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Introduction 
The goal of theoretical physics is to describe the empirical 

world by means of mathematical structures . Such a structure has to 
simulate the preparations (states) and observations of systems under 
investigation. ' 

We want to dlscuss algebraic structures , where the observa- 
bles correspond to hermltlan elements of a topological *-algebra and 
where the states are continuous positive linear functionals over this 
algebra . These 1im-5'*--as will deal wlth some generalities of this set- 
up and some ex that are used in quantum field theory and in 
statistical mechanics . 
I. Topological *-algebras 

The reason for the introduction of thls setup will be touched 
upon by Profs . H. I. Botchers and M. Guenon . 

TPresented at the INSTITUTE FOR TI-IEORETICAL PHYSICS I 

University of Colorado, Summer 1969. 
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4 WALTER WYSS 

A.  Definitions and Some Prouerties 

Definition I. 1 . A topological *-algebra 91 is a Hausdorff locally con- 
vex topological vector space over C with two additional operations , 
namely a multiplication (generally noncommutative) and an involution . 
These operations satisfy for f ,  g,  h E QI, K E C 

a) 1) f(Qh) = (fQ)h 
2) f(g+h) = fg + fh, (f+g)h = fh + oh 
3) fM) = (xflg =x(fQ) 
4) the product is separately continuous 

b) 1) (fw)* = f 
2) (f+g)* =_.f* + g* 
3) ()f)* = if* 
4) (fg)* = g*f* 

Ill P (f) 
s) pa(f+g)s D (fi'+ pang) 

Remarks : 
a) Since 91 has to  be a I-Iausdorff locally convex topological 

vector space, its topology is given by a set of seminorms {pa] wlth 
the properties . 

1) Pc. of) 2 0 
2) nabf) = 

A serninorm is called a norm *if p0I.(f) = 0 ¢> f = 0.  
b) In our discussions 21 is always assumed to have an identity 

1 for the multiplication . 
c) Generally one does not require the involution to be con- 

tinuous . 
. d) Notice that the set *Ho = i f  6 91: f = f*} , 1.e. the set of all 

hermitian elements is a real vector subspace of ax and closed if the 
involution is continuous . 
Lemma I. 1 . Let 91 be a *-algebra . 
ten in the form 

Every element f E 9,1 can be writ- 

f= f , .  + i f2 ,  f1 ,f2 e ato, 

Proof . 
i .e.  QI=aIo+12»1o. 

With 

__1 
2 fl (f + f*) , pa (f - f*) 

we have the desired representation . . 1 
21 
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Definition 1.2 . Let 91 be a *-algebra . 
1) A subset S C 91 is called self adjoint if it is stable under 

the involution . 
2) Let M be a subset o i l .  The commutant M /  of M is 

defined by M' = { f € 9 , I ; f g = g f  V g é  ml. 
3) 3(9I) =%I al 21' is called the center of%I and is an abelian 

subalgebra of as. 

Lemma 1.2 . 
1) If M c  91 is self adjoint, then M' is a *-subalgebra of 91 

and closed if the involution is continuous . 
2) M c  M" . 
3) M a c  MY =o M2'c M1'. 

Proof. 
1) for f ,  g e m' , A e as We have tr1vlally 

a) \ f  + g e M' 
b) f* e m' 
c) fg G M' 

Furthermore let Mf = ( 9  6 al: gf = fg] . Mf is closed due to 
the separate continuity of the product. Hence M'= n 
too. The continuity of the involution thus turns Ml ' L  a 
*-subalgebra of 91. 

2) Let f € M. Then every g 6 M' satisfies gh = hg, V h GM, 
especially gf = fg.  This means that f 6 M" a 

3) Suppose that M1 C MY . Then M '  = i f  E 21: fg = 
v g e m2} . Hence M2' c m{. I 

Mr is closed 

closed 

gf ,  

Definition 1.3 . Let QI be a *-algebra and I a nontrivial subspace of 
91. I is called 

1) a left ideal if 211 C 1 
2) a right ideal if DIC I 
3) a two sided ideal if QIIQI C I 
4) a maximal ideal if it is not properly. contained in any 

other nontrivial ideal of the same kind 
5) a minimal ideal If it does not properly contain any other 

nontrivial Ideal of the same klnd . 
Lemma 1.3 .  Let QI be a *-algebra. Then 

1) The identity is never contained in any proper ideal . 
2) An element f E 91 has an inverse f* iff f is not contained 

in any ideal . 
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3) The involution maps the set of left Ideals one-to-one onto 
the set of right ideals . Thus a self adjoint ideal (*-ideal) has to be 
two-sided . 

f e If '  

I is not proper . 
2) a) Assume If-1 

Proof. 
1) Let I be a left ideal. If 1 € I then mc I which means that 

The same is true for the other kinds of ideals . 
Then the left ideal If = art 5" so and 

b) Q If f would have an inverse f-1 , then 
f'1 f e I, i .e .  is impossible . 

3) Let I Bé'a ̀ Ieft 1déal, 1.e. arc I. Then 1* satisfies I*m C 
I* and hence is a right ideal. Since the *-map is an involution we 
get the desired result . 
Definition 1.4 . 
be 

The Jacobson radical of a *-algebra QI is defined to 

®(@1)={fem; a(1 +gf)-1, v g e a d  

An algebra whose radical is trlvlal is called semisimple . An algebra 
with MM) = 91 is called radical . 
Lemma 1.4 . If QI is not radical then no) is equal to the intersection 
of all maximal right (left) Ideals and thus is two~sided . 

. 
Proof. 

a) First suppose that f belongs to all maximal left ideals and 
not t o  et), i .e. ,Z(l + of)-1 for some g € 91. Then 1 + gf E I, where 
I is some maximal left ideal. But f e I and this leads to the conclu- 
sion that 1 Q I; this is impossible. Hence f € or) . 

b) Now let f E aw) and suppose that there is a maximal left 
ideal I such that f E' I. Then I + 9Jf is a left Ideal that contains I. 
Due to the maxlmal1ty of I we have I + illf = QI, especially we get 
l = h - gf, h 6 I, g 6 91 or h = l -F gf. -This contradicts the assump- 
t1on that f G law) . 
Definition 1.5 . Let at be a *-algebra and 

Tl' [ f  Q 917 f =Z)'if1*fi' X i  2 01 ii E QUO} I 

where the sum emends over finitely many terms only. The closure 
(relative to the underlying topology) K =TO is called the positive cone 
of 91. K turns QI into an ordered topological vector space by 
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f 2 0 ea f- e K- 

7 

K Lemma 1.5. Mo 

Proof. Any f 6 QIo can be written as 

K, 1.e . K is generating for 21O. 

f =%(1 + f)(1 + f) -%(1 - f)(1 - f) 
There are two klnds of cones that will play an important role later . 
Definition I. 6 . 

l) A subset of 2110 is called full if 

A = (A + K) (A - K) n 

2) The cone K is called normal in 910 if there is a neighbor- 
hood basis of zero consisting of full sets . 

3) The cone K is called a strict B-cone if \BK = [ B  n K - B 0 K; 
B bounded is a fundamental system of bounded sets , 1.e. every 
bounded set is contained in a suitable member of BK. 

Definition 1.7 . Let so. no be two *-algebras . 
1) A linear map 

is called a homomorphism if 

T(fg) = 'r(f) T(g) 

'r is said to be a *-homomorphism if in addition 

T(f*) = ('r(f))* 

2) The set 

Ker-f = { f e a 1 ; ¢ ( f ) = 0 }  

is called the kernel of the homomorphism T . 
called an isomorphism . I f K e r ¢ = 0 , t h e n q -  is 

Lemma 1.6. The *-Ideals of a *-algebra are in one-to-one corres- 
pondence with the *-homomorphisms . 
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proof The kernel of a *-homomorphism is clearly a *-ideal . 
now I be a *-Ideal. The canonical map 

Let 

Tzar-»uI/I 

is a *-homomorphism with Ker T = I .  

Definition 1.8.  Let 91 be a *-algebra. A *-representation of Mis a 
pair (I-I,'r), where 'r is a *-homomorphism into the linear operators 
£(H) of a topological innner product space H,  1.e . 

T :  Q1-°£(I-I) 

such that 

(T(f*)x.y) = (x.T(f)y) V X , Y  e H -  

Definition 1.9. A representation is called 
l) faithful, if it is one-to-one. ' 

2) algebraically irreducible, if there are no proper 'r-invariant 
subspaces in H. 

3) topologically irreducible, if there are no proper closed T -  
invariant subspaces in H.  

Deflnltion I. 10. Let as be a subalgebra of the algebra of linear opera- 
tors £(E) on a topological vector space E,  and for x E E let 

m
y { y e E : y = A x , v A e n a }  . 

Ex is clearly an invariant subspace under 03 . 
l) If there is a x e E such that U = E. then B is said to be 

algebraically cyclic and x is called an vector. 
2) If there is a x € E such that to be 

topologically cyclic and x is called a 1 actor . 
3) A representation T of an algebra QI is said to have one of 

the above properties if 'r(QI) has that property. 

_LemmaI. 7_. IB is algebraically (topologically) irreducible 1ff every 
nonzero vector of E is algebraically (topologically) cyclic . 
Proof. a) For any x E E ,  Ex is an invariant subspace of E and due to 
the algebraic :Lrreduc1blllty has to coincide with E . 

b) Suppose that every x 6 E is algebraically cyclic. Any 1n- 
variant subspace M C  E contains some Ex and thus M = E .  I 
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Definition I. 11 . 
sentation 

Let I be a left ideal of an algebra QI. The repre- 

T :  QI* £(2I/I), 

given by left multiplication, is called the left regular representation . 
Its kernel is given by 

K e r T = l f E 9 J :  f'JICI} I 

1.e . Ker T is the biggest two-sided ideal contained in I .  

Lemma I. 8 . The left regular representation 

T :  91 -° £W/I) 

will be algebraically irreducible 1fflis maximal . 
Proof. We show that there is a one-to-one correspondence between 
invariant subspaces of 21/1 and left ideals containing I. 

Let e be the canonical map 

€.2I  91/I. 

The n 

'r(f) 6(9) = €(fQ) - 

l 

For a left ideal IDI, we find that e: (I) is a T-invariant subspace of 
at/I. 

If M is any invariant subspace of 9,1/1, then I = { f  e QI; e (f) am} 
is a left ideal containing I. One sees immediately that the above cor- 
respondence is one-to-one . 
Lemma I. 9 .  Let T be an algebraically cyclic representation of an 
algebra QI. Then there is a left ideal I C  91 such that the left regular 
representation is algebraically equivalent to T . 
Proof. Let T :  'LI * h(E) be algebraically cyclic and x G E an algebraic- 
ally cyclic vector, 1.e . fr(9I)x = E. The subspace 

I = l f € 9 l :  ' r ( f )X=0}  

is a left ideal. With 
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€ .  QUO - 91/1 

being the canonical map, let 

A:9l/I*E 

be given by 

As:(f) ='r(f) x .  

A is one-to-one and due to  the cyclicity onto. Hence with 

TT: at -o .co/I) 

being the left regular representation, we get 

ATT(f) 6(9) = A  e(fg) = 'r(fg)x = T(f) 'r(g) 

= ' r ( f )Ae(g)  r Ve(Q) aI/I, 

x 

or 
ATr(f) =T(f)  A,  v f e 91 I 

which is the desired algebraic equivalence between Tr and T . 
Definition I. 12 . A two-sided Ideal is called primitive if it is the 
biggest two-s1ded ideal contained in a maximal left ideal . 
Lemma I. 10 . 

1) An ideal is primitive if and only if it is the kernel of an 
algebraically irreducible representation. 

2) The radical no) is equal t o  the intersection of all primi- 
t1ve ideals, 1.e. the intersection of the kernels of all algebraically 
irreducible representations . 
Proof . 

1) a) Lemma 1.9 and 1.8 say that the kernel of an algebraic- 
ally irreducible representation is primitive . 

b) If the kernel is primitive, then there is a maximal left 
Ideal I containing it. The corresponding left regular representation 
is then algebraically irreducible and has the above kernel . 

2) We know that MBI) is equal to  the intersections of all 
maximal left ideals . Hence the intersection of all primitive ideals 
is contained in no) . On the other hand let f Si' in I, I prlmltlve} . 
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. Then there is an algebraically irreducible representation T on a vec- 
tor space E with T(f) 74 0 .  Choose x E E with T(f)x if 0 and look at 
I = [ g  E 91; 'r(9)x = 0] . I is a maximal left ideal and f fé' I. Hence 
f z no) u 

Definition I. 13 . Let 211 be a topological *-algebra . 
1) The *-radical ®* is defined to be the intersection of the 

kernels of all topological *-representations on a Hilbert space . 
2) If R.*(2I) = 0 ,  then QI is called *-semislmple . 

B. States and Representations 
Let 21 be a topological *-algebra wlth identity, K the positive 

cone of at and QI' the topological dual of 21, 1.e. all continuous 11near 
functionals on 91 . 
Definition I. 14. An element T E 21' is called 

1) hermitian if T(f*) = 'RB 
2) positive if T(f) 2 0 v f e K 

Lemma 1.11. If T 6 M' is positive, then it is hermitian and satisfies 

S IT(f*g)I3 T(f*f) T(9*g) . 
the so-called Cauchy-Schwartz inequality . 
Proof. hen Tjh*h)2 0 V A ,  u a n d V g ,  fE%I ,  or 
T(h*h) = +7\1.1 T(g*i) + lull" T(g*;.z). Hence 
MY T(f*g)2=§§ I n =  1,  resp. >.= l , u = i , w e  
get that ' Mer x = A and u = T(g*f). This 
leads to t1§"é"E'bsiti'5Tt§ 'CoNdition IT(f*g)l2 S T(f*f) T(g*g) . 

Since we are mostly interested in positive linear functionals , 
it suffices to  look at the hermitian elements Q10 of our *-algebra 91. 
We assume the involution to be continuous and hence mo is a closed 
subspace of 91. The topological dual Q10 f of mO is then isomorphic 
to the subspace of hermitian functionals on 21. 

I 

Definition 1.15. K' = { T  e % ' 7  'I(f) 2 0 v f e K} is called the dual 
cone of K .  This gives rise to an ordering of linear functionals by T1 , 
T2 E Mo I , T1 > T2 ¢* T1 - T22 0 .  Q[o'thus is an ordered topological 
vector Space . 
Definition I .  16 . An element T E K' is called a state, provided T(1) 
1 . Denote the Set of states by O' . 
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Le .mma 1.12. 
1) o is a base for K' , i .e. Cr is convex and each T e K' has 

the representation T = U W ,  A > 0 ,  W E o .  
2) K' is a proper cone, i .e .  T e K' , -T E K' implies T = 0 .  

. 
Proof. 

l) If T(1) 7' 0 then we always can normalize T .  In the case 
T(1) = 0 we fl'nd from the Cauchy-Schwartz inequality IT(f)l2 S 
T(1) T(f*f) that T(f) = 0 v f e at, or T = 0 .  

2) If T E K H (-K), T if 0 ,  then T(f*f) = 0 V f E 91. Hence 
T ( f ) = 0  v f e n I ,  o r T = 0 .  

Definition I. 17 . Let T 6 o . Whenever T 
GOV M . > 0 /  } 2 > 0 l  andX1+7\2 = 
called extremal in u.  

0 ,  implies T1 = T2 = T ,  then T is 

Definition I. 18 . To each T G K' we associate an Ideal I(T) in QI by 

I(T) = { f  e ms T(f*f) = 0} . 
I(T) is called the left kernel of T. 

Lemma I. 13 . I(T) is a closed left ideal. 

Proof. First it is a left ideal since with f E I(T) we have 

lT((Qf)*(9f))|2 T(f*f) T(f*g*9g*9f) = 0 .  S 

1.e. gf E I(T), V g EU. To show'that I(T) is closed we use the 
representafidn 

G Q13 = 01 V g 
e U; T(gf) 

= of 

= If I(T) 

n [ f  € QI; T(gf) 
9 6 9 1  

Since T is continuous we know that { f  e as: T(gf) 
fixed g ,  

0} is closed for a 

:Lemma I. 14. If T E O' and I(T) be maximal, then T is extremal . 
Proof. Suppose T is not extremal . 
T1 74 T 2 a n d  hence I(T) = 
maximal. . Then T '7*1T1 + 7\2T2 , 711 ,k2 > 0 ,  

I(T1) n HTs). which says that I(T) is not 
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Each element T E K '  gives rise to a *-representation of 
'51-(Gelfand-Segal construction) . 
Proof. Let T e K' and I(T) the corresponding left kernel. Then I-I(T) 
= 21/I(T) is a Hausdorff locally convex topological vector space under 
the quotient topology. We then have the exact sequence 

e: 0-1 (T) -»m-»H(T)  0 -| 

I-I(T) is also an inner product space by 

(€(f). E:(g)) = T(f*g] 

and carries a *-representation IT of Ur by 

Tf(f) e (9) = e(fg)-- 

With respect to the initial topology of H(T) this'representation is 
algebraically and hence topologically cyclic, with G(l) being a cyclic 
vector. With respect to the inner product topology on H(T), n is only 
topologically irreducible and not necessarily algebraic irreducible . . 
Remark: 

1) There are various locally convex topologies on QI, and U0 
varying from the weak topology to  the Mackey topology . 

2) In the context of topological *-algebras there are two 
important questions : 

a) Are positive functionals continuous ? 
b) Is the dual cone K' generating, i .e.  has every func- 

t1onal L e 21o ' the representation L = T1 - TO , wlth T1 , I2 e KI. When 
is this representation unique ? 

I 
I 

II. Examples . 
We now want to inve stigate some special topological *-alge- 

bras that are often used in theoretical physics. Our emphasis will be 
on some characteristic properties; for their proofs we frequently refer 
to the literature . The algebras under discussion are assumed to have 
an identity. 1 

A.  C*-algebras 1) ,2 )  

Definition II . 1 . 
provided 

A topological *-algebra at is called a C*-algebra 
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1) QUO is a Banach space 
2) ForA, B E QI, the norm ll.ll satisfies 

IIABII S lIAI IBII 
IIA*AII = IIAII2 (C*-condition) 

Lemma II. 1. BIG), the bounded operator 
C*-algebra . on a Hilbert space, is a 

Proof. We know that 6806) is a Banach space and that 

S IIABII IIAII IIBII: IIAII sup 
III = 1 

IMII , xi : l -C.  

We only have to  show the C*-condition. Let A e MC): then 

IIAXII2 = (Ax, AX) = (A*Ax. x) s IIA*AII IxII2 , V x  esc. 
. A*AII S lIA*l III and thus lIAII = lIA*ll by symmetry. 

