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Introduction

The goal of theoretical physics is to describe the empirical
world by means of mathematical structures. Such a structure has to
simulate the preparations (states) and observations of systems under
investigation. ‘

We want to discuss algebraic structures, where the observa-
bles correspond to hermitlan elements of a topological *-algebra and
where the states are continuous positive linear functionals over this
algebra. These lectures will deal with some genetralities of this set-~
up and some examples that are used in quantum field theory and in
statistical mechanics.

I. Topological *-algebras
The reason for the introduction of this setup will be touched
upon by Profs. H. J. Borchers and M7 Guenin.

+Presented at the INSTITUTE FOR THEORETICAL PHYSICS,
Unlversity of Colorado, Summer 1969,



4 ‘WALTER WYSS

A. Definitions and Some Properties

Definition I.1. A topological *-algebra 9 is a Hausdorff locally con-
vex topological vector space over C with two additional operations,
namely a multiplication (generally noncommutative) and an involution.
These operations satisfy for f, g, he U4, A € C
a) 1) f(gh) = (fg)h
2) f(g+h) = fg + th, (f+g)h =fh + gh
3) £(g) = 0.6)g = 1 (fg)
4) the product is separately continuous
b) 1) (f%)* =f =
2) (Brg)* = £% + g
3) (\)* =%fx
4) (fg)* = gres

Remarks:

a) Since ¥ has to be a Hausdorff locally convex topological
vector space, its topology is given by a set of seminorms {pa} with
the properties )

1) py(f) =0
2) pa0) = 2] py()
3) pylt+g) < p () + Py (@)

A seminorm is called a norm if polf) =0 £=0,.

b) In our discussions ¥ is always assumed to have an identity
1 for the multiplication.

c) Generally one does not require the involution to be con-
tinuous.

d) Notice that the set 9 = {feu; f=1*}, 1,e. the set of all
hermitian elements is a real vector subspace of ¥ and closed if the
involution is continuous.

Lemma I.1., ZLet ¥y be a *-algebra. Every element f € 9 can be writ-
ten in the form

£=6 +if,, £ ,5 €9,
fe. U=y +10 .
Proof. ‘With
£ =2 (6%, £ = (f - %)
1773 A Y

we have the desired representation. Wl
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Definition I.2. Let % be a *-algebra.

1) A subset S< 9 is called self adjoint if it is stable under
the involution.

2) Let M be a subset of 9. The commutant M’ of M is
defined by M’ ={f€u; fg=gf ¥ g€ M}.

3) 8@) =uNY’ is called the center of ¥ and is an abelian
subalgebra of %.

Lemma I.2.

1) If MC % is self adjoint, then M’ is a *-subalgebra of U
and closed if the involution is continuous.

2) Mc M”.

3) MyS M, = My’ M,’.

Proof.
1) forf, g € M/, A € € we have trivially
a) \Mf+geM’
b) f*e M’
c) fge M’
Furthermore let My = {g € 9; of = fg} . Mg is closed due to

the separate continuity of the product. Hence M% N MI is closed

too. The continuity of the invelution thus turns M; ?n% a closed
*-subalgebra of 9.

2) Let f € M. Then every g € M’ satisfles gh =hg, ¥h €M,
especially gf = fg. This means that f € M.

3) Suppose that M © M, . Then M ={f € u; fg = ¢f,
¥gé€M,}. Hence MJ = M,/. Ml

Definition I.3. Let % be a *-algebra and I a nontrivial subspace of
9. Ilis called

1) a leftideal if yIC I

2) aright ideal if IC 1

3) a twosided ideal if YW < I

4) a maximal ideal if it is not properly contained in any
other nontrivial ideal of the same kind

5) a minimal idealif it does not properly contain any other
nontrivial ideal of the same kind.

Lemma I,3. Let % be a *-algebra. Then

1) The identity is never contained in any proper ideal.

2) An element f € 9 has an inverse f—Liff f is not contained
in any ideal.
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3) The involution maps the set of left ideals one-to-one onto
the set of right ideals. Thus a self adjoint ideal (*-ideal) has to be
two-sided.

Proof.

1) LetI be a left ideal. If 1 € I then 9 < I which means that
I 1s not proper. The same is true for the other kinds of ideals.

2) a) Assume Zf~ . Then the left ideal I = ¥f # 9 and
fel.

E b) Now let f € I. If f would have an inverse £, then

ffel,i.e. 1 1. Butthis is impossible.

3) LetIbe a left ideal, 1.e. I I. Then I* satisfles I*Y <
I* and hence is a right ideal. Since the *-map is an involution we
get the desired result.

Definition 1.4. The Jacobson radical of a *-algebra 9 is defined to
be

R ={fewu; A +gH)™, Vgeul .

An algebra whose radical is trivial is called semisimple. An algebra
with (@) =% is called radical.

Lemma I.4. If % is not radical then R() is equal to the intersection
of all maximal right (left) ideals and thus is two-sided.

Proof.,

a) First suppose that f belongs to all maximal left ideals and
not to R@), i.e. Z(1 + gf)™ for some g € 9. Then 1 + gf € I, where
I 1s some maximal left ideal. But f € I and this leads to the conclu-
sion that 1 € I; this is impossible. Hence f € R().

b) Now let f € (%) and suppose that there 1s a maximal left
ideal I such that f  I. Then I + 9f is a left ideal that contains I.
Due to the maximality of I we have I + Uf = U, especilally we get
l1=h-9gf, h€l,geygorh=1+gf. This contradicts the assump-
tion that f € RE). M

Definition I.5. Let Y be a *-algebra and

= . f= *
n={few f Zkifi £.1,20, £ €ul,

where the sum extends over finitely many terms only. The closure
(relative to the underlying topology) K =T is called the positive cone
of . Kturns ¥ into an ordered topological vector space by
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fz0®fek
Lemma I.5. %, =K- K l.e.Klis generating for 910.
Proof, Anyfe ¥, can be written as
f=3(1+90+0)-20-90-9 W
There are two kinds of cones that will play an important role later.

Definition I.6.
1) A subset of U, 1s called full if

A=@+KN@A-K .
2) The cone K 1s called normal in 9, if there is a neighbor-
hood basis of zero consisting of full sets.
3) The cone K is called a strict B-~cone if Bg ={BN K - BN X;
B bounded} is a fundamental system of bounded sets, 1.e. every
bounded set is contained in a suitable member of By

Definition I.7. Let %, 8 be two *-algebras.
1) A linear map

T:UA—RB
is called a homomorphism if
t(fg) = () 7(9)
T is said to be a *-~homomorphism if in addition
T(f*) = (7 (D)*
2) The set
Ker 7 ={f e u; 7(f) = 0}

is called the kernel of the homomorphism t. If Ker 1 =0, then 7 is
called an isomorphism.

Lemma I.6. The *#-ideals of a *-algebra are in one-~to-one corres-
pondence with the *~-homomorphisms.



8 WALTER WYSS

Proof. The kernel of a *~homomorphism is clearly a *-ideal. Let
now I be a *-ideal. The canonical map

TiU = U1
is a *~homomorphism with Ker v =I. [}

Definition I.8. Let 9 be a *-algebra. A *-representation of Yis a
pair (H,7), where 7 15 a *~homomorphism into the linear operators
£(H) of a topological innner product space H, i.e.

T U~ L(H)

such that

(T(f*)X:Y)=(X:T(f)Y) ¥x,y € H.

Definition I.9. A representation is called

1) faithful, if it is one-to-one.

2) algebraically irreducible, if there are no proper r-Invariant
subspaces in H.

3) topologically irreducible, if there are no proper closed 7-
invariant subspaces in H.

Definition I.10. Let 8 be a subalgebra of the algebra of linear opera-
tors £(E) on a topological vector space E, and for x € E let

Ex={yEE;y=Ax,VAGB} .

Ex is clearly an invariant subspace under 8.
1) If there is a x € E such that E, = E, then 8 is said to be
algebraically cyclic and x is called an algebraically cyclic vector,
2) If there is a x € E such that E_ = E, then 8 is said to be
topologically cyclic and x is called a topolegically cyclic vector.
3) A representation t of an algebra ¥ is said to have one of
the above properties if T () has that property.

lemma 1.7. B is algebraically (topologically) irreducible iff every
nonzero vector of E 1s algebraically (topologically) cyclic.

Proof. a) Foranyx € E, E, is an invariant subspace of E and due to
the algebraic irreducibility has to coincide with E.

b) Suppose that every x € E is algebraically cyclic. Any in-
variant subspace M C E contains some Ey and thus M = E.B
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Definition I.11. Iet I be a left 1deal of an algebra Y. The repre-
sentation

e~ £/,

given by left multiplication, is called the left regular representation.
Its kernel is given by

Kerr={feu; fuciI},
i.e. Ker 7 is the biggest two-sided ideal contained in I.
ILemma I.8. The left regular representation
T U= L@/T)
will be algebraically irreducible iffIis maximal.
Proof. We show that there is a one-to-one correspondence between
invariant subspaces of %/I and left ideals containing I.
Let ¢ be the canonical map
c: U= A/,
Then
r() elg) = elfq).
For a left ideal J2I, we find that e (J) is a T-invariant subspace of
/1.

If M is any invariant subspace of /I, then J = {f € U; e(f) e M}
is a left ideal containing I. One sees immediately that the above cor-
respondence is one-~to-one. M
Lemma 1.9, Let T be an algebraically cyclic representation of an
algebra 91, Then there is a left ideal I < Y such that the left regular

representation is algebraically equivalent to 7.

Proof. Let r: %~ h(E) be algebraically cyclic and x € E an algebraic-
ally cyclic vector, i.e. t()x = E. The subspace

I={fcy r()x=0}

is a left ideal. With
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e U= U/T
being the canonical map, let
A:9/I-E
be given by
Ac(f) =1() x.
A is one~to-one and due to the cyclicity onto. Hence with
%= S/
being the left regular representation, we get
Am(f) e(g) =Ac(fg) =(fg)x =7(f) 1(g) x

=7 Acl) , v elg) € U/1,
or
Am@) =1() A, vieu,

which is the desired algebraic equivalence betweenmand 7. i}

Definition I.12. A two-sided ideal is called primitive if it is the
biggest two-sided ideal contained in a maximal left ideal.

Lemma I.10.

1) An ideal is primitive if and only if it is the kernel of an
algebraically irreducible representation.

2) The radical R®) is equal to the intersection of all primi-
tive ideals, i.e. the intersection of the kernels of all algebraically
irreducible representations.

Proof.
1) a) Lemma I.9 and 1.8 say that the kernel of an algebraic-
ally irreducible representation is primitive.

b) If the kernel is primitive, then there is a maximal left
ideal I containing it. The corresponding left regular representation
is then algebraically irreducible and has the above kernel.

2) We know that R(@) is equal to the intersections of all
maximal left ideals. Hence the intersection of all primitive ideals
is contained in R{). On the other hand let f € {N I, I primitive}.
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Then there is an algebraically irreducible representation t on a vec-
tor space E with 7(f) # 0. Choose x € E with 7(f)x # 0 and look at
I={ge;T(g)x =0}. Iisa maximal left ideal and f € I. Hence
ftgr@. B

Definition I.13. Let 9 be a topological *-algebra.

1) The *-radical R* is defined to be the intersection of the
kernels of all topological *-representations on a Hilbert space.

2) If R*@) =0, then ¥ is called *-semisimple.

B. States and Representations

Let ¥ be a topological *-algebra with identity, K the positive
cone of ¥ and ¥’ the topological dual of %, i.e. all continuous linear
functionals on 4.

Definttion I.14. An element T € %’ is called
1) hermitian if T(f*) = T(f)
2) positive if T} 20 ¥f €K

Iemma I.11. If T € 4 is positive, then it is hermitian and satisfies
| T(E*g)|? = T(£*f) T(g*g),
the so-called Cauchy=-Schwartz inequality.

Proof. Leth =xf+pug. ThenT(h*h) =0 ¥\, u andV¥g, fE€A, or
T(h#h) =[x | T(E4) -+ Xu T(E*g) + A2 Tg*f) + |u|® T(a*g). Hence
K T(E*g) + \fl T(g*£f) is real. For) =p=1, resp. A =1, u =1, we
get that T(f%g) = T{g*f). Furthermore letk =) and y = T{g*f}. This
leads to the positivity condition | T(f*g)|? =< T(f*f) T(g*g). M

Since we are mostly interested in positive linear functionals,
it suffices to look at the hermitian elements %, of our *-algebra 9.
We assume the involution to be continuous and hence %Y, is a closed
subspace of 4. The topological dual ¥, ! of Y, is then isomorphic
to the subspace of hermitian functionals on .

Definition 1.15, K’ ={Te€%’; T{) =0 ¥f €K} is called the dual
cone of K. This gives rise to an ordering of linear functionals by T, ,
T, €Y% LTy, > T, ® T, - T,z0. Qjo'thus is an ordered topological
vector space.

Definition I.16. An element T € K’ 1s called a state, provided T(1) =
1. Denote the set of states by o.
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Lemma I.12.,

1) o is a base for X/, i.e. o 1s convex and each T € K’ has
the representation T=A*W, A >0, W €.

2) K’ is a proper cone, i.e. T € K’, -T € K’ implies T = 0.

Proof.

1) If T(1) # 0 then we always can normalize T. In the case
T(1) = 0 we find from the Cauchy-Schwartz inequality | T(f)|? <
T(1) T(f*f) that T(f) =0 ¥f€ 9y, or T =0.

2) IfTEKN (-K), T#0, then T(f*f) =0 ¥ f € Y. Hence
T()=0 viey,orT=0. W
Definition 1.17. IetT €oc. Whenever T =X, T, +A, T, with T, , T
€0r Xy >0,%,>0,and\, +X, =0, implies T, =T, =T, then T is
called extremal in .
Definition I.18. To each T € K’ we associate an ideal I(T) in ¥ by

I(T) = {f € u; T(f*f) = 0} .
I(T) is called the left kernel of T.
Lemma I.13. I(T) is a closed left ideal.
Proof. First it is a left ideal since with f € I(T) we have
I T((gf) *(gf))|® < T(£*f) T(f*g*gg*gf) = 0,

i.e. gf €I(T), ¥ g €'U. To showthat I(T) is closed we use the
representation

IT) ={fec; T(gf) =0, ¥geu}

= N {feu; T(gf) =0}
gey

Since T is continuous we know that {f € 9; T(gf) = 0} is closed for a
fixed g.

Lemma I.14. If T € o and I(T) be maximal, then T is extremal.

Proof. Suppose T is not extremal. Then T =M\ T; + X% Ts, Ay Az >0,
T, #T, and hence I(T) = I(T,) N I(T,), which says that I(T) is not
maximal. i}
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Lemma I1.15. Each element T € K’ gives rise to a *-representation of
9 (Gelfand-Segal construction).

Proof. LetT€ K’ and I(T) the corresponding left kernel. Then H(T)
= 91/1(T) is a Hausdorff locally convex topological vector space under
the quotient topology. We then have the exact sequence

0= I(T)» % S H(T) » 0

H(T) is also an inner product space by
{e(®), e(g)) = T(f*g)
and carries a *-representation m of ¥ by
m(f) e (g) = e (fa)-.

With respect to the initial topology of H(T) this representation is
algebraically and hence topologically cyclic, with G(1) being a cyclic
vector. With respect to the inner product topology on H(T), w is only
topologically irreducible and not necessarily algebraic irreducible .l

Remark:
1) There are various locally convex topologies on % and ¥, ’,
varying from the weak topology to the Mackey topology.
2) In the context of topological *-algebras there are two
important questions:
a) Are positive functionals continuous ?
b) Is the dual cone K’ generating, i.e. has every func-
tional L € 9, ' the representation L=1T, - Ty, with T, , T, € K’. When
is this representation unique ?

II. Examples )
We now want to investigate some special topological *-alge~

bras that are often used in theoretical physics. Our emphasis will be
on some characteristic properties; for their proofs we frequently refer
to the literature, The algebras under discussion are assumed to have
an identity.

A. C*-algebras 1),2)

Definition II.1. A topological *-algebra % is called a C*-algebra
provided
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1) % is a Banach space
2) ForA, B € ¥, the norm |- || satisfies

las] < YAl (Bl
la*af = ||a|? (C*-condition)

Lemma II.1. B(C), the bounded operator on a Hilbert space, is a
C*-algebra.

Proof. We know that 8{C) is a Banach space and that

[afl < Ia]l I8]l: Naf= sup [Ax] , x€3x.
x| =1

We only have to show the C*-condition. Let A € B(C); then
ax|? = (ax, Ax) = (A*Ax, x) < |a*A| [|x|P, ¥x €.

Hence |[A]? <.

A*A[ < ||a*|| [|A and thus ||A]| = [|a*]| by symmetry.
Therefore ||A*A

= lale.

Properties 11.1. Let 9 be a complex C*-algebra. Then

1) the closure of a proper ideal is proper

2) 9% is semisimple, i.e. R =0

3) 9 is *-semisimple, i.e. R* = 0.

4) 9 is 1sometrically *-isomorphic to a norm closed *-subal-
gebra of some & (C).

5) every topologically irreducible representation of ¥ is alge-
braically irreducible.

Let us now look at the hermitian part ¥, of a C*-algebra; this
is a Banach space. Its dual %9,’ is also a Banach space in the strong
topology B@, /, %, ) (norm topology).

Lemma JI.2.
1) The positive cone K< %, is a normal strict B-cone,
2) The dual cone K’ < 9, is a normal strict B-cone.,

3)

1) K is a strict B-cone because it is generating %, . For the
normality of K we have to show that for A, B € K we have |A + B| =
|All. Due to the fact that 9 is a C*-algebra, we have an isometric-
ally *-isomorphism 7 of 9 onto a *-subalgebra of 8(€). Hence
x, TA+B)x) - &, m@A)x) = (x, m(B)x) =2 0, ¥x €K, and thus

Proof.
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@)l = Jim @) |}

or
la+s] = Al .

2) This follows from the duality theorem between normal and
strict B-cones. W

These nice properties of K and K’ lead now to the following
statement:

Lemma II.3.

1) Every positive functional on %, is continuous.

2) Every T € %, can be written as T =T, - T, , where T; , T,
€K',

Proof, 1) This follows from the fact that %, is a Banach space and K
generating. One could also use the fact that K has nonempty interior.
2) Since K’ is a strict B-cone in %, /,-it has to be generating &

Remark: Haag and Kastler4) emphasized the importance of abstract
C#*-algebras because of the physical equivalence of all faithful
representations.

B. The Field Algebra (Borchers Algebra)

A topological *-algebra of quite a different flavor than a C*-
algebra is the so-called fleld algebra; it plays a fundamental role in
Wightman's theory of quantized flelds.

Definition II.2 .5) Let Jo = C and .fn = j(R4n), the Laurent
Schwartz test function space. The field algebra is the topological
direct sum

equipped with the product

f={fo,f1,---}: g=[go:g1r---}

(fg)n(x1 ress ,xn) - i fk(x1 1oes ’xk)gn-k(xk+1 rece ,xn) ]
k=0
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and the involution

* =
(f )n(x1 P ,xn) fnixn, S )8

The element

is the identity.

Properties II.2 .6) The field algebra Y has the following properties:
1) 9 is a nuclear *-algebra, bornological and LF.
2) % is semisimple, i.e. R = 0.
3) ¥ has no divisors of zero and only those elements that are
a multiple of the identity have an inverse.
4) 9 has no minimal ideals.
5) 1 and 0 are the only idempotents, i.e. satisfying £ = f.
6) the positive cone K has no interior points.
There are many other properties of %, some of them are the same as
for C*-algebras, especially concerning the positive cone.

7)

C. Von Neumann Algebras, Classification of Factors

Definition IT1.3. Let 9 be a *-subalgebra of some R{C). U is called
a von Neumann algebra, provided U= 9" . We restrict ourselves to
separable Hilbert spaces.

Lemma II.4. A von Neumann algebra ¥ is a weakly closed *-subal-
gebra of B(); any weakly closed *-subalgebra of & (C), containing
the identity, is a von Neumann algebra. Since a weakly closed set
is also strongly closed, a von Neumann algebra is also a C*-algebra;
a C*-algebra however is not necessarily weakly closed.

Proof. That a von Neumann algebra is weakly closed is an immediate
consequence of Lemma I.2, because the product is separately weakly
continuous and the involution is weakly continuous. For the rest of
the proof we refer to the literature.

Definition I1.4.

a) An hermitian idempotent P € @ {C) is called a projection,
i.e. P*=P, P =P,

b) Let¥,, ¥, be two Hilbert spaces. A map V:¥, =¥, is
called a partial isometry with initial domain M and final domain N,
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if Y maps M isometrically onto N and M* , the orthogonal complement
of M, into zero. V*V =P,, is then the initial domain projection and
Vy* = PN is the final domain projection.

Definition II.5.

a) Two closed subspaces M, N of an Hilbert space ) are
called equivalent, if there is a partial isometry U with initial domain
M and final domain N; we write M~ N.

b) We introduce the preorder amongst closed subspaces of ¥
by M< N® M is equivalent to a subspace of N.

Definition II.6. Let % be a von Neumann algebra on¥.

a) A subspace M C ¥ is said to belong to %, if M is invariant
under all unitary operators in %’; we write M n¥.

b) A linear operator A (not necessarily bounded) is said to
belong to ¥ if A commutes with all unitary operators in %’; we write
An .

Lemma II.5.

a) IfAn ¥ and A is bounded, then A € U,

b) If Mn % and M is closed, then the projection Py onto M
belongs to U, 1.e. PM cu.

Proof.

a) Ae @ (U) =g =y,

b) M % says that UM< M for all unitary operators U in 9’ .
Since U*M < M we have M< UM and hence M = UM and M* = UM*.
That means that every unitary U € 9’ is reduced by M, i.e. UP,, =
PpyU, ¥UE %/, Hence PM n 9 and since Py is bounded, we Pl/éve
Py € 9. ]

The equivalence relation and preorder amongst closed sub-
spaces belonging to ¥ can be carried over to an equivalence relation
and preorder amongst projections belonging to 9.

Definition II.7.

a) Let % be a von Neumann algebra. Two projections P, Py
€ 9 are said to be equivalent if P;3~ P,¥; we write P, ~ P, .

b) A preorder is given by P, <P, ® P, ~ P and PKC P, ¥.

Definition II.8. A von Neumann algebra 9 is called a factor if the
center @) = (C.

Since every von Neumann algebra ¥ has a direct integral
decomposition into factors,7) we will restrict ourselves from now on
to factors.
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Properties II.3. 1,7) Let % be a factor. Then the following holds:

a) FromA € 9, A’ €94’ and AA’ = 0 it follows that either A = 0
orA’ =0,

b) Let Mn Y and N n ¥, then either M< N or N < M. Equiv-
alently, if Py Py € ¥ then either P,, < P, or Py; < PM.

¢) If M ahd N belong to ¥ and M< N, N< M, then M~ N.
Equivalently, if Py Py € ¥, and Py < Py, Py < Py then Py~ Py

Definition II.9. Let 9 be a factor and M a closed subspace of X,
belonging to Y. Then
a,) M is infinite ® M is equivalent to a nontrivial subspace

of M.

ay) A projection P € 9 is infinite ® P} is infinite.

by) M is finite # M is not Infinite.

by ) A projection P € 9 is finite # PX is finite.

¢.) M is called minimal 4f M # 0 and N < M implies N =0 or
N =M.

c;) A projection P € 9 is called minimal if P # 0 and P, < P
implies P, =0 or P, =P,

Properties 11.4.1’8) On the set of closed subspaces belonging to
a factor U there exists a real valued function D, called the relative
dimension, such that
(1) DM)=01ifM=0and D(M)> 0if M#0
(i1) D(M) = = if M is infinite
(iil) M~ N = D(M) = D(N)
(lv) M L N= D(M + N) = D(M) + D(N)
(v) M< N, M finite = D(M) < D(N)

Von Neumann-Murray Classification of Factors:l’e)
For each type we give the range A of the relative dimension D.
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Remark: In the von Neumann-Murray classification of factors it is
known that in the classes II, and III there are nonisomorphic factors.
This led Araki and Wuodsglio) to a detailed study of factors con-
structed as infinite tensor products of finite type I factors (ITPFI-
factors) on separable Hilbert spaces. For completeness reasons we
will give a summary of the Araki-Woods classification of ITPFI-
factors; the details can be found in Refs. 9 and 10.

Araki-Woods Classification of ITPFI—fa‘ctorsg' 10)

To every ITPFI-factor ¥ one associates a subset r () of the
non-negative real numbers; r_ @) is called the asymptotic ratio set.
There are the following standard sets for re(%):

rm(ﬂI) Von Neumann- Isomorphisms
Murray classification
@ In’ n=0,1,... <w one isomorphic class
for each n
{0} I all are isomorphic
{1} hyperfinite type II; all are isomorphic
{fo ,xn; n=0,x1,£2,. N II1 one and only one iso-
0<x<1 morphic class for
each x
{0,1} contains I, ® non denumerably many
hyperfinite II, , type III isomorphic
and III classes
[0,») 111 only one isomorphic
class
Remark?) The factor 9 describing CCR for a nonrelativistic free

Bose gas at finite temperature, finite density and no macroscopic
occupation of the ground state is of type r_ () =[0,=) .

Also the factor 9 describing CAR for a nonrelativistic free
Fermi gas at finite temperature and finite density is of type ro @) =
[0,).




ALGEBRAIC METHODS 21

Acknowlaedgment

I would like to thank Profs. W. E. Brittin and X. T. Mahan-

thappa for the warm hospitality at the Institute for Theoretical Physics
in Boulder.

References

1.
2.

3.

M. A. Naimark, Normed Rings (Nordhoff, Groningen, 1964).

C. E. Rickart, General Theory of Banach Algebras (Van Nostrand,
Princeton, New Jersey, 1960).

H. H. Schaefer, Topological Vector Spaces (Macmillan, New
York, 1966).

. R. Haag and D. Kastler, J. Math, Phys. 5, 848 (1964).
. H, J. Borchers, Nuovo Cimento 24, 214 (1962).

W. Wyss, in Lectures in Theoretical Physics, Vol. XID (Gordon
and Breach, New York, 1969), p. 533.

J. Dixmier, lLes Algtbres d'Operateurs dans 1'Espace Hilbertien
(Gauthier-villars, Paris, 1969),

F. J. Murray and J. von Neumann, Ann. of Math 37, 116 (1936).
H. Araki and E. J. Woods, Publ. RIMS, Kyoto University, Ser. A,
3, 51 (1968).

H. Araki, Publ. RIMS, Kyoto University, Ser. A, 4, 585 (1969).







INTRODUCTION TO ALGEBRAIC TECHNIQUES
IN QUANTUM FIELD THEORY AND STATISTICAL MECHANICS¢t

Marcel Guenin
Institute for Theoretical Physics
University of Geneva
Geneva, Switzerland

Table of Contents

Section 0. Introduction

Section I, Algebras

Generalities on Algebras

Von Neumann Algebras

Topological Considerations

Linear Functionals

Topological Properties of Linear Functionals

The Construction of Gelfand, Naimark and Segal
Classification of Factors

n II. Statistical Mechanics

Generalities

Invariant States

Quasilocal Algebras

Asymptotically Abellan Systems

Classification of Ergodic States

Quantum Spin Systems

n III. Constructive Quantum Field Theory

Fock Space Techniques

Local Algebras Generated by Free Fields

Time Evolution of an Interacting System

Some Theorems of Friedrichs and the I" Operation
Dressing Transformations and Classification of the
Interactions .

Some Results

OmmUaw

Secti

[e]

"dthOtUEb

Secti

[¢]

.

mUOQw»

e |

tPresented at the INSTITUTE FOR THEORETICAL PHYSICS,
University of Colorado, Summer 1969.

23



24 M. GUENIN

Section 0. Introduction

The use of modern mathematical techniques is, to say the
least, not very fashionable among theoretical physicists. There are
probably many reasons for the present state of things, and I may state
two: first, the mathematical apparatus is often difficult and secondly,
most of the physicists don't see the slightest advantage to this kind
of game.

The aim of these lectures is mainly to bring the students to the
point where they can at least understand the language and some of
the physical ideas which can be formulated only in that mathematical
language. The field chosen here is not one where it is apparent from
the first sight which advantages can be obtained from these new ap-
proaches. Nevertheless the advantages are present and important
enough so that researchers in that field are willing to spend years of
hard work in order to gain some understanding. We expect the prog-
resses to be slow and extend over many years before they lead toward
results to be compared with experiments, but one should not forget
the immense difficulties of the task. Field theory, for instance,
dates back to 1928 with Heisenberg and Pauli. Only this year, in
1969, do we have the proof (Jaffe, Glimm, etc.) of the existence of a
nontrivial field theory satisfying Wightman's axiom, and it will be
certainly a long time before we can apply our results to practical pur—
poses. We are, however, deeply convinced that there is no easy way
out, and that any progress toward the construction of nontrivial theo-
ries will have to borrow from the results obtained by hard analysis.
These statements are not to be considered as criticisms against the
phenomenological approaches; we need results in these directions
too, and good phenomenology and theory should be at the end comple-
mentary to each other.

Modern research in statistical mechanics and quantum field
theory makes very extensive use of advanced functional analysis, and
one may wonder why it is so that we are going to spend a lot of time
on algebraic techniques. The reason is that first, functional analysis
is studied by undergraduates to a greater extent than algebraic tech-
niques, and secondly, that most of the problems we encounter in
functional analysis arise after the algebraic formulation of the prob-
lems. As an example, we may quote the work of Glimm and Jaffe,
where a very substantial part is devoted to the proof that a certain
operator is self-adjoint. This is of course functional analysis, but
the reason that we need this proof can only be understood in the alge-
braic formulation.

If I have chosen to speak both of field theory and of statistical
mechanics, that is because of the great similarity of the problems
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arising in the two approaches; in fact, they both may be character-
ized as being systems with an infinite number of degrees of freedom.

For the reader who wants more details, he can consult the list
of references given at the end. As far as lecture notes or textbooks
are concerned, I may quote my lectures here in Boulder in 1966 (alge-
braic methods in QFT), my lectures on algebraic methods in statistical
mechanics (Springer 1969, in French) and the book of D. Ruelle on
statistical mechanics (Benjamin 1969). The overlap between my lec—
tures and Ruelle's book is not very great, but Ruelle's book repre-
sents of course @ much more definitive treatment of the subject it
covers.

I further want to point out that the subjects treated in these
lectures were meant to make a whole with the lectures of Profs. Bor-
chers and Wyss. Most of the repetitions are intentional, and should
provide the reader with different points of view.

I finally want to express my gratitude to Professor W.E. Brittin
for his kind invitation to spend some time in Boulder and my thanks to
Professors H. Borchers and W. Wyss for many discussions.

Section I. Algebras

The purpose of this section is to give in a condensed form the
principal definitions and the most elementary theorems which are
needed for an understanding of the physical part.

For those who want to study further, we strongly recommend
the two books of Dixmier, which are the basic reference works in that
field. It may also be said that the material has been restricted be-
cause of Prof. Wyss' lectures, and that the overlap present between
the two sets of lectures has been done on purpose.

I.A. Generalities on Algebras

I.A.l. Definition: A set % of elements {a,b,c,...} is an associative
algebra over the real or complex (we shall simply say algebra, since
we are going to consider only associative algebras) if:
(i) ¥ is a vector space
(i1) an operator of multiplication is defined in 9 and satisfies
@) a@b) = (@a)b
(8) afb) =afab)
(y) a(bc) = @@b)c (associativity)

() b+ =ab + . . R
©) Tamra - a0+ b | Cumsmmsiy)

} (bilinear multiplication law)

+It should also be apparent that the content of this section does not
vary considerably from other sets of lecture notes given by the same
author, for instance in Boulder 1966 or in “Méthodes Algébriques en
Mécanique Statistique,” Springer 1969.
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¥a,b,c€%, ¥acRor C. N.B. Many authors call such a structure
“ring." Properly speaking, however, a ring does not contain a mul-
tiplication by scalars.

It 1s a commonly accepted abuse of language to call an
element of an algebra "operator."

I.A.2. Definition: Two elements a and b € %, % an algebra, are
said to commute if ab = ba. An algebra is said to be abelian (or com-
mutative) if all its elements commute pairwise.

1.A.3. Definition: The center 8 of an algebra 4 is the set of all those
elements of ¥ which commute with all elements of U:

g@) ={clceu, ac=cavacul
8 1s clearly a subalgebra of 9.

I.A.4. Examples:
(1) In the algebra M, (C) of all 2 by 2 matrices,

a 0
8(M2)={( ) aec}
0 a

(11) In the algebra of the complex matrices of the form

n m
n m na‘\o
n |A 0u
m o B 8= RO a, BEC
m 0 0\

where A (resp. B) represent all n by n (resp. m by m) matrices.

I.A.5. Definition: Identity: ‘
e is an identity (or unit) element of the algebra %, if ae =ea =
a ] Va G 9.1 °
g is a left identity element of the algebra 9, if ga =a, Va € ¥
d is a right identity element of the algebra %, ifad =a, Va € 9

1.A.6. Example: In the algebra ¥ of all 2 by 2 matrices of the form
(G [+

8 B) ;%, B € C, we do not have an identity element, nor a left
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identity, but we have an infinity of right identities, namely all

matrices of the form ( N & ) , 0 €EC.

l-g, l-g
I.A.7. Proposition:

(i) The identity element of an algebra 9 is unique

(ii) If an algebra 9 possesses both a right identity d and
a left identity g, it possesses an ldentity element.
Proof: (i) let e and e’ be two identity elements, then ee’ =e =¢e’,
which means they are equal.

(ii) gd=g=d, pute =g =d.

I.A.8. Theorem: Any algebra 9, without identity, can be identified
with a sub-algebra of an algebra % with an identity element.

Proof: (i) ¥, may be realized as the set of all pairs {n,a)a € @,

a € ¥, and the operations are defined as follows:

(@,2)+(B,b)=@+pB,a+h)
8(,a) = (Ba, Ba)
(@,a)(8,b) = (g, Ba +ab + ab)

(ii) ¥ may be identified to the subalgebra of %, consisting of

the elements of the form (0, a).
(iii) The identity element of 4, is (1, 0).
Note that %, is abelian if, and only if, % is abelian.

N.B. For most of the physical applications which we shall
consider, the algebras which we shall use shall possess an identity
element. The origin of this fact is a deep one, and can be found, for
instance, in the proposition calculus of Jauch and Piron. The identity
element corresponds to the tautologic proposition asserting that the
system exists.

tAnother possible realization is to consider 9, being the set of
matrices of the form

o a
(0 a+a) o €C,acy

with the usual matrix multiplicatien rule. The identity element of 9,

1
is then 0 (l) and 9 may be identified to the set of all matrices of

0 a
the form (0 a) ,a €.
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From a mathematical point of view, one has to remark that the
addition of an identity element may change the topological structure
of the algebra. It is, in fact, the analogous problem to the compacti-
fication of a set (for instance, adding the point at @ to R).

I.A.9. Examples:

1) Let % be a topological, locally compact space. Let f(x) be
a complex continuous function on ¥, It is said to vanish at infinity,
if, ¥ € > 0, the set of all points x € %, such that |f(x)| > ¢, 15 con -
tained in a compact of ¥. The set 2(x) of all complex continuous
functions on %, vanishing at «, is an algebra.

This algebra possesses an identity element, if, and only if,
¥ is compact.

2) Let  be a Hilbert space, 8 (%), the algebra of all bounded
operators on ©. As a particular case, for $ of finite dimension n,
8(©) may be identified with the algebra M (C) of all n by nmatrices
with complex coefficients.

3) Let® (respectivelyd) the space of Schwartz test functions
onR*,

The set of operators of the form

n dk

z p,x) — , n<®
KK

k=0 X

pI&(x) being real polynomials, is an algebra. The identity element is
D¥Y=1.

I.A.10. Definition: A subset § of an algebra ¥ is called a left ideal
Lresp.a right ideal] if

(i) & is a vector subspace of U

(ii) x € Y and a € ¥ implies that ax €8 (resp. xa € 3), what
we symbolically write as

uyc§ [resp.yucsyl

If § is both a right and a left ideal, it is called a two~sided ideal.
Remarks: 1) Any algebra contains the ideals % and {0}.

2) Any ideal is a subalgebra.

3) An ideal which is different from % is said to be proper.

4) A proper ideal of 9 is said to be minimal if it is different
from { 0} and does not contain properly any ideal of the same type
other than {0} . It is called maximal if it is not properly contained
in an ideal of the same type other than %.
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5) A proper ideal cannot contain the identity element.

I.A.11. Definition: An algebra which does not possess any proper
two-sided ideal other than {0} is said to be simple.

I.A.12, Examples:

1) The algebra of all n by n matrices, Mn(C) , 0<%, ig
simple.

2) In M, (C),

g = =8 is a left ideal
0 b g

{(0 L } = 3d is a right ideal
a b b

3) In the algebra of all 2 by 2 matrices of the form (a

0 c) A
0 a
3- !
0 0
is a two-sided ideal.

4) In the algebra B(%) of all bounded operators on a Hilbert
space, the set § of all operators of finite rank is a two-sided ideal.

5) Again in®8(p), the set € of all compact operators is a two-
sided ideal. Further, ¥ is minimal and € maximal, < §.

and

the set

I.A.13. Definition: An element i € 9 is said to be idempotent if
i =i.

I.A.14. Example: in M, (C), i =(1 g) is an idempotent.

0
I.A.15. Definition: Let U be an algebra over C. An involution in ¥
is a mapping of ¥ onto itself: a+ a*, such that
(@) @*)*=a
(i) @+ Db)*=a* +b* _
(iii) Qa)* =)a*, \ € C, A complex conjugate of A
(iv) (@b)* = b*a*
Va, bed.
An algebra with an involution is said to be a *-algebra.
Naimark calls it a symmetric algebra.




30 M. GUENIN

a* 1s called the adjoint of a.

a is called self-adjoint if a*=a, normal if aa* =a*a.

A subset § C 9'is said to be self-adjoint if §* = ¢ (€* =
{a*|a € €}).
Remark: A self-adjoint ideal in a *-algebra is always two-sided.

I.A.16. Definition: A mapping 8:%, MO 9, is called a homo-
morphism (more exactly, an algebra homomorphism) if
(i) 8Qa) =2rp)
(ii) Bla +b) =8(@) +8(b)
(i11) Bla-b) =B(@)'p(b)
It is a *~homomorphism, if ¥, and U, are *-algebras and if

(iv) Bla*) =pl)*

Remarks: The inverse image of the {0} element of 9, in ¥; is called

the kernel of the homomorphism B. The kernel J; ¢f @ homomorphism
B is a two-sided ideal: indeed, if (@) =8(b) =0, then p(ra) =
Bla +b) =0, and Blac) = B(a)(c) =0, B{ca) =0 ¥cey,.

If the kernel consists only of the {0} element of U, , the map-
ing is said to be faithful. A faithful homomorphism of %, onto U, is
called an isomorphism. A faithful homomorphism of % onto %, is
called an automorphism. A representation of an algebra is a homo-
morphism of the algebra into the algebra of the linear operators on a
certain vector space.

In these lectures, we shall only consider *-homomorphisms,
*-representations, etc., and thus we shall omit the #*-.

I.A.17. Example: Any algebra 9 has a representation in the algebra
of linear operators defined on 9 (considered as a vector space). In-
deed, to each element a € %, one associates the mapping Az of

the vector space % by defining A x =ax, ¥x € ¥. One easily verifies
that Aga 1s a representation of %¥. Furthermore, this representa-
tion is faithful if Y possesses an identity element. This representa-
tion is called the left regular representation.

I.A.18. Definition: A function%-R, a~ [|all, a € % 1s called a
prenorm on 9 if

@ llal=o0
(i) [la+bl < [lall + o
(i) floall =lal lla

(iv) If % possesses an identity element e, [lef| = 1. This func-
tion is called a norm, if i) is replaced by
@) lJalzo0, faf =0=a=o.
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An algebra on which a norm is defined is said to be a normed algebra.

I.A.19. Definition: A normedalgebra, which is complete under its
norm (i.e. is a Banach space) is called a Banach algebra.

If 9 is a normed *-algebra, the condition [la*b[ < llall- I
implies that Jla*al| = [la*||-|la]|. 1f we impose the condition |la*a
lal?, we get that |laf| = [a*||, but the reverse need not be true.
A Banach algebra satisfying [a*|| = [la]| (but not necessarily [la*a| =
|la"2 , ¥a € %) is called normed symmetric by Naimark, and a B*-
algebra by Dixmier.

A Banach *-algebra, satisfying [la*a| = || a | is called a B*-
algebra by Rickart, and a C*-algebra by Dixmier (it is also some-
times called an abstract C*-algebra).

Note the confusion existing in the literature about these
denominations! In order to avoid any conflict, we shall call C*-
algebra an algebra satisfying [a*a| = [a|®. These algebras are
essentially the only ones which we shall encounter in these lectures.

I.B. Von Neumann Algebras

We introduce here a particular class of C*-algebras which
enjoy remarkable properties. They often are used in physical applica-
tions and inthe theory of C*-algebras themselves.

I1.B.1. Let © be a complex Hilbert space (not necessarily separable),
and denote by B(%) the algebra of all bounded operators on §. : Clearly,
8(®) is a C*-algebra.

Let M be an arbitrary subset of B(®). We denote by M the set
of all elements of B(9) which commute with all elements of M:

m ={a’la’ €8(r), a’a =aa’, ¥a €M}

M’ is called the commutant of M. One easily sees that the commutant
of any subset of B(p) is always an algebra, and that this algebra
always contains an identity element.

In a similar way, one defines the double commutant, or bicom-
mutant T of M, W' = M')’. N -

It is immediately clear that W’ > M, If T, €M, thenalsoN ' D
T,/ . From these two relations follows that

o =g =m®™ =

v C e (O .

Finally, if M=, then M’ is a *-algebra.
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I.B.2. Definition; A won Neumann algebra % on §, is a *-subalgebra
9 of B(p) such thaty =" .
Example: The commutant T of any self-adjoint subset Tt =Tt of B(g)
is always a von Neumann algebra.
Remark: Von Neumann algebras are also called rings of operators, or
W*-algebras. Sakai defines a W¥*-algebra as being a C*-algebra
which is the dual of some Banach space. He then shows that such an
algebra has a faithful representation as a von Neumann algebra on
some Hilbert space. We shall therefore reserve the term W*algebra
for an algebra which is isomorphic to a von Neumann algebra, and
when we speak of a particular von Neumann algebra, it will always
be understood that it carries with it the particular Hilbert space on
which it is defined. This is necessary because, as we shall see,
an isomorphism of a von Neumann algebra into a 8(%’) is not neces-
sarily a von Neumann algebra.

Clearly, a von Neumann algebra is alsoa C*-algebra.
Example: Any C*-algebra on a finite dimensional Hilbert space is
also a von Neumann algebra.

I.B.3. Proposition: The intersection of an arbitrary family of von
Neumann algebras is a von Neumann algebra.

Proof: Let¥U = N u,.
ier 1
commutes with the elements of mi’ , thus with U mi' and hence with
i€l .

To say that x € % amounts to saying that x

(U’
Corollary: The center § of avon Neumann algebra is
g=uang’

and is thus an abelian von Neumann algebra.
If 9 is abelian, then 9 =94’ and § = ¥.

[.B.4. Definition: A von Neumann algebra,the center of which con-
tains only the scalarmultiples of the identity, is called a factor.
Example: B(®) is a factor, indeed 8(p) = {31} = 3.

I.B.5. Definition: Let % be a *-subalgebra of B(%). A vectorx € %
is said to be cyclic (in French: "totalisateur") with respect to %, if
the set {ax|a € U} is dense in §.

X € § is said to be a separating vector for 9, if the conditions
ac¥y,ax =0, implya =0,
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In an evident way, this definition can be extended to subsets
o of §.
Proposition: Let o be a subset of §, ¥ a *-subalgebra of (). Let
further p be the projector on the closure of the set % = {ax|a € ¥,
x € 0}. Then p € %', and is the smallest projection of %’ having o
contained in its range.
Proof: It is clear, that for any t € 9, tllo € %o, and therefore, by con-
tinuity (t being bounded), tp$ < p%. But this last relation means
exactly that ptp =tp. From this follows however, using that also
pt*p = t*p

pt = (t*p*)* = (pt*p)* = ptp = tp

and thus, p € 9’.
Let now %o = p®, and suppose I p’ €%’, p’9 D Ugs. We have
that

p'QIo . ‘up'c =19,

by hypothesis, but this means p'p = p, QED.

Theorem: Let % be a von Neumann algebra. x is cyclic for ¥ if, and
only if, x is separating for 9%’.

Proof: "' Let p be the projector on the closure of ¥x. From the
preceding proposition, we have that p € 4. Because I € %/,

(I - p)x =0. But by hypothesis, x is separating for 9’ , and hence
I-p=0, p=I, or p = §, which means that the closure of Ux is §,
or, in other words, that x is cyclic for 9.

"3" The conditions a‘€ 9’, a’x = 0, imply that a’ax =aa’x
=0, ¥a €Y. But that means thata’ = 0, since it is a bounded opera-
tor which vanishes on a dense set of vectors, namely dx. Thus x is
separating for 9’ .

I.B.6. Theorem: Let 3 be a C*-algebra. Any elementa ¢ 4 is a

linear combination of two self-adjoint operators, or of four unitary

operators, belonging to the algebra.

Proof: By construction: i

" Self-adjoint: put a; =% (a+a*), a3=5{a*-a}, a =a Ha,
Unitary: a being bounded, one can ‘choose A, and A, E"%Ch that

a, =)@ " with Ilai'll <1,i=1,2. Putnowy =a/’- (1 -a;'?) u,

is cleariy unitary, since al* =a,, [tremains to show that w €Y, which

amounts to proving that (1 - ai’zl)% € 9. This is true, since the Taylor

series
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'4 1=3 /6 1-3-5 :8

- T a, %38, /8
i 2+4-6-8 1

2 34 2-4 % 2:4+6
_a 2
(1-2a,")

converges in norm, because ||ai’|| <1,and (1 - af )% € Y because the
algebra is complete in norm.

Put then
=300 @y Fug®) g (ug +upt)]
a 4 1 (u]_ u; 2 112 Uz N

I.B.7. Definition: An operator is said to be closed if txi -y and X
- x imply tx = y.
Theorem: Ift is closed, one may write t = wk, where w is a pat-
tially isometric operator, and k is self-adjoint and non-negative.
This decomposition is unique, and is called the polar decomposition.
Definition: A closed operator t is said to be affiliated to a von Neu-
mann algebra ¥ (tng) if it commutes with all operators of %4/, i.e. if
¥b' ey’, b'tctb’,
Proposition: Let t be a closed operator and t = wk its polar decom-
position. Then tn¥ if and only if all spectral projectors. of k belong to
Ydand w € Y.
Proof: It 1s enough to show that.in the case of a unitary operator u’ €
A, u'tctu’, u' ™ Ctu’ ™ imply that u’hu’ ™ =hand u'wu’™ =w.
We have that u’tu’ ™ ctc u’tu’~* by hypothesis; from this
follows that u’tu’~? =t =wh =u’wu’*u’hu’™* and the proposition
follows from the unicity of the polar decomposition, the inverse being
trivial.
Corollary: Let tn¥, t =t*. Then for all continuous real functions f,
f(t)nd.

I.C. Topological Considerations

I.C.1. We start by defining five different topologies on B(n).
Uniform topology: It is the topology induced by the norm of the
operators. A basis of neighbourhoodsof an element t € B(g) 1s given by

u ) ={alaen@, lt-al <el

Strong topology: A basis of neighbourhoods, indexed by € and ¢ is
induced by

u U(t)={a|a€$(£;), | & -a)x] <e ¥xeol
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where ¢ is a finite subset of §.
Weak topology:

ue 101,00 ) ={ala € 8(®), |, (t-a)y]| <e

¥x€a, ¥ycogl
where o, and gy are finite subsets of §.
Ultrastrong topology: (sometimes called strongest topology)

ue’{xi}(t) =lalaes@, ) l@-txlP<el
i=1

el
where x; is an arbitrary sequence of vectors of § such that z |xi|3< @

(thus a filtering set [ti} converges towards t in the ultrastli*or%g topo-
logy if, ¥ sequences {x;} such that 2|x1|2< @ {Zktixk} converges
towards 7, tx ).

Ultraweak topology: We define

x

by @ lale eBE), Y ey, @-tly)]<e)
k=1 :

where {x;}, {yi} are arbitrary sequences of vectors of § such that
E}xj_]a <w Zlyi]3< @,

I.C.2. We are not going to show that all these topologies are
actually distinct if § is infinite dimensional. It is clear for the uni-
form, strong and weak topologies. TFor the ultrastrong topology, one
can show that it does coincide with the strong one bounded sets of
B(n) (Dixmier 1957, p. 36) and similarly of the ultra weak and the
weak topologies. One can construct an example (Dixmier, 1957,
p. 48) of a set in B8(®») whose strong and ultrastrong closure are not
identical.

In fact, it is practically evident that we must have the follow-
ing diagram

uniform

ultrastrong
finer convergence is
ultraweak strong topol. implied in that

~——— L _— direction
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1.C.3. If we now consider a subalgebra of 8(9) with identity element,
we already know that it is a C*-algebra if it is closed in the uniform
topology. If we want to close it under other topologies, it is, a
priori, conceivable that different topologies will lead to different
algebras. Under these circumstances, the famous density theorem of
von Neumann is truly remarkable. In order to state and prove it, we
will still need to define what is a "unit ball."
Definition: Let % be a normed algebra, the unit ball 9, is the set of
all those operators of 91 the norm of which does not exceed one.
Theorem: (density theorem of von Neumann) ZILet 9 be a *-subalgebra
of B(p), with identity element. The following nine conditions are
equivalent

1) ¥ =9" (l.e. ¥ is a von Neumann algebra)

2) ¥ is weakly closed

3) ¥, is weakly closed

4) 9 is strongly closed

5) o, is strongly closed

6) 9o is ultraweakly closed

7) 9, is ultraweakly closed

8) % is ultrastrongly closed

9) 9, is ultrastrongly closed
Proof: The sequence of the elements of the proof can be seen from
the following diagxiam

~—» used in the proof
(4 = 1) shall be used

6 A in proving 8-1
--> other possible proof
path
7 5

(1 - 2): hypothesis: 9 =%". To prove: Let [ai € 9} and

w = a, =a, thena € 4.
i@ 1

Proof: Leta’€ 9’, then a’ai = aia' , that is

| tx1, (ea’-a’a)xy)| < 2¢
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because
|, ,@a’-a’a)x,)| = |, ., @@ - ai)a'+ a’(ai— akx,)| <
< |, @- gi)a'xa)l +|x,,2" @ - ai)x2| < 2

foracertaini>1, (2-=4), 2~6), 3=7), 5~9), (7=9), and
also (3 -~ = 5), (4 -~ =+ 8), (6 —— = 8) are true because of the partial
ordering of the topologies, as seen above. (2-3), (4=15), (8 =9),
and also (6 -~ = 7) are trivial by definition of the unit ball.

(4 = 1): Hypothesis: For any sequence {ai} €Y, if {ai} converges
strongly towards a, thena € 9. One has to show in any strong neigh-
bourhood of each element a” € 9", there is an element of 4.

Proof: Letx € % and p be the projector on the closure of %x. As
shown in a theorem above, p € 4’; that means, however: a“x =a’px
= pa”x; a”’x is contained in the closure of the set %x, ¥ x, which is
saying exactly that it is a strong limit of elements of %.

(8~ 1): Hypothesis: 9 1s ultrastrongly closed. Givene > 0, {xi}
such that

ab

Z Ixil2 <® % €9, tey

i=1

we want to show that there exists s € ¥ such that

®
Z | (s - t)xi|a <e
i=1

dand for that, we shall reduce the proof to the case (4-1).

Let & be a family of mutually orthogonal Hilbert spaces &,
and each ®; being isomorphic to §, the isomorphism being given by
Uib =8R;. Let Yy = U,x,, it follows that

*1
(-]
z ly,|? <=
1=1

Let us write
-]

y for {y;} and |y[? = Z lv,1?
1=1
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which makes aNHilbert space out of . For any b €8 (%) we define. a
corresponding b acting on & by

[ 3 *
by {U. b U} yil

Ifa runs over ¥, the corrcapondmg aform a *-algebra % on K.
It €y, it is clear that t € A’ We can now apply the argument used
in (4= 1), indeed there exists S €9 such that | (s - Dy|® <e, which

means
©

_~ 3 3 \' - a <
|G - Dyl >4 (s - tx,|? < e
i=1
(9 -+ 8): This is a general property of Banach spaces; see for

instance Bourbaki, Espaces vectoriels topologiques, Chap. V, Sec-
tion 5.1, cor. 1 of prop. 3.

I.D. Linear Functionals

From the standard formulation of Quantum Mechanics, we
know that one assigns a number to each pair consisting of an obser-
vable and of a state, namely the expectation value of the observable
in the considered state. One can therefore consider a state as being
simply a mapping of the set of observables into the set of complex
numbers, that is,a functional. We shall restrict our attention to
linear functionals, because the linearity of these functionals is the
mathematical expression of the principle of superposition.

I.D.1. Definition: A linear functional on an algebra 9 is a mapping
f of 9 into € such that

fl@a + Bb) = af(@) + Bf(b) ¥Ya,B € C V¥a,becy

Note that we do not use here the algebraic structure, only the
vector space structure.

Definition: A linear functional f on a Banach algebra % is sa1d to be
uniformly continuous if, for any sequence {a } a €y, converging
uniformly towards an element a € 9, f(ay) converges towards f(a).
(We shall say simply ‘tontinuous"in what follows.)

I.D.2. Definition: A linear functional on a *-algebra 9 is said to
be positive, if f(t*t) = 0, ¥ t € ¥,

We want to deduce some useful properties of positive linear
functionals. Let % be a *-algebra, f a positive linear functional,
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a,bey, 0,8 €C. Further, putt =qa + Bb. By definition, we
have that

0 < £(t*t) = |a|?fl@a*a) + & Bf(a*b) + aBf(b*a) + |B|? f(b*D)
f(a*a), £(b*b) and £(t*t) being real, it follows that
aBf(a*b) + aff(b*a)

is real too.
Puttinga =8 =1, it follows that

Im £(a*b) + Im f(b*a) = 0
Putting now o = 1, B =1, we get that
Re f(a*b) - Re f(b*a) =0
from which it follows that
f(a*b) = f(b*a)
and in particular, for an algebra with identity
fla*) = £(a)
If we now put B = f(b*a), and take ¢ real, we get
o?f(a*a) +2a|B|® + |B|2£(b*b) 2 0
and if we nc;w consider this expression as a quadratic form in o, we
know that it is positive if and only if [B|*~ [B|?£(b*b) fla*a) < 0.
From this follows, however, in the case B # 0,
|B]? < fla*a) £(b*b)
or
| €@*D))|? = f(a*b) £(b*a) < f(a*a) £(o*Db)

(Inequality of Schwartz, Cauchy, Bunyakovsky, etc.)
The inequality is of course also valid for g =0,
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I.D.3. Definition: Let % be a Banach algebra. We call dual of 9 the

set Y* of all linear functionals on ¥, continuous for the topology

defined by the norm of 9.

Proposition: ¥* is a Banach space with the norm ||| ="Stilp |£@)].
al<1

Proof: The linearity is trivial; we only have to verify that the axioms
of the norm are satisfled and that 9* is complete:

Il =0 "sup lf@)] =0 |f@)] =0 vacu

afj=1
s f=0
el = sup  |Af@)| = sup |n| [£@)] = |n] |l£]
lall = 1 |
flt. + £l = sup |(f +£,)@)] s sup {|f, @) + |f,@)]}
all=1
< gl + g

U* is complete; If
||fn - fmll <e¢ ¥n,m> N(e)
then

le, - 0= sup |(£ -£)@)]<e |al
lall=2

that 1s, fora fixeda, {fn(a)} converges. One therefore defines

f=lim f
n

n- o
so that

f@@) = lm fn(a) Vacd

n—- oo

By continuity, f is linear and one easily sees that it is continuous;
it therefore belongs to Y*. Q.E.D.

