) < C, since the expression is contin-
uous in k and tends to 1 as kK — 0 or kK — 1. Similarly,

1
(k)% = exp [ ——~_ log & >
1+log+/) =

Y

Q|

since 0 < log+ < oo. Thus V129020 < (12CCex?, so choosing ¢ a sufficiently small
absolute constant ensures that (9.4.3) becomes,
sup Z lw,|* < (1 —6)K*+ o(1), for some § > 0,

AC|N]

LA—UN z€A

which will eventually be < k2. Thus for sufficiently large N (depending on x and v), a w

chosen in this way is (¢ N, k)-delocalized. O
Remark 9.4.1. (a) We compare the condition v < 15222 here to the condition Cvlog £ <
k? from Lemma 7.5 for delocalization on the sphere. If v = lg’gl, then for small v

and k, the two conditions are essentially equivalent up to constants, since

2 log £ C + loglog <
ulogE: o log (e Og”):20K2 (14—(9(&)),
v

log £ cK? log £

and conversely, if Cvlog ¢ = k2, then

K2 2Cvlog ¢

g 1oy (i) — 20y (1 +0(

Thus up to constants, the vector w chosen here is essentially just as delocalized as

C +log log§>
log ¢ '

a typical random unit vector from the sphere.
(b) The choice ¢ = 4log< was taken by (approximately) optimizing the condition

p1=2/ 403/ 9 < Kk? over q. The approximation was applying Stirling in C, before
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optimizing, and then assuming ¢ large, and choosing convenient factors so that

q=>4.

Proof of Theorem 6.2(1i). The condition for Theorem 9.8 is met by the weak local semicircle
law in Section 9.1. Then choosing Py, 4 as in Theorem 9.8, with probability 1—o(1), there
are the projection matrix estimates (9.3.2), and the rank of Py_. 4 is my = %6%2]\7(1 +
0(1)). Then Corollary 9.11 implies for sufficiently large N, there is a (v, k)-delocalized
vector vy in the span of {9 : \V9) € [2 — ey b]}. By construction, |[|[Xyvn|s >
(2 — en)Vd. Since E||Xy]|| < (2 + ry)Vd for some 7y = o(1) by Theorem 6.1, then taking

Oy i=1— 2258 — (1) shows (2 —en)Vd = (1 —68)(2+ry)Vd > (1 —o(1))E||Xy|. O

2+TN
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APPENDIX A

A.1. Proof of Lemma 9.2

This is the standard proof with Gaussian integration by parts and concentration (e.g.
see [AGZ09]), with keeping track of the error terms. As in the usual semicircle law proof for

Gaussian matrices, start with

Xn -1 1, XN Xy -1
(W—z) =—2 +=z ﬁ<ﬁ_z) ,

then take expectations using Gaussian integration by parts E[X;; f(X)] = E [0Xij f(X )} and
the relation 9,Y ! = =Y ~1(9,Y)Y~!. Then

(A.L1) z]E(X—\/% - z);yl -
a0, ) (B, (B ), e

d
The last term in (A.1.1) is bounded as

by () ()
9\ 1/2
) (2

(G

(2.

<(ZIGE-T) (BI6E-.T)
= (G G G- G l)
d| Jm z|?
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since ||(Xn/vVd—2)7 < |Tmz| .

It remains to distribute the expectation over the product in the term

~1
E (X—N—z) ‘ (X—N—z> , which can be done via Gaussian concentration
|: Vd 2y ZE.ZNZ NZ o0

~1
applied to Y, . (X—\/%’ — z) . Using the second resolvent identity and several instances of

Cauchy-Schwarz, for symmetric matrices A and B, (or one can compute the gradient)

D UA=2)TO = B =270 = | D (A —2)" (B~ A)Rs(2)[0)

bz Ob~x
N o\ 1/2
<A=Bllp | Y | D (URA)]5) (kR (2)6)
4,k=1 |l:b~z

N 1/2
= [A=Bllr | D D (R KIRs(2)1) > <j|RA(E)|m><m\RB(E)Ik>>

Jk=1 Lt~z mm~x

1/2
=[A=Blr{ > > <€|RA(Z)RA(E)|m><m|RB(?)RB(Z)If>)

L:b~x mimeox

1/2 172\ /2

<|A-Blr| > ( > \<€|RA(Z)RA(?)|m>!2> < > |(€|R3(7)RB(Z)|m>|2>

Lilrox \Tmumex mim~x

1/2

<|A-Blr{ <€|(RA(Z)RA(E))QI@UWI(RB(Z)RB(?))QIQW)

L~

. 1/2 Vi
<||A-B —_ < V2||A - Bllgv —=—
<12l (3 ] VA~ Blee o
where || - ||gv is the Euclidean norm on the upper triangular elements that are nonzero

in the sparsity pattern of the matrix. (These are the (i,7) such that i ~ 7 and i > j.)