= IIAIS - Ally S 
Jre lIA*A 

Properties II. 1 . Let QI be a complex C*-algebra. Then 
l) the closure of a proper ideal is proper 
2) as is semisimple, 1.e. R = 0 
3) 91 is *-semislmple, 1.e. R* = 0 .  
4) QI is isometrically *-isomorphic to a norm closed *-subal- 

gebra of some noW) . 
5) every topologically irreducible representation of at is alge- 

braically irreducible . 
Let us now look at the hermitian part 910 of a C*-algebra; this 

is a Banach space. Its dual 910 ' is also a Banach space in the strong 
topology B(QIo f , 210 )(norm topology) . 
Lemma II . 2 . 

1) The positive cone K C  MO is a normal slIict B-cone , 
2) The dual cone K' C QUOo ' is a normal strict B-cone . 

Proof.3) 
1) K is a strict B-cone because it is generating ato . For the 

normality of K we have to show that for A,  B e K we have IA + BI[ 2 
lIAII . Due to the fact that 91 is a C*-algebra, we have an isometric- 
ally *-isomorphism U of 9,1 onto a *-subalgebra of IB(l-C) . Hence 
(x, ii(A+B)x) _ (x, 1T(A)x) = (x, n(B)x) 2 0 ,  V x e IK, and thus 
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llrr(A+B)ll ll1T(A)ll 2 

or 

. 2 lIe+BII IIAII . 
2) This follows from the duality theorem between normal and 

strict B-cones . 
These nice properties of K and K' lead now to the following 

statement: 

Lemma II. 3 . 
1) Every positive functional on 910 is continuous . 
2) Every T e Qlo' can be written as T = T1 - TO , where T1 ,TQ 

ex '  

Proof. 1) This follows from the fact that mo is a Banach space and K 
generating. One could also use the fact that K has nonempty interior . 

2) Since K' is a strict B-cone in mo ',~1t has to  be generating 

Remark: Haag and Kastler4) emphasized the importance of abstract 
C*-algebras because of the physical equivalence of all faithful 
representations | 

.. 

B. The Field Algebra (Birchers Algebra) 
A topological *-algebra of quite a different flavor than a U'- 

algebra is the so-called field algebra; it plays a fundamental role in 
Wightman's theory of quantized fields . 
Definition n.2.5) Let Jo = 
Schwartz test function space . 
direct sum 

C a n d  .1 n = J (R4N), the Laurent 
The field algebra is the topological 

up 

21- ® Jn 
n - 0  

r 

equipped with the product 

f = [ f o .  f 1 l ° ~ ° ] :  g = { g O t  91 , - - - }  

(f9)n(X1 I . . . IXn) | • | I 'Xk)gn-k(xk+1 I e . . ,xn) 
k =  0 

.| 
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and the involution 

(f*)n (Xl f I . . = f  .in) n ex a l  I I X I  . 

The element 

1 = { 1 , 0 , . . J  

is the identity. 

Pro_perties II. 2 . 6) The field algebra at has the following properties : 
l) QI is a nuclear *-algebra, bornological and LF . 
2) QI is semisimple, i .e .  R = 0 .  
3) ill has no divisors of zero and only those elements that are 

a multiple of the identity have an inverse . 
4) 91 has no minimal ideals . 
5) 1 and 0 are the only idempotents, i .e .  satisfying £2 = f .  
6) the positive cone K has no interior points . 

_ There are many other properties of QI, some of them are the same as  
for C*-algebras, especially concerning the positive cone . 
C . Von Neumann Algebras I Classification of Factors 

Definition 11.3. Let QI be a *-subalgebra of some MC) . 91 is called 
a von Neumann algebra, provided 91 = QI" . We restrict ourselves to 
separable Hilbert spaces . 

15 A von Neumann algebra U is a weakly closed *-subal- 
gebra of TB .C); any weakly closed *-subalgebra of IBGC) , containing 
the identity, is a von Neumann algebra. Since a weakly closed set 
is also strongly closed, a von Neumann algebra is also a C*-algebra ; 
a C*-algebra however is not necessarily weakly closed . 
Proof. That a von Neumann algebra is weakly closed is an immediate 
consequence of Lemma 1.2, because the product is separately weakly 
continuous and the involution is wea kly continuous . For the rest of 
the proof we refer to the literature . l 
Definition II. 4 • 

a) An hermitian idempotent P € MC) is called a projection , 
i . e .  p * = p ,  p = p .  

b) LetZK1 , 162 be two Hilbert spaces. A map V:1lC1 -ZH:2 is 
called a partial isometric with initial domain M and final domain N, 
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if Vmaps M isometrically onto N and m.L , the orthogonal complement 
of M,  into zero. V*V = PM is then the Initial domain projection and 
W* PN is the final domain projection . 

In 
l.l> sed subspaces M, N of an Hilbert space ZK are 

if there is a partial isometric U with initial domain 
______ n N, we write M~ N. 
b) We introduce the preorder amongst closed subspaces ofz}c 

by M < N ¢= M is equivalent to a subspace of N.  

let 91 be a von Neumann algebra on:K. 
pace M CZK is said to belong to QI, if M is invariant 

under all unlL-, operators in 91' ; we write M nil. 
b) A linear operator A (not necessarily bounded) is said to  

belong to 21 if A commutes with all unitary operators in III; we write 
A r] 91- 

ST f A n  at and A is bounded, thenA 6 91. 
b) If M 'q at and M is closed, then the projection PM onto M 

belongs to QI, 1 .e .  PM e 21. 

. 
Proof. 

a) A e (%I'(U))' =91" =NI. 
b) M 'rI SCI says that UM c M for all unitary operators U in 21' . 

Since U*MC M we have MC UM and hence M = UM and M-!~ = UM* . 
That means that every unitary U e M' is reduced by M, i .e .  UP = 
PMU, v U E 91' . Hence PM n 91 and since PM is bounded, we Hive 
PM 6 91. 

The equivalence relation and preorder amongst closed sub- 
spaces belonging to QI can be carried over to  an equivalence relation 
and preorder amongst projections belonging to 21. 

Definition II. 7 • 
a) Let QI be a von Neumann algebra. Two projections Pa IPg 

e 91 are said to be equivalent if P11'rC~ P23-C; we write P1 PA . 
b) A preorder is given by P1 < PA <* P1 P and EKG P2 ICC. 

Definition II. 8 .  A von Neumann algebra at is called a factor if the 
center 8(9,l) = HI. 

Since every von Neumann algebra 91 has a direct integral 
decomposition into factors ,7)  
to factors . 

we will restrict ourselves from now on 
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Properties 11.3 . 1'7) Let QI be a factor. Then the following holds: 
a) From A e Ur, A' e as' and AA' = 0 it follows that either A = 0 

or A' = 0 . 
b) Let M T] 91 and N 'rl SCI, then either M <  N or N < M. Equiv- 

alently, if Pm, PN e m L ~ e i t h e r  P < PN or PN < Pm. 
c) I fMand toa1a1Mm<n,n<m,thenm~n.  

Equivalently, if Pm, PN E QI, and PM < Pn, Pn< PM, then PM~ Pn. 
Definition 11.9. Let al be a factor and M a closed subspace of:lc, 
belonging to 91 . Then 

al) M is infinite => M is equivalent to a nontrivial subspace 
of M. 

a2) A projection P G 91 is infinite Q P3-C is infinite . 
be) M is finite <= M is not infinite . 
be) A projection P 6 91 is finite => P3-C is finite . 
cl) M is called minimal if M 74 0 and N < M 1mp11es N 0 or 

N = M .  
co) A projection P e 91 is called minimal if P 7' 0 and PI < P 

implies P1 = 0 or PI = P.  

Properties II . 4 . 1 .8) On th 
a factor as there exists a real' 
dimension, such that 

(1) D ( M ) = 0 1 f M = 0 a n d  D(M)> 0 1 f M ; f 0  
(11) D(M) = m if M is infinite 

(iii) M~ N =a D(M) = D(n) 
(iv) M J. N =o D(M + n) = D(M) + D(n) 
(v) M <  n, M finite =» D(M) < D(n) 

of closed subs paces belonging to 
function D , called the relative 

1 , 8 Von neumann-Murray Classification of Factors: ) 
For each type we give the range A of the relative dimension D. 
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8 be .emar . In the von Neumann-Murray classification of factors it is 
in the 211 and III there l isomorphic factors . 
ki and at Io) to a detailed of factors con- 

structed a s  infinite tensor products of finite type I factors (ITPFI- 
factors) on separable Hilbert spaces. For completeness reasons we 
will give a summary of the Araki-Woods classification of ITPFI- 
factors; the details can be found in Refs. 9 and 10 . 

I . . g I 10) Araki-Woods Classification of ITPFI-factors 
To every ITPFI-factor at one associates a subset ro,,(QI) of the 

non-negative real numbers; ro,,(2I) is called the asymptotic ratio set . 
There are the following standard sets for too (QI) - 

Is om orphisms r(%i) Von Neumann- 
Murray classification 

¢ I n, n=0,1,.., l< w one is omorphic class 
for each n 

{ 0 }  I all are isomorphic oo 

{ l }  hyperfinite type 111 all are isomorphic 

III n l 0 . x  ;n=0,d:l,d:2,..} 
0 < x <  1 

one and only one is o- 
morphic class for 
each X 

l 0 . l }  
I 

non denumerably many 
type III isomorphic 
classes 

contains In ® 
hyperfinite 111 
and III 

III only one isomorpnlc 
class 

[0,=») 
I 

Remark9) The factor at describing CCR for a nonre lativistic free 
Bose gas at finite temperature, finite density and no macroscopic 
occupation of the ground state is of type run(%I) = [0,°°) . 

Also the factor QUO describing CAR for a nonrelativistic free 
Fermi gas at finite temperature and finite density is of type r`0°(%I) = 
E0 .°°) • 
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Section 0 .  Introduction 
The use of modern mathematical techniques is , to say the 

least, not very fashionable among theoretical physicists . There are 
probably many reasons for the present state of things , and I may state 
two: first, the mathematical apparatus is often difficult and secondly, 
most of the physicists don't see the slightest advantage to this kind 
of game . 

The aim of these lectures is mainly to bring the students to the 
point where they can at least understand the language and some of 
the physical ideas which can be formulated only in that mathematical 
language. The field chosen here is not one where it is apparent from 
the first sight which advantages can be obtained from these new ap- 
proaches . Nevertheless the advantages are present and important 
enough so that researchers in that field are willing to spend years of 
hard work in order t o  gain some understanding. We expect the prog- 
resses to be slow and extend over many years before they lead toward 
results to be compared with experiments , but one should not forget 
the immense difficulties of the task. Field theory, for instance , 
dates back to 1928 with Heisenberg and Pauli. Ohly this year, in 
1969, do we have the proof (Iaffe , Glimm, etc.) of the existence of a 
nontrivial field theory satisfying Wightman's axiom, and it will be 
certainly a long time before we can apply our results to practical pur- 
poses . We are, however, deeply convinced that there is no easy way 
out, and that any progress toward the construction of nontrivial theo- 
ries will have to borrow from the results obtained by hard analysis . 
These statements are not to  be considered as criticisms against the 
phenomenological approaches; we need results in these directions 
too, and good phenomenology and theory should be at the end comple- 
mentary to each other . 

Modern research in statistical mechanics and quantum field 
theory makes very extensive use of advanced functional analysis , and 
one may wonder why it is s o  that we are going to spend a lot of time 
on algebraic techniques. The reason is that first, functional analysis 
is studied by undergraduates t o  a greater extent than algebraic tech- 
niques , and secondly, that most of the problems we encounter in 
functional analysis arise after the algebraic formulation of the prob- 
lems. As an example, we may quote the work of Glimm and la-ffe , 
where a very substantial part is devoted to the proof that a certain 
operator is self-adjoint. This is of course functional analysis, but 
the reason that we need this proof can only be understood in the alge- 
braic formulation . 

If I have chosen to  speak both of field theory and of statistical 
mechanics , that is because of the great similarity of the problems 
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arising in the two approaches; in fact, they both may be character- 
ized as being systems with an infinite number of degrees of freedom . 

For the reader who wants more details , he can consult the list 
of references given at the end. As far as  lecture notes or textbooks 
are concerned, I may quote my lectures here in Boulder in 1966 (alge- 
braic methods in QFT) , my lectures on algebraic methods in statistical 
mechanics (Springer 1969, in French) and the book of D. Ruelle on 
statistical mechanics (Benjamin 1969). The overlap between my lec- 
tures and Ruelle's book is not very great, but Ruelle's book repre- 
sents of course a much more definitive treatment of the subject it 
covers . 

I further want to point out that the subjects treated in these 
lectures were meant to make a whole with the lectures of Profs . Bor- 
chers and Wyss.  Most of the repetitions are intentional, and should 
provide the reader with different points of view . 

I finally want to express my gratitude to Professor W.E. Brittin 
for his kind invitation to spend some time in Boulder and my thanks to 
Professors H.  Borchers and W .  Wyss for many discussions . 

the two sets 

Section I .  Algebras 
The purpose of this section is to give in a condensed form the 

principal definitions and the most elementary theorems which are 
needed for an understanding of the physical part . 

For those who want to study further, we strongly recommend 
the two books of Dixmier, which are the basic reference works in that 
field. It may also be said that the material has been restricted be- 
cause of Prof. °i""'m1ectLures , and that the overlap present between 

.1 as has been done on purpose.T 

I.A. Generalities on Algebras 

I.A. .1 ._ Definition: A set QI of elements {a,b,c ,  . . . }  is an associative 
algebra over the real or complex (we shall simply say algebra, since 
we are going to consider only associative algebras) if; 

(i) 21 is a vector space 
(i1) an operator of multiplication is defined in QI and satisfies 

(a) a(ab) = (cr.a)b 
(B) a(0Lb) =G.(ab) 
(y) a(bc) = (ab)c 
(6) a(b+c) = ab + ac 
(e) (a+b)c = ac + be 

l (bilinear multiplication law) 

(as s ociativity) 
} (distrlbut1vity) 

alt should also he apparent that the content of this section does not 
vary considerably from other sets of lecture notes given by the same 
author, for instance in Boulder 1966 or in "Methodes Algébriques en 
Mécanique Statistique, " Springer 1969 . 
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via,b,c 6 QI, VG. E R Or G.  N.B. Many authors call such a structure 
"rings " Properly speaking, however, a rlng does not contain a mul- 
tiplioatlon by scalars . 

It is a commonly accepted abuse of language to call an 
element of an algebra "operator. " 

I .A.2.  Deiinitionz Two elements a and b E 91, 91 an algebra, are 
said to commute if ab = be. An algebra IS said to  be abelian (or com- 
mutative) if a11 its elements commute pairwise . 
I .A.3.  Definition' The center 8 of an algebra 91 is the set of all those 
elements of 91 which commute with all elements of 91° 

B ( U ) = { c [ c € % I , a c =  V a € M }  ca 

8 is clearly a subalgebra of QI. 

I .A .4 .  Examples: 
(1) In the algebra MY (G) of all 2 by 2 matrices , 

8(M2 ) 
a 0 

={ ( )  s ( I -GC 
0 a 

(ii) In the algebra of the complex matrices of the form 

n m 

n 
m 

n m 

A 0 

0 B 

II of 

n 

m 

a 0 
0 0. 0 

0 
0 

B 
B 
0 

a , B € G  

where A (resp. B) represent all n by n '(resp. m by m) matrices . 
I . A . 5 .  Definition: Identity: l ' 

e is an identity (or unit) element of the algebra 91, if ae = ea = 
a I Va E 91 - 

g is a left identity element of the algebra QI, if ga = a , Va E 91 
d is a right identity element of the algebra QI, if ad = a ,  Va E at 

(S g) 
I.A. a. Example: In the algebra QI of all 2 bY 2 matrices of the form 

; a ,  B e G, we do not have an identity element, nor a left 



ALGEBRAIC TECHNIQUES 27 

matrices of the form 

identity, but we have an infinity of right identities , namely all 
I N iv \ 
\1 -a 1-<1 I , a E . G 

I.A . 7 . Proposition: 
(i) The identity element of an algebra it is unique 

(ii) If an algebra 91 possesses both a right identity d and 
a left identity g ,  it possesses an identity element . 
Proof: (i) let e and e '  be two identity elements, then ee' = e = e '  
which means they are equal . 

(ii) g o = g = d , p u t e = g = d .  

I 

I .A.8.  Theorem: Any algebra %I, without identity, can be identified 
with a sub-algebra of an algeb.Fa Silwith an identity element . 
Proof; (i) M1 may be realized as the set of all pairs (a,a) a E CD, 
a E QI, and the operations are defined as follows : 

(a,a) + (B,b) = (<1+B. a + b )  

B(a,a) = (Ba, Ba) 

(0L,a)(B.b) = (aB. Ba + ab + ab) 

(ii) QI may be identified to the subalgebra of 911 consisting of 
the elements of the form (0, a) . 

(iii) The identity element of 911 is (1, 0) . 
Note that 911 is abelian if, and only if, QI i s  abellan. 

N.B . For most of the physical applications which we shall 
consider, the algebras which we shall use shall possess an identity 
element. The origin of this fact is a deep one, and can be found, for 
instance , in the proposition calculus of Iauch and Piron. The identity 
element corresponds to the tautologic proposition asserting that the 
system exists . 
TAr other possible realization is to consider 211 being the set of 
matrices of the form 

_0 q . + a I  q , € ® , a € Q _ I  

is then 

the form 

and QUO may be identified to the set of all matrices of 

with the usual matrix multiplication rule . The identity element of M1 
1 0 
0 1 

0 0 , a 6 QI. 
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From a mathematical point of view, one has to remark that the 
addition of an identity element may change the topological structure 
of the algebra . It is , in fact, the analogous problem to  the compacti- 
fication of a set (for instance, adding the point at °° to R) . 
I.A.9 .. 

1 onlR . 
k d 
k dx 

Examples: 
1) Let i be a topological, locally compact space. Let f(x) be 

a complex continuous function on as, It is said to vanish at infinity, 
if, v e > 0 ,  the set of all points x e Et, such that Ifcxll > a , is con - 
fained in a compact of 2 .  The set S!(x) of all complex continuous 
functions on I , vanishing at °°, is an algebra . 

This algebra possesses an identity element, if, and only if, 
I is compact . 

2) Let of; be a Hilbert space, % (Q) , the algebra of all bounded 
operators on P .  As a particular case, for S; of finite dimension n, 
2B(£;) may be identified with the algebra IMn(C) of all n by nmatrices 
with complex coefficients . 

3) Let is (respectively l the space of Schwartz test functions 

The set of operators of the form 

n Z pk(x) , n <  oo 

k=0 

. Qbeing real polynomials , is an algebra . The identity element is 
!air 1 . 