1.D.4. Theorem: Let % be a C*-algebra with identity element e.
Any positive linear functional on 9 1s bounded and continuous with
respect to the norm of %), i.e.
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1t = £ lall , T2l = £e)

Proof: Suppose firsta =a*, ||a|[ < 1. The Taylor expansion of
(1 - a)® converges in norm in 9 towards an element b € 9, since ¥
is complete in norm. From the definition of a C*-algebra follows
that ||af| = |la*| and thus b will be self-adjoint too. By construction
b*b =b° =e -a; f being a positive functional, we get that fle - a) =
f(b*b) 2 0, and by linearity, f(e) = f(a). We could repeat the same
argument for -a, and thus get that f(-a) < f(e), and therefore | f@@)| <
fle). Ifa* =aand |lall 2 1, one can repeat the argument for a, put-
ting a =a/(Jla]}), and use linearity at the end.

If now a is arbitrary, we first consider a*a which 1s self-
adjoint, we thus get f(a*a) < f(e)- la*all = f(e)* [al® . On the other
hand, by the Schwarz inequality,

[£@)]2 = [f(ea)|® < f(e) f(a*a) < f(e)? falP

= |f@)] < f(e) llall vacu

li£ll = sup |£@@)] < f(e)
lla 1
but the equality is attained for a = e, thus |f|| = f(e).
1.D.5. Definition: Let f; , f; be positive linear functionals on a

*-algebra. f; is said to majorize f, if f; - f, 1s a positive
functional.

I.D.6. Theorem: Let 9 be a C*-algebra with identity e, f a linear
functional. The condition ||f|| = f(e) implies that f is positive.

The condition is therefore both necessary and sufficient (from
the preceding theorem).
Proof: Put f=f; + if;, where f; and f, are hermitian. We suppose
that f(e) = 1, with f,(e) = 0. Leth € %, h =h*. Putu=»XAe - ih,
where A € R, we get

full2 = W®e + 1® |l<22 + [nlP
and on the other hand
[£@)|® - |x - if,(h) + £, (0)|® =22 + 2af,(h) + £, ()2 + £; ()P

thus
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|£@)]® - 2xf,(h) =22 =4, (WP +£,()° 20,
adding
I[P +22 = fufP
we get ‘
lulP = 161 = 208, G) + Fll® < NulP - 225, () + ]l
and hence
2xf, (h) < [P ¥ eRr

which means £, (h) = 0, thus f is hermitian.

We write x 2 0 1f 4 t € 9 such that x =t*t, and in an analo-
gous way, x<ylfy-x=0, Lethbeglven0<h=<esothat0<e
- h £ e and therefore ||e - hll < 1. Suppose f(h) < 0, that is, that f
is not positive. We get

1=f(e)=fle-h)+fh)<fle-h)<|le-h|=<1
which 1s a contradiction.

1.D.7. Proposition: Let ¥, be a subalgebra of a normed algebra %

and f; a continuous linear functional on %, . Then, there exists a

continuous linear functional f on % such that f, @) = f@) Va € 4, .

If £, is bounded on %, , with norm [I£, |, then f can be chosen such

that €] = £, II. 1f 9, and ¥ are *-algebras and fl is positive, f can

also be chosen positive.

Proof: This is the Hahn-Banach theorem: for a proof see Naimark
h 1, p.16, cor. 1, p. 17; or Day, Normed Linear Spaces’, Springer

1958, Ch. 1,p.9; Banach, Op. lindaires, Warsaw 1932, Section 2,

Ch. 1.

I1.D.8. Definition: A positive linear functional f on a *-algebra is
said to be pure if any positive linear functional f majorized by f is of
the form f =Af, 123 2 0.

This definition is equivalent to i

f=a.f, +af,=f =f, =f ‘ifa,a, #0
oy ta, =1

or
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a0, =0

Therefore, on a normed *-algebra 9, f is extremal in the set of all
positive linear forms, of norm <1 on 4.

1.D.9. Definition: Let 9 be a Banach *-algebra, 9* the set of all
continuous linear functionals on 9. Any fixed a € 9 defines a linear
functional on U* (the f(a),this may be identified with an element

fo € U*#, The uniform topology on 4* is the topology given by the
basis of neighbourhoods of an element f0 € Uu*

Me(fo) ={f]f e u*, asuzllf(a) —fo(a)l <e}
acd

We define as W*-topology of %* (or Y~topology of 2U*) the
weakest topology in which any element of 9 is continuous as a linear
functional on U*.

This topology is Hausdorff, and may be characterized by the
set of neighbourhoods

R (£ .0) = {f|f e u*, |i@) - fo(a)l <e,vacol,
where ¢ is a finite subset of 4.

1.D.10. Theorem: (Alaoglu-Bourbaki): Let be a Banach space, M*
the dual space of the bounded, continuous linear functionals on. Let
further M, * be the unit ball of N*. M,* is clearly closed in the norm
topology, M,* is compact in the W¥*-topology.
Proof: See Rickard, discussion at the bottom of p. 222, or Dunford
and Schwartz, theorem 2, p. 424,
Corollary: The set Tbm of all positive linear functionals of norm 1
(which we shall call states) on a C*-algebra 9, is closed and com -
pact in the W#*~topology.

The importance for us of this theorem and its corollary arises
from the theorem of Markov-Kakutani, which we shall state below.

1.D.11. Definition: ZILet G be a topological group, % a C*-algebra
andT_: a- T, 9 € G, a € ¥, a representation of G in the group
of the automorphism of . A linear functional f € 91* is said to be
invariant under G, if f@@) = f(r. a), Vg€ G, ¥a € 4.

Theorem: Let % bea C*—alge%ra , F an abelian family of automor-
phisms of 4. There exists a state f on ¥, such that f is invariant
under all elements of F.
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Proof: Let us first note that the automorphisms 1 of ¥ induce
automorphisms t* of y*, by the condition

(Tg*f)(a) = f(Tga), Vaeu.,

This automorphism is ¢learly also an automorphism of the set 'I)? of
all states. We know from the corollary to the theorem of Alaoglu-
Bourbaki that % is closed and compact in the W*-topology; we also
know that each automorphism of ¥ is also continuous under this topo-
logy. But these properties are exactly the hypothesis of the

Theorem (Markov-Kakutani): Let @ be a compact, convex subset of a
linear topological space %, F an abelian family of continuous linear
mappings of & onto itself. Then there exists a point p € & such that
fp=p, ¥I€F.

Proof: See Dunford and Schwartz, theorem 10.6, p. 456.

1.D.12, Definition: A positive linear functional f is said to be pure,

or a pure state, if
a) [l =

b) f=a, f tagfy, 0y 20 f; pos. lin. funct. ||f =1
implies f, = f, —fandcy.1 ta, =1, ifa,-a, #0, ora, - (12 =0,
a, +a, =1.

In other words, f is pure if and only if it is extremal in the
set % of all positive linear functionals, of norm <1 on 9.

We finally shall need the theorem of Krein-Mil'man in the
following form:
Theorem: (Krein-Mil'man): If 9 is a Banach algebra, By is the closed
convex hull spanned by the pure states on %.

I1.E. Topological Properties of Linear Functionals

‘We have introduced so far two kinds of topologies for the
linear functionals, namely the W*-topology and the uniform one.
In the particular case of the *-subalgebra of 8 (), we can also use
the various topologies defined previously on 8(%). We shall therefore
speak of strongly, ultrastrongly, weakly and ultraweakly continuous
linear functionals on any *-subalgebra % of 8(9).

Furthermore, on a Hilbert space, there exists the particular
class of linear functionals generated by vectors. We shall call them
w-forms:

w: Y= C

wx'y(a) = (x,ay)

w @) = ,ax)
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It is clear that any w-form 1s weakly continuous, and that Wy
is always a positive linear functional:

u)x(a*a) = (x,a*ax) = (ax,ax) = [[ax|P= 0

The theorem which we are going'to state below should show
the connections between the various topologies introduced earlier
and the w-forms.

1.E.1l. Proposition: Let % be a *-subalgebra of 8(¢), with identity
e-lerpent » fa positive linear functional, majorized by wy. Then
there exists t’ € %', suchthat f=w,_, .

Proof: For s,t € 9, we have that

| £(s*t)|® < f(s*s) £(t*t) < |sx|?- |x|?
If we define as a new scalar product on %x,
(sx, tx)! = f(s*t)
we get a positive, sesquilinear, continuous functional defined on %x,
which 1s also obviously continuous. Using Riesz _t_heorem, we get
that there exists an operator to = to*, positive, on %x, and such that
f(s*t) = (tos_x, tx)
If nowr,s,t € ¥, we get that
(totsx,rx) = f((ts)*r) = £(s*(t*r)) = (sx,t*rx)’ = (tosx,t*rx)
= (ttosx,rx)
and therefore t t =tt_on Ix. o
Let now p be $he projector on %X p € 9. Thus t_p is hermi-
tian, positive and belongs to %’. Put t’® = t.p, t’> 0, we then
have thet ¥t € 9.
£(t) = (tx,tx) = (t'%x,1x) = t'x,tt'x) = W, s () Q.E.D.
I.E.2. Proposition: If Wx,y is a positive linear functional on a

*-algebra 91 then there exists a z € §, such that W,y =w, on Y.
Proof: )
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Y(t)'= sz,Y(t) + 2:ux'y(t*i )
=2(x,ty) + 2(y,tx) |
= (xty, tlety)) - (x-y, tle-y))
< Gety, thety)

thus 4y s

X,y e and the :propo,sition follows from ﬂ}e‘ preceding ope .

I.E.3. Definition: Let % be a von Neumarnn algebra, m+ the set of all
positive operators of Y. A positive linear functicnal fond is said to
be normal , if, for any increasing filtering set 3 < Ut of upper bound
t € oF, £(t) is the upper bound of £(3). | .

Definition: Let % be a von Neumann algebra, {pi}iE an arbitrary
family of mutually orthogonal projectors of 9. A positive linear
functional on 9 is said to be completely additive, if

R

€1 1€T

i

Remark: 'In general the notion of complete édditivity is stronger than
that of o~additivity (as used in the theory of probability or in mea~-
sure theory, for instance) since 0-additivity applies only to countable
families. It is clear that as long as we stay in separable Hilbert
spaces the two notions are equivalent.

I.E.4. Theorem: Let % be a von Neumann algebra, f a positive linear
functional on %; the following five conditions are equivalent-

(i) fis normal

(1i) f is completely additive

@ -]
(W £=) e, Y xl?<e
i=1 i=1
(iv) f is ultraweakly continuous
(v) fis ultrastrongly continuous
and the following three conditions are equivalent among themselves
(vl) £ is weakly continuous s Lo -
(vii) £ is strongly continuous :

(vitt) f=§ w , N<o
*
1=1
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Proof: See Dixmier, loc. cit.:

(i) » (@) o @) 1.4.2 theorem 1, p. 54
(@) = (i) I.4  exercise 9, p. 65
@iv) © (v) e (iii) 1.3.3 theorem 1, p. 40
(vi) & (vii) e (viii) 1.3.3 theorem 1, p. 40

I.E.5. Remarks:

1) Let us note that in the standard formulation of quantum
mechanics, states are represented by density matrices, and hence are
of the form (iii) of the preceding theorem and thus normal states.

2) In the same way as we did define the continuity of linear
functionals with respect to the various topologies introduced, we can
speak of the continuity of the different kinds of morphisms we can
consider. We have as an example the following
Definition: Let 9, and %, be von Neumann algebras, and v a homo-
morphism of 9, into 9,. ¢ is said to be a normal mapping, if, for any
filtering increasing subset < 9% of upper bound t € %4¥, ¢(3) has oft)
as an upper bound.

Theorem: The isomorphism of two von Neumann algebras is normal,
Proof: See Dixmier, loc. cit., I.4.3. cor. 1, p. 57 and theorem 2,

p. 56.

Theorem: Let 9, and ¥, be von Neumann algebras,¢a normal mapping
of 91, into U, such thatple, ) =ey . Theng(,) is a von Neumann
algebra and ¢ is continuous for the %lnastrong and the ultraweak topo-
logy. That means that the restriction of ¢ to bounded parts of ¥, is
weakly and strongly continuous.

Proof: See Dixmier, 1.4.3 loc. cit., cor. 2, p. 57.

1.F. The Construction of Gelfand, Naimark and Segal

I.F.1. The Gelfand-Naimark-Segal construction provides a repre-
sentation into B8(9) of every C*-algebra 9 with an identity for each
positive linear functional defined on 9. The basic idea is to con-
sider ¥ as a vector space, and the left regular representation on it.
One then defines a scalar product and a norm on it using the given
linear functional, and thenmakes the quotient space with the elements
of vanishing norm. This quotient space once completed is then a
Hilbert space on which a representation of % is defined.

1.F.2. Let therefore & be a positive linear functional on a C*-algebra
9 with unit element e. We define an hermitian form on 9 (considered
now as a vector space) by
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x.y) =fx*y), forx,y€u

The set 3¢ = {x|x €9, (x,x) =0} is a left ideal of 4. Indeed, sup~-
pose y € ¥, we get

(yx, yx)? = £((yx)* yx)? = f((x*y*y)x)?
< f({x*y*y)*x*y*y) flx*x) = 0

using Schwarz inequality. This means that yx € §. . We still have
to verify that §f is a vector space: Suppose X, ,X, € Sf, then

£(Gey 435 )% (R 3 )) = £y *x, ) + TR *x%,) + flx*x ) + flx*%,) =0

using Schwarz inequality for the second and third terms.

Call &’ the quotient space /3, that is, the set of all
classes of elements of 9 equivalent modulo elements of In each
of the classes E,n,..., we pick out a "representative" {‘ement X,
¥Y,.+., and we define (n,g) = (y,x) = f(y*x). We have to show that
this definition is consistent, that is, that the value of (£,n) does not
depend upon the particular choice of a "representative." Suppose
Xy ,X€E

[ (v, =%, N|? = | Ely*e-x, |2 < £lyy*) - £{lx-x, )*(x-x,)) = 0

as (x-x,) € .
It is clear that (€,n) = m,£E) so that (g E) 2 0 and that the
form is sesquilinear. Now suppose (£,E) = 0; this means f(x*x) =

for x € €, thus x € K7 and € = 0. Therefore, the form (£,n) makes Sj’
a prehilbertian space——its completion by respect to this scalar pro-
duct we shall call §.

I.F.3. We want now to construct a representation of 9 into% (%).
Take an arbitrary class £ = {x} with "representative" x, and let a € ;
denote by n = {ax} the class with "representative" ax; the class n
does not depend upon the particular choice of x as representative-
suppose x’ € £ then alx—x") € § since J; is a left ideal thus ax’e n.
Putting A_E = {ax} we define a linear operator A, on 9, and thus a
mapping a —+ Aa of % into the set of all linear operators on&’. We
want to show that Aa is bounded.

[Aa€|2 = (_5.A ) = (ax,ax) = f(x*a*ax).
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We define the linear functional f, (@)=f(x*ax). Clearly f, is positive:
f, (a*a) = f(x*a*ax) = f((ax)*ax) > 0; therefore, |£, (b)= f(e)[bl| and,
puttmg b =a*a, f, (a*a) < 1; (e)- ||a||‘r=l , replacing f, by the definition
we get lf(x*a*axﬂ < flxx)- lalf = (€,8)-[alP, and thus

|a5]? < JlalP - |8

Therefore A is bounded on %" and its norm is smaller or equal to the
norm of a, |A, [l = Ha Il A, being a linear operator uniformly bounded
on a dense subset §’ of can be extended to a bounded linear opera~
tor defined on the whole of §.

We have now to verify that the mapping a - Aa' b= Ab etc. is
a representation of U:

Biasgpl = L0a+Bbix} =alax}+plbx} = oA £+ pAE

Aabg ={abx} = Aa{ bx} = AaAb{x} =AAE
and that this representation is a *-homomorphism Aa* = Aa*:

(A 8) = (v.ax) = f(y*ax) = f(@*y)*x) = @*y,x) = B_,n.€) .
1.F.4, TLet €, be the class of all elements of 9 equal to e modulo Jg.
Then Agfo is the class containing the element a; therefore, the set
of all elements of the form AES coincides with the set of all classes,
that is, with &/, but " is dense in ® and this just means that E isa
cyclic vector for the representation of . (N.B. A representation with
a cyclic vector is called a cyclic representation.)

I.F.5. f(a) = fle*ae) = (e,ae) = (EO,AaEO)-

Therefore, in the representation we have just constructed, f is an w-
form, and hence, weakly continuous and normal withrespecttothe
weak closure of the representation of 9 in §.

We can imagine that we started with % defined on some Hilbert
space § , and that f was not @ sum of w~forms in®, . We arrive,
therefore, at the conclusion that for a linear form on a C¥*-algebra the
property of being expressible by w-forms (or by density matrices) is a
representation dependent one--it is true in some and not in others.
This observation will be of the utmost importance for the physical
applications.
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I.F.6. The relation [|A,|l < [la]| implies that the homomorphism a ~ A,
is norm continuous (this is in fact true for all representations of a
Banach *-algebra with unit). But, in general, even if 9 is a von
Neumann algebra, the mapping will not be continuous in a weaker
topology, and the image under an homomorphism of a von Neumann
algebra need not be again a von Neumann algebra. However, as a
special case, we have the

I.F.7. Proposition; Let % be a von Neumann algebra, f a positive
linear normal functional on 9, ¢ the corresponding Gelfand homomor-
phism. Then o is ultraweakly and ultrastrongly continuous and ¢(¥) is
again a von Neumann algebra. The restriction of ¢ to bounded parts
of 9 is strongly and weakly continuous.

Proof: Combine th. 2, p. 56, prop. 1, p. 57 of Dixmier, loc. cit.

1.F.8. Definition: A representation 9, of an algebra 9 into B(p) is
said to be irreducible if 9," = {A\I}. This is equivalent to saying that
9, does not leave invariant any closed subspace of $ other than {0}
on .

I.F.9. Proposition: Let % be a Banach *-algebra, f a positive linear
functional on %, ¥, the associated Gelfand representation in® (@).
Then 91, is irreducible if and only if f is pure on 9.

Proof: See Naimark, Nermed Rings, p. 255 and ff.

I1.G. Classification of Factors

I.G.1l. Definition: Let 9 be a von Neumann algebra. Two projectors
p, and p; of ¥ are said to be equivalent (withrespectto 9 if there
exists a partially isometric operator v € 9 such that vv* = p, , v¥v =
p; . One then writes p, ~p,. One easily sees that ~ satisfies the
properties of an equivalence relation.

1.G.2. Definition: A projector p of a von Neumann algebra is said to
be infinite (withrespectto %) if It is equivalent to a projector p,
strictly smaller than p, p~ p1 ;E p. A projector which is not infinite
is finite.

1.G.3. Definition: p, is said to majorize p;, P, = p, for p, ,p, €4
if there exists p €4, p~py, P< P, .

1.G.4. Proposition: p, < p;and p, = p; imply p; ~ pg .
Proof: Dixmier, loc. cit., p. 226, prop. 1.
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1.G.5. Theorem: Let ¥ be a factor, p,, p, € ¥. Then either p, «p,
or pp =< p,; .
Proof: Dixmier, loc. cit., cor. 1, p. 228.

1.G.6. Definition: Let % be a factor, thus it is said to be

(i) of type IIl, , or purely infinite if every projector of 9 is
infinite. A factor which is not purely infinite is said to be semi-
finite.

(ii) A semi-finite factor which contains minimal projectors is
said to be of type I or discrete. A factor which 1is not type I is also
called continuous.

(iii) A semi-finite factor which does not contain minimal
projectors is said to be of type II.

(iv) A factor is said to be infinite if it contains at least one
infinite projector, and finite if it contains only finite projectors. A
finite discrete factor is said to be of type I,,an infinite discrete
factor of type Is. A finite continuous factor is said to be of type I, ,
and an infinite continuous factor is of type Ile, if it is semi-infinite,
and IIIs otherwise.

I.G.7. Definition: A von Neumann algebra is said to be of type I
(resp. II, III) if it is the direct integral of factors of type I (resp. II,
IIT). It is finite if all its projectors are finite, otherwise infinite.

For more details on the classification of von Neumann alge-
bras, consult the lectures by W. Wyss.

Section II. Statistical Mechanics

IT.A. Generalities

II.A.1,

It is not possible, in the relatively small number of hours at
our disposal, to pretend giving here a complete survey of all the
applications of algebraic methods to statistical mechanics. We shall
try, however, to give some of the leading ideas and important results
in this relatively new field.

We want to warn the specialists of statigtical mechanics that
what we are going to present here will appear rather strange to them,
but one should not forget that nearly all researchers in that field are
quantum field theorists, and that many of the techniques and aims
have been borrowed from that field.

Among the important results which we shall mention, there is
the generalisation of ergodic theory to quantum systems, the notion
of asymptotic abelianes, the analytical behavior of the thermodyna-
mical functions, the time evolution, and so on.
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II.A.2. As is also developed in the lectures by H. Borchers ,S)any
quantum system can be abstracted in the following way:

Observables: Self-adjoint operators of a C*-algebra o

States: Positive linear functionals on®, of norm 1, P

In classical mechanics, we have as interpretations:

Observables: Continuous functions on phase space (vanishing
at infinity if the latter is not compact)

States: Positive measures on phase space.

We thus have apparently two different interpretations for classical
and quantum mechanics. This is happily not true and can be seen
in the following way:

Let us start with an example, that of the ideal gas in a box.
Let thus R” be the phase space of that system, and, for instance, if
we take the microcanonical ensemble, we get as admissible phase
space a compact ® of the energy "surface" between E and E + dE.
This set R is compact because the energy is finite and the system
is in a box.

The observables generate in an evident way a *-algebra %, of
the continuous functions defined on R. One can make a C*-algebra
out of it by taking the supremum norm. A state is defined by the
probability of the system to be in the different points of &, which
amounts to the definition of a positive measure p on f and of the
definition of the expectation value of f € U, in that state; it is
given by | fp. But we know from the general mathematical theory that
the positilve measures on R form exactly the positive cone of the dual
of ¥ . That means for us that we can interpret the classical mecha-
nics exactly in the same way as quantum mechanics, by taking the
self-adjoint elements of a C*-algebra as observables, and the posi-
tive linear functionals on that algebra as the states.

Note, however, that the essential characterization of the
classical system is the fact that the C*-algebra is abelian.

Once we have made this abstraction for a classical system,
one may wonder whether the usual interpretation of the observable
by continuous functions and of the states by measures is always
possible. That this is true is given by the
Theorem (Gelfand): Iet 9 be a C*-algebra, abelian. Then there
exists a Hausdorff space ¥, locally compact such that 9 is isomor-
phic to the algebra C_(%) of continuous functions on % decreasing
at @, It is compact if, and only if ¥ possesses an identity element.
Proof: All the proofs are nearly the same; they differ only by the
realization of the space % as

- space of maximal ideals: Naimark §4

- space of characters: Dixmier C*, th. 1.4.1
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- space of pure lin. functionals: Kadison, Cargése lectures,
theorem 2.2.1.
‘What remains general in the algebraic approach is the fact that one
is not specifying the manifold chosen as having the admissible posi-
tion of phase space, nor the particular topology on it. This is
of course of great importance in the thermodynamical limit, whenever
the phase space is becoming infinite dimensional.

II.A.3. If we now are looking at the states on such a C*-algebra,
we immediately observe that there exists a fantastic collection of
them.

In the particular case of the ideal gas, for instance, we have
that the states used in statistical mechanics are measures equivalent
to the Lebesgues one. The §-functions, on the other hand, are giving
the analytical mechanics. In order to select a particular description,
we are therefore going to impose further restrictions on the set of
admissible states. The first (and most important perhaps) class of
restrictions which we shall mention is bound to the notion of
invariance.

II.B. Invariant States

II.B.1l. Definitions: Let G be a topological groupand T :a-T1_.a,
g€ E, acy arepresentation of G in the group of automgrphisms
of ¥. A linear functional f € 9* is said to be invariant under G (or
G-invariant) if f@@) = f(r.a), ¥a € %, ¥ g € G.

For abelian C*- Eigebras 9], the notion of invariance can be
translated in terms of the associated co(x) . To the automorphisms
corresponds the homeomorphisms of ¥. To the invariant states on U
one associates the (finite) Radon measures on ¥. We are again in the
same set up as we started from, up to the difference that the mea-
sure on % is bonded.

Another special case is the one where G is the group of inner
automorphisms of a von Neumann algebra 9. Then 7, is trivial and
the invariant positive functionals are finite traces on 9.

II.B.2. The theorem on the existence of at least one invariant state
(p. 44) is not always very useful because we don't know anything
about the properties of this invariant state. It is possible to obtain
much more powerful results, however, and for this we refer to the
lectures by H. Borchers at the present school.
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II.C. Quasilocal Algebras

II.C.1,. Until now, we have not imposed any restrictions on the C*-
algebra we were considering. There is, however, a crucial property,
which will be of utmost importance in everything which follows. This
is the local nature of all interactions. This property is ensured in
quantum field theory by the locality axiom, and in statistical mecha-
nics it should be reflected in the fast decrease of the correlation
functions for great space separation, In the case of statistical
mechanics, however, the situation is slightly more complicated than
in quantum field theory, and this is because long range correlations
do indeed appear. We, therefore, have to be careful by not exclud-
ing interesting cases, and we shall see the right description is one
in which the algebra, the states and the invariance group together
possess certain propertles. We start with a rather elementary, but
very important, example, the case of quasilocal algebras.

I1I.C.2. Let a*(x) and a(x) be the usual (second quantized) creation
and annihilation operators defined on a Fock space. More exactly,
we shall consider the smeared out operators, symbolically written as

a*(f) = [f(x) a*(x)dx; alf) = [f(x)a (x)dx

where f is in £ (IRS).

For operators satisfying the canonical commutation rules,
a*(f) and a(f) are unbounded closed operators. In this case, one
writes down the polar decomposition, and, instead of a*(f) or a(f)
itself, one considers the partial isometry and the spectral family of
the hermitian part.

In the case of operators satisfying the canonical anticommuta-
tion relations, one has bounded operators on the Fock space, but
we shall consider only operators which are products of the same num-
ber of a* than of a. This is because we only want to retain obser-
vables.

There are now many different C*-algebras which may be asso-
ciated with these operators, and there is no choice which would be
the best under all circumstances. In statistical mechanics, however,
the restriction of a well defined local density imposes restrictions
which will enable us to make a "standard" choice.
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II.C.3. Let m(g be the space of infinitely many times differentiable
continuous functions of support contained in 6. We shall denote by
% (6) the C*-algebra generated by all operators

{ax(f), a(f)|f ¢ ss}

and A.(6¢) the von Neumann algebra generated by the same operators,
thus

A®) =96)"
Note that in the case of the commutation relation, A (¢) is a factor
of type Is.
We shall further define

B = U B(6)
& bounded

as the algebra of quasilocal operators and

N = U A (o) resp. A= u A
6 bounded 6 bounded

We notice that the local algebras which we are defining here
are not the same as those which we would define for a field theory,
because in the latter case, we would generate the algebra using ¢(f),
cb(f) . The reason for that is that in the first case, there exists a local
"number of particles operator.” This is not the case in quantum field
theory, the "number of particle operators" not being a local one.

II.C.4. In the case of the Fock representation, we know that there
exists an operator "number of particles." Therefore we also know
that for every bounded region &, there exists an (unbounded in the
case of the CCR) operator N(c), affiliated to A(6). There is an in-
verse to this proposition, and it is given by the

Theorem: A representation of the canonical commutation or anticom-
mutation relation by linear operators on a Hilbert space possesses an
operator "number of particles" if, and only ,f it is unitarily equiva-
lent to the Fock representation, or to a direct sum of representations
unitarily equivalent to the Fock one, or, in other words, is quasi-
equivalent to the Fock representation.
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Proof: See Garding and Wightman, Proc, Nat. Acad. Sci. U.S. 40,
617, 622 (1954); Dell'Antonio, Doplicher, Ruelle, C.M.P, 2, 223
(1966).

II.C.5. For evident physical reasons, we are, in statistical mecha-
nics, only interested in such representations m (faithful, and we shall
see that this last property is always satisfied in this model, A being
simple) of 8 (or A), such that there exists an operator "number of
particles® for each m®(6)). But we know that this is true only if
m(®(6)) is quasiequivalent to the Fock representation, but this means,
of course, that 7 can always be extended to A (6) (and hence to 4 ),
and that the mapping of A (6) onto m(A(6)) will be normal. It is,
therefore, permitted to work with the weakly closed A (6) instead of
the B(6).

I1.C.6. The standard procedure, in statistical mechanics, for con-
structing states in the thermodynamical limit, is to define first local
states, and then take the limit. This procedure also applies in our
case; we have,however, a very severe restriction to impose on the
limiting state f, and this is that f has to be normal on A4 (). Other-
wise, whenever we shall make the Gelfand construction with f, we
shall not have a representation of A () quasiequivalent to A ().

Fortunately enough, this criterion is simple to satisfy in our
case, and this because we have shown that we could take the alge-
bras A4 (6) as von Neumann algebras.,

Let, therefore, B be a box, of volume V(B) , centered at the
origin, and A(B) the corresponding local von Neumann algebra. Let
further f5 be a state on A (B) such that fB(NB) <=, where N is the
operator "number of particles"in B.

Let now {Bi} be an increasing sequence of boxes, such that

lim £, (NB.)(V(Bi))-l

i= i i

exists and is finite, We suppose, further, that f3, converges weakly
on each A(6); that is, for i, j sufficiently large, and B,, B, 2 @,

i" 7
and for any a € A(e),

lim
1] -

IfBl(a) - fB_(a)l =0
i i
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This hypothesis can be physically interpreted by saying that the phy-
sical observables of the infinite system should have as expectation
values the limit of the expectation values for the observables in a
finite system. In order that the limit has any meaning at all, it is of
course also necessary to show that the limit is independent of the
choice of the sequences of boxes (or other volume) taken. This has,
of course, to be checked in every particular case, as we shall also
see later.

Under this hypothesis, it should be clear that fB converges
toward a linear functional defined on the whole of A :
Proof: It is evident that the limit is a functional on ¥ = @Ubd A@®).

Let now b € A, € > 0. There exists © bounded, 6 < R* and an a € A(6)
such that ][bua | <e. Let now f be a normal extension (arbitrary) of
[ = fB to A”. We have that

[fi(b) = %J,(b)| <2+ |f () -‘Afj(a)l = 2¢ + ;@) - £,(@)| < 3¢

Furthermore, the limit is not depending upon the extension f
chosen: more exactly, let
i ~ 1i ~ ~
i t,9= """ 3., fi=gi on A(©), for ¢ bounded .

o 1= 9y
Then, for b € A, € > 0, there again exists a € A (6), 6 bounded, with
la-b|l < €. For i sufficiently large, we have that

|i®) - )| s 26 + | @) - 5)| < 4e + |{,@) - 5,@)] .

Let now i be such that B; 2 6, then f;(a) = §;@), ¥a € Alo), thus =g
onA.

II.C.7. The next question to answer is of course whether we have
any guarantee that the limiting state will be in any way an acceptable
one, and, as we have already seen, one condition is to have a well
defined local number of particles. That this is automatically true is
due to a very extraordinary property of von Neumann algebras, namely
the

Theorem: Let 9 be a von Neumann algebra, f. a sequence of positive
linear normal functionals on %, converging weakly on % to f. (i.e. ¥ a
ey, |f@) - f@)] T 0) Then f is normal. If U is a type I factor,
the convergence 15 uniform.
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Proof: See Sakai, Proc. Japan Acad. 33, 439 (1957); Dell'Antonio,
Comm, Pure And Appl. Math. 20, 413 (1967).
In our caseé we therefore only need to recall that A(®) is type I.

Note that the above mentioned theorem only is valid for von
Neumann algebras. It is in general false on C*-algebras.

Once one has constructed a particular state having the proper-
ties desired, one then makes the Gelfand construction. The fact that
the limiting state will be normal on the A(g) implies that g (A(e)) is
again a von Neumann algebra, and of the same type (but no longer
necessarily a factor).

II,C.8. If we now consider the commutation properties ofthe algebras
.A((g), we first remark that these algebras are not local in the sense
that 6, N 6, = {p}#>A(6,) <A(B,)’. We know, however, that the
commutator [a*(x), a(y)] decreases like an exponential. This means
that for great distances of their support, the observables essentially
commute. This property is an extremely important one, and we shall
study it in detail in the next section, but before that, we want
quickly to examine what would happen if we had strict locality. We
have the following theorem, due to Misra (H.P.A. 38, 189 (1965)).

II.C.9. Theorem: Let be given a mapping 6 - A(8) of the open
bounded sets & € R® into the set of all von Neumann algebras, such
that

1) Ale) is a factor

2) 6, €6, = Als,) < Als,)

3) (91 n @2 =9 =.AJ(®1) C.A[GQ)

4) There exists a representation of a nontrivial noncompact
group of translations (discrete or continuous) in Aut(A).

5) % is separable.

Then the C*-algebra A= U A (8) is simple.
& bounded
Proof: We shall first show that V' = u A (6) is simple.
6 bounded

Suppose & is a two-sided ideal of N", then there exists at least one &
such that § N A(6) #¢. Put 3N A(8) =3¢ .Jg is clearly a two-

sided ideal of A(e). But A(6) is supposed to be a factor, so it cannot
be finite, since finite factors are simple. We may further suppose
that there exists a nontrivial projector p € Jg (Naimark IvV.22.1).

Take A(®,), 6, N & =¢, and A(®,) infinite, this certainly exists be-
cause of the invariance under translation. We claim, now, that p is
an infinite projector withrespecttothe algebra A(Qg), 6, =6U®B,.
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Suppose it were not the case, then the reduced algebra A(6;)  would
be finite but this algebra contains as subalgebra the algebra A{g,),.
But as p € A(®,)', this implies that A(5,) is isomorphic to Als,),
which we supposed infinite,and as a finite algebra cannot have an
infinite subalgebra, we conclude that p must be infinite withrespect
to A6s)-

This in turn implies that there exists an isometric operator
w € A6, ) such that ww* = 1 and w*w = p (Naimark, VII 35.5. prop.
VI). From this follows, however, that wpw* = ww*ww* =1 € 3(g,).
Thus 3 (6,) is trivial and hence A is simple.

Let us now show that A= Mis also simple. It is sufficient
for that to show that all representations of Aare faithful.

Suppose now that 7 is a representation of A, t€ A, and
mi)=0. Let t, be a sequence of elements of ¥'such that t, con-
verges in norm toward t. We have that

e =)l = lInte ) ~m@h = e )l < e, - ¢l

But t_ belongs to a certain A(@n), and asNis simple, m(A(s))is
faithful, and thus preserves,the norm since ﬂ.(@n) is a C*-algebra,
thus [ir e )l = lit Il = it | < lity = tll, thus [lt,l = 0, and hence

t =0, TRerefore all representations of 4 are faithful and A is
therefore simple. Q.E.D.

II.D. Asymptotically Abelian Systems

II.D,1. Definition: A palr {9,a} consisting of a C*-algebra % and
an homomorphism g = o, of a locally compact, noncompact topologi-
cal group G into the group of the automorphisms of 9, is called an
asymptotically abelian system, if to anye > 0, a,b €9, corresponds
a compact KE G, such that g £ X implies

IIEa,ag(b)] f<e

Such a pair is called weakly asymptotically abelian, if ¥ e>0,
a,b €YU and any state f on %, there exists a K< G, compact, and
such that g € K implies

lf([a,ong(b)]yl)< €

In order to simplify notations, and because it is anyway the most
important case, we shall take as model for G the group T of transla-
tions x.

We shall further define:
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II.D.2. Definition: Let f be a state on %. f is said to be strongly
clustering (fortement essaimant, in French) if ¥a,b € %,

lim -
|| = ol £7 @) ~ £lr, @) £B)] =0
Let g be a function on R® , we define as the mean M(g) of g
over R®,
M(g) = lim 3 G
9) = lim 75 [ gb)d®x
Lo @ |xl$ L

whenever it exists. This mean is the (C,1) Cesaro mean (cf. Hille
and Phillips, Functional Analysis and Semi-Groups) and is also
called the Wiener mean.

We shall say that a state is weakly clustering if

M(E(r ()b = £lr_a) 1(0) = 0

II.D.3. It is clear that if a function g is continuous and tends to
zero at infinity, M(g) = 0. We conclude therefore that any strongly
clustering state is also weakly clustering,

If f is T-invariant, we have that

M(f(r_a)) = M(f@@)) = £@a)
and we can write the property of weakly clustering as

M(ttr, (@)b) = £(a) £(b)

II.D.4. Definition: Let {%,a} be an asymptotically abelian system.
The weakly clustering G-invariant states are called E-states, or
ergodic states. -

This class of states is truly remarkable; that they represent
a generalisation of the classical notion of ergodic states should be-
come clear after some results, especially the fact that ergodic states
are extremal among the set of invariant states.

II.D.5. Theorem: ZIet {¥,a} be an asymptotically abeliah system,
f a G-invariant state on 1, and TTf(S!I) the Gelfand construction induced
by f on 5, *¢ € §; the cyclic vector such that (xf, nela)xg) =ffa), va
€9, and uf(a.s the representation of G on Dg- Then tfﬂe following prop-
erties are equivalent:

1) fis weakly clustering (and hence a E-state)

2) x. is the only vector of %, invariant under ug(a)

3) LetR ={m; @) U ug (@)}, then R’ = {1}
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4) R (as defined under 3)) is a factor

5) f is an extremal element of the convex set of all G-
invariant states.
Proof: See Doplicher, Kadison, Kastler, Robinson, C.M.P. 6, 101
(1967); Lanford and Ruelle, JMP 8, 1460 (1967).

II.D.6. The fact that the E-states are extremal in the convex set of
all G-invariant states is of course the most important result. It is
perhaps useful at this point to recall an essential result of classical
ergodic theory:
Theorem: Let K be a compact, metrizable space (phase space) and G
a group of automorphisms of X (time evolution). Then a G-invariant
measure on K may be decomposed in a unique way into extremal G-
invariant measures (ergodic measures).
References and Proof: R. Phelps, Lectures on Choguet's Theorem,
Van Nostrand (1966); K. Jacobs, Jahresber. der Deutschen Math.
Vereins 67, 143 (1965).
We should like to have an extension of this classical result to the
quantum case, that is, we want to show that any G-invariant state
may be uniquely decomposed inh E-states. As in classical theory,
one lets correspond the pure thermodynamical phases to the E-states.
Let therefore B() be the set of states on %, u a measure on
B@), normalized to fdp = 1. To each u corresponds a state fu by

£,@) =] ) du()

In the converse case, where f is given, we would like to have that
f may be written as

f@) = j‘fg(a) dulf,) fau =1

where the states f: are G-invariant and exfremal, thus E-states, and
are parametrized by the intensive quantities of the system, like tem-
perature, mean density, and so on.

II.D.7. Letf be as above. One could imagine thatf = fl-b may
- H Hi

happen even if 1, Zu, . In such a case the decomposition of £, would
not be unique; it is also conceivable that the decomposition may not
exist at all. We shall therefore develop some criterions.

We first define the measure 6f, by

te) = [ £,@) d(6(e)
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and we introduce a partial ordering among the set of measures on B():

My <Hg ® Uy (p) <palp) ¥po ,

where p are convex cohtinuous functionals on B@), u(p) being defined
by

ule) = [ p(®) au(o)

and p convex meaning

POE + (1N)E) S Aplfy) + (1-0) p(;) ,  O<As1
We now define a particular linear convex (co,ntinuous’_)lfunqtional

Py @) = £e)
Verify that Pa s convex: ‘
(kf1 +(1-x)f2) = (\f, +(1-)\)f2 )a)
S =rf @)+ (L -0)E @)
=Apg(E) + (1 =N (5)

As we have the equality sign, we may also conclude that both p_ and

~py are convex, and that pa{f] is real if a =a*. We are now reé:'ldy )
to see under which (sufficient) conditions, we may have that

f =f . and :
My 2% Ha #ua

Theorem: The measures related by the partial ordering < 1nduce the
same stite.
Proof: It is sufficient to remark that M, <My implies:

Uy (p‘a) < Up (Pa)
and also
Hy (=0 ) = uz (=p_)

or
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(P ) < -1z p)
and thus
i) =walp,)
that 1s, e
| [E@)du, (&) = [fa)dy, () QED.

Theorem: If f is not extremal, there exists . > bgs W # 85
Proof: Let now ' '

f=7fy, + (1-M)E,, £#£,, 2 €(0,1)
Put p =X6f1+ 1- k)&fz . We are going to show that 65 < . Indeed,
Sf(p) = p(f), and sipce, for a convex p,
p(®) < (f) + (1 -N)(E)

we can write

8.(p) = u(p), thus 5. <u.

As 6f7‘69,1ff7‘g,wehavethat
5.4 QED.

Corollary: If f is an E-state, Gf is maximal with respect to the
relation <. .

In the case where f 1s not extremal, we have to prove the existence of
a maximal measure u > 6¢, and then show that its support contains
only E-states. )

The first statement is a consequence of the

Theorem: (Lanford and Ruelle, loc. cit.) Let U be a C*-algebra with
an identity, asymptotically abelian and f a G-invariant state on %.
Let further ﬂf(&I) be the Gelfand representation induced by f on %;.
Then there exists a unigque maximal measure Hg On the set of all G-
invariant states, such that :

Llf>5f '
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i.e., Va €, [gl)duelo) = [gla)dselo) = £a).

(This measure Us is given by

uf(pal Pa, ** -pan) = o me@y o @z )pe. .. p(@ )X
where Xy € ©¢ is cyclic for ¥ and where f@) = (<, ﬁf{a)xf) ¥a €9, Pr
being the projector on the subspace of §; invariant under ug(G).)

It remains to show that the support of He is contained in the
set of E-states. Unfortunately, we don't have a completely general
proof. For instance, it is easy to prove that
Theorem: If 9 is further separable (as Banach space), then p_is sup-
e f
ported by E-states.

This theorem does not satisfy us completely, since the alge-
bras of interest in physics are rarely separable (if § is of infinite
dimension, 2(9) is not separable). It is at this point that one may
use the fact that, in most applications, % may be realized as the norm
closure of the union of A(¢), the A(s) being of type I, and the fact
that we want to have states with well defined local number of parti-
cles. One can thus prove the
Theorem: Let % be a C*-algebra with identity element, asymptotically
G-abelian, f a G-invariant state on 4. Suppose further, that there
exists a countable family {Qli} of sub-C*-algebras of 9, such that
this set be dense in 4. Let Si be a two-sided ideal of ¥;, complete
in norm and separable (@s Banach space). Finally, suppose that the
restriction of f to each3; be of norm 1. Then

1) 9 is separable

2) If u is a positive measure on the set of G-invariant states
on ¥ such that u > &¢, y being normalized to 1 on that set, theny is
maximal on that set if, and only if it has its support on E-states.

For the proof, see Lanford and Ruelle, loc. cit., and Ruelle, C.M.P.
3, 133 (19686).

We remark that this theorem applies to the quasilocal algebra
A generated by the A{6). The two-sided ideal being in that case
of the form €@ I, since all "4'('51} are of the form 2(3) ® I, € being
the two~sided ideal of compact operators. That £ has norm 1 on €
implies that f will be normal on A (®).

It is possible to formulate different sets of conditions; in par-
ticular, we have the
Theorem: Let f be a G-invariant state on a G-asymptotically abelian
C*-algebra 2, and let Of be the Hilbert space of the Gelfand con-
struction induced by f.

Suppose that %f is separable. Then there exists a unique
decomposition of f into E-states:
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f@) = [o, @) dulg,)

where the gg are E~states.
Proof: See Kastler and Robinson, C.M.P. 3, 151 (1966), th. 2.
This theorem is therefore an answer, even if only partial, to the
question asked above. The two last theorems are in fact not essen-
tlally different, the hypothesis of the first one implying the separa-
bility of %._. 4

As far as the physical interpretation is concerned, it may be
useful to develop some more properties of the E-states. Indeed, it
is possible to show (cf. Kastler and Robinson, loc. cit.) that for an
E-state f, and the corresponding @f,

M[ G I @) = G fadx)lz) | =0

¥acdU, ¥y, 2 € Hy.
If one puts y = z, we get explicitly

S J axyingn,@)9) = g ax) .9
This means that in the Hilbert space of the Gelfand construction
induced by f, all vector states describe states with at most local
variations from the equilibrium, so that the mean of the measurements
over all space is independent of the particular vector chosen.

It is further possible to show that

MI:lH'le(Tx,a): (xf,rrf(a)xf)}YIl]= 0, V¥y€q, Vacy

But this last statement exactly amounts to saying that the fluctuations
of the spatial means of quasilocal observables vanish, which is a
characteristic of system at the equilibrium point with a single ther-
modynamical phase.

I1.E. Classification of Ergodic States

In the preceding section, we did discuss the role of the E-
states and their relations to the equilibrium. There is, however,
another way of looking at the problem, and that is to look at the
spectrum of the infinitesimal generators of the translation in the
representation induced by a given E-state.

JI.E.1l. We shall consider the following objects: Let T be the group
of translations in RS, ¥ a C*-algebra, T-asymptotically abelian, and
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f a T-invariant state on Y. Let further m; be the Gelfand homomor-
phism defined by f, &, the corresponding Hilbert space, uf(x] a uni-
tary representation offT on %, X, the cyclic vector of D¢ (by respect
to ﬂf} and invariant under uf(‘x)- We already know that in the parti-
cular case where f is an E-state, x
under the u,(x). ‘ .

We have the following theorem:
Theorem: We may write

¢ is the only vector of E;f invariant

. ip x ipx

uf(x)=\z Ep)e ° +‘f‘e .. dE(p)
es R ,
IDn D [o]

where the sum corresponds to the discrete spectrum and the integral
to the continuous one. The discrete spectrum is a subgroup of T,
that is, if p,g € SD, then p+g and -p € SD. Further, t‘heAproje,ction
E(p ) are one~dimensional. _ '
Proof: See Kastler and Robinson, C.M.P. 3, 151 (1966). "
This theorem enables us to give the following definitions

II.E.2. Definition: Let f be an E-state, X¢ the T-invariant vector
of 9§, cyclic under nf(m), uf(x) the unitary representation of T on af._
Then )
) i) fis called an Fy-state, if xg is the only eigenvector of ug
(that is, S contains only The origin)
ii) Tis called an E,. -state, if the spectrum S, of u, spans a
a m-dimensional subspace of R®, and if there is a nonvanishing mini-
mal distance between any two points of SD.
m iii) f is called an Eppp-state if it is not a E;-state nor an
EH—state .
Rémark that the condition ii) means that S._ has no accumulation point,
thus for an Eqpr-state, Sp has an accumulycion point. :
As will become clearer after some examples, the idea would
be to interpret EI—states as corresponding to fluld phases, and Eqr-
states as corresponding to a lower symmetry, for instance a crystal
state. There is no intuitive interpretation of the Ejjr-states as of now,
but one can construct examples. :

II.E.3. In order to discuss Eqp-states, we are going to introduce a
decomposition of these states into states invariant only under a sub-
group of T, which we shall denote by TL ( by analogy to the discrete
translations on a lattice). TL is defined as being the subgroup which
leaves the eigenvector of the representation of Tinvariant. It is clear
that the Ejp—state 1s invariant under Ty, but it is not extremal with
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respect to Ty . We introduce the group T/TL = k of the translations
modulo Ty . Let us call T the dual group of T ("impulsion space"),
S__ appears as a discrete subgroup of T, and the group T may be in-
terpreted as the annihilator of SD. In other words, Ty, is isomorphic
to the dual of SD. Sp being discrete, k is compact.

II.E.4. Example: Take the particular case T = R°. The E-states
possible are E,, -states and E..° -states.

Considler first an Epf'-state. Sy consists then in equally
spaced points on a line, the equality of the distances following from
the additivity of the aigenvalues If we choose cartesian coordinates
(& ,%5) in R, and (p; ,ps) in T, we can suppose, without loss of
generality, that Spy = {(an,0)}, where N runs over the integers and a
is a fixed length. The associated subgroup TL} is the group of dis-
crete translation in the direction x; , where M runs over the integers.

Therefore Ty, ls the group of translations whose component in
the direction X, is an integer multiple of 2m/a, and the component in
the direction x, 1s arbitrary.

The quotient group k consists thus in the translations in the
direction x, modulo 2n/a. It is therefore isomorphic to the group of
rotations, modulo 21 of a circle of radius 1/a. A function g over T
can be considered as a sequence of functions gp(%a) . and the inte—
gral withrespectto theHaarme_asure on TL is given by

+_°? +a
) gt ax,
M= - —co

If we now consider an EH2 -state, T, consists of the transla-
tions of the form (2nrM,/a,, 27M,/a,), where a, and a, are minimal
fixed distances of SD' and where M, and M, are integers. In this
case, k is isomorphic to the product of two groups. .describing each
the rotation on a circle. A function g on TL is then given by

40 +

Z Z InMy M,

Ml = - 1\/[2 =
In general‘, we have the
I1.E.5. Theorem: Let f be an E;.-state withrespecttoT. There

exists a unique decomposition ofo into states fg, invariant and
weakly clustering withrespectto Ty (thatis, E~states withrespecttoTp).
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This decomposition may be written using the Haar measure
dm(€) on the quotient group K = T/I‘L,

f=[ £, dm() -
k

so that the states f are mapped onto each other by k,. that is,
f a) =f_(1. . : ;
gn@ = £ (1, @) o

where y is one represehtant of the class n € k.
Furthermore, the fg are B states w1threspect to TL (These
are sometimes called L-states.)

II.E.6. The generalisation of these results, obtained up to now for
the group of translations, to a noncompact locally compact group G
is possible.

Let, therefore, G be a C*-algebra, weakly G—asympt‘otically
abelian, f a G-invariant state on ¥, 11.(4) the Gelfand representa-
tion induced by f in 9¢. Let further ufEG) be the unitary (strongly
continous) representation of G on og. Let also e, be the smallest ~
projector in $f, whose range contains all finite dflmensional subspace
invariant under ug(G). e is certainly nonzero, since xs € ef bf. Let
finally Ng be the kernel of the representation of G on eff, and (}f =
G/Ng.

Definition:

i) fisan EI—state, if G.is reduced to the identity element.
i) fis an Epy-state, if it is not an E;-state, and if Qf is
compact. )

iii) fis an Ejpq-state, if Gg is not compact.
The connection with the definition given above is easy’ to make.

The decomposition of E; -states is then expressed as follows
Theorem: If U is G-asymptotically abelian, with an identity element,
G being s-continuously represented (g = e:g) in the group of the auto-
morphisms of 4, then an E-state f (withrespecttoG)on U is an E
state (withrespectto G)if and only if there exists a maximal suggroup
HC G, such that G/H is compact, and there existsa unique state f ,
which 1s an E_-state with respect to H and such that

I
fl) = £ (@ "a) du(g)
GJ‘/H 0.9

where (g) is the Haar measure on G/H, normalized to 1, and & = .’
is the canonical homomorphism of G onto G/H.
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In the example considered above, we had that
G=R,H=7 (or z‘*‘), du(g) =dx, x€[0,1]
If f is an E-state withrespect to H, then evidently f = f,. Inall
other cases, f, #f, and fo is not invariant under G. We therefore
conclude that an EH—State may uniquely be represented as a mean

over states possessing a lower symmetry.

II.F. Qﬁahtum Spin Systems

II.F.1. Let us consider a lattice ZY, and associate to each point
x € ZY an Hilbert space H_.  We shall suppose that all these @, are
isomorphic to an § of finite dimension, N + 1,

Remark that we can understand that to ea_ch point %, an "ocecu-
pation number” s associated, n, = 0,1, ,N and one can then
think of % (ny - nftas the value of the component of a spin at x,
hence the name often given of quantum spin systems, or, sometimes,
lattice gas.

. Let now 6 be a finite set of points Xg. ¢ = {x_g}. To & we
associate the direct product space 9e by

&, = @ ?b
6
. ,;E@ l;
A trans;ation by a € 7Y is described by Taﬁ)x = ba+x and Ta$2@= 93®+a
x€Q X+a

To each finite set of polnts'6 < Z , we let correspond the
algebra 91(6) = 2(5 ) .

IfGCS A, then oy, 1s isomorphic to g @ © A6 ¢ and we define the
the canonical 1mbaddinq %\e of Ql(@) in m(A) by

A=A ® 1.
%o A V2
This last application may be used to define ‘the relation between the
quasilocal algebra, and the'algebras %(A), in defining o by the com=
mutative diagram ’

", ¥A €

aq .
a(o)
l\

Ap) — )



70 M. GUENIN

that means that we can consider 9 as being % = U OLA A(\), which Is a

A
normed algebra, with norm [jaAl = [[A] _and involution (ayA)* =a,A*,
Let ¥ be the norm-completion of Y. ¥ is a C*-algebra. The
natural representation of the translations is given by

Ta W) 2 AR +a), T a =W‘a AwW_ ™, :

= -1 .
with Wa Vx+a Vx , and Vx being the isomorphism between 9 and ?;x

VX9 - bx

We shall always write %(¢) < 9 in what follows, but this has to be
interpreted as meaning qgﬂl(s) c .

" Note that if ¢, and 6, are disjoint, %(8,) and %(¢,) commute
(as subalgebras of %) as they are factors of type I, we see that the
general discussion given above applies to this system; in particular
9 1s simple, T-asymptotically abelian.

II.F.2. We want to introduce now some forms of interaction; and we
shall do this by introducing very general n-body potentials.
The interaction & is a function on the finite subsets of Z¥ R
which satisfles
i) 3(®) is a self-adjoint element of %A(s).
i) 3@) =0 ¢ = empty set.
i1i) ¢ (6 +a) = Ty 2 (®)

) |g| = z lz@)] - N@™ <=

6 finite
0€EB

with N(6) = number of points of 6.
We introduce further the Hamiltonian Hy = z &(6), A finite

6C A

= zV, One would hope that, although Ki-r’nm HA doesn't exist in any

sense, ' : )
iH, t -iH t

Alf‘”;e Mae ™™, acq,

would make sense, and we would denote it by T.A. Unfortunately,
iv) is too weak for proving that, so that we shall make a somehow
stronger hypothesis:
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w') Jell =Y Je@l exo @) - D<=
oEB
and we shall finally denote by 8 the Banach space of the functions &
satisfying 1), i), it1), iv’).

II.F.3. As anexample, it is perhaps useful to look at the Ising
model in two dimensions.

We have Z° , the spin component takes two values thus g 1s
2-dimensional. We can therefore describe the elements of b by .
"spin up" as (1,0) and "spin down" as (0,1).

In the Ising model, the interaction energy (and the potential)
is described, up to a positive factor, by j, ‘p; between the nearest
neighbours (u takes the value +1 for spin up, and -1 for spin down).

3(6) is therefore defined as

i) N(@®) = 3 or N{(g) =
3 (e) =0 if '
ii) N(8) = 2 and the distance between x, and x, € ¢
is larger than one lattice unit.

in the remaining cases, we can write explicitly
2(0)(1,00® (1,0 =(1,0)® (1,0)
5O (1,08 (0,1)] =-(1,0) @ (0,1)
§(@)‘:(011)® (110)] =_(0:1) ® (110)
3 (@)(0,1) e (0,1)] =(0,1)® (0,1)

which could be more elegantly written in a matrix form with

10 10
)
IV S VA

The properties 1), 11), ili) and iv*®) are éasy to prove.

II.F.4. The natural definition for a "local" Hamiltonian Hy s corres—
ponding to a finite region would be to put
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H, = z 3(6)
6C A

Note that there is no "free" part. This is an essential feature of the
lattice gas, and in fact what makes it both within reach of our tech-
niques and of little physical physical content!

It is clear that the restrictions we imposed on the 2 () are
sufficlent to ensure the existence of Hy as an operator on $,. It is
also clear that the limit A # « (that is tending to cover the whole
lattice, what we always suppose to be done in a uniform way) does
not exist.