Thus Zé:éwx (X_\/g - Z)

1
" is v/2/| Im z|>-Lipschitz, and its standard deviation is bounded by
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2/|Jm 2|2, so that using Cauchy—Schwarz,

(G Z G |2 (E 2L E ()

lib~x

Thus (A.1.1) becomes

Yy

(A.1.2) zE(X—\/g - z) oo — 0y — E(X—\/JX )xy p Z (— - z) B + Pxy dzzy

L:b~t
with
1 2
A1.3 Dy .
(A-13) Pxvazeal € Gr5eE T Aomap
A.2. Semicircle law computations
Let mg(2) = —5 + 55— 22 % the Stieltjes transform of the semicircle law, with branch cut

taken in (—2,2) and v/22 — 4 & z for large z. With the standard square root branch, this is
Mge(2) = —% + YE=22E2 gt least for 2 ¢ R_.

Lemma A.1 (Norm bounds). For z € H,

(A.2.1) Imse(2)] < 1.

For a bounded set R C H, there is a constant ¢ > 0 (depending on R) so that for all z € R,
(A.2.2) 1 — |mee(2)]* > cTImz.

The above estimates are well-known and simply an application of the formula for mg.(z).
We provide proofs here for completeness since they are generally not written. There is no

effort to obtain a good bound on the constant.

Proof. From the self-consistent equation, |mg.(2)||z + ms(z)] = 1. For |z| large, |z +

mse(2)] = |z| > 1 and then |my.(z)] < 1. Since |mg(2)| is continuous, to show that
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|mse(z)| < 1 for all z, it is enough to show that for any z € H, |mgs(2)| # |z + mgs(2)]-
Let w = 3vz—2Vz+2, s0 [mu(z)| = 3|z — w| and |z + my(z)| = 3|z + w|. Then
|z —w| = |z +w| iff ReZw = 0. However, ReZw > 0 for any z € H:

For z = E +1n,

(A.2.3) 2Re(zVz —2V2+2) =

E\J((B =22+ 7212 4 (B — 2)y/((E +2) +72) 12 + (E +2) -

— E\J(B =22 +02)V2 — (B = 2)/(E+2)2 + )2 — (B +2)+

(B =202 422 4 (B -2\ (B+272 +02)12 — (B +2) +

/(B +2)2 + )12 + (B + 24/ (B — 22 + 72)1/2 — (B —2)

This is unchanged under F — —F so it suffices to consider £ > 0.
The last two terms (starting with 7) are always positive, so we just check the first term
is larger than the second. This is clear for £ > 2. For 0 < E < 2, then F — 2 < 0. Letting

¢ =F —2and w = F + 2, the first two terms then are

(A24) ByJ@ + V2 — el + )2 4w — ByJi + )2 1 gl + ) — .

Note (£24+10%)Y2 —[¢] > (w?+n?)Y2 —w since (22 4n?)'/2 —x is (strictly, for n > 0) decreasing
in z. Similarly, (W24 7?2 +w > (&2 +n*)Y2+|¢] since (22 +7?) /2 4z is (strictly, for n > 0)
increasing in z. (e.g. check by derivatives). Thus, Re(Zw) > 0 80 |ms(2)| # |2 + Mmsc(2)]
and |mg.(2)| <1 for all z € H.

For (A.2.2), since |z + w|? — |z — w|* = 4QRe Zw, then using |z — wl|z + w| = 4,

1 Rezw
A.25 1= |me(2)P=1==]z —w]* = z —w|.
(A.2.5) a2 =1 = gle = wlt = e — )

Since |z| is bounded, 1 < |z +w| < C and thus & < |z —w| < 1. Then

1

> cCTn Re(zZw).