I.A. 10. Definition: A subset 3 of an algebra QI is called a left ideal 
resp. a right ideal] if 

(i) 3 is a vector subspace of 91 
(11) x G Sf and a € ill implies that ax e 3 (resp. xa € S),  what 

we symbolically write as 

MSCS l :1°€Sp.3QIC al 
If 3 is both a right and a left ideal, it is called a two-sided ideal . 
Remarks; 1) Any algebra contains the ideals 91 and £01 . 

2) Any ideal is a subalgebra . 
3) An ideal which is different from QI is said to be proper . 
4) A proper ideal of 91 is said to be minimal if it is different 

from { 0 }  and does not contain properly any ideal of the same type 
other than { 0 ]  . It is called maximal if it is not properly contained 
in an ideal of the same type other than as. 
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5) A proper ideal cannot contain the identity element . 
I.A. 11 . Definition: An algebra which does not possess any proper 
two-sided ideal other than { 0 }  is said to be simple . 
I.A. 12 . Examples : 

1) The algebra of all n by n matrices , lMn(c) , 
2) In 11\/12 (C) , 

simple • 
n < o o ,  i s  

0 

0 ll- a . S IS a left ideal 
b Q 

and 

i( )l= 0 0 ad is a right ideal 
a b 

3) In the algebra of all 2 by 2 matrices of the form 
the set 

r 

0 
3 

0 

0. 

0 )} 
is a two-sided ideal . 

4) In the algebra Mu) of all bounded operators on a Hilbert 
space, the set 5 of all operators of finite rank is a two-sided ideal . 

5) Again in DB (5) , the set is of all compact operators is a two- 
sided ideal. Further, as is minimal and (S maximal, as C s . 

I.A.13. 
ii = i .  

Definition: An element 1 E 91 is said to be idempotent if 

I.A.14. Example: in |m2(c), i 1 
0 »( ) 0 

0 is an idempotent. 

LA. 15. .Definltionz Let 21 be an algebra over C .  An involution in £1 
is a mapping of 91 onto itself: al-° a* ,  such that 

(i) (a*)* = a 
(ii) (a + b)*-= a* + b* _ 

(iii) ()~a)* = X a * ,  K € C ,  x complex conjugate of x 
(iv) (ab)* = b*a* 
v a ,  b Q QI. 
An algebra with an involution is said to be a *-algebra . 

Naimark calls it a symmetric algebra . 
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a* is called the adjoint of a .  
a is called self-adjoint if a*= a , normal if aa* = a*a . 
A subset loc %I'is said to be self-adjoint if KS* = (E (&* = 

la*l a e (SD. 
Remark: A self-adjoint ideal in a *-algebra is always two-sided . 
I .A.16. Definition: A mapping B:QI1 129 
morphism (more exactly, an algebra homomorphism) if 

(1) B0»a) =xB(a) 
(ii) B(a + b) = B(a) + B(b) 

(i11) B(a°b) = B(a)°B(b) 
It is a *-homomorphism, if 911 and 912 are -*-algebras and if 

(iv) B(a*) = B(a)* 

M2 is called a homo- 

Remarks: The inverse image of the [ 0 ]  element of M2 in Q11 is called 
the kernel of the homomorphism B .  The kernel 3 if a homomorphism 
B is a two-sided ideal: indeed, if B(a) = B(b) = S, then B0-a) = 
B(a + b) = 0 ,  and B(ac) = 8{a)B(c) = 0 ,  B(ca) = 0 V c e M1 . 

If the kernel consists only of the { 0 }  element of QI1 , the map- 
ing is said to be faithful. A faithful homomorphism of 91l onto Mg is 
called an isomorphism. A faithful homomorphism of M1 onto M1 is 
called an automorphism. A representation of an algebra is a homo- 
morphism of the algebra into the algebra of the linear operators on a 
certain vector space . 

In these lectures, we shall only consider *-homomorphisms , 
*-representations, etc. , and thus we shall omit the *- . 
I.A. 17. Example: Any algebra QI has a representation in the algebra 
of linear operators defined on QI (considered as a vector space) . In- 
deed, to each element a E 91, one associates the mapping AA of 
the vector space 91 by defining A,ax = ax, V X € QI. One easily verifies 
that AA is a representation of 91. Furthermore , this representa- 
tion is faithful if 91 possesses an identity element. This representa- 
tlon is called the left regular representation . 

A function M - R, a ~  llall, a e al is called a 

all 2 0 
all 

I.A.18. Definition' 
prenorm on QI if 

(i) 
(ii) a + s Ilall + Ilbll 

(111) wall - Ill "llal 
(iv) If 91 possesses an identity element e ,  He II 

lion is called a norm, if i) is replaced by 
(i') llal 2 0 ,  llall = 0=> a = 0. 

1 .  This func- 
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An algebra on which a norm is defined is said to be a normed algebra . 
I .A.  19. Definition: A normed algebra , which is complete under its 
norm (Le. is a Banach space) is called a Banach algebra . 

If 91 is a normed *-algebra, the condition la~bll S la - lib 
implies that la*al] S lla* |. llall . If we impose the condition a*a = 
llall3 , we get that llall = \a*l , but the reverse need not be true . 
A Banach algebra satisfying lla*ll = llall (but not necessarily lla*a1] = 
llall=1 , v a E EI) is called normed symmetric by naimark, and a B*- 
algebra by Dixmier. , 

A Banach *-algebra, satisfying lla*.a II = II a 112 is called a B*- 
algebra by Rickart, and a C*-algebra by Dixmier (it is also some- 
times called an abstract C*-algebra) . 

Note the confusion existing in the literature about these 
denominations! In order to avoid any conflict, we shall call C*- 
algebra an algebra satisfying la*al = llal=1 . These algebras are 
essentially the 'only ones which we shall encounter in these lectures . 
I .B. Von Neumann Alqebras 

We introduce here a particular class of C*-algebras which 
enjoy remarkable properties . They often are used in physical applica- 
tions and in the theory of C*-algebras themselves . 
I .B.1.  Let Q be a complex Hilbert space (not necessarily separable) , 
and denote by §B(S;) the algebra of all bounded operators on Q.  I Clearly, 
so) is a C*-algebra . 

Let E02 be an arbitrary subset of oH(©) . We denote by SUM' the set 
of all elements of T8(@) which commute with all elements of EDS: 

E O l ' = [ a ' l a '  € % ( @ ) , a ' a  vaeiml aa ' ,  

EDT is called the commutant of it. One easily sees that the commutant 
of any subset of 18(©) is always an algebra, and that this algebra 
always contains an Identity element . 

mi 

In a similar way, one defines the double commutant, or bioom- 
mutant EDS" ofEDl, DUI" = (,0I')' . . ` 

It is immediately clear that Sit" D am, If 9311 C 9312 then also in ' D . From these two relations follows that 

mf = m / / I  = .'. U 

I 

Finally, if am = EDS*, then EDT is a *-algebra . 
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I .B . 2 . 
91 of Mb) such that 91 = *JAr . 
Example: The commutant UR' of any self-adj olnt subset EDS =EUl* of iB(g;) 
is always a von Neumann algebra . 
Remark: Von Neumann algebras are also called rings of operators, or 
W*-algebras . Sakai defines a W*-algebra as being a C*-algebra 
which is the dual of some Banach space . He then shows that such an 
algebra has a faithful representation as a von Neumann algebra on 
some Hilbert space. We shall therefore reserve the term W*algebra 
for an algebra which is isomorphic to a von Neumann algebra , and 
when we speak of a particular von Neumann algebra , it will always 
be understood that it carries with it the particular Hilbert space on 
which it is defined. This is necessary because, as we shall see , 
an isomorphism of a von Neumann algebra into a ill?;') is not neces- 
sarily a von Neumann algebra . 

Clearly, a von Neumann algebra is also a C*-algebra . 
Example: Any C*-algebra on a finite dimensional Hilbert space is 
also a von Neumann algebra . 

Definition: A von Neumann algebra QI on go, is a *-subalgebra 

I.B . 3  . Proposition: The intersection of an arbitrary family of von 
Neumann algebras is a von Neumann algebra . 
Proof' Let QI = al Mi . To say that X G at amounts to saying that X 

i i I 
commutes with the elements of Sli' , thus with U Qli' and hence with 

iiI < 

( U as' )" . 
Corollary: The center 8 of avon Neumann algebra is 

8 910211I 

and is thus an abelian von Neumann algebra . 
If al is abelian, then nu =as' and 8 = as, 

I .B.4.  Definition' A von Neumann algebra,the center of which con- 
tains only the scalar multiples of the identity, is called a factor. 
Example: Mn) is a factor, indeed %(©)' = {KI} = 8. 

I .B.5 . Definition' Let ill be a *-subalgebra of iB(b) . A vector X e $2 
is said to be cyclic (in French: "totalisateur") with respect to QI, if 
the set {ax le  e ml is dense in 53. 

X e K; is said to be a separating vector for 91. 
a 6 91, a x = 0 ,  implya = 0 .  

if the conditions 
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In an evident way, this definition can be extended to subsets 
o of go, 
Proposition' Let G be a subset of Kg, QI a *-subalgebra of &*£%). Let 
further p be the projector on the closure of the set Mo = laxla E 211, 
X 6 GO . Then p € ill' r and is the smallest projection of QI' having o 
contained in its range . 
Proof: It is clear, that for any t E U, We C Qlo, and therefore, bY COU- 
tinuity (t being bounded) , tpg; C pa;. But this last relation means 
exactly that ptp = tp. From this follows however, using that also 
pt*p = t*p 

pt = (t*p*)* = (pt*p)* = pop = to 

and thus, P E ill' . 
Let n o w s  = pa;, and suppose H p '  E QI' , p'S:3 M o .  We have 

that 

p'&Io = %Ip'o = Mo , 

by hypothesis, but this means p ' p  = p ,  QED . 
Theorem: Let 91 be a von Neumann algebra . X is cyclic for QI if, and 
only if, x is separating for ELl' . 
Froof: "4£' Let p be the projector on the closure of Mx. From the 
preceding proposition, we have that p E QI' . Because I E 91' , 
(I - p)x = 0 . But by hypothesis , X is separating for QI' , and hence 
I - p = 0 ,  p = I ,  or pg; =§ ; ,  which means that the closure ofibc is Q ,  
or, in other words , that x is cyclic for QI. 

"=)" The conditions a 'E  QI' , a'x = 0 ,  imply that a'ax = aa'x 
= 0 ,  V a E QI. But that means that a '  = 0 ,  since it is a bounded opera- 
tor which vanishes on a dense set of vectors , namely aux. Thus x is 
separating for QI' . 

a. 1 a 1 in clearly unitary , 

I .B.6 .  Theorem: Let 91 be a C*-algebra. Any element a E QI is a 
linear combination of two self-adj pint operators , or of four unitary 
operators , belonging to the algebra . 
Proof: By construction: " 

. Self-adjoint: put at = - (a+a*) .r as - = 
Unitary: 

= ' with Ilal' II Q=_1,2. now "1 = ai'- (1 - ai.rza) u. 
- a. . 

amounts to proving that (1 - a1I21)' E in. 
series 

a being bounded, one 
< 1, i 

since at 

- (a*~a). a 31 +1a2 
can choose 21 and K2 such that 

P'L1t 
It remains to show that "1 E QI, wlic:h 

This is true, since the Taylor 
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1 1 - - a ,  
1 2 
, 2  

a . 
1 
, 4  i 1~3 a 

2-4-6  i 
_61I2)% (1 

, 6  - 1 - 3 - 5  a 
2 ' 4 ' 6 ' 8  1 

, 8  _ 

converges in norm, because lla1'll < l ,  and (1 
algebra is complete in norm . 

Put then 

at2) 6 Mbecause the 

a = { ) \ 1  (111 + U1 *) + iJ\2(u2 + u2*)} 

I .B. 7 .  Definition: An operator is said to be closed if tx. °* 
-» X imply be = y .  
Theorem: If t is closed, one may write t = wk, where w is a pat- 
tially isometric operator, and k is self-adjoint and non-negative . 
This decomposition is unique, and is called the polar decomposition . 
Definition: A closed operator t is said to be affiliated to a von Neu- 
mann algebra QI ( m l )  if it commutes wlth all operators of ill' . i . e .  if 
v b' e am' , b ' t c  tb'. 
Proposition: Let t be a closed op. atom 
position. Then t'rl19l if and only if au sp 
91 and w 6 91. 
Proof: It is enough to show that,in the case. of a unitary operator u' E 
QI' , u ' t c  too' , u"1 c too"1. imply that u'hu"1 = h and u'wu""1 = w. 

We have that u'tu"1 C t C u'tu"'1 by hypothesis; from this 
follows that u'tu"1 = t = wh = u'wu"'1u'hu"1 and the proposition 
follows from the uniclty of the polar decomposition, the inverse being 
trivial • 
Corollary: Let tT1%I, t = t* . 
f(t)T]9l . 

II" 

Then for all continuous real functions f ,  

1 yandx l  

wk its polar decom- 
ojectors. of k belong to 

I .C.  Topological Considerations 

Qw defining five different topologies on 'R(§3) . 
It is the topology induced by the norm of the 

= of neighbourhoodsof an element t E MM is glven by 

U e (t) < { a l a s % ( © ) ,  lit-all € }  

Strong topology: A basis of neighbourhoods, indexed by e and o is 
induced by 

u (t) 
,Cr e < s { a l a s % ( © ) ,  I I ( t -a)x l l  V X E U ]  
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where o is a finite subset of so. 
Weak topology: 

u 
€ I0-1102 

< e (t) = [ a l a  E f8(s:).l(x.(t-a)yI 

V x € 0 1  V y € 0 2 }  

where. 01 and Us are finite subsets of go. 
Ultrastronq topology: (sometimes called strongest topology) 

u {xi}(r) = { a l a  e mm. Q ll(a-t)x1II3 Q] < 
i-1 

toward s 
Ultraweak 

logy if, V sequences { k }  such that Z:|xi|2< 
Ektxk) . 

topoloqyz 

oo 

where Xi is an arbitrary sequence of vectors of 92 such that Q \x1l2< as 

1= 1 
(thus a filtering set it-3 converges towards t in the ultrastrong topo- 

<=° {'Zlktixk} converges 

U e ,{xi] ,{§/1] (t) 

We define 

{ a l a  G BG:). l(x1. (a-t)y1)l< G] 
k=1 . 
I 

Elxi l3 
where {xi} , [yi} are arbitrary sequences of vectors of $2 such that 

< m 2\y i l3< °°. 

I .C . 2 .  We are not going to  show that all these topologies are 
actually distinct if $5 is infinite dimensional. It i s  clear for the um- 
form, strong and weak topologies. For the ultrastrong topology, one 
can show that it does coincide wlth the strong one bounded sets of 
Mn) (Dixmier 1957, p .  36) and similarly of the ultra weak and the 
weak topologies . One can construct an example (Dixmier, 1957 , 
p .  48) of a set in %(9)) whose strong and ulizastrong closure are not 
identical . 

In fact, it is practically evident that we mus_t have the follow- 
1ng diagram 

un lf0rm 
ultrastrong 

'ong 

weak 

ultraweak 
finer 
topol . convergence is 

implied in that 
dlrectlon 
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I .C . 3  . If we now consider a subalgebra of 5869) with identity element , 
we already know that it is a C*-algebra if it is closed in the uniform 
topology. If we want t o  close it under other topologies , it is , a 
priori, conceivable that different topologies will lead to different 
algebras. Under these circumstances , the famous density theorem of 
von Neumann is truly remarkable. In order to state and prove it, we 
will still need to define what is a "unit ball." 
Definition: Let QI be a normed algebra, the unit ball Q11 is the set of 
all those operators of 91 the norm of which does not exceed one . 

(density theorem of von Neumann) Let QI be a *-subalgebra 
With identity element. The following nine conditions are 

equivalent 
l )  ill = 91" (1.e. ill is a von Neumann algebra) 
2) it is weakly closed 
3) %I1 is weakly closed 
4) QI is strongly closed 
b) 911 is strongly closed 
6) al is ultraweakly closed 
7) M1 is ultraweakly closed 
B) 91 is ultra strongly closed 
9) 211 is ultra strongly closed 

Proof: The sequence of the elements of the proof can be. seen from 
the following diagram 

6 

7 

i -.m 

Proof: 

-> 

=91u 

a ,  thena EMI. 
To prove: Let [a t  hypothesis: QI E 91] and 

a. = 
1 

Let a ' E  91' , then a'al = ala' , 
| (XI , (aa'- aIa)x2)| < Ze: 

that is 

used in the proof 
(4 -° 1) shall be used 
in proving 8-1 

--> other possible proof 
path 
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because 

l(x1 , (aa'-  a'a)x2)l l(x1 ,(a - ai)a'+ a '  (a1- a)x2)| s 

S l (x1,(a--a1)a'x2)\  +)(X1 '(a < 2 e  

for a certain 1> 10 (2 -° 4), (2-» 6) ,  (3 -| 7), (5 -» 9), (7 -» 9), and 
also (3 -- -a 5),  (4 -- -v 8), (6 -- -° 8) are true because of the partial 
ordering of the topologies, as seen above. (2 - 3) ,  (4 -» 5) , (8 -~ 9), 
and also (6 -- -° 7) are trivial by definition of the unit ball . 

a1)x2 I 

Let x E So and p be the projector on the g 

Qsisz For any sequence {at] E up, if {at] converges 
Isa , then a e 91. One has to show in any strong neigh- 

bourh-O6d of each. element a" G QI" , there is an element of so. 
of SIX. As 

. in a theorem above, P € 511'; that means J. Ver- a"x = a"px 
= pa"x; a"x is contained in the closure of the set Mx, V x ,  which is 
saying exactly that it is a strong lim1t of elements of QI. 

(8 * 1): Hypothesis' QI is ultra strongly closed. Given S > 0 ,  fxil 
Such that 

on X |xi|" < ° ° , X i € S ) , t € 9 , I "  I 

1=1 

we want to show that there exists s E at such that 

)8 I (s - t)xlla 

i=1 

<6 

and for that, we shall reduce the proof to the case (4-1). 
. Let R be a family of mutually orthogonal Hilbert spaces Re, 
and each Re being isomorphic to S; , the isomorphism being given by 
Ula = **1. Let y1 = Uixl, it follows that 

oo 

Q lyll2 < °° 
r 

1-1 

Let us write 
m 

y f 0 r { y i }  and M" = Q I¥1l2 
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which makes a Hilbert space out of R . 
corresponding b acting on R by 

For any b € % (55) we define, a 

'By = {Ui v13 bU?' 
1 

If a runs over ill 
I f s  emu", it is C_I 
in (4 * 1), index 
means 

ending a form a *-algebra Mon R . 
"'" . \A .{.e can now apply the argument used 

as E 91 such that | (s - QyI 3 <i€ ,  which 

co 

IG -'dla = l ( s  - t)xi|2 e 

i=1 

< 

(9 -° B): This is a general property of Banach spaces; see for 
instance Bourbaki, Espaces vectodels topologiques, Chap. V ,  Sec- 
tion 5 . 1 ,  cor. 1 of prop. 3 .  