There exists, however, other quantities of interest than the
Hamiltonian itself, and, for instance, the first question we could
ask is whether the dynamics, which supposedly should be generated
by the Hamiltonian, still exist. For that, we want to prove that

. iH,t -iHt
Sam i o s o [
t A=

exists, for all A € Y. If we were to start with an A € %(® for some
finite &, and expanding e'HATA e'lH/\t in series, we would get the
expansion

T A= A_mzi—)- Q_ (5,8

n=0

where

Qn(HA IA) = [HAI Qn_l(HA IA)] 7 QO(HA IA) =A

Because of the local properties of the Hamiltonian, we observe that
if A gets large, Qn(HA ,A) only depends upon A via N-body forces,
where N is nearly N(A). But these forces are necessarily very weak,
because of our condition iv’). We therefore expect that, term by
term, our perturbation expansion no longer depends upon A, for A
sufficiently large. In quantitative terms, we have the

I.F.5. Lemma: Let® €8, A€U(\;), Ay ©A. Then the following
estimate holds: ‘

lo, 1 a0 < Al - expvy))nt@ el
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Proof: We start from the fact that we can write

O E M=) ) [ae), L., la(e).A]...T]
6, <A 6, A

Bécause of "locality,"” the commutators vanish for regions of disjoint
supports, we-can therefore extend the sums to infinite ones by adding
vanishing terms:

Ife, MA, =&=[2(,), Al =0

e, N(g UAy) =9 =[8(,), (2(6,),A]] =0, etc., and we

R )

@ic'l\ 6, ki=1 6: N(@)=ki

write

We therefore get

= i | n x|
(e, 200 < fal 2"
i kiisok

n B
{ [ SR Y
i=1 .

n

© Y 'lI@(@'i)ll}
@130

N(s,)=k;+1
Now n
ﬂ (N(A, )+, +2 k)< (N(Ay)+k, +. . .-F_k'n)r.l
i=1
< n! exp{N{A; )+k, +.. .+kn)
n

< nlexp(N(n) ] exp(kii
i=1

And thus
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n ’ ‘ k
"Qn(HA,A)“ <2 ||A|n! exp(N(A,)) z i]jl z B i" Q((91)"
- k
n

Kyooo (9190
N(@i»)='ki+1
n . n
<27 A n! exp@( N |le]” QED
II.F.6., Theorem:

iH t -iH, t
T.A)= Um e Ape A
t A=

exists ¥ A € %(8),.6 finite, and |t| sufficiently small, in the norm
topology, and the convergence is uniform for small |t| . It defines
uniquely a l-parameter group of automorphisms on the whole of 9.

Proof: (Sketch!) _

1) In the perturbative expansion of T,A, each term converges
(by lemma II.F.5) uniformly in A. Because of the estimate, given in
lemma II.F.S, the series converges for |t| small, [t] < (2] &])~*.

2) One extends T4 to the whole of ¥ by continuity

3) If |t |, |t ] and |, +t,| < (2 [|2]])™ , we then have the
group property

‘Tt1+t2A =Tt1 th A

using the uniformity of the convergence. One can then show that the
automorphism of ¥ generated in such a way may be extended to all
real t, with the same group property. -

II.F.7. The standard way of defining an equilibrium state in statis-
tical mechanics is to take the limit of a sequence of Gibbs grand cano-
nical ensembles corresponding to increasing volumes:
~-H
A
s Tr A[e A)
p ()= lm (A)=1lm =
A= o A= @ A
Tr e
A
where Try means the trace in the space Hp .
It is pogsible to show the following
Theorem: 1) p~ (A) exists on ¥
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2) F’l{TtA}‘p (A) VAEY
3) IfA,B€%U, IF, a bounded continuous function, defined
onf{z|z€C, 0sImz= f}, analytic in the strip 0 < Im z< B, and

such that
o'B 7, A) =) and p*(r,@)B) =F(t +18)
This last. property .is vthé Kubo-Martin-Schwinger boundafy condition;

II.F.8. As:far as the thermodynamical quantities are concerned, one
can construct
-H
Be.8) =1 e ]

F(@,Q;) =log 3(s,3)
P(6,%) = N@)™ F(®,8).

One has the following.
Theorem: For & € 8, the lmit

P(3) = Um  N@®)™ F(,8)= lim P(6,%)
N(§) =~ N(g)~=

exists, and the function § - P(3) is convex and continucus on the
Banach space. 3,

|p@) ~P@)| < g -ull

Proof: See Rcbin-l;on CMP 7, 337 (1968).

If we now put B = and define =g (8,8) = 3(6,B%)  then = can be
interpreted as the partition function corresponding to the set ¢ and
the temperature T = (k)™ . The free energy is then

PB,D=5PE,H =5 Un  NO log g (,2)
N(e)-=

II.F.9. The few points we discussed here have to be taken as a
small sample'of what can actually be done with these techniques.
‘We hope, however, that this illustration will be sufficient to induce
many to read the original literature. .
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Section III. Constructive Quantum Field Theory

Roughly speaking, constructive quantum field theory repre-
sents an attempt to use the knowledge gained in working in the dif-
ferent "axiomatic" approaches, for a head on attack of the basic
problem of quantum field theory.

The starting point is certainly the 1964 Cargese lectures of
Wightman; then came the thesis of Lanford and Jaffe, and work by the
present author, all at Princeton. The decisive steps were made by
Glimm and Jaffe in a series of fundamental papers, where they use
another stream of ideas, coming mainly from Friedrichs (Perturbation
of Spectra in Hilbert Spaces) and results of Nelson, Segal, Feder-
busch and others,

The present situation is probably best exposed, together with
a lot of new results, in the beautiful 1968-69 Paris lectures of Hepp,
from which we shall borrow quite a lot.

In the few remaining lectures, we plan to give a very short
introduction to this subject, putting the accent on the main under-
lying ideas rather than on techniques. One should be aware, how-
ever, that the technicalities involved in this approach are by no
means trivial, and that they make use of a great number of subtle
tricks and refined mathematical analysis, and that no real under-
standing of the subject can be gained without mastering them.

III.A. Fock Space Techniques

III.A.1. In what follows, x € R®, x € ]RS-'-1 , S being the number of
space dimensions (x,y) = x%y° - X'y, h=c=1.

() = +m? + @)

§ = Fock space;, 5= & Un :

n=0
pese p={olp €5, Yo e e <)
n=0
n dhj_
poka .. k), symmetrical, (p . ) = llo I* = ﬂl‘rz_“i ENEI A

s

- dk
] =2 = ——



ALGEBRAIC TECHNIQUES 77

One has the canonical representation of the commutation relations
(CCR) in 3:

lak), a@)] =0
fa®), a*@)] =8 (k-L)

if we-put for the annihilation operator a(k) and the creation operator

a*(k): "
ek cpn)(l_q iz .,,.l‘lgn) = (ﬁ@) wn(lj; T A ’]—<n41 k)
or, if one prefers, for uéf €8 (dQ) «fed? (IRS)
@@ o )k, unn k fnlrme)anl,..., 1B

and, similarly

(a*(_)cp)(&,...,__n_‘_l)"(ﬁz éL—k)cp (_1,... ,...l_(n)
From these definitions follows that
T '_ 1 : 3 : i kel -
(n ) _[‘dkl o .dk ko .4.}.1_<n)a*(‘151_.). . ‘..a*‘(_]sn)cpo

and, for f € £2 %)

a(f) €£@ 3 ) a*(@) €L . 8 ;)
with
fla®l ;. . Sifn 4]
l : .In 1 2 } (A.l)
I+l 1y - T el

LA X I N LS

III.A.2. We define on § the (unbounded) operator "number of par-
ticles" N by

i

Nan = mpn

It follows from the above bounds (A.1) that for f € £° ORS)
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oo ? ¢ 6,0
with
la*f@ a2 s el

and. where a# -stands for either a*.ora., More generally, we have the

Lemma; Forw € 2 R™), 1sism
w={dkwk, ,....k )a*(_l)...a*(_i)a(_1+1 eafk) L (A.2)
1s defined on D(Nm/z) and
nw<N+1>'m/2u < v,

and we leave the proof as an exercise

III.A.3. W is called a Wick manomial with numerical kérnel w(k1 e
e rkp) and ‘operator kernel : .

wlky ok Jar(k )...a*(k )q(_i+1 ...a(_m)—w(_) ]T a#(lsj):

The annihilation operators always stand to the right of creation opera-
tors, and the order of the creation with respect to the annihilation
operators among themselves is immaterial.

Hwen' ®"™), W formally defined by the expression (A.2) has
a meaning as a mapping

w: 8- »'
where
s
5

@ [--)
s=@ s®hcace= [ #&
p=0 L .. n=0

because of the nuclear theorem (or as a sesquilinear form on § X 8).
.The domain D(W) is.defined by * . ;; .. o ]

D(W) =3p¢p|cp €5,y |we) I2< w%
" n=0

Lemma: Iff=min (A.2), “°
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DW) #{0} » P R*™) 3w
The proof 1s again left as an exercise.

TI.A.4. Tor the operator kernel of W, and by an abuse of language,
for W itself, we introduce a graph:

I i+l
2

i m
where the line "j" lies to the left if a#(gj) equals a*(gj) and to the
right, if a#(gj) equals a(lgj] L LR

III.A.5. The formal product of two Wick monomials may always he
expressed as a sum-of Wick monomials {Wick polynomial) as follows
from the well-known Wick Theorem

Theorem: If V= [dk v(k) a*(k;).. axllal,,). . ak )
W = [dk wik) a*@y). . a*e)al,, ). . alt)

Then
vw=z Jdk oz v(k) wit) x
cs
arlly). . axl)alky,)).alk Jar@). araly, ). . ak):
. 2 tVWoo
aecs o

wherez extends over all "contraction systems" between paifé:
cs ' '

Ol ) arly D=0l L) bl )ave ) = s(hrt-_ést)

0<t< min {m-1,j}.

The proof of this theorem is well known and will not be
repeated here. It is obtained in using the CCR.

It is useful to represent graphically the theorem of Wick. One
gets for instance
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X

& > +/<_+O+—@-

and so on. Note that the exterior lines must always be to the right
or to the left. :

I

III.A.6. After integration over the 6 functions (which is well defined
if the multiplipatiqn of the kerriels is), there are two ways of repre-
senting the kernel of :\g\f: :

R B TN
a) a*la). A, ) arlalk, )2k ) alk)

°v(&..-]_(rl...l{_rn)Wﬁ;l.i._l‘(rl..gin)

or

b) a*().. a’@'. h .a*@}a{@iﬂ)ﬁ . a/@ a )

.‘rdgrl...v(gl...}_crl...lém) W'@l"'lc-rl"'-i’n)
that is, before or after integration on the variables of the contracted
lines. Tt should be clear that the representation a) is more suitable
for introducing counterterms whereas the case b) is not an operator
kernel. '

IIT1.A.7. TIteratively, one defines as Wick polynomial, the product
n

Wj; z extend over all compatible "contractions {aij}

=1 cs



ALGEBRAIC TECHNIQUES 81

The numerical kernel of each term is deduced from wy @...
ew,_ by identification of certain variables, determined by {U“i‘} .

Fach contraction system gives rise to a graph G, of vertices
Vy...V,, and % lines L, ...Ly (¢ =4(Q).

A subgraph HC G is defined by a subset {V,/,...,V_'} <
{Vorons ,Vn} with all lines of {L, ,...Ly} which are attached to its
vertices.

One says that 2 subgraphs H, and H, are disjoint, if they
don't have any vertex in common (but they may have common lines).

A line is said to be an interior line if it joins two vertices.
In the reduced operator kernel, one has to integrate over the corres-
ponding variable. Otherwise, it is called an exterior line.

The gquotient of a graph G by a subgraph H< G is defined by
the identification of all vertices of H and the contractions of all
interior lines of H.

Example:
N E A\VAAY S
VM‘% V| { 1vV2 } V4
G H G/H

Note that the topological equivalence class of graphs G is smaller
than for Feynman graphs, the exterior lines having to go to the right
or to the left, if they represent annihilators or creators.

Definition: A graph is said to be connected if all its vertices

are connected by internal lines. It is said to be strongly connected,
or one-particle irreducible, if the suppression of any line cannot
make it non-connected. )

1II.B. Local Algebras Generated by Free Fields

III.B.1. We define as a local scalar neutral field on 3 the operator
valued distribution

blx,t) = dk ieiﬁx a(h)ev_m@t+a*(-£)e,j“®t

1 Jn o
@*/? )
We define as local algebra, R(¢) corresponding to an open region ¢ of

the s+l dimensional Minkowsky space, the von Neumann algebra
generated by all ¢ (f), £ € §, and the support of f being contained in 6.
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) = {0 € 8®®*), Supp £< 6}

II1.B.2. Let & be some open region of ., where @_ is the hyperplane
%9 =t (one could take a more general spacelike surface, but this
does not bring anything essentially new). We shall suppose that the
boundary of § is formed by piecewise many times continuously differ-
entiable surfaces. Let & be the double cone spanned by @, that is,

6 ={x|&-y, x-y)< 0, ¥y € 8. ygel=¢
Let now R(§) = {8 (5,6 (0)| f,9 € 8R®), Supp f,g< 6}" we have the
following theorems due to Araki:

Theorem: ;
1) R(EJ @i)={liJ a(@i)}

2) R{g) = R(6), where 6 =6"

= = p— "
B RO = N RE) = N Rie) = U Rl
gi:g 6,26 @iCG

II.B.3. Theorem (Araki): &, 6as before, 6 =€ call

6’ ={x|x-y, x-y) <0, ¥y ce}; ¢ =g

Then R(8)’ =R(s’).

This is the famous "duality" theorem. Note that it is not true
for arbitrary regions, but the condition 6 = ¢” 1s in any case suffi-
clent. In what follows, we shall call regions of the form ¢ = ¢,
bounded by piecewise differentiable manifold, diamonds, and consi-
der only such regions.

I11.B.4. Theorem (Araki): © as before, such that ¢’ is not empty.
Then R(6) is a factor of type III.

III.B.5. Itis also clear that the standards axioms of local algebras
are satisfied, like locality, covariance, existence of the vacuum,
etc.

1II.C. Time Evolution of an Interacting System

III.C.1. As is well known, the requirements of translation invariance
and of a nontrivial dynamics, that is the existence of a vacuum
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polarization, exclude the possibility of having the total Hamiltonian
defined on the Fock space §. This is Haag's theorem, and it can be
stated in many different ways; one can, for instance, replace the
translation invariance by Poincaré invariance, and then drop the
assumption of a nontrivial vacuum polarization, and still get the
result that the theory must be equivalent to a free field if the Hamil-
tonian is supposed to exist.

If we put ourselves in the Heisenberg picture, the time evo-
lution is supposed to be given by ‘

AH(t) a e1H'l: Alo) e-th

where H is the total Hamiltonian., We know that in nontrivial cases,
this' Hamiltonian cannot exist, but this is not the really relevant
question, because the (formal) solution to the field equations is AH(t),
and it may be that AH{t) exists, without H existing; we have already
seen such examples in statistical mechanics.

III.C.2. The easiest Intuitive way of convincing ourselves that this
might work is to use a perturbative expansion (Schwinger-Dyson):
Suppose

iH t -iHot

- = o
H= Ho + HI . put HI(t) e HI e
iHot —iHot

and Aft) = e Ao) e

. t
AL ) = (o) e = a() + 1 { at, [mtt-t,), aw]

+ iaj'::itl j'tldte Bttt [B )00 |
[} (o]

+ ... (C.1)

Suppose now that A(o) is contained in R(g), where 61is some
finite region of space, at time t = 0, contalned in a sphere of radius
a. Suppose further that H. may be written in the form H, =

(:i)d x, where thy :1(x) %3 some local Wick po!ynomlalIm the (free)
fie ds. does not exist but it may happen that we are in the fortu-
nate posit}cm of proving that Hy¢ exists, where H; I hy :GOfE)d x
where f(x) € B(RS). We can take as a particular c oice cf £, the
function g, g € D, g(x) =1, for |x| < 1, glx) = 0 for x| =2, glx) 20.
We define then
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X\
Hy, = [ g(?) x

Consider, now, the first nontrivial term of the expansion (C.1) :hI:(x)
being a Wick polynomial in the free fields, Hy,(t-t;) has its support
on the hyperplane x° =t - t;; A(t) having its support on the hyper-
plane x0 =t. But, because of the local nature of the fields, the com-
mutator of two fields vanishes outside the light cone in the variable
of the difference of the arguments. Therefore, the only .portion of

H_ (t - t,) to contribute to the commutator is the part of the integrand
having its support in the backward cone spanned by the support of A.
That is, the first term of the expansion becomes independent of n,
provided:that n>t +a.

The same argument can be applied to all terms of the pertur -
bative expansion, with the same result. The conclusion is therefore,
that at least in perturbation theory, the locality of the interaction
ensures the existence of the time evolution of local observables (or
fields).

This intuitive argument can be transformed into a mathe-
matically rigourous one, as we shall see, but we first need a result of
the theory of semi-group.

I1.C.3. Theorem: (Trotter Product Formula) Suppose Hg, Hin,
Hy, + HIn = H._ are self-adjoint operators on a Hilbert space . Then,

n
in the strong topology of §, we have that
1H t m L om L
n _ lim < or Inr
e =5 - e e
r=~ o

This theorem is valid under much more general circumstances, but, at
least until now, this supplementary generality has not been useful for
our type of problems.

II.C.4. Theorem: (Guenin, Segal, Glimm, Jaffe) Suppose H,, Hy,,
H = Hy + HIn’ self-adjoint operators on . ®(6), a local system of
von Neumann algebras, satisfying the properties
1) RB)CR(G,) e, S0,
iHAt =1HAt
2) e OR@®) e © < R(S,)
3) R(N @i) =N R(s,)
i i B

Suppose further that H £ is self-adjoint for a sufficiently

large family of elements of .nmz‘i}, and that HIf commutes with HIf :
1 : 2
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£, and f, belonging to 8(R%), and, further, that HIf il R(@)’ if the
support of f, is contained in 6¢’. Then,

H t  -iH t
s - lim é Ae >=at[AJ

n - «

exists, ¥ A € 9(6), and defines a one parameter group of isomorphisms
of U. The resulting system-of local rings 1s again local. ]
Proof: Using the Trotter product formula, we immediately get that

) g t t.J . t . tJ
‘ . iH = -iH, T ~iH_ =V )
atn[A]llJ=jh_.mw<e o] Inj) G Inj oj>.¢’ Vieg

let A € R(6), where ¢ is the diamond spanned by a sphere in RS of
radius a, and 6, be the diamond spanned by a sphere in R® of radius
ate.

Let now ¢ > 0, split g(x) in such a way that

glx) =g, &) + g, &)

gikx) €8, gi(x) = 0, and supp 91( ) € &, together with Supp g, (—) N
-Qe/Z is empty. This is clearly always possible We can then wr?te

n(91) =Hp n(91) + HLn(ga)

By hypothesis, HI (gl) and HI (g,) commute, so that

exp ( e ) = exp (iH o) .)exp (iHLn(qa):.—)

By hypothesis again HI n(g,g) commutes with % (¢ /2) and
exp (iH (gl)_) € u(s, ). ,
Therefore as A € UG), . ]

Ay() =exp GH P oxp UH (o) [)Aexp (-1, (3) ) exp (<45 T)

= exp UH, ;—) exp (iHLn(g1 )»;—)_ A exp (,'v-iHI,n(g,i) L) exp (-iHoT

Or
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HLn(gl) n 91(@€). exp (iHLn(gl) ) Aexp (- 1H (gl) ) € (s)

and hence, AI(t) € ﬁl(@e+t ) , using the property 2) of the hypothesis.
]

We can repeat the procedure, step by step, and after j steps,
we conclude that

A =[exp(i_ ) exp(u @ )] Afexotir, (@) ) expetss, &
5 exp( o0 exp I,ng j] [exp-HI'ng-_i exp—iHoj)

depends on g( -’é ) only in the region & , and that Aj t) € Y

t+He t+J'e)'

We now make the important remark that A; (t) does not depend
upon e. This can be seen in taking a different ¢, and thus different
g,, say g, ' . Now the difference between the mapping A - A (t)
defined by gz and A ~ A ! (t) vanishes, because the difference between
g, and g, ' has its support outside &, and thus is going to play exactly
the same role as g, above. We conclude from that, that

Aj(t) e&t(sﬂ_‘ ), Ve

and thus, A, (t) € A(s, ), using property 3) of the hypothesis. If we now
take the strong Iimit - lim A (t), we get that it will also belong to

QI(&t), since the latter is stmngly closed, being a von Neumann
algebra.

Hence cr.tn[A] € U(sy), from which the locality follows
trivially.

Furthermore, &, [A] only depends upon g(—) in the region
®. As g(x) =] for |x| £ 1, it is sufficient to take &> a + t in order
to get «,"[A] independent of g and n. We therefore conclude that the
spatial cut-off has been removed. Q. E. D.

1I.D. Some Theorems of Friedrichs and the I’ Operation

Before we discuss the hierarchy of interactions, and before
we can discuss the general setting of the problems, we need to
introduce more of the general properties of Wick polynomials, and to
formulate the key theorems of Friedrichs.

MI.D.l. Definition: W, _Z:W,.. .Wp ¢ is the sum of all those
terms of the Wick expansion of W, :W,...W:, which correspond to
connected graphs.

We shall put, in a formal way:
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W 7 li=W

111.D.2. Lemma (Friedrichs): As a formal power series,

V:eW: = :(VJ:eW:)(:eW:):

where

n=0

Proof: If we consider a product of the form V:Wn:, it can be written
as a sum of terms in which V is contracted with :W3: in all possible
ways, that is contracted m times, 0 < m < n (of course, if there are
only r annihilators in V, we have the supplementary relation m < r).
(Note also that we mean contraction of the graphs; they may be much
more than m pairs of contractions as far as lines are concerned.) The
contribution corresponding to m factors contracted is

n n n-m
(m): VW) w i

since thereare ( 3) possibilities of choosing m facters out of n. (Note
that V_2£:W™M: = 0 if m > n, so that we do not need to remember this
restriction any more.)

We therefore have that

vaw™: = i (;) (Vs W) Wi

m=

and hence
© n

VieWs = z Z =L (“) s (VW™ wh T,

n! \im
_nh=0 m=0

= z k—l, ji, :(V_Z:Wj:) :Wk:
k,j=0 Q.E.D.
NI.D.3. It Hy = [dkp@) a’ ®a(k) = [dkdt u(®) 6 (k-t)a’ Ka@) is the

self-adjoint operator representing the free Hamiltonians, we shall
define
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=[ du 1T a* (k) a
from which follows that

F0=N, F1=Ho

If we define

ad FT(W)E[F W]

-axwoo() iy - § )

=1 J=1+1
ca*k;).. .a*(]si)a(gi_‘_l). ; .a(km)

For W which contains only creation operators, one defines
a I'-operation which is the inverse of ad Hy = ad F, . TFriedrichs'
definition of the I'-operation is the same in the general case; it is,
however, not the most convenient one. Indeed, with Friedrichs' T’
operation, we would have that

1 m -1
D'w) =fakw®l ) ule) - ) Glk) | arla)...
j=1 j=itl

. .a*(gi)a(gm). . .a(gn) ;

The trouble with that definition of Friedrichs is that i K § =

z uj can vanish, and therefore make the kernel of T/W singular.
j=i+1
We have already plenty enough singularities; what we need is a regu-

larizating operation which would have similar properties. The idea of
Glimm was to define

Tw) = [dk w(_)[z u(_j)]

-1

a*(k ). .a*(_l:_l)a@i+l). . .a(gn)

T is certainly regularizing, since

DT (W))> DW)
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The I'-operation of Glimm leaves invariant all W which consist only
of annihilation operators, and it is identical with the T’ of Friedrichs
for W which consist only of creation operators. Therefore, for the
most singular terms, the effect of T’ and I'’ will be the same.

Of course, there is another way of making the kernel not

i m
singular. Since z p.j - z “j is always real, we can add a small
j=1 j=i+1

imaginary part.
We are thus led to define, following again Friedrichs,

-1
i m
T, (W) = [dk w(k) Zuj - ) wt el arlo)..arlglal,). . ak)
ji=1 j=i+l
and we have that
[, muw] =w

Iet us now define, as a fermal expression,

T_W) =exp ) (-1)" C_(W...T_(W)...)..0);
n=1

and

T+(W) =:eXp z (r‘_'_(W...I‘_’_.(W))...

n=1

)L:

where (...). means the sum over all connected graphs, with at least
one external" line. )
Then one shows that (still as formal expressions)

(H, +W +EW)) T, (W) =T, (W) H
and

T, (W)* T,W) =2(W) " 1,
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where Z(W) is a wave function renormalization, and E(W) an energy
shift. We see that these operators T, of Friedrichs are the exact
analogue of the Mgller wave operators. An interesting formula of
Friedrichs is the following:

T_=:exp(-T_(Q_)):
where Q_ is the solution to the equation

Q_=W_< wexpT_Q): - bp . W_LexpT_(Q):op)

III.E. Dressing Transformations and Classification of the Interactions

III.E.1. The formulas of the preceding section have clearly only a
formal character. There is, however, a qualitative feature of the
greatest importance, which we want to retain. We note that due to
the intertwining property of T, , T, formally maps elements in the
domain of H, into elements o? Hy+W, that is the total Hamiltonian.
More generally, we shall call dressing transformation a linear map-
ping of some dense domain of the Fock space § into the domain of the
total Hamiltonian, which may lie in another space. What interests us
is the fact that a dressing transformation can cancel some of the sin-
gularities appearing in the formal expression for the Hamiltonian. It
is this property which we want to retain, and to which one can give a
rigorous and quantitative meaning. But for that, it is still beyond our
technical possibilities to give an exact meaning to the expressions of
Friedrichs. It was Glimm who realized that his I"'~operation permitted
more accessible formulas, which would still lead to nontrivial dress-
ing transformations. We have the

III.E.2. Lemma (Glimm): As a formal series, in the case (W) # W,
HIW) =W+ T (WH_: '
Ho:er(W): = :W(:er(w):): + :Ho(:er(W):): = :(W+H°)(:er(w):):
Proof: We evidently have, using Wick's theorem, that

HOI‘(W) = :HJ’(W): + :HOF(W):

and .
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H :er(W)): = :(Ho_é_ :eTM):)(:er(W):):

o]

but

H TW) =w and HO_A:eP(W):=H + W

2 © Q.E.D.

III.E.3. In order to make something rigorous out of all this, one has
first to introduce suitable cut-offs. We shall define

9, bc.t) = Pl a*(-ﬁ)ei”‘(&)u a(k) o~ iuk)t :
o (Zn)s/z'[[z (._}) { }

|k| <o

A cut-off interaction Hamiltonian Vc (g) will be defined as
_p .S
Vo =[dxV &0 9k

where g(x) € s(RS) is defined as previously, and V5 (x,0) is some
local Wick polynomial, in which the fields ¢ have been replaced by
b

7 Clearly, the numerical kernel of Vg (g) will always be £2, if
o<®, g€, sothat V5(g) and Hy + V5 (g) are operators on the Fock
space §.

One defines thenT'(V,), Ti(v ), ete., which are obviously

well defined for ¢ < ®, and we are 1nterested in taking the limit o= =,

III.E.4. Llet Vcc(g) be the pure creation part of V5(g), and Vca(g) =
V;(9) - V5C(g). For the ultraviolet limit ¢ = =, the following classi-
fication of interactions has been proposed by Glimm.

Type Az " Vmc(g) Cpo" < e
Type B: |V °@ o | == IT, 0 °@) o)<

Type C: T, (v @) o ll ==, IT, v 2 @) oll<= voen,

where g, €3 1s the Fock vacuum, # is the subset of states in § with
finitely many particles and n-particle wave function in & (RIS),

In the language of power counting, A-models have no ultra-
violet divergencies, B-models only logarithmic divergencies, C-
models only logarithmic divergencies in linked graphs of the resolvent
series.
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If Vs (g) is not of type A, B, C, the corresponding theory can
still be superrenormalizable, type D; simply renormalizable, type E;
or nonrenormalizable , type F, in the conventional sense, as for in-
stance described by Bogoliubov and Shirkov. This latter classifica-
tion is due to Hepp.

III.E.5. Examples:

Type A: P> n: (upper index=Wick power; lower index = s + 1)
n-
Type B: :(@ §¥)a: 0a2:, a2, $4°:

o9 2o

PR s, 0.2, (0
TzQeC. -¢3401 Wa” 2, '(lw)nzs n=5 "

Type D: :@V})a:, 0s:
Type E: :@¥)a:, :@0¥)a:, 4%
Type F: (F1),>

III.F. Some Results

T1I.F.1. 7Using the formal properties of T, (V(J (g)) (cf. preceding
section)

(H, +V_(a) + E(V_(a)) T,(v_(0)) = T,(vV_(e)) H
T, W @)* T, (v () = 2v_(g)™ 1

one expects that for theories of the type A, H, + Vo (g) is well defined
on 8 C &F.

From standard perturbation theory, we know that for theories
of the type B or C, we will have to introduce counterterms. One
therefore expects that, for theories of the type B, there exist opera-
tors of the form Ry (9) € Ry(g)*, of order =2 in g, such that ¥ ¢ €

I, v (@ +R @ olf, o=

stays finite. Using then the formal intertwining properties of T., one
hopes to approximate H,(g) on Ty (Ve(g) + Rs(g))8 in the strong topo-
logy. (Hg(g) = H, +V,;(9) + Rolg)).

For type C theories, we have again counterterms R;(g) S R, (g)*
of order 22 in g, and we expect that ¥¢ € 8
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I7,(v_(@) + R (o)) @I - 2tV (3) +R (a))

stays finite for o= =. In this case, we can no longer hope that H (g)
=H,+ Vg (g) + R__T{g} will have a strong limit on Ty ®, but one hopes to
approximate H_(g) as an operator on a new Hilbert space in the weak
topology.

III.F.2. We know that in order to prove the existence of a dynamic,
we have to show that Hg, Vo (g) + Re(g) and Hulg) are self adjoint
operators on some space, and that the local algebras are also defined
in that space and enjoy locality properties with respect to the inter-
action Hamiltonian. Except in the case :¢34:, this program has not
yet been fulfilled, but we can state the following
Theorem: Let V be a real scalar local Wick polynomial in free mas-
sive fields.

BA) IfV is of type A, then Hy + Ves{lg) is a real and symmetric
operator on the dense domain D(Hg) N DVe(g)) ¢ {03).

B) If V is of type B, then there exists a family of invertible
mappings Ty,(9): 823 (0 0 <=, p € Z,) and R;(9) S R,(g)* of order
22 in g, such that ¥ € 8,

s - lim Tpcr(g) ® = pr(g) o)

g =+

s - lim (H, +V (@) +R (@IT  (adp = H )T (o)

)

s - lim Tpo(g) ® =0

p=-®

H,(g) is real and symmetric on the dense domain U pr e X
p<=

which is disjoint from D(H ),
C) If Vis of type C?, then there exist invertible mappings
To(g): O=3F, 0s¢g<o
T_(g): § ~%(q)

where T, (g) § is dense in a new Hilbert space }(g). There exist
R (9) € Ry (9)* of order 22 in g, and a wave function renormalization
Zc(g) such that ¥, § € 8
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Um Z_(9)(T_(9) o, T_(a)¥) = (T_(akp. T, (@)

g=®
and

lim 2 (@) @, (©, +V, @) +R @) T, @) =

g = ©

={T_(o)p, H_(9) T (g)¥>

H_(g) 1s real and symmetric on T,(g)8, and {.,.) is the scalar product
inK(g).

II.F.3. In the particular case of a :p,*: interaction, much more
powerful results are known (Glimm and Jaffe).
The essential steps are the following: Put

=g 4+ x
Hn—H°+Va(9’(n))

where

v =V, (g (’;:)) =s-lm V_ (gfi)) i

n
0= @
4 4 ] 4-)
v, 68) =1 ) () fare’ e @' ax
1=0

the limit existing on the Fock space because this interaction is of
type A.

Then

1) As a bilinear form on ®§ x 8,

H=2E, |E]|<e=
n n n.

that is, Hp (renormalized by a constant Ep) is positive. Ej is depend-
ent upon n, via g%),because Vo (1) would also be a well defined
bilinear form, but unbounded below. One chooses E, to be equal to
the lower bound of H_.

2) As a bilinear form over # X §, ¥a>1, I b=b(n,a,c) such
that

H? +v ®=<a(® + b
o o.,n g,n
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This estimate is valid only for real, non-negative coupling constants
L. It allows us to prove that the resolvent of the self-adjoint opera-
tor H ,n converges in norm to the resolvent of a self-adjoint opera-
tor H_. One further shows that H_ is essentially self-adjoint on 8.
As V_ is also essentially self-adjoint on the same domain, and as the
locaﬁty conditions are satisfied, one can apply the theorem of Sec-
tion III.C.4. to prove the existence of local Heisenberg field.

III.F.4. In order to prove the existence of a vacuum state (cf. Bor-
chers® lectures), one has to introduce a periodic box of volume V and
the corresponding Fock space &,,. One then shows the estimate

3) Hn,V N =>m = 0
N

4) One then shows, using estimate 2) that Hpyl = Hn,V
IV
has a compact resolvent, hence it has a state of lowest energy, a

vacuum vector Pon V*
’

~

Hn,chon,V= 0, “cPon,V" =1

5) For some sequence of volumes Vj, s\:lh—_.limm C‘Don,Vj =®on
]

exists and is a vacuum for Hy (renormalized).

6) ©on is unique.

7) The limit w(@) = lim @

n=- o

defines, via the Gelfand construction, a representation with positive
energy (cf. Borchers' lectures), where the time evolution is repre-
sented by a strongly continuous family of unitary operators.

8) This representation is locally Fock.

on' A®g,) exists VA € U and

TII.F.5. The fact that the theory :¢24: is Lorentz invariant has been
announced by J. Cannon and A. Jaffe.
There are still a certain number of questions left open:
- uniqueness of w
- 3 of n-point functions of the fleld operators
- gap in the spectrum of H
- l-particle states
cluster property
asymptotic nature of the perturbation expansion

i
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That means that we are not close to being out of jobs, especially if
one considers that a :¢5* : theory is the simplest possible nontrivial
model!

III.G. Example of the Quadratic Interaction

It is clear that everybody can solve a quadratic interaction.
Nevertheless, this interaction has attracted people again and again,
and for many different reasons. We have seen that in a 5-dimen-
sional space-time, a s°: interaction does belong to type C. As the
big advantage of quadratic interactions is to be exactly soluble, we
are going to be able to compare the exact dressing transformations
with the approximate ones.

III.G.1. Let us put

_ﬁ 2 Xy 1S -
vc,n_ 2 J.msﬂ(}ﬁ) g():l)dgg ' Hc,n Ho-'-vcr,n *

This “interaction" thus corresponds to a mass renormalization. It is
not difficult to show that

iH nt -iH nt
p(4)= s~-lm e o 4(f,0)e O
g=®
n —w©

exists on §, and that one can write explicitly

5 . . .
(mis/ 2 [zztl:k}]’i‘ % o, e, (06 1) o

¢r(f.t) =

with Q(k)? =p® + & and

o+ ([ (1% o 252 wrc)

The solution is thus a Bogoliubov-Valatin transformation, which we
may also write as
1 d°k " gk {
= 3 X TR
¢ (1) =——7% [ e— = {a(k)| cosQt +i% sinqt
r (Z")S/Z [m]g [ 0 ]

+ a*(—_lg)l:cos ot - ig- sin Qt]} f(x) ds§
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In this form, it is evident that the solution is an entire analytic
function in 6m® . This implies, in particular, that the Schwinger-
Dyson perturbative expansion for é; will have an infinite radius of
convergence, which can also be verified directly.

III.G.2. On the other hand, lim of H does not exist in Fock
= o= ® g.,n

n- ®
space; one has to perform an infinite renormalization, and change
the Hilbert space for each 6m® .

The exact dressing transformation is given by

ak toh (¢ 854) {axar(y) - a@a (-} |

T =exp
[0 ]:|]£II<O_

This dressing transformation is highly singular in the limit ¢ - «,
nevertheless, it is possible to show that

*
(CP1 ’ TO' A To_(',og)

*
&pa' Tc Tc c‘00)

lim

’ chllcpz ISh

éxists ¥ A € ¥ and thus defines anew Hilbert space, ¥ s 52

Note that}Cw is well defined as a Hilbert space, this new
representation of the commutation relations is no longer quasiequi-
valent to a Fock representation however.

Glimm's dressing transformation, in that particular case,
would be much less singular, indeed, we would put the system in a
box, and thus define

v= ) Vo Yy =i{a*(5)a*(—£) +a*(k)a(k) +a*(-k)a (k)
k€Ap) + a(ﬁ)a("ﬁ)}

and define
n (ST W)™
exp -\ I‘(VE)cp = g -lim ———

n=—o

T_lsbmch =
m=0 -

which clearly exists.
‘With the same notations,
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H_]g,éxﬁa =H7{a*(]_<)a(]5) + a*(.&)a(_k)} + 6m? VE

- - _,_ oo
Zy ome = T smp9oll ™ =1 - 15
. N _bm?
E]_(_,GHF - t‘>rrf“vE T(VE) = 8°
~—
and one obtains on # 2

My om? T B om? ) T, 6m®® = Tk om? Ok, 5m2®
and
2
” Z Gﬁlsms. Qp“ =
kea(=)

One then shows that

, % = .
Zq,ama o om? = Tr Sﬁ,asm2 Tg,tsm‘3
k€A()

provides a good domain for
+ = i =
Hcr,lSma B omP 2 (H_lg,éms fE_lg,ama)
keao)

and finally, that, ¥o, § €D

Um z, (T ¢ 2@ io"éma\ll) =T, sm2® To, g2t

g=®

and defines the same Hilbert space as the exact transformation.



ALGEBRAIC TECHNIQUES 99

References

Section I:

J. Dixmier, Les algdbres d'opérateurs dans l'espace Hilbertien,
2€ edition (Gauthier-Villars, Paris, 1969).

J. Dixmier, Les C*-algébres (Gauthler-Villars, Paris, 1964).

M. Naimark, Normed Rings (Nordhoff, Groningen, 1964).

C. Rickart, General Theory of Banach Algebras (Van Nostrand,
Princeton, 1960).

Section II:

D. Ruelle, Statistical Mechanics (Benjamin, New York, 1969),

J. P. Eckmann and M. Guenin, M&thodes Algébriques en M&canique
Statistique, Springer Math. tracts No. 81, 1969.

Section III:

R. Jost, editor, Local Quantum Theory, Proceedings of the Inter-
national School of Physics "Enrico Fermi" in Varenna (Aca-
demic Press, 1969). Lectures by Glimm, Jaffe, Araki and
others.

K. Hepp, Théorie de la renormalisation, Springer tracts in physics
No. 2, 1969.







PHYSICAL OBSERVABLES AND SYMMETRY GROUPS*

H. J. Borchers
Institut fiir Theoretische Physik
Universitdt Gottingen
Gottingen, Germany

I. Introduction

I want to give a sequence of lectures on the algebraic approach
to quantum field theory. Recently this has become quite a big field,
and it would hardly be possible to cover everything which is known
about this subject in a course of two semesters. Therefore I have the
choice of picking a special subject. This subject will be some
aspects in connection with symmetry groups. I am picking these sub-
jects since there has been some progress on these topics in recent
years, and some things we will talk about are not published yet.

However, before going into our main subject, let us start with
the discussion of some fundamentals; in particular we should answer
the question, "Why do we use C*-algebras in physics?"

All physics is based on the fact that the set of objects we are
dealing with can be split into two classes.

1) The first class we will call states, denoted by J . These are
the objects we want to analyze.

2) The second class is called observables, denoted by 6. These are
the devices with which we study the objects of the firgt class.

The splitting into the two classes is not permanent, but if we
consider a certain theory we must have given such a splitting, which
is fixed for this particular theory. No one can prevent us from making
a theory of certain families of instruments. In such a case this family
of observables will be the states which have to be investigated.

The observables we apply to states in order to get a number.
This process will be called a measurement.

3) A measurement  is a process which assigns to every pair x € &
and ¢ € f a real number (x, p) € R

mo xS =R

+Presented at the INSTITUTE FOR THEORETICAL PHYSICS,
University of Colorado, Summer 1969.
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We have to impose some restrictions on this process of mea-
surement. We would not call two things different if we cannot dis-
tinguish them by some measurement. This means
a) 6 separates states, i.e., ©®1 s P € J and o }écpz then exists
X € @ such that

<Xl ('P]_> # <XI sz)

b) f separates the observables i.e. X, , X, and x, # x, then exists
o € S such that

(%1, 9> ={x5, ) -

This setup is still very general and it is the aim of theoretical
physics to find some additional mathematical structure which puts
some order in the set of numbers given by measurements.

This process of finding a theory will in general not be a unique
one. This process is governed by fashions and in particular by our
knowledge of mathematics.

The modern development started off with the quantum theory of
finite many degrees of freedom. This is a well developed and very
successful theory. The theories now in the focus of theoretical inter-
est are attempts to construct quantum theories of infinite many degrees
of freedom. Since this new theory shall be a generalization of the
usual quantum theory, it should cover the special situation which we
have in quantum theory.

As everyone knows, there are two different aspects of the
usual quantum theory, namely the Schrodinger picture and the Heisen-
berg picture. In the first one the emphasis is on the states, while in
the Heisenberg picture the states are more in the background and the
important part is the algebraic structure of the commutation relations.
Both pictures contain, of course, the same information. This is even
true in the case where you identify the states with the vectors in the
representation Hilbert space. That this is so is a consequence of von
Neumann's uniqueness theorem, which insures that all representations
of the canonical commutation relation for a finite number of degrees of
freedom are quasi-equivalent.

If one tries to generalize quantum theory from finitely many to
an infinite number of degrees of freedom you have to make your choice,
namely what part you should keep and what part you should change.
The attitude towards this question has not always been the same. The
elder versions of quantum field theory have always put the emphasis
on the Hilbert space, which is also true for the so-called axiomatic
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field theory, e.g. the L.S.Z. formalisml) and the Wightman field
thaory.z) I. E. Segal®’/ was one who realized that one should look at
the algebraic structure as the main ingredient of the theory. Every
Hilbert space approach of the theory will then come out as a special
realization of the algebraic approach.

The main ideas of this algebraic approach are the following:
One assumes that one can consider the observables as the self-adjoint
elements of a C*-algebra, now denoted by 9. Then the physical
states should be identified with positive normalized linear functionals
on this C*-algebra 2. These objects are called again states in the
mathematical literature. If one wants to deal with a special physical
theory one can impose structural conditions on the C*-algebra % which
restricts the enormous sets of mathematical objects to those which
have reasonable physical properties.

As one knows from mathematics, most C*-algebras will have
an uncountable number of different representations. At first sight this
seems to be in contradiction to the assumption that C*-algebras could
be useful for physics. But that these two statements do not exclude
each other will be seen in the next section.

II. On Physical Equivalence of Representations

In this section we follow closely a paper by R. Haag and
D. Kastler.4 Let us assume we describe the observables as the self-
adjoint elements of a C*-algebra 2. What one usually does in such a
case is to look for a representation m of this algebra, i.e. for a reali-
zation of the abstract algebra by bounded operators acting on a Hil-
bert space ). If we do this, the question immediately arises, does
every represemntation describe a different physics? Only if this is not
the case can we say that the algebraic aspect can serve as a possible
tool for describing physics.

When we have a representation ™ in a Hilbert space 3 we will
identify the vectors § € as physical states and the expectation
values (¢, m(x)E), where x is an observable, with the measurement of
this state. More generally, if you want to consider a mixture given
by a density matrix R = 0 and tr R = 1 then tr R-m(x) 1s the expecta-
tion value of x in this mixture.

Since, however, experimentalists can make only a finite num-
ber of measurements, and these also only with finite accuracy, we
give the

II.1. Definition: Two representations m, and m; on the Hilbert spaces
%, and i, are called physically equivalent, if for any finite number of
observables x, , Xz ,...,x) and density matrices R;,...,Ry € 8(a)
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and every ¢ > 0, there exists density matrices R, ’,...Ry’ €86C,)
such that

- 4 i =
|trRi1'ri(xi) tr R, sz(xi)l<€' i=1,2,...,N,

Moreover, if R; =R then Ri' = Rk’ and vice versa.

The problem of finding different mathematical conditions for
physical equivalence has been solved by J. M. G. Fell.5)

Before stating the result we need some notation.

I1.2. Definitions: Let % be a C*-algebra. We denote by

1) u* the dual space of % and by U** the second dual of .

2) E(¥) the set of states on %, i.e. the set of w € ¥Y* such
that (i) wl) =2 0 ¥x=20,x €9 and (i1) {uw]| =1.

3) Letm be a representation of 9. Then we denote by E(n) the
set of vectorstates associated with  i.e.

Bm) = {ugi € €5, w b0 = @&, n6Ie), |lgl] =1}

4) Co E(m the convex set generated by E{m).

n,w
5) Co EMm the closure of Co Efr) in the norm-, resp. W#*-
topology U*. (Remark: The W#*-topology is the weak topology induced
by the elements x € 9 on y*. It is the same as o @¥, ) in the termi-
nology of Bourbaki.)
With these notations we get the following results

I1.3. Theorem: Let % be a C*-algebra and m, and 7, be two repre-
sentations of 9. Then the following statements are equivalent.
1) m, and m; are physically equivalent.

w w
2) CoE(m,) =Co Efm,)
3) Ker 1, = Ker m; where Ker m denotes the kernel of the repre-
sentation 1r, i.e. the set of all x € 9 which are represented by the zero
operator.

Proof:

1 = 2: The definition of physical equivalence just means that every
weak neighborhood of a point Co Efr,) contains a point in Co Efm,)

hence Co Eim JW>o Co Efm,). Since the assumptions are symmetric,
2 follows .

2= 3: Let x be in the kernel of m; . Then x annihilates every state
in Efv, ) and hence also in Co E{r,) and by continuity also in
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Co E(m, )W =Co Efr,)". This implies for any § €1¢; , that (g,m, (x)g) =
0, which then implies (€, , ma (¥)E5) =0 W&, §, €3C, , hence x €
Ker 11, . Since the statements are symmetric, it follows®that Ker my, =
Ker 115 . N L
3=1: Since Kerm, =Kerm, = Kerm ~ =Kerm, . We have
(€, , m, &)Ez) =0 for all pairs §, , & €X_ only if x € Ker my. This
implies that the linear combinations of Hi‘ese matrix elements are
weakly dense in Ker mi'. Hence every matrix element of 7, can be
approximated by matrix elements of m; . Since every matrix element
is a linear combination of expectation values we have that every
expectation value of m, can be approximated by expectation values of
T, . Since the assumption was symmetric we get physical equivalence.
This result tells us that the only thing which counts for phy-
sics is the kernel of the representation, or to say it in another way,
the algebra. However, one should not believe that the existence of
different representations with the same kernel is something which is
useless for physics. On the contrary, if you investigate a particular
situation you should always adapt the representation to the particular
situation. For example, if you describe the scattering of two parti=
cles, you look for a representation having a two particle incoming
state. You could, of course, describe the same situation in a differ-
ent representation, namely with a state, which describes besides the
two incoming particles some other things, which are far enough away,
such that it practically does not disturb the two particle scattering.

III. Observables and Symmetry Groups

Every physical problem is connected with the action of a group,
sometimes as a symmetry group of the problem, very often as the group
of time development, and not seldom as the combination of both.

We now have to translate this concept of symmetry groups into
the language of observables and states. Such a symmetry means that
we have associated to every element g € G two mappings, one,
denoted by ¢, acting on the observables and another, denoted by a
acting on the states, such that forall x € 6 and allop € J we have

!

<cngx, ag’q&> =(x, o)

If we want to describe our observables by a C*-algebra Uthen shall
map positive operators onto positive operators and furthermore com-
muting elements onto commuting elements. The easiest way to realize
such a mapping is by assuming that ag is an automorphism of %.
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III.1. Definition: Let % be a C*-algebra. A mapping ¢: U= U is
called an automorphism if it fulfills the properties:

@) abx+y)=rak) +aly);x, yEU L ECT

(1) alxy) = abx) aly)

(iii) abe*) = (@ (x))*
a(l) =1
(iv) « is a bijectionwith ||a®&)|| = ||x|].
The group of automorphisms acting on 9 is denoted by Aut .

If we now have a group G acting as symmetry group on our
physical system, then, according to our preceding discussion, to
every g € G we will have an automorphism o, € Aut Y. Although it
does not follow from our preceding discussion that the o form a repre-
sentation of the group G we will restrict our discussion to the situa -
tion where

a: G~ Aut ¥

is a representation of the group G, i.e. a. o and a; =

91 Y9z agl 92
identity automorphism. In the following we will not deal with arbi-
trary groups but with locally compact groups. This covers all groups
which are of physical interest, the Lie groups and the discrete groups.

Having a topological group one can, of course, define con-
tinuity properties of the representation Og of the group.

III.2. Definitions: We say the automorphisms ., 9 € G act

a) norm continuous if for every € > 0 exis‘?s a neighborhood
U S G of the identity such that ||a.x - x|| = €||x]|| for g € W

b) strongly continuous if for every x € ¥ and every ¢ > 0
there exists a neighborhood U< G of the identity such that Ilo;gx = x”
<e forgelu

c) m-weakly continuous if 7 is a representation of Y and for
every pair of vectors &, , €, €3; and x € ¥ the function (g, ,Tr(otgx)’ia)
is a continuous function on G.

The case where the group acts norm continuous has been
treated by R. Kadison and J. Ringroseﬁ) using the result of S, Sakai on
derivations.” However, it is also known that norm continuous
groups of automorphisms are not useful in physics because of too much
analyticity.

We will deal with the strongly continuous case. It is known
from examples in field theory and statistical mechanics that this situa-
tion occurs in physics. Since for the application of physics it is much
more natural to work with special representations which are adapted to
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the special situation rather than with the abstract C*-algebra, our
main interest will be to look for representations in which the auto-
morphisms are implemented by unitary operators.

Speaking about representations m of the C*-algebra 9 we will
always mean non-degenerated representations. If not stated other-
wise G will be a locally compact group and we assume that we have a
representation

o: G~ Aut U
of this group.

11I.3. Definitions: A representationm of % is called

a) covariant if there exists a strongly continuous unitary
representation p: G = iﬁﬁ{n) (all bounded operators on fK‘.l.r) such that
ﬂ(ag}() =plg) m)plg~™) for all x € 9.

b) 5uasicovariant if v is quasiequivalent to a covariant repre-
sentation r1° .

c) covariant extendible if v is unitary equivalent to a sub-
representation 11, of a covariant representation my .

If one tries to give conditions for the covariance of a represen-
tation in the general situation it becomes clear that one has to cope
with cohomology and with multiplicity problems. In order that we do
not have to deal with these problems we will restrict ourselves to the
case of finding conditions under which a representation is covariant
extendible respectively under which it is a quasicovariant represen-
tation. These problems can be solved and have simple answers.

In the following it is always assumed that G acts as a
strongly continuous group of automorphisms.

IV. States Which Are Continuous Under the Action of the Groups
We will denote by E@®) the set of states on ¥ and by P{) the
set of pure states of 4.

IV.l. Definition: We say a ! acts strongly continuous on a state
o € E if [Jag'w-w|| =+ 0 for g~ 1 and denote by E_ the set of states
such that o, acts strongly continuous on them.

The importance of this set follows from

IV.2. Lemma: Letm be a covariant representation then every vector
state of  belongs to Eg.

Proof: Letp: G- %(FCT[) be the strongly continuous unitary represen-
tation of G implementing the automorphisms Oy and § €3G then
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ag' uxé(x) = wg(ongx) = (p™ (g)g, nx) p~* (g)g). From this follows

|ag’ we () - we )| = (™ (9) - 1)g, mx)p™ (9)8) + (&, mx) (5 (9)-1)9)]

< 2[[x|| [ (07 (a) - 1)51] ||E|| = 0 for g = 1 since p is a strongly
continuous representation. But this implies ”u w - w” -0 forg=-1.

This Lemma tells us that states giving rise to covariant exten-
dible representations must lie in Eg. This makes it worthwhile to
study E; more closely. Its properties are collected in
IV.3. Theorem: EC has the following properties:

1. E. is convex.

2. Eg is norm closed.

3 E & is invariant under o

4, w € B, and x € U such g{hat w(x*x) =1 then Wy € Ec where
iy (y) = wlc¥yx) .

5. w€E,andw=Auy + (1 -Nws, with 0<% < 1andw,, wy € E
then it follows that wy ., wy € Eg.

6. w € E, then there exists a unique decomposition w =, +
(I -Mw, with0<x <1, w, €E,and w, € E such that w, does not
majorise any state belonging to E

7. There exists a family E B € E;, indexed by a semiordered
set, such that

@) B c EY for <y

B8) ECB is convex and weakly closed
B i
Y)g E” = Eg

The rest of this section is devoted to the proof of this theorem.

Proof:
1. Tetw,, w EEpandosxslthenlla 0w, + (1 -Nw,) -
Qw1+(1-x)m2|f—lx(agw1 o) + (L =\ g wz-wg)HSXHugwl-

w ]+ @ =M)la, wy =wy|] = 0forg=1.

2. In order to prove the second statement we remark first that
the transposed mapping of an automorphism 1s a norm preserving map
of the dual space ¥* of ¥, Let now w be a limit point in norm of E
then there exwts a sequence w,, € Eq such that ||w -w|| = 0 for n'» =,
Hence also |]cr. -y w[‘ =+ 0. Letnowe>0 then there exists ann

such that |[w, - wH s% and a usuch that ”“g"”n Sl S% for g € u.
Hence |[ag'n - ofl < [fag’ @ - o)l + llag on = wpll + [lwy -wllse

for g € u. This implies ag' acts strongly continuous on wand hence
w€E_.
c
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3. This follows immediately from the group property ||ctg'ahw .
cch'wll = Hu,ﬂ'_lghtu -w|| = 0 for g~ 0.

4. This follows from the relation ag'm (v) —w (y) =

whekig (y)x) - wbekye) = bekng (y)x) - wag 6y ag- ) +
(lg=2 be*)y oy 16x)) = i  (x*)yx)) + (0l eck)yx) - wbekyx)).

This implies l[a.g’wx ~wg || = Hlag'w —ofl xl|? +2 [lag?x - x|| - ||x]|
= 0forg—1.

5. From 4 and 2 follows that with any state w € E, also every
vector state belonging tom, is an element of E; (Ref. 2, 2.4.8). Now
every state majorised by w is a vector state (Ref. 9, 2.5.1). This
implies 5.

6. We have geen that with any state w € E_ also every vec-
tor state belonging tom, is an element of E,. Since E_ is convex and
norm closed we see that all vector states of direct sums of represen-
tations, whose vector states are elements of Ec, belong also to Ec.
We will collect these results in a proposition, To this end we first
give a

IV.4. Definition: We say a representation wr is affiliated to E | if
every vector state belonging to m is an element of Eg. We write T E.

IV.5. Proposition:
1. LetmnmEgandm, be a subrepresentation of v then mnE..

2. Assume Tri'ch, i € I then Z @ rrim’::c
iel
3. LetmnEq and m quasiequivalent to 1 then Tl'l'ﬂEc.

Proof: The first statement follows immediately from the definition of
affiliated representations. The second statement follows from the re-
marks given just before the definition IV.4. There remains the third
statement. Since m and 1, are quasiequivalent there exists a repre-
sentation m, quasiequivalent to w such that yr and 1, can be identified
with subrepresentations of m, (Ref. 10, I §4 COROLLAIRE). Taking into
account the result of statement 1 we need only to prove thatm, is affi-
liated to E,. Now, according to Ref. 9, 5.3.1, we can choose for 1,
a multiple of m. Hence m,1ME, by the second statement.

‘We now turn back to the proof of the theorem., Let us denote

bym = z (-Drrw which is by Proposition IV.5 affiliated to E_. If we
wEEc
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denote by m the universal representation then there exists a unique
central projection P of the weak closure of m _ such that 1 is quasi-
equivalent to Prr,, and therefore P nE,, by Proposition IV.5. On the
other hand if w is a vector state of (1 = P)v,_ thena_ ' does not act
strongly continuous onw by construction ofuP. By geﬁnmcn of the
universal representation m  every state w is a vector state w.. Now
My = Wpe, (L =A)wy =w 1-p)e With} = ||PE|| gives the decomposi~-
tion of w_ such thatw, € Eg and w, does not majorise any state
belonging to E_. The last statement follows from the fact that every
state majoriseﬁ by w, is a vector state of (1 = Phr .

To prove the last part of Theorem I1.3 we remark first that for
anyw € Eg the expression ||0L ‘v - w|| defines a continuous non-
negative function on G which vanishes at the identity. We call T, (G)
the maximal ideal of bounded continuous functions vanishing at the
identity, Il+(G) is a semi ordered set.

IV.6. Definition. For every function g € I,7(G) we define ECS as the
set of w € E, such that lla, w -wll=elg).

It follows from the definition of ECB that E_Pc ECY for B <.
Furthermore, every w belongs to all ]E:GB with g(g) = |]a/w - w|| hence
U ECB = Ec‘ Since the set of functions which are Smaﬁler than a given

one is a convex set it follows that E_P is a convex set. Let now
be a weakly convergent net in E;” then we have for every x € U the
relation |uwy (@yx - x)| = ||x|| "B () hence this relation holds also for
the limit point v, this means w € Ec .

IV.7. Remarks.

1. We want to emphasize that the extremal points of E B are
not pure states in general. This can easily be seen from the example
of continuous functions on G vanishing at infinity having the trans-
lations as a strongly continuous group of automorphisms.