(A.2.6) 1— |me(2))? =1~ %1|z — wl?
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By casework, there will be ¢ > 0 so that

(A.2.7) Re(ZvVz —2vVz+2) > cTImz.

e [/ >2: Since for 0 < o, <1,

2(a+ p)
Vitayl+8+V1—ay1—7 2 Clath),

then the first two terms of (A.2.3) are bounded below by

(A28) Vitay/1+B8—-vV1I—ay1l—-p=

& w
(&2 + )12 + (W2 + 2)1/2

CE(w? + )& + ")/ > CE(E —2)+ C'En'/?,

where C” depends on the maximum possible 7 in the region R.

e 1 < F <2: Again with just the first two terms of (A.2.3). Note for 0 < x < b and
Cb — \/b+blfl7

(A.2.9) 1+Cr<Vita< 1+g.

Then

(A.2.10) E\/(§2 +n2)V/2 — |g|\/(w2 + )2 fw— E\/(§2 +n2)1/2 4 |§|\/(w2 + )2 —

> B\J(€ )12~ e[V — B+ 20E]

Since Re(Zw) > 0 in all of H, it suffices to consider small , since Re(Zw) > ¢ > 0 on

any bounded region with 1 bounded away from zero (by compactness). If n < 2|¢|,

then by (A.2.9), along with 3 <w <4 and 0 < |¢| <1,

1/2
V@ +mye == (“54‘1> ,

€112

so for sufficiently small 7,

(A.2.11) 29Re(ZVz — 2Vz £ 2) > \/37‘7_5’ {3\/5\/? — || - %\/@} > cn.



If n > 2/¢|, then

2 2\1/2 n_ n
JE@ vz fr-1=\/L

e 0 < E < 1: The fourth term of (A.2.3) is at least 22 - n. (Usually we can’t really
use the 3rd and 4th terms since they can be at least order n%/? < n for small n, but

for £ away from +2 the 4th term is order 7.)

l

Lemma A.2 (Semicircle integration). Let a}, be 2—en+vyy or2—ey—7n where vy = o(en),

and suppose Sy <K 3,. Then

1 b 2
(A.2.12) - Jm / Mee( A+ i0y) dX = 375%2(1 + o(1)).
an

Proof. Compute

b . - — .
(A.2.13) jm/ _)\+2Z(5N+\/>‘+25N 22\/)\+25N+2

N

dA

1 b
:O(sNéN)+§3m/ \/)\+i5N—2\/>\+i5N+2.

Computing antiderivatives,

b
(A.2.14) Jm/ VA +idy — 24/ A +idx + 2dA

1

2(>\ +i0n)V (A + i0x) — 20/ (A +idy) + 2—

zﬁml

b

—2log (A +i0n + /(A +i0y) — 20/ (N +idn) + 2) }

*
an

For the terms with b, Taylor expansion in dy yields,
1 b
Jm | =bVb2 — 4 —2log[b + Vb2 — 4] — Vb2 — 4§y — ——=0 53
Jm i oglb+ ] —i N 2mN+O<N)]
= 0(6n) = ole%).
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For the terms with ay, first a useful computation. For notational convenience, let € be

ey + 79~ or ey —yn. Then

V(2 —e+idy) —20/(2— e +idy) +2

5 5
:\@\/4—5\/—1”% 1+z4f€

W <z n on + 08 —2)) (1 — és + (’)(52)) (1+i0(0N))

= 2i\/e — 3/2 + O(Sne M2+ £%2)

since for &« > 0, vV—1+ai = i + § + O(c?), eg. by Taylor expanding several times

V=T +ai = V1+ aZexp(i(r — tan~' @)). Using that O(0ye~1/2) = O(dyen"?) = o(e3?),

the non-logarithm term involving a}, in (A.2.14) is then

—Jm%(AJri(SN)\/()\Jrz’(SN) —2/(A+idy) +2 = —%(2—5) 2e1/2 i 32 4 o(52)

—
A=ay

5 3/2
=212 ¢ 163/2 +o(%%).

For the logarithm term,

log(2 — & + i0+V—¢ +i0V4 — e + i0)

1
=log((2 — e +1id) + log (1 Sy (21\/_ 3/2 (5%2))>
=log2 — g +ivE + ;—453/2 +0O(8) + o(gj”v/?).