I . D . Linear Functionals 
From the standard formulation of Quantum Mechanics , we 

know that one assigns a number to each pair consisting of an obser- 
vable and of a state, namely the expectation value of the observable 
in the considered state. One can therefore consider a state as being 
simply a mapping of the set of observables into the set of complex 
numbers , that is,a functional. We shall restrict our attention to 
linear functionals, because the linearity of these functionals is the 
mathematical expression of the principle of superposition . 
I.D. 1 . Definition: A linear functional on an algebra 9.1 is a mapping 
f of 91 Into C such that 

f(aa + Bb) = af(a) + 8f(b) v a,B e C V a , b  eau 

Note that we do not use here the algebraic structure, only the 
vector space structure. 
Definition: A linear functional f on a Banach algebra QUO is said to be 
uniformly continuous if, for any sequence f an] , an E 91, converging 
uniformly towards an element a e 91, f(an) converges towards f(a) . 
(We shall say simply 'bontinuous"1n what follows . )  

I . D . 2 .  Definition: A linear functional on a *-algebra QI is said to 
be positive, if f(t*t) 2 0 ,  V t e 21. 

We want to deduce some useful properties of positive linear 
functionals . Let 21 be a *-algebra , f a positive linear functional , 
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have that 

ALGEBRAIC TECHNIQUES 

Further, put t = aa + Bb. By definition, we 

39 

0 s f(t*t) = lal3f(a*a) + &1Bf(a*b) + auf(b*a) lel2 f(b*b) 

f(a*a). f(b*b) and f(t*t) being real, it follows that 

aBf(a*b) + auf(b*a) 

+ 

is real too. 
Putting a B 1 , it follows that 

lm f(a*b) + lm f(b*a) = 0 I 

Putting now a = 1, B = 1, we get that 

Re f(a*b) - Re f(b*a) = 0 
\ . 

from which lt follows that 

f(a*b) = f(b*a) 

and in particular, for an algebra with, identity 

f(a*) = f(a) I 

If we now put B = f(b*a) , and take a real, we get 

@2f(a*a) +2@lslB + lel2f(b*b) 2 0 

and if we now consider this expression as a quadratic form in a , we 
know that it is positive if and only if | 8 | & -  |aI3flb*b) f(a*a) s 0.  

From this follows . however, in the case B if 0 ,  

S IS" f(a*a) f(b*b) 

or 

I (f(a*b))l2 = ..f(a*b) f(b*a) f(a*a) f(b*b) S 

(Inequality of Schwartz, Gauchy, Bunyakovsky, etc.) 
The inequality is of course also valid for B = 0 .  
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I.D.3 . Definition: Let QI be a Banach algebra; We call dual ofll1 the 
set QI* of all linear functionals on al, continuous for the topology 
defined by the norm of 91. 
Proposition: 91* is a Banach space with the norm l[fll = Sup l f (a) l .  

llalls 1 
Proof- The linearity is trivial; we only have to verify that the axioms 
of the norm are satisfied and that M* is complete : 

J n 

Ilfll = 0 e sup 
Null = 1 

l f(a)l =0=» lf(a)l = 0  vaear 

= ¢ f = 0  

"If" Hsulp l»f(a)l =sup al lf(a)l = l)~IIIlfll 
a = 1  

"al +f2II = sup l(f1 +f2)(a)l 
la1 = 1  

llfl II + "fa II S 

sup{ l f1(a)\  l f2(a) l }  + 

91* is complete: If 

llfn -fm|| < e V n ,m> N(e) 

then 

l f n  f m II sup 
llall = 1 

I (fn - f m)(a)l S e llall 

that is, fore fixeda, {fn(a)} converges. One therefore defines 

f = 11m f n n -I oo 

so  that 

f(a) 11m fn(a) V a  EIN 
n-nw 

By continuity, f is 11near and one easily sees that it is continuous ; 
it therefore belongs to 9,I*. Q.E.D.  

I .D .4  . Theorem: Let QUO be a C*-algebra with identity element e .  
Any positive linear functional on at is bounded and continuous with 
respect t o  the norm of 21), i .e . 
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lf(a)l S f(e) llall f llfll 
gupp0se 

(1 a) converges 
is complete in norm . 
that la[ 
b*b = ba 
f(b*b) 2 0 ,  and by linearity, f(e) 
argument for -a, and thus get that f(-a) 
f(e) . 
ting a 

= f(e) 

Proof: first a = a*,  \al[ S 1 . The Taylor expansion of - in norm in 91 towards an element b E 91, since QI 
From the definition of a C*-algebra follows 

= la*ll and thus b will be self-adjoint too. By construction 
= e - a; f being a positive functional, we get that f(e - a) = 

2 f(a) . We could repeat the same 
S f(e), and therefore \f(a) l  S 

If a*  = a and llall 2 1, one can repeat the argument for a ,  put- 
= a/(Hall) , and use linearity at the end. 
If now a is arbitrary, we flrst consider a*a which is self- 

adjoint, we thus get f(a*a) S f(e)- lla*a|| = f(e)° llall2 . On the other 
hand , by the Schwarz inequality , 

41 

='.» 

S l f(a)l2 = l f(ea)l2 f(e) f(a*a) f(e)2 llall2 
l f (a)l  f(e) Ilall V a  691 

S 

S 

llfll = sup 
Ilall = 1 

S l f (al l  f(e) 

but the equality is attained for a thus llfll = f(e). e ,  

I .D .5 .  Definition: Let fl , f2 be positive linear functionals on a 
*-algebra. fl is said to majorize is if £1 - pa is a positive 
functional . 
I .D. 6 . Theorem: Let 11 be a C*-algebra with identity e , f a linear 
functional. The condition llfll = f(e) implies that f is positive . 

The condition is therefore both necessary and sufficient (from 
the preceding theorem). 
Proof: Put f = ii + ifa , where ii and is are hermitian. We suppose 
that f(e) = 1, with fQ(e) = 0 .  Let h € QI, h = h * .  Put u = K e  - ih, 
where K E R ,  we get 

lllll 2 = ||\2e + h2 ll§>2 + llhll2 
and on the other hand 

l f (u) \2 - lx - if1(h) + f2(h)l2 = ) 2  + 2xf2(h) + f2(h)2 + f1(h)2 

thus 
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lf(11)l" - 2xf2(h) - g  =f1(hp +f,.,(hp 2 0 | 

adding 

11h112 +12 Null" 2 

we get 

s Ill 's l£(u)12 - 21\f2(1'1) + Ilhlla fluffa - 2Kf3(h) llh S + 2 

and hence 

S 2>¢f2(h) llhll2 vm ere 
which means pa (h) = 0 ,  thus f is hermitian. 

We write x 2 0 if H t E QI such that x = t*t, and in an analo- 
gousway,xs  y if y - x 2  0.  Le thbe glven 0 s  h S  e so  that O s e - h S e and therefore lie - till S l . Sup.pose f(h) < 0 ,  that is, that f 
is not positive. We get 

1 = f ( e ) = f ( e - h ) + f ( h ) < f ( e - h ) s  Ile-hll 1 S 

which is a contradiction . 
I .D.7.  Proposition: Let 211 be a~subalgebra of a normed algebra 9/ 
and al a continuous linear functional On 211 . Then, there exists a " 

continuous linear functional " " " a n : - G ' " a f  al (a) = f(a} V a E 911 . 
If £1 is bounded on 211 ,with ,f can be chosen such 
that llfll = llfl II. If 211 and EI Lnd al is positive, f can 
also be chosen positive . . . 
Proof: This is the Hahn-Banach theorem: for a proof , see Naimark , 
Ch. 1, p.16, cor. 1, p .  17; or Day, Normed Linear Spaces, Springer 
1958, Ch. l,»p.9; Banach, op. linéaires, Warsaw 1932, Section 2 ,  
oh. ..1 • . 

'Q 

I.D..8. Definition: A positive linear functional f on a *-algebra is 
said to be pure if any positive linear functional f majorized by f is of 
the form f =1\f, 1 2 K 2 0 .  

This definition is equivalent to  

f =C!.1f1 +a~2f2 =» al f B = f '  if a102 if 0- 
a1+ a2 = 1 

or 
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a1m2 0 

Therefore , on a normed *-algebra 91, f is extremal in the set of all 
positive linear forms , of norm $1  on QI . 
I .D .9 .  Definition: Let 'II be a Banach *-algebra, QI* the set of all 
continuous linear functionals on 91. Any fixed a e 91 defines a linear 
functional on QI* (the f(a),th1s may be identified with an element 
to e'@I**). The uniform topology on QI* is the topology given by the 
basis of neighbourhoods of an element to E SUI* 

9,1 e (to) f 
O 

{ f l f e a I * ,  sup l f(a) (a)l < 8} 
lIall=1 
s e a l  

We define as W*-topology of M* (or 111-topology of QI*) the 
weakest topology in which any element of at is continuous as a linear 
functional on QI* . 

This topology is I-Iausdorff, and may be characterized by the 
set of neighbourhoods 

OR € ( f 0 . 0 ) = { f l f e % I * ,  lf(a) ( a ) l < e , v a e G l ,  - f o 

where o is a finite subset of QI. 

I.D. 10. Theorem: (Alaoglu-Bourbaki): Let an be a Banach space, BI* 
the dual space of the bounded, continuous linear functionals one. Let 
further UI1* be the unit ball of 'J\*. Sli* is clearly closed in the norm 
topology. m *  is compact in the W*-topology . 
Proof: See Rickard, discussion at the bottom of p. 222, or Dur ford 
and Schwartz, theorem 2 ,  p. 424. 
Corollary: The set 1331 of all positive linear functionals of norm. 1 
(which we shall call states) on a C*-algebra QI, is closed and com - 
pact in the W*-topology . 

The importance for us of this theorem and its corollary arises 
from the theorem of Markov-Kakutani, which we shall State below . 
I .D I 11 . Definition' 
and To a -* »rga, 
of the automorphism 
invariant under G, if f(a) 
Theorem: Let 91 
phisrns of QI. 
under all elements of F.  

Let G be a topological group, as a G*-algebra 
g E G, a E QI, a representation of G in the group 

of QI. A linear functional f E SJ* is said to be 
=f('r a ) , V g € G , V a € 9 , I .  

be a C*-algenra , F an abelian family of autornor- 
There exists a state f on 21, such that f is invariant 
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Proof: Let us first note that the automorphisms T of QI induce 
automorphisms T* of QI*, by the condition 

(To*f)(a) : :  f('rg&), V .a  E 91 . 

- a :r 
I 

This automorphism is clearly also an aU mism of the set of 
all states . We know from the corollary; _ theorem of Alaog u- 
Bourbakl that 'Nm is closed and compact in the W*-topology; we also 
know that each automorphism of QI is also continuous under this topo- 
logy. But these properties are exactly the hypothesis of the 
Theorem (Markov-Kakutani): Let R be a compact, convex subset of a 
llnear topological space X, F an abelian family of continuous linear 
mappings of R onto itself. Then there exists a point p 6 R such that 
fP = D ,  v f e F.  
Proof: See Dur ford and Schwartz, theorem 10.6,  p .  456. 

ams : 

be I""£"d 
implies f1 pa 
al + 02 = 1. 

A positive linear functional f is said to be pure , 

+ Q2 f2 , 0 ,  fi pos funct . jin * °Ii 
f and 0.1 + a2 

2 ' ' "ii" 
= 1, if a 1 - 0 2  ago, oral-a2 

1 
0,  

:__ _;:___ .,___`_ . 3 ;_ r * "  ;: ____' _--;, ;: ;; ;_ ___; _---al in the 
set 'Be of all positive linear functionals, of norm S l  on 50. 

We finally shall need the theorem of Krein-Mil'man in the 
following form : 
.Theorems (Krein-Mil'man)° If QI is a Banach algebra , mis the closed 
convex hull spanned by the pure states on at. 

I.E. Topological Properties of Linear Functionals 
We have introduced so far two kinds of topologies for the 

linear functionals , namely the W*-topology and the uniform one . 
In the particular case of the *-subalgebra of'B (5), we can also use 
the various topologies defined previously on 2562) . 
speak of strongly, ultra strongly, weakly and 
linear functionals on any *-subalgebra at of is 577' 

Furthermore , on a Hilbert space, there exists the particular 
class of linear functionals generated by ve ctors. We shall call them 
w-forms: 

We shall therefore . 
a.- contlnuous w 

w: QI * Q: 

L0Xy(a) E (x,ay) 

Le X(a) (x .ax) 
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It is clear that any up-form is weakly continuous , and that Lux 
is always a positive linear functional: 

we(a*H) (x ,a*ax) (ax .ax) =l1axl2 0 

The theorem which we are golng'to state below should show 
the connections between the various topologies introduced earlier 
and the w-forms . 
LE. 1. Proposition: Let 91 be a *-subalgebra of Mo). wlth identity 
element , f a positive linear functional, majorized by we. Then 
there exists .t' E 91' , such that f = w . 
Proof: For S ,t E 91, we have that t ' x  

S l f(s*t) l2 f(s*s) f(t*t) l5xl2. lbcl2 
If we define as a new scalar product on SIX, 

S 

(sx, tx)' = f(s*t) 

we get a positive, sesquilinear, continuous functional defined on my, 
which is also obviously continuous . Using Riesz theorem, we get 
that there exists an operator to = , positive , on my, and such that t *  

o 

f(S*t) (tOsx, to) 

If now r , s , t  € 91. we get that 

(totsx,rx) = f((ts)*r) = f(s*(t*r)) = (sx,t*rx)' = (tosx,t*rx) 

= (ttosx,r-x) 

and therefore tot = tt on 
Let now p be he projector on p E 91 I . Thus top is hermi- 

tian, positive and belongs to QI' . Put t ra = top, t '> 0 ,  we then . 
have that v t G 91. 

f ( t )  : (tax,tx) (t12x,tx) (t'x,tt'x) Ultlxlt) Q.E.D. 

I.E. 2 .  Proposition: If "'x.y is a positive linear functional on a 
*-algebra 9.1 then there exists a z 6 59, such that we Y = we on 91. 
Proof: 1 
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2w X |  y(t) +I-"I 

2(x.ty) + ,, 

= (x+sr. t(>=+y)l - (x-y.. t(x-§r)). 

s (i<+y. t(x+y)) 

thus 4*0x.y S Wx-1-y and the proposition follows from the preceding one . 
I .E.3 . Definition: Let 91 
positive _operators of 91. 

if, for; 
t is  the F 
' |  Let 21 be 
mutually 
:on 'Al is 

- be a voN NeumaNn algebra, £I+ the set o% al'l 
A positive linear functional f on 91 is said. tO 

ing f1ltei'lng 'se15 57: H+ of upper bound 
of f(a ) 1 

P'eI an 
'IA post 

if 
r 

( ) f P1 
i i I  

f(pi) 
i i I  

i I 

J 

Remark~ mIn general the notion of complete additlviry is stronger than 
that of cr-addltlvity (as used in the theory of. probability or in mea- 
sure theory, for instance) since G-addltlv.ity applies only to countable 
families . It is clear that as long as we stay in separable Hilbert 
spaces the two notions are equivalent. - 

I.E . 4  . Theorem: Let 91 be a van neumann algebra , f a positive 11near 
functional on al: the following five conditions are equivalent: 

(i) f is normal ` 
(ii) f is completely additive 

an oo 

(iii) . f = '  lx\=a u 

I 

1 . L  1 < of ._ |  C . 1 1=1 1=1 
(iv) f is ultraweakly continuous 
'(v) f is ultrastrongly continuous 

and the following three conditions are equivalent among themselves 
(vi) f is weakly continuous . L § 

(v11) f is strongly continuous 
'lIT 

(viii) f = we , N <  
1 i 1 

oo 

I 
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.Proof_: See 
(i) 
(i) 

(iv) 
(vi) 

Dixmier, loc. cit.: 
=» (111) =» (v) 
ea (11) 
co (v) ¢=> (111) 
=> (vii) => (viii) 

1.4 .2  
1.4 
1.3.3 
1.3 .3  

theorem 1, p .  54 
exercise 9 ,  p .  65 
theorem 1, p .  40 
theorem 1, p.  40 

I .E .5 .  Remarks' 
1) Let us note that in the standard formulation of quantum 

mechanics , states are represented by density matrices , and hence are 
of the form (iii) of the preceding theorem and thus normal states . 

2) In the same way as we did define the continuity of linear 
functionals with respect to the various topologies introduced, we can 
speak of the continuity of the different kinds of morphisms we can 
consider. We have as an example the following 
Definition: Let 911 and MY be von Neumann algebras, and cp a homo- 
morphism of 911 into Q12 . up is said to be a normal mapping, if, for any 
filtering increasing subset is C QI* of upper bound t € H+, up({§) has q0(t) 
as an upper bound • 
Theorem: The is or orphism of two von Neumann algebras is normal . 
Proof' See Dixmier, loc. cit. , 1.4.3 . cor. l ,  p .  57 and theorem 2 ,  
p .  5 6 .  
Theorem: Let 211 and 212 be von neumann algebras ,co a normal mapping 
of 311 into M2 , such that CMGI ) = emf . Then email) is a von Neumann 
algebra and cp is continuous for the ilirastrong and the ultraweak topo- 
logy. That means that the restriction of up to bounded parts of 911 is 
weakly and strongly continuous . 
Proof: See Dixmier, 1.4.3 loc. cit. r cor. 2 ,  p .  57.  

LF.  The Construction of Gelfand, Nairnark and Segal 

I.F. 1. The Gelfand-Naimark-Segal construction provides a repre- 
sentation into 58(5) of every C*-algebra 91 with an identity for each 
positive linear functional defined on as. The basic idea is to con- 
sider QI as a vector space, and the left regular representation on it . 
One then defines a scalar product and a norm on it using the given 
linear functional, and then makes the quotient space with the elements 
of vanishing norm. This quotient space once completed is then a 
Hilbert space on which a representation of 91 is defined . 