2. Fromthe fact that o, acts strongly continuous on 9 it fol-
lows that Eg 1s not empty. For f € £, (G) with £ = 0 and [f(g)a, = 1
we define x = x(f) = j'f(g) , & linear order preserving map %rom
9= U, This implies for any w € E that we have a state wf{x) =y (x(f)).
Now | @ ‘wg - w)&)| = ok ) - x®)] = fuk(E, - D)| <
]| Iifg - f”-’-il = 0for g~ I. This implies wg € E,(f (h) = f(g™*h)).

V. Covariance Algebras

This seﬁSion follows closely 5}}6 paper of Doplicher, Kastler,
and Robinson, and of D. Testard.

Let G be a locally compact group, dg a left invariant Haar
measure on G and A(g) the module function.
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V.1, Definitions:

1. 4, & denotes the set of functions F: G~ 4, i.e. F(g) € 4,
such that F(g) is a measurable function on G. %G is a Banach space
with the norm [[F||, =[||F(g)||dg.

2. On %, we define an involution by (F#}{g]: =q Flg=)*A(g™?)
The star on the right hand side of the equation denotes the involution
in the algebra %.

3. For every two elements F, G € U, G we define a product
by the equation (F % G)(g) = _fdg' Flg')a.’ G(g’g).

4, We define a homomorphism Hgfrom the algebra ¥ to the set
of bounded linear operators acting on QIIG by (HX)F)(g) =xF(g) =x €9,
Fe 9, Gand

5. A representation 8 of G in the set of bounded linear opera-
tors acting on 9, by (8(g’)F)(g) = otg’ F(g'g).

V.2. Proposition: Under the involution defined in 2 and the pro-
duct defined in 3 QllG becomes a B*-algebra. The map H(x) has norm
[|x|] and 8(3) is a representation of G of norm one and acts strongly
continuous on %,G. 8(g) is not an automorphism of ¥, <,

Proof: Since Qg is a left invariant measure we get (F 4 (GAH))(g) =
"dgydgs F(9y) ag, {Gloo)ag H(g,oi* g)} and with gy *g, =g, this

becomes = [dg; dgg Flo,) ag {Gloy™ g5')} ag "Hig, " g) =
(FAG)AH)(9). Next ||FaGl|, =[dg dg, [|Flg, )y Gloy™)]| =

[ dgda,llFla)ll llale, ™ all > {[dg @]} -{ [dg, |IPa)]]} =

HFll, 11G||,. This proves that 9, % is an algebra. Next (¥ () =
a0 6™) =aglag™ F@)* 4% 8(5™) = Flo); and EACH(g)
= ag(F*G)(g)*A(g'l) =agifdg, Flo, Jag Glo, ™ g~ )}* alg™?)

= Jdg, {og Glo™ g7} lag Flg)}* a(e™)

with g+g; =g, and A(g™) =4 (g, A (g,972) we get

= [dg, lag, Gloz™) alg™ ) *ag, (o 19 Flg~ g, )07 9,)1 "

= [dg, G¥lg,) ag, FF(g,20) = (GFa FH)().

This proves ¥,G is a B*-algebra.
Now ||H&)F||, = [dg l|xF@]] < lix|| fag HE@I] = [x][-|IF]],

and |[0(@)F||, = [dg, [lay Flg™ gy)]| = [day [|F(@,)] = [IF|l; .

It remains to show that 6(g) acts strongly continuous.
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|lo(@)F - Flly = [da, |legFla™a,) - F@)| = [dg, llag Fa™ )
-Flg™a)l| + [|IFlg™ a;) - Flgy)|ldgy » 0 for g = 1. This is first

clear for continuous functions F(g) but by continuity it follows from
this for arbitrary F € 9,I1G. This proves the proposition.

For the later applications of the covariance algebras we need
some further properties of the operators H{x) and the representation
0(g) which we will list in the following

V.3. Proposition: For every x € Y and every g € G the operators
H(x) and 6(g) defined by

(H)F)(g) =x F{g)

6" =ag Flg'g)
have the following properties:

a) 6(e)F =7
8(g;)6(g,)F =0(g,95)F
b) [leG)F||, ={lFll
lm |[8(g)F - 8(g )|}, =0
g g,
o) Fael)c = PR G
@tk e = a
d) (B(@)F)A G =0(g)(FAG)
e) Hex, JHx,)F = Hx; x,)F
H(L)F =F
£) [[HEFll, =< (x|} 7]l
o) Fiar kG = @D G
mEPR G = Fa BEmG
h) (H&)F)&G =H&)(F4 G)
1) Letn € E@S) and F € 4,% fixed; then w(x) = (' HEP)
is a positive linear functional onwith ||w]| = n(F#ﬂ F)
k) H(o.gX)F =9 (g)H )8 (g7*)F
Proof:  a) and b) have already been proved in the last proposition.

Because of a) the second line of ¢) is implied by a)and the first line.
So we have to prove the first line:
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(% 0(0,)0) (@) = [dg, F(g,) ag o Gle o)

g
= Jdg b (g5™ Mo Fls*)ey o Gloros )
On the other hand
(Gl G )F)#-ﬁ G)(9) = [dy, (6(g; )F)#(gz) L9 Glgz*a)
= [dg, o, (8(e™F +gs™ ) o5 o, Gloz*q)
= [dg,a - { oy~ Flo 95 )}* bl Jay Glag?o)
1

Since now a . agy

g ) is a right invariant measure we get by setting

9s =920,
= [dg,A(g5™) ag, {Flgs™ )} * ag 0, Gloi* g3 q)

This implies statement c).
Now statement d):
(6 (g, )F)% G)(g) = [dg, (0 (g, )F) (gg)en@Ig Glog™g)

=Jdg, @y {Fle,"02)} oy Glog* o)
=a Idgg F(gl-lgg) [0 — 92 G(gg_]r g)
g1 g'.\.
and with g, = g, ' g, this becomes
o, [dos Flea) o Glos g™ ) = (0(0,)(FA GD(a) .
1 3

Statements e) and f) again have been treated in the previous proposi-
tion. Proving now g):

% HEIG) @) = fdg, F @) o (x Glea))
1
= [dg, agl{ Flg, 2 )1 (g™ )ocg1 {x} ongl{G(gflg)}
= [dg, o [Pl eae™) o {Glor* 9)}
=fag, &P (@) o Gloo)

1

- (e e .
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The second line of g) is a simple consequence of the first line and
statement e).
h) ((H&)F)A G)g) = [ a XFlg)a Glo™g)

=x fag Flo) oy Glo™ o) = B (FAG))
i) n€ E(QI,_G) and F € %G then clearly w(x) ='|’](I-‘## HEx)F)
defines.a linear functional on %. It has the properties:
wherx) = (F Heeoo)R) =n(HED % HER) 2 0 .
This implies w 1s a positive linear functional on %. Now
lall = () =n@E*% )

It remains to show the property
k) We have

={_ x)F(g) =0 -t
(H(cztgl x)F){g) = { o )F(g) gl{mch F(g)}
= 8(9,) bz " F(9,9)) = 0 e JHEK) by ™ Flg o))
=0(g, JHEIO (0,7 )P(9) .
This proves the proposition.

We do not want to list all properties of these covariance
algebras since we need them only as a tool for our further investiga-
tions. The importance of these algebras 1s given in the following
V.4. Theorem: There is a one to one correspondence between non-

degenerate covariant representations ., ola) of the algebra % and
non-degenerate representations 1 of #,G given by

(F) = [1(F(9)) o) dg Feu’
and

) 7 (F) = 7 (H&)F) x€ed

p(g) 7 (F) =1 (8 (g)F) geEG .

If we assume that 1 € ¥ then we have also
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m&) = str,lim  mwx fn), fn € £ (G)
in~8

p(g) = str.lim 1i(8{(g)fn)
fn-+6

where § 1s the Dirac measure of the identity of the group and fn con-
verges to § in the W*-topology in the dual of the continuous functions
on G.

Proof: Assume first we have a covarlant representation (v, then
define T(F) = [T (F(a)p (g)dg then we get

f(F) #(G) = [ (F(o)p(9) m(Glo1)p(g,) dg do,
= [ (Fla)p (g) T(G(g™" g, ))p(g™* g, Ydg dg,
=[m(F@) ey Gla™g,) ploy) dg dg,
;IH{F(g)ag alg™ g, )} p(gl) dg dg;
= [n{ (FA G)(g,)} ploy Mgy =H(FkG).
Next
#E" = ¥ (@) p(o) dg
=ml Flg™)%) p(9) 8g™ )ag
=[pl@m(Fl@™*)*) a(g™) dg
={[mEFG@) pl™) alg?*)dg }*
= {[n(F(@)) plg) dg}* =m(F)* .

Hence ft defines a representation of QIIG. Assume now the representa-
tion # of 4G is given then define wx) A (F) =7 (HX)F). We have

ey ) TG ) T (E) =T (B bxy ) Hx, )F) = (e, %, )F) = mix, x,) 1(F)

Now
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#(F) m ) 71(@) = (& anE)* = Gt meorty
= (& merh) =t (e tx FHF
=1 (P& H&HG) = () fHEHG) = (F) mc*) 7(G) .

In the same manner follows p(g) ;T(F) 1?7(6 (g)F) with the properties
Plo1) plaz) = plorgs), p*(@) =ple™) pledm@p(g™) =mlay x). The
strong continuity of p(g) follows directly from the strong cont1nu1ty

of 8(g).
Finally

7(E %) T (F)E = 716 £, R F)E = mGe)H(E & FIE = ) T(PE .

This means ﬁ(fnx) - 1 ({x) on a dense set of vectors and since ﬁ(fnx) is
bounded by |[x||-||||, it converges on every vector. The same argu-
ment holds for 1 (0 (9)f,). This proves the theorem.

V1. Characterization of Vector States of Covariant Representations

In this section we want to prove that every state belonging to
E . 1s a vector state of a covariant representation. The main result
ofthls section will be

Vi.1l. Theorem: The following statements are equivalent

1. m is covariant extendible
2. mnE_ (see IV.4 for the definition of affiliation)
3. is the direct sum of cyclic representations such
that the states wg, , {Ei} the cyclic vectors,
€1
belong to E

Proof of the first part:
1.=22, follows from Lemma IV.2.
2. =3. Since every representation is direct sum of cyclic
representations (Ref. 9, 2.2.7).

3.=2. ws belongs to Ec. Hence m,, N E_ by Theorem
@1 “‘gi c
Iv.3, 4and 2. Hence
Z@TT n Eg
i€l i

by Proposition IV.S.
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For proving the implication 3 = 1 we will use the covariance
algebras. By means of this correspondence between representations
of %, and covariant representations of ¥ we have a natural map ¢ from
the states of QIIG into the states of 4. Since for a given covariant
representation there might exist several different group representations
implementing the automorphisms Og the map o will in general be many
to one. But we have

Vi.2. Theorem: The image of the mapping ¢ from E(%G) into E(Y)
is onto E,(), i.e. ¢ EQ,~) =E, ().

Proof: From Lemma IV.2 follows o E(ﬁll )S E,@). Itremains to
‘show the converse inclusion. Let ] € U,G such that T(g) is @ continu-
ous function with compact support. ]’H‘ﬁ( F# J)(g) is a continuous
function in g (Ref. 11, Theorem 2). In particular F= (]‘ﬂ’:&t Fa T)(1)
defines a linear positive map ¥; from ‘HlG into 4. Hence the trans-
posed map ¥ ! sends positive linear forms of ¥ into positive linear
forms of ﬂllG. This map is given by (¥ w)F =w({ﬁ’f’-ﬁr FAT)(1)). (Ref.
11, Lemma 5). The rest of the proof ofT Theorem VI will be given in
the following two lemmas.

Vi.3. Lemma: Letw € E () then there exists a sequence Tn € ﬂllG
continuous and with compact support such that cpo‘i’I w converge in
norm to w.

Prooi: We have

0" ra D) = fa 0¥ 67 o (Bl 1), 00 (5 )dgd .

From this follows
vfo(®) = fdgdh w0 6 ey 67 ey, UC)) ata™)

Now construct cpo‘i‘fw (x) by replacing F(g) by x°6(g) where & (g) denotes
the Dirac measure at the identity of G. Hence we get

v ub) =[dgwlog Fle™ kTGN 06 .

Since we have assumed that 1 € ¥ we can put ]n(g) =1 f(g), f(g) con-
tinuous function with compact support on G. Thus we get

Po¥; wlx) = [dg | f(g™*)|? a;w(}c) Afg™).
n
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Since o’ acts strongly continuous we can choose fn(g) such that
(E i ?Ta A(g™™) converges to &(g) in the dual space of the continuous
functions on 3. Hence qoo‘i’f i converges in norm to w.

n

This Lemma tells us thato EQ,G) is norm dense in E_(¥).
Therefore the proof of Theorem VI.2 is established by the foflowing

VI.4. Lemma: The image of E(¥, G) under the map ¢ is closed in norm.

Proof: Letw be a limit point of ¢ E('@IIG) then there exists a sequence
wy € o B@LG) such that |lw, - w|| = 0.
- R A S
Let uy, € E@SG) such that @, =wp. Denote by 7 —E@na)
~ n n
the representation of QllG induced by [mn} . By the correspondence
theorem exists a covariant representationm of ¥ such that cpﬁlg =W
for every £ € }Cﬁ . 8ince the vector states are norm closed (R.” V. iadi—
son, Ref. 12) there exists a vectorn € X» withw =0, =¢ &,_.
After the proof of Theorem VI.2 we can complete the proof of
Theorem VI.1. Letm be a representation of % with ™ E . then it is the

direct sum of cyclic representation. m = z @m . Since ay
. Wy
. g €I
belongs to E_ there exists &, € E(, ) such that q)ﬁ':i =w;. Now z (&)
i€l

ﬁ&_ is a representation ff of 211G. Let 1, be corresponding covariant
i
representation of ¥ then one checks easily that m is a subrepresenta-

tion of m; . This proves Theorem VI.1.

After having established necessary and sufficient conditions
for the existence of covariant extension of a given representation we
will ask next for the class of quasicovariant representations.

Before we go into the details of the discussions we have to
recall the condition for quasiequivalence in terms of states. Letm
and ", be two quasiequivalent representations then every normal
state on 1, defines a normal state on T, and vice versa. Hencem
and 7, have the same sets of normal states. Now the set of normal
states of a representation ™ is norm closed and coincides with the
convex closure of its vector states.

VI.5. Definition: Letm be a representation then we denote

1. E(7) the set of all vector states of o

2. Co" Efm) the norm closed convex hull of Efr).
Since for any state w € Co™ E(m) the representation 1, is quasiequiva-
lent to a subrepresentation of m, it follows that @, is

w € Co™E(m)
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quasiequivalent to r. But this implies that the two representations m,
and 11, are quasiequivalent if CoMEfr,) = CoPEfr,).

After this discussion of quasiequivalent representations we can
state the result.

VI.6. Theorem: Letm be a representation of ¥ then i is quasicovari-
ant if and only if ‘-

o) TEq and .

B) ag Co™E(r) = Co"Efm) forall g € G.

Proof: Letm be a quasicovariant representation then there exists a
covariant representation M, which is quasiequivalent to m. Hence
E{r) © E_ and since E is convex and norm closed it follows that
E,> C—C;H E{r,) = C,"Efr) but this implies that TME,. Sincem, isa
covariant representation it follows that c.é Efm,) = E{7,) and hence
also the convex closure of E(r) is invariant under the action of a’.
Let now mfulfill conditions a) and 8) then by Theorem VI.
there exists a covariant representation w, such that m is a subrepre~
sentation of ;. Let now P be.the central carrier of w (in the center
of the weak closure of 77, ) then Pm; is quasiequivalent tor. It
remains to show that Pm, is a covariant representation. To this end
let us denote by p(g) the strongly continuous unitary representation of
G on I}C,T'l implementing the automorphisms, LetE € I}Cnl such that_
PE=E; "then by condition B- p(g)E defines a normal state of Pm; and
since the representations Pr, and (1 - P)m, are disjoint it follows that
Pp(g)g =p(g)s. This implies P commutes with p(g) and hence Prr, is
a covariant representation. This proves the Theorem.

Remarks: .
1. Werefrain from investing conditions upder which a repre-
sentation is covariant. The necessary condition that E{r) is invariant
under &’ is not sufficient for solving the problem as we will see in.an
example. As far as I have looked into this problem the invariance of
E(r) will probably be suificient in the cases where 77 is purely infinite
and in the case where n” is finite only when the coupling is smaller or
equal to one, this means if m’/ is small compared tom”. ;

Example: Let be the continuous functions on the real line R
vanishing at infinity with the translations as automorphism groups.
Let m, be the natural representation in £, (R) and P be a projection in
Ty suchthat P #0and 1 -P # 0. Let ¥ be any Hilbert space of at
least two dimensions. Define K =P, (R)®X @ (1 - P)£;(R) and n(x)=

Pr[o(x) @1®( -P) Tro(x) . One sees immediately Er) = E(no) and
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hence E@r) is invariant under the action of a’;. However &, is not
unitary implementable since multiplicity is a unitary invariant.

2. From the way we have constructed states on the covariance
algebra mlG in the proof of Theorem VI.2 it follows that there exists a
faithful covariant representation of ¥ (compare also Ref. 11, Lemma
5). From this we will see that a two-sided ideal in ¥ is kernel of a
covariant representation if and only if it is invariant.

The content of the Sections IV and VI follows a paper by
H. J. Borchers.13)

VII. On An Algebra Related to the Covariance Algebra

During the next four sections G will always denote an n-para-
metric abelian group, i.e. the vector group of 13“. We denote by Gthe
character group of G which is isomorphic to RP® the dual space of RR,
Therefore, it makes sense to speak about a cone in G. In the follow-
ing V* will denote a fixed cone in & which is closed, convex, has
interior points and has its apex at the origin, such that its dual cone
has also interior points.

We will say that a strongly continuous unitary representation
p:G ~ B(C) on a Hilbert space X fulfills the spectrum condition if the
spectrum of p is contained in V*.

VII.1l. Definition: A representationw of ¥ will be called positive,
m > 0, if there exists a strongly continuous unitary representation
p:G = BOC;) such that (i) p fulfills the spectrum condition and (ii) p
implements the automorphisms, i.e. forallx €% and g € G we have
pla) m(x) p ™) =1 lagx).

. Let us denote by Co(B) the C*-algebra of continuous functions
on G, tending to zero at infinity. Let now ¥ be a concrete C*-algebra
acting on a Hilbert space X and p:G - B{) a strongly continuous uni-
tary representation of G implementing the automorphisms agy which by
assumptions shall act strongly continuous on .

VII.2. Definition: We denote by
(i) (,G) the C*-algebra generated by {%,p(f); £ € C, (&)}

(ii) I@,G) the smallest norm closed two sided ideal containing
all elements of the form {xp(f), p(x; x € A, £ € ColG)}

(i1i) (u,G)_  the smallest sub C*-algebra of (%,G) containing
all operators of the form plf )xplfy) xeuf, € Co(é) 5
As a consequence of the continuity property and the spectrum condition
we have the important

VII.3. Lemma: The two sets I(U,G) and (,G)o coincide.
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Proof: By definition we have (4,G), < I@,G). In order to show the
converse inclusion it suffices that elements of the form xp (f’) and
p(f)x contained in @,G),. And since (1,G), is a C*-algebra it will
do to consider only elements of the form xp(f)
Now let f € Cqy (G) have compact support, then p(g)o(f) =

p(elggf(ﬁl] is an entire analytic function in g. On the other hand p (g)
has an analytic continuation into the tube [g+ig’; g’¢€ adl] where ot
denotes the dual cone of Vt, Furthermore p(g+ig JEP (CO(G}} for all
9 € U*. Then forany x € 4, n(g+ig ) xp(-g-ig’)p(f) € (¥,G),.
g’ e ot. Now plg+g’) xp(-g-ig’ )p (f) is continuous in norm for g’ €t
and algo for g'= 0, Hence plg+ig’) xp(-g-ig”)p(f) tends in norm to
pfg) xp(-g)p(f) for g’= 0. This implies xp(f) € (,G), forall f € C (G)
with compact support. Since these functions are norm dense in CO(G)
it follows that xp(f) € (0,G)p forall f € C {G) This proves the lemma.
This last lemma is a preparation for the following statement,
which in turn will be the main tool for the first part of the investiga-
tion of positive representations.

VII.4, Proposition: Every representation of (,G) whose restric-
tion to I{%,G) is not degenerated defines a positive representation of
A,

Proof: From the preceding Lemma we have 1IM,G) = >, G), which
implies that m(p (CO{G}) is not degenerated. This in turn implies that
we have a strongly continuous unitary representation 0(g) of G such
that for every f € Co(G) the relation 6(f) =m(p(f)) holds (Ref. 1, §13).
Since the spectrum of p(g) is contained in V*t, the spectrum of 8(g) is
contained in V¥ too. To finish the proof it remains to show that 6(g)
implements the automorphism ag. Forx€¥andf,, f, € CO(C'-}) we
have

o (£)) 8(g) mex) 87 (9) mlp (£,))
=10 (5, 099)) 16 (o (e 98,)) = (o 6, €200 (71955, )
=mp(fy )agxp () =) rr(och) m(p(f:))

and since (p(Co(&))) is not degenerated it follows that

8{g) mx) 0~ (g) = n(ugx)
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For the use of this proposition we will remind the reader that every
representation of a two~sided. ideal can be extended to a representa-
tion of the whole algebra without enlarging the Hilbert space (Ref. 9,
Proposition 2.10.4). This last proposition is not quite what we will
use later. Therefore we state

VII.5. Corollary: IetA be a non-empty bounded set in the spectrum
of p(g) and f € Cy(G) a real function with the properties £(§) = 1 for
g€ pand £(§)< 1 for g € A. Assume thatw is a state on (@,G) with
the property w(p (f)) =1. Then Ty restricted to U is a positive
representation.

Proof: It follows from the properties of w that w restricted to I(%,G)
is not zero. On the other hand since p(f) < 1 and w(p(f) = 1 it follows
that the cyclic vector €o is eigenvector of w{p (f)) with eigenvalue 1.
Since the projection P onto the essential subspace of 17 (I{%,G)) com-
mutes with m(,G) and has the property PE_ =& it follows that P=1.
Thus m(I(%,G)) is not degenerated and the result follows from Proposi~
tion VII.4.

VIII. States Fulfilling the Spectrum Condition

During this section we will make the simplifying assumption
that the algebra ¥ contains the identity. All results we will obtain
can easily be translated to the case where % does not contain an iden-
tity. We denote by E() the set of states on % and by P(%) the pure
states which are the extremal points of E@). Furthermore we will
define:

VII.1. Definition: E (%) deriotes the set of states w € E@) such
that™, > 0. The main goal of this section will be to prove the
following

VIII.2. Theorem: E+ has the following properties

1. ETis convex.
. w (3%

2. weEY, x €= uy € BN with w(y) =E{%x’%‘—) y €4

3. w€Etand g =Aw, + (1 -2\)w, with 0< k< 1 and
w,, wy EE= w,, w, €EV,

4, E*is norm closed. N

5. Denote by cr,"g the transposed automorphism, Then E 1is
invariant under o/, and &’ acts strongly continuous on E*.

6. Letw g E then there exists a unique decomposition w =
A, + (1 =N)w, with0<sA =1, 0, € E+, w, € E and there exists no
state wa < w, with wa € E* (see Ref. 1, 2.5 for the order relation).



OBSERVABLES AND SYMMETRY GROUPS 123

7. There exists a family Ep + < gt such that
o) E < En—f-l
B8) En is convex and weakly closed and invariant
under a
Y) C,(E, a P) is weakly dense in E
8) U En+ is norm dense in E*

The rest of this sectlon will be devoted to the proof of this theorem.
For proving the first six statements may we remind the reader of a
result due to the author.

VIII.3. Theorem: Letn be any positive representation of ¥ then
there exists a strongly continuous unitary representation p:G ~B(}CW)
such that

a)} p(g) implements the automorphism Og

B) p(g) fulfills the spectrum condition

v) p(g) belongs to the weak closure of ().
From this theorem we immediately have the

VIII.4. Corollary:
a) The direct sum of positive representatio'ns is a positive
representation, i.e. let ni€I> 0 thenm = z @Tr
i€l
b) Any subrepresentation of a positive representation is a
positive representation.

c) Any representation quasiequivalent to a positive repre-
sentation is a positive representation.

Proof: Theorem VIII.3 permits us to choose the representation p(G)
in the weak closure of m(}). This implies b) and ¢). Now the direct
sum of continuous representations is again continuous. Hence

2 @ Py implements the automorphism for Z @ . Since every Py

i€l ier
fulfills the spectrum ¢ mndition we have for all f € Co(é) , vanishing
onV*, p;(f) =0. Hence z @ p,(f) = 0 for these functions. This
i€l
implies z @ pi fulfills the spectrum condition.
1€l

Proof of Theorem VIII.2 f{first part:
+ s .
l. TLetw,, w, € ETand 0 <A =< 1 then "Xw1+(1-x)w2 is unitary

equivalent to a subrepresentation of My, +m . Hence hw, + (1-Mw,

(CF
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€ E* by corollary VIII.4.

2. Letw € E+, x € 9 then wy gives rise toa subrepresentation
of my. Hence wy € ET.

3. Letw €ETand 0<A <1 andw =Xw, + (1 - Nw,. Then
wy <w, wy <wandw, as well as y, define subrepresentations of
(Ref. 2, 2.5.1). Hence w,, w, € ET.

4, Lety be a limit point in norm of EY. Then there exists a

sequence wy, € E* with [|w, - w]| =, 0. letm= ® ﬂwn thenm> 0
n

and w, =wg with § €3 . Now the set of vector states of is norm

clt:)seeﬁt (R.V. Kadison, Ref. 12). Therefore w is some vector state le'

n E:!CTT, and w,, defines a subrepresentation of w. Since w> 0, it
follows thatw € E¥,

5. Letw € EYand p:G = B(J{ﬁ) a strongly continuous unitary
representation implementing ¢_. Then o.’gm(x} =wlegx) = €, mlx)E) =
(0~ (@), mx)p™ (g)5). This means that @ is a vector state of
which implies agw € E*.

Now

| (07 (@)g., &) p=* (9)E) - (€, T&)E)| =
| (™ (g) - 1)E, m)p~ (9)8) + (g, mbx)(p~" (9)-1)B)| <

2]l 1167 @)-Del| 1] = 0

since p is a strongly continuous representation. Hence |Jagw - wl|
— 0,
-0

g 6. Denote by m,, the universal representation and by n =

z @T\‘w. 17 is a positive representation. Now there exists a pro-

w € Et
jection belonging to the center of m,, such that P"u is quasiequivalent
tomw. Therefore, every state w € ET is a vector state wg of m_ with
Pg =F. Let noww € E, then 1 such thatw =“’n‘ Assume E}:,‘;‘ 0
and (1 = P)n # 0 then

W T o €E’  and Wp =W g o ZE*
lanH (1=P)n |l

and

w = ||Pnllw, + [} 1-PIn|juw, .
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If ws < wy then wy is a vector state of (1 - P)1'ru since P belongs to
the center of 7, and hence w, ¢ EY,

To prove the last statement we will use the results of Section
VII. To this end we identify the algebra U of Section VII with the
repregsentation dz @ m =n and p(G) with the strongly continuous

w € Et
unitary representation of the group G which fulfills the spectrum con-
dition, which exists in since 7> 0.

Let a be an interior point of vt and denote by Ay, the sets vtn
(n-a + V7) in G. We define now En'" the set of states on % which
have an extension to (,G) such that w{p(f)) =1V € CO(G} with £(§)
=1,§€a,anduwp(f)) =0¥fe€ CO(G} vanishing in A, . It is clear
(VII.4) that the representation 1, of 1,G) defined by w € En"‘ is not
degenerated on I, Q) and we have therefore by Proposition VII.3
E,* S ET. The convexity of E,* is clear. We now want to show that
En'" is weakly closed. To this end let f € C_ (&) be a real function
0<f<1,f(@g =1for§e€n,, f@ < 1 for§ ¢Ay,, and v a weak limit
point of En*. By this we mean that » is a limit point in the weak topo-
logy defined by the elements x € 4. We have to show that whas an
extension to the algebra (!,G) with the desired properties. Consider
first the linear set m@) + Ap(f), A\ € C. On this set we define an
extension of w by the equation w’ (mfx) + A p(£)) =w ) + 1.

We show now that this extension takes non-negative values
on non-negative operators. There are two cases, the first one p(f) €
m@). Inthis case nothing has to be proved, since w(p(f)) = 1 for all
w € En"' and hence also for the limit points. In the second case pff)
does not belong to (). Then w(x) +ap(f) = 0 implies r(x)* = (x) and
» =% and w’is non-negative on such elements if

supw() < 1 < infwk)
mx) < p(f) mx) 2 p(f)

This, however, is true for every element w € En+ by construction of
this set, and hence also for the limit point w. This proves that o' is
a positive linear functional and has therefore by the extension theo-
rem (Ref. 2, 2.10.1) an extension w” to a state of &,G) with w” (x) =
w(x) for all x € % and w” (p(f)) = 1. Since ||p(#)]|= 1 and § >0 follows
that thg cyclic vector £ of the representation m,’ is eigenvector of
Ty (o (£2)) with eigenvalue 1. This implies together with the special
c?wice of f that w” (p(h)) = 1 for all h which are one on A_ and w (p(h))
= 0 for all h which vanish on A,. But this implies w € n+ and hence
En+ is weakly cloged.

Next let w be an extremal point of En+ and assume that there
exists a decomposition w =Aw; + (1 = A)wg, 0= < 1 then by VIIT.2.3
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Wy, Wy € ET. Assume % > 0, then there exists an operator T € qﬂ{‘w’
with @, = wTi where Eo is the cyclic vector for 1. Let now Pn be

the spectral projection carried by A, and which belongs to (1D
Then we have by definition of w the relation PE, =€, and hence
P Te =TP;5, =Tz which means thatw, € Ey*. Since the same

argument holds for ?Da we have A = 0 or 1 which proves that every
extremal point of En+ is a pure state. From the fact that the projec-
tions P, tend to one for n = = it follows that every w € E* can be
approximated in norm by elements in En because every state is a
vector state of m. This completes the proof of the Theorem.

There is one immediate consequence

+
VIII.5. Corollary: Assume E # ¢ then E+ contains at least one
invariant state

Proof: Since et # ¢ there exists a n such that E.T #¢. Applying to
this set the Markov-Kakutani fix point theorem (Ref. 16, Part I,
V.10.6) we get the desired result.

I¥. Some Conditions for Positive Representations

In this section we want to present the second tool for handling
positive representations. These are generalizations of techniques
developed earlier by G. F. Déll'Antonio”) and myself. 15 Before
proving something we will state the result, but we need some nota-
tion for this. +

Let @ be an interior point of V' then

.1, Definition: .l'.a denotes the smallest left ideal in U generated
by the element of the form _[‘f(g}ugx dg with x € U, £ € & (G) and $(@)=0
for § € -a +V". Here f denotes the Fourier transform of f.

With this definition we can formulate the result as follows

IX.2. Theorem: Letm be a representation of % and denote by ¥y C}Cﬂ
the subspace of vectors & € 3(; such thatm(y)g =0 forally € £,.
Then the representation 1 is positive if and only if U~ }Ca is dense
in3. acyt

One sees immediately that this condition is fulfilled for posi-
tive representations. The proof that this condition is also sufficient
will be the content of this section.

We start with

I¥.3. Proposition: ILetn be a representation fulfilling the condition
of Theorem IX.2 then Ker w is invariant under the automorphisms ag
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Proof: Let P; be the projection onto3(y then it follows from the con-
struction of P4 that Parr(cx x)Pa is an entire analytic function in g of
some exponential type. gne sees this by the following argument,
Let £ € £, (G) with £(§) = 0 for § in -a+V*. Then [P m(@gx)P,f(g)dg =0
by definition of P,. Hence the Fourier transform has support in -a+v™t,
Now let ¥(§) =0 for § € a+v-(V- = -V") then _fPa'rT gx)P,flg)dg = 0
since the adjoint J‘Pan(a *)P,f (g)dg = 0. This implies Pymix *)Py
has support in { ~a+V+} M {a+V~} which is compact. Let now x = 0
and x € Ker 7 then Py (o }c}Pa has a zero of second order at g = 0.
Assume, by incluction,‘ that P m (3 x)Pa has for any x € Ker rra zero of
order w at the origin., We want tg show that it has a zero of order 2n.
To this end consider the expression

Pa{rr(ocQX) + rr(eng+hx_‘) - rr(agl x-ahxl )P,
The element in the bracket is an element of Ker 7 if g = 0 and if
g+ h=0. Hence we have for sufficiently small g and h

n n
||Pa{n(agx) +1'r(cxg+hx) - n(aglx-cchx|)}Pal| < Cllg|™ |lg+hl|

or

: n n
||Pa{n(cxgx) +"(ag+hx)}Pa|| =C|lg|I™ |lg+n|]™ + I~ x!

and since ||x-apx|l =% 0 we get 2|1pgr [agx)P, || = cllg|®®. This
means we have a zero of arbitrary high order and since P_m(x x)P& is
analytic in g it follows that P,mlo %)P; = 0 ¥ g. But since Py ~ 1 we
have T'r{o'.gx) = 0 ¥ g which means that Ker v is invariant.

IX.4. In order to prove the implementability of the automorphisms we
have to construct some algebras such that &g acts norm continuous so
that we can apply the result of Sakai and Kadison. To do this we will
investigate the algebra generated by the projections {P,} and m(¥).
Since the projections P, are defined by the invariant left ideals it is
natural to extend the automorphisms a.g“ defined by a.g“ nix) = 'rr(a.gx)
such that a.g" P_ =P,. Doing this there remains one question, namely
whether all rela%ion_s inside the algebra defined by m{) and { P4}
remain invariant under ¢ .. In order to prove this we have to make a
detour such that we reduce the problem to the application of Proposi-
tion IX.3.

We will denote by F (), P,) the free algebra generated by
m@) and the set {P_}. On3(r, Py) we will define the automorphisms
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& by &gﬂ (x)=m{n %) and G Py =P,. Furthermore we will have a
ffmily of representations 0,_: 3~ B(I(,) defined by 0 1 (x) =n(x _x) €
B(:}Cﬁ) 8 Py =Pa € B()G). The kernel of the representation 8 Iwill be
just all relations among the operators m(o_X) and P, when they act on
}q_r. With the help of this family of repregentations we can define a
semi norm on Fas follows

N(y) = sup lleg(y)ll VAR
g
IX.5. Lemma: The semi norm N on % has the following properties
a) NQy) =[] N(y) y€3, L€C

b) N(y*) = N(y)

c) Niy,+ty,) = N(v,) + N(vz)
d) N(Y1 YQ) < N(Yg]_)N(Yg)

e) N(y*y) = N{y)

Proof: a) and b) are an immediate consequence of the definition
c)

N(y, +y5) = sup lleg(yl) + eg(Yz)“ < sup{lleg(yl)lHHeg(y;;)ll}
g g

< sup ||9g (yy)|] + sup Ile, (va)l] = N(gy) + Nlg, )
9, z ds 2
d)
Ny, v5) = sup |[8 (2 )| < sup ||99(Y1)H ||Gg(yg)||
g g

< {sup ||9g (v) ]|} {sup lleg (v2)1} = Ny )N(y;)
91 t 92 2

e) From d) and b) follows
N{y*y) < NP .
Let now 9 such that

le. Wl =zNly) -¢
gO

then follows



OBSERVABLES AND SYMMETRY GROUPS 129

N(yP= [Ileg W +e =6 9l +2¢]le_ || +¢?
o 9o 9

< N(y*y) + 2¢ N{y) +€® .

Since ¢ 1is arbitrary it follows that N(y)°® < N(y*y). This proves the
lemma .

Letnow I={y €3; N(y*y) = 0}. These are, of course, all
relations among the operators w(x) and P, which are preserved by the
mapping & . Iis a two-sided ideal in & and N defines on 3/1 a norm
such that Lemma IX.5 guarantees that the completion of ¥ /1 is a C*-
algebra which we will denote by 3/1.

IX.6. lLemma: The mapping &.g defines a strongly contiuous group of
automorphisms on '3’71-

Proof: It is clear that 4, defines automorphisms, since by definition
of ¥, &, was an automorphism of ¥ and the two-sided ideal I is by
definition invariant under &g. Now the continuity property is also
trivial

N@, P, -P)=N@_ -P)=0
N@ ) - ) = Nfr o x - x) = SEPH"(@h(OLgx - x)||

=\h‘r(u,gx—x)||—>0 forg=~ 0

Since these elements generate the whole algebra ¥ we have strong
continuity on :}7f
Now we are ready to use Proposition IX.3.

IX.7. Proposition: All relations among the operators m(x) and {Pa}
in B(}Cﬂ) are invariant under the automorphisms a4,

Proof: We may consider the C*-algebra generated by the concrete
operators 7 (x) and {P,} as the representation 8, of ¥/I. If we can
show that this representation fulfills the conditions of Theorem IX.2
then it follows from the Proposition IX.3 that the kernel of this repre-
sentation is invariant, which means that all relations of ¥ are invari-
ant under & _.

By construction of P, we have "(sa)Pa = 0 hence this holds
also for the weak closure n(.i!a)-. Thug it remains to show that for
every f € & (G) with ¥(§) = 0 for § € ~a+V" expressions of the form
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J"f(g)n(cngxl) Palﬁ(ochz)Pa2 -l x )dg =
ff(g)eoiagn(xl' )Palrr(xz)P‘_:r12 - .ﬂ(xn)} dg

belong to rr(SO)_, since by linearity and norm continuity such a rela-

tion would stay true for all elements y € %/I. Now an element of the

form (x; )Paln(xz)Pa .. .T\’(Xn) belongs to the weak closure of @) and
R r

can therefore, according to Kaplansky's density theorem, be approxi-
mated by a bounded family of operators m{x,) € 7 (1), Due to the fact
that (1 - P5) can be approximated by the approximate right identity of
£5 we can find for every bounded countable set {g\,} a bounded family
of elements 1 (x,) such that m(xg xB) converges to Tr(d.g X, )Pai .ok
m ag Kn] . s ¥ v i P

V  But for any x € ¥, Pamla _x)P, is an entire function of fixed
exponential type. Therefore Parr’i (a.gx }Pa is a bounded family of entire
functions converging on a properly cl?csen countable set {gu} . Thi%
implies the convergence as entire functions by Vitalie's theorem. 18
This, however, implies

Pt x )dg P, ST0Lp [e(@)0 (8 b )P, ...mbc)}da P,

and since Pa —» 1 we have
a -+

[flaime x)ag SE0Y [5(g) 6 {8 mba )P, ...mex)] dg

which gives the desired result.
Having established that the representation 9 c)(571) fulfills
the condition of theorem IX.2 we are able to give the

Proof of Theorem IX.2. Let us denote by (T@),P5) the C*-algebra
generated by the operators m(x), x € % and [Pa} . On this algebra we
can define a strongly continuous group of automorphisms & :8 k) =
w{agx}, &gPa =P, (consequence of Propositions IX.3, IX.6 an

Lemma IX.5). Moreover we have that P, belongs tor(£_)" which
implies that for any y € (w{), Pa) and a fixed &gP yP §s an entire
function of fixed exponential type. Hence Qg act nobm continuous on
gsuch elements, moreover such elements form a sub C*-algebra of
(m@), Pp) and hence 4 restricted to this sub algebra is unitary imple-
mentable with unitaries belonging to the weak closure of this sub
algebra. The spectrum of this representation is bounded and can
eagily be adjusted to be contained in Vvt N {a+V~}. Let us call this
representation pa(g) and denote by F_ the central catrier of Pa in @)’
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We define a representation (g) of Gin F }Cn by the relation

ﬁa(g) yP§= (&gy) P @) P& yE (M@, P, EEX

It can easily be checked that p (g) is strongly continuous, unitary

and implements the au!.cmorphism & It can be checked that the

spectrum of ﬁa{g) is contained in V+ To this end we write p_(g) =

_r elggB{dg) with Aa =v* 1 {a +V7}, on the other hand for any b € Aa

Aa

we have that J' E(d8) is annihilated by n(£b) . Iff€E&, (G) with F(§)=0
Ab . i

for § €V we have

[1)8_(0) v P8 dg = [£)@ ) p_(0)P,E dg
=[] £006'906, y) dg E@)P.E = 0
Aa

since J‘f(g]elgg& y dg belongs tonw(fa). Since now the l.u.b. of the
P is 1 also the I.u.b. of the Fy is 1. This allows us to construct a
stmngly continuous unitary representatlon plg) € w@) which imple-
ments the automorphisms o (Iin the construction of p(g) we have
omitted several technical details which can be looked up in Refs. 15
and 17.)

¥X. On Kernels of Positive Representations

We are now prepared for proceeding in the general discussion
of positive representations. But we are interested in characterising
the two-sided ideals which may appear as kernels of positive repre-
sent;itions . We start again with the formulation of the result but we
still need a

X.1l. Definition: We define I, as the maximal two-sided ideal con-
tained in the left ideal £ (Definition IX.1).
With this notation we get the following result:

X.2. Theorem: ' Denote by I, = N Kerm then
————“‘—) q i weET L™=
a) 1I.,=N1I
o 4 a

b) Let I be a two-sided ideal then there exists a positive
representation m with Ker m € I if and only if I,< 1.
As a preparation for the proof of this theorem we show first
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X.3. Proposition: Letw € E be a state, assume there exists an
a € VT such that w(€3) = 0 then v belongs to Et.

Proof: Since w{.ﬂa) = 0 it follows that for the cyclic vector £, €1
m (8.)8, = 0. HenceP_ #0. Let now f € & (@) and supp T(3) w
U bavtY N [bav-}; BE VF thenm (€, ) (x(D)E, = 0 hence P, # 0.
Let P =1.u.b. Py. Then for every f € £ (G) we find Pr(x(f))5 =

be vt ©
m(x(f))€, and since ag acts strongly continuous Pr{x)E, =m{x)E, ¥ x €
9. But this implies P = 1 and the result follows from Theorem IV.2.

Proof of Theorem X.2:

For any state w annihilating .Ba we have > 0 by Proposition
X.3. But these states characterize £, (Ref. 9, 2 .9.5). Hence I =
Kerz (-Brrw. From this follows I, < M Iy. Let now A, denote the set
w(€,)=0 "
vtn {a+v-}. Then every state w € EAa annihilates £5. Hence I <

n Ker m . From this follows
+ w
w € EA
a
nIiIcn n Kerm = N Ker m =Io
a a weEE ®  weE =
A5

where the last equality follows from Theorem III.2. Hence I, = n Ia
and statement a) is proved. a
Let now A, denote the smallest closed left ideal containing I
and £, and J_ the maximal two-sided ideal contained in Ay. From the
proposition )?.3 follows the existence of a positive representation m
with Ker Ty = Ia' From this follows Kery @® w. =07 . It remains to
L a _a

a

show that N Ia =1. To do so we prove first
a

¥X.4, lemma: J =I+1 .

=== a

Proof: Since £ is a closed left ideal, it is generated by its positive
elements £_ N 'Jla'l" (Ref. 9, 2.9.3). Denote by G, the C*-algebra gen-
erated by &, N u*., We have Cy © £, since £, N Ut is invariant under
taking the adjoint, i.e. X1 ,...%X, € £a N ot implies x;X,. .. %y € £5
and (% .. .Xp)* =X X _1...% € £5. Since Cy 2 £, N utalso Cy
generates £ as a left ideal. Now C, + I is norm closed (Ref. 9,
1.8.4) and generates the left ideal Mg = £a +I. Letnow z € ﬂa nut
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then also zﬁ € Ay nut a%nd it exists a sequence y, € ¥, xq € Cq+1

with norm lim y x Hence norm lim x *y *y x =uz. Since
= n ne n

1 2
X Eca+IwecanwriLex =xq +xn withxneca,xnel.
Tgerefore

ky ky x =xlHy *y x* +x2* * x1+x1* *y x @
X 'n¥nn " *n Yn Yn'n ¢ Yn ¥n'n Yn¥n'n

+x2%y *y x3)¢€ +
xl’l yn ynxn) Ca I
since

xl*y ¥y xt e & natec

n n"nn a a

and the rest belongs to I since it is a two-sided ideal. This implies
Aanm SI+C, andinpartlcularjaﬂ!ll+CI+C and since I+ C_ is
a C*-algebra | C I+ Cy. Assume x,+x, € G, +1and yx,txg )z E
Cy + Ifor all y, z € ¥ then it follows that yxlz € C + 1 since xg € 1
with x, € C,. Putting first z = 1 it follows yx, € ,S:a, hence yx, € Gy
This implies yx, € £3* or yx,z € £_* and this means that yx, z € Ca
forall v,z € Y. Hence yx,2 € Iy and [ © I +1I;. Since the converse
inclusion is trivial we have J;, =I1+1

From this lemma follows 1mmediate1y n I = ﬂ I+ I =1 since
n IaC I, which proves Theorem X.2.
a For the application in physics we are interested In conditions
which guarantee the existence of one faithful positive representation.
‘We are now able to formulate such conditions.

X.5. Theorem: The following statements are equivalent:

a) There exists a positive representation m with Kerm = 0.

b) For every two-sided ideal I there exists a representation
m> 0 with Kermw = I.

c) Denote by P-r'-im 91 the set of kernels of representations m> 0
which are also irreducible., For every two~sided ideal I< 9 there
exists a set TSP wwith I= N T.

" JeT

d) E is weakly dense in E.

e} N £ =0,

acyt @

Remarks: It is not known whether Prlm o coincides with Py, ¥ or not,
i.e. given a primitive ideal I does there exist an irreducible positive
representation m with Ker r =17
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The statement e) answers the question raised by the paper of
S. Doplicher. 17

Proof: a) and d) are equivalent by the theorem of Péll.s) a) and b)

are equivalent by statement b) of theorem X.2. If ¢) holds then b)

follows trivially. If b) holds thenI =N Ia + I and .Ca + I 1is the inter-
a :

section of the maximal left ideals which contain £_ + I. A state anni-
hilating such maximal left ideal gives rise to an irreducible positive
representation. Hence T,C Pt dsuchthatI+I = N 7T,
rim
JE€ Ty
But this implies I = N 7, which proves c).
JEUT
a 4a
If now e) holds theng I‘_:1 =0, and a) follows by Theorem X.2.

If a) holds then there exists an isometric positive representation.
Let now A_ be the set V¥ n {a+V™} and P, the spectral projection
associated to Ag of the representation p?g). Then £_ < {x € ¥;
Tvr(x)Pa =0} = M,. But since {P,] is a resolution otathe identity it
follows that N rr?Ma} = 0 and since w is faithful N M, = 0; but this
implies N &£ a___ 0. =

a a
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I. Introduction

The formulation, by Dirac, of the spectacularly successful rela-~
tivistic wave equation for spin -i particles, prompted an intensive
search for other wave equations which could \(hopefully) serve as a
basis for a relativistically invariant.description of particles of various
spins. The higher-spin equations which resulted from this activity”
have taken many forms, their bewildering variety being a reflection of
the very considerable freedom In the (subjective) choice of reasonable
criteria to be met, from among many possibilities which are not all

tPresented at the INSTITUTE FOR THEORETICAL PHYSICS,
University of Colorado, Summer 1969.
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mutually compatible. Each choice brings its own advantages and dis-
advantages, and the fact that efforts to find an approach which is
satisfactory in all respects have spanned a perlod of some four dec-
ades (and are still continuing) testifies to the inherent difficulty of
the task. Nevertheless, work during the last few years has been
instrumental in providing deep insights into several aspects of the
problem, and it is with some of this work that this series of lectures
will be primarily concerned.

We begin with a brief recapitulation of the familiar notions re-
garding the role of relativity in quantum mechanics, and then proceed
to a presentation of the essential details concerning the structure of
the group constituted by the coordinate transformations of special
relativity (as defined conveniently through the Lie algebra, i.e. the
commutation relations of infinitesimal generators of the group) and
concerning its irreducible representations. We have to have this infor-
mation on hand for ready reference, since we will be making extensive
use of it in a discussion of the assumptions regarding transformation
properties of wave functions, and later, in the derivation of relativis-
tic Schrodinger equations for arbitrary spin. The discrete transforma-
tions, space inversion, time reversal and charge conjugation (which
do not find a place in the Lie algebra) will have an important role in
our discussions, and a careful definition of what we mean by them
(independently of any wave equation) is needed and will be given.

The major part of these lectures will be devoted to relativistic
wave equations in the Schrddinger form

1208 gyt (1.1)

at

The reasons behind the choice of this form will be clear after the dis-
cussion of Sec. II. The operator H must be so determined as to en-
sure invariance of (I.1) under relativistic transformations., It can be
shown that in the c-number theory, where § 1s a numerical-valued
function, there are two possibilities for H for particles of any given
spin a and mass m. If invariance under boosts transverse to the mo-
mentum direction (which leads to very complicated equations) is not
imposed, the possibilities swell to 4 (infinite) classes characterized
by specific types of realizations of the discrete transformations (Sec.
IV). But when ¥ is promoted to the role of a quantized field operator,
and then required to behave in conformity with the principle of micro-
causality, the situation changes completely. This requirement picks
out, for each spin, a particular realization of the discrete operations
and determines H completely, and insists that the "sEtistics" be in
conformity with the familiar spin-statistics relation. Though it is
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true that all derivations of the spin-statistics theorem have the con-
dition of causalityas their basic ingredient, the full extent of the power
of this condition has not been manifest in earlier treatments. But
what is perhaps the most fascinating aspect of the approach to be pre-
sented is the possibility of seeing explicitly and precisely what hap-
pens as the invariance requirements are imposed one by one--or
dropped one at a time.

The primary aim of these lectures will thus be to try to throw
some light on the role of the different constraints which go into the
setting up of a relativistic theory of free higher-spin fields. About
the difficult problem of interaction of these fields we will have noth-
ing to say, though it is hoped that the insight gained into the struc-
ture of higher-spin wave equations would help towards an eventual
solution of the interacting case.

1I. Relativistic Quantum Mechanics--General Considerations

A. The Transformations of Special Relativity
Observers O and O’ in different inertial frames ascribe to an
event A different sets of space-time coordinates

X, = {xAu]

such that the space-time separation between two events A and B,
measured by

- 2% =
and  x, {xA} , w=0,1,2,3)

A B !

is independent of the frame of reference. We employ the usual con-
vention of summation over repeated indices. The nonvanishing ele-
ments guv of the metric tensor are taken to he

(xP = g, 000", px=xy - (1L.1)

oo = =G11 = O35 = ~Ozs = 1. (11.2)

The index , refers to the time-coordinate.

Linear transformations ®* - %' which preserve the form (II.1)
comprise the following:

(1) The proper homogeneous Lorentz transformations (hereafter simply
called Lorentz transformations):

M- xH =Auv x’ (II.3)

where the l\u\) are real and satisfy

[TV :
guVA FJ1\ a gpc ; (II.4a)
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Mo >0anddet p =+1 . (I1.4b)

These are induced either by transformations of the rotation group (ro-
tations of the space coordinate axes with respect to a fixed origin),
in which case

1°% =1 and 1, = =0, 1=1,2,3 (I1. 5a)

and

~

A =1 ; (I1.5b)

or by going from one to another of two reference frames in uniform
relative motion (1.e. by a "boost"), the space axes.in the two frames
being taken parallel. In this case

A=A - (i1.6)

All the transformatiohs in (II.3) are induced by a sequence of rotations
and boosts, and form the proper homogeneous Lorentz group (or simply,
the Lorentz group), of which the rotation group is a subgroup. We
will denote the Lorentz group by £.

(ii) The inhomgeneous Lorentz transformations

HoxM=HlH (11.7)
representing a translation of the-origin of space-time coordinates by a
four-vector al, The transformations (II.3).and (I1.7) together form the
Poincare group or inhomogeneous Lorentz group. We will denote this
group by P, and any generic element by\L. All transformations L of P
are continuous with the identity, i.e. there exists a continuous se-
quence of transformations of P which links any element L to the iden-
tity element. (The latter relates two reference frames which coincide.)
(1ii) The improper transformations: space inversion

i 1

No=-8", N=1, 0 =l =0 (11.8)
bj i j
and time reversal
Aij = 511., o = -1, A%, = Ay =0. (I1.9)

These are not continuous with the identity and are therefore referred to
as discrete transformations. The group obtained by adjoining these
to the Poincaré group will be referred to in the sequel as the extended
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Poincaré group. The term relativistic transformation will be used to
denote generally any transformation belonging to the extended Poin-
caré group.

Besides these, we will have to deal with another discrete trans-
formation, called charge conjugation, which can be defined only in
relation to representations of the group considered above, and will be
formally introduced later.

B. Relativistically Invariant Description of Quantum Mechanical
States

The meaning of the requirement of relativistic invariance on a
guantum mechanical system can be stated as follows:

(i) All possible states ofa quantum system, as described by an
observer in some inertial frame of reference, at some fixed but arbi-
trary time in his own frame, constitute a linear vector space. This
vector space should remain unchanged with time of observation in a
given reference frame, and should be common to all observers in the
same or different inertial reference frames.

(ii) An observer in a given frame describes the time evolution of
the system by a trajectory running through the tips of the state vec-
tors into which a given state transforms itself with the passage of
time. The specific forms of the possible trajectories are determined
by the dynamics of the system. For relativistic invariance, the set of
all possible trajectories should be independent of the observer, Two
different observers watching the evolution of a glven system would
describe it by two different trajectories, both of which, however, be-
long to this common set. Thus one trajectory gets mapped on to ano-
ther under a relativistic transformation; but it must be kept in mind
that one point on a trajectory (the state at one instant of time) does
not get mapped into one point on the other, since a fixed time in ore
reference frame does not correspond to a single instant of time for all
observers in a relatively moving frame.

(iii) With every pair of states of a quantum system at a fixed
time in any reference frame is associated a unitary inner product. To
ensure that this inner product has a relativistically invariant meaning,
it 1s necessary to demand that if two bundles of trajectories (repre-
senting the evolution of various states of a system as seen from two
reference frames) are "cut," each at a fixed time in its own frame,
then the two states obtained from the corresponding members of the
two bundles should be related by a linear transformation which is uni-
tary with respect to the i..ner product and depends only on the relation
between the two frames, and not on which particular trajectory is con-
sidered. It must be emphasized that this requirement goes beyond
mere identity of the set of all states as seen from different reference
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frames as demanded in (i), or correspondence between whole trajec-
tories as seen from different frames, required in (ii).

To see in more concrete terms what these statements mean,
consider a single particle described by a coordinate space wave func-
tion {§ (x,t) whose time dependence gives a "trajectory" in the space
of wave functions. The above requirements are then (i) that the set of
all possible wave functions q;(:g) at fixed time be independent of the
reference frame used, and (ii) that if a particular form of the function
§ (x,t) describes a possible time evolution (trajectory) in one reference
frame, it gives also a possible time dependence in any other frame
(x,1) being the space and time coordinates in the frame concerned).
This is usually ensured by defining the {'s as solutions of a wave
equation which has the same form in all frames, i.e., a relativisti-
cally invarlant wave equation. Of course, different observers O and
O’ , watching the state of a particle evolve, would describe it by dif-
ferent functions §(x,t) and ¢’ (x,t), but in view of the mixing of space
and time coordinates in boost transformations, § at a fixed time does
not go into §’ at a fixed time; rather, the whole trajectory (the wave
function at all times) in any frame goes into the determination of each
point on the trajectory (fixed time wave function} as seen from another
moving reference frame. The assertion (iii) is now that in spite of the
above, a unitary transformation U(L) depending only on the relativistic
transformation L relating the reference frames exists such that

¥ =T ¥ & (II.10)

where t, t’ are written as subscripts to emphasize that §, §‘ are taken
at (arbitrary) fixed times in their respective frames. The necessity for
the existence of a Hermitian operator H which acting on fixed-time
wave functions | (x) gives 13y (x,t)/ot is a consequence of the above
requirement (in the special case of time translations).

J11. The Realization of Relativistic Transformations On Wave Functions
The operators U(L) relating fixed time wave functions in two ref-
erence frames as in (I1.10) must form a unitary ray representation

U(L,) UL,) =w(,L,) UL,L,)

of the transformation group, in order that the effect of a succession of
relativistic transformations on the wave function be consistent with
the group property of the transformations themselves. (As is well
known, the possibility of having the unimodular factor w in (III.1)
arises from the arbitrary phase that can be associated with any given
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state, and as shown by Wigners) many years ago, is reducible to £1
in any unitary irreducible representation of the Poincar& group.)