The end logarithm term is then

Jm2log ()\+i5—|— VN Fidy) — 2¢/(\ +i0) +2)

1
<\/_—|— —® ) + 0(e¥?) = 212 ¢ 553/2 + o(%/?).
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Thus in total, (A.2.13) is

1 1/5 1 g 2 5/
—'3 (Z—l—ﬁ) 83/2—%0(8]\? )= 3—7T€3/2+0(5]\? ).

Since € = ey (1 £ o(1)), this is 3%5%2(1 +0(1)) as desired. O

This agrees to leading order with what we expect from the semicircle law,

2
L Vi — 22 dr ~ 3353/2,
s

27 2—¢

e.g. by using that mg.(z) is the Stieltjes transform of the semicircle density and applying

Fubini and Taylor expanding.

A.3. Stability without quantitative stability
In Section 9.1, we obtained a quantitative bound on the rate of convergence of EG y(z; z, y)
t0 0zyMsc(2). This makes it easy to choose a sequence dnx — 0 such that

max max |[EGy (A + idy; 2, x) — mge(A+idx)| — 0,
A€[0,b] z€[N]

since the quantitative bound doesn’t depend on A or x. (Remark 9.3.1.) If we did not have
such a quantitative bound, but only knew that for any fixed z = X\ + 9,

max |EGn (A +i0; 2, 2) — mge(A+0)| — 0

z€[N]

as N — oo, with no knowledge of the convergence rate or dependence on 9, we can still
find a sequence oy — 0 with the desired property. We will use the fact that for func-
tions on a compact metric space, pointwise convergence plus equicontinuity implies uniform

convergence.

Lemma A.3. Suppose max,e(n] [EGy (A +i0; 2, ) — mge(A +40)| = 0 as N — oo, for any
fired z = XA+ 10 with 6 > 0. Then there is a positive sequence dy — 0 so that

(A.3.1) E(N,0yn) := sup sup max [EGn(A+ iv;z,2) — mg.(A+iy)| — 0,
SN <v<1 Aefo,b] #€[N]
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as N — oco. Additionally, any sequence (ay) satisfying oy > oy will also satisfy E(N, an) —

0.

Proof. The “additionally” statement is immediate from the sup; < <; and E(N,dx) —
0. For (A.3.1), define gy.(2) = EGn(z;x,2) — ms(z) and let Rs be the compact region
[0,b] x i[6,1] in C. Then [gn.(2)| is Lipschitz continuous for z € Rs with some Lipschitz

constant L(6), since using the first resolvent identity,
|[EGN (252, 2) — mye(2)| — [EGn (w; 3, 2) — mye(w)]|
< [BGn (22, 2) — EGy (w; 2, 2)| + |msce(2) — mse(w)]

< |z — wE(Rn(2) By (w))er + |2 —w| sup
60<Imz<1

amsc(z)

1 1 1+ 0]
<l —wlsr ot | —wl (14 ).
JmzJmw 2 28
Since taking a maximum doesn’t change the Lipschitz constant, fy(2) := maxzeny [gn,2(2)]
also has Lipschitz constant L(¢) in the region Rs. By assumption fy(z) — 0 pointwise in z
as N — oo. Because there is the uniform Lipschitz constant L(d), {fx}x is equicontinuous
and so the pointwise convergence turns into uniform convergence,

Aim | fallogr,) = Jim. ZS;l}g max EGN(2;2,7) — mg(2)] = 0.

Now for any § > 0, define
D(N,6) := sup £(N,0),

n>N

which is decreasing in N (and finite, < %, by resolvent bound). By the above, then
limy_yoo D(N,6) = limsupy_, || fnllcrs) = 0. Choose éy as follows: First take 6, = 1
and a parameter (which tracks the convergence rate) m = 2. Take dy = dy_; until N is
large enough so that D(N, %) < % In that case take d = % and increment m, then repeat.
Since D(N,6) is decreasing in N, this method guarantees once D(N,dy) < =, that this

inequality holds for all subsequent N as well.
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Then 0y — 0 since they eventually will be smaller than any -. Also, D(N,éy) — 0

since it will eventually be smaller than any % 0

118



[AEK19]

[AGZ09)]

[AL15]

[Anal?)