. 
I .F.2 . Let therefore be a positive linear functional on a C*-algebra 
91 with unit element e We define an hermitian form on 91 (considered 
now as a vector space) by 
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(kJ) = f(x*y) , 
The set Sf = [ x i x  E in, (x ,x )  = 0} is a left ideal of SCI. Indeed, sup- 
pose y E QI, we get 

for x , y  G 91 

(ex. ex)3 = f((yx)* ex)2 =f((x*y*y)x)2 

S f((x*y*y)*x*y*y) f(x*x) = 0 

using Schwarz inequality. This means that ex E of . We still have 
to verify that "of is a vector space: Suppose X1 IXg E Sf, then 

f((x1 +x2)*(x1 +x2))= f(x1 *xi) + f(x1*x2) + f(x2* .1) + f(x2*x2) : 0 

H1H 1 

using Schlmw inequality for the second and third terms . 
Huotient space 'l1/Sf, that is, the set of all 

classers of QI equivalent modulo elements of fol 
of the; - l . . , w e  
y . . . - .  e _ _  ` e ( n . € ) = ( y . x ) =  
this definition is consistent, that is , 
depend upon the particular choice of a "representative . " 
XI ,x E E 

-H 

. In each 
pick out a "representative " cement x., 

f(y*x). We have to show that 
that the value of (§,'rI) does not 

Suppose 

l(y.(x-x1))l2 lf(y*(x-x1))l2s f(yy*)-f((x-x1)*(x-x.)) 

O
 II 

as (x-x1) 6 Sf- 
It is clear that (5 m) = ('r1,§) S O  that (g,g) 2 0 and 

form is sesquilinear. Now suppose (e_;,1:;) = 0: this means 
for x E E ,  = 0.  Therefore, the form (Et) 
a prehilbertian space--its completion by respect to this so 
duct we shall call KJ . 

thus x Q go and g 

I .F.3 . We 
Take an arbitrary class 5; 

of Ur into% (©) . 
x ,  and let a E an 

ax; n 

want now to construct a 
= {x}  

denote by n = {ax} the class 
dunes not iependllpvn ;he DB-ltlr=I-1 

since 
linear O _ 
of all jin 

representation 
with "repres entative °' 

with "representative " the class 
jar choice of x is 1-Iepres 

so . 7' 1 

\011 

entaiiie . 
n. 

a 

lAa€I2 (Aar -A l i )  = (ax,ax) = f(x*a*ax) . 
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f1 (a*a) 
putting b 
we 

We define the linear functional f1 (a)=f(x*ax) . Clearly fl is positive: 
= f(x*a*ax) = 2 0; therefore, If1 (b)1S f(e)llbll and , 

= a*a 1 
get It'(x*a*ax}1 S - (g ,§)-llall3 , and thus 

f([aX)*ax) 
, E1 (a*a) s fl (e)° Ilalla , replacing f by the definition 

f(><=*»()-Ilall2 

S \Aagl2 ||a||B.|»;|a 

norm of a , lIAa II la II . AA being a linear operator uniformly bounded 
on a 
tor defined on the whole of9§; . 

We have now to verify that the mapping a . Aa' b ' As etc. is 
a representation of 21: 

Therefore Aa is bounded on '~'>' and its norm is smaller or equal to the 
S 

dense subset 55' of $5 can be extended to a bounded linear opera- 

I (aa+8 b)x] = a{ax}+B{bx} 

1 - { x b A a A 

Ala+BbE 
A : :  abx =A bx : abe { } ai } 

and that this representation is a *-homomorphism Aa* 

ma; + BAb@ 

A aAbs 

= A ak: 

(T1 »A&§) (wax) f(y*ax) f((a*y)*x) (a*y.x) (Aa*'f1 . Q) 

I .F.4.  Let Fgo be the class of all elements of 111 equal to e modulo *f~ 
Then Argo is the class containing tie element a; therefore, the set 
of all elements of the form A-agnn coincides with the set of all classes r 
that is, with Q' , °o is a 
cyclic vector for the representation of QI . (N .B . A representation with 
a cyclic vector is called a cyclic representation.) 

but so' is dense in So and this just means that F 

I . F . 5 .  f(a) = f(e*ae) = (e,ae) (€o,Aa€o) . 
Therefore , in the representation we have just constructed, f is an Lu- 
form, and hence, weakly continuous and normal with respect to the 
weak closure of the representation of 91 in so. 

We can imagine that we started with SU defined on some Hilbert 
space go , and that f was not e sum of up-forms in so, . We arrive , 
therefore r at the conclusion that for a linear form on a C*-algebra the 
property of being expressible by re-forms (or by density matrices) is a 
representation dependent one--1t is true in some and not in others . 
This observation will he of the utmost importance for the physical 
applications . 
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I . F .6 .  The relation lIAal S la" implies that the homomorphism a -° AA 
is norm continuous (this is in fact true for all representations of a 
Banach *-algebra with unit) . But, in general, even if QI is a von 
Neumann algebra , the mapping will not be continuous in a weaker 
topology, and the image under an homomorphism of a von Neumann 
algebra need not be again a von Neumann algebra . However, as a 
special case, we have the 

I .F .7 .  Proposition: Let 91 be a von Neumann algebra, f a positive 
linear normal functional on QI, up the corresponding Gelfand homomor- 
phism. Then up is ultraweakly and ultrastrongly continuous and cp(2H) is 
again a von Neumann algebra. The restriction of to to bounded parts 
of QI is strongly and weakly continuous . 
Proof: Combine th. 2 ,  p .  5 6 ,  prop. 1, p .  57 of Dixmier, loc. cit. 

I .F .8 .  Definition: A representation 911 of an algebra QI into 58(5) is 
said to be irreducible if 911' = [Ml . This is equivalent to saying that 
911 does not leave invariant any closed subspace of $ other than { 0 }  
on © . 

I .F .9 .  Proposition: Let QI be a Banach *-algebra, f a positive linear 
functional on 91, all the associated Gelfand representation in§B (&) . 
Then 911 is irreducible if and only if f is pure on 21. 
Proof: See Naimark, normed Rinqs, p.  255 and f f .  

LG. Classification of Factors 

I . G .  1 . Definition: Let at be a von Neumann algebra . Two projectors 
91 and P2 of at are said to be equivalent (with respect to 91) if there 
exists a partially isometric operator V E M such that vv* = p2 , v*v = 
P1 . One then writes PI "'P2. One easily sees that~ satisfies the 
properties of an equivalence relation . 

A projector p of a von Neumann algebra is said to 

D1 g p . A projector which is not infinite 
REspect to 91) if it is equivalent to a projector p1 

11er than p ,  p st 
is finite . 
I .G.3 .  Definition: pa is said to majorize P2 
if there exists p 6 91. p ~  pa , p s P1 . 

I DO oc P1 for PI .92 e at 

I .G .4 .  Proposition: PI oc pg and DO oc pa 
Proof: Dixmier, loc. cit., p .  226 ,  prop. 

PA imply PI . 
1 .  
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Let at be a factor, 91 , PA 6 91. Then either P1 mpg I .G .5 .  Theorem: 
or P2 of PI . 
BLQQI: Dixmier, loc. c1t. I cor. 1, p .  228. 
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I .G.  6 .  Definition: Let QI be a factor, thus it is said t o  be 
(i) of type l , or purely infinite if every projector of at is 

infinite . A factor which is not purely infinite is said to be semi- 
finite I 

(ii) A semi-finite factor which contains minimal projectors is 
said to be of type I or discrete. A factor which is not type I is also 
called continuous . 

(iii) A semi-finite factor which does not contain minimal 
projectors is said to be of type II . 

(iv) A factor is said to be infinite if it contains at least one 
infinite projector,  and finite if it contains only finite projectors . A 
finite discrete factor is said to be of type In, an infinite discrete 
factor of type Im- A finite continuous factor is said to be of type 111 , 
and an infinite continuous factor is of type II.. if it is semi-inf1nlte , 
and III., otherwise . 
I .G.7 . Definition: A von Neumann algebra is said to be of type I 
(resp. 11, 111) if it is the direct integral of factors of type I (resp. II , 
111) . It is finite if all its projectors are finite , otherwise infinite . 

For more details on the classification of von Neumann alge- 
bras , consult the lectures by W .  Wyss . 
Section II. Statistical Mechanics 

ILA. Generalities 

II .A O l . 
It is not possible , in the relatively small number of hours at 

our disposal, to pretend giving here a complete survey of all the 
applications of algebraic methods to statistical mechanics. We shall 
try, however, to give some of the leading ideas and important results 
in this relatively new field . 

We want to warn the specialists of statistical mechanics that 
what we are going to present here will appear rather strange to them , 
but one should not forget thats nearly all researchers in that field are 
quantum field theorists , and that many of the techniques and aims 
have been borrowed from that field . 

Among the important results which we shall mention, there is 
the generalisation of ergodic theory to quantum systems , the notion 
of asymptotic abelianes. the analytical behavior of the thermodyna - 
mical functions , the time evolution, and so on . 
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II.A.2 . As is also developed in the lectures by H.  Borchers 6)any 
quantum system can be abstracted in the following way: 

- - '  Self-adjoint operators of a C*-algebra M 
five linear functionals on91, of norm 1, 1391 

mu=E1:n':F.1t'§1"§&=r,¢¥5: mechanics , we have as  interpretations ; 
Observables° Continuous functions on phase space (vanishing 

at infinity if the latter is not compact) 
States: Positive measures on phase space . 

We thus have apparently two different interpretations for classical 
and quantum mechanics . This is happily not true and can be seen 
in the following way' 

Let us start with an example, that of the ideal gas in a box . 
Let thus Rv be the phase space of that system, and, for instance , if 
we take the microcanonical ensemble, we get as admissible phase 
space a compact 6% of the energy "surface" between E and E + dE . 
This set 6% is compact because the energy is finite and the system 
is in a box . 

The observables generate in an evident way a *-algebra Mo of 
the continuous functions defined on 5%. One can make a C*-algebra 
out of it by taking the supremum norm. A state is defined by the 
probability of the system to be in the different points of R ,  which 
amounts to the definition of a positive measure p on 6% and of the 
definition of the expectation value of f E Mo in that state; it is 
given by fp .  But we know from the general mathematical theory that 
the posltl e measures on 8 form exactly the positive cone of the dual 
of 910. That means for us that we can interpret the classical mecha- 
nics exactly in the same way as  quantum mechanics , by taking the 
self-adjoint elements of a C*-algebra as observables, and the posi- 
tive linear functionals on that algebra as the states . 

Note , however, that the essential characterization of the 
classical system is the fact that the C*-algebra is abelian. 

Once we have made this abstraction for a classical system , 
one may wonder whether the usual interpretation of the observable 
by continuous functions and of the states by measures is always 
possible. That this is true is given by the 
Theorem (Gelfand): let QI be a C*-algelxa, abelian. Then there 
endsts a I-Iausdorff space I ,  locally c . mm that QI is isomor- 
phic to the algebra coUt) of continuous : on '£ dec :ii 

at °°. It is compact if, and only if at pe an identity 
Proof: All the proofs are nearly the same; they differ only by the 
realization of the space as as 

t I 
Ld 

space of maximal ideals: Naimark §4 
space of characters: Dixmier C* , th .  l . 4 .  1 
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- space of pure jin. functionals: Kadison, Cargese lectures , 
theorem 2 . 2 . 1 .  

What remains general in the algebraic approach is the fact that one 
is not specifying the manifold chosen as  having the admissible posi- 
tion of phase space , nor the particular topology on lt. This is 
of course of great importance in the thermodynamical limit, whenever 
the phase space is becoming infinite dimensional. 

II.A.3 . If we now are looking at the states on such a C*-algebra , 
we immediately observe that there exists a fantastic collection of 
them. 

In the particular case of the ideal gas , for instance, we have 
that the states used in statistical mechanics are measures equivalent 
to the Lebesgues one . The 6-functions , on the other hand, are giving 
the analytical mechanics . In order to select a particular description , 
we are therefore going to  impose further restrictions on the set of 
admissible states . The first (and most important perhaps) class of 
restrictions which we shall mention is bound to  the notion of 
invariance . 
II.B . Invariant States 

G-invariant) if f(a) 

I'.[.B . 1. Definitions: Let G be a topological group and T ; a 
Q E E,  a IE 91 a representation of G in the group of automorphisms 
of QI. A linear functional f E QI* is said to be invariant under G (or 

= f (T  a ) , v a  am, v g e G .  
For abelian C*-algebras 91, the notion of invariance can be 

translated in terms of the associated coNe) . To the automorphisms 
corresponds the homeomorphisms of I . To the invariant states on QI 
one associates the (finite) Radon measures on i .  We are again in the 
same set up as we started from, up to  the difference that the mea- 
sure on ?€ is bonded . 

Another special case is the one where G is the group of inner 
is trivial and automorphisms of a von Neumann algebra 91. Then To 

the invariant positive functionals are finite traces on QI. 

,I Tea, 

II.B.2. The theorem on the existence of at least one invariant state 
(p. 44 )  is not always very useful because we don't know anything 
about the properties of this invariant state . It is possible to obtain 
much more powerful results , however, and for this we refer to the 
lectures by H.  Botchers at the present school . 
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II.C. Quasilocal Algebras 

lI.C. 1 . Until now, we have not imposed any restrictions on the C*- 
algebra we were considering. There is , however, a crucial property, 
which will be of utmost importance in everything which follows . This 
is the local nature of all interactions . This property is ensured in 
quantum field theory by the locality axiom, and in statistical mecha- 
nics it should be reflected in the fast decrease of the correlation 
functions for great space separation. In the case of statistical 
mechanics , however, the situation is slightly more complicated than 
in quantum field theory, and this is because long range correlations 
do indeed appear. We , therefore , have to be careful by not exclud- 
ing interesting cases , and we shall see the right description is one 
in which the algebra, the states and the invariance group together 
possess certain properties . We start with a rather elementary, but 
very important, example, the case of quasilocal algebras . 
II.C . 2  . Let a*(x) and a(x) be the usual (second quantized) creation 
and annihilation operators defined on a Fock space. More exactly , 
we shall consider the smeared out operators , symbolically wrltten as 

a*(f) 

II .ff(x) a*(x)dx; a(f) 

II If(x)a (x)dx 

where f is in £2 (RS). 
For operators satisfying the canonical commutation rules , 

a*(f) and a( f )  are unbounded closed operators. In this case , one 
writes down the polar decomposition, and, instead of a*(f) or a(f) 
itself, one considers the partial isometric and the spectral family of 
the hermitian part . 

In the case of operators satisfying the canonical anticommuta- 
t1on relations, one has bounded operators on the Fock space, but 
we shall consider only operators which are products of the same num- 
ber of a*  than of a . This is because we only want to retain obser- 
vables . 

There are now many different C*-algebras which may be asso- 
ciated with these operators , and there is no choice which would be 
the best under all circumstances . In statistical mechanics , however, 
the restriction of a well defined local density imposes restrictions 
which will enable us to make a "standard" choice . 
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Let % be the space of infinitely many times differentiable. 
_..,.._______ous functions of support contained in cs. We shall denote by 
Ms) the C*-algebra generated by all operators - 

{a*(f), a(f) | f e mg) 

and ./L((<,~») the von Neumann algebra generated by the same operators , 
thus 

A (Q) = so(@)" 

Note that in the case of the commutation relation, A(@) is a factor 
of type lm . 

We shall further define 

58 U 8(9) 
Qbounded 

as the algebra of quasilooal operators and 

JV' = U .A (@) resp.~A= .u .A(@) 
G bounded (9 bounded 

We notice that the local algebras which we are defining here 
are not the same as those which we would .define for a field theory, 
because in the latter case , we would generate the algebra using cp(f) , 
¢(f) . The reason for that is that in the first case, »there exists a local 
"number of particles operator. " This is not the case in quantum field 
theory, the "number of particle operators" not being a local one. 

II.C . 4 .  In the case of the Fock representation, we know that there 
exists an operator "number of particles . " Therefore we also know 
that for every bounded region @, there exists an (unbounded in the 
case of the CCR ) operator N((9) , affiliated toA(®).  There is an in- 
ver§e_to this proposition, and it is given by the : - 

. ... . .  ,,.,.,..: A representation of the canonical commutation ,or anticomf 
rnutatitn relation by linear operators on a Hilbert space possesses an 
operator "number of particles" if, and only , f  it is unltarlly equiva- 
lent to the Fock representation, or to a direct sum of representations 
unitarily equivalent to the Fock one r or, in other words , is quas1- 
equivalent to the Fock representation... 
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in See Garding and Wightman, Proc. Nat. Acad . 
___ , B22 (1954); De11'Antonio, Doplicher, Ruelle , 
(1966) . 

Sci. u .s .£ ,  
C.M.P. _2, 223 

II. C . 5  . For evident physical reasons , we are , in statistical mecha- 
nics , only interested in such representations Tr (faithful, and we shall 
see that this last property is always satisfied in this model, A being 
simple) of 23 (or /Z), such that there exists an operator "number of 
particles" for each or(&B ((9)) . But we know that this is true only if 
rr(5B((9)) is quasiequivalent to the Fock representation, but this means , 
of course, that Tr can always be extended to A (@) (and hence to A ) ,  
and that the mapping of /Hs) onto 1T(A(@)) will be normal. It is , 
therefore , permitted to work with the weakly closed/vl.(®) instead of 
the Ms) . 
I I .C .6 .  The standard procedure, in statistical mechanics, for con- 
structing states in the thermodynamical limit, is to define first local 
states , and then take the limit. This procedure also applies in our 
case; we have, however, a very severe restriction to impose on the 
limiting state f ,  and this is that f has to  be normal on A(@). Other- 
wise, whenever we shall make the Gelfand construction with f ,  we 
shall not have a representation of A (is) quasiequivalent to  /L(@) . 

Fortunately enough, this criterion is simple to  satisfy in our 
case, and this because we have shown that we could take the alge- 
bras.A((9) as von Neumann algebras . 

Let, therefore, B be a box, of volume V(B) , centered at the 
origin, and A(B) the corresponding local von Neumann algebra. Let 
fur°****°itE'ii' be a state on .A (B) such that fB(NB) < °°, where NB is the 
one "Number of particles"1n B.  

l.et now lBi} be an increasing sequence of boxes , such that 

lim 
i -o 

f B. 
oo l 

(N8i) (V(Bi))-1 

I' exists and is finite . We suppose, further, that 1 
on each A(©) , that is, for i ,  j sufficiently 1arge,§-E 
and for any a 6 A((9) , 

ges weakly 
j D (91 B 

lim 
ij -n m lfB.(a) 

1 

f B. 
J 
(a)l = 0  
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Let now b E _/4., S 

such that Hb-a II 
f E pa to A" . 

i 
1fi(b) -- 

This hypothesis can be physically interpreted by saying that the phy- 
sical observables of the infinite system should have as expectation 
values the limit of the expectation values for the observables in a 
finite system. In order that the limit has any meaning at all, it is of 
course also necessary to show that the limit is independent of the 
choice of the sequences of boxes (or other volume) taken. This has , 
of course , to be checked in every particular case, as we shall also 
see later . 

Under this hypothesis , it should be clear that fB. converges 
toward a linear functional defined on the whole of A : 1 
Proof' It is evident that the limit is a functional on J*/' = @Ubd A(@) . 