We now review briefly the group structure of the relativistic
transformations, and then present basic information regarding the ir-
reducible representations, which will be used in the discussion of
(IT.10) in the sequel.

A. Structure of the Poincard Group P

If we consider an infinitesimal relativistic transformation cha-
racterised by an infinitesimal real parameter €, the corresponding
element I of the abstract’ Poincare group differs infinitesimally from
the identity (denoted by 1):

P

L=1+1i¢G . (11.1)

é‘ is called the generator of the transformation, and generates the
whole family of elements exp(i e &) of @ when ¢ is given arbitrary real
values. The Pomcare group P has 10 independent generators:

@ 7= (]l ) Iz , ]3) which generate rotations about the three
space axes,and are characterised by the commutation relations

[Ii, Ij] =te Iy . (I1I.2)

These generate the rotation subgroup of P, with elements exp(ifn:J)
corresponding to rotations through angle 6 in the positive sense about
the unit vector n.

(i) k= (El . f(z , f(e), which generate boosts inthe directions of
the space axes, and satisfy

[Ii. KJ.] =1 €4k K.k (111.3)
and
[Ki, KJ.] =- €4k Kk " (111.4)

+ An abstract group is defined solely by the "multiplication table" of
the group elements, or in the case of Lie groups like the Poincarg
group, by the commutation relations of the generators of the group,
which defines the Lie algebra associated with the group. The ele-
ments of the abstract group (or Lie algebra) are indicated here by sym-
bols with "hats." The elements in any (matrix or other operator) rea-
lization of the group will be denoted by symbols without hats.
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The I and K together generate the homogeneous Lnrentz subgroup £
of P, with elements of the form exp[i 8n'J+1i6'n’ K}

(iii) l’0 and P = {?1 & Ph Ba), which generate translations of
the origin of coordinates along the time axis and the three space axes
respectively, without change of orientation of the axes. They satisfy

[%i, f>j] =0 (I11.5)
. Bl=te, & (111. 6)
k. BI=i8, 8 (I11.7)
(. Pa=0 (111. 8)
5, ) =0 (IT1.9)
[“Ki, Bayo=ri Py (I11. 10)

(III.2) through (III.10) define the Lie algebra of the ten genera-
tors ‘I Ry, Py, Py of P. The same commutation relations will be
obeyad by defmition, by the representatives of these generators (de-
noted by the same symbols but without hats) in any realization of the
Lie algebra.

It is pertinent to note here that by complex conjugation of the
representatives of the group elements in any representation, one gets
another representation whose generators are obtained from the original
ones by the replacement

G- -G* . (I11.11)

That the Lie algebra remains unchanged under this mapping is easily
verified. In the case of the rotation group, each representation D(g)
(corresponding to spins, s =0,%, 1, ...), is known to be equiva-

lent to its complex conjugate;e) i.e., there exists a unitary matrix ¢
which transforms the generators g (the three-vector of spin-s angular
momentum matrices) into -s*:

(T's{=-s* , (III.12a)
€6 =1; ¢Cx= (—l)zs, = (-1)Zs§ , (I11.12Db)

where the tilde sign denotes transposition. In the special case when
the spin is s =2% we have the familiar representation s =%g_ for the
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angular momentum operator, in terms of the Pauli matrices o, , 65, 0,.
The matrix { here is io,. We will need to make use of the result
(111.12) rather frequently.

B. Irreducible Representations of the Lorentz Group £
(1) Finite Dimensional Representations
It follows from (III.2)-(III.4) that the combinations

M=#0+iK) and N =%( - ik (111.13)
of the generators of £ obey
[M,,M] =ie, M ,[ﬁ,,ﬁ.]= LR, Ni=0
Il k i Po.14)
so that they behave like generators of two independent rotation groups.
Thus M2 and N are Casimir operators of £, i.e. they commute with
all generators and are therefore given, in any irreducible representa-
tion, by the unit matrix multiplied by their respective eigenvalues.
By choosing a specific pair of eigenvalues familiar from angular mo-
mentum theory, namely m(m+1) of Mg and n(n+1) of If (where m and n
are, independently, non-negative integers or half-integers), we get
an irreducible representation of £, denoted by D(m,n). It is of dimen-
sion (2m+1){2n+1). The representation matrices M and N here are Her-
mitian, and lead to a Hermitian

I=M+N {111.15a)
and an anti-Hermitian

K= —i(M -N) s (111.15b)
The representation D{m,n) is thus non-unitary, as it should be, since
£ is & non-compact group and non-compact groups cannot have any
non-trivial finite-dimensional unitary representations.

‘When complex conjugation of the above representation is per-
formed, ]~ -J* and X~ -K*, so that M- -N* which is equivalent to
N in view of the remarks at the end of the last subsection. Thus the
result of complex conjugation is effectively the interchange M+ N,
so that D{m,n) « D(n,m).

It is to be noted that each irreducible representation D(m,n) of
£ is in general reducible with respect to the rotation subgroup. This
is clear from Eq. (III.15a) which shows the true angular momentum
vector {rotation generator) I to be the sum of two angular momentum-
like vectors M and N with definite magnitudes m and n. Consequently
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this representation must contain all the spin values (m+n), (m+n-1),
N |m—n| , each value occurring once. More formally stated,

D(m,n) reduces with respect to the rotation subgroup of £ into a

direct sum of irreducible representations D(s) of the rotation group,

D(m,n) ~ D(m+n) ® D(m+n-1)® ... ® D(|m-n|) . (I11.16)

It is only the representations of the types D(s,0) and D(0,s) which

have a unigue spin content s. For this reason these are especially
interesting, and we employ these exclusively in our development of
the theory for arbtrary spin s in later sections. For future conveni-
ence we make a brief mention here of the salient properties of these
representations.

In the representation D(s,0), N =% (] - iK) = 0, so that K = -iJ.
Further, since it is (2s+1)~dimensional, and irreducible with respect
to the rotation subgroup as mentioned above, J must be given by the
vector s of (2s+1)~dimensional angular momentum matrices. Thus, for

D(s,0): I1=s,K=-is : (111.17)
The complex conjugate representation, D(0,s), would then be charac-
terised (according to the prescription (III.11)) by the generators

]=-s* and K= -is* , (III.18)

but one could equally well use an equivalent set of generators, ob-
tained by similarity transformation of (ITI.18) by the matrix { defined
in (III.12), wherein one has

D(0,s): J=s and K=1is . (111.19)
The transformation of (2s+1)-component spin functions under finite
transformations in the representations generated by (III.17), (III.18)
and (I1I.19) are, respectively,

¥y~ (D1, x, (111 17a)
Ny~ [D* (L)]ﬁvn\-, (111. 18a)
9"~ (D' (L)]ﬁ\., o’ (I1I.19a)

where the indices u, v run from 1 to (2s+1). The dotting on the in-~
dices in (III.18a) serves as a reminder that the transformation matrix
to be used is the complex conjugate of D(L) = D(‘s,O)(L). And the
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raising (or lowering) of any index, accomplished by operating with the
the matrix ¢ of (III.12), for example

a_ uv = v _ 28 % ¥
P =C M, or My =L )0 =) G0
is to be accompanied by combined transposition and inversion of the
representation matrices. The reader is invited to verify that (III.18)
and (ITII.19) are generators of (III.18a) and (III.19a), and that both of
them correspond to D(0,s) within equivalence. It is a consequence
of (III.18a) and (III.19a) that

u cpu (sum over 1) (111.20)

is invariant, and a similar invariant can be defined in terms of the
undotted indices too. The properties (III.12b) of the index-raising
and -lowering operator { show that ny " = (—l}zsnucpﬁ.

The above notation is a generaliz%ion of the usual spinor nota-
tion, applied to two-component spinors’’ xp, tpA ete, (A =1,2) which
transform according to D& ,0) and D(0,%) respectively. What we have
called %, (w=1,2,...,2s+l) is equivalent to a spinor of rank (2s)
totally symmetric in (2s) indices, each of which ranges from 1 to 2.

XuNXAlAE'“Azs (I11.21a)
Similarly
oo~ qthee B2y (II1.21b)

More generally, a quantity transforming according to the representa-
tion D{m,n) may be denoted equivalently by

~ , (II1. 21¢)

withu=1,2,...,2m+landv=1,2,...2n+l. The indices uand v
transform according to (III.17a) and (III.19a) respectively:

v (m,0) u’' . _(n,o0)t-1 v v’
v, ~ (D L3, D (O AP (I11.22a)
The infinitesimal generators may then be written as
1=s™ x 141%™ (I11. 22b)
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(n)

@1 1xs

K=-is

where s (m) and s (n) are spin m and spin n angular momentum matrices
which act on the Indices u and v respectively. The four-dimensional
representation D& ,%) is of special interest because it is equivalentto
the transformation of four-vectors, and every conventional (manifestly
covariant) relativistic wave equation, linear in the space-time differ-
ential operators, involves a vector operator coupled to the vector
aﬁx“. The reader may verify that the four linear combinations V=

g BVAB of the components of a spinor VAB (which transforms accord-
ing to D& %) as indicated by one dotted and one undotted index)
transform like a four-vector. The coefficients g"®B are conveniently
defined as the elements of matrices g® =1land g* =g; (i=1,2,3)
where the o are the Pauli matrices.

] (1II.22c)

(ii) Infinite Dimensional Representations
As already mentioned, the above finite-dimensional representa-

tions of £ are not unitary. We shall not make explicit use of the in-
finite~dimensional representations (unitary or otherwise), but for
completeness we include here the classification of such representa-
tions too. They are usually labelled, not by the eigenvalues of Me
and 1\1_2, but by two numbers ko and ¢ defined in terms of the eigen-
values

k> +A-1 of P -=2(M +N°) , (111. 23a)

and

-—

-tk ¢ of I'k=M? -N° . (111. 23b)
8)

It is known ' that with every pair (ko,c) , where

ko=0,%,1,... (111.23¢)
and
¢ =a complex number,

is associated an irreducible representation of £ which is unitary if
(@) c is pure imaginary (Principal series representations), or if
(b) ko =0 and c is any real number such that 0 < ¢=< 1 (Supplemen-
tary series representations).

All other representations are non-unitary, and in particular, the
finite-dimensional ones already discussed are recovered if [c| - ko is
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a positive integer. The relation to the labels m,n used earlier for
this case is

k= [m~n| and |c| =m+n+l . (111.24)

Quite generally, each representation reduces under the rotation sub-
group into irreducible representations corresponding to spins s = ko+
kotl, ..., there being an upper limit s;,5. = | ¢| -1 only if (III.24) is
satisfied.

C. Wave Functions and Their Transformations

It is customary to assume that the wave function yfx,t) is
locally covariant! in the sense that if the wave function at a given
space-time point, labelled by coordinates x,t and x’ ,t’ by different
observers, is seen by these observers to be y(x,t) and ¢’ x’,t’)
respectively, then

P &) =S(0) §x,t) (I11.25)

where S (L) is a numerical matrix independent of coordinates or differ-
ential operators. Local covariance might seem to be a self-evident
requirement, but there are formalisms which do not possess this. The
transformation of the components of the wave function in Wigner's
unitary irreducible representations ,'5 for example, is given by a mo-
mentum~dependent matrix in the momentum space, and is non-local

(in the above sense) in configuration space. But we leave this point
for later discussion and confine ourselves to (III.25) for the time
being. The S(L) are then matrices forming one of the irreducible repre-
sentations discussed in Sec. III.B., or a direct sum of a number of
these. The inhomogeneous transformations (translations) are sup-
posed to affect only the space-time coordinates, not the spin indices.
By rewriting (I11.25) as ¢/ (Lx) = S(1) y(x), or

¢ &) =s()y@tx) , (111.26)

and taking an infinitesimal transformation L = 1 + ieF, S(L) = 1 + ieG(s),

we find that under such a transformation,

tThe term "manifest covariance” has been used with different mean-
ings in the literature. Here we reserve it to describe the explicitly
covariant appearance of an equation (i.e. of the differential
matrix operator acting on the wave function in the equation).
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b6~ 4760 =1 +1e@D + ) yeo . (111 27)

Here G(S) is the "spin" part of the generator of infinitesimal trans-
formations on {, and is given by the appropriate linear combination
(depending on the actual Lorentz transformation performed) of the
generators (III.22b,c) if § transforms according to D(m,n). For the
"orbital" part G(o) , which reflects the effect of the change in argu-
ment x @ L™ x on the functional form of §, we have the familiar forms+t

() __,2 .
P\ =-12 =p_ , (I11. 28a)
PO - ig=p (I11. 28b)
@ =xxp , (Tl 28¢)
K =tp+ o, - (111. 284)

These generators (as well as the G(S)) satisfy Eqs. (II1.5)-(1II.10).

It might seem, from the fact that the "orbital" and "spin” parts
of the generators are simply additive, that what we have here is a
simple coupling of two representations, in the same sense as the
addition of orbital and spin angular momenta in the theory of the rota-
tion group. This would in fact be true, if we were content with having
representations of P defined over functions | of space and time (or, in
the language employed in Sec. II, representations which map whole
trajectories into one another). But the quantum mechanical aspect of
relativistic wave equations calls for a representation defined over
wave functions at fixed time, in order that an invariant scalar product
between fixed time states can be defined. Egs. (III.28) do not pro-
vide such a representation because the operator p, in (II1.28a) and
(I11.28d) are clearly undefinable on fixed-time functions. One is then
compelled to introduce an operator (to be denoted by ~H), which 1s
defined over functions ¢ {x,t} at fixed t (i.e., operates on the spin
index and on x, but not on t) and produces the same effect on them as
Py (which acts on the time variable). In other words, one has to have

a wave equation

tFor example, K, (o) would be obtained from the fact that L™*x in this
case is (°+Byx', x*+Byx°, x® ,%x°), so that to first order in small

Bl=v/c). 4073 = 460 + 8 (o8 25 + 00 25) vl

axt
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po¢=—H\|J or ig—g-=Hl|J . (I11.29)

The operator H, which we will hereafter refer to as the Hamiltonian
for obvious reasons, must be such that on substituting ~H for Po
everywhere, the Eqs. (III.5)-(III.10) remain valid, i.e., -H must be-
have like P, with respect to group properties in order that (I11.29) be
relativistically invariant. The important point now is that an operator
H which has these properties will, quite generally, be a matrix-
differential operator, i.e, it acts both on the space and spin variables.
Therefore the generators of f on the wave functions no longer contain
a pure "orbital" part independent of the "spin" part. Consider, as an
example, the generators in the interesting case when the transforma-
tion of the wave function at a given space-time point is according to
the reducible representation D{o,s) ® D{(s,0). The wave function is
then 2(2s+1)-dimensional, and we have

Po = - ia_t - -H (111.30a)
P=-1y=p (111.30b)
L=xXxXp+8 (I11.30¢)
K=tp+xp, +iA~tp-xH+1{ (II1. 30d)
where
s o 5 o©
8= ' A= =pa S . (I11.31)
o s o -5
The matrix p, is one of the Pauli matrices
0 il o -i 1 0
pl - ’ pg = ' pa . (III.32)
1 0 i 0 0 -1

whose elements are to be thought of as (2s+1)-dimensional matrices.
The pure spin parts S and i\ of these generators are obtained by
putting the (25+1)—dimen51onal matrices (I1I.19) of D(o,s) and (II1.17)
of D(s,0) together to form the block-diagonal matrix of dimension
2(2s+1) for the reducible representation D(o,s) ® D(s,0). We shall
later on determine the operator H for arbitrary spin s in such a way
that at least when invariance under the discrete operations T, C, P
also are required, H cannot be merely a function of the differential
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operator p, but must contain matrices constructed from 8. etc.
Actually this fact can already be seen from the well-known example of
the Dirac Hamiltonian (the Dirac wave function being sermething which

transforms according to D(0,%) + D& ,0)). In the notation used here it
is

Horac = AR *To1m : (I1.33)

To summarise the argument of the preceding paragraph, intro-
duction of the notion of a scalar product, essential for quantum mech-
anical interpretation of |, necessitates the definition of a Hamiltonian
operator.t The explicit construction of an invariant scalar product is
another matter. The scalar product between two wave functions o, ¥
is not, in general, given by j'cpflj;dax because in order that this quan-
tity be invariant under relativistic transformations, one must have,
for example, _[‘cp ydex = j‘[l +1ieG)p] 'L (1 + te@)¥1d®x, (1I1.34), i.e.
the generators G mustbe Hermitian in the ordinary sense. But this is
not necessarily so. Indeed, in view of the non-Hermitian term xH
and the anti-Hermitian term i\ in (111.30d), it is evident prima facie
that K cannot be Hermitian in the example considered there, unless
exceptional circumstances prevail. The spin % case 1s exceptional,
and by introducing the Dirac Hamiltonian (III.33) in (III.30d) one veri-
fies that K is Hermitian. In the general case, however, one has to
define the scalar product as?

. ¥) =fcoTM¢dax (111.35)

where M is a "metric" operator in the space of wave functions,* and
is to be determined in such a way that (III.35) is relativistically in-
variant, i.e.,

Jo Myaex = [T +iea)pI ™ML (1 + 1e@)Iax | (I11.36)
or

Mg=c'Mm . (II1.37)

t1t is not implied that for any specified local transformation property
of §, an equation in the form (III.29) should exist. To take the
example of spinless particles, the wave function § obeying the Klein-
Gordon equation and its derivatives 9,y must be taken together to get
an equation of this form.

¥*We don't have a quantized field yet, and the metric M here must be
clearly distinguished from metrics (definite or otherwise) on the space
of states of a quantized field.
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Of course one must also have

M =M (IT1. 38)

in order that (p,p) be real. By (III.37), the actual expression for M
will depend on the expressions for the generators G, in particular, on
that for H. We must therefore postpone further consideration of M till
after we have gone into the problem of determination of H.

There is one question, however, which may be legitimately
raised at this point. Why are we stuck with a metric M (which is, in
general, a matrix-cum-differential operator), while Fgldy,lo) for in-
stance, is able to define a simple scalar product _|'cpc q;cdax between
wave functions qg, Ve in his "canonical® representation? The answer
is that we are insisting on something which Foldy is not, namely,
local covariance of the wave function in the sense of Eq. (III.25).

The "spin" part of the boost generator, i.e. the part which acts on the
index of the multi-component wave function §--the counterpart of the
term i\ in (III.30d)--contains, in Foldy's case, terms like p; (8 X p)/
(m + E), (where E =+./p® + m" ), which are nonlocal in the configura-
tion space. Actually it is this canonical representation, wherein the
transformation of the wave function is not locally covariant, that
emerges directly from an analysis of the unitary irreducible represen-
tations of P according to the method of Wigner. The canonical repre-
sentation is related to the representation (III.30) by a similarity trans-
formationf which is momentum-dependent, and is not, in general,
unitarity. The simplest way of seeing this is by noting that if the
Hermitian metric operator M in (III.35) is positive definite, then it
can be decomposed in the form M = RfR, and the scalar product is then

o, ¥) =I€pTMdld3x =Iwcf¢cd3x (I11.39)
where
Vo=Ri. o, =Rp . (I11.40)

Thus in terms of the transformed functions {, ®g, the scalar product
is of the simple type, without any metric operator.

D. The Discrete Transformations
We have already introduced the discrete transformations of
space and time inversion. It is obvious that performance of either of

tThis is really a generalized Foldy-Wouthuysen trans‘formation, for an
explicit determination of which, see Ref. 9 (in the case of half-
integral spin).
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these operations twice in succession leads to the identity transforma-
tion xM —» x*. Further, the performance of both time and space inver-
sion, in either order, takes JvcLl -x*. Thus, for the abstract opera-
tars P of space mversion and T of time 1nversicn, it is true that P?=
1 =1, and PT =P. Naturally, P® and 1 should take every state of
a quantum system into itself. However the wave function represent-
ing the state need not be mapped identically into itgelf--it is quite
sufficient if the wave function is taken into a constant multiple of
itself, where the multiplying factor is a "phase factor" of unit modu-
lus. This is because multiplication of a wave function by a phase
factor does not alter the physical state which it represents . Asa
consequence, the operators P, T representing the effect of P, T on the
wave function need satisfy only the weaker conditions

PP~1, T~1, PT~ TP P (111.41)

where the sign~ means equality to within a factor of unit modulus.
Qur insistence on leaving the door open for these arbitrary phase fac-
tors may appear a little too legalistic at this stage; however the wis-
dom of not curtailing this freedom will become evident when we try to
second~-quantize the wave equation we derive. On the other hand, in
commutation relations involving P or T and the generators of the con-
nected group , no free phase factors remain, for reasons of continuity
with the identity transformation. The relations are

PP, = PP, PP = -PP, P[=]P, PK= -KP (I11.42)
TP, = BT, TP = -PT, T[= -IT, TK=XT . (I11.43)

These equations reproduce the familiar behaviour of P, J etc. (con-
sidered as observables:; momentum, angular momentum etc., rather
than merely as generators of the group) under space and time inver-
sion. It is pertinent to observe here that the correct transformation
properties (I11.43) UP er T are obtained only if T is chosen to be an
antilinear operator, i.e. T must consist of complex conjugation
together with a linear operation. To illustrate this point, consider the
operator (1 + iePs) for a displacement through an infinitesimal distance
e along the z-axis, followed or preceded by a time reversal. Since
the space and time directions are completely independent, one evi-
dently has (1 + ieP3 )T = T(1 + iePs). If T were a linear operator, this
equation would immediately lead to P;T = TP5, which states that the
third component of the momentum remalns unchanged under time rever-
sal. But we know that momentum does change sign under T. To en-
sure this property we have to make T antilinear, in which case
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T +1ePaT = (1 + ieP,)T = T(1 + ieP,T) =T + T(ieP,) = T - ieTP,, since
the sign of i is changed on pulling it through an antilinear T. The
correct relation TP, = -P,T is thus obtained. The same can be said
of the other generators.

The effect of P and T on wave functions §(x,t) will thus have to
be defined by

Pylx.t) =oy(-x,t) (111.44)
and

Ty (x,t) =Tl1r*(ac_,—t) (II1.45)

where o, T are purely numerical matrices, and the antilinearity of T
is reflected in the complex conjugation of § in (III.45).

Consider now the operation C, called charge conjugation, about
which we have so far been silent. Unlike T and P, C is not a relati~
vistic transformation. It is not an element of the extended Poincare
group; since C leaves the coordinates x* unchanged, it adds nothing
to the group structure. Then what is C? It s an operation which
maps a representation of  on to its complex conjugate, and is de~
fined as an antilinear operator such that

CP, = -P,C, CP = -PC, CJ = -JC, CK = -KC.(II1.46)
For the same reasons as in the case of P and T, it must satisfy
C®~1, CP~PC, CT~TC . (I11.47)
Its effect on the wave function is given by
*
Cyx,t) =Ky (x,t) (111.48)
where K is a matrix with purely numerical elements.
The matrices o, T, K are so far undetermined, but are strongly
restricted by the conditions (III.41)-(II1.48). Considering parity, for
instance, it follows from the use of Eqs. (III.30) and (III.44) that the

first two of the Eqs. (III.42) are trivially satisfied, while the last
one, PKy(x.t) = -KPy{x ), requires

o(K¢)(-x,t) = -Koy(-x,1)

or

o{-tp - xpo +ir) y(-x,t) = (-tp - xpo — A) o (=x,t)
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To ensuré this, we must have

oL=-AC, or 0paS =-psSc (II1. 49a)
Similarly, P] = JP demands

cS =80 (111.49b)

-~

Egs. (III.49) determine o to be a linear combination of the Pauli ma-
trices p; and p,. We will develop the theory with the specific cholce

c=p, . (111.50)

An over-all phase factor which is permitted by PP~ 1 turns out to be
not important, and mixing in of a term proportional to p, in ¢ would be
equivalent to combining (IIT.50) with a transformation which changes
the relative phase of the D(0,%) and D@ ,0) parts of the wave function.
The effect of this can be studied independently, but we will restrict
ourselves in the following to the identification (III.50).

As for the time reversal operation, again the first two of Egs.
(I11. 43) are satisfied trivially-~keeping in mind the antilinearity of T

~~by virtue of the explicit forms (II1.30a,b) for P, and P. The require-
ment T] = =JT leads to -

Tl X -1y + 8) 4,01 = - [x X =7 + 8lry ", -1)
or
8% = 87 s (1i1.51a)
Similarly, from TX = KT, one finds

T() = @A)T, or TA = AT (II1.51b)

T{\)* = (A)T, or TpaS* = =ps S . (111.51c)

To satisfy the two Eqs. (III.5la,c) simultaneously, T must be of the
form

T= (1I1.52)
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where 1/, 1”7 are matrices of dimension (2s + 1) which satisfy

r/s*% = -g7’ and 7" s* = -gr” . (111.53)
These equations fix T’ and 7”to be multiples of the matrix { defined

in Eqs. (III.12), and the requirement T° ~ 1, which reduces t6 T7*~ 1,
restricts these multiples to be unimodular phase factors. Thus, apart
from an overall phase factor which we will ignore,

T = 16 ve T=£l (111.54)

| ig 2 . E
The constraint e & =1 comes from the condition PT ~ TP.

An entirely analogous treatment of the charge conjugation opera-
tor C shows that

0 ¢ 16
k=l 10 ,e S=x1 (I11.55)
Ce 0

The two ambiguous phases in (III.54) and (III.55) are uncorrelated,
and we thus have four kinds of possibilities. In what follows, the
commutation rules '

b L¢] i6

TP=e 'PT and CP=e °PC (I11.56)

of P'with T and C will play a crucial role. It may also be noted that
2
? = (-1)°® (111.57)

and
10 o
P =e °(-1) : (111.58)

Finally, we observe that the off-diagonal matrices o and ¥ (Egs.
(I11.50) and (III.55)) link the D(0,s) and D(s,0) parts of the wave
function. In general, if parity and/or charge conjugation operation is
to be defined on a locally covariant wave function, then every irredu-
cible representation of £ contained in the wave function must be ac-
companied by its complex conjugate irreducible representation.

IV. Derivation of Wave Equation Invariant Under P'and Under the
Discrete Operations
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We are now in a position to construct an H such that Eq.

(I11.29) is invariant under the above operations. The wave function
will be assumed to transform according to D(0,s) + D(s,0) since this
would assure a unique spin s, while at the same time permitting defi-
nition of the discrete operations T, C, P. Since | has no redundant
components, there will be no supplementary conditions in the theory.
This is certainly an advantage,but the price to be paid for it is that
the equation cannot be of the first order in all derivatives and mani-
festly covariant (except for s =%). The reason is that the matrix four-
vector which is needed for coupling to the four-vector 8y in such
equations transforms? as D@ ,%), and therefore any wave function on
which 1t operates must contain, along with any part transforming as
D(m,n), another part transforming according to at least one of the rep-
resentations D(m + % , n* i‘) . This is obviously not satisfied for
D(0,s) ® D(s,0) unless s =%,

But let us insist that we will be content with having covariance,
even if not manifest. Then what is required for invariance of the Eq.
(III.29) is clearly that H, as a function of the "dynamical variables"
involved in the problem, viz., P, S, P1, P5. Pa. Should have iden-
tically the same commutation rules with the generators Py, P, J, K of
P and with T, C, P, as isy = -Po has. Specifically, the requirements,
obtained by replacing P, by -H in Eqs. (II1.8), (III.9), (I11.10),
(111.42), (III.43) and (III.46), are

[Pi, H]=0:, (v.1)
[J;»Hl=0 , (v.2)
UK, H] = -iP, , (v.3)
PH=HP (v.4)
TH = HT , w.5)
CH = -HC . (v.6)

t+Recall the statement at the end of Sec. III.B.(i) that the four-vector
transformation law is equivalent to D@ ,%).
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Further, in the absence of any supplementary conditiont on the wave
function, all components of § must satisfy the Klein-Gordon equation
corresponding to a specified mass m, and this implies

H"a=p"a+ma

B . (v.7)

Our task is now to find an H which is a solution of Egqs. (IV.1)-(IV.7).

We observe first of all that Eq. (IV.1), together with [P, , H]
=0, requires H to be free of x and t. Egs. (IV.2) and (IV.4) demand
,_that H be a true scalar with respect to rotations and space inversion.
Now it is easy to verify with the aid of Eqs. (III.49) that the only true
scalar that can be constructed from the available variables are

AR and pi(}-p) X . (1v.8)

Therefore H must be a function of these only. Now, any function of
A *p is reducible to a polynomial of degree 2s with coefficients de-
pending on p = I_Q] . This is because, by virtue of the definition
(IT1.31) of A, A-p 1is a matrix with (2s+1) distinct eigenvalues vp (v =
-s, -s+1, ..., s-1, 8) -- each elgenvalue occurring twice-~-so that it
satisfies a characteristic equation of degree (2s+1). Consequently H
can be written as a polynomial in (} *p) plus p, times another polyno-
mial in (. °p).

At this point it is convenient to impose the Klein-Gordon condi-
tion (IV.7) before worrying about the remaining invariance conditions.
The process of squaring H which would apparently lead to very compli-
‘cated expressions, can actually be carried out very simply and ele-
gantly by exploiting once again the matrix nature of ()°p). All we need
to do is to make use of the well known spectral expansion theorem for
any diagonalizable matrix A, which states that if A, are projection
operators to the eigenvalues v of A, then

AA=A B (Iv.9)

tWhen the wave equation has redundant components, (IV.7) cannot be
insisted upon. The simplest example is the Hamiltonian of the spin-1
particle as described by the Kemmer equation, 11) which satisfies H® =
E®H. But those components of the wave function which correspond to
the zero eigenvalue of H allowed by this equation are constrained to
vanish on account of a supplementary condition, which cuts down the
independent components in the wave function from 10 to the necessary
6.
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and,
£(A) =Z £V) A ; (Iv.10)
A\

In the present context we take for A the matrix xp A 2/p (where p =
| p|)so that its eigenvalues are v = -s, =s+l, ..., 8-1, s. The ex-
plicit form of the projection operator is then

X = \ LD ;

A= gl FE—— (Iv.11)
T
Voou#v 3 PP

It is clear that A,, contains both odd and even powers of A, a feature
which would create some inconvenience whenwe try to impose T and C
invarlance, if H were expressed directly in terms of the A\,. To fore-
stall this difficulty, we define g

Bv = A\) + 1\_ except Bo Ao ' 0 (IV.12a)
and"
¢ = - ' > 0 T 0 ?
C,=A,=h, v (vz20 . (v.12Db)

which would-make B,, an even function of x P and Cv an odd function.
Eqgs. (IV. 9) and (Iv 12) lead to

= =B8 . BE =08 . IV.13a
BB, =C,C, BH vt BuCy = Cubuy (Iv.13a)

Also, as a special case of (IV.10),

S
). A, = ) B, - (Iv.13b)

V==-5 vz0

Now instead of using (IV.10) to write H as a linear combination of the
‘Ay . one can equally well write H in terms of By and Cy. We thus
have, quite generally,

e ( b B, +z >+p1 Zb B + c G) " ':;(IV.‘.l;lr)

where the coefficients by, c\;, bv ’ C\, may be functions of p. The .
Klein- Gordon condition can now be trivially imposed in terms of the se
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coefficients by using Egs. (IV.12)-(IV.14). One finds the require-
ment to be

bvg + c\f + b\)'s - cv"a =p? (Iv.15)

for each v 2 0.

Our remaining task is to use the time reversal and charge con-
jugation invariance conditions (IV.5) and (IV.6) and the boost invari-
ance condition (IV.3) to determine the coefficients in (IV.14) as func-
tions of p. Consider first time reversal. Since T) =-ATand TP =
-PT from Egs. (III.43) and (III.51b), we have T(-p) = (A -p)T, so that
T leaves the projection operators By, and Cy in (IV.14) unchanged. But
it takes each coefficient to ijé:s complex conjugate, and further, on
account of (III.66), Tp, =e I p,T. Therefore

m = {(Tr,'5,+Te 0 ) ve Ta (To/ 8,7 o e )} T,

and condition (IV.5) which requires this to be equal to HT--with H as
in (Iv.14)--yields

* = * = = ’ T ! k= ’

bv bv N c, . e b\) bv re e c (Iv.16)

These are reality conditions on '{Be coefficients, whose exact nature
depends on whether the phase e T is taken to be +1 or -1. Since we
have no means of discriminating between these at the moment, we
must keep both possibilities open.

An exactly similar analysis can be made of the requirement of
C-invariance. The conditions obtained for T and C invariance are
summarised in Table I. It will be observed from the table that if we
require both T and C invariance, the by, will have to vanish, as well
as either the b,,’ or the ¢’ . The various forms which result for the
possible Hamiltonians are listed below. For convenience of future
comparison we give side by side also two possible forms of the metric
operator in each case. Derivation of the metric operators will be
given later.

Case (i): TP =PT, CP = -PC.

= + ’ 5
H Zc\)cv plzbv B, .17)
with ¢ , b / real, and

vy

cva +bv'2 =P = +m? . (Iv.18)
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Table I
Conditions On H, Eq. (IV.14), For T and C Invariance*
b c b’ c'
v v v v
T(+) R R R R
T(-) R R I I
CcH+) I R T R
c(-) I R R I
Rif T(+), C(-) RIf T(+), C(+)
TandC | 0 R IifT(-), C(+) I if T(-), C(=)
0 otherwise 0 otherwise

* R = Real, I =Imaginary, T(+) means TP = +PT, C(-) means
CP = -CP, etc.

Possible metric operators are
= m=1 ’ . )
M, =m va B, . (Iv.19)
= =1 A . ] 32 "
(em)2[) b /e Co+pa )b B ] . (V. 20)

Case (ii): TP = -PT, CP = PC : :
H is of the same form as in case (1), except that b\, 1s now pute
imaginary. The metric operators are

. . &

- -1 rn 2
M, = UEm) [z c,b 'B, iplzbv cv] , (Iv.21)
= =1 y ).
(im) va c, . (v.22)

Case (iil): TP =PT, CP = PC
—_ N !, 1
H -z c,C, + P zcv c, (Iv.23),

with ¢ , ¢ ’ real, and
v’y

c?®-¢c =, (Iv.24)
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In this case
M, = (‘:E:m)‘"1 I:z cvcv' Bv - p z cv" B\)] i (Iv.25)

. -1 ’
M; =m c,'C, . (Iv.26)
Case (iv): TP = -PT, CP = -PC
H has the same form as in case (ili), except that ¢,,’ 1s now
imaginary. As for the metric operators,

M, = (tm)™ ch’ B, . (w.27)

M, = (iEm)~ [Z cc,/C,+ 1;)1ch’8 cv] ) (Iv.28)

Let us now turn to the boost invariance condition, which 1s the
only one left to be considered. It can be rewritten, using (III.30d),
as

[(H, tp-xH+N] =1p . (Iv.29)

An alternative form, obtained by writing ip =#(x,F°] =
# (xH? - H?x) in (IV.17), s

[H, (-10z.m -2)]=0 . (Iv.30)

Explicit evaluation of the left hand member in (IV.29) or (IV.30) is dif-
ficult in the general case, though it can be done. However it turns
out to be sufficient for our purposes, and much simpler, to consider
the weaker condition obtained by scalar multiplication of (IV.30) on
the left by p, namely

[m, -tpxm)] =208, 28] . (av.31)
The commutator -i[x,H] in this equation is the gradient of H in p-

space, and the scalar product with p limits the differentlation to one
with respect to the "radial" variable p. The restrictions imposed by

tEq. (IV.30) shows that the velocity operator, -i{x,H], is not a con-
stant of the motion, since its commutator with H is [H, 2),] # 0 for
any nonzero spin. It is interesting that the existence of Zitterbewe-
gung appears as a direct consequence of the requirement of invariance
under boosts.
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(Iv.31) thus take the form of ordinary differential equations for the
coefficients ¢, and by, or ¢y’ occurring in H. The derivation of these
differential equations is given in the Appendix As shown there, the
equation for ¢, is the same in all four cases ., and is glven by

dc
Ea—v=cp+2v(l§.'a—ca) . (IV32)

This being a first order differential equation its solution will depend
on one arbitrary constant 4,,, which we ‘define“by

lim _ '
p=0 cv—m}(,\) i | (Iv.33)

It is easy to show that the solution is

(E+p)y47’_(1_+1cv) -m
Cc,=E = ; : — (Iv.34)
v (E+p)4\)(l+{,\)) +m®

It follows then from Eq. (IV.18) that b,/ , occurring in cases (i) and
(i1), is

2E(E+p) Y 2"(HL 2t
b= : (Iv.35)
v (E+p)_4\’(1+¢;v) +m? (1-&\))

and from Eq. (IV.24), that ¢,/ , which shows up in cases (l1i) and (iv),
1s : -2V 2y &
2E(E+D)*" m (Lva =1)*
cvt =ipa 4Vv . 4y ' (Iv.36)
(E+p) (1+)cv) +m '(1—4,v)

These expressions may be cast into simpler form by the substitution
E=m cosh 9 p=m sinh 8 , (Iv.37)

together with the réplacement of the parameters 4.,also by hyperbolic
functions which however have to be chosen in such a way that the
reality conditions on b,’, ¢, (Table I) are ensured
Case (i): b, real. .
. Here, from (IV.39), L\, < 1 ‘and we set
. g L
1 =coshm ,——Y _=sinh n, - (Iv.38)

J1-47 VM- N

W
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Then (IV.34) and (IV.35) become

cv, = E tanh (2v0 + nv) (Iv.39a)
bv' =E sech (2v0 + nv) (Iv.39b)
Case (ii): by’ imaginary, /Lva > 1,
Defining
=t h d === = sinh (1v. 40)
— =coshn  an > —— =sinhn_, ;
«/. L\): 1 v &v 1 v
we get
c = E coth (2ve + nv) (IvV.41a)
b\), = {E cosech (2v0 +nv) R (IV.41b)

Case (iii): ¢,/ real, £,® > 1.

Define um through (IV.40). Then we obtain
c, =E coth (2v6 + 'r]v) (V. 422)
c\)' = E cosech (2v8 + n\)) i (Iv.42b)

Case (iv): ¢, imaginary, 4,° < 1.
Defining 7, through (Iv.38), we find

c, =E tanh (2v8 + nv) (Iv.43a)

cv’ = iE sech (2v6 + nv) 5 (Iv. 43b)

Substitution of these expressions for the coefficients in H into
Eqs. (IV.17) and (IV.23) finally yields four classes of Hamiltonians,
each class being characterized by specific commutation relations of P
with T and C, and containing an infinite number of members by virtue
of the completely arbitrary parameters n,, which occur in them. If we
applied the boost condition (IV.30) in full instead of its "longitudinal®
component (IV.31) alone, cases (ii) and (iv) would be eliminated en-
tirely, and in the other two cases only Ny = 0 would be permitted.
The proof of this statement is quite complicated and will not be given
here. We shall however continue to work with the infinite variety of
Hamiltonians determined above, in order to demonstrate all the better
the power of the constraints imposed by the requirement of quantiza-
bility.
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V. The Invariant Scalar Product, and QOrthonormality of Solutions of
the Wave Equation

Let us now turn to the question of the invariant scalar product,
which 1s such a vital ingredient of relativistic quantum mechanics.
We have already noted that the scalar product must be of the form
(111.35), with a Hermitian metric M satisfying (III.37), to be deter-
mined. We will assume that the scalar product is invariant under
space-inversion (MP = PM). Its behaviour under T and C will have
to be considered separately.

As we have noted earlier, the generators P and J, Eqs. (III.30b)
and (III.30c), are Hermitian, and when introduced in Eq. (II1.37),
lead to MP = PM and M] = JM. These equations, together with MP =
PM (space-inversion invariance), state that M should be a true sca-
lar operator, independent of space coordinates (and of time too, of
course). As in the case of the Hamiltonian, this means that M must
be a polynomial in ) -p, plus p, times another such polynomial, with
the additional restriction that this whc*le expression be Hermitian.
The beoost invariance condition MK = K’ M becomes

M(tp + xH + i\) = (tp + Hx - )M, (v.1)

and the consequence of this requirement can be worked out, after
taking a scalar product of (V.1) with p, exactly as we determined the
consequences of (IV.30) for H. We get again a set of first order dif-
ferential equations for the coefficients in the expansion of M in terms
of the projection operators B, and C,,. Solution of these equations
leads, in each of our four cases, to a linear combination (with arbi-
trary constant coefficients) of two parts, one of which is invariant
under charge conjugation, while the other changes sign. . Clearly,
each part by itself is admissible as a meiric operator, the first of
these being positive definite and the other indefinite. We denote
these by M, and M, respectively, and their expressions in the four
cases are gilven” in Sec. IV. It may be verified in each case that

M, =M, (H/E) . v.2)

*These forms presuppose a convenient choice of arbitrary constants
arising in the integration of the differential equations. TUnlike in the
case of H, the constants here appear as factors multiplying the terms
corresponding to different v's in the expressions for M, and are there-
fore simply normalization constants which can be chosen to normalize
the different solutions of our wave equation according to our conve-
nience.
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The overall factors of 1 in some of the M's are included to ensure Her-
miticity, and the factors of m™ make the metric operator dimension-
less.

We have thus a choice of two metric operators for each of the
Hamiltonlans, and we have no a priori reason to choose one in prefer-
ence to the other. The search for the invariant scalar product has
only added to the freedom which existed in the choice of the Hamil-
tonian itself! However that may be, when a scalar product is defined
with a particular metric, all observables have to be Hermitian with
respect to the metric, i.e., if A is an operator representing an obser-
vable, A must satisfy

T

MA=AM (v.3)
in order that its expectation value,
-r
B = (p, Ap) = [ MAgpd®x (v.4)

be real. It is immaterial whether or not A is Hermitian in the ordinary
sense. As far as observables like energy, related to the generators
of the Poincaré group are concerned, this property is already ensured
by the invariance condition (III.37). It is interesting to note that the
coordinate variable x does not satisfy this requirement, and is there-
fore not an observable.

Let us consider now the plane wave solutions of our wave equa-
tion, and their normalization with respect to the metric M. Observe
first of all that H is expressed completely in terms of the operator )
= pa (' p/p) which commutes with the helicity (s'p/p). Thus plane
wave solutions of H can be labelled by the value of the momentum
g, sign of the energy €, and helicity h. Let \ll;h(gs,t) be such a solu-
tion. Clearly, -

Vot = ey (2m) "% expli(g-x - cwt)], (v.5a)

t+The only exception is the case of the Dirac particle. In the general
case one can define an "observable position” X =R x R~ . This
transformation is really a generalised Foldy-Wouthuysen transforma-
tions. Ref. 9 gives details regarding this for the case of half-
integral spins.

+We use g and w = +(g® + m’ ]‘% for momentum and magnitude of the
energy, to emphasize that they ari numerical values rather than
operators p = -ig and E = {p®+ m*)=.
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e _ € € _ 32 — v €
Ewﬂh—gw_gh, HiG = e oSy SRS =hd v..55)
where u;y 1s a (2s + l)-component spinor. By considering the’
equalit;ﬁ T 2 =t B
M (:5 t) MG¢ ,h,(ag H Px
=I[G¢Qh@£'t)1 M'w_;,h,‘g,t) ex (.6)

wherein G is taken successively as P H and LS-_E/p), and the condi-
tion (III.37) is used, one can easily verify by virtue of (V.5b) that the
plane wave solutions can be orthonormalized in the following way-

j‘-y Lt)M\p,h,Qgt)dax—nés,éh,ég a’). (v7)

The normalization is according to
m=1 1f M=M (vV.8a)
n=e¢ if M=M,. (V. 8b)

The fact that in (V.8b), n is positive for positive energy states and
negative for pegative energy states reflects the indefinite character
of the metric M, . The orthonormality properties of the spinors th
are obtained from (V. 7) and (V.5a): . :

’ . . B
e N -1 € = S,
ugh M(g) n ugh' O¢e’ Spn? ¢ (v.9)
This equation can be used to obtain an expression for a certain "sum

over states" which we will encounter while carrying ‘out the second

quantization. Multiply (V.9) on the left by u_gh and sum over h. We
get

+ i ) N .
€ € -l e = ) (
X“gh uey M@ | Wans = e ugh, ; (v.10)

Thus the bracketed operator in (V.10) is a projection operator which,
leaves spinors corresponding to momentum g and energy ew unchanged
while it annihilates states with the wrong sign of the energy. There-
fore '
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t .
| lzu:hu;h M(q) 0™t =é[1+fuj_@J X (v.11)
h

With the use of (V.5a), this equation leads to the following identity
involving the space-time dependent wave functions ll!gh:

5% = Y [ a v, o)
h

2l ] M™ (g) explig-(x-y)-iew(t - 1)]

- G [ean- i+

= 3

= o5 | Gal[intew + 1@} M (@) ] explig- Ge-y)-tow(t - 7]
(vV.12)

It should be noted that the right hand side of (V.12), like the left hand

side,. is actually independent of which of the two metric operators M,

or M, 1s used, because MM~ {g) =M, 7' (g) = eM,"1(g). We will need

to make explicit use of this expression in the next section.

VI. Second Quantization

We have now carried the c-number theory of arbitrary spin fields
as far as is possible without making extra assumptions beyond invari-
ance under the Poincarg group and the discrete transformations. The
next question is whether the theory is quantizable, and if so, what new
restrictions or new features emerge from the quantization procedure.
We shall attempt to carry out the second quantization by expanding
the field § in terms of the plane wave solutions ||J{" of the wave equa-
tion and sukj‘)jecting the expansion coefficients to guantum condi-
tions. 12),4 Thus, we write

V.t = % J‘daq {q,;h@s,t) a(g,h) + q’:g,h.(’f't) b*(g,h)} (VI.1)

and suppose that
[a(g,h), a*(g’ ,h')], =[bg.h), b*(@' ,h")],
=5,/ 8@-ga'), (VI.2)
with all other anticommutators/commutators vanishing. (The plus/

minus sign on the brackets in (VI.2) indicate anticommutators/commu-
tators, corresponding to Fermi/Bose statistics. We do not consider

*It may be recalled, however (last paragraph of Sec. IV), that invari-
ance under transverse boosts has been held in abeyance.
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the possibility of having more general parastatistics.) On top of all
the ambiguities we have noted so far, we now have one more: whether
to use the + or - sign in (VI.2) in quantizing the theory for a specific
spin. So matters seem to be going from bad to worse! However this
trend gets reversed dramatically if we impose one very natural condi-
tion, that of microcausality, which we take in the form

[, 1), ¥ylg,m], =0 | (V1.3)

for space-like separations between the points {x,t) and (y,7), i.e.,
for (t - 1)° - (x - y)® < 0. The condition (VI.3) would ensure commu-
tation at space-like separations, of certain bilinear functions of the
field which represent supposedly observable densities (like energy
and momentum densities) if such densities are local functions of the
field; this will be verified to be the case for the fields we consider.

We shall show:

(a) that microcausality cannot be achieved in any theory using Hamil-
tonilans of cases (ii) and (iv);

(b) thatcase (i) is consistent with microcausality if and only if the
spin is half-integral, the quantization is carried out using Fermi sta-
tistics (i.e. plus sign in (VI.2)}, and all the parameters m,, in H,
entering through the coefficients cy and b\,' as determined in (VI.39),
vanish; and

(c) that case (iii) is consistent with microcausality if and only if the
spin is integral, the minus sign in (VI.2), (Bose statistics), is em-—
ployed, and all the parameters n,, in H, entering through the coeffi-
cients ¢, ¢y  as given in (VI.42), vanish.

To substantiate the above statements, which testify to the truly
astonishing power of the microcausality condition, let us evaluate
the anticommutator/commutator in (VI.3) using (VI.1) and (VI.2). It is
a trivial matter to see that

(1t v wm] = Y Jangy bt v o .0)
h

- ~%
£) [Paig e ig o)
h

§S+:I: s~ (vi.4)

+ - .
where the explicit form of the sums 8 and 8 has been already deter-
mined in (V.12). This form suggests that we try to express 8¢ x.t) in
terms of the familiar Lorentz-invariant functions
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since it is known that
+ =
A=A +A (VI.6)

has the causality property we are looking for (i.e. vanishing outside
the light cone). For, we can then hope to pull out the factor

[in{ew + H(@)} M™ ()] (V1.7)

from the integrand in 8% , Eq. (V.%Z) . by replacing g by the differen-
tial operator p = -i¥ and ew by isT = ~Po. and thus express 8% as A®
acted on by an operator which is a function of p and p, . To see what
kind of an operator emerges out of this procedure, we must first make
the g and w dependence of the hyperbolic functions contained in M™
and H in (VI.7) manifest by expanding these functions in powers of
cosh 6 = (w/m) and sinh 8 = (g/m). When this is done, if (VI.7) turns
out to be of the form f(g,ew) , without any e-dependence other than
through the combination ew, then its role in place of the square-
bracketed factor in (V.12) is to make 8% equal to f(p,-p,)A", so that
the sum srEg = £(p,~po )A would be causal, provided the operator £
is local (i.e. is a polynomial in the differential operators B Po). In
this case, quantization must be done according to Fermion commuta-
tion rules to ensure causality. On the other hand if (VI.7) reduces to
the form ef(g,ew) then it is the difference ST - §™ = £(p, -po)A which is
local, and Boson commutation rules would then be required to ensure
causality. If neither of these happens, then one cannot get causality
with either type of commutationrule, and such a case would have to
be considered unphysical.

Let us now substitute in (VI.7) each of the four types of Hamil-
tonians with the associated metric operators, and see what happens.

Case (i). Introducing the expressions (IV.7) and (IV.9) for H
and M, with (Iv.39), into (VI.7), and multiplying out with the help of
(Iv.12), we find that (VI.7) reduces to

1m‘|:Z € cosh (2v8 + nv)-Bv+z sinh (2v0 + nv)'Cv + pl] . (VI.8)
Now use the expansions

. LN _ n
sinh 2ve = z a sinh™ 9 Z a.n(q/m) (VI.9a)
n odd n odd
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N n,_ n
cosh 2v@ = z Bn cosh 8 z Bn(w/m) (VI.9b)
n odd n odd

for 2v odd (half-integer spin), and

sinh 2v8 = za sinh 8 cosh O—Za (q/m)(w/m) , (VI.10a)

n odd n odd
. ¢ n — 7 n

cosh 2v0 = Z B, cosh’ 8 Z Bn(u)/m) (VI.10b)
n even n even

for 2v even (integer spin), where ap, By, ocn' . Bn' are constants.
Inspection of Eqs. (VI.8)-(VI.10) shows that if and only if all ny were
set equal to zero and 2v is odd (i.e. the spin is half-integral), (VI.8)
reduces to the form f(g, ew). Under these conditions, the anticommu-
tator [,/ Vg ]+ would reduce to f(p, —-pg)A, which is causal because
flp, -po) is a local operator. The locality property is verified by
identifying (VI.8), subject ton,, =0, as i

fq,ew) = im[ew-u)"l cosh 2 0 +sinh 21 6 + pl] (VI.11)

with the aid of (IV.10) and (IV.12) as applied to the hyperbolic func-
tions of matrices inthis last expression, and checking that

w™Y cosh 21 _6 and finh 2)\ 0 are polynomials ml ‘qg. For this last
step, explicit expansions given in the Appendix A to Ref. 13 may be
employed. The assertion (b) on page 172is thus proved. The proof
of assertion (c) regarding case (iii) follows in an entirely analogous
fashion, the only difference being that when the H and M for this
case, Eqs. (IV.23), (IV.26) and (IV.42), are introduced into (VI.7),
it reduces (for mn,, = 0) to the form ef(g, ew), leading to Bose statis-
tics since it is the commutator [y, wB*‘L = 8% - 8- that ig now cau-
sal. In cases (ii) and (iv), one of the terms in (VI.7) is i v (apart

from irrelevant factors) and it is easy to check that it contains in-
verse powers of g which make it impossible to arrive at a local opera-
tor f(_g -po). Therefore we cannot have microcausality in these cases,
confirming the assertion (@) on page 172.

Thus we see that quantization consistent with microcausahty
leads to a theory with the standard spin-statistics connection which
is unique for any given spin--except in one respect. We still do not
know whether there is anything to choese between the two possible
metrics M; and M, in each case. Even this remaining ambiguity
disappears4) when the familiar role of the total energy and momentum
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operators of the quantized field as translation generators on the field
is taken seriously, requiring for instance that

[, ¢] = —1%" (VI.12)

where the field Hamiltonian ¥ is obviously to be defined as
mc=j¢fMH¢ ®x . (VI.13)

Evaluation of (VI.13) using the field expansion (VI.1l) and the proper~
ties (V.5b),-(V.7) and (V.8) of the plane waves \pgh leads to

K= Z‘fdaq W [a*(q,h) a(g,h) ¥ b(g,h) b*(q,h)] (VI.14)
h .

where the upper (minus) sign in (VI.14) results if the cholce M = M,
of the metric is made, and the lower (plus) $ign if we take M = M.
It is a simple matter to verify now that with this expression for H,
(VI.12) is satisfied only if

(@) the minus sign in (VI.14) is used (i.e. M = M; , positive
definite charge density) with fermion commutation rules, and

(b) the plus sign (1.e. M = Mz, indefinite charge density) is
used with boson commutation rules.

A remarkable aspect of this result is that the connection estab-
lished is between the positive definiteness or indefiniteness of the
charge density and the statistics of the particles (instead of the spin
of the particles as in Paull's classical proof).

Finally, it should be observed that in the cases where we have
found quantization consistent with microcausality to be possible, the
quantities like charge, momentum and energy are ekxpressible as in-
tegrals of local functions of the fleld (provided time derivatives are
admitted), even though we did not introduce locality as a separate
requirement. To see this, consider first the total charge or number
operator, given by j‘q; M\J;dax. Here M is to be taken as M, for fer-
mion flelds and M, for boson fields, as indicated above. In case (i),
which we showed to be appropriate for half-integral spin fermion
fields,

H= EZtanh 2v0-C + plEZSech 2v8-B_

= E(tanh pre + p, sech pre) (VI.15)

and
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= (E/m)y sech 2v8°B = (E/m) sech 2\ 8, (VI.16)

in view of (IV.17), (IV.19), (IV.39) and the fact that ny = 0, proved in
the last section. It follows from (VI.15) and (VI.16) that

1
M, =om (P H + Hp, ) . vV1.17)
We therefore have

.1-
[vmyyex == [[v'e, 12 iR oy]ex 11

on using the Hermiticity of H and the wave equation. In case (iii),
appropriate for integral spin boson fields, one has to take the metric
to be M. Itis found that

1 T
Mz =m(p1H+H py) ‘ (VI.19)

(Note that H is not Hermitian in this case, though MH = HTM.)
One again obtains

.‘-
j'q;“qu;dax=%1j[¢*pl12—%-1%{’—p1¢]d3x . (V1.20)

It 1s trivial to verify with the aid of (VI.18) and (VI.20) that momentum
and energy densities are also local functions of {.

VII. Discussion

The theory we have presented above 1s very different in appear-
ance from theories of manifestly covarlant wave equations, many dif-
ferent forms of which have been proposed and studied extensively for
over thirty years fromthe field theoretic, matrix algebraic and group
theoretic points of view, and discussed at conﬁiderable length, for
instance in the books b% Ciorsonand Umezawa The arbitrary spin
equations due to Dirac, Fierz and Pauli, 15 Bargmann and Wigne
and many others, are expressible in the form

16)

(s au+m)\|:=o o (vIL.1)

which has been investigated with great generality by Bhabha17) and
Harish-Chandra. 18) an equations of this form, with the sole excep-
tion of the Dirac equation for spin %, involve wave functions with a
nonunigque spin content. The reason as has been briefly mentioned
already, is that a set of matrices B transforming like a vector, which
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is equivalent to D@ ,%), cannot be defined over wave functions trans-
forming irreducibly, say as D(m,n), under £. D@ ,%) must necessarily
connect D(m,n) with one or more of the representations D(m + % ,n + %),
and it is only with D@&,0) + D(0,%) that one can meet this requirement
and yet maintain a unique spin value, #. In all other cases the equa-
tion must describe a multi-g ;n (and multi-mass) system such as the
case discussed by Bhabha,1 or else one must make g° in (VII.1)
singular in such a way that time derivatives of only those components
of § which belong to the correct spin appear with nonzero coefficients
(i.e. have equations of motion), the other components being then
merely subject to supplementary conditions (free of time derivatives)
which serve to eliminate them. The conditions necessary for ensuring
that particles described by (VII.1) have unique mass and spin gye
been found under very general conditions by Harish-Chandra. A
clear and succinct account of these, with explicit construction of the
matrices B" for spins &, 2, S, is given In a recent paper by Capri.19

‘While the theory of manifestly covariant wave equations is ex-
tremely elegant, the presence of supplementary conditions creates
difficulties, notably when the introduction of interactions is attempt-
ed.20 More pertinent from our point of view isthe fact that invari-
ance under proper transformations and under all or at least some of
the discrete transformations come packaged together and cannot be
separated if covariance is to be manifest. This can be seen already
from the case of the Dirac equation (spin %) which is actually invari-
ant under T, C and P though none of these was asked for while deriv-
ing the equation. Therefore if the effects of various invariance condi-
tions are to be separately analysed, the assumption of manifest cova-
riance must be given up.