[Anal8]

[AS19]

[AT07]

[BBvH21]

[BD96]

[Ber77]
[BGGSOT]

[BGK16]

[BGP14]

[BGS84]

Bibliography

O. Ajanki, L. Erdés, and T. Kriiger, Quadratic Vector Equations On Complex Upper Half-Plane,
vol. 261, Memoirs of the American Mathematical Society, 2019.

G. Anderson, A. Guionnet, and O. Zeitouni, An Introduction to Random Matrices, Cambridge
University Press, 2009.

N. Anantharaman and E. Le Masson, Quantum ergodicity on large reqular graphs, Duke Math.
J. 164 (2015), 723-765.

N. Anantharaman, Quantum ergodicity on regular graphs, Comm. Math. Phys. 353 (2017),
633-690.

N. Anantharaman, Delocalization of Schrodinger eigenfunctions, in Proceedings ICM 2018,
vol. 1, World Sci. Publ., 2018, 341-375.

N. Anantharaman and M. Sabri, Quantum ergodicity on graphs: From spectral to spatial delo-
calization, Ann. Math. 189 (2019), 753-835.

R. J. Adler and J. E. Taylor, Random Fields and Geometry, Springer Monographs in Mathe-
matics, Springer, 2007.

A. S. Bandeira, M. T. Boedihardjo, and R. van Handel, Matrixz concentration inequalities and
free probability. Preprint arXiv:2108.06312 (2021).

A. Bouzouina and S. De Biévre, Equipartition of the eigenfunctions of quantized ergodic maps
on the torus, Comm. Math. Phys. 178 (1996), 83-105.

M. V. Berry, Regular and irreqular semiclassical wavefunctions, J. Phys. A 10 (1977), 2083-2091.
E. B. Bogomolny, B. Georgeot, M. J. Giannoni, and C. Schmit, Arithmetical chaos, Phys. Rep.
291 (1997), 219-324.

F. Benaych-Georges and A. Knowles, Lectures on the local semicircle law for Wigner matrices.
Available at arXiv:1601.04055 (2016).

F. Benaych-Georges and S. Péché, Largest eigenvalues and eigenvectors of band or sparse random
matrices, Electron. Commun. Probab. 19 (2014), 9 pp.

O. Bohigas, M. J. Giannoni, and C. Schmidt, Characterization of chaotic quantum spectra and

universality of level fluctuation laws, Phys. Rev. Lett. 52 (1984), 1-4.

119



[BK10]

[BKS07]

[BLM13]

[Bouls]
[BSW02]

[BSW03]

[BvH16]

[CG18]

[CG20]

[CMO6)]

[CMOoS]

[DF84]

[DG75]

[dV85)]

[EKYY13a]

[EKYY13D)

[ESY09a]

G. Berkolaiko and P. Kuchment, Introduction to Quantum Graphs, Mathematical Surveys and
Monographs, American Mathematical Society, 2010.

G. Berkolaiko, J. P. Keating, and U. Smilansky, Quantum ergodicity for graphs related to interval
maps, Comm. Math. Phys. 273 (2007), 137-159.

S. Boucheron, G. Lugosi, and P. Massart, Concentration Inequalities: A Nonasymptotic Theory
of Independence, Oxford University Press, 2013.

P. Bourgade, Random band matrices, in Proceedings ICM 2018, vol. 4, 2018.

G. Berkolaiko, H. Schanz, and R. Whitney, Leading off-diagonal correction to the form factor
of large graphs, Phys. Rev. Lett. 82 (2002), 104101.

G. Berkolaiko, H. Schanz, and R. Whitney, Form factor for a family of quantum graphs: An
expansion to third order, J. Phys. A 36 (2003), 8373-8392.

A. Bandeira and R. van Handel, Sharp nonasymptotic bounds on the norm of random matrices
with independent entries, Ann. Probab. 44 (2016), 2479-2506.

S. Chatterjee and J. Galkowski, Arbitrarily small perturbations of Dirichlet Laplacians are quan-
tum unique ergodic, J. Spectr. Theory 8 (2018), 909-947.

Y. Canzani and J. Galkowski, Weyl remainders: an application of geodesic beams. Preprint
arXiv:2010.03969 (2020).

N. Chernov and R. Markarian, Chaotic Billiards, vol. 127 of Mathematical Surveys and Mono-
graphs, American Mathematical Society, 2006.