> 0'. There exists @ bounded, (9 C Ra and an a e ./L((9) 
< e . Let now f i be a normal extension (arbitrary) of 

i We have that ' 

fig) f j  < 3s §j(b)\ < Ze + - ' f .  
J (a)l = 29 + lfi(&) (a)I 

Furthermore , the limit is not depending upon the extension f 
chosen: more exactly, let 

2 lim 
i °° g 

A si, an 

lim 
1-boa go I £1 go on f£(®) , for (9 bounded 

Then, for b € ./L, € > 0 ,  there again exists a E ./HG). (9 bounded, with 
Ha-b II < € . For i sufficiently large , we have that 

IE(b) - §(b)l 5 26 + l¥(a) 

Let now i be such that Bi D G ,  then fig) 
on A .  

g(a)I = 4e + l%i(a) -- g1(a)l . 
§1(a). V a  e/mm. thus f = §  

II.C . 7 . The next question to answer is of course whether we have 
any guarantee that the limiting state will be in any way an acceptable 
one, and, as we have already seen, one condition is to have a well 
defined local number of particles. That this is automatically 1Iue is 
due to a very extraordinary property of von Neumann algebras , rfamely 
the 

Let M be a von Neumann algal 
mal funcemma°""'I on QI, converging 

6 91, \fi(&) - f(a)T= 0) Then f is normal . 
the convergence i or . 

a sequence of positive 
fly on 91 to f .  (i.e. v a 

If at is a type I factor , 
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Proof: See Sakai, Proc. Iapan Acad. is, 439 (1957); Dell'Antonio, 
Comm. Pure And Appl. Math. 2_Q, 413 (1967). 
In our case we therefore only need to recall that A(@) is type I. 

Note that the above mentioned theorem only is valid for von 
Neumann algebras. It is in general false on C*-algebras . 

Once one has constructed a particular state having the proper- 
ties desired, one then makes the Gelfand construction. The fact that 
the limiting state will be normal on the A(@) (J4.(®)) 
again a von Neumann algebra , and of the same type (but 
necessarily a factor) . 

implies that of is 
no longer 

II,C.8 . If we now consider the commutation properties of the algebra s 
A(@). we first remark that these algebras are not local in the sense 
that GI ,O (92 = {0§ }v'==>A(@1) cA(@2)' . We know, however, that the 
commutator Ea*(x). a(y)] decreases llke an exponential. This means 
that for great distances of their support, the observables essentially 
commute . This property is an extremely important one, and we shall 
study it in detail in the next section, but before that, we want 
quickly to examine what would happen If we had slxict locality. We 
have the following theorem, due to Misra (H.P.A. §_§, 189 (1965)). 

H.G.9 .  Theorem: Let be given a mapping G * A(@) of the open 
bounded sets s E IRS into the set of all von neumann algebras , such 
that 

1) Mo) is a factor 
2) GO c @)2 = A(@1)cA(e) 
3) @1 n @2 = (I) =»A(@1J(:A(@2)' 
4) There exists a representation of a nontrivial noncompact 

group of translations (discrete or continuous) in Aut(/¢L) . 
5) @ is separable . 

U 
G bounded 

as , and Jo,(§1) infinite i 
projector with respect to  the algebra J4»(@2 ) ,  (92 

Then the C*-algebra J¢l= .A(@) is simple . 
Proof: We shall first show that/V`= U /l.(@) is slmple . 

G bounded 
Suppose 3 is a two-sided ideal of/Y, then there exists at least one Cs 
such that ex n/us) #v put3nA(@) =?3@ ` - 
sided ideal of .A(@). But./f,(@) is supposed 
be finite, since finite factors are simple . 
that there exists a nontrivial projector p e 
lake A(r.=)1), @1 n o = 
cause of the invariance under translation. 
an Infinite = (9 U 81 . 

- _  l a r  phi 
r 
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Suppose it were not the case , than the reduced algebra Alana) would 
p '  be finite but this algebra contains as subalgebra the algebra '5°4@1 ) 

But as p e A(GJ1)' , this implies that Jt(s1) is isomorphic to A(s1) , 
which we supposed infinite, and as a finite algebra cannot have an 
infinite subalgebra, we conclude that p must be 1nf1h1te wlth respect 
to .A(®2) . 

This in turn implies that there exists an isometric operator 
w e ../l(G2) such that ww* = l and w*w = p (Naimark, VII 35 . 5  . prop . 
vI). From this follows , however, that wpw* = ww*ww* = l E 3(©2) . 
Thus 3 (GQ) is trivial and hence JV11s simple . 

Let us now show that A= JVis also simple . It is sufficient 
for that to show that all representations of /Lare faithful . 

Suppose now that or is a representation Of A, t e JO., and 
Tr (t) = 0 . Let to be a sequence of elements offal/suCh that to con- 
verges in norm toward t .  We have that 

ll1(tn - t) II II 1|w(tn)` -vmll l1w (tn)1 S Itn - all 

certain !i(@n). and asN'ls simple, n(/£L(@Q)is 
and thus preserves, the norm since Man) is a C*-algebra , 

=a S - -» g 0, and hence 
0 .  TlXerefore all representations 0124 are fa RhfL11 and A is 

But t belongs to a 
fauhlbl . 
thus lbw: all = Iltnli t ._ 

therefore simple . 
Iltnll lIe,-, tll, thus lit,,ll 

Q.E.D. 

II.D. Asymptotically Abelian Systems I 

liar 
<!a 

a compact i! Gm'EEwa! g E K implies 

a C*-algebra 111 and 

Ila,ag(b)] I 
Such a pair is called weakly asymptotically abelian, if V e >  0 ,  

a,b E QI and any state f on QI, there exists a K C  G, compact, and 
such that g Q' K implies 

< e 

I 

\ f ( [a  .on9(b)] l)< 

In order to simplify notations , and because it is anyway the most e 

important case, we shall take as model for G the group T of transla- 
tions x .  

We shall further define 

€ 
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II.D.2 . Definition: Let f be a state on QI. f is said to be strongly 
clustering (fortement essaimant, in French) if v a , b  6 91, 

1x\M~If(Tx(a)b) f(TX(a)) f(b)l : 0 

M(g) = lim 
L-4 

l 

Let g be a function on 'R3 , we define as the mean M(g) of g 
over R3 , 

41T La .t g(x)da`x 

lxls L 
m 

whenever it exists . This mean is the (C, 1) Cesaro mean (of. Hille 
and Phillips, Functional Analysis and Semi~Groups) and is also 
called the Wiener mean . 

We shall say that a state is weakly clustering if 
M(f(Tx(a)b) z. = 0 f(Txa) f(b)) 

II.D.3 . It is clear that if a function g is continuous and tends to 
zero at infinity, M(g) = 0.  We conclude therefore that any strongly 
clustering state is also weakly clustering . 

If f is T-invariant, we have that 

M(f(¢Xa)) = M(f(a)) = f(a) 

and we can wrlte the property of weakly clustering as 

I l ' °  I I "" 
M(f(frX(a)b)) = f(a) f(b) 

_. --1 Let {%I,a] be an asymptotically abelian system. 
QEHHQ G-invariant states are called E-states, or 

. .  " " - a l  .. 
This class of states is truly remarkable; that they represent 

a generalisation of the classical notion of ergodic states should be- 
come clear after some results , especially the fact that ergodic states 
are extremal among the set of invariant states . 

I 

II.D.5 . Theorem Let {9,[,a} be an asymptoticall1§r abelihfh system 
f a G-invariant state on SCI, and n,5(9I) the Gelfand r-= 
by f on of, x E bf the cyclic vector such that (Xf¢ 
€ 11, and uffaS the representation of G on Qf. Then 
eries are equivalent: 

1) f is weakly clustering (and hence a E-state) 
2) Xf is the only vector of f5f invariant under uf(a) 
al LetR = [of (21) u "f (G)]" , then so' = un 
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4) R, (as defined under 3)) is a factor 
5) f is an extremal element of the convex set of all G- 

invariant states . 
Proof: See Doplicher, Kadison, Kastler, Robinson, C.M.P.  _6, 101 
(1967); Lanford and Ruelle, IMP §, 1460 (1967). 

II.D. 6 .  The fact that the E-states are extremal in the convex set of 
all G-invariant states is of course the most important result. It is 
perhaps useful at this point to recall an essential result of classical 
ergodic theory: 
lheoremz Let K be a compact, metrizable space (phase space) and G 
a group of automorphisms of K (time evolution) . Then a G-invariant 
measure on K may be decomposed in a unique way into extremal G- 
invariant measures (ergodic measures). 
References and Proof: R. Phelps, Lectures on Choquet's Theorem , 
Van Nostrand (1966); K. Iacobs, Iahresber. der Deutschen Math. 
Vere ins go, 143 (1965). 
We should like to have an extension of this classical result to the 
quantum case, that is ,  we want to show that any G-invariant state 
may be uniquely decomposed in E-states. As in classical theory, 
one lets correspond the pure thermodynamical phases to the E-states . 

Let therefore 
'B(9,I) , normalized to .du - 

or) be the set of states on QI, u a 
- .  1. 

measure on 
To each u corresponds a state up by 

f u (a) = .V f(a) du(f) 

In the converse case , where f is given, we would like to have that 
f may be written as 

f(a) l`f€(a) dl..L(f ) g f ad# l 

L? where the states g 
are parametrized ii -A . 
perature, mean density, and so  on. 

G-invariant and 
:intensive quanta 

g a l ,  thus E-sg 
uwof the system , 

and 
tem- 

II.D.7. Let Fu be as above. One could imagine that up, = few'2 may 
l 

happen even if U1 2* up . In such a case the decomposition of few would 
not be unique; it is also conceivable that the decomposition may not 
exist at all. We shall therefore develop some criterions . 
We first define the measure i i ,  by 

f(a) =J` f§(a) d(6£(€)) 
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and we introduce a partial ordering among the set of measures on 'I3(9»0: 

U1 < I-la *° U1 (p) < LJ-2(P) v F) I 

where p are convex cohtinuous functionals on '{S(2I) , 1;l(P) being defined 
by 

I 

I 
u(o) J` o(f.) du(f) 

I 

l 

and p convex meaning 
I 

poxfl + (1+nf,) s >~¢(f1I> +,(1->;) 0`(f2) . U S K S I  

We how define a particular linear convex (continuous) functional 

-- pa(f). 5 f(a) 
I 

Verify that pa..1s convagz 

. `p30»f1 1-(1->,)f2)' =- 0~f1 +(1-.j{)f,2)(a) 

- =Xf1(a)+(1~-x)f2(a) 
I 

J 

=>»pa(f1) + (1 - - )Jpa(f i )  

I 

As we have the equality sign, we 
"Pa are convex, and that puff) is 
to see under which (sufficient) 1 

~§F'a and 
Lléeady , 

f = f  
U-1 IJ-2 and 111 Us 

Theorem. The measures related by the 'partial ordering < induce the 
same state. . - ' i 

Proof: It is sufficient to remark that IJ~1 < 1.12 implies - 
111 (pa) S Us (pa) 

and also 

ii; C-c3) s $12 (-pa) 

or 
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'U-I (no) s 'ala (pa) 

63 

and thus 

U1 (pa) HE (pa) 

that is , l 

If(a)du1 (t) = .{`f(a)du2 (f) 

Theorem: If f is not extremal, there exiSts p. > 6£,. u 7' 6 f .  
Proof: Let how . 

QED . 

I 

6 

f=  of1 + (1-Mf2, f1# f 2 ,  x e (0,1) 

Put u ==k6f1+ (1 - )~)6f2 . We are going to show that 6£ < II. Indeed, 

. \ ' £(p) = 

p(f) S Mf1) + (1 ')»)(f2) 

p(f ) ,  and since, for a convex p ,  

we can write 

f(P) S 

As 6 f  # 6 9 ,  if f 7* g,  we have that 

6 l_1(p),thus 6£<+,1. 

6 £ / ' i  QED . 
Corollary: If f is an E-state, 6i is maximal with respect to the 
relation <Q . . 

In the case where f is not extremal, we have to prove the existence of 
a maximal measure u > 6£,  and.then show that its support contains 
only E-states . . 
The first statement is a consequence of the 
Theorem: (Lanford and Ruelle, loc..c1t,.) Let ill be a C*-algebra with 
an identity, asymptotically abelian and f a G-invariant state on 91. 
Let further 1Tf(QI) be the Gelfand representation induced by f on bf. 
Then there exists a unique maximal measure of on the set of all G- 
invariant states , such that . 

> **f 6f  I 
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i . e . ,  v a e m, .f9(a)duf(g) = .r9(a)d6£(9) = f(a) . 
(This measure of is given by 

Hf(D31 Daa .pa ) 
n 

II (x£,Tfi(61 )pfnf(a2)pf- - ~pfTff(an)xf) 

A 

(xi, wamx f )  where Xf e spy is cyclic for Qi and where f(a) : a E So. Pf 
beingth pr j t r  th sbspa  f s b f i v a r l a t  D r  £(G).) 

It remains to show that the support of of is contained in the 
set of E-states . Unfortunately, we don't have a completely general 
proof. For instance, it is easy to prove that 

If 21 is further separable (as Banach space) , then !*'f is sup- ____ E-states . 
This theorem does not satisfy us completely, since the alge- 

bras of inter st in physics are rarely separable (if go is of infinite 
dimension, Q(9;) is not separable) . It is at this point that one may 
use the fact that, in most applications , QI may be realized as the norm 
closure of the union of /Z(@). the A(@) being of type I, and the fact 
that we want to have states with well defined local number of parti- 
cles. One can thus prove the 
Theorem: Let it be a C*-algebra with identity element, asymptotically 
G-abelian, f a G-invariant state on QI. Suppose further, that there 
exists a countable family Wil of sub-C*-algebras of9.I, such that 
this set be dense in 91. Let Si be a two-sided ideal of mi, complete 
in norm and separable (as Banach space) . Finally, suppose that the 
restriction of f to eachgi be of norm l . Then 

1) spy is separable 
2) If u is a positive measure on the set of G-invariant states 

on QI such that 1 > 6 f ,  1_1 being normalized to l on that set, then p. is 
maximal on that set if, and only if it has its support on E-states . 
For the proof, see Lanford and Ruelle, loc. cit. , and Ruelle, C.M.P.  
_3, 133 (1966), 

We remark that this theorem applies to the quai 
generated by the . 

of the form so I, since all .4.(@i) are of the form its) Q m .  
the two-sided ideal of compact operators. That f has norm l on (8 
implies that f will be normal on al(@) . 

It is possible to formulate different sets of conditions; in par- 
ticular, we have the 
Theorem: Let f be a G-invariant state on a G-asymptotically abelian 
C*-algebra QI, and let If be the Hilbert space of the Gelfand con- 
struction induced by f .  

A(@) The two-sided ideal be 

Suppose that gif is separable. Then there exists a unique 
decomposition of f into E-states: 
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f(a) = .QE (a) du(g€) I 

mars.: 

is  are E-st U 

gllastler a n d i n s o n ,  C.M.P. §, 151 (1966), th. 2 .  
theorem is therefore an answer, even if only partial, to the 

question asked above . The two last theorems are in fact not essen- 
tially different, the hypothesis Of the first one implying the separa- 
bility of swf. . 

As far as the physical interpretation is concerned, it may be 
useful to develop some more prop.erties of the E-states . Indeed, it 
is possible to show (of. Kastler and RobinSon, loc. cit.) that for an 
E-state f ,  and the corresponding $,)f , 

I 

M [(y.{ni(Xa) - (x£,17£(a)><£)}z)l 

O
 II 

V a n % I , V y ,  Z é b f n  
If one puts Y = z ,  we get explicitly 

lim 
V-0 m 

II. 
v " dX(Y.TTf(T 

V 
Xa)y) (xi,nf(a)xf) (y. y) 

This means that in the Hilbert space of the Gelfand construction 
induced by f ,  all vector states describe states with at most local 
variations from the equilibrium, so that the mean of the measurements 
over all space is independent of the particular vector chosen . 

It is further possible to show that 

m[ll fT1f(Txal= (x£,rr£(a)xi)}YII = 0 ,  V y . E f [  ' v *a€%I  

But this last statement exactly amounts to  saying that the fluctuations 
of the spatial means of quasilocal observerbles vanish, which is a 
characteristic of system at the equilibrium point with a single ther- 
modynamical phase . 
II.E . Glass ification of Erqodlf: States 

In the preceding section, we did discuss the role of the E- 
states and their relations to the equilibrium. There is , however , 
another way of looking at the problem, and that is to look at the 
spectrum of the 1n.f1nitesimal generators of the translation in the 
representation induced by a given E-state . 
'II.E. 1 . We shall consider the following objects: Let T be the group 
of translations in Rs , 91 a C*-algebra , T-asymptotically abelian, and 
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f a T-invariant state on m. Let further 1Tf be the Gelfand homomor- 
phism defined by f ,  gI; the corresponding I-I:L1bert space , u£(1-c] 
tary representation DET on 9.1 , 
to Ni) and invariant under "f 
cular case where f is an 
under the u (x) . r.' 1 

We have the following the Oren: ...! ---. 
Theorem: We may write 

a und- 
xf the cyclic vector of 5,Pf (by respect lo . We already know that in the- parti- 

E-state, "f is the only vector of *'>f invariant 

r 

u (x) = 
f pn€sD 

ipnx 
e 

ipx 
E(Dn) +/ . e dE(p) 

S C , 

I 

to  the continuous orle 
where the sum corresponds to the discrete spectrum and the integral 

The discrete spectrum is a subgroup of T ,  
that is , if p,ql €"5'-="= *"'-a»+q and -p E SD. Further, the 
E(pn) are one-1 
Proof: See Kastler and Robinson, C.M.P.  Q, 151 (1966). 
This theorem enables us to give the following definitions 

projection 

(that is , S 

Let f be an E-state, Xf the T-invariént vector II.E.2. Definition' 
of of, cyclic under of(%I), uf(x) the unitary representation of T on Swf. 
Then , 

1) f is called an 18I -state, if Xf is the only eigenvector of Uf 
contains only ,gm origin) 

11) 1l)1s called an EH -state, if the spectrum SD of "f spans a 
a m-dimensional subspace of R", and if there is a nonvanishing m1n1- 
mal distance between any two polnts of SD. 

M iii) f is Called an Et-state if it is not a El-state nor an 
EII'StatS • 
Remark that the condition ii) means that S has no accumulation point , 
thus for an EIu-state, SD has an accumulgcion point . 