The first attempt to treat this question systematically was in a
very interesting paper by Foldy,lo) who used a "canonical” form of
the wave equation, which is not manifestly covariant and ianvolves
a wave function which does not possess local covariance. Foldy
drew attention to the existence of ambiguities associated with various
possible commutation rules for discrete symmetry operators, but did
not carry the analysis much further. Consideration of this question
within the very restricted freedom allowed by manifest covariance is
also contained in a paper by Pursey?'l}which deals with a general
classification of relativistic wave equations through an anlysis of
the relations that must exist between the different Lorentz-irreducible
parts D(m,n) of a wave function when a unique spin and mass content
is imposed by expressing each of them in terms of the relevant unitary
irreducible representation of the Poincare group. In both the above
papers, only the c-number theory is considered. Equations without
manifest covariance, of the type corresponding to our case (i) with
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1, = 0, were first obtained (with explicit determination of H for a few
low-spin values) by Weaver, Hammer and Good,zz) by starting from a
speclal form assumed for the Hamiltonian of a particle at rest. Actu-
ally none of our general classes of Hamiltonians except this particu-
lar type, has a definite limit as p—» 0. And of course the Hamilto-
nians H in all higher-spin cases are nonlocal operators in configura-
tion space. Despite these apparently disturbing features, the second-
quantizable theories do have observables expressed locally in terms
of the field functions, as we have shown in the last section. The
wave functions in these particular cases coincide, as is to be ex-
pected, with those obtained by Weinbarg,13] who takes § to be a
quantized field from the beginning. There are interesting questions
which remain, and are under investigation: for example whether, if
one or more of the discrete symmetries are "broken," one would get
more general types of quantizable theories. For the present we will
conclude by noting that our wave equation (invariant under T, C and
P separately), in the quantizable cases determined in the last sec-
tion, is really the essence of all manifestly covariant wave equations:
for this equation is what would result if, starting from any manifestly
covariant equation which involves various irreducible representations
D(m,n), all except the D(0,s) and D(s,0) parts were expressed in
terms of these two by making use of the supplementary conditions.

Appendix: Implementation of the Boost-Invariance Condition

To illustrate how the coefficients ¢, and b, or ¢,/ in H are de-
termined by the boost-invariance condition in the form (IV.31), we
exhibit here the details of the calculation in case (i). It is conveni-
ent to use for this purpose two different ways of writing H:

H=ch Cv=plzb\)l B, @a.1)

or

2 '
H=) £0® +a ) 0@ . @2
£ odd 1 even

where £ ranges from 0 to 2s and the fy are nonzero only for odd values
of £ and g for even values. The relation between the coefficients in
the above two equations can be easily obtained from the spectral rep-
resentation of (A *p):

vL A (a.3)

v

ajem@mﬂ=

V==8

il [~
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so that

S
ap =) oot =Y op's, (& even)

V=-5 v=0 (.4a)

= z o) G, «odd)
= (a.4b)

Introducing {A.4) into (A.2) and comparing with (A.1), we find that

o, =) o, b =Y ', . ®.5)
£ £

Now, using the fact that -i[x,H] 1s just the gradient of H in p-space,
it is easy to verify that

‘ip°[¥_:H] =z (—c:j-—f;%p& f{, L) Q\_'P_)L

L
dg
& IS

+o ) (grpto t) apt (a.6)

1
By using (A.4) and (A.5) we can reduce this to
de - dbv’
-ip-[x,H] =Zpd'—p ‘C,te ) p T @.7)

Substituting this in the left hand side of (A. 1) and using the represen-
tation (A.4b) for ) *p on the right hand side, we obtain, after evaluat-
ing the commutators,

dc\J db\)’
Y r_ s - ’ . .
T b\) c\) ap 2v bv (a.8)

But we already have the relation
3 12 = p2
c, + bv E (a.9)

from which it follows that
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dc db /

V ’ V
— + = - .
), ap bv e p (A.10)

Solution of the simultaneous equations (A.8) and {A.10) for the deri-
vatives of c, and b\)' yields

3 2 _ 3
dc\) ~ cp -+ vav ~ c P + 2v(E cu )
dp B? - 2 ! @.11)

db\)' —Zvcv b\)' +pb\)’
B a1

From (A.11) we can obtain a simple equation for (c/E), which can be
immediately solved. With the use of the initial condition (IV.33) one
gets the solution to be (IV.34), and then b,/ (IV.35) is deduced using
@a.9).

It is a striking characteristic of the coefficients Cy bv' . c\)’ ,
Eqs. (Iv.34), (Iv.35), (Iv.36), that they are independent of the spin
of the particle.
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Summary

The main purpose of the present notes is to discuss in some de-
tail a recent three-dimensional "quasipotential"” approach to the rela-
tivistic two-body problem developed by C. Itzykson, V. Kadyshevsky
and the author. The quasipotential equation is derived from conven-
tional local Hamiltonian formalism on the basis of Kadyshevsky's
diagram technique for the "non-covariant” perturbation expansion.
The quasipotential is defined as a series of irreducible graphs, ana-
logous to the series for the kernel of the Bethe-Salpeter equation.
The whole approach is related to the 4-dimensional B.-S. formalism
as the old fashioned off-energy-shell perturbation theory is related to
the off-mass-shell covariant technigue of Feynman and Dyson. The
non-uniqueness of the off-energy-shell extrapolation of the scattering
amplitude is used to obtain a simpler "local" version of the quasipo-
tential equation. It is shown that for the scalar Coulomb potential
V(p,q) = -2 the latter equation is equivalent to a simple infinite-
componeMa equation (similar, but not identical, to the equations
considered by Nambu, Fronsdal and Barut). The energy eigenvalues
are calculated in this case and are found to be SO(4)-degenerate (just
as in the non-relativistic Coulomb problem). In contrast with the
Wick~Cutkosky model they do not depend on any additional quantum
member {other than the principal quantum number n).

As an introduction the Lippmann-Schwinger and the Bethe-Sal-
peter equations are briefly reviewed,

I. Introduction: Linear Off-Shell Equations for the Scattering Ampli-
tude

Two methods have been applied for the determination of the rela-
tivistic elastic scattering amplitude:

(i) Linear off-mass-shell or off-energy-shell equations (the
Bethe-Salpeter and the quasipotential equation).

(ii) Nonlinear on-shell equations based on unitarity and disper-
sion relations.

The second method has never been exactly formulated. All closed
sets of equations treated up to now make, for example, the two-par-
ticle approximation in the unitarity condition. The complete formula-
tion is expected to involve an infinite set of equations for the multi-
particle scattering amplitudes. However, the analytic struccure of the
multi-particle amplitudes is far from being understood.

) We shall deal in these lectures with the first approach only. It
is not uniquely defined because of the non-uniqueness of the off-shell
extrapolation of the scattering amplitude. We shall start with a brief
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review of non-relativistic Lippmann-Schwinger equation and relativis-

tic Bethe-Salpeter equation.

A. Schrédinger Wave-Function and Non-Relativistic Off-Energy-Shell
Scattering Argplitudel} 2]

The non-relativistic scattering amplitude has been first defined
by the asymptotic expression of the Schrdinger wave function satis-
fying certain boundary conditions. Thus, its off-shell extrapolation
is dictated by the Schrddinger equation. One simplifying feature of
the non-relativistic two-body problem 1is that the center-of-mass mo-
tion can be trivially extracted reducing thus the problem to the study
of scattering and bound states of a single particle in an external field.
In the time-independent formulation the scattering of an (effective)
particle of reduced mass mp, initial momentum g, and energy E is de-
termined by the Schriidinger equation

(—LA +ux) - E) ¢E(g,§) =0 (.1)

ZmR

with the boundary condition

iplam = o )

where

lim o_&) =0, lim[lcp ®) -1/2m E o (x)] =0, r=|%| .
E or 'E R E
r- roe (1.2)

Egs. (I.1) and (I.2) can be combined in a single integral equation
bplax) = e + G by (i@ Yy (1.3)
where the "Green function" GE is given by

exp{i/Zm_E |x-y|] -2m -ig(x-y)
G {x-yF-2m R -t 2 d®gq .
&L R 4‘”'3'1' (zr)® d o® -ZmRE—iU

(I.4)

We define the off-shell scattering amplitude T as the Fourier
transform of the product -WE:

T (p.Q) = - ﬁ .re_i%h'(x)le(g,_}E) ex

Sl G es) e e 0
R
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(p 1s the final momentum of the reduced particle). Let the potential V
in momentum space be

V(p-g) =ﬁ [ v R Y (1.6)

[We have chosen the normalization in such a way that the Yukawa
potential 1 e Hr goes into (42 +(p-g)?)~* .] Let us multiply both sides
of Eq. (I.3) by - EU@Q and take the Fourier transform. Using (I.4)-
(1.6) we obtain the Lippmann-Schwinger equation for the off-shell
amplitude:

- — - e 3 =
T2 +Vp-a) +— [ VK 13 2 10 ek=0. 1.7)
The energy shell is defined by
P =g = ZmRE ; (1.8)

[We note that on the surface (I.8) the denominator of the integrand in
(I.7) vanishes.] It can be provedl that if v (x) decreases at Infinity
fast enough so that

“1;(}5)] &#Bx < = (1.9)
then ¢E(g,y has the following asymptotic behaviour:
1gx . &'
bpax) ~ e FE+E— 1l g (1.10)

- )

where T, is the on-shell amplitude, q =,/ ZmRH, and the three-dimen-
sional unit vector n is defined by rn =x. [Eq. (I.10) is often taken
as a definition of the scattering amplitude.]
B. Bethe-Salpeter Equation3)'7

Consider the problem of two relativistic interacting particles
associated with the local Heisenberg fields §, (x) and {, (x). All in-
formation (both about the scattering and the bound states problem) is
contained in the Green function G defined as the vacuum expectation
value of the time-ordered product of four fields:

G, %0t ¥y o¥a) = O] T(y 6 Mo (o )iy (73 )4s (y))] 03 (1. 11)

Let A'a(p), a =1,2, be the complete (or "modified") Feynman propa-
gators (i.e., the two-particle Green functions in momentum space)
and let I(p, ,Ppi Gy +92)8 (P +p2 ~q; —G;) be the sum of all §, +{,~
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irreducible Feynman graphs without radiative corrections on the exter-
nal lines. [We say that the diagram D of the V. +y —elastic scatter-
ing amplitude is {; +§, -reducible if it can be decomposed by cutting a
¥, and a |y, lines in two graphs D’ and D”of the same process such
that D’ contains both incoming lines of D (with momenta d; . qg) and
D" contains both outgoing lines of D (with momenta p, , p,). If this
is not possible the diagram D is called (§, +y,)-irreducible.] Then,
the Bethe-Salpeter (B.-S.) equation for the Green function G (defined
through the Fourier transform of (I.11) by factoring out the 4-dimen-
sional 8-function which exhibits energy-momentum conservation) has
the form

8(p, +p3—ay -4p) Glpy /P2i qp .4p) = Al’,l(pl) B o (02){8 (1 -q;) 8 (Po-a,)

- ﬁ 8 (py P a4y ~a5) [ I(0y /Pa: Ky Kp) 8(ky+ky-q; ~q)

X Glk, . ka; qy .q,) d*k, d*k, . (I.12)
Equation (I.12) can be rewritten in terms of the off-mass-shell

scattering amplitude in a form similar to the Lippmann-Schwinger

equation (I.7). To do this we iIntroduce the following set of independ-
ent variables: the center-of-mass momentum

P =p,+p; = q,+q, (r.13)

and the relative momenta p and q defined by

m
a
P=HgP; — My Pgs  =HgQy ~ MU, U =—"7F— ,a=1,2,
2P1 ~ M1 Pg 2y 142 a  m,+m,
(o, =, P+p, Py =W,P -p) . (1.14)

The off-mass-shell amplitude T (p,q), equal to the sum of all con-
nected Feynman diagrams without radiative corrections on the external
lines, is related to the Green function G by

8L (Py) 81, (02) T(0,a) 8% (@) 85 (05) =

= 2P [G(p, Pz . q, qz)-Aél (o, )A,;,Z ()8 (p—%I).Jls)

Multiplying both sides of Eq. (I.12) by the product of the inverse two-
particle Green functions and using (I.15) we obtain the following
equation for T:
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. . ’ ’ 2
Tp(P,a) = Ip(P.@) - o5 ST (P k)AL (s PHRIAL, (ua P-K)T, (K, q)d(Ikls)

The corresponding homogeneous equation for the B.-S. wave function
o) = JOI Ty G)as (V)] P o) exp{il (i PHp)x+(u, P-y)y1}d* x-y)
= [0l T, &) _\tz(-—mp @) elPF gix (1.17)

( |P,o.) being a bound state of total momentum P and other quantum
numbers g) is

- -1 '

(851 02P40) 81, (22P-R) | 0 (0) = 555 [1,(6, K) ey (K) k.
(.18)
The wave function ¢ is simply related to the residue at the pole of the
Green function for P? = MBZ where My, is the mass of the bound state
(see Ref. 8). We mention that if Eq. (I.18) is extrapolated to the
two-particle mass-shell: P = q,+q,, qza =m2,a=1,2, then the
substitution

2
a’

cPP(p) = (2m)?i 8 (p-q) + Al',l(ulP+p) Al’,z(ugP—p) Tole,q)  (1.19)

would reduce it to Eq. (I.16) for the off-shell amplitude T.

Both the Green functions A'a and the kernel Ip of Eq. (I.18) are
defined by their perturbation expansions. Congider as an example
the simplest case of two complex scalar fields {§, and {, interacting
via a neutral scalar field ¢ of mass y with an interaction Lagrangian

L) = gilyy G, &) + bs GV, () 0&): (1.20)

[g has the dimension of mass (i.e., of inverse length) in this model].
Then, in lowest order in perturbation theory (for both Al"a and Ip) Eq.
(I.18) reads

1
W@ -(p-k)? -10 PP

(k)a*k
(r.21)

(mf -y P+p)2 J0m3 - (1, P-p)° Jepp, () = (zn)EJ‘

This is the so called ladder approximation in the B.-S. equation.
(The iterative solution of the corresponding approximate equation for
the off-shell amplitude gives the sum of all ladder graphs.)

Comparison of Eq. (I.18) or (I.21) with the non-relativistic
SchrBdinger equation displays a number of undesirable features of the
B.-S. equation (see Ref. 5). First of all, it involves a fourth
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coordinate, the relatwe energy pglky) (or the relative time in the ori-
ginal B.-S. formulation® ) which does not have a ¢lear physical mean-
Ing; its presence makes obscure the non-relativistic limit of the B.,-8.
equation and leads to extra (unphysical) solutions {see Sec. I.C.).
The operator in the left-hand side of (I.21) is a fourth-order polyno-
mial in p (i.e., a 4th order differential operator in coordinate space).
This 1s another source for extra solutions of the B.-S. equation (at
least in the limit g » 0). The strong singularity of the kernel of Eq.
(I.16) does not permit to apply standard mathematical tools to this
equation. There 1s no positive definite scalar product in the space of
wave functions. [About the normalization of the solutions of (I.18)
(or (I.21)) see Refs. 8 and 9.]
C. Stability Conditions and Wick Rotation.5) A Solvable Model: The
Scalar Coulomb Problem®/ 01, 1U), 1)

Wick®) observed that an important additional information about
the B.-S. wave function can be obtained from the stability condition
for particles 1 and 2:

(Oly_a(x)lqnn)=0forq;< m a=1,2. (1.22)

The B.-S. wave function (I.17) may be written as

Ppg @) = [{06c) s (0lg, (5)1a n)q_nlis (F)|Pa)
T

#0(xg) T <Ok -F)lam ol Glee) &Pt = () oo ()

q?ﬁm% (1.23)

(As usually, the sum over intermediate stateé E incorporates integra-
n

tion over the continuous variables.) In the rest frame of the bound
state, for

P =(2E, 0) = (m,+m,-B,0) (B> 0) (I.24)

we have
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014y (0)|q, n){q, nly,(0)|Pad

+ in in

o, (P) = (2m)° = 8(q, -B).

P Zn: P,E, tEHO )
EmnErp

3 (0] 42 (0)1a, n)a, nly, (0)|Pa)

cpP(p) = (2m)® ; po+E2n-E_iU 6(EIZn-'-R)

Ean*Eop (B, ;= V& + 27

(1.26)

We see from these expressions that % (p) are analytic functions of
Po with cuts for

P, > Ej "= N M2 +p° é‘(m1+m2-B)—E :

and

P, < E-E, =% (m, +m, -B) - /m3+p® = E_ G (1.27)

respectively. Hence, their sum ¢ (p) is analytic in the Po plane
with the two cuts (I.27). We mention that for non-zero binding energy
(1.e., for B> 0) there is always a real interval of analyticity, since

B, -E_=E) +Ey -m -m, +B>0. (1.28)

For the sake of simplicity, we shall only treat the equal-mass case
m =mp=m, E_=- _=Ep—m+§B (Ep=,\/m3+gz) (1.29)

in what follows. Assuming that the wave function of the bound-state

9, (p) goes to zero for py + = (in any direction ) faster than — and
using the established analyticity of p we can rotate the line © of in-
tegration in the P plane in (I.21) on an angle in the positive direc-
tion; this amounts to replacing p by ip, and E by ik, . Thus, we
obtain

[ (m? 457 -E°) +4E% 3] oy, (p) = (—2%2 J ua—,r(ﬁ:;}—s op Kk (1.30)

where p? =p?+p3 = p+p2+p3+p3. In the unphysical point E = 0 ("the
point of maximal binding") this equation has a manifest O(4) symmetry
which has been extensively exploited In recent years (for a biblio-
graphy see Ref. 7).
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It'1s much less obvious that Eq. (I.30) possesses a "hidden"
O(4) symmetry for any elgenvalue of E in the case of zero-mass ex-
change {4 = 0) in which the bound-state problem has been solved
exactly.5)«53 A standard way to see this is to extend the method of
Fock!2) (used originally to display the O(4) symmetry of the non-
relativistic Coulomb problem), and to perform the following stero-
graphic projection of the 4-dimensional momentum space onto the unit
sphere in 5 dimension:

- 2ps iy ps®-p? 5
= = — = _ P23
g +PE|E P Eg psa +-p'3 ] Pg m E . (I-Sl)

*
In these variables Eq. (I.30) (for u = 0) becomesls)

WE("IM n? +ﬂ53 ~-1)

[ - (142,20 Ty (0) = [ e (1.32)
where .
1O =Ty e® - (1.33)

Equation (I.32) obviously allows an O(4) invariance group in the
(1,2,3,5)-space. It is reduced to an ordinary second order differen-
tlal equation in §, (see Refs. 6 and 10; we will skip the details). The
equation in §, will ocbviously introduce a new quantum number, say k,
in addition to the usually encountered quantum numbers n, 4, { (=4_)
which span the Q(4) representation space, In particular, the O(4)-
degenerate energy levels Ey,, will depend on this extra quantum num-
ber which has no non-relativistic analogue and no clear physical
meaning; it corresponds to the relative energy (or the relative time).
That seems to be a serious defect of the B.-S. equation. The unphy-
sical variable comes in not only in some intermediate step--in the
equation--but also in the observable result: in the energy eigen-
values. Besides, this feature is certainly not peculiar to the Wick-
Cutkosky model only, since it originates from a simple counting of
variables (and their conjugate quantum numbers). If the situation

*In order to obtain (I.32) from (I.30) one makes use of the following
identities:

-, l'gs — o 1_-EE ‘EET]E
+E5) (1+1)
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would remain unchanged for the B.-S. equation for the positronium
(or the hydrogen atom), where the energy levels are measured with a
high precision, we would find out that nothing in nature corresponds
to the quantum number k.

Is there any way out of this difficulty (other than just throwing
away part of the solutions on the basis that they do not have a non-
relativistic limit) ? Before drawing far going conclusions we should
look more carefully at Eq. (I.32). It is not a standard equation for
the energy eigenvalues. For fixed E it could be considered as a ca-
nonical equation for the eigenvalues of the dimensionless coupling

_ 9
e~ (1.34)

This would lead to a set of eigenvalues
- E
>‘kn B fkn( m ) :

In particular, if E =0, Eq. (I.32) becomes O(5) symmetric and the
eigenvalues )\c]’m depend only on the sum k + n:

Ao =1 (0) = (k+n)(k+n+l), k=0,1,2,..., n=1,2,

o]

i (1.35)
Only if the equation ) = f g—-&) can be solved with respect to E for
all » may we consider Ekn& Ts defined for any k, nand A. However
we cannot assume that all values of the coupling constant are admis-
sible in Eq. (I.32). If we postulate (as it is customary)that the bound
state energy should be non-negative, then the coupling constant )
cannot exceed 2. Indeed, according to (I.35), 2 is the lowest value
of A for E = 0; hence, for } > 2 the lowest energy eigenvalue would be
negative, since Eo, (\) is a decreasing function of A. On the other
hand, the bound state eigenvalues Ey should not exceed the elastic
scattering threshold m. According to the Cutkosky analysis this ex-
cludes the eigenvalues Exn with k> D if A\ < 3. In the admissible
interval 2 = ) < 2, however, some of the extra solutions (with k = 1)
do in fact appear. The question arises whether the condition Ekn <m
=E hreshold will be sufficient to exclude the positive k's in a more
reaEistic situation, say for the positronium. I would be glad if some
of you give me the answer to this question. In any case, the sim-
plest and most straightforward calculation of the fine-structure. of the
hydrogen (and of the positronium) spectrum are performed within the
framework of the quasipotential equation which we are going to
consider next.
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For a further analysis of the Wick-Cutkosky model in connection
with relativistic symmetries and infinite—component wave equations
we refer to Refs. 10 and 11.

II. Relativistic Quasipotential Equaticmmjdzm
A. Review of Non-Covariant Perturbation Thfﬂyzn

Our aim now is to derive a (3-dimensional!) relativistic ana-
logue of the Lippmann-Schwingef equation on the basis of the con-
ventional Hamiltonian formalism. First of all, we derive a graph tech-
nique for the old fashioned ("non-covariant") perturbation theory.

We start with the equation for the operator-valued function
R, g )

Rlxy 1uz) + Hly ~#a) ro JHOGt =x) L

= ——5 Rle,x5) dn =0 (1r.1)

where H () is the Fourler transform of the interaction Hamiltonian
H{r):

Hir)=[ HE&) x, Ak =[Hi)e M ar . (11.2)
xo='r

The direction of the time axis will be specified later. The operator R
is related to the scattering operator S = S(»,-») by

1 eil{'r
8(r,-=) =1+ [ R(,0) —5 du (11.3)
or
8 = 8(»,-=) = 1+iR(0,0). (I1.4)
[We have used the identity
_1 e () (for T = +w)
o MM OSTE T
Tt 0 (for 1 » -=) . ]

A diagram technique was developed by KadyshevskyZl) /16) for the
calculation of the matrix elements of R. In the case of a theory of
spinless particles it can be summarized in the following way. To any
ordinary Feynman diagram of N vertices we let correspond a set of N
new graphs having the same picture as the original one with all pos-
sible numeration of the vertices 1,...,N. Every internal line is ori-
entated toward the vertex with smaller number. Furthermore we let a
spurion (dotted) line enter the vertex 1, connect 1 with 2, 2 with 3
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and so on (always oriented toward the vertex with larger number), and
finally go out of the vertex N. [For instance, to the second order
Feynman graph of Fig. la, correspond the two diagrams of Fig. 1b and
lc.] The conservation law in each vertex of the new dlagrams takes
into account the energies of the dotted lines. For instance, to vertex
1 of the graph shown in Fig. 1lb corresponds the factor

-* §(qy +k - py +{ny -n)n)

Vet

where n is a 4-dimensional unit vector in the direction of the time
axis. To a so6lid line of mass u and momentum k we make correspond
the "on-mass-shell propagator”

+
6u(k) . e(ko) s(¢ -uB) . (11.5)

To an internal dotted line with "energy" x we make correspond the
propagator
1 1
2n w«-10

(11.6)

These rules give rise to the old-fashioned ("non-covariant”) pertur-
bation expansion for the scattering amplitude. If we start with a local
interaction Hamiltonian H(x) the on-shell amplitude (for u, = n, = 0)
does not depend on the choice of the direction of the time axis. For
instance, the contribution from the diagrams on Fig. lb, ¢ is

ﬁ ) (p1 +p2 _ql —qz.f.(%2 -y )n) T(z)

where
T(ZL%QB( 1 0 ol + : ) cl \
\mp ” #, +a3 -py +wP1 -q, -10 u)p:a —a, nq+a3 «-p:;-l-u)p’a _qz—iﬂ}
(11.7)
v, =P (11.8)

Foruy =ny =0, q, - p, =Py - dz Eq. (II.7) reduces to the covariant
Feynman rule for the on-shell amplitude T:

(2) _ g? g

W5, -q, - -5 -0 ~ 2 -(p, -q,)? -10

(1I1.9)
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All ultraviolet divergences in higher order diagrams can be reduced to
divergences in the integration over the variable x, and renormaliza—-
tion can be carried out in a way similar to the subtraction procedure
in dispersion integrals (for more details see Ref. 21).

In general, the Kadyshevsky series (or, if you prefer, the old-
fashioned perturbation expansion) is nothing else but a rearrangement
of the familiar series of Feynman graphs. However, the physical pic-
ture corresponding to individual diagrams in the two approaches is
different: While in a Feynman graph the 4-momentum on each internal
line is off-mass-shell but the energy-momentum is conserved in each
vertex, in our case each internal 4-momentum is on its mass-shell
but the conservation law in each vertex is violated along the n-axis
(though the overall energy momentum 1is conserved provided that #, =
#z = 0). An undeniable formal advantage of the Feynman rules ig their
compactness: one Feynman graph with N vertices corresponds to N!
different graphs in the Kadyshevsky formalism.

B. Two-Particle Quasipotential Equation

We consider the model (I.20) of interaction of two complex sca-
lar fields {, and {§, of mass m and a real scalar field ¢ of mass u.
The interaction Hamiltonian for this model is

Hx) = -L{x) = -g (4, G 6): + b G, Ghobe):) . (I1.10)

Our aim will be to write an equation for the (cff~shell) elastic scat-
tering amplitude of two equally charged particles {§, and {,. [1t is
known that contrary to the electromagnetic interaction via a vector
field , the scalar interaction (II.10) of two such particles is attrac-
tive.]

First of all, following Ref. 1, we remark that Eq. (II.1) may be
written in @ more compact symbolic form

R+ﬁ+ﬁGoR=0 3 (I1.11)
If we introduce the quasi-particle states |n) normalized by
(’11|”2)=5(741 - ng) (I1.12)

and put

_ ) [?{-1 "Ka)

~ 21 (1, ~10)
(I1.13)

O [ RI%z) = ROty nz) s Gu | Blng) = B -na) s Gy 1Gln2)
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and define the "matrix" multiplication as an integral over », then Eq.
(II.1) is "obtained" from (II.11) by taking the matrix element between
#, and ng . Iterating once Eq. (II.11) we get

R=-H+Hc B +8c 8cRrR . (I1.14)
o) o] (o}

We take the matrix element of both sides of (II.14) between two
{, +i -particle states {p;p,| and |q;q,). (We use the covariant nor-
malization

{pla) = 2E (e-a). E, =v/m? 457 (II.15)

for one-particle states of momenta p and g and mass m.) Observing
that for the interaction Hamiltonian (II.10)

(PP |H|@aap) =0 (11.16)

and separating the contribution of the intermediate {, +{; —particle
state we obtain

(p1 pgl R| d1qz )=<P1 Pa |ﬁGoﬁ| Q=)
+J‘<p1pg |ﬁG ﬁl k:,ka)Go(kﬂ(g |R|Q1Q:a>(dk1)(dke)

+ X Jdo (ky,ooo k Xpipa|HG Bk .0k
n>2

xGo(kl...kn[R|q1q3) (I1.17)

where (dk) = 6;{k}d“k and dcn(k1 P .kn) is the corresponding invari-
ant measure for the n-particle intermediate state. [We mention that
the matrix elements of the type {p,p; IRI g, ds ) are still considered as
operators in the space of the spurions energies #.] Our aim is to de-
fine a kernel K which incorporates the contribution from the n-particle
states (n > 2) in order to obtain & linear equation for the two-particle
amplitude. Let Il be the projection operator on the subspace of two
different §-particles {; and {,. We define the kernel K by

1
1 -G (l—Hz)HG )2

GH+HGHG ol E,)HGH+... . (11.18)

u
e

G
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Then Eq. (II.17) can be rewritten in the form
(P P2 |R|q1q2) - <p1pa|K|q1%>

+ [{pypa | K] klka)Go(k1k2|R|q1q2) (dk,) (dk,)

(I1.19)
[We have taken into account that I, commutes with Go so that
Goll-lly) = (1-15)Go(1-T5).]
In what follows it will be useful to introduce the complete

"Green function” G(k, ,k;) which includes all possible radiative cor-

rections on the lines with on-mass-shell momenta k; and k,. For
instance, in second order in perturbation theory,

N C Il sz
Afe] )(kl,k2)|n )=o 6(n—n ){n T +<g) [F{;nkgrl) + F(n;;(m }]}
=56n') Gy k) (11.20)
where
z {x w) (2 +3 ) + 2xk3
F( n,k)= dxf(xa kB) 2 1]
g £o(k) 5o PL et -107° -K3]

% 0 =[P 121 | k= (), 1€ =K -1 =mP (1.20a)
and f is defined by the phase space integral:
2 [on (e o) dta = 805) B0E ~(miy?) £ )

fe) = o (2 -2 1) 2 P

Let us define the connected scattering amplitude Rc as the sum
of all "solid-line-connected” graphs (i.e. graphs which remain con-
nected when the dotted lines carrylng momenta #«n are removed).

Then an equation identical to (II.19) holds true for R with G, re-
placed by G and (p, ps | K| q; g5 ) replaced by the sum {p, ps | Kcl ky ko)
of all (two-particle) irreducible diagrams, defined in the following
way. A (connected)diagram of the {, {5 -scattering amplitude is called
irreducible if it cannot be split in two parts which are linked by a {,
and a {5 -lines oriented in the direction of the external lines (say,
from right to left) and one dotted line oriented in the opposite
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direction (see Fig. 2) and if it does not contain radiative corrections
on the external lines.

i

Reducible Graph

~=a

e

N\

FIG.2

In order to take the energy-momentum conservation explicitly
into account, we put

C
(pypa| (1 |R7|na)| @y dp) = 6(py +ps -qy —a5 ~ (s -ua)n)TKM (P, P2:q,92),
2

N .
(P1Pa| (e | K |1a)| qyap) = =6 (py+pa-a,-as ~(x, #2)0)V,  (p1P2idy ).
172

This allows us to rewrite Eq. (II.19) in the form (ir.21)
Tu1n2 (P1Paig a5} + anua(pl P5iq,q,) +
+ j‘ . .j‘é (o, +Po —ky —kg —(1q -1 )M) Vulu(pl Paiky ky)
X G, (k kol Tma(k1 k2:d,q,)  (dk,)(dk,) dn‘ =0, (11.22)
where

G, (ky /¥o) =m +(—29T;)2Ru(k1 kaig?) (I1.23)

R, being regular for # = 0 (the first member of the series Ry is given
by (II.20)). The “potential® V is given by the sum of all strictly irre-
ducible graphs defined by the condition that they cannot be repre-
sented in the form of Fig. 2. It can be shown that in the non-relati-
vistic limit V, n, 9oes into the non-relativistic potential, We shall
see this later in 2Sec. IV.A for the special case of scalar Coulomb
interaction.
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C. Center of Mass Variables. Eguation for the Wave Function

In what follows we shall treat Eq. (II.22) in the center of mass
frame (@ssuming that the unit vector n, which defines the time axis,
is collinear to p, +p,). [ If we were interested in the t-channel be-
havior of the scattering amplitude (i.e. for time-like p, -q,) it would
have been advantageous to choose n along p, -q,; .] In this frame
we put

Bl=_22=21,g.1=_g3=g.’ﬂ=0;

p =p2 =p°, af =q3 =q°;

o | =Ep=~/ m?+p®, p, -¥u, =d, - #up = E. (I.24)
TM%g (byPg; 9, Gz) = TE(p.q), annz (P, ps: 9, 95) =VE(p,q),
G%(k1 k) =Gy (ko—E)(ko'E' ko=K) =2k Go(k). (I1.25)

In these variables Eq. (II.21) can be written in the form
T.(0,a) + Vp(,a) + [V, (0, KGL(IT (K, )@k = 0. (11.26)

The corresponding equation for the complete two-particle Green
function

¢/, ia) = Gyle) (o +a )8 (o-a) + G ()T (p,a)Gpla)  (11.27)
is
%(p.q) + Gp(p) IVE(p,k)%(k,q)(dk) = (b t+a )b (R-Q)GE(D). (11.28)

Let there exist a r-fold degenerate (r = 1) bound state of mass
2B in the {; § ;~system. Assume that in analogy with the Bethe-Sal-
peter equation and with the non-relativistic Lippmann-Schwinger
equation the Green function (p,q) has a simple pole for £ =B and
in the neighbourhood of this ‘pole can be written in the form

r

%(p,q) = Ng >
a

=1

®pq P) B (a)

B-E- 10 + regular terms for E - B,

(I11.29)

*The form of the singular term in (II.29) is consistent with the non-
covariant perturbation rules described in Sec. II.A if we assume the
existence of r particles of mass 2B coupled to §, and {,.
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where (p) will be interpreted as the wave function of the bound
state of mass 2B and other quantum numbers specified by a and N
is a normalization factor. Inserting (I1.29) in Eq. (II.28) and com-
paring the residues at the pole E = B we obtain

r

agl [ () + G (p) [V, (p, Kk, ()R] 6, (@) = 0

Since @,_(q) are linearly independent this implies the following homo-
geneous equation for each of the wave functions ch(p):

G5 (p) o (p) + [Vp (0, Koy (K)AK) = 0. (11.30)

In order to obtain the normalization condition for the wave
function we apply to both sides of Eq. (II.28) the integral operator

I P o5 ") (@p)
This leads to the following nonlinear equation for%:

[Fte 0 Gt R (k) (ak) +
G k) Vs i) (ko ) @) (ke) = (paa). (.31

Inserting (II.29) in (II.31) and comparing the residues at the pole E =
B in both sides we obtain the following orthonormalization condition
(cf. Refs. 30, 31)

Ng ] 6ga k) [ - 35 (@5 (00)2E, bl oke) + Vyli ko))

X pgy, (ko) (dky N dky) =8 (Ir.32)

Consider the special case when VE(p,q) does not depend on E and G,,
is replaced by the first term in the expansion (iI.23), so that, accord-
ing to (II.25)

S - _
GE (k) ~ 8ITEk(Ek E) . (I1.33)
Choosing the normalization factor N_ = L we reduce Ea. (II1.32) in

]
this case to the normalization condigion for the nonrelativistic Schro-
dinger wave function
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y mroe
Joga ®) gy Rk =5_, . (11.34)

We stress that Eq. (II.30) does not suffer from the diseases of the
4-dimensional Bethe-Salpeter equation discussed at the end of Sec.
I.B. In contrast to the Bethe-Salpeter equation the three-dimensional
Eq. (II.30) admits an unambiguous non-relativistic limit. However,
we pay a certain price for the nice features of the quasipotential
equation. If we replace the potential Vg by its second order approxi-
mation then the known analytic properties of the scattering amplitude
will be distorted by the iterative solution of Eq. (II.26) (which is not
the case for the corresponding Bethe-Salpeter equation).

III. Simplified Version of the Quasipotential Equation Consistent
with Elastic Unitarity
A. Non-Uniqueness of the Off-Shell Extrapolation of the Scattering
Amplitude and of the Corresponding Quasipotential Equation

In spite of the attractive general properties of the quasipoten-
tial equation (II.24) (or (II.26)) discussed at the end of the previous
section, it has one defect: it is too complicated to provide exactly
soluble problems in any reasonable approximation. Indeed, already
in lowest order in perturbation theory the potential V _z)evaluated from
the second order graphs at Fig. 1 has the "non-local™ form

(2) D g
v (p.,q) - (111.1)
E W5 RE-Ps=do ~w,_HO)

where Wy =,/u®+(p-g)? and the corresponding quasipotential equa-
tion cannoc% be solved exactly even in the limit of zero mass ex-
change (n=10).

However, it is known, that one can write different three-dimen-
sional (quasipotential) equations which give rise to the same pertur-
bation expansion for the on shell amplitude. For instance, the origi-
nal quasipotential equation of Logunov and Tavkhelidzel4)**

T, (k.a)
E ek

L e d°X _
TEq(e,_q) + vK(e,_q) e [ vK(E,L)EE},(_(ECIHO}:a 2%, 0 (111.2)

*In analogy with the non-relativistic Schr&dinger equation we call a
potential V(p,q) "local” if it depends on the difference p-q only.

**We have changed the sign convention for V adopted in Ref. 14.
Our choice fits the non-relativistic limit for the potential.
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differs from our Eq. (II.24) both in the Green's function (i.e. the en-
ergy denominator) and the potential [ thelr choice of the second order
off-shell amplitude and potential being

(2) — _ (2) - g?
TEq ®.9 VEq(EI_q) 2 +(p-q)? 1.

Both Egs. (II.24) and (III.2) belong to a large family of linear equa-
tions of the type

T+V+VGT =0 (I11.3)

which have the following property in common: for real V, in the phy-
sical region, they lead automatically (at least formally) to the elastic
unitarity condition.

To describe the whole class of equations of the type (III.3) with
this property we write the solution of (III.3) as

1 1

T=—1+VGV=-V1+GV . (I11. 4)

If the potential is Hermitian, V = V* . then the discontinuity of T in
the s-channel is given by

* . -1 1 = *
_1+VGV+1+\E*V—T(G_G)T . (I11.5)

T-T

In order to make Eq. (III.5) identical with the elastic unitarity condi-
tion

26.9) - I (0,@) =55 [Tl 0 I (k,0)8 (& - F°) &k (11.6)

(where, for the on shell amplitude T(p,q), py = do = E)we have to
specify accordingly the discontinuity of the Green function. It is
readily verified that for both Green functions GE (I1.25) and

i 3 1
GE(Ek) B 4n[5'1 - (E + 10)?]

(corresponding to Eqs. (I1.24) and (III.2), respectively) the discon-
tinuity is the same:

G -G*=G’-G'*=—16(E - E) (111.7)
E E E E 4E k :



204 I. T, TODOROV

and 1té gds to (II1.6) (we use in both cases the invariant volume ele-
ment on the upper hyperboloid).

We will exploit the freedom of the off shell extrapolation of the
scattering amplitude in order to write a simpler equation consistent
with (I11I.7) (i.e. with the elastic unitarity condition). The potential
in any such modified quasipotential equation is calculated from a de-
finite off-shell extrapolation of the perturbation expansion of the am-
plitude T (see Ref. 14). [We require, for instance that in the lowest
order v(2) = -7(2 ), where T(2) coincides on shell with (II.9); this lat-
ter requirement is violated in the quasipotential equation proposed in
Ref. 18.]

B. Discussion of a Simplified Version of the Quasipotential Equation
We will consider the following model equation of the type
(111.3)

ek )
o -m2)d* k
Tp(P,q) +V (P,) + Ej'v (p.q) kT 10T (k,q)6 (1€ -m®)d*k = 0.
(e (ko) = sgn ko = e(ko) - 6(—k0)) (111.8)
and the corresponding homogeneous equation

(E - p,) oplp) = 8”E JVp®.K) @ (k) e (k) 8 (& -m?) d*k = 0.

(111.9)
It is readily checked that the Green function
ek )
i - S
GE(k) h 8rE(k ~E-10)

corresponding to these equations fulfills the elastic unitarity condi-
tion (III.7). This choice of G, is among the simplest possibilities
(consistent with (III.7)) since the operator in the left-hand side of
(II1.9) is a first degree polynomial in pé. Besides we will restrict
ourselves to the second order approximation in the potential choosing
it as the "local" energy independent extrapolation

N AN

Vg(p.a) = (p—aF <10 (111.10)
(2) i .

of -T*"" (II.9). An important feature of Eqs. (III.8), (III.9) is that

they involve integration over the two-sheeted hyperboloid k¥*=m2.

(We mention that T_(k,q) could be interpreted for k, < 0 as the ampli-

tude of a process with four incoming particles, which is possible off
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energy shell.) We will see in Sec. IV that in the case of scalar Cou~
lomb potential (i.e. for u = 0) the presence of the lower sheet of the
hyperboloid k*=m? in the domain of integration in (III.9) is essentlal
in order to ensure the O(4) symmetry of the bound state problem.
A more complicated model, with Green's function
1

GE(k? ?&T—EW (I11.11)

(and also involving integration over a two-sheeted hyperboloid) was
considered in Ref. 22. It leads to the same O(4) degeneracy of the
energy levels,

As some justification of Eq. (III.8) we observe that the exact
expression for the fourth order box diagram (Fig. 3) after integration
over the internal energy kg in the center-of-mass frame can be written
in the form:

=L |

a | —(r_1 )2
wp-kq'”q-kmp-kmq—k (E=k,) ]

Jup_kmq_k{rnp_k‘ﬁuq_k]

+elks) V_(k,q)8 (k*-m)d* k

E
(111.12)

where Vp is given by (III.11). We see that this expression contains
the second iteration of Eq. (III.9) plus a term which is regular in the
physical reglon and, hence, does not contribute to the imaginary part
of T.

' The comparison between (III.12) and the second iteration of
(111.9), i.e. the integral

(E,p)  (E+ko,k)  (E,q)
=t —=F =
(Ko, k-p) (ko,k-q)
et —t o

(E,-p) (E~kg k) (E,~q)

FIG. 3
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4 e (k)
| (p-kﬁa 4P ko-E-i0 {k_q)la 7 808 -m?) atk  (I.13)

T, =

(for p, = do =E) may give us a feeling of the discrepancy of the fourth
order calculated from the Bethe-Salpeter equation in the ladder approx-
imation and the quasipotential equation (III.9). It is possible to
evaluate explicitly both (III.12) and (iII.13) for the case of forward
scattering. The result for the box diagram is

Ty oy PP =3—m%i; F(E) (t11.14)
where
17 tha + 6, ctgl, - a tha i
F(E) = SHEa+ G55 Oh, for E=m (I11.15a)
with

E
cos By = ,chu,=-r;,a>0;

e
2m
Bctgd - B, ctgl,

- ———— 3 = 2 2 2
F(E) 0828 - cosZb, for E m?sin9 < m® . (IiI.15b)

Eq. (III.15a) may be considered as analytic continuation of (III.15b)
for complex 8 (8 =% + ig). With the same notation the forward contri-
bution from (I11.13) for E = m is .
+
P -1 o i g Lo <ith'q Ct'geo) (I11.16)
2 4m?® ch2q + cos26, )
The imaginary parts of (III.15a) and (III.16) coincide as they should.

IV. The Scalar Coulomb Problem: Solution and Relation to Infinite-
Component Wave Equations22),20)
A. O(4) Symmetry of the Scalar Coulomb Problem in Fock Variables
In this section we shall exhibit the O(4) symmetry and solve
Eq. (III.10) with the attractive scalar Coulomb potential

22)

20m?
mlp - k)2 .

3
(i.e. with the potential (II1.11) foryu =0, ¢® = z,t,t__nl,)_ To do this we
shall use the Fock variables p—u, kv where

VE@,k) = w.1)
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,{1—:.@ m-po W
: b 1 . llzl ’ H
% T pp-um Py J 3 po~wm
= . 1twus = m@ u =E <1 (1v.2)
Po ugtw O ute Y Tm °

(cf. the treatment of Wick~-Cutkosky model in Sec. I.C). Eags. (IV.2)
define a map of the two-sheeted hyperboloid p° = m® onto the Euclid-
ean unit sphere in 4 dimension: uw? =u® + uﬂ = 1_.‘ If we restrict p to
vary on the upper sheet of the hyperboloid, then u would cover only
the part of the unit sphere for which -w < ug < 1. (It is clear at this

point that our subsequent results would not be true had we restricted
the integration in the right-hand side of Eq. (III.10) to the upper hy-
perboloid.) The Jacobian of the transformation (IV.2) is

D(pa +P1 4P :Pg:l .
-, [ 14 . (Iv.3)
D(uy ,Ug ,Ug ,Uy) uy +

The singularity at u, = -w corresponds to | p,| » ®. It is compensated

in the integrand of (III.10) by the assumed decrease of cpE(k) at infi-
nity. Using (IV.3) and the identities

(o -k? =m? 2 -1) (u-v)® . elky) W +w) = |V4+U.)| ,

('-lq'f'w)(v.;*m)
- = 1-u? 2 _ 8 = m3 (1 _nd _1.'_;3

o - E mu4+m,k m m(lw)(vém)a ) (Iv.4)

we transform (III.10) into N

*m("]
b, = Towfie Lz=1 _G*G)”' dns (Iv.5)

where
o mE{p}

ww(U) TP (. 6)

and dﬂv is the volume element on the unit sphere in four dimension.

Eq. (IV.5) coincides with the non-relativistic Schrédinger equation for

the Coulomb problem in Fock variables if we replace w./ 1 - 0® in the
B

right-hand side of ¢/- E%& , where |} is the reduced mass. Just as

well as in the non-relativistic case this equation is manifestly O(4)-

invariant. A complete set of solutions of the elgenvalue problem
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(Iv.5) is given by the spherical harmonics in four dimension Yntg @)
which satisfy

~ . n 1 ~ o
y @)= fvz Tom Y0 dog, n=12,..., @.7)

(L2 -20+1)]Y . =0, ([Ls- C)Yn!;c= 0, (1v.8)

d
where L is the angular momentum operator in three dimension, £ =0,
1,...,n-1, -4 <<% (seee.g. Ref. 23). Comparing (IV.5) with
(Iv.7) we see that the eigenvalues of w are determined by the equation

2 =2 9
o JT-aF " 2n. (Iv.9)
n
This leads to
2 , a)®
w =YE+3¥1-(2) : (Iv.10)

(We have excluded the second root of (IV.9) by the requirement that
wp = 1 fora—0.) The binding energy B = 2m(l - mn) goes to the cor-
rect non-relativistic expression

2
—ENR=~;‘n% ( =%> (w.11)
for @ » 0. The O(4)-degeneracy of Eq. (IV.5) (just as well as the de-
generacy of the Wick-Cutkosky equation (I.32)) displays the main
qualitative distinction between the scalar "Coulomb" interaction and
the real electromagnetic interaction (via a 4-vector potential) which
necessarily leads to a fine splitting of the relativistic energy levels
with respect to the total angular momentum.

B. Algebraization of the Scalar Coulomb Problem?4) .25) ,26),22)
Now we will establish a one-to-one correspondence between
the quasipotential equation

2
(€ - 00 vplP) =5 [ Togp 95 elio) 506 -m?) *k  (1V.12)

and an infinite-component wave equation written in terms of the gen-
erators of the zero helicity representation of the conformal group
S0O(4,2). A similar algebraization has been carried out for the Bethe-
Salpeter equation (for the same case of scalar Coulomb interaction)
in Ref. 10.
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We will make use of the well known degenerate representation
of SO(4,2) which can be realized on the set of homogeneous functions
on the upper light cone u, = Ju§ + i + U] +u§ of degree of homo-
geneity -2 or -1 (see e.g. Ref. 25). It is equivalent to the zero heli-
city representation27) of the conformal group [ for an explicit demon-
stration of the equivalence of the two representations see Ref. 22a
(Appendix)] . This representation can be realized equivalently on the
space ¥, of functions defined on the double sheeted hyperboloid p®=1,
equipped with the scalar product

. 4) = 4ffcp(p) o )g 4(a) 8(p?-1)6 (q® -1)d*p d*q. (IV.13)

The (homogeneous) Lorentz group acts in ¥, as a group of argument
transformations:

(Ul =4(™q)

The generators ', and T's of 80(4,2) (i.e. the representatives of the
Dirac y—matrices %y and &yg in this infinite-dimensional unitary
representation) are defmed by the following non-local operators:

[1" cp:l(p) 2 Im—g ola) elgy) 8(@®-1) d*q (1v.14)

[Few |0) = -5 [ mops 0@ e(ao) 6@-1) a*a . (V.15)

Comparing (IV.14) with (IV.15) we see that

1
) =[7-T, 0] . (Iv.16)
P, plp T Tu® {p)
1
It can be verified directly (see Ref. 22) that the operators p; = r I‘Ll

commute between themselves and that pu;::u =1, Itis also not
difficult to check that the inverse of the operator (IV.15) is given by

[F:0] © =505 [Grgp #@ elw)s(@ -Na*a . (.17)

Changing p and q in (Iv.16), (IV.17) to p/m, q/m and inserting
in Eq. (Iv.12) we get the following "algebraic form" of the quasipo-
tential equation:
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m _ _am?
(1‘,5 To E) ®E " 2ET, “E av.18)
T

where & =7 5 g®. The discrete spectrum corresponding to Eq. (IV.18)
can be foungl by multiplying both sides by I'y from the left and per-
forming a rotation in the (0,5)-plane (cf. Ref. 24). The result is

(E/me - T, —%mg) g =0 - (Iv.19)

Finally we recall that the eigenvalues of I’y in the given representa-
tion are all positive integers (see e.g. Ref. 22) and find

_m a
Ei—z(LJF l—ng)

in agreement with (Iv.10). Eq. (IV.18) admits also a continuous spec-
trum comresponding to the two-particle scattering states.

In conclusion we would like to make the following remarks.

1) The preceding argument gives a simple prescription for the
"algebraization” of the (free) 4-momentum:

p, #&w=T (Iv.20)

(see (IV.16)). This prescription is independent of the interaction
under consideration.

2) The simple algebraization of the potential based on Eq.
(IV.17) is peculiar to the case of zero mass exchange. The potential
(I11.11) with u > 0 leads already to considerable complications (see
Sec. III.2 of Ref. 22). The reason is that the kernel in the scalar
product (IV.13) in ¥, is closely related to the Coulomb potential. If,
onthe other hand, we adapt the scalar product in our representation
space to the potential for y > 0 the simplicity of the free Hamiltonian
will be distorted. However, we can use Egs. (IV.15), (IV.17) and
(IV.20) to solve the inverse problem: given ad hoc an infinite-com-
ponent wave equation in the representation space of the ladder rep-
resentation of U(2,2) (see Refs. 24, 25, 26) to reconstruct an equi-
valent integral equation in momentum space.

3) The potential in the right-hand side of (IV.18) (with a minus
sign) will coincide with the non-relativistic attractive Coulomb po-
tential in coordinate space —% if we identify r with X Tg. This ob-
servation is not accidental. It has been argued in ReF. 17 that in
general flor spin 0 particles the relativistic generalization of r is given
byr® = =2 (N? - 17) where L and N are the generators of the homo-
geneous Lorentz group. In our case N® - 12 =TZ2.
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4) As mentioned before, the simplest evaluation of the Lamb
shift corrections to the hydrogen or positronium energy levels (or of
the hyém{ﬁn? splitting of the hydrogen levels due to the nucleon form-
factor28) 23 ) has been done on the basis of the Logunov-Tavkhelidze
quasipotential equation. It would be interesting to carry out this more
realistic calculations on the basis of the quasipotential equation
(II1.10) and of the algebraic technique developed here.
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LOCALIZED SOLUTIONS
OF RELATIVISTIC NONLINEAR DIFFERENTIAL EQUATIONSY

Eric H. Roffman
Department of Mathematics
State University of New York At Stony Brook
Stony Brook, New York 11790

Introduction

For linear equations such as the Schrdodinger equation, the
typical behavior of a wave packet is that it will spread and its maxi-
mum value will tend to zero as time passes.

Many physical phenomena have a different behavior, if fric-
tion 1s neglected. For example, think of drops on a window pane
sliding downward under the force of gravity. They may fragment.
They may collide with other drops on the way down. They may leave
a trail of tiny drops behind them. But they do retain a coherent local-
ized shape, more or less, all the way down.

This kind of behavior--localized units which interact without
spreading~-may be typical of certain solutions of a whole class of
nonlinear partial differential equations. These lectures will sum-
marize what is known about constructing such equations, and solving
them.,

First we shall treat some ordinary differential equations.

This will illustrate the characteristics of nonlinearity. Furthermore,
the equations we study--the Riccati equation, the elliptic equations,
and the Vander Pol equation--will have features that we shall use
when treating partial differential equations.

We shall then be concerned with properties of nonlinear wave
equations of the form

O =mPp - Aplpp) + Bp bpp)®

with positive definite energy.

+Presented at the INSTITUTE FOR THEORETICAL PHYSICS,
University of Colorado, Summer 1969,
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214 ERIC H. ROFFMAN

These are the simplest prototypes of the differential equations
of quantum field theory. Quantum field theory considers nonlinear
equations for linear operators. We are looking for solutions which
are ordinary functions. (Well behaved functions, in fact, which go
to zero exponentially for large |X|.)

‘We shall describe stationary solutions, and the interaction
process. We shall describe several kinds of behavior which an equa-
tion might, a priori, give rise to.

Then we shall show that the strongest possible property--the
strong particle scattering property--is satisfied by at least one equa-
tion, the Korteweg-de Vreis equation. We shall report on the work
that has been done on this and related equations.

I. Nonlinear Ordinary Differential Equations

In this lecture our main object is the study of the Riccati dif-
ferential equation, the equations for elliptic functions, and the Van
der Pol equation. Each of these equations has features we shall refer
to again.

We shall begin with a very simple example which illustrates
the differences between linear and nonlinear differential equations.

Consider the linear differential equation

df _
a3t A (T.1)
The solution is At
f=£(0)e"" . (1.2)

Note that the functions f; = ae)‘t, fy = et and fa4p = (a-r-b]lekt =

f,+ f, all satisfy the equation. Also note that if £(0) is finite then
f(t) is finite for all time.
On the other hand, consider

af _
TS P (1.3)

This has a solution obtained by writing

f2df =)dt
£(t) t
[ fRaf=af at
f(t=to) t=to

-7 () + £ (0) = (-t ) (1.4)
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Hence
B £(0
K =T 0ty (t.5)
- a ' = b
L =T= \a(-t) and & =77 Ab(t-t ) (t.5)

both satisfy the equation, and so does

a+h

faab) T on@ib)t ' Pt fasp 7 o * E

b
Furthermore, even if f, (ty) = a 1is finite, f_ (t) is not finite for
all time, if A isreal. It becomes infinite in a finite time, namely
1’ B
= +—
t ‘to )\a )

Finally, a linear differential equation may have’ singularities, but’
they are independent of the’ boundary values. On the other hand,
here we see that the position of the singularity depends on the value
a of fatt,. This is called a movmg pole because its position-
moves with the boundary value.

A. Riccati Equation

The first equation is called the Riccati equation, which was
first considered in a special case by John Bernoulli in 1694, and first
solved in a specilal case in 1701.

We will derive the equation from its solution,

o +kb
YT o) + k dix)

, where bc #ad . (I.6)

k is the constant of integration, and to obtain the differential equa-
tion we must eliminate k. :
’ - a’ + kb.’_ (c'+_ kd’)y
c+kd  c+kd (I.7)

Solving for k
k=-2=YC gom (1.6)

b - yd
also
a! —y'e - ¢’
k=- {b' —§’d _d,i} from (I.7) .
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So, recalling the assumption that bc-ad # 0,
ra - ] A -
y,+(ad ad’ + be’ - b’c) +(_ccl cd}yg=

(be - ad) y (be - ad)
_a'b -ab’
“foc -ad) @.8)
This is often written as
v/ + Qy+Ry¥ =P (1.9)

Note that if P =0 thena =0, b=0, ora =\b. Also, setting y =t
we obtain v/ - Qv =R a linear equation with general solution

. X
v=CelQdx, e'erxJ.R(t) oJQdt 4 (I.10)

It is an exercise for the reader to show the relationship between this
solution and the previous one (Eq. (I.6)).