S. Chatterjee and E. Meckes, Multivariate normal approzximation using exchangeable pairs,
ALEA 4 (2008), 257-283.

P. Diaconis and D. Freedman, Asymptotics of graphical projection pursuit, Ann. Stat. 12 (1984),
793-815.

J. J. Duistermaat and V. W. Guillemin, The spectrum of positive elliptic operators and periodic
bicharacteristics, Invent. Math. 29 (1975), 39-79.

Y. C. de Verdiere, Ergodicité et fonctions propres du laplacien, Comm. Math. Phys. 102 (1985),
497-502.

L. Erdos, A. Knowles, H.-T. Yau, and J. Yin, Spectral statistics of Erdés—Rényi graphs I: local
semicircle law, Ann. Probab. 41 (2013), 2279-2375.

L. Erdos, A. Knowles, H.-T. Yau, and J. Yin, The local semicircle law for a general class of
random matrices, Electron. J. Probab. 18 (2013), 58 pp.

L. Erdos, B. Schlein, and H.-T. Yau, Local semicircle law and complete delocalization for Wigner

random matrices, Comm. Math. Phys. 287 (2009), 641-655.

120



[ESY09b)

[EY17]

[FMO1]

[GAO4]

[GAO5]

[GKPO08]

[GKP10]

[GLSW06]

[GO13]

[GS18]

[HFS07]

[HGK18]

[HH20]

[HR16]

[HTO05]

[Hub85]

L. Erdés, B. Schlein, and H.-T. Yau, Semicircle law on short scales and delocalization of eigen-
vectors for Wigner random matrices, Ann. Probab. 37 (2009), 815-852.

L. Erdos and H.-T. Yau, A Dynamical Approach to Random Matrixz Theory, vol. 28 of Courant
Lecture Notes, AMS and Courant Institute, 2017.

Y. V. Fyodorov and A. D. Mirlin, Scaling properties of localization in random band matrices: a
sigma-model approach, Phys. Rev. Lett. 67 (1991).

S. Gnutzmann and A. Altland, Universal spectral statistics in quantum graphs, Phys. Rev. Lett.
93 (2004), 194101.

S. Gnutzmann and A. Altland, Spectral correlations of individual quantum graphs, Phys. Rev.
E 72 (2005), 056215.

S. Gnutzmann, J. P. Keating, and F. Piotet, Quantum ergodicity on graphs, Phys. Rev. Lett.
101 (2008), 264102.

S. Gnutzmann, J. Keating, and F. Piotet, Eigenfunction statistics on quantum graphs, Ann.
Phys. 325 (2010), 2595-2640.

Y. Gordon, A. E. Litvak, S. Schiitt, and E. Werner, On the minimum of several random variables,
Proc. Am. Math. Soc. 134 (2006), 3665-3675.

B. Gutkin and V. A. Osipov, Clustering of periodic orbits in chaotic systems, Nonlinearity 26
(2013), 177-200.

Y. Guo and M. Surmacs, Miscellaneous digraph classes, in Classes of Directed Graphs (J. Bang-
Jensen and G. Gutin, eds.), Springer Monographs in Mathematics, Springer, 2018, ch. 11,
517-574.

J. W. Helton, R. R. Far, and R. Speicher, Operator-valued semicircular elements: solving a
quadratic matriz equation with positivity constraints, Int. Math. Res. Not. 2007 (2007), 15 pp.

F. Haake, S. Gnutzmann, and M. Ku$, Quantum Signatures of Chaos, Springer Series in Syn-
ergetics, Springer, 4 ed., 2018.

J. Harrison and T. Hudgins, Complete dynamical evaluation of the characteristic polynomial of
binary quantum graphs. Preprint arXiv:2011.05213 (2020).

H. Hezari and G. Riviére, I? norms, nodal sets, and quantum ergodicity, Adv. Math. 290 (2016),
938-966.

U. Haagerup and S. Thorbjgrnsen, A new application of random matrices: Ext(C (F2)) is not
a group, Ann. Math. 162 (2005), 711-775.