As will become clearer after some examples, the idea would 
be to interpret El-states as corresponding to fluid phases , and EH- 
states as corresponding to a lower symmetry, for instance a crystal 
state . There is no intuitive interpretation of the EIH-states as of now, 
but one can construct examples . . 

r . 

|- 
I 

II.E.3 . In order to discuss Emu-states , we are going to introduce a 
decomposition of these states Into states invariant only under a sub- 
group of T ,  which we shall denote by TL ( by analogy to the discrete 
translations on a lattice) . TL is defined as being the subgroup which 
leaves the eigenvector of the representation ofT invariant . 
that the EH-I-state is invariant under TL, but it is not external with 

It is clear 
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modulo TL . 
respect to  TO We introduce the group T/TL k of the translations 

Let us call T the dual group of T ("impulslon space"), 
S appears as a discrete subgroup of T .  and the group TL may be in- 
tmgpreted as the annihilator of SD. In other words , TL is isomorphic 
t o  the dual of SD. SD being discrete, k is compact . 

se T The 

Cons idler 

I I .E.4.  Example: 
possible are E 1 -st~ 

fir n in iiiWv 
lleuaemlri on a m s fo ' from 

of the eigenvalues . If we iinates 
and p ) in T we can, of 

at SD {(aN,{J)] , where n_J.-.r_... .and a 
is a fixed length. The associated subgroup TL1I is the group of dis- 
crete translation in the direction X1 , where M runs over the integers . 

.Therefore TL is the group of translations whose component in. 
the direction XI is an integer multiple of Zn/a , and the component in 
the dlrectlon X2 is arbitrary. | 

The quotient group k consists thus in the translations in the 
d1.rectlon Xi modulo Zer/a . It is therefore isomorphic to  the group of 
rotat1ons,modulo 2'rT of a circle of radius 1/a . A function g over TL 
can be considered as, a sequence of functions EIMIXQ) , and the inte- 
gral with respect to the-Iaaxymeasure on TL is given by 

I 

states 

-Ig 
+ac 

J` gm(x2)dx2 

m=-<=-= -m 

sons of the form (271M1/a1 
fixed distances of 
casa I 

the rotation on a circle . 

If we now consider an £112 -state , TL consists of the transla- 
, Zn Me Ian) , where 61 and be are minimal 

SD, and where M1 and Me are integers. In this 
k is isomorphic to the product of two groups. ,describing each 

A function g on TL is then given by 

I 

3° 
M1"-as 

3 gm1 M2 
M2 = -so 

In general, we have the 

.[I.E.5 . Theorem: Let f be an E -state withrespect toT.  There 
exists a unique decomposition 0% into states fa , invariant and 
weakly clustering with respect to TL (that is, E-states with respect to TL) . 
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dm(§) 
This decomposition may be written using the I-Iaar measure 
on the quotient group K = T/TL, . 

f 
I; f I dm(E) 

k . 

so  that the states f are mapped onto each other by k l »  that is , 

g f ) _ 
, 

Q 
y 

f (T ) (a 
'VU 

r 

I 

where y is one representant of the class n € k. 
I Furthermore, the fs are EI 

are sometimes called L-states . )  
iS .tatés'with respec1§ to TL. (These 

IL E 

abelian, f ii it state on Ur, 1-r (QI) 
lion induced 
contiguoUs) I 
projector in 
invariant ul! ei'll (G) 

The generalisation of these results , obtained up to Now for 
f translations , to a noncompact, locally compact group G 

e .  , . . . 
Let, G be a C*-algebra 1I 

H 
Let further u»fG) 

on of G on "if- 
range contains all 

OI 'II-' _ 
:q 'be the kernel of the representation of G on efsilf, -and Q = 

-is 

Let'alsll 
. #Eine 

of is certainly nonzn' sex 

t1!>1!: I 
1) f is an El-state, if Qfis reduced to the identity element. 

ii) f is an EH-state , if it is not an El-state, and if (of is 
compact. . , . 

iii) f is an EIII-state , if of is not compact. . , 

The connection with the defiNition given above iS easy'to make . 
The decomposition of EH-states is then expressed as follows 

Theorem' If ill is G-asymptotically abelian, with an identity element , 
G being s--continuously represented (g -|» up) in the group of the auto- 

state (with respect to G) if and only if there exists a maximal subgroup 
He G, such that G/H is le35l§'@'*i**ii5¢--and there exists a unique state f 
which is an E1-state wit ,to H and such that 

f(a) = t f '  (a Ia) du (Q) 
G/H . -  

morphisms of al, then an E-state f (with respect to G) on 'Jo is an E 

o g 

of 

where Mg) is the Hear measure on G/H, normalized t o  1, and a -' G '  
is the canonical homomorphism of G onto G/H . 
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In the example considered above, we had that 

I G=R@ H~=»z1 (orz.lu:°`),dp(g)=dx, x E [ 0 , l ]  

If f is an Eijstate with respect to H, then evidently f = to. In all 
other cases , to 9* f ,  and to is .not invariant under G .  We therefore 
conclude that an EH-state may uniquely be represented as a mean 
over states possessing a lower symmetry . 

" »'. a 

II.F. Quantum Spin Svsterns 

II.F. 1 . Let us consider a lattice z"', and associate to  each point 
x E CV an Hilbert space he. We shall suppose that all these ax are 
isomorphic to  an 3.) of finite dimension, N + 1 . 

Remark that we can understand that to each point x ,  an "occu- 
pation number". is associated, kg = 0 ,  1, . . . , N  and one can then 
think off(nx - No)xas the value of the component of a spin at x ,  
hence the name often given of quantum spin systems, or, sometimes , 
lattice gas . 

. . Let now @ be a finite se to f  . points *Q .. 
associate the direct product spa.c:e $5 (9 by 

@ {xg}-  To (9 we 

s) 
s66+x and TaS2@=¥>@-Ii 

in = ET 
G , x 

"' :E 
A translation by a 6 Zn is described by Tab 
E ® 

x i  G 

-~A =4-1. ® 1 

95x e G g 

x 
x+a • 
To each finite set of po1ht=s"@c Zn, we let correspond the 

algebra 91(@) 5 i£(?1 @) . 
H O C  A , then £'°A is isomorphic to in ® SDA/(9 , and we define the 

the canonical imbedding AA@ of 21(9) in %I(A) by 

or, , . , VA QI ' A@ A/cs) e (G) 
This last application may be used to define the relation between the 
quas1loca1 algebra , and the'algebras i!.I(A) , in defining "A by the com- 
mutative diagram , 

5 

"A 
arm ) 1\ a(@ ) _ Ms) 

"is 
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A 
normed algebra , with norm | = iv 

Let at be the norm-comp e t o n  of as. 91 is a C*-algebra . 
natural. representation of the translations is given by 

that means that we can consider it aS being E1 = U a 2I(A), *which is a 
A 1l.AI1 and involution (a/¢*»)* = QAA* . 

The 

T al %I(A)*2I(A+a), T a = W~ a a A w  -1 a f I 

V -1 , and V x x 

v is; =$3x 

wlth w = v a x+a 

We shall always write ?LI(@)»C 91 in what follows, but this has to be 
interpreted as meaning=4;. . up G) C as. 

Note that if 61 >= 92 are disjoint, i1l(@1) and 1J,I(@2) commute 
(as Subalgebras of QI) as they are factors of type I , we see that the 
general discussion given above applies to this system; in particular 
au is simple, T-asymptotically abelian. : 

being the isomorphism between and &ex. 

II.F . 2  .' We want to introduce now some forms of interaction; and we 
shall do this by introducing Very general n-body potentials . 

The interaction Q is a function on the f1nlte subsets of Zn , 
which satisfies 

1) Q (@) is a self-adjoint element of 21(6) . 
11) § ( q l ) = 0  QUO =empty set. 

. i i i )  @(@+a) ='r&§(@) 
r 

iv) l¢l II 2 ll¢(@)ll n(@)-1 < an 

@ flnlte 
o 6 S 

with N (G) = number I 
We introduce further the 

Es of G. 
*Ionian HA 

v 
C Z . One would hope that, although 
sense | 

11m 
A-»°° HA 

®(@) , A finite 

G C A 
doesn't exist 1h any 

lim 
A-coo e 

i H t  
A A e  

-1 t HA 
I A e 91 I 

would make sense, and we would denote it by . 
iv) is too weak :Eor proving that, so that we shal 
stronger hypothesis: 

Unfortunately , 
make a somehow 
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ivI)  II§II II 2 Il©(@)ll exp (no) - 1) < m 

o E  

and we shall finally denote by ET the Banach space of the functions Q 
satisfying 1), ii), 111), iv'). 

II.F.3 . As an example, it is perhapsuseful to look at the Ising 
model in two dimensions s 

We have Z8 , the spin component takes two values, thus Q is 
2-dimensional. We can therefore describe the elements of ©X by . ,. 

"spln Up" as (1,0) and "spin down" as (0 ,1 ) .  
In the Isingmodel, the interaction energy (and the potential) 

is described, =.1p to .a positive factor, by U1 'ala between the nearest 
neighbours (Ll takes the value +1 for spin up, and -1 for spin down) . 

. Ms) is therefore defined as = 1 

1) n(@) 2 3 or n(@) = 1 
Q (Q) = 0 if I ` 

11) N(@) = 2 and the distance between X1 and X2 E 9 
is larger than one lattice unit . 

in the remaining cases , we'can 1/nite explicitly 

®(@)E(1,0)® (l.0)].=. ( 1 0 ) ®  (1,0) 

§(@)[(1,0)® (0,1)] =-(1~,0)® (0.1) 

Q (@)[(0.1) ® (1.0)] 

Q (@)[(0.1) ® (0.1)1 

(0,1)® (1.0) 

(0, l )® (0.1) r 

r 

which could be more elegantly written in a matrix form with 

1 0 1 
Q (M = ' 

0 -1 0 

0 

-1 
l 

The properties 1) , 11), iii) and ivz) are easy to prove . 
II.F.4. The natural d'eflnltlon for a "local" Hamiltonian Hn ,» corres- 
ponding to a finite region would he to put . 
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H = 
A 

GCA 
Q (G) I 

Note that there is no "free" part. This is an essential feature of the 
lattice gas , and in fact what makes it both within reach of our tech- 
niques and of lltt1e physical physical content ! 

It is clear that the restrictions we imposed on the Q (@) are 
sufficient to ensure the existence of HA as an operator on SEA . It is 
also clear that the limit A * m (that is tending to cover the whole 
lattice, what we always suppose to be done in a uniform way) does 
not exist. 1 

.There exists , however, other quantities of 1ntere st than the 
Hamiltonian itself, and, for instance , the first que stion we could 
ask is whether the dynamics , which -supposedly should be generated 
by the Hamiltonian, still exist. For that, we want to prove that 

of 

' H t  -1Ht - 1' 1 A  A T A =  l i n e  A e  t A-0 

ts,  for a11A€9l. If we were t.o start with an A 6 II(@) for some 
@, and expanding e1HAtA e-1H1'~t in series , we would get 'the 

expansion 

i - _ lim T t A - A _ *  
n=0 

n it 
n!  N H , A  n l A  ) 

where 

Q n(HA,A) = HA, 0n-1(HA'A)]' 06(HA,A) = A  

Because of the local properties of the Hamiltonian, we observe that 
if A gets large, Qn(I-IA ,A) only depends upon A Via N-body forces , 
where N is nearly N(A) . But these forces are necessarily very weak, 
because of our condition iv') . We therefore expect that, term by 
term, our perturbation expansion no longer depends upon A ,  for A 
sufficiently large. In quantitative terms , we have the 

II.F.5. Lemma: Let f? 6 63, A s  QI(A1), A1 C A .  
estimate holds: 

Then the following 
I 

S lIQn(HA.A)II IIAII exp(N(A1))°n!(2 It¢ll~)" 
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Proof: We start from the fact that we can write 
I 

0 n (HA.A)=§ 2 umn), r....r@(@.),AJ...JJ 
.'@1C'A @n€A 

Because of "locality," the commutators vanish for regions of disjoint 
supports, we1-can therefore extend the sums to infimlte ones by adding 
vanishing terms : 

If (go f fA1  § j =  [Q(@1)I A] = 0 
: foe n (Q U A,) = ¢  =» Et2). E©(@1).AJ] = 0 ,  etc. ,  and we 

write 

@1:A 

II 

Si ki=1 
2 

G: N(@)=k1 

We therefore get 

III ,KHA ,.A) II s IIAII Zn ii I al 
ki. . 'kn 

n : 

(n(n.)+k1+. . 9+ki*1) 
1=1 . 

| 

X 

@1 3 0 

N(@i)=ki+1 

II Q (at) II 

Now n 
(n(A1)+k1+ . .+k1_1 

1=1 
To ) s  `(N(A1)+k1+. . .+kn)" 

S 

S 

n! exp.(N(Ai )+k1 +. . .+kn) 

n 

n!  exp(N(A1)) IT 
1=l 

exp (ki) 

And thus 
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l|(2n(HA .A) II S 

I 

Zn II 
A n L L  ! €Xp(N( 

A 1)) 

k ; Ki 
I . k 1:1 e Mol) 

n 

H 2 
(gig 0 

N(@1)=ki+1 

S 2" ~|1A||~n! exp(N(A1 )) - II Q II n QED 

II.F.6. Theorem: _ 1HAr -tHAt 
Tt(A) = nm e A e 

A-soo 

exists V A e %I(@) HG finite, and ltl sufficiently small, in the norm 
topology, and the convergence is uniform for small ~l tl . It defines 
uniquely a 1-parameter group of automorphisms on the whole of at . 
Proof: (Sketch !) 

1) In the =' 
(by lemma 1I.F. 
lemma II.F.5, WE 

2) One extends 
3) If 1 r1 | , 

group property 

~»~é€¢=E the who1§"o'f 91 by 
i i  and l u l l  < (2 II¢ll)-?°iW 'llity' 

e then have the 

go S 
in 

¥ A t1 +t2 A To1 TT? 

using the uniformity of the convergence . One can then show that the 
automorphism of an generated in such a way may be extended to all 
real t ,  with the same group property. 

TrA[e 
P A -H 

-u in A TrA e 

where TEA means the trace in the space SEA . 
It is possible to show the following 

Theorem: 1) p (A) exists on 91 

II.F.7 . The standard way of defining an equilibrium state in statis- 
tical mechanics is to take the limit of a sequence of Gibbs grand Cano-_ 

nlcal ensembles corresponding to increasing volumes: 
'HA 

Q A] 
(A) E 11m 

A *  oo 
(A) = nm 
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6 - Q 

2) r ) ( 1 t A ) = o ( A ) , v A e 2 x .  . , ». 

: 3) If A,  B e ill, H F ,  a bounded continuous function, defined 
on { z l z  G C ,  0 S lm z S B] , analytic in the strip 0 < lm z <  B ,  and 
such that J . 

75 

inl1 I E  dl k 
I-1-'(t) and 

j 

This lastproDerty is -the Kub¢>=Mart 
II. so 

14-15) 

11 quandary condition . 
II.F.8. As; far as the thermodynamical quantities are concerned, one 
can construct . ,. : . 

. 
* , -  . 

-H 
..E(@,,¢) [ e  , G  

» 5 , l  , .  
= Tr@ ] 

F(@,¢) = log 3(@,@) 

.-P(@.§) =- n(@)'1~1=(@.®) : 

One ,has the following , 
Theorem: For Q e B ,  the limit 

P(¢) 5 . lim 
N(@)-wo 

,-n(@)'t F(©,§) lim 
n(@) -0 as 

p(@,§) 

exists , and the function Q -o PM) is corivéx émd continuous on the 
Banach space tB i » 

l pc@)-p (¢ ) l~  Ill-wll S 

p(B, Q) 

1 \r. ml " ' . |  

See Robinson CMP 

'RT 
Proof: . 
If we now put B = and; S 1B§) then E can be 
interpreted as the purtltlon§ Ag to the set G and 
the temperature T = (Bk)-1 . The free energy is then 

1 
E - P(B I Q) 8 B 11m 

n(@)-°° 
n(@)" log 88 (BA)  

few points we discussed here have to be taken as a 
__. of what can actually be done with these techniques . 

We hope, however, that this illustration will be sufficient to induce 
many to read the original literature . . 
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Section In. Constructive Quantum Field Theory 
Roughly speaking, constructive quantum field theory repre- 

sents an attempt t o  use the knowledge gained in working in the dif- 
ferent "axiomatic" approaches, for a head on attack of the basic 
problem of quantum field theory . 

The starting point is certainly the 1964 Cargese lectures of 
Wightman; then came the thesis of Lanford and Iaffe, and work by the 
present author, all at Princeton; The decisive steps were made by 
Gl1mm and Jaffe in a series of fundamental papers, where they use 
another stream of ideas , coming mainly from Friedrich's (Perturbation 
of Spectra in Hilbert Spaces) and results of Nelson, Segal, Feder- 
busch and others . 

The present situation is probably best exposed, together with 
a lot of new results, in the beautiful 1968-69 Paris lectures of Hepp , 
from which we shall borrow quite a lot . 

In the few remaining lectures , we plan to give a very short 
introduction to  this subject, putting the accent on the main under- 
lying ideas rather than on techniques . One should be aware, how- 
ever, that the technicalities involved in this approach are by no 
means trivial, and that they make use of a great number of subtle 
tricks and refined mathematical analysis , and that no real under- 
standing of the subject can be gained without mastering them . 
IILA. Fock Space Techniques 

in = Fock space;, 
m 

+1 III.A. 1 . In what follows , x 6 RS , x 6 IRs , s being the number of 
space dimensions (x,y) = xoy° - x ° X ,  h = c = 1. 

u(§) 

in : e 
n=0 

+(M2 +_]_<9) 

re J n 

c p U c :  cp=lcpnlcpnEi3 nl I < m  lICPnll2 } 
n=0 

<pn(E1 ', . . . ,_kn), symmetrical, (cpnnpn) = Ilwnllz 
dk. n 

-1 2 q Zui l<pn(£1 • ' -_knl 

I o I 51 =s2(m), Dag) 
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One has the canonical representation of the commutation relations 
(con) in U: 

[a(l5). aegir = 0 

now", a*(&)] = Gm) 

'If Wé~'put for the annihilation operator QU and the creation _operator 
a*(J£): 

(a(5) Can)(EjL I • '¢pn(1£1~--~£n_1J5l . 

or, if one prefers, for o f  € £3 (in) ~=° f e £2 (Rs) 

| do 
(a(f) Cps)(k1 .° ' ° .kn_1) =/no 

and, sim.ila.rly 1.* 
I 

(a*(9 q>n)(E» . - - - ~l<~n+1) 
_ 
I n  

l<on(151 r . • - ~..§n_1 

6 ll<."l<.j) q)n0;L I • . k g • • 'J .5nx 

From these definitions , follows that 

, .. 'Pn = (is) pa .a t0-n051 
i 

I 

. . .-kn)a*l-',. k . ) .  . : t w o  
I ' ,; L 

and, for f é £8 (RS) 

a(f) e £(:.ln, G a*(f)  e -Msn, 8 n+1) 

with 

N];N-31 s -in "fUe 

$Jn+1 llfll2 
I . 

| * ' .  r .  V 

lla(f) II 

l1a*(f> "n,n+1 

III.A.2 . We define on 5 the (unbourided) Operator "number O? par- 
t1c1es" N by 

(A»1) 

Ncpn = Man 
It follows from the above bounds (A. 1) that or f e. £2 (IRs) 

I 
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a*tf)(n+i) e W, at 
with 

ll~a*(f)(n+1)*ll~ ,nfn S 

=l=l= anywhere a 
Lemma : 

stands for either a* .or a . 
Forwe£2(IRS'"), I S  1 $  m 

More; generally. we have the 

w =;fdl=..w(£1,» . . ...5m)a*0;1) T °6*051)3-551+.1)' .. .¢.@) 

is defined on D(NM/2) and i 

I 

,(A,2) 

\ 

II W(N+1)'M/2 S II Ilwlla 
and we leave the proof as an exercise .J 

In I 

u I 

III.A.3 . W is called a Wick monomial, with numer1ca1'kerhe'1 w(l€1'j . . . .km and operator kernel .. '. . I 
11 

I ' . 

w(1i1 , . . .1;m)a*(k,i. . '°*(51)§051+1)°° .&(am) E w(_.): B*(1§1): 
I . 