One of the most interesting properties of the Riccati equation
is the following:
Theorem: To every Riccati equation corresponds a linear second order
differential equation, and to every linear second order differential
equation corresponds a family of Riccatl equations.
Proof: Set

y == (log u)’

= |

then Eq. (I.9) becomes

"

Ru" - R - QR -PRPu=0 . (£.11)
Conversely, the equation
Au” +Bu’ +Cu=0
becomes the Riccati equation
y’ +[(log R)’ + B/Aly + RY° = - C/AR

We can choose R so that
X
R = e-f (B/A)dx

giving
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y' +RY" =C/AR .

B. Elliptic Functions
Consider the equation

v =a -y . (1.12)
The solution is

+ g, sin(bx + B) .

%l

y =
If we multiply by v’/ and integrate we get

-(Yz—’)i- [ay - %ﬁ] = const .

-3 2
The constant is evaluated at x = -B/b and is %QLT 3 %; so

v')? =[(ab)-"=‘-%5 +2ay -y .

The simplest generalization of Eq. (I.12) is

N n
v’ =zan 4 (1.13)
or
a
+1
(y'»r = ey v b (I.14)

If 1 < N < 3 the solution is an elliptic function.
The following transformations and definitions are standard.
If the polynomial roots are =1 and +1/k the equation may be written

P =Q0Q-y)1-K¥y)
letting vy = sin 8 we obtain
(8’P =(1 - K¥sin?0) .

We define F(x,k)
X
Fl,K) = [ dx
o Y1 -2)(1 - ¥®x®)
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or
_a
F(o,k) =] =u () .
o VI - k2 sine
Define

snfu,k) = sin 0
cn(u,k) =cos g .

The transformation from Eq. (I.13) to Eq. (I.14) will be particularly
useful later.

C. Van der Pol Equation
The equation

V-e(l-y3)y+ay=0 (1.15)

was discussed by B. Van der Pol in 1926 in connection with the oscil-
lations in a trlode amplifier circuit.

Since the elliptic functions were discussed extensively in the
early 1800's, and Riccati's equation in the early 1700's, we have
roughly @ century passing between the study of each of these three
nonlinear equations.

If we set x =y in Eq. (I.15) we have

pralalc +ay - exy® (I.16a)
t

dy _ :
Fraia (I.16b)

Note that if we set x =y = 0, the equation becomes

dx

@0
gx:
it 0 .

Hence x(t) = y(t) = 0 is a constant solution. Near x =y = 0 we can
diagonalize Eqs. (I.16).
Set
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x =AE + By, (I.17a)
y = CE+Dn (1.17b)
and look for a solution of the form
s dn _.
at M8 dat Aam (1.18)

nearx =y =0 (1.e. the exy® term is neglected).:
Substituting Eqs. (I.17) in Egs. {I.16) and using (I.18) we

obtain )
AX,§ + Bryn = e(AE +Bn) fa(Ce + Dn?
C\,8 +D\yn =AE +Bn .
So
M =A/C=e+aC/a
Az =B/D=¢ +a D/B
or

()\1.,{ 2s) = 3/C, B/D) = M

2 .
So, ‘hear x = y = 0 the solution is

t t
_ %et( E\/es -4a - E\/ e -4a )
y=e CE +
\
x = g{ - e’bet (e cosh (_tz..\lg;, -4a )+ ‘bvea -4a sinh (—\; Jez - 4a )) .(I.19Db)

Near x =y = 0 we see that fore > 0, a > 0, x and y are both
growing. If ¢°< 4a the trajectory spirals because./c® - 4a is
imaginary. .

In fact, when one studies the trajectory in detail one sees
that one family of trajectories moves out from x = y = 0 to a certain
limiting closed trajectory. A second family starts from large x and v
and spirals down to the same limiting closed trajectory.

The diagram which shows the trajectories of solutions is
called the phase dilagram. It looks like this for the Van der Pol
equation:

e (I.19a)
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Note that for any finite time we can start at any point on the
X,y plane, and then for t ~ +*® we will be asymptotic to the limit
cycle. For t = - there are only three places to start from--x - 0,
y=0; Xx—- o, y= o orsomeplace on the limit cycle. Thus, the
boundary conditions that can be imposed at t =+ £= are somewhat dif-
ferent from the boundary conditions at finite time.

Another interesting feature of the Van der Pol equation is the
way it approaches a linear equationas ¢ ~ 0. From Eq.(I.19), we see
that as ¢ = 0, near x =y = 0 the solution approaches a circle. How-
ever, no matter how small ¢ may be, as long as it is greater than
zero, the solution after spiraling long enough will eventually reach
the one and only one limit cycle characteristic of the Van der Pol
equation. The approach to the linear equation as ¢ = 0 is therefore
not uniform.

II. Stationary and Elementary Solutions of Field Equations

We now begin the main subject of these lectures, the proper-
ties of certain self-interacting scalar fields.

Starting with an equation of the form

O =mp - ko) + Boler)? m? ,\,B>0. (II.1)

We want to know when such an equation has solutions of the form

ol t) =e Mo . (I1.2)

Such a solution is called stationary.
We shall always require positive definite energy for any solu-~
tion of any equation we study.

A. Integral Invariants
We shall begin by recalling the derivation of the field equa-
tions and the energy-momentum tensor from the Iagrangian.
Consider the Lagrangian

) -z@icpi) - V@p)]dx (1I.3)

i

dx denotes an integral over space and time.
The field equation is given by
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ag) 3L .
%('ag) T25 - 0

P ;’Z cpii +ch¢pCp) =0 o . (I1.4)
i S ‘

where F(y) =V’ {y)
3 (tpim )

and is ﬁnderstood as g,

The Lagrangian is invariant under two groups of transforma-
tions. First, the translations and rotations making up the Poincaré
group leave the ILagranglan invariant. Second, phase changes of the
formg = e p also leave it invariant.

From the translation invariance we obtain energy momentum
conservation

IJ' =
3 T“v 0 (I1.5)

=(28L&) - 3L =
Tu,\) (3"11) ¢, + amu ®Q, guv £ (1.6

From Egs. (II.5) and (II.6) we see that the energy E is con-
served, where

where

E = [edx = [T_ dx =
IED .+Z 61 o tVee)|dx - o L)

d.x denotes an integral over space.
Notice that the energy is positive defmite if and only if the
potential V is positive-definite.
The momentum is also conserved
=

P, =[P dx =0T, dx

=2 [Real G o) dx . (I1.8)
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From invariance under transformations belonging to the homogeneous
Lorentz group we may obtain the conservation of angular momentum
and the "center of mass relation.”

From the gauge invariance of the first kind

it
p=ec o
we obtain the conservation of "charge"

Q=2Im[pe) dx. = [ 2dx (I.9)

B. Stationary Solutions

After this brief discussion of some important integral invari-
ants of any solution of Eq. (II.4), let us return to the solutions (II.2)
of (II.1). By substitution we obtain

726 =0(mP-w®-2192 + Boe*) forreald . (I1.10)

This is now an elliptic (time independent) differential equation.
Compared to Eq. (1) it is trivial.

We shall seek solutions of (1 @ with the boundary conditions
8/ =0)=0, 8(|x| =) =0, 8’(|X| = =) » 0, 6 is everywhere smooth
and finite. We shall also seek solutions symmetrical about x = 0.

We can write

n-1 d

a2
ve— e()+r

L 80 = 0()([m®-uw?1-A[0()I2+BL6()]%
where r represents the coordinate in n space dimensions. Notice
that in. one space dimension the second term drops out.
) Recalling the procedure we adopted for the elliptic functions,
we multiply through by % and integrate
‘ , B
d 3 2 r]. _ n"l d_H 2
[dre(r)] +PO-veeN | =-[ = (5] dr .

rs rs

Using the boundary conditions at « we obtain

] e s
(8 () +u”0* ) - V(e () =- [ nT'l (ﬁ%)s dar . (.12)

Notice that in one space dimension the right hand side is
absent, making possible many simplifications.
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Equation (II.12) has many important consequences:
Cor. 1: For positive definite potential (which we always require)
a stationary solution has o> 0.
Proof: From the boundary conditions, at the origin 6’ (r) = 0, hence
Eq. (I1.12) becomes

762 (0) - V(6(0)) = f n-l (ﬁ‘-‘i)a & .

r dr

For positive definite V this is possible only if w® > 0.
Because of the absence of the second term in Eq.(II.11), the
case of one space dimension can be solved quite explicitly., We
shall now assume one space dimension.
Cor.2: In one space dimension, coming from a positive definite
potenttal there is a stationary solution of the form (II.2) for
Eq. (II.1) if and only if
@) the equation

Py =V(y)

has a solution Yo >0 and
(b)
dv(y )

dy

y (P - Ay2 +By*) = <o0.

Furthermore if (@) and (b) are true, then
P =Vl )P, 80 =y

and

Um o, _ e-lxlA/m2 -0

x| = =

Proof:
In one space dimension Eq. (II.12) becomes

(0 @R +uPe? ) =VEhE) . (11.13)

(Because 8 is symmetric about x = 0, we use r for lxl .) Hence at
the origin, for a localized sol‘ution,_

w et =veE) . R 1 R )
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Conversely, if 8(0) = Yo
2 =
o Y3 = V()

and 6/(0) = 0 then Eq. (II.13) is satisfied. Since
dV(yD)

dy

eII — < 0
:i:he slope 8’ becomes negative.
If we now integrate Eq. (II.13)

V(e) - w8 (I1.15)

we obtain a function which satisfies Eq. (II.13), and at r=0 is sloping
downward. The function will continue t6 decrease until it is asymp-
totic to #=0. It cannot cross 6=0 because at 8=0 §%0 from Eq.(II.13),
and it cannot turn up or stop decreasing because from Eq. (II.13) if
6/=0 then ® 2= V(p), but this equation, from the form of the poten-
tial, has no solutions other than 8=y =8 (r=0) and 6=0.

We have already seen that 9{19 0) = Yo and that yw® satisfies
the. equation

way% = V(yo) .

If w* were such that this equation had no solution, then we
cannot carry out this procedure and there would be no stationary
solution with frequency w.

From Eq. (II.13) we see that not only does 8 {r) go to zero for
large r, it goes to zero like

8y e VM W T (11.16)

Note that one can easily write generalizations of Cor. 2 for more
general potentials. '

By means of Eq.(II.12), and corollaries one and two, we have
obtained quite a complete picture of when stationary localized solu-
tions can exist and what they look like.

Now we also canuse Eq. (II.12) to derive some of their integral
properties. These are interesting because it turns out that the energy
momentum tensor of a stationary solution has a rather special form.
Cor. 3: For a stationary solutiong = e ~iwt §(x) in one space
dimension
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e =2v(8 x)) (I1.17)
=0 X (I1.18)
T, =0 : (11.19)
& =2(26% x) - VOx) = -2(8' (x))? (1I1.20)
2 =2 0® &) , (11.21)

Proof:
. P comes out zero since 0 is imaginary. 2 is immediate from

the definition. For the rest, substitute

. :

(8’ =v(e) -waea' - - ‘

into their respective definitions. 8
We see that the energy momentum tensor may be written

v oo
T =2 . (i1.22)
Yy 0 0

As an example, we shall work out in some detail the proper-
ties- of the potential G

v{a) = m®a - 1a® + ga®

Here we have made some changes of notation. (For the poten-
tial of Eq.(I1.1) we had V(o) = m®g® - 5 ()® + (8/3)(e®)°.)
~ We write V(@) =aVla) = (n® - \a + Ba®)a. The minimum of
V occurs at 1/2B =a at which

V= (e -°/4p)
hence V is positive definite if m® > A2 /4B.

‘A stationary solution exists, according to Gor 2, ifvPa=
V(). Therefore

)\8 ! 5
m? > uf >md - (11.23a)
L : 48 s
and.
a=_ WP - m? - o) (I1.23Db)
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where
8 (x=0) =

for a stationary solution of frequency w. %
Notice that as w?~ m®, a = 0, while for ¢*~ (m®- }, a=oo
So there is a continuous family of stationary soluiions centered about
x = 0 with maxima ranging from zero to./\/28. .
, It is not possible to have a stationary selution with ¢?=
m? - %—E 8(x=0) =.//2B. For atx =0, the equation for § is

" 97 =8P~ uf - 20a + 3Ba2) .

Substitution gives .

Hence (II.23a) is a striet inequality.

C. Elementary Solutions
We have already noted that the lagrangian for Eq. (II.1) is

invariant under the transformations of the Poincaré group. Hence, if
) is any solution of Eq. (I1.1), translations; rotations and Lorentz
boosts may be applied to i and they yield new solutions of Eq. (II.1).

+a
TR
is obtained after translation.
v .
X )= x +a) 11.24
cp(xu) cp(l\u ! u) (11.24)

is the most general transformation of ¢ by elements of the Poincaré

group. Ife satisfies Eq. (II.1), theng(A Vx +a ) also satis-
Hoow u

fles Eq. (II.1 At

If a stationary solution e

8 (x) is transformed in this way
we obtain a solution of the form ‘

-wp CeHty
o M e["iu(xu'au)]=°"(’"t) . (11.25)

Such a solution is called an elementary S{A]&ltion. It is centered at
xM =g and is moving with velocity vy =_4 without any change

. o
in shape. A 4
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III. Dynamics and Scattering

A. Introduction and Formalism

We have been studying the localized, stationary solutions of
field equations, and we have also noted that, as a consequence of
Poincaré invariance, a whole family of elementary solutions, which
can be centered anywhere and may be moving with arbitrary velocity
(0 < v< 1), can be generated from the stationary solutions.

We now ask whether these stationary solutions can scatter.
That is, in some sense can we have a solution of the wave equation

~Op =p(m®-2X @) + 8l ©)°) (1.1)

which at t = -» looks like two or more elementary solutions approach-
ing each other. And if so, what does such a solution look like at
t=+»
Before going into this problem in more detail, let us recall the
characteristic features of solving the linear Schrodinger equation.
- If ¢ is a solution of

—iatcp=V2'cp—V(x)cp

then we can expand ¢ in the form

_ +Et
o = [dug o ) e

where cpE(x) is a solution of
3 2 -
E cpE(x) v cpE V(x) cpE .

The particular solution is determined essentially by boundary
conditions.

We see that because we are dealing with a linear equation,
for which the superposition principle is valid, we have been able to
give the general time dependent solution by means of a superposition
of functions each of which has trivial time dependence, and is deter-
mined by the solution of a time independent elliptic equation.

Unfortunately, these techniques do not apply to nonlinear
equations.

Our first objective is to find suitable boundary conditions.

There is a striking resemblance between stationary solutions
and the constituents elEt Pp (x) which made up a general solution of
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the Schrédinger equation. This suggesdts that stationary and, more
generally, elementary solutions are of particular interest. Of course,
superpositions of elementary solutions are not themselves solutions
of Eq. (II1.1), because of the nonlinearity. However, as we shall
see, to a limited extent, the sum of elementary solutions can be
asymptotic to a solution.

We shall investigate the following sort of property: A partial
differential equation will be said to have a particle interpretation if

(2) It has a family of elementary solutions

{(b) For any collection {q’i{x}lni 1, ,N of elementary solu-

tlons which Satlﬁfyi-]:.ﬂ:m iy ¢, 1) oy B, 1) = 0 for alli,j (i #i), there is
a solution cp_l_(:{p) and a solution o (xu} of Eq. (III.1) such that

lim N
i=l
lim _
55 s cp_(xu). - g cpi(xu)
i=1

We denote by § the set of all such solutions cp+ and by 3 the
set of all such solutions ¢p_.

(c) There exist solutions which are in both 3~ and &*. Such
a solution 1s asymptotic to a sum of elementary solutions at t = -®
and, whatever happens at finite times, at t = +» it again becomes
asymptotic to a sum of elementary solutions. Denote such a set of
functions by . Clearly

+ -
?cCc?d NG (111.2)
Note that if ¢ € &, then
lim =
i=1

and

Lim =§ )
t 4o ® chxp,
=1
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where the collection {cpi} =1 i N is not necessarily the same as the
collection {qjj}' I=1 M"
(d) For any gy € &, such.that

lim
to4e®1 ™ ) Py
i=1

there is a g5 € &, such that

lim
t =~ Py = cpi

=1

and the converse is also true.

This says that any state which is the result of a scattering
process can also give rise to a scattering process. And every initial
state is also the result of a scattering process.

For any equation which satisfies the conditions a-d, a set &
of (nontrivial) solutions which satisfies ¢ and d will be called a par-
ticle space.

We have used the conditions at t =+« to select out certain
types of boundary conditions as particularly interesting. This is
reminiscent of the Van der Pol equation for which the boundary condi-
tions one might specify at t = £ were different from those at finite
time. : .
In.addition to the condition of a particle interpretation,
several other kinds of .behavior are a priori possible for @ nonlinear
partial differential equation. Some are stronger, some weaker than
conditions a-d.

First, we shall define the notion of the spectrum of a particle
space.

Let & be a particle space., Then anye¢ € & satisfles

lim = g )
t = -@ ® tpi X
1=1
M
lim _
to 40 7 z P, &)
=1

where g, (x) and o, (x) are elementary solutions.
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Each elementary solution i has a certain energy E in its rest
frame. We define the spectrum of ¢, %'as the pair

=}y N B ) (111.3)

Then we define the spectrum of &, €3, as the collection of the
spectra of its elements

€, ={6cp|cp €%} . (I11. 4a)
Equivalently,
= lim .
€ ~ ’Eilt-o-wq"‘"fg“’k'q’” ’
il k=1
lim i
Ejlt-o+wq)_cpj+ g Py v p€ ® (I11.4b)
writing
ey = (e . e,
we note that because of condition (d), 6+ =&_, hence
8§=‘ €.e) 5 . (111.5)

We can also defilne the spectra of §+, @f, and ?, € Qi, l.e. if

lim -
t= o Py Z ®4
=D

then &, = {E;} and g5 ={e, 1 respectively.
With the concept ofg spectrum, we can make the following
definition:
An equation has the strong particle scattering property if
(@) it has a particle interpretation
(b) it has a particle space & which satisfies
i) The spectrum of 3 1s discrete and finite
1) Ifgp€ 8,
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lim =§:
tos-o® Py v

i=1

and ipy is any elementary rﬁ)lution whose rest energy is in the spec-
trum of #; and such that mm cpj (x) ® = 0, then there 1s a solution

@, € & such that b=

lim +§ Jlimo
o e @ =0T ) @ = o e
1=1

Another possible behavior that the equation can have is the
general scattering property:

Some (or all) solutions of the equation may be written asymp-
totically as the superposition of a sum of elementary solutions and a
solution of the linearized equation. (For Eq.(III.1), the linearized
equation is Eq. (III.1) with A =8 = 0.)

We would like to be able to prove that a particle interpretation
holds for Eq. (III.1l), or even that the strong particle scattering prop~
erty holds. We have so far achieved only weaker results which we
give below.

B. Analytical Results

Let M:p(t) =sup |pe,t)]. Mcp(t) is the maximum value of the
modulus of ¢p. *

We shall say that ¢ attenuates if Mp(tj - 0, i.e., if for any
a > 0, there is a t such that ) <a.

To begin the investigation of scattering, let us note that a set
of initial conditions--called Cauchy data-~for Eq. (III.1) consists of
giving the function at t = 0, and its time derivative, ¢{x,t=0), at
t=0.

If § &,t) is a function, we shall say that § is Cauchy data for
o if we set

o, t) = ¥t )
cb(x,to) =ybit)

We shall now prove the main result for the nonlinear Klein-Gordon
equation:

Theorem: There exist nonattenuating solutions of nonlinear Klein-
Gordon equations. In particular, if Eq. (III.1) has stationary solu-
tions ¢ which satisfy
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Qo) >— Efp,) (I11.6)
Py m — % ’

Then a solution ¢ (x,t) with Cauchy data § does not attenuate,
where

V=Y elind U, +a) (111, 7)
1

with (A.i'ai) a transforrgafion in the Poincaré group such that A, is

close to one (l.e. (Ay)" =~ 1), while (@) - {a,), is large and space-
[¢] i'u K

like.

Lemma: Suppose

O =g, -4 = - pu(lp|®) (111. 8a)
where
dv(a)
da
and
v{a) =am® -\a® +Ba®
m?,%x,B8>0 and V@) >0 ifa> 0 (I11.8b)
Then, if
M {t)<e ,
P
o) < i+ 5 e(x) where 56 =~ 0ase~0 (II.9)
Proof: vV@)zam® -5,, for0<sa<e® ase~0. 5, is simply the
maximum of |V@) - am®| in this range.

Also,
1

i 0 -, 1 : 1 1
26) = 2 Im (&) o)) < - ([]°+ m® |@|?) s -€ -85 +- 6,
where 85, = |’ %)|?. Then, certainly

D(x)S(I—ln+6)e and 5~ 0 as €= 0.

Lemma; If, given any Cauchy data § for ¢,
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QW > (2 +8) E( (111, 10)
then there 1s an ¢ such that
| M (t) > ¢ forall time .
Proof:  Choose ¢ small enough so that forepx) < e
2p6) < (5 +8) Epl) . (1. 11)

Suppose now that Mtp(to) < ¢, then (III 11) is true at ea.ch
point, and therefore

QW) = (= +8) El) - C (i)

However, this is impossible sincé E and Q are each con-
served, and satisfy (III.10) at the initial time.

It now follows that the theorem is true if we can exhibit
Cauchy data which satisfy (III.10).

One set of Cauchy data which suffices in one space dimen-
sion was given by P. D. Lax:

For any a > 0 such that V(@) < m®a, set

o) =a 0< |x| <R
o) =a®R+1-]x]) Rs|x|sR+1
pk) =0 R+ 1< |x]

o) =imol) . (111.13)

For R sufficiently large, this satisfies Eq. (III.10) and the
function @(x,t) which evolves from this Cauchy data does not
attenuate.

Let us now turn to the nonattenuation of certain functions
with Cauchy data of the form (III.7).

Recall that a stationary solution with frequency w exists for
a potential of the form (III.8b) if

P> 02> m® - \2 /4B

and that
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ebpx)) =2 V&) = 2(m? |o|2- A|o|*+B|e|®)
Q = 2w |o]?
Now m? - Aa + Ba® decreases monotonically from m?® to its
minimum. , C wt
For a stationary solution e” 6{x), we have

w® 0% (x=0) = V(8(0))

and 8(x) and V(8 (<)) both decrease monotonically from x = 0. Hence

m? 82 (x) > V(8 (x)) > uf 6° (x)
Set
w = mbd §<1
near
- yOk) _
x=0 5(0 () mé <.m
for

however both V and 2 are small.

Numerical calculations show that in fact it is possible to find
stationary solutions of wave equations in one, two and three dimen-
sions which satisfy Eq. (III.10). The argument above explains why
this is plausible: near x = 0 where both the energy density and charge
derisity are large the densities satisfy an inequality

D>—1:8.
m

Although this condition is violated for large |x| , the densities there
are small. Most of the contribution to the integrals for E and Q obvi-
ously comes from the region where the densities are large.

For an elementary solution, translation obviously does not
change the energy. A Lorentz transformation varies the energy.con-
tinuously. If E is the energy of a stationary solution, then (Aoo)E is
the energy of a boosted solution. Charge is a scalar under Poincaré
transformations.
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Hence if a stationary solution cpi(xu) satisfies (III.10), the
elementary solution

v
Qpi(l\“ X\) + au)

satisfies (III.10) providing 1\00 is sufficiently close to 1.

Now let us consider sums of elementary solutions, of the
form (II1.7). i

It is easy to see that if for each pair i,j, (ai)u - (aj)M = Fﬁﬁj
is large @nd spacelike, then, when we compute the energy and charge
we find

E@) =z E&pi) + (Remainder);

i
Q) =Z Q(cpi) + (Remainder),
i

where the remainders consist of products cpi{x) @ (x) which go rapidly
to zero as }ﬁlﬁ Rile - -», because of the exponential decrease of
stationary solutions.

It now follows directly that Eq. (III.10) is satisfied for the
sum if it is satisfied for each @y, and if the remainders are suffici-
ently small. Hence a solution ¢ with Cauchy data § does not atten-
uate, as asserted.

We have now proved that some solutions which start out as
superpositions of elementary solutions never attenuate. They have
even a stronger property, in fact. For they have finite total energy,
and there is necessarily a finite energy concentrated around the maxi-
ma of the function. So that we have in fact proved that "tangible"
lumps of energy scatter into other "tangible" lumps of energy.

It would be very desirable to obtain exactly the form of the
functions for t = 4=,

We shall give another result which is consistent with, and
even suggestive of the possibility that a particle interpretation, or
something like it, holds for Eq. (III.1).

A crude variational calculation indicates that of all solutions
with charge g, the stationary solution with charge q has the lowest
energy.
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E= I[cpcp cpmi +Vip )] dx

Q= %J‘chp % o) dx

If we minimize E subject to the constraint Q = q/2, then using
Lagrange multipliers, we minimize

E= f{[cpcp coto +V(cpcp)]+>~[cpco = Ella=ng
Varymg with respect to cp(x) , we find
®-Ap=0 (I11.15a)

from which we obtain

At

plk,t)=e  0(x) (I11.15b)

Varying with respect to ¢, we find

V) . ..
Qpli+cpa&pm) +rp =0 (111.16)

Using Eq.(III.15), we see that Eq. (III.16) is

2
Ae=9(ma_1 m)

LR

which is precisely the equation for a stationary solution.
Of course, variation with respect to A now requires the charge
of ert g(x) to be exactly q/2, for we get, using (III.15),

Im AJ(|8]7)dx =q.

C. Numerical Results

Extensive numerical calculations have been performed to in-
vestigate the dynamical behavior of scattering solutions. We give a
brief summary of the results.

a) We have noted that for a positive definite potential there
are no real, stationary solutions. Nevertheless we have shown
numerically that real functions 8(x,t) exist which dissipate their
energy very slowly.

b) If two localized wave packets are made to move toward
one another, they will interact, then separate, remaining more or less
intact, with more or less their original shape, but with a possible
change in velocity, phase, and perhaps a time delay in overall
position.
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c) One can plot such quantities as the position of maxima of
the modulus of the function itself, or the position of the maxima of
the energy density, to obtain a "scattering diagram."”

d) It is obvious, though amusing in practice, to see the
effects of Lorentz contraction, time dilation and the relativity of
"simulaneity" on moving wave packets.

f) One can make motion pictures of the scattering process.

g) Interesting effects can be observed for different values of
the parameters of a scattering process. In one case a "resonant”
intermediate state was formed: During the interaction a single wave
packet was formed from the two incoming packets, and it lasted a
particularly long time before it separated into two outgoing packets.

IV. Other Equations

It might seem unlikely that any equation has a particle inter-
pretation, and even more unlikely that one could establish it, given
the difficulties of analyzing nonlinear partial differential equations.
However, there is an equation, the Korteweg-~de Vreis (K-de V) equa-
tion, which has been found to satisfy the strong particle scattering
property (when restated with slightly different terminology). In addi-
tion, this equation can be solved completely, in the sense that, given
a function at t = 0, u(x), one can find a solution of the K-de V equa-
tion u(x,t) which satisfies u{x,0) =u(x). In fact, in some cases
u(x,t) can be written as an explicit rational fraction of sums of
exponentials.

The K-de V equation is nonrelativistic. We will show, how-
ever, that even for relativistic equations some remarkable properties
can hold.

A, Relativistic Equations
First, we ask the reader, as a challenge to his manipulative
ability, to investigate the equation

Op =¥ (v.1)

The objective is to find the general solution of Eq. (IV.1).
A general solution is a function

¢A'B(x,t)

which is a solution and which is known, given that
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9k, 0) = Alx)
96c,0) =BE) .
We off;r the rfolllowing hints. Letting
gk +t) . n=hk-1)
the equation becomes
vy =

Notice that this implies

- 2 =
which means that a solution of (IV.2) satisfles
Per - &cpg +f(€) =0  for arbitrary ()
Making the Riccati transformation
u

=_.9-8
Y 23

we obtain
2 ) u 3 .
55 z(—5> -% -z(—f) +£(g) =0

=-2 Ugg * u(g) £(g)

239

(Iv.2)

which is a linear equation. The problem of obtaining the general

solution ¢, p(x, t) is now left to the reader.

Before treating the K-de V equation, we will study another

relativistic equation, the sin-Gordon equation
O¢ =sing

forreal ¢ in one space dimension.
We again make the transformation

x=+$(+t) t-dkx-t)

giving

(IV.3a)
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P = sino (IvV.3Db)

We will show that Eq. (IV.3) has an infinite number of con-
servation laws. The method we use is a formalization, by David
Wiley, of the method used to prove that the K-de V equation has an
infinite number of conservation laws.

Let us consider a new function y which satisfiles

y =0 +ply., e (Iv.4)
and the equation

Y4 = Sin ) k(y, .€) (Iv.5)

We suppose that y satisfies these two equations for every
value of €. We now take the xt derivatives of Eq. (IV.4), and apply
(Iv.5) and (Iv.3).

—_ ? u
Yo S0t TP ) + Pl e v,
(Iv.6a)

siny kly,, ¢) =sing + p’ (sin v k+p sinyk'ly ey,
" .
+p sinykly . ey (IV.Sb?

It is clear that this equation can be satisfied only if the
coefficient of Yo vanishes. That is’

p'k! +pk=0 (v.7)
furthermore
sin v k = sin{y - p) + p’ (sin y)x k . (Iv.8)
These conditions are satisfied, with the additional conditions:p 0
ase = 0;and k= 1ase =0, if for Egs. (IV.3), (Iv.4), and (1Iv.5)
we have
P, = Sing (1v.9)

Y = sinyv1-e?y? © o (v.10)

y =¢+sin™ (ey,) (Iv.11)
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Eq. (IV.10) is particularly interesting because it has a conservation
law for each e.

(J1- (GYX) -1)
3 = (cos y)x (v.12)
t

3

Eq. (IV.12) is written in that form so that as ¢ = 0 it converges
smoothly to

i‘(cpxg )t = (cos cp)x (Iv.13)

which 1s a conservation law for (IV.9)

Equations (IV.9) and (IV.10) are not equivalent under the
mapping (IVv.11).

Equation (IV.11) plus Eq. (IV.10) imply Eq. (IV.9):

EY
xt s
LI + [W] =sgin y4/1 (eysz

x
+ =sin y V1= Gy F
P tecosyy =siny 1 (eyx

= - -1 = K
Py = 10 (y - sin (eyx)) sinop

However, Eq. (IV.11) plus Eq. (IV.9) does not imply Eq.
(Iv.10), but rather a more general equation:
We obtain, first

N yxt

]

sin (y - sin™?t (eyx))

= Z :
siny./1 esvx} ey, COS ¥ .

Now we cannot simplify the second term, so we obtain

3 Yt
I -y P -e—)|-=—— -siny])=0
p 2 ax/\.J/1 - iEYxF'

which does not imply Eq. (IV.10), although it is satisfied if Eq. (IV.10)
is true. ‘

To obtain an infinite number of conservation laws, it is only
necessary now to expand Eq.(IV.12)asa formal power series in ¢, and
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use Eq. (IV.11), also iterated formally in ¢ as a power series in ¢ and
its derivatives. The first few conservation laws obtained in this way
are

1 -
Fy —I(mez) dk = constant
1 5 . 1 .,
= — + = =
Fs _r( 5 P 8 Py ) dx = constant
= l 2 é 2 3 +_1. 8 =
Fa I(me +5 9,2 o7 +7ew, ) dx = constant.
These conservation laws are expressed for Eq. (IV.3b). To
obtain the conservation laws for the original equation (IV.3a) requires

only a change of variables.

B. The Korteweg-de Vreis Equation
The K-de V equation is

ut+uux+um=(? (Iv.14)

This equation has been found to be relevant to many problems
in plasma physics and fluid motion. Considering the interesting
properties it has, it is noteworthy that the equation was studied for
its physical properties rather than "invented" for its mathematical
properties.

‘We shall show that the K-de V equation can be solved--that
is, given ufx) we can find a solution u(x,t) such that u(x) = ufx,t=0).
Furthermore, it turns out that the solutions have the strong scattering
property.

To begin with, we note that the function

3
. = 2 -2 B a
cpa(x,t) 3a® sech B x -5 t:\ (Iv.15)

is a solution of (IV.14) which, obviously, does not change shape as
it moves. The functions Pq (x,t) are the elementary solutions of the
K-de V equation.

Historically, the theory of the K-de V equation was developed
by first noticing numerically the stability of isolated or solitary wave
packets. Then many conservation laws were discovered by trial and
error manipulation of the equatlon. The fact was noted that another
equation also had many conservation laws, namely:

vt+v3vx+vxxx=0 (v.1l6)
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It was conjectured that Eqs. (IV.14) and (IV.16) both had an
infinite number of conservation laws and that the two equations were
related. This was proved, and then the general solution was found.

Let us relate u and v by the Riccati equation:

u=va:*:i/6vX . (v.17)
Then substitution reveals

= e 9
u, +uu tu = (2v £ i/6 ax)(vt +v"’vx +vm) . (Iv.18)

We now apply the linearizing change of variables for the
Riccati equation to v

¥y
V=if6T (Iv.19)
and obtain for u, after translation of u by *,
1 Y
Ve t5 (u-2)y=0. (Iv.20)

This 1s a remarkable equation, because it turns out that
(Iv.20) in conjunction with (IV.16), the K~de V equation, allows
(IV.16) to be solved completely. It turns out to be convenient later
to replace u by -6u, then the K-de V equation becomes

u - Guux tu = 0 (Iv.1l4a)

and Eq. (IV.20) becomes

wxx-uw =AY (Iv.20a)

At each time t , Eq. (IV .20a) is a Sturm-Liouville equation
for §, with potential ufx,ty).

It turns out that, by means of Gelfand-Levitan inverse scatter-
ing theory, u can be obtained from . On the other hand, from the
K-de V equation, given u(x,0), we can find ¥ at every time.

The Gelfand-Levitan equation is

KEx,y) + Blxty) + [ Bly+z) Klx,z)dz =0 . (v.21)
X

B is a known function, evaluated from Eq. (IVv.20a). K is
solved for in Eq. (IV.21). Then
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uk) = -2 < Kix,x) (1v.22)
dx ’ A A :.

The time is here a hidden parameter, (IV.21) and (IV.22) both
being evaluated at each time. B is defined by

+o -K &
BE) =5 ] bl e Fak + i cle ° (1v.23)

n=1

where k, K.,» Cp and b(k) are defined as follows:
(n)’ the nth discrete elgenvalue of Eq. (IV.20)
(1v.24a)

K2 =Xk represents the continuous spectrum . {IV.24b)

-k 2 =)
n

The Cn are normalization COs:st'ants in the following sense.

For a bound state wave function lll(n we require
Rty
[P ax=1 : (v.25a)
- , ,
Then as x = +e
K x -
§ = Cn e S (IV . 25b)

For the continuous spectrum, since u= 0 as |x] =o,{isa
linear combination of ™%X and e 1KX,| we set )

= e_1kx + b(k) e-'-“rQ<

Cy=alk) ot X -o (IV.26b)

as x = +o (Iv.26a)

b(k) represents the reflection of a plane wave by the potential u, a(k)
represents the transmission, and

lak)|® + |bK|® =1 . - (Iv.26¢)

‘We now set out to evaluate these quantities.

There are th ways to prove the remarkable fact that the bound
state eigenvalues A n) are constant if u evolves according to the K-
de V equation. '

First we write
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¥
XX
u=)+—=—
]
substituting this into the K-deV -equation ylelds
2 - =
A2+ [wa v Rl =0 (Iv.27a)
where
=¢t+¢xxx-3(u +1) by (IvV.27b)

Notice that we can now integrate (IV.27a) to give

+<0
0 =J‘_Q LYW I G VR (Iv.28)

Another way to prove that A is constant reveals much about
the structure of the K-de V equation.
Suppose that to some differential equation B

u, = K(u) (Iv.29)
there is associated a linear operator Lu in some Hilbert space, i.e.,
ult) =L, L' E~H . (v.30)

The elgenvalues of Lu will remain constant as u evolves according
to (IV.29), if the time evolution of L is effected by unitary operators,

i,e.,1f

=U~t{t) L

(o) Ut) (Iv.31)

Luge)
where U(t) is a unitary operator for each t. Differentiating (v.31)

we obtain
/4L dL,
(d“) ) _( d;l) K =LL, () B (IV.32)

where B is the generator of the unitary transformation U. If L is linear
in u, as is the operator

L{u) "g{g-u ‘ (Iv.33)

in Eq. (IV.20a), then (IV.32) becomes
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K(u) =c (L, B] (1v.34)
with ¢ a constant (equal to one for the operator in (IV.33)).
Conversely, given a generator B, and an operator L linear in

u, evaluating the commutator in (IV.34) ylelds a function K(u) which
generates a differential equation such that if

u, = K(u),

then the eigenvalues of L remain const?nt in time.
Taking for L the llilr{ ar operator é;— + —é u, and for B the

operator
2. 1.3 1
12 B75@ T4 %5 T8 Y
we find
= 1 LA Ul e
u, =[L, B] =12 Bxs ax"5+4‘ua'x+'8ux
=-uu_-u .
X ploied

which is the K~-de V equation of Eq. (IV.14). This proves that the
eigenvalues A of L are constant, since if u(t) transforms by K-de V,
then L transforms unitarily.

Using Eqs. (IV.28), one obtains the differential equation for
the time development of §. Using the fact that | is a bound state
solution, we find that '

0=R=¢t+¢m-3(u+)\)¢x (1v.35)

is the equation of motion for § . For continuum solutions, one must
be a little more detailed.

Using Eqs. (IV.24), (IV.25), and (IV.26) and noting that u -~ 0
asymptotically, we obtain simple equations for a, b, and ¢ with
solutions

4K 3t
c, ) =C (0 e & (Iv.36a)
b(k,t) = b(k,o)eeikat : (Iv.36b)

a(k,t) =a(k,o0) (Iv.36¢)



NONREIATIVISTIC DIFFERENTIAL EQUATIONS 247

The quantities Cp(o), blk,o) and a(k,o) are all obtained by
solving Eq. (IV.20a) with the initial data ulx) = ufx,0).

From this information a complete analysis of the properties of
the K~de V equation can be made. One result is that u(x,o0) is a
potential for which bk,0) = 0 if and only if u(x,t); as t = = is com-
posed only of solitons, i.e. a superposition of elementary solutions
of the form (IV.15).

Moreover, 1f b = 0, then it follows from the Gelfand-Levitan
equation that u(x,t) is a rational fraction of exponentials.

As an example, consider the solitary wave

u(x,;) = -2 sech?® (x - 4t)
then
u(x,0) = -2 sech®x .
It turns out that the problem
-9y + (2 sech? (x))y =1y

can be solved exactly, and it has one eigenvalue.

K =1
C, (0) =\[2’
b(k,0)=0 5

The solitary wave, as we noted, is reflectionless. The Gelfand~
Levitan equation becomes

=]
Kéx,y) +2 570NV 4 268V (e 2) 6 az =0
X

Let K(x,y) = L{x)e Y as an ansatz, then
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-]
L{x) + ZeBt-x + ZeBtL(x) I e-Zz dz =0
x
8t-x
L) =___"2_.§._.___2x
8t e
1+ 2e
-xx
-2e -2
Kbx,x) = _ n
o 8t+ 2x er 8t+1
9 3
y oy =22 @e ™R z_z( 2 )
(er—St_,_l)3 ex-4t + e—x+4t

-2 sech® (x - 4t)
With the initial condition

ulx,0) = -6 sech®x

there are two distinct eigenvalues
K =1, K, =2

and the exact solution turns out to be

_ 3 + 4 cosh (2x-8t) + cosh(4x-64t)
ufx,t) -12[[3 cosh (x-28t) + cosh(3x-36t)]1° |*

This solution exhibits the following properties, which are
typical of solutions of the K-de V equation

a) Ast= +» or ~» u describes two solitons with velocities
v; = (2K )2 and v, = (2K, )2 . ‘

b) The two solitons as t » -» are positioned so that the faster
is approaching the slower, and as t = +* so that the two solitons are
diverging.

¢c) The solitons are displaced from the position they would
have occupied if they had not interacted.

V. Conclusions and Summary

For the K-de V equation a strong particle scattering property
holds. This equation is dissimilar to the equations of particle phy-
sics in the following respects: the solutions are real, the equation
has high derivatives in x, and is nonrelativistic, with only one space
dimension.
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For the sin-Gordon equation, which 1is real and one dimen-
sional but relativistic, we have proved the existence of an infinite
number of conservation laws.

For the nonlinear Klein-Gordon equation, we have shown that
solutions exist, which do not attenuate, in one, two, and three
dimensions, but we have not proved either a particle interpretation,
or an infinite number of conservation laws.

No equations are known which have a finite number of conser-
vation laws and a particle interpretation.

If a strong particle scattering property held for a relativistic,
realistic equation, it would give rise to a mathematical model for the
relativistically invariant dynamics of classical extended particles.
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I am rather hesitant to give a series of mathematical lectures
to an audience consisting principally of physicists. It is not that
physicists know too little mathematics, but on the contrary that they
know too much mathematics, or more precisely that they know too well
exactly which mathematical problems they want solved. They want to
know the holomorphy envelope of a particular domain reeking with
physical significance, or the nature of the singularities of a particu-
lar Feynman integral of phenomenal importance. Consequently they
frequently feel a certain lack of rapport with mathematicians, who
persist in backing off to look at more general problems or broader
classes of problems, and who often prove quite useless as aides for
solving a particular problem. These differing viewpoints seem part of
the nature of things, or we would not have evolved separately into
mathematicians and physicists over the past few centuries; and I
shall not attempt to reverse this possibly irreversible consequence of
the specialization forced upon us by the increase of knowledge but
not of intellectual capacity.

My aim here is to give a survey of what might be called the
local-geometrical aspect of the theory of functions of several complex
variables. There has been a good deal of mathematical activity in
this area in the recent and the not so recent past, leading to some
quite deep and some quite surprising results. Some of the purely
mathematical advances have been achieved by physicists, such as
Federbush, Pham, and others, who were led to this work through the
study of Feynman integrals, I cannot attempt to discuss the relevance
of these results to physics, since I do not know enough physics to do
so; and I shall not pretend that these lectures will be directly and
immediately relevant to current work in physics. However it may be

tPresented at the INSTITUTE FOR THEORETICAL PHYSICS,
University of Colorado, Summer 1969.
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of some interest and even of some use to physicists to see a general
survey of this field, avoiding for the most part detailed proofs or
technical complications that do not shed much light on the present
picture.

I. Complex Analytic Functions

To begin this survey, it may be in order to review briefly the
elementary properties of analytic functions of several complex vari-
ables; to a great extent these properties are direct extensions of the
familiar properties of analytic functions of a single complex variable.

Consider the set " of n-tuples of complex numbers, points of
which will be denoted by z = (2, ,...,2z_) where z, € ©; this set will
haniden'tified as a topological space Wi‘t?‘l the ordinary Euclidean space
R™" of dimension 2n. A complex-valued function f(z) in an open sub-
set US € is called complex analytic (or holomorphic) in U if in some
open neighborhood of any pointa = (@1 ,...,8y) € U the values of the
function are given by a convergent multiple power series

o
v
= } a1 a)n
f(zl,...,zn) i (z,-a,) ...(znan) :

- ¥n
vl,...vn—O (I.1)

It is familiar from elementary analysis that such a series is absolutely
and uniformly convergent in any suitably small polydisc

Aa(e) = {(21 Y ,zn)E (Dn‘

Izj—aj|<e:j forj=1,...,n}

(1.2)
of centera = {a,,... ,an) and polyradius ¢ = (g ,... ,en) with e, > 0;
so the order in which the series is summed is quite immaterial.” Note
that when all the coordinates Z; except 2z are given the values ay,
the series expansion reduces to

-]

fla, ""'ak-l'zk'ak+l’°"’an) = z 0. . .0y O...O(zk-ak] ,

i k
Y I

so that fl@, ,... By 112y g ree i@ ) is a complex analytic func-
tion of the single compléx variable zy in the usual sense; that is to
say, a complex analytic function of several complex varilables is ana-
lytic in each variable separately. Consequently many of the familiar
results from the theory of functions of a single complex variable can
be applied quite directly. For instance, the Cauchy integral formula
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can be applied to each variable separately, to obtain an iterated
integral formula

] (N :Qn}
J'df“'l"' Idgn (Gl_zl)"'(cn_zn)

1¢y-ay | =¢, ICn'an|=9n

1
(eri)”

f(zl,...,zn) =

valid for all points z € A5 (e) whenever f(z) is complex analytic in an
open neighborhood of the closure of the polydisc Aa(e) . Since the
function f(z) is continuous, this iterated integral is equivalent to the
multiple integral

f(§1 L rgn)

dg] "'dg r
T (€1-29) . . (C -2 ) ' n
(2mi) |Cj"aj|=€j =1 n n (1.3)

f(zl,...,zn) =

which is the several complex variable form of the Cauchy integral
theorem. It should be pointed out that this integral is not over the
full boundary of the polydisc Aa(e) when n = 2, so that this formula

is not an exact analogue of the one variable Cauchy integral formula;
indeed there is no exact analogue of the classical formula whenn = 2,
but rather there are a number of integral formulas embodying various
aspects of the classical formula.

Note that in deriving the integral formula (I.3) it is not really
necessary to require that the function f(z) be a complex analytic func-
tion of n variables; it is sufficient merely to assume that f(z) is ana-
lytic in each variable separately in a neighborhood of Aa(e) . and is
smooth enough (say continuous or Lebesgue integrable) that the above
iterated integral is equivalent to a multiple integral. Having obtained
formula (I.3), however, note also that

v v
® (z,-2,) ... (zn—an) n

1 =
Ciz)- .-G z) )
\)1,...,\{1=0

v, +1 vptl

(gl"a],) v -(Cn_an)

where this series is absolutely and uniformly convergent for |Cnl =€,
and for any fixed point z € aa(s); and upon substituting this series in
(I.3) and integrating term by term, there results a multiple power
series expansion of the form (I.1). Consequently, whenever f(z) is
analytic in each variable separately in an open neighborhood of a poly-
disc A4 (e) and is smooth enough, it is an analytic function of n vari-

ables in Ag(e), and indeed has a series expansion (I.1) converging
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throughout 45 (e). Actually the smoothness assumption is also unne-
cessary; any function analytic in each variable separately is complex
analytic as a function of n variables. This result, first due to Har-
togs, is surprisingly much harder to prove, though.

If f(z) is a complex-valued function of one complex variable
z =x + iy which is differentiable in the underlying real coordinates
x,y, the classical Cauchy~-Riemann criterion for £(z) to be complex
analytic is that

o

3z

a
N1

i =0 where —a—=%<l+ii) .

Consequently a function f(z, ,... ,zn) of n complex variables zj =
x, + iy,, which is differentiable in the underlying real coordinates
xj 1Yy is complex analytic if and only if

h

E =0 forj=1,...,n.
J

One of the fundamental properties of analytic functions of one com-
plex variable, an immediate consequence of the Cauchy-Riemann con-
ditions, is that the composition of two analytic functions is again
analytic. For several complex variables, the analogous condition
involves a complex analytic mapping G: €™ ~ € defined by an n-tuple
of complex analytic functions g;(z); such a mapping can be viewed as
a coordinate change in €%, introducing new coordinates wy = g,(z) for
j=1,...,n. Thenif flwy ,... ,wn) is a complex analytic %un on, the
composition £(G(z)) = f(gy (2),...,9,(2)) is also complex analytic; for
by the chain rule .

o 3g ag
____(_(_}_leC‘z_z =z <__an ":*}:“+—a_f.— —_~> = 0,

azj o Wy azj awk E)z;f
since the functions f,g,,...,gx are all analytic. This result is of
course purely local, so the function f{w) and the mapping G(z) need
only be defined locally.

The set of zeros of 2 non-constant analytic function of one
complex variable consists of a discrete set of points in the domain of
analyticity of the function. This is no longer true for functions of
more than one complex variable; the coordinate function zj is a com=
plex analytic function in ¢ whose zero locus is ’ihe linear subspace
z_ =0, which is equivalent to the full space ¢™ " of n-1 complex
variables. For a general analytic function of several complex
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variables, the zero locus can be quite complicated indeed; the aim
of the present lectures is to provide a survey of the properties of such
sets. An easy preliminary property is that a function f(z) analytic in
an open connected subset US ¢! vanishes on an open subset of U if
and only if f{z) vanishes identically on U. To see this, let E be the
interior of the set of points at which f(z) = 0, so that E is a non-
empty open subset of U. To see that E = U, which is of course the
desired result, it is only necessary to show that E has no boundary
points inside U. Suppose that a € U lies on the boundary of E; and
select a polydisc Aa(e) S U. There is a point b € Aa(%e) N E, since a
is a boundary point of E; and evidently Ab(é‘e] € U. The function f(z)
has a multiple power series expansion centered at b and converging
throughout A, &e); but since b € E, this series necessarily vanishes
identically, " hence the function f(z) is identically zero in !.\b(ée).
However a € Ab(ée), hence a is an interior point of E, contradicting
the assumption that a was a boundary point of E and thereby conclud-
ing the proof.

11. Analytic Hypersurfaces in Standard Form

A subset V of an open domain U< ¢! is said to be an analytic
hypersurface of U if in some open neighborhood of each point of U the
subset V is the set of zeros of a complex analytic function. Such a
subset is necessarily relatively closed in U; and, except for the
trivial case in which the defining function vanishes identically, V is
a proper subset of U containing no interior points. The aim of the
present section is to derive a useful general description of an analy-
tic hypersurface in an open neighborhood of a point on it; after chang-
ing coordinates if necessary, it can be assumed that the point of in-
terest is the origin,

Consider then a complex analytic function £(z) in a polydisc
Ae)=1{(z,,... ,znl |zJ-| < ej} centered at the origin in €%, and the
hypersurface

v={zenrle)|f(z) =0} .

Suppose that the function £(z) is regular in the variable 2y, in the
sense that £(0,...,0 ,zn) considered ag ar analytic function of the
single complex variable zy, does not vanish identically. This is not
a serious restriction, since any analytic function can be made regular
in this sense by a suitable linear change of coordinates in Cn, pro-
vided that the function does not vanish identically; for select any
point b € Afe) for which f(b) # 0, and choose coordinates such that
b=(0,...,0,1). Suppose further that the hypersurface V actually
passes through the origin. The function £(0,... ,0,zn) as a function
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of the single complex variable Zy will then have a zero of some order
r> 0 at the origin z_ = 0. The zeros of the function £(0,...,0,2,) are
isolated, so by choosing the radius e, sufficiently small it can fur-
ther be assumed that £(0,... ,O,Zn) #0 for 0< Izn]g €y With
£(0,...,0,z ) being defined and analytic in an open neighberhood of
this closed 3isc of radius ¢_ centered at the origin Zy = 0. Thus there
is a constant 6 > 0 such that [£(0, ... ,U,Zn)l z i whenever izn[ =¢c
With these preparations out of the way, it is quite easy to give a
rough general description of the hypersurface V.

Since the function f(z) is continuous, after choosing the con-
stants €; ,...,6, sufficiently small it can be assumed that

n

flz oo e 2 - f(0 vee,0,2 <& II.].
I(]I In) (l Iln)l ( )

|z | <€1""’|Zn-ll <en_1,[zn|=en.

Now consider the polydisc

XY Y n-1
A (e )—{z (zl,...,zn_l)ECD |

lz.| <e, forj= 1,...,n-l} ;

] J
and for each fixed point z’ € A’ (¢’), consider the function f(z, ,...,
Zn-1.%y,) @8 a function of the complex variable z, alone. Since (o,
...,0,z ) has zeros of total order r in the disc |zn| < ey, and since
the funchion fzy , 000 0z2,_3. 2Zy,) satisfies (I1. 1), it follows from
Rouché's theorem that fI(.lz1 peeeaBp] ,zn) has zeros of total order r in
the disc [zn1 < e, and of course no zeros on the boundary of that
disc. Ilabel these r points ¢, (°), ... ,rpr{z ) in some order, noting
that they depend on the choice of the point z’ € A’(e’), and taking
multiplicities into account by repeating a multiple zero the correct
number of times. Of course the labeling is quite random, so the func-
tions o, {z’) need not even be continuous when considered as functions
of z’ €A’ (c’); however if this random element is eliminated by con-
sidering symmetric polynomials in the functions Py (z'). the resulting
function is well behaved, indeed is analytic inA“ (‘). To see this,
note that it follows from the usual Cauchy integral formula for func-
tions of one complex variable that

C: B—Z—f(zl,--.,zn_l.cn) B
'—1“]. a d¢ =z (z z )
2mi E@1 s oneey 106 n~ L ®jFrreeeZny)
[¢pl=e, " =1
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while the above integral is evidently a complex analytic function in
A’(e’); and since any symmetric polynomial in the functions @, (z’) can
be expressed as a polynomial in these power sums, any such expres-
sion is complex analytic in A’ (¢’). In particular, introduce the func-
tion

r
p(z1,.. .,zn) = n (zn -cpj(zl,...,zn_l))
=1

= [P ’ r-1 ’
= + +..,.+
z +o¢ (z’) z, cr(z )

a polynomial of degree r in the variable Zy with coefficients which
are the elementary symmetric functions of the ¢ (z’) and hence which
are analytic inA’(e’). This polynomial thus hds leading coefficient
1, and the remaining coefficients are complex analytic functions in
A’(e’) which vanish at the origin; such a polynomial is called a Wei-
erstrass polynomial at the origin in the variable z,. By construction,
for any fixed point z’ € A’ (¢’) this Weierstrass polynomial has the
same zeros in z,as the original function f(z); consequently there
always exists a Weierstrass polynomial defining the same analytic
hypersurface as the given analytic function f(z).

Consider the special case in which the function f(z) is regular
in the variable Zy at the origin and £(0, ... ,0,zn) has a zero of order 1
atz, = 0; this is equivalent to saying that

of
0z
n

£(0,...,0)=0, 0,...,00#0. (11.2)

In this case the associated Weierstrass polynomial has the special
form p(z) =z, -, (2 ... 12,_1) where ¢, (z’) is analytic inA’(e’);
so the hypersurface V defined by either the function f(z) or the Weier-
strass polynomial p(z) can be described very simply by the parametric
equation z, =g, (B sies ,zn_1) for z° € A’(c’). In this case, it is
further possible to introduce a new coordinate system (w, ,... 'Wn) in
some open neighborhood of the origin defined by

Wy =2 ,0.00,W =z i wn=zn—cp1(zl,...,

n-1 n-1 1) g

z
n—-
it is easily verified that the Jacobian of this change of variables is
non-singular. For the new coordinate system, the hypersurface is
merely the coordinate hyperplane W, = 0. In general, a point on an
analytic hypersurface V is called a regular point if it is possible to
choose coordinates in an open neighborhood of a in € such that
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locally V is a coordinate hyperplane; and a hypersurface V is called a
complex manifold of complex dimension n ~ 1 if it is regular at each
point. If a subvariety V is defined by an analytic function f(z) satis-
fying (11.5), it then follows that V is regular at the origin, that is,
that the origin is a regular point of V; and of course conversely when-
ever V is regular at the origin, it can be defined by an analytic func-
tion f(z) satisfying (II.2) in some set of coordinates. It is obvious
that this problem of the correct choice ofa set of coordinates for veri-
fying condition (II.2) can be avoided by noting that an analytic hyper-
surface V is regular at the origin in C® if and only if it can be defined
by an analytic function f(z) such that

f
oz,
J

f0,...,0)=0 (0,...,0) #0 for some j. (II.3)

The points of V which are not regular points are called singular points.
(it should be noted that the preceding observations include a proof of
the complex analytic form of the implicit function theorem; for if f(z)
is an analytic function satisfying (I1.2), the zero locus of f(z) is des~-
cribed parametrically by z, =91 (21,... +2p-1). hence £(z,,...,2
®1(Zy 4000s2,.9)= 0, and p,(0,...,0) =0.)