P. Huber, Projection pursuit, Ann. Stat. 13 (1985), 435-525.

121



[Ivr80]

[KPS1]

[KR00]

[KRO1]

[KS97]
[KS99]

[Ler05]

[LS94]

[LT91]

[Mang7]

[Map13]

[Mec09]

[Meh04]
IMOO5]

[Mon94]

[OVW16]

V. Ivrii, The second term of the spectral asymptotics for a laplace beltrami operator on manifolds
with boundary, Funktsional. Anal. i Prilozhen. 14 (1980), 25-34.

S. Kakutani and K. Petersen, The speed of convergence in the ergodic theorem, Mon. Hefte.
Math. 91 (1981), 11-18.

P. Kurlberg and Z. Rudnick, Hecke theory and distribution for the quantization of linear maps
of the torus, Duke Math. J. 103 (2000), 47-77.

P. Kurlberg and Z. Rudnick, On quantum ergodicity for linear maps of the torus, Comm. Math.
Phys. 222 (2001), 201-227.

T. Kottos and U. Smilansky, Quantum chaos on graphs, Phys. Rev. Lett. 79 (1997), 4794-4797.
T. Kottos and U. Smilansky, Periodic orbit theory and spectral statistics for quantum graphs,
Ann. Phys. 274 (1999), 76-124.

P. Leroux, Coassociative grammar, periodic orbits, and quantum random walk over z, Int. J.
Math. Math. Sci 24 (2005), 3979-3996.

W. Luo and P. Sarnak, Number variance for arithmetic hyperbolic surfaces, Comm. Math. Phys.
161 (1994), 419-432.

M. Ledoux and M. Talagrand, Probability in Banach Spaces, vol. 3 of A Series of Modern Surveys
in Mathematics, Springer-Verlag, 2002 reprint ed., 1991.

R. Mané, Ergodic Theory and Differentiable Dynamics, vol. 8 of Ergebnisse der Mathematik
und ihrer Grenzgebiete (3), Springer-Verlag, Berlin, 1987. Translated from the Portuguese by
Silvio Levy.

K. Maples, Quantum unique ergodicity for random bases of spectral projections, Math. Res. Lett.
20 (2013), 1115-1124.

E. Meckes, Quantitative asymptotics of graphical projection pursuit, Electron. Commun. Probab.
14 (2009), 176-185.

M. L. Mehta, Random Matrices, Elsevier Science & Technology, 2004.

J. Marklof and S. O’Keefe, Weyl’s law and quantum ergodicity for maps with divided phase
space, Nonlinearity 18 (2005), 277-304.

H. L. Montgomery, Ten Lectures on the Interface between Analytic Number Theory and Har-
monic Analysis, vol. 84 of CBMS Regional Conference Series in Mathematics, American Math-
ematical Society, 1994.

S. O'Rourke, V. Vu, and K. Wang, Figenvectors of random matrices: A survey, J. Comb. Theory
Ser. A. 144 (2016), 361-442.

122



[PZKO01]

[RS94]

[RV13]

[RV16]

[S21]

[Safgs)

[Sch09)]

[Sel91]

[Shn74]

[S202]

[Tan00]

[Tan01]

[TV11]

[Vaa85]

[Van97]

[Verl8]

[vH16]

P. Pakonski, K. Zyczkowski7 and M. Kus, Classical 1D maps, quantum graphs and ensembles of
unitary matrices, J. Phys. A 34 (2001), 9303-9317.

Z. Rudnick and P. Sarnak, The behaviour of eigenstates of arithmetic hyperbolic manifolds,
Comm. Math. Phys. 161 (1994), 195-213.

M. Rudelson and R. Vershynin, Hanson—Wright inequality and sub-Gaussian concentration,
Electron. Commun. Probab. 18 (2013), 9 pp.

M. Rudelson and R. Vershynin, No-gaps delocalization for general random matrices, Geom.
Funct. Anal. 26 (2016), 1716-1776.

L. Shou, Pointwise Weyl law for graphs from quantized interval maps. Preprint arXiv:2110.15301
(2021).

Y. G. Safarov, Asymptotics of the spectral function of a positive elliptic operator without a
nontrapping condition, (Russian), Funktsional. Anal. i Prilozhen 22 (1988), 53-65.

J. Schenker, Figenvector localization for random band matrices with power law band width,
Comm. Math. Phys. 290 (2009), 1065-1097.

A. Selberg, Alte Selberg Collected Papers Volume II, Springer-Verlag, 1991.

A. Shnirelman, Ergodic properties of eigenfunctions, Uspehi Mat. Nauk 29 (1974), 181-182.

C. D. Sogge and S. Zelditch, Riemannian manifolds with mazimal eigenfunction growth, Duke
Math. J. 114 (2002), 387-437.

G. Tanner, Spectral statistics for unitary transfer matrices of binary graphs, J. Phys. A 33
(2000), 3567-3585.

G. Tanner, Unitary-stochastic matriz ensembles and spectral statistics, J. Phys. A 34 (2001),
8485-8500.

T. Tao and V. Vu, Random matrices: Universal properties of eigenvectors, Random Matrices:
Theory Appl. 1 (2011), 1150001.

J. D. Vaaler, Some extremal functions in Fourier analysis, Bull. Amer. Math. Soc. 12 (1985),
183-216.

J. M. VanderKam, I*°® norms and quantum ergodicity on the sphere, Int. Math. Res 7 (1997),
329-347.

R. Vershynin, High-Dimensional Probability: An Introduction with Applications in Data Science,
Cambridge University Press, 2018.

R. van Handel, Probability in High Dimension, APC 550 Lecture Notes. https://web.math.

princeton.edu/~rvan/APC550.pdf, 2016.

123



[vH17] R. van Handel, Structured random matrices, in Convexity and Concentration (E. Carlen et al.,
eds.), vol. 161 of IMA, Springer, 2017, 107-165.

[Wail9] M. Wainwright, High-Dimensional Statistics: A Non-Asymptotic Viewpoint, Cambridge Uni-
versity Press, 2019.

[Ze187) S. Zelditch, Uniform distribution of eigenfunctions on compact hyperbolic surfaces, Duke Math.
J. 55 (1987), 919-941.

[Ze197) S. Zelditch, Index and dynamics of quantized contact transformations, Ann. Inst. Fourier (Greno-
ble) 47 (1997), 305-363.

[Zel14] S. Zelditch, Quantum ergodicity of random orthonormal bases of spaces of high dimension,
Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 372 (2014), 20120511.

[ZSKS03] K. Zyczkowski, W. Stomeznski, M. Kus, and H. J. Sommers, Random unistochastic matrices, J.
Phys. A 36 (2003), 3425-3450.

[Zwo12] M. Zworski, Semiclassical Analysis, vol. 138 of Graduate Studies in Mathematics, American

Mathematical Society, 2012.

124



	Abstract
	Acknowledgements
	Contents
	Chapter 1. Overview
	1.1. Quantum chaos on graphs
	1.2. Structured random matrices

	Part 1.  Pointwise Weyl law for graphs from quantized interval maps
	Chapter 2. Introduction, set-up, and main results
	2.1. Introduction
	2.2. Set-up
	2.3. Main result and applications

	Chapter 3. Proof of the main results
	3.1. Properties of the map S and matrices Pn
	3.2. Proof of Theorem 2.1 pointwise Weyl law
	3.3. Quantum ergodicity in bins
	3.4. Random Gaussian eigenvectors

	Chapter 4. The doubling map
	4.1. The doubling map with any even n
	4.2. The doubling map with n=2^K

	Chapter 5. Additional remarks
	5.1. Coordinates that fail the pointwise Weyl law
	5.2. Logarithmic factors in l^p norms
	5.3. Other miscellaneous remarks
	5.4. Numerics for other interval maps


	Part 2.  Localization-delocalization transition for nonhomogeneous random matrices
	Chapter 6. Introduction and main result
	6.1. Introduction
	6.2. Structured matrices from d-regular graphs

	Chapter 7. Background
	7.1. Gaussian concentration and suprema
	7.2. Unit sphere delocalization
	7.3. Semicircle law

	Chapter 8. Proof of localization for d<<log N
	Chapter 9. Proof of delocalization for d>>log N
	9.1. Somewhat local semicircle law
	9.2. Projection matrix approximation
	9.3. Replacement with semicircle law
	9.4. Delocalized random vector

	Appendix A.  
	A.1. Proof of Lemma 9.2
	A.2. Semicircle law computations
	A.3. Stability without quantitative stability


	Bibliography