Returning once more to the general case, the discriminant of
the Weierstrass polynomial p(z) is the function defined by

n-1’

seh= (g o6 (1.
Ve
Wev=l, e, r

this is also a symmetric polynomial in the cp.(z’), hence it is a com-
plex analytic function of z’ in A’ (e’). It is’a familiar algebraic result
that this discriminant does not vanish identically if the polynomial
p(z) has no multiple factors. (If it is possible to write the polynomial
p(z) as a product of polynomials in z_ of lower degrees with coeffici-
ents analytic in (zy ,...,24.1), say p(z) =p, (z)...p(2), the polyno-
mials p;(z) are called factors. If two factors are the same, the poly-
nomial is said to have a multiple factor. It is obvious that any re-
peated factor can be dropped, and the resulting polynomial will define
the same analytic hypersurface V.) Clearly there is no loss of gener-
ality in considering only polynomials p(z) with no multiple factors;
hence it can be assumed that the discriminant 6 (z’) does not vanish
identically in A’ (€’). The set

D={z’ =(z1,...,zn_1)EA'(e’)ls(z')=o} (i1.5)
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is then a complex analytic hypersurface in the polydisc A’ (e/) in the
space of n -~ 1 complex variables. Now consider the natural pr?jec-
tion from the polydisc A(e) S C? onto the polydisc A’ (€’) < ¢®™ which
takes a point z = (z1,...,2,) € A(e) to the point 2’ = (21, ...,2,_1) €
A’{e’). Under this projection the hypersurface V< A (e) is mapped onto
the entire polydiscA’(e’). For any fixed pointa’= (3, ,... an-1) €
A'(e’) -~ D there are exactly r distinct points in the hypersurface V
mapping onto the point a’, namely the points with coordinates (@,,...,
a1+ ¢.(@a’)) forj =1, ...,r. Each of these points is a point of order
one for %he defining function, hence is a regular point of the hyper-
surface; and as noted in the preceding paragraph, it is possible to
select complex analytic functions g, (z’) in some open neighborhood of
a’ €A'(e’) such that o, (a’) have the specified values and that in a
neighborhood of the point (@, ,...,8p-1 ,qu(a')) the hypersurface is
described parametrically by the equation z, = (z’). Thus over a
small enough open neighborhood of a’ the hypeljsurfaca consists of r
sheets, each of which is mapped onto the neighborhood of a‘ homeo-
morphically by the projection; equivalently, the projection exhibits
the points of V lying over A’ (¢’) - D as an r-sheeted covering space
ofA’(e’) - D. It is evident thatas z’ € A’ (') - D approaches a point
of D, some of these distinct sheets approach coincidence; in parti-
cular as z’ approaches the origin, all the sheets come together at the
origin in ¢1,

The points of V lying over D will be called the branch points
of this covering, and the set of branch points will be dencted by B< V;
the set B is thus defined by the pair of analytic equations

B={z€al)f(z) =6() =0}, (I1.5)

where of course 6(zy ... ,zn) = 0l Z vt 'zn—l) is independent of the
variable z,. Clearly all the points of V - B are regular points of the
hypersurface, so that V - B is a complex analytic submanifold of
dimension n - 1 of the domain (A’ () - D) x (|zn| <el)Eal)E .
It is possible that some further points of the set B may also be regular
points of the hypersurface V, but appear as branch points only be-
cause of the particular choice of projection in this representation of
the hypersurface; for the set B can be viewed as being defined by the
equations f(z) = gzz =0, while the singular points of V are possibly
n

)
the points given by the further equations f(z) = Et:z'(‘g) =, ..= ?;_fz(gj =0,
1 n
Examples of this will be given later.
Before discussing this situation further, a brief digression to
establish another general property of analytic functions of several
complex variables is in order. Recall from classical function theory
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that a bounded analytic function in a punctured disc 0 < |z| < ¢ 1in the
complex plane can always be extended analytically to a function in
the entire disc | z| < ¢; this is the Riemann removable singularities
theorem. An equivalent formulation of course is that a function f(z)
bounded and analytic in the complement of an analytic subvariety of a
disc extends analytically to a function in the entire disc; and this
formulation extends to functions of several complex variables. To see
this, consider the analytic hypersurface V< A{c) as described above;
and suppose that g(z, ,... ,zn] is a bounded analytic function in the
open set A(e) - V. Note that the hypersurface V avoids an open neigh-

borhood of any boundary point (z, ,...,2,) with |2 | < €4 jaeey]m -»ll
<Ee__qs ] =egp; So the function a(z) remams analytic in the region
ENEL Azl < ey ep*< |2| < ey for some number & -

Consider the 1ntegral

h(z ; =_1_ J. g(zlrt-'izn_ltgn) dg
R s/ Lo =8 n'
IC |=€ * n n
n n
noting that this is analytlc in the polydisc of radius (e, ,..., En-1+€n M
for the function g(zy ,... 1,g ) is analytic in [z [< ey ,...,
|z, < €, Whenever [gn| = s.:n Now for any fixed point (z, ,
ceeiZy ) ), the function g(z, ,... ,zn} as a function of z alone

is bounded and analytic in the comr.Hement of an analytic subvariety
of the disc |z |< e , so by the classical theorem this function can
be extended to an analytic function throughout the disc |z,| < ¢ ; but
then necessarily g(z; ,...,2p) = hiz; ,...,2p), 5o that h(zr)1 provides
the desired analytic extension.

An analytic hypersurface V in the form described above can
also be viewed as the graph of a multiple valued analytic function of
n - 1 complex variables. For consider the segment of V lying over an
open neighborhood of a pointa’ € A‘ (') - D and parametrized by the
equation z, = (z”); this portion of V is just the graph of the analy-
tic function ¢, (2’). Now the functionp, (z’) can evidently be con-
tinued analytically along any path in A’ (e’) = D in a uniquely defined
manrer, and the graph is always a portion of the hypersurface V. After
analytic continuation around a closed path in A E))-D beginning and
ending at a’, there results an analytic function in an open neighbor-
hood of a’ describing some portion of V, but not necessarily the same
portion described by the function P3 (z’); that is, after such an analy~
tic continuation, the function ¢, (z’) may return to coincide with ®y (z)
for some index 1< j<r., This function P (z’) in turn can be con-
tinued along another closed path, and may return to coincide with yet
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another cpk(z'). There are only r possible effects of such continuation;
and any continuation will have the effect of a permutation of the r
function elements ©j (z’), corresponding to a permutation of the sheets
of the covering space V - B over A’ {¢’) - D. The set of all functions
¢i(z’) can be viewed thus as a single r-valued analytic function in
A7(e’) - D, and V - B is the graph of this function.

Note that the space A’ (¢’)-D is connected, so that the func-
tions @;(z’) can be continued from any pointa’ € A’(€”) - D to any
other point b’ € A’ (¢’) - D, and the full set V - B is described as
above. (To see this, suppose contrariwise thatA’{e’) - D is not con-
nected. Consider the function g(z’) defined in A’ {e’) - D by setting
g(z’) = 0 for all points z’ in one connected component of A’ (¢’) - D
and g(z’) =1 for all points z’ in the remainder of A’ {¢’) - D. The
resulting function is bounded and analytic in the complement of the
analytic hypersurface DS A’ {¢’), so by the generalized Riemann re-
movable singularities theorem extends to a complex analytic function
throughout A’ (€’); but this is clearly impossible, for the function
g(z’) would have to vanish identically since it is zero in an open sub-
set of A’(€’).) On the other hand, the space V - B need not be con-
nected. Consider a single connected component V; of V - B, and sup-
pose that over an open neighborhood of a’ € A’ {e’) - D this compo -
nent is parametrized by the functions ¢, (z’),... ,cps(z') fors<r. It
is evident that after any analytic continuation along a closed path in
A’ (") - D these functions will be merely permuted among themselves,
as will be the remaining set of function elements cps+1(z') soee e (27);
indeed, the functions ¢, (z’),... ,cps(z') will be permuted transitively
among themselves by the set of all possible such continuations, since
V, is assumed to be connected. Now the function

S
p(@) =] (&, -o,@E)
j=1

2 )zs-l
“n-1" "n

__s
—Zn+01(z1:--- +...+cs(zl,...,z )

n-1

describes the set V,, for points z’ € A’ (&’) - D; but this is a poly-
nomial in z,, with coefficients which are symmetric polynomials in

@0, 2"),...,p.(2"), hence which are single-valued complex analytic
functions in {5 (') - D. These coefficients are also bounded, since
Iznl < e_; hence by the generalized Riemann removable singularities
theorem Jc]hey extend to analytic functions in all of A’ (¢’), and con-
sequently the function p; (z) itself extends to a complex analytic func-
tion throughout A’ (¢ ). Clearly the point set closure of V, inAfe) is
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the analytic hypersurface {z € A(e)}|p, (z) = 0} . An analytic hyper-
surface V in Ale) 1s said to be irreducible if it cannot be written as the
union of two hypersurfaces properly contained in V. These observa-
tions show that V is irreducible precisely when V - B is connected,
and that any hypersurface can be written as the union of finitely many
irreducible hypersurfaces in a sufficiently small polydisc.

Finally a few words should be said about the set of all possi-
ble analytic functions defining a given hypersurface V. Suppose that
V is represented as above in a polydisc Afe) © @V, and that p(z) is the
Weierstrass polynomial with no multiple factors defining that hyper-
surface; and consider an arbitrarily complex analytic function £(z) in
an open neighborhood of this polydisc Af{e). The Weierstrass division
theorem asserts that this function f(z) can be written in a unique way
in the form f(z) = p(2)a(z) + r(z), where q(z), r(z) are analytic in A(e)
and r(z) is a polynomial in z, of order strictly less than the order r of
the Weierstrass polynomial p(z). (To see that this is so, introduce
the function

q(z) =_1‘[ f(Zl“..lzn-l'gn) dC'):1
2mi p(zy,eeervz_ .0 ) £ -2z g
. n-1""n
lc |=e

n
noting that this is clearly a complex analytic function in A (¢) since
the denominator p(z, ,...,z,.1,Cp) 16 non-zero for |z, | <& ,...,

| zg-1] < T lgn =e,. Write this difference :

r(z) = i(z) - p(z) q(=z)

flzr,eenrz 1.C) .
c

=—Zf%1..[ gn-zn n

oL J. p(z]_I'"lZn) f(zll"'lzn_llgn) a
2mi (gn - zn) T F2a— ’zn—l'gn) n

f(Zl, see lzn_llgn) [p(zll LR :zn_l :Cn)"p(zln-- lzn_llzn)]

=1 ’
2mi [J; '=€p(z1_,. ¥ ,zn_llCn) Cn -z, n
n

n
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note that this function is analytic in A{e), and since the numerator in
the integrand is divisible by (¢, - zn) with quotient a polynomial in
z,, of order sirictly less than r, the entire integral r(z) is a polynomial
in z,, of order strictly less than r. This proves the existence of such
a representation for the function £(z), while the uniqueness is fairly
evident directly.) Now suppose that the function f(z) vanishes on the
hypersurface V; so that writing f(z) - p(z)q(z) =r(z), the polynomial
r(z) also vanishes on V. However for any fixed point z’ € A’ (') - D
there are r points of V lying over z/, hence there are r distinct zeros

of the polynomial r(z), while the degree of this polynomial in z, is
strictly less than r; this can only happen if the polynomial is iden~-
tically zero, so that the coefficients of the polynomial r(z) vanish
throughout A’ (/) - D, and consequently r(z) = 0. That is to say,
whenever f(z) is analytic in A(¢) and vanishes on V, then necessarily
f(z) = p(z)q(z) for some analytic function g(z) in A &), where p(z) is
the Weierstrass polynomial with no multiple factors defining the
hypersurface V. In particular, if f(z) has the same order at the regu-
lar points of V as has the polynomial p(z), then f(z) = p(z)q(z) where
a(z) is complex analytic and non-vanishing in A (e).

It is clear from this that the set of singular points of the
hypersurface V defined by the Weierstrass polynomial p(z) with no
multiple factors is precisely the point set defined by the analytic
equations

I

=9p(z) _ =op(z)_, .
p(z) 3z, oz 0

for the regular points are precisely those for which f£(z) =31(z)/3 z #0
for some function f(z) vanishing on V and some index j, and any stch
function £(z) must be of the form £(z) = p(z)q(z). Further, if the hyper-
surface V is reducible, let p, (), ... ,pt(z) be the Weierstrass polyno-
mials defining the various components; any function vanishing on Vv
is necessarily of the form f(z) = q(z)p, (2)...p;(z) for some analytic
function q(z). Then in the obvious sense, the hyperswface V is irre—
ducible precisely when the function f(z) defining the hypersurface is
irreducible.

III. Geometry of Analytic Hypersurfaces

The simplest non-trivial analytic hypersurface is of course an
irreducible analytic hypersurface in C?; and the local geometrical or
topological properties of any such hypersurface can be described quite
easily in terms of the standard form discussed in the preceding sec-
tion. The natural projection from the polydisc A(e) S €° to the poly-
disc A’ (¢') € €' exhibits V - B as a connected r-sheeted covering of
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A'(e’) - D. The analytic subvariety D of the disc A’ (') in the com-
plex plane is a discrete set of points; and choosing el = €, suffi-
ciently small, it can be assumed that D is just the origin itself.
Topologically there is a unique r-sheeted connected covering of the
punctured disc; the covering space is again a punctured disc, and
the covering projection wraps this r times around the base space.

The entire space V is just this covering space, a punctured disc,
with the set B added; and in this case B consists of the origin itself,
so that topologically V is merely a disc.

This result can be derived another way, providing at the same
time a useful additional analytic parametrization of the hypersurface
Vin €°. The mappingt € € = z, =t' € € exhibits the punctured t-
plane as an r-sheeted connected covering of the punctured z, -plane,
so must be topologically the same as the covering projection from V -B
toA’(e’) - D; this suggests that the latter covering projection might
be described in terms of this simple power mapping. To do so quite
explicitly, consider one of the function elements ¢, (z,) describing
one sheet of the hypersurface V over a neighborhood of the point z, =1;
this function element can be continued analytically along any path in
the punctured disc A’ (¢’) - D, and there results a multiple-valued
analytic function in A’ (¢’) -~ D with graph V - B. Now 8 (t) =¢, (tF) is
clearly a well defined analytic function element in a neighborhood of
t =1, and it can be continued analytically along any path in a punc-
tured disc in the t-plane. However when t varies in a closed path
cireling the origin once, z, =1* varies in a closed path in the z, -
plane circling the origin r times, and the continuation of o, (2, ) along
such a path evidently leads back to the original function o, (z,); con-
sequently analytic continuation of 6 (t) yields a single-valued com-~
plex analytic function in a punctured disc in the t-plane. Since Ie(t)l
= |, ()| < ey, it follows from the Riemann removable singularities
theorem that 6 (t) can be continued to an analytic function at the origin
as well, and of course 8(0) = 0, It is clear that the analytic hyper-
surface V< A{e) can be described parametrically as the set of all
points (z,, z5) € A(c) given by

z, =t, ze = 0(t) ; (111. 1)

and the mapping t = (tr, 8 (t)) is a homeomorphism from a disc in the
t-plane onto the entire hypersurface V< Afe). Conversely any func-
tion 6 (t) for which this mapping is a homeomorphism does describe a
complex analytic hypersurface V< Afe) in standard form.

Although the set V is just a disc topologically, it is imbedded
in the polydisc A(e) in a possibly rather complicated manner. The
boundary of V, the set K at which V intersects the boundary of A(e),
is described parametrically by the equations
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Z; =elelsr, Z, =0, els) for 0gsg2m ;

the boundary of A(e) is topologically the three-dimensional sphere S®,
and K=V N §® is a smooth curve in S' that is to say, is a knot in 8%.
For instance, whenr = 2 and 8 (t) = %, this is the knot z; = e?ls, Zy =

ed8 0<s < 2, lying on the torus Izl! =lzz| =1 in the boundary
S" H this is a3 non—tr1v1al knot in the three sphere, wrapping around the
torus twice in one direction and three times in another. There has
been a rather extensive study of the knots that arise this way and
their relationship to the parametrizing functions t', 6(t), for the hyper-
surface V; indeed these knots have been taken as a basis for the
classification of the singularities of hypersurfaces in €. The details
will not be given here, but the interested reader is referred to Refs. 8
and 9.

For analytic hypersurfaces in polydiscs in (Dn for dimensions
n2 2 the situation is much more complicated, and relatively little is
known about the topological properties of the singularities. Actually
this aspect of several complex variables has only come under inten-
sive investigation quite recently, and is presently a rather active
field of research. These investigations require some further mathe-
matical machinery, since the topological properties of higher dimen-
sional spaces cannot be described readily in familiar and intuitive
terms. Consequently the discussion here necessarily will be rather
sketchy, and some of the concepts used may not be too familiar. A
brief review of some of the topology required can be found in Ref. 10,
and a more encyclopedic survey in Ref. 11.

Consider first the analytic hypersurface V of the entire space
¢" defined as the set of zeros of a polynomial f(z) of the form

f(z) = z1a1+. .otz ®n for integers 3 > 0. (111. 2)

Note that E)f(z)/az =3y zja_i =1 5o that V is nonsingular at all of its
points whenever a, = 1 fof some index j; and resiricting attention to
the interesting case in whicha, > 1 for all |, the hypersurface V has
an isolated singularity at the origin while all other points are regular
points. To consider this singularity, introduce the (2n - 1) dimen-
sional sphere

1={ze cn| lzo 24,4 |2 |2 =1}

and let K=V N SZn-l . It is easily verified that K is a real differen-

tiable submanifold of dimension 2n - 3 in the sphere SZn—l; and since
it is evident that V is topologically a cone over K, the topological
nature of V at its singularity is described quite completely by the
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topological nature of K. This is of course parallel to the situation in
the special case n = 2 described above.

It seems easier to describe the topology of S2M~1- K than that
of K itself. Note first of all that the mapping c%: (%211—]._,1() x RT =
@™ - v, which takes any point (2, ,...,2,) € 8“7 '~ Kand 5]13( posgi-
tive re-.a/l number x € RT,into the pointp(z, ,. .. s x) = (xl Brg,
voo X780 z) with x1/8§ > 0, is a homeomorphism; so since R is
really topologically trivial, it suffices to describe the set €n -V,
the complement of the hypersurface V in ©", Now consider the map-
ping f: ¢ - @ defined by the polynomial function (III.2); the set
£ (0) is just the hypersurface V itself, while the set £ () for any
¢ € € - O is the hypersurface VC defined by

an
Vg={z ec |z, 4tz =C} .

It is clear that the hypersurface V- is a regular complex analytic sub-
manifold of € whenever ¢ # 0. If is also clear that these submani-
folds are analytically equivalent; for given any complex numb?r/g €
C - OI}he mapping @ ¢? - ¢™ defined by ¢z (2y ,...,2) =€ El121 y
- o zn} is a complex analytic homeomorphism of €™ to itself
taking Vsy onto VEC . Indeed restricting & to the disc A, (1) in which the
roots !;1 8§ can be chosen as single-valued complex analytic func-
tions, the mapping which takes any point € € A, (1) and any point (z,,
o el ,zn) €V, into the point g (C) € @n is obviously a complex analytic
homecmorpﬁism from the product manifold A4(1) XV, onto the inverse
image under f of a disc A¢(|¢|) around the point g% ©; that is to say,
the restricted mapping f: @7~V = © -0 has the property that the in-
verse image of a sufficiently small disc A, (¢) around any point £ €

@ - O is analytically equivalent to the product manifold V, XA¢ ().
(Since all the manifolds Vp are equivalent, it is really only necessary
to consider one of them, say the manifold V; corresponding to ¢ = 1)
in the standard mathematical terminolegy, the mapping f: c-y-C -0
is a complex analytic fibre bundle over € -O with fibre V, .

Fibre bundles have been quite thoroughly studled, and it is
known how the topology of the bundle can be calculated in terms of
the topology of the fibre and the structure of the bundle. It can be
shown that the fibre V, has the homotoqy type of a set of L =
(@, - 1)@z - 1)...(a, - 1) spheres g8""! with a single point in com -
mon. (This calculation is not difficult, but it is too much of a digres-
sion to be considered in detail here. It is perhaps of interest to note
that the calculation was first carried out by physicists, in connection
with the study of Feynman integrals;lz) ‘ 13% another calculation is
given in Ref. 16.) It can also be shown that the fibre bundle is defi-
nitely not a trivial bundle, that is to say, that the fibre bundle is not
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topologically equivalent merely to the product space (C - O) X V,.
(To see this it suffices to consider the effect of translating the fibre
V, around the origin once, using the local trivialization mapping gq.
As € ranges once around the unit circle the corresponding fibres :Q.-Vl
are smoothly deformed into one anocther; but at the end the fibre V, is
not translated back to itself unchanged, but rather translated back to
itself under the act%on /pf the transformation induced by the mapping
X2 (g 1ee0sz) = @V Zyyiacais ,e2™/an 5 ) This transformation
is not generalhy topologically trivial; indeeg its effect on the homo-
logy of V, is calculated explicitly in Refs. 13 and 16, although again
the details will not be given here. The final result is that on the
homology group Hn_}.{\.’1 Z) =7Z the 1(1}duced mapping 4 is a linear
AT (8 SR LY |
transformation with eigenvalues e 4 “n for 0< vy; < aj.
The structure of the bundle is determined by this automorphism ¥,.)
The homotopy groups of the bundle space € - V are then almost fully
determined immediately by the exact homotopy sequence of the
bundle.!!) For nx 3 it follows thatm, (€™ - V) =2, m,_;(@" - V) =
Z", and 1, (@M - V) = 0 otherwise; while for n = 2, it follows that
™y (@n - is an extension of Z by a free group of rank u, and
m, (@M - V) = 0 otherwise. The homology groups of the bundle space
-~V can be calculated from the spectral sequence of the bundle,
as in Ref, 14; for nz 3, it follows that H,(C™ -V, Z) = 0 for j # 0,1,
n-1, n, and that Hﬂ_l(ﬂz"l -V, Z) = Hn(diin -V, Z) = 0 precisely when

MY

()
2mif—+. . . +—
” <1 - A % > =+1., (m.3)

0<vy,<a,
] J

To return to the manifold ¥ itself then, it follows from Poincaré
dlﬁaliiéy that Hj (k, Z) = 12n-3~] (K, &), from Alexander duality that
S G (K, Z) = Hyyy (s“™~* -k, 2), and from earlier observations that
Hj l(Szn‘l—K, F) = Hj.,.l((Bn -V, #). Consequently H,(K, Z) = 0 for
j#0,n-2,n-1,2n-3; and H _2(K, Z) = Hn—l(K' Z) = 0 precisely
when condition (III.3) is fulfilled. A separate calculation is neces-
sary to show that for n> 4 the manifold K is simply-connected, as in
Ref. 14. When n> 4 and the exponents a, are such that (III.3) holds,
the manifold K has dimension 2n - 3> 5 %md has the homology of the
(2n - 3)-sphere; and it follows from the generalized Poincaré hypo-
thesis that K is really homeomorphic to the sphere §2n-3, In these
cases, the hypersurface V is topologically a manifold at its singular
point, quite parallel to the special case n = 2 described above. How-
ever when (III.3) does not hold, or when n = 3, the manifold K is not
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a sphere, and V is then not topologically a manifold at its singular
point; these exceptional cases have not been described in very much
detail .

A very surprising recent observationM] +15),16) is that even in
those cases that K is homeomorphic to the sphere Szn'3, the differen-
tiable manifold K is not necessarily differentiably homeomorphic to
the sphere SZn—3 with its usual differentiable structure. Tor instance,
the 28 differentiable manifolds K(k) = 89n V(k) where V(k) ={z €C* |
212 + 2%+ 257+ 2.+ 2g 6k-1 = 0}, are the 28 different differentiable
manifolds homeomorphic to the 7 sphere, for k=1,...,28.

All of these considerations so far have been limited to hyper-
surfaces defined by polynomials f(z) of the form (IIT.2). Partial ex-
tensions have been made to general polynomial hypersurfaces with an
isolated singularity, though without such detailed results. 16) Very
little is really known beyond this, although some results obtained
with quite a different approach will be mentioned later.

IV. Analytic Functions on Hypersurfaces

1f V i8 a complex hypersurface in a polydisc Af(e) in (Dn, a
complex valued function f (z) defined only on the set V is called an
analytic function on the hypersurface V if it is locally the restriction
to V of an analytic function in ¢, that is to say, if for each point
a € V there is an analytic function fU(z} in an open neighborhood U of
the point a in ©" such that ﬂ unv=f{ [V. Actually the function T (z)
is analytic on V if and only if it is the restriction to V of a function
f(z) analytic throughout all of the polydisc A(e); the proof of this
assertion is quite nontrivial (see Theorem VIII A 18 in Ref. 4), and
will not be given here at all, but the result will be used to simplify
the present discussion. Note that there are many different functions
analytic in A (¢) which restrict to the same function f on V; any two
differ by an analytic function in A (¢) which vanishes on V. At the
regular points of V this definition coincides with what would naturally
be taken to be the definition of an analytic function on V; forina
neighborhood U in which local coordinates w ,...,w, can be chosen
so that VN U is the hyperplane wy = 0, it is apparent that a function
'f(wl Y -Wn—l) is analytic on V precisely when it is @ complex ana-
lytic function of the n - 1 complex variables wy , ..., Wy_1. At the
singular points the situation is certainly not so clear, but the useful-
ness of this notion will be more apparent later.

The set of analytic functions on V can be described algebraic-
ally in the following manner. Let @, denote the set of all analytic
functions of n complex variables in the polydisc Afe), and denote
the set of all analytic functions on the hypersurface V. It is clear
that these are both rings, in the algebraic sense; and that restriction
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is a ring homomorphism from &, onto 6. The kernel of this homomor-
phism, the subset of all elements of 6, mapping to the zero element

of &y, is just the ideal J(V) of all functions f € &, vanishing on V;
this will be called merely the ideal of the hypersurface V for short.
Thus algebraically 6y = 6,/3(V), the quotient (or residue class) ring
of 6, modulo the ideal 3(V). Now suppose that V is in the standard
form, and is defined by a Weierstrass polynomial p of degree r in the
variable z_.. The ideal 4(V) is the principal ideal generated by p(z),
that is, J(\l/) consists of all elements p(z)f(z) for £(z) € §,. Letting
@n—l denote the subset of sn consisting of all functions which are
independent of the variable Zj, it is clear that 6,_; N 38{V) =0; there
are no nontrivial multiples of p(z) independent of Zpn. This means that
under the restriction mapping from 6, to & the subring §,_1 is mapped
isomorphically to its image; thus the subring 6,-1 < @n can be iden-
tified with its image in By, hence it can be viewed as a subring @n_

= Gy. Further let @nql[ zn] denote the ring of polynomials in Zy with
coefficients in the ring 6,_7. As a consequence of the Weierstrass
division theorem, any function f(z) € 6, can be written in the form

f{z) = p(z) q(z) + r(z) for some polynomial r(z) € 6,_1[ zn]; and since
p(z) q(z) € 3(V), the functions f(z) and r(z) will have the same restric-
tion to V. Therefore to define analytic functions on V it is sufficient
to consider merely polynomials in 6p.1[zn] so that 6y =6, [z 1/
(V) N 6,3[z,]. The function z, € 6 restricts to an analytic function
z,, on V, which satisfies the polynomial equation p(z,) = 0. That is
to say, &y =0,_1[Z,] is an algebraic extension of the ring 6, _; by a
single element .én which ig the root of an algebraic equation with co-
efficients in 6, _1; indeed, this polynomial equation has leading co-
efficient 1, so that Zy is actually integral over Bn-1 in the algebraic
sense.

As noted above, at the regular points of V the analytic func-
tions on V can be characterized intrinsically as the functions which
are analytic in the local coordinates on V; but at the singular points
of V this characterization is of course impossible. However, recalling
that the singular points of V lie in the set of zeros of an analytic func-
tion on V, it naturally occurs to one to try an analogue of the general-
ized Riemann removable singularities theorem to handle the singular
points, Although this does not really work, it leads to an additional
useful construction. A complex valued function ¥ (z) defined only on
the regular points of V is called a weakly analytic function on'V if it
1s complex analytic on the regular points of V and locally bounded at
all points of V; thus the restriction of such a function to some open
neighborhood of any singular point of V is a bounded analytic function
on the regular points of V contained within that neighborhood. As de-
fined here, the weakly analytic functions on V may be a properly large
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class of functions than the analytic functions on V. The analytic
hypersurface V is said to be normal precisely when these two classes
of functions coincide, that is to say, when every weakly analytic
function on V is actually analytic on V; so the normal hypersurfaces
are just those hypersurfaces for which the generalized Riemann remov-
able singularities theorem holds for the analytic functions on the
hypersurface.

Not all analytic hypersurfaces are normal. To see this, con-
sider for example an analytic hypersurface V of a polydisc Ale) in ¢3;
and recall that such a hypersurface can be described parametrically
by z, =t', z; = 6(t) for some analytic function 8 (t) with 6(0) = 0.
Clearly the singular locus is at most the origin z, =z; =0, (t = 0);
and that point really is a singular point only whenr > 0 and 6/(0) = 0.
Now the parametrizing coordinate t can be viewed as a complex-valued
function on the hypersurface V, and it is evidently weakly analytic
since outside of the O}igin it can be expressed as an analytic function
of z, , namely t = z, /T, If this function is also analytic on V, it is
the restriction to V of a complex analytic function T(z, , z,) in some
open neighborhood of the origin in €®; and sot =T, 6(t)). Itis
obvious that such a relation can hold only when eitherr =1 or 8/ (0) #
0; and therefore V is normal if and only if it is regular at all points.
Thus a hypersurface of a polydisc in €% can never be normal when it
has singularities; but there are normal hypersurfaces of polydiscs in
C" for n > 2 which have singularities.

To examine this situation in somewhat more detail, consider a
hypersurface V of a polydisc Ale) = (Dn, and suppose that V is repre~
sented in standard form by a Weierstrass polynomial p(z) of degree r
in z_. As usual, introduce the discriminant 6 (z’) =5(z,,... 'Zn—l) of
the polynomial p(z), and let D ={z’ € A’(c’)|6(z’) = 0}. For any
point z’ € A’ (¢’) - D, the points of V lying over an open neighborhood
of z’ form r separate sheets of regular points of V, described para-~
metrically by the r equations z, =@j(z’) for j=1,...,r. If¥(z)isa
weakly analytic function on V, its values on these r separate sheets
will be the r complex analytic functions f(zy ,...,25.1, ©{(23,...,
z_1)) of z’. The problem is to find an analytic function f(z) such
that the restriction of f(z) to the hypersurface V is the given function
f(z). For any fixed point z’ = (2, ,...,25-1) € A’ (€’) - D, the values
of the function £(z; ,...,2,_1:2 ) are given at the r points Z, = ®j (=");
the simplest way to construct ar%unction f(z) with these values 1s by
means of polynomial interpolation. Thus suppose that f(z) is taken to
be in the form of a polynomial

r—1 +

f(z) = c, () z .+ cr_l(z')zn +c (2 ;
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the corditions on the coefficients that this polynomial have the
required values at the r points zj, =¢ (z') are just that
J

(2, 9, ) = o @) oy @) e @) 0@ + o @)

for j=1,...,r. These arer linear equations among the r unknown
coefficients ck(z’); so by Cramer's rule the solutions are given by

det&pj(z’)r—} “e P (z')r-k+1,f(z',cp]. (z), ... » (z'), 1)

dt—)tQ:pj(z')r_1 ey (z'), 1)

¢, (=" =

~ N, (z’)
. D(Z,) I3

where a typical row is shown for each matrix. It is clear that inter-
changing any two of the functions e, (z’) has the effect of interchang-
ing two rows of the matrix, hence cLanges the sign of both the numera-
tor expression Nk{z ) and the denominator expression D{(z’). Writing
cplz’) = ny(z’)/d(z") where nk{z') =Ny (z') D(z') and d(z’) = D'F,
it follows that n(z’) and d(z’) are both symmﬂtrlc polynomials in the
expressions ¢;{z’); and therefore, as proved earlier, both n(z’) and
d(z’) are complex analytic functions in all of A’(¢’). Actually the
denominator d(z’) is a well known expression, called the van der
Monde determinant, which is identical with the discriminant 6 (z’) of
the polynomial p(z). The function

5(z') £@) =ny () 20"+ ...+ 0 (1) 2 +n (')

is therefore an analytic function in all of A{e), even a polynomial in
the variable z and the restriction of this function to the hypersur-
face V is 8 (z’ ?f(z)

This shows that for any weakly analytic function ¥ (z) on the
hypersurface V, the product 6 (z)f (z) is an analytic function on V,
where 6(z) = 8(z’) is the discriminant of the Weierstrass polynomial
p(z) defining the hypersurface; hence any weakly analytic function
f(z) is at least the restriction to V of a meromorphic function in tDn,
with a fixed denominator §(z’). Not all meromorphic functions in ¢"
restrict to weakly analytic functions on V, of course.

As a final remark, it can be shown that the weakly analytic
functions form a finite dimensional module over the ring of analytic
functions in the strict sense, at least when the polydisc A (e) is suffi-
ciently small; that is to say, there are finitely many weakly analytic
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functions 'fl (z),...,f_(z) onV such that any other weakly analytic
function can be written in the form ¥ (z) = g, (2) T, (2)+. . .+gp(z) )
for some analytic functions g;(z) on V. This is rather more difficult,
though, so the proof will not ]be given here.

V. Analytic Subvarieties in Standard Form

Generalizing the notion of an analytic hypersurface, a subset
V of an open domain U< C® is said to be an analytic subvariety of U
if in some open neighborhood of each point of U the subset V is the
set of common zeros of a finite number of complex analytic functions.
A point a on a subvariety V is called a regular point if it is possible
to choose coordinates (wy ,...,wp) in an open neighborhood of z in
@™ such that locally V is a linear subspace {w|wk+1=. ..=w,=0}, for
some integer k called the complex dimension of V; a subvariety V is
called a complex manifold of complex dimension k if it is regular and
of complex dimension k at each point. The points of a subvariety
which are not regular points are called the singular points. An analy-
tic subvariety V of an open polydisc A {¢) € C® can be determined as
the set of common zeros of a finite number of functions analytic
throughout A (¢), provided the polydisc is sufficiently small. The set
of all analytic functions in A{e) which vanish on V form an ideal J(V)
in the ring 6 of all analytic functions in A(e), called for short the
ideal of V. A subvariety V of A(e) is called irreducible if it cannot
be written as a union V =V; U V, where Vj are analytic subvarieties of
A(e) properly contained in V. It is easy to see that a subvariety V of
A(e) is irreducible precisely when the ideal 4(V) is a prime ideal in
Y recall that an ideal 4 < @n is said to be prime if whenever f; £, € &
at least one of the elements fj is contained in 4. "

An analytic subvariety V of an open polydisc A(e) in € can be
represented in a standard form somewhat similar to the standard form
for a hypersurface, as discussed in Sec. II. It is first necessary to
choose a suitable system of coordinates in the ambient space CI.
Selecting any nontrivial function f;,(z) € J(V), after a suitable non-
singular linear change of coordinates in CB it can be assumed that
fn(z) is regular in the variable z,; and then of course fn(z) can be
replaced by a Weierstrass polynomial in z, having the same zero
locus, which polynomial will then be called fn{z}. Then select a non-
trivial function f _l(zJ € 3(V) which depends only on the coordinates
Zy,e+-.Zp.1i aitera change of coordinates involving only these vari-
ables, it can be assumed that fn-—l(z) is a Weierstrass polynomial in
z, 1 with coefficients analytic in 2, ,...,2p-2. The process can then
be continued until for some integer k the ideal J(V) contains no func-
tions depending only on the variables z, ,... 12y and there remains
the sequence of Weierstrass polynomials pyyi,... /Py, in J(V), noting
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that the further coordinate changes leave these in the form of Weier-
strass polynomials.

The further normalization is perhaps described most easily in
terms of analytic functions on the subvariety V, and in a rather alge-
braic manner. As before let 6y be the ring of all analytic functions in
A{e); and forany m<n let 6, denote the subring of those functions in
6, which depend only on the variables z,,...,2,. The ring of analy-
tic functions on V is the residue class or quotient ring 6y = 6,/3(V);
and the image in &y of a function f € & will be denoted by f. Now
since the polynomial f, (z) =z " +a, zpl e a,. is contained in
$(V), u}l:on passing to the r_esigue class ring it follows that 0 = znlr +
&, Z, * +...+8,; therefore Z_is an integral algebraic quantity over
the subring 6,,_,, the image ofthe subring 6, _3 < @n in 6,,. Further-
more , by the Welerstrass division theorem any function f € 6,, can be
written in the form f =£ g, + hn for some functions g, h € mr%,
yherem h, i?. a polynomial in z,; so in the residue class ring, f=
h, €6 _,[Zz,], the latter symbol denoting the set of polynomials in
%, with coefficients from § _;. Altogether then, &y =8 _1[% ],
where En is an integral algebraic quantity over the ring 6, ;. Apply-
ing the same argument with the polynomial f—1s it follows that 6, =
3n~2,[,zn—1] , where & _1 isan integral algebraic quantity over the
ring & ,. This argument can be repeated, until finally 6y =8, since
6, N .ﬂv?= 0. It is a known algebraic result that such a succession
oFintegral algebraic extensions can be made simultaneously; this is
the theorem of the transitivity of integral extensions. 17) Therefore it
follows that @V = skﬁkﬂ 1 FG ). ,zn] where Ej are integra} algebraic
quantities over &, that is to say, where the elements zj are roots of
polynomial equations

r, r.-1 (rj 1) . (rj)

0=%2) +¢,2° +...+c z, +c,

j i ’ j i
with coefficients cj(m) € 6,. The polynomials

r, r,-1 .-1) )
_ ] ) ] J

p.(z) =z, + ¢, z, + ... +tc, z, +c,

] ~-] J ) ] ] }

are consequently analytic functions in Gn which belong to the ideal
V).

Suppose further that the ideal J(V) is really a prime ideal in
6_. It then follows that when the functions p,(z) are taken to be the
polynomials of lowest degree of the required form in 4(V), they are
uniquely determined Weierstrass polynomials. This set of n - k poly-
nomials will be called the first set of canonical polynomials for the
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ideal 9(V). It also follows that the ring 6,, is an integral domain, a
ring with no divisors of zero, hence has a well defined quotient field
l‘nv, the field of meromorphic functions on V; and that mv =I’nk[ Ek+1'
wikin ,'z'n] , an algebraic extension of the field M, of meromorphic func-
tions of k complex variables. Now if the coorginates Zy e a2y are
suitably chosen, the field y, will be generated by the image of a
single coordinate, say zy .,; this is the theorem of the primitive ele-
ment.17) Since mv =M zk+1] , every meromorphic function on V can
be written as a polynomial in z with coefficients in I, , so the
field mv is described completely by the single pulynomiaf equation
Prg1e Indeed, every analytic function f € ®,, can also be written as

a polynomial in z $1t but again the coefficients are meromorphic
functions in My for it is not necessarily true that &y, = {Bk[ Ek+1] .
However for an analytic function T € Gy, the denominator of the coef-
ficients of the representing polynomial can be taken to be a fixed ele-~
ment, the discriminant § € @y of the Eplyncm_:}al Pk+1: that is to say,
for any element T € Gy, the product 6f € @k[zkﬂ] . In particl‘llar, for
BaCP coordinate 24 for j = kiz, ... ,.n, there is a polynomial g, €

&L zk+1] such that 6zj = q C"‘kﬂ); and consequently the complex
analytic functions

*
q2) =82y secovzy) 2y -~ ay (2yaeeeizyd Zyq) -

which are polynomials in z};; and zj, belong to the ideal (V). These
will be called the second set of canonical polynomials for the ideal
&(V). The further discussion of the standard form for general analytic
subvarieties rests just on these two sets of canonical equations.

First, one formal algebraic property of these canonical poly-
nomials should be noted. If f(z) is an arbitrary analytic function in
A(e), an application of the Weierstrass division theorem shows that it
can be written in the form f(z) =p Ez) (z) + gln-1 (z), where g_(z),
gln-1 (z) are analytic in A(e) and Hn-1 z) is a polynomial in zp.
Applying the division theorem again, each coefficient of the polyno-
mial £(n=1)(z) can be divided by p_,(2), leaving as remainder a poly-
nomial in z,_; so that f(z) = p,(z) g, (2) + p,_1(2) gq.q(2) +

f(n_ZJ (z), where all the functions are analytic in A (e) and f{n_ z) is
a polynomial in Z 1 and z,. Repeating the argument, finally secure
that

2}{

- (k+1)
f(z) =p, ,,(@) g, ,(@) +...+p (2) g (2) +1 (z) , v.1)
where all these functions are analytic in A (e) and f(k+1)(z) is a poly-

nomial in the variables zy49,...,2,- Now notice that for j = k+2,
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...,n and for any positive integer v, it follows that 8z ,V is equal to
a multiple of the canonical polynomial q,(z), plus a remalnder which
s an analytic function only of the variables z, ,... 2410 indeed,
which is even a polynomial in zy ;. Consequently (V.1) can be
rewritten, for some integer N, as

n n
) = Y p@ ot ) q@hE+5E (v.2)
j=k+2 j=k+2

where all the functions are analytic in A (¢} and the remainder £, (z)
depends only on the variables z,,...,2 1 The function f, (z) can
then be divided by the Weierstrass polynomial pk+1(z) s0 that

n n
oM@y = ) p@ @+ ) @ b o w.3)
J=k+1 j=k+2

where f,(z) € 6, [z +l] and the degree of f,(z) in the variable 2,41 is
strictly less than the degree r of the polynomial pk+l(z) . If the ori-
ginal element f(z) belongs to the ideal J(V), so does the remainder

f, (2); but since p i (z) is the polynomial in 6. [ z + 1 n (V) of lowest
degree, necessarify %o(z) = 0. Notice further that if £(z) is from the
beginning a polynomial in the variables z) .y,...,2,, the first step
in the above construction is unnecessary; so that f?z) can be written
in the form (V.3) with gk+2(z) =,..=g_(2)=0. 1If f(z) is also an
element of the ideal J(V), the remaindern’fq (z) is zero; so that when-
ever £(z) € (V) N 6.1 (2p49,...,2,], the product 6Nf(z) can be ex-
pressed as a linear combination of the canonical polynomials Plt1+
Ayeqgrree 1Ay This holds in particular for the polynomials Pypyoreses
P+ 80 after multiplying (v.3) by a further power of §, these terms
can be omitted from that formula. The final result then is that for any
analytic function f(z) in A(e),

oNi(@) = b, , @) 9@ + ay (@) b, @+, .Hq () h_(2) +ole) ,(V.4)

for some integer N, where all these functions are analytic in A(e) and
f (z) depends only on the variables z,,...,2 and is a polynomial
in zy 4y of degree strictly less thanr, the degree of py,;(z); moreover
if £(z) € 3(V), necessarily £, (z) = 0.

To describe the standard form for the irreducible subvariety V,
introduce the subset B< V defined by B = {z € V|5 (z) = 0}, where 5 (z)=
LY - ,zk) is, as above, the discriminant of the polynomial pk_,_l(z).



278 R, C. GUNNING

Note that B is itself an analytic subvariety of A{e) contained in V. It
follows immediately from (V.4) that the set V - B is determined com-
pletely by the canonical polynomials pyx+1(2), Qy42(2), ..., ap(z); for
any function £(z) € J(V) has the property that §Nf(z) is expressible as

a linear combination of these canonical polynomials, so that provided
8(z) # 0, the function f(z) vanishes at z if and only if these polyno-
mials vanish at z, That is to say,

V-8B ={z € Afe)|8(z) #0, pk+1(z) =qk+2(z)=. ..-‘-qn(z) = O}.

For any point z = (2, ,... ,zn} € V, necessarily py4)(2) = Pr+1(Zy s0 00y
zp4+1) = 0; so that the natural projection my.y: € » ¢kl "defined by
1'rk_,_1(z1 .. ,zn} = (8 i il N ) maps the subvariety V< CP into the
hypersurface Vi ;3 < ck*l defined by

Vi1 ={(z1 ""’Zk+1) € A(€)|pk+1(zl,...,zk+1) = O} .

This hypersurface is in the standard form described in Sec. II; the
natural prejection Mgt okl o tl':k exhibits V 41 @san r=sheeted
branched covering of a polydise A’ (') = €K, and the branch points
in Vk +1 form the subvariety

By, ={(21 veenigy D EV |80,z = o}

consisting of those points of V lying over the hypersurface

k+1
D ={(z1,...,zk) EA'(e')'é(zl,...zk) =0}

of the polydisc A’ (¢’). The complement V4] = By is a k-dimen-
sional analytic submanifold of (A’ (') - D) x €, given parametrically
by the r analytic functions zy =€pi(zl seees2y), §J=1,...,r, Over an
open neighborhood of any point of A7 (¢’) - D. Since the coordinates
ZyyorersZ of a point (24 ,...,2_) € V - B are expressed analytically
in terms of {]he coordinates 2z, ;... 3] by the canonical equations
Ay (z)=...= qn{z] =0, it follows that the induced mapping 1y . :
Vo b1 leads to a one-to-one mapping from V ~ B onto Vi1 - Byeyy «
The complement V - B is a k~dimensional complex analytic submani-
fold of (A" (&) - D) x €™~ *, an r-sheeted covering of A’ (¢ ) = D under
the mapping ™ Ty 4q: and over an open neighborhood of any point of
A’(e’) - D the r sheets of the manifold V - B are described parametric-
ally by the equations.
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*
. - (z z) = =qm (zll"‘lzk;tpj(zll"'lzk]
k+1 ch L S 6(z1,...,zk)
m=k+2,...,n
forj=1,...,r. This situation can be perhaps best kept in mind by

referring to the following diagram.

V-B < V < ¢

(homeomorphism) l l l m
k+1 k+1
\ - B SV c C
k+1 k+1 k+1

(r-sheeted l
covering, branch K 1'rk
locus Bk+l) AMEe’Y-D S AMN')e ¢©

The canonical equations do not serve to describe the points
of V lying over the discriminant locus DS A (e’). The equations
qk+2(z] =, .= qn(z) = 0 are trivial whenever z’ € D; and although
the equations py;(2) =...= py(2z) = 0 show that there are at most
finitely many points z € V lying over any point z’ € A’(e”) even over
a point z/ € D, these equations generally describe an analytic sub-
variety properly larger than V. However, this problem can be fines-
sed by observing that V is the point set closure of V - B in A{e), hence
that it suffices merely to describe the set V - B; the proof of this is
not altogether trivial, and will be omitted here. '

Turning now to some consequences of this standard form for
analytic subvarieties, it should be pointed out first of all that at no
point in the entire preceding discussion was any use made of the con-
dition that the prime ideal under consideration be precisely the ideal
of all analytic functions vanishing on an irreducible subvariety. Be-
ginning with an arbitrary prime ideal 4 < @n' the canonical polyno-
mials can be constructed as above, and the set of common zeros of
all the functions in the ideal J is an analytic subvariety in the stan-
dard form. The ideal of all analytic functions vanishing on V is now
a prime ideal J(V) which contains the original ideal d; actually these
two ideals coincide, so any prime ideal is precisely the ideal of all
functions vanishing on an irreducible subvariety. (To see this, con-
sider any analytic function f € 4(V). As before, afier dividing through
by the canonical polynomials p,, q., it follows that 6Nf =f, +1;
where §, € J and f; is an analy":ic unction depending only on the vari-
ables 2z ;... ,2y,;, indeed, a polynomial in z, ., of degree strictly
less than the degree of py ;. The remainder f; vanishes on Vit1?
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but again this can only happen when f;, vanishes identically, so that
actually 8Nf € 9, Since d is a prime ideal and & € J, it follows fur-
ther that f € , and the desired result is therewith demonstrated.)
Knowing this, it is essentially a purely algebraic argument to derive
next the Hilbert zero theorem: if f; (z),...,f (z) are analytic func-
tions in a polydisc Ae), fVv={z €Ale)|f (231=. ..=f (z) =0}, and
if f(z) is another analytic function in A (z) which vanisgles on V, then
N = g, f+...+g_f_for some integer N and some analytic functions
Groeeeslpy in A{E:T. l.".‘i‘he: details can be found in Ref. 4 and elsewhere.
Next, it is worth commenting in some detail on the relations
bg:(tween the analytic subvariety V& €™ and the hypersurface Vy41 ©
C +1 appearing in the above standard representation for V. This of
course involves a comparison of analytic subvarieties of polydiscs in
complex spaces of different dimensions; and such comparisons arise
in many other contexts as well. In general, consider complex analy-
tic subvarieties V; S Afe,) S C™ andV, S Afey)S ¢"2 . A continuous
mapping f: V; » V, is said to be a complex analytic mapping between
these two subvarieties if there is a complex analytic mapping
Fip{e, )~ €@ such that the restriction of F to the subset V, is just f,
or in symbols, such that F|V, =f; and these two subvarieties are
said to be analytically equivalent if there are complex analytic map-
pings f: V; = Vp and g: V, = V, such that the compositions fg and gf
are the appropriate identity mappings. Note that this latter condi-
tion can be restated as the condition that there exist complex analytic
mappings F: Ale;) = €™ and G: Afez) » €™ such that FG| V, and GF|Vv,
are both the identity mappings; this does not mcan that FG and CF are
themselves identity mappings, so Afe;) and A(e;) still may be poly-
discs in complex spaces of different dimensions. This notion of
equivalence thus allows one to speak of analytic subvarieties without
reference to the spaces in which they are imbedded; an equivalence
class is called an analytic variety, and a space which has locally the
structure of an analytic variety is called an analytic space. As an-
otherapproach to the same end, note that whenever f: vV, = V, is a com~
plex analytic mapping and g is an analytic function on V; , the compo-
sition gf 1s clearly an analytic function on V,; and conversely, if
f: V; =V, is a continuous mapping such that gf is an analytic function
on V, whenever g is an analytic function on V,, then f is a complex
analytic mapping. (To see this, let 2z, ,...,2 be the coordinates in
n

n,
¢ and Wy pees /W be the coordinates in 2. Note that the res-
triction of wy to the subvariety V, is a complex analytic function on
Vo : therefore w;f is a complex analytic function on V, , the restriction
to V, of some complex analytic function Fj in Aley). The set of func-
tions Py, 0. Fp, define a complex analytic mapping F: A(ey) = €"2;
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and clearly the restriction of this mapping to V, is precisely the given
mapping f, since the restriction of the function F. gives the w;-coor-
dinate of the image under f of a point on V; .) Thus analytic mappings
are precisely the continuous mappings which preserve complex analy-
tic functions; and analytic equivalences are topological homeomor-
phisms which identify the rings of complex analytic functions.

In the representation in standard form for the subvariety V, the
natural projection induces a complex analytic mapping from V onto
Vk+ ; but this mapping is not generally an analytic equivalence. For
on the one hand, the mapping need not be a topological homeomorphism,
since some of the points of the subset B may be collapsed upon pro-
jection to By,1; and on the other hand, even if it is a homeomorphism,
the inverse map may not be analytic, since there may be analytic
functions on V which do not induce analytic functions on V). How-
ever, since the restriction of the projection mapping is a complex
analytic equivalence between the complex manifolds V - Band V) -
B 1 it is evident that it induces a one-to-one coarrespondence be-
tween the weakly analytic functions on V and Vy4q: so that the varie-
ties V and Vi1 can be viewed as being weakly equivalent. Actually
the coordinates z s+ .2 _0f a point z € V are weakly analytic
functions of the point (2, ,... 'zk+1) € V}.4+1 @and hence they define a
weakly analytic mapping from V., back to V, exhibiting the weak
analytic equivalence in yet another way; it should be noted that these
functions are really only defined on the regular points of Vi ,;, since
an inverse mapping need not be a single-valued function on Byy1 - If
the hypersurface V. is normal, so that weakly and strongly analytic
functions coincide, then of course the subvarieties V and Vi, are
necessarily analytically equivalent. For any hypersurface Vk+1 it can
be shown that there exists a normal analytic subvariety V such that
\' +1 is just the projection of into ﬂ‘:k+1, as in the standard represen-
taﬁion; this subvariety is called the normalization of V; ,;, and is,
roughly speaking, the analytic subvariety arising from vk-l-l by making
all the weakly analytic functions strictly analytic.

Finally, the integer k appearing prominently in the preceding
discussion is called the (complex) dimension of the analytic subvari-
ety V. This integer can be defined in terms of the above standard form,
although of course it is then apparently dependent on the choice of
coordinates in ¢%; however the dense open subset V - B of V is a
complex analytic manifold of dimension k, so that this can be taken
as another definition of the complex dimension of the entire subvariety
V, and it is then clear that this dimension is intrinsically defined.

It is also clear that an analytic hypersurface of a polydisc in ¢® is an
analytic subvariety of dimension n - 1, and conversely; so that the
analytic subvarieties of dimension n - 1 are precisely the analytic
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subvarieties that can be defined as the set of zeros of a single analy-
tic function. Somewhat more generally, if V; and V, are irreducible
analytic subvarieties of a polydisc in C™ of dimensions k, and k,,
then each irreducible component of the intersection V; N V, has dimen-
sion z k; +k; -n; the proof is not difficult, and will not be given here,
but details can be found in Ref. 1 or 7. (To motivate this formula to
some extent, consider the case that V, and V,; are coordinate planes
in €% then V, is defined by setting n - k; coordinates equal to zero,
V, is defined by setting n - k; coordinates equal to zerc, so V, N V,

is defined by setting at most 2n - k; - k, coordinates equal to zero
and hence has dimension not less than n -~ (2n-k; -k;) = k, +k; -n.)

As a consequence, each irreducible component of the set of common
zeros of n - k analytic functions in a polydisc in C™ has dimension

2z k. It should be emphasized that the converse is not generally true;
that is, an analytic subvariety consisting of one or more irreducible
components of dimension k in a polydisc in C® cannot necessarily be
defined as the set of common zeros of n - k analytic functions. The
precise characterization of this special class of subvarieties, called
geometrical complete intersections, is a rather difficult matter that is
not yet completely understood.

VI. Miscellaneous Properties

Of course a great deal more is known about complex analytic
varieties than it has been possible even to mention here; but the pre-
ceding lectures may have provided some sort of general picture of what
these varieties are like and how they are handled, and also may have
illuminated some pitfalls to be avoided when physically faced with an
analytic variety. Before concluding, though, at least a few words
must be said about some of the major topics not previously mentioned;
and it must be repeated that the entire discussion has been limited to
the purely local and essentially geometrical properties of complex
analytic varieties.

In studying complex analytic functions with singularities,
there are a number of theorems guaranteeing that certain classes of
singularities are really removable; the Riemann removable singulari-
ties theorem is one example, and its usefulness has been apparent in
the preceding discussion. Similar questions arise in studying com-
plex analytic variefties. Suppose that W is an r-dimensional analytic
subvariety of a polydisc A in (Dn, and that V is a k-dimensional analy-
tic subvariety of the open subset A = W of that polydisc; the question
arises whether the subvariety V can be continued through W to be an
analytic subvariety of all of A. This subvariety V can always be so
extended when r < k, and there are further conditions under which
such an extension is possible whenr = k; these questions are treated
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in Refs. 18 and 19 for instance, where further references can also be
found.

The tangent space to a manifold is a very useful auxiliary
tool in studying the properties of that manifold, and it would of course
be quite desirable to have an analogue in the case of a complex ana-
lytic variety with singularities. Actually there are a number of candi-
dates for the tangent set to a complex analytic variety, with various
properties and applications; some examples are mentioned in Ref. 4,
and a much more extensive discussion can be found in Refs. 20 and
21,

Finally, perhaps the strongest possible tool for studying the
singularities of complex analytic varieties and subvarieties is the
resolution of singularities. For a one-dimensional analytic variety V
with a singular point, as has been demonstrated in the preceding lec-
tures, there exists a complex analytic manifold ¥ admitting an analy-
tic mapping m: V = V which is a topological homeomorphism; and the
properties of the singularity of V can be described directly in terms
of this regular parametrization, by means of the p\roperties of analytic
functions and mappings on the complex manifold V. In higher-dimen-
sional cases, varieties with singularities are not necessarily topo-
logically homeomorphic to manifolds; but nonetheless there is an
analogue of the one-dimensional situation. If V is an irreducible
analytic subvariety of a polydisc in €, and if S is the singular locus
of V, there exists a complex manifold v admitting an analytic mapping
s V = V with the following properties: (i} the restriction of m is a
complex analytic homeomorphism between the complex manifolds
V-n(8)andV -S; (ii) m~*(S) is an analytic subvariety of V, and
the restriction of @ is a proper analytic mapping from m~* (S) onto S.
(To say that 11 is proper is merely the assertion that the inverse image
of a compact set is compact; generally the inverse image of a point
of S will not even be a finite point set, but rather a compact complex
analytic subvariety of f/.)' The properties of the singularities of V can
then be described in terms of the properties of the complex manifold V
and this parametrization. For two-dimensional subvarieties, this pro-
cess was described in Ref. 22; and some applications to the topolo-
gical properties of the singularities were given in Ref. 23. Note that
this case proved exceptional in the discussion in Sec. III; but a good
deal of light has been shed on this problem by the resolution of singu-
larities techniques, and the subject is now being very actively inves~-
tigated. The three-dimensional analytic case was treated in Ref. 24,
and the general case in Ref. 25; the general results are quite deep
and involved, and it will be some time before the situation is really
thoroughly understood.
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