Tf 
j 

. l l  l 

The annihilation operators always stand to the right of creation opera- 
tors , and the order of the creation with respect to the annihilation 
operators among themselves is immaterial. 

If w e 5 '  Cus") , W formally defined by the expression (A.2) has 
a meaning as a mapping 

w i . n-wb' 

where 
m 

n - k l  »=. GB MR? )ca<=s'~~= 
. "'n=0 or n"0 

.8 I 2(RS1 

because of the nuclear theorem (or as a sesquilinear form on 8 x s) . 
The domain D(W) is, deftned by .  T \ 

- j 
¢ 1 g I 

Q 

e 5 D(W) Qlw . . Z|I(W<p)n||2< I 

A 1 
| . ) : " , . ~ .  ' 

l 

m 

n=0 

Lemma: If 1 ='m in* cA.2). 2 
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Dew) a'{0} =» £a(Rsm)9w 

79 

The proof is again left as an exercise . 

I * 
I 

III.A.4. For the operator kernel of W ,  and by an abuse of language , 
for W itself , we introduce a graph: 

I 
2 

i + l  

I 
where the` line 
right, if a#(51)q 

I 
I 

m 
left if a*(§1) equals a*(l51) and to the 

III.A.5 . The formal product of two win 
expressed as a sum .of Wick monomials 
from the well-known Wick Theorem 
Theorem: If v =.ld-k vi a*lJ$1). . .a*(;)a(;+.). . .a(;m) 

w =/d£w(£) a * ( I ) .  . .a*&1)al41+1). . .aL,n) 

rials may always he 
polynomial) as follows 

Then 
VW =Z .|`d5- v(5) w(4) x 

CS 
:a*(l5.1) . . .a*@B°~<l'.1+1l . . -.a(1;m)a*(&) . .1a*@la@+1l. . .a(4Qn): 

= Z : V W  : 
GEOS a 

where extends over all "contraction systems" between pairs : 

CS . 

* = k - = _ (a(5:1). a (2s1n 6L 1 s ) ,  6(5r.t i t )  

0 s t o  min {m-1J} . 
The proof of this theorem is well known and will not be 

repeated here. It is obtained in using the CCR . 
It is useful to represent graphically the theorem of Wick. One 

gets for instance 

. . . . (  k ) . * .  )) aL,t a (Let 
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XD- II + 

1 or 

II 
>_ + + 0 + O 

and so on. Note that the exterior lines must always be to the right 
or to the left. ' 

III.A.6. After integration over the 6 functions (which is well defined 
if the multiplication of the kernels is) , there are two ways of repre- 
senting the kernel of #g : - 

I \ 
r 

a) a*(§,.'). . a*(431). . .a*?a(§i+1). . .a(L<r1). . .aL'n) 

| .  

• v(£1 . . . k  "T1 wg&1 ...-Ln) -up al 
J 

or 
b) a*Q<_1). . a*(§51`). . .a*L,a @1+1)~. . " a 1  . . .aL,n) 

- .fd5tx...v(g . . . k  . . . k  ' n o t  *1 -m) Wl&1 in) \ 9 n k *1 

E (_. 

that is , before or after integration on the variables of the I ed 
lines`. It should b --Lear that the representation a) is more " n r  e 
for introducing counterterms whereas the case b) is not an operator 
kernel. ' 

1 | 
J 

III.A.7 . Iteratively, one defines as Wick polynomial, the product 
.13., 

, 

extQ18d over all compatible contractions Will 
CS 

\ 

I 

n or 1=1 ' i  Z : W1 ' ' H 3»89.i 

011 G G CS; 
I 

Gln 
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n 

-1'/L (L MG) - 
A subgraph H e  G is defined by a subset {vi 

The numerical kernel of each term is deduced from W1 ® . . . 
® w by identification of certain variables , determined by laljl . 

Each contraction system gives rise to  a graph G ,  of vertices 
V1...Vn, andil, lines L i "  = I 

[VI , . . . ,vnl with all lines of [Ll , . . .L,] which are attached] to its 
vertices . 

One says that 2 subgraphs H1 and HE are disjoint, if they 
don't have any vertex in common (but they may have common lines) . 

A line is said to be an interior line if it joins two vertices . 
In the reduced operator kernel, one has to integrate over the corres- 
ponding variable . Otherwise , it is called an exterior line . 

The quotient of a graph G by a subgraph H C G is defined by 
the identification of all vertices of H and the contractions of all 
interior lines of H. 
Example: 

V2 

I 

,v ' ] ( =  

V3 V2 V3 
I- 

VI V4 'I 
G H 

Note that the topological equivalence class of graphs G is smaller 
than for Feynman graphs , the exterior lines having to go to the right 
or to the left, if they represent annihilators or creators . 
Definition: A graph is said to be connected if all its vertices 
are connected by internal lines . It is said to be strongly connected . 
or one-particle irreducible, if the suppression of any line cannot 
make lt non-connected. . 

G/H 

'L 

I1I.B. Local Algebras Generated by Free Fields 

III.B.1 . We define as a local scalar neutral field on 5 the operator 
valued distribution 

_ 1 , . ¢(>;,t) (2TUr)s/2 J" do 
(2u (E )é 

Le_ a @e'1" L" + a* (_95" LQ* I 
We define as local algebra, 6%(®) corresponding to. an open region (9 of 
the s+l dimensional Minkowsky space, the von Neumann algebra 
generated by all co (f) , f e as, and the support of f being contained in-G . 
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+1 

w.(@) = i¢(f) l f  e sos ) ,  Supp f c 
@ } l /  

Let Q be sorely on of (St, where Grit is the hyperplane 
e could take a oral spacelike surface , but this 

does not bring anything essen-tially new) . We shall suppose that the 
boundary of Q is formed by piecewise many tlmes continuously differ- 
entiable surfaces. Let (9 be the double cone spanned by Q, that is , 

s {x i(x-y,  x-y)< 0 ,  Vy 6 @t. 5r€'_Q} 
GI/ 

U 

Let now mg) = [¢( f ) ,¢(g) l f ,g e MIS). supp f.gC_@}" we have the 
following theorems due to Araki: 

mi 
1) R( u @. ) =  i 1 

z) MQ) = 
1 

Mo), where @ = @" 

3) was) 
n1 

) (Qi Ra n 

s 

) 
I 1 

R, ( G 

13 
1 @ (9 

U1 
. c  
1 

(9 

) 1 6% ( kg 
I I  

III.B.3. Theorem lArakl): Q, @ as before, @ = @"; call 

G' = {x l  (x-y. x -y )  < 0, Vy € (9}: Q' =_.@' 

Then ®(@)' = no) . 
This is the famous "dua11ty" theorem. Note that it is not true 

for arbitrary regions , but the condition (9 = G" is in any case suffi- 
cient. In what follows, we shall call regions of the form @ = G" , 
bounded by piecewise differentiable manifold, diamonds , and consi- 
der only such regions . 
III.B.4. Theorem (Arakl): (9 as before, such that GJ' is not empty . 
Then R((9) is a factor of type III . 

l It is also clear that the standards axioms of local algebras 
stied, like locality, covariance, existence of the vacuum , 

etc . 
IILC. Time Evolution of an Interacting System 

III.C. 1 . As is well known, the requirements of translation invariance 
and of a nontrivial dynamics , that is the existence of a vacuum 
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polarization, exclude the possibility of having the total Hamiltonian 
defined on the Fock space G . This is Haag's theorem, and it can be 
stated in many dlfferelia*""'"i"" one can, for instance, replace the 
translation invariance ' _ _ !é invariance , and then drop the 
assumption of a nontrivial vacuum polarization, and still get the 
result that the theory must be equivalent to a free field if the Hamil- 
tonian is supposed to ex-ist . 

If we put ourselves in the Heisenberg picture, the time evo- 
lution is supposed to be given by 

A (t) = elHt A(o) e-il-It 
H 

where H is the total Hamiltonian. We I at in 
this Hamiltonian cannot exist, but thisl the rea 
question, because the (formal) so1ut1or§%*E&ie1d 
and it may be that A (t) exists , without H existing 7 
seen such examples ln statistical mechanics . 

irises. 

5-AH (t), 
ready 

III.C. 2 . The easiest intuitive way of convincing ourselves that this 
might work is to use a perturbative expansion (Schwinger-Dyson) : 
Suppose 

= + t H Ho HI pu 

and A(t) 

AH (t) = e1Ht A(o) -iHr 

t1 

o iH t -1Hot 
, HI(r: = e HI e 

1H t -1H t 
= e  O A(o) e O 

t 
e = A(t) + i f  dry [HI(t-tl), A(t)] 

o 

t 
+ Pjdr1 l' dt2[HI(t-t1), [Hltr-t2).A(t)]] 

o 

+ (0.1) 

:h some local Wick 

Suppose now that A(o) is contained in MQ), whereas some 
finite region of space , at tlme t = 0,  contained in a sphere of radius 
a .  Suppose further that H may be written in the form H = 
.[Eh °®d3§, where I:(>£} is polynomial in the 
flelIds. H does not exist but it may happen that we are in the fortu- 
nate poslt c=~-'5\-~~'=il*=" that He exists , where HI =j=hI=®f@d"5 
where t'(>5-) E in-~~» mmiwn take as a particular choice of f ,  the 
function g, g e D, g(>;) = 1, for lx S 1, go) = 0 for l;cDI 2 2 ,  965) 2 0 .  
We define then 

(free) 



84 M. GUENIN 

HIn = .f:hI:(>£) go) i s  
des 

of the difference of the arguments . 
H (t 

Consider, now, the flrst nontrivial term of the is . 
being a Wick polynomial in the free fields, HH \ has its support 
on the hyperplane xO = t - to ;  A(t) having its support on the hyper- 
plane xO = t .  But, because of the local nature of the fields, the com- 
mutator of two fields vanishes outside the light cone in the Variable 

Therefore , the only .portion of 
In - to) t o  contribute to the commutator is the part of the integrand 

having its support in the backward cone spanned by the support of A.  
That is,  the first term of the expansion becomes independent of n, 
provided that n > t + a . 

The same argument caN be applied to all terms of the pertur - 
bative expansion, with the same result. The conclusion is therefore , 
that at least in perturbation theory, the locality of the interaction 
ensures the existence of the time evolution of local obse.rvables (or 
fields) . 

This intuitive argument-can be transformed into a mathe- 
matically rigourous one, as we shall see, but we first need a result of 
the theory of semi-group . 

:lsion (C.1) :hI:(x) 

III. G . 3 . Theorem: (15 
Ho + Hln = Hn are se* 
in the strong topology8 

Ula) Suppose Ho, HInf 
on a Hilbert space S). Then , 

1H t n e I 

lim 3 -  
r - o m  

t 
I n i H 

e 

t 
o r 1 H r r I 

This theorem is valid under much more general circumstances, but, at 
least until now, this supplementary generality has not been useful for 
our type of problems . 

Mn, Segal, Glimm, Iaffe) Suppose Ho, HInl 
Pint operators on 9 .  MQ) , a local system of 
Satisfying the properties 

H C  
R»($£) 

t 
e b C 

. 3) Ri? Si) ==? Ms1) 
Suppose further that H f 

large family of elements of nil. 
is self-adjoint for a sufficiently 
and that H If1 commutes with H If2 I 
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fl and pa belonging to MRs), and, further, that 
support of al is contained in G' . Then , 

the T] 
. 

HIf1 

S - lim 
n -o oo 

iI-I it 
je 

-iHnt\ 
A e = at[ A] 

exists , V A 6 91(9) I and defines a one parameter group of isomorphisms 
of QI . The resulting system-of local rings is again local. : 

Proof' Using the Trotter product formula, we immediately get that 

atnfA] II' 
lim 
j-rm 

I t 1H - o f  
I H t j _ 
1 In e. . 

t -1I-I 'T I n ]  e -1H o 
3.1 
1 . ¢ .  v\1}e© 

Let A 6 MG), where <9 is the diamond spanned by a sphere in RS of 
radius a ,  and @€.be the diamond spanned by a sphere in RS of radius 
a + e . 

Let now e > 0 ,  split g(x) in such a way that 

Q(x) : 91 (x) + 92 (x) 

BK P 

91(2) e n. 9i(x) 2 0 ,  and supp g 
1Q€/2 is empty. This is clearly? 

l 

= H 

By hypothesis, HI n(QJ and H 
I I t i - = I I-IIn(Q) 1) exp 

Br with supp 92 (.x ) n 
We can then wrIte 

+ HLn(92) 

1 I,n . 
{iHLn(g1) - }  exp lasH 

(9 2 )  Co m 
'D 

Mu 

j 

to 

I 

I 
S o th at 

Ln(q3) - 

By hypothesis again, HI n(g2) commutes with 9.l(®€/2) r and 

1 6 We ) .  ` ' 

Therefore , as A E 91(6) , 
exp un! n(g.) 3) 6: 

I 

.r 
I 

I 

A1 (t) 
r . t 

I,n j 

. . t 1 t 
exp (11-Io T) exp (HI n(91) T) A exp 

exp (1Ho§) exp (1H (Q) -)  A exp (-1HI n(9) §) 
(71HLn(g1`) §) exp ) 

exp (NH . 

(-1H L 
o J 

Or 
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HLn(9.) n me), t 
exp (1HI n(Q1) T) A exp (-HI n ( g 1 ) )  e toe) 

Aj (t) 

and hence, AI(t) E M(@€+t ) , using the property 2) of the hypothesis . 
T 

We can repeat the procedure, step by step, and after j steps , 
we conclude that 

=[ x (in ex (1H ( ) i ) ] jA[ex (-1H ( ) £ ) @ x  (-1H Ll] e t  o f  P I , n g j  p L n g j  p 

and that A. 

o j 

depends on Q( " ) only in the region .@t_l_j€, ](t) € @T(('9t+i€). 

We now make the important remark that As (t) does not depend 
upon e . This can be seen in taking a different e , and thus different 
91 , say 91 ' . Now the difference between the mapping A * As (t) 
defined by *Ja and A - As' (t) vanishes, because the difference between 
91 and g1 ' has its support outside G. and thus is going to play exactly 
the same role as ge above. We conclude from that, that 

j 

trivially . 

Aj(t) e ) . V e  QUO @ I ( t+Je 
E 

take the strong limit, s-11m A (t), we get that it will also belong to 

QI(@ ) .  

and thus , AI (t) wet) . using property 3) of the hypothesis. If we now 

j -0  m 1 
t since the latter is strongly closed, being a von Neumann 

algebra . 
Hence atn[A] 6 9l(@t), from which the locality follows 

n E Furthermore, at EA] only depends upon g( 11 ) in the region 
Qt. As Q(x) = 1 for Ix S 1, it is sufficient to bake n >  a + t in order 
to get at[JuL] independent of g and n. We therefore conclude that the 
spatial out-off has been removed. Q .  E. D .  

III.D. Some Theorems of Friedrich's and the l` Operation 
Before we discuss the hierarchy of interactions , and before 

we can discuss the general setting of the problems, we need to 
introduce more of the general properties of Wick polynomials, and to 
formulate the key theorems of Friedrich's . 
III.D. l . Definition: W1_1: We . . .Wn: is the sum of all those 
terms of the Wick expansion of W1 :W2 . . .Wn; which correspond to 
connected graphs . 

We shall put, in a formal way- 
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w / : 1 :=W 

III.D.2 . Lemma (Friedriczhsh As a formal power series , 
W 

:(V_L:e W Vze : :) (:eW =)' 

where 
W :e : I :WN: 

n=0 

Proof: If we consider a product of the form V:WN:, it can be written 
as a sum of terms in which V is contracted with :WN: in all possible 
ways , that is contracted m times, 0 S m S n (of course , if there are 
only r annihilators in V,  we have the supplementary relation m S r) . 
(Note also that we mean contraction of the graphs; they may be much 
more than m pairs of contractions as far as lines are concerned.) The 
contribution corresponding to  m factors contracted is 

n lm 
n . . . since there are ( m) posslb111ties of choosing 

restriction any more . )  
We therefore have that 

n n n-m V : W : =  ( ; ) : ( V / : W : ) W  : 

m=0 

(V / :Wn:) Wn'm= 

m factors out of n. (Note 
that V_4 :WM: 0 if m > n, so that we do not need to  remember thls 

and hence 

W Vze : 
m 11 

Z 
\.In 0 m 0 

(1) : (V-Z:WM:) W p m :  

m 

k . j  0 

_ L _ L  
k g  j !  :(V_£:Wi :) :Wk: 

Q.E.D. 

If Ho .tit;»L) 
* 

.n1.D.3. . = a L)a@ = __ * the 
self-adjoint operator representing the free Hamiltonians, we shall 
define 

/'1&d& Mk) 6 (§-Ma (_)k 6 @  is 
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F 
T 

from which follows that 

M. GUENIN 

= .t d_k[u (£)]T aw aw 

z II o 
FL: P1 : H o  

If we define 

T § 

d _k W 
k. T i i  

I " ' 1  

a d F  T ( w ) = [ F  ,w] . 

' k a uLt) i" * Qi j=i+l 

' a*L1). . .a*(g1)a(§1_l_1). . .a(km) 

For W which contains only creation operators | one defines 
a T-operation which is the inverse of ad Ho = ad F1 . Friedrich's ' 
definition of the F-operation is the same in the general case; it is , 
however, not the most convenient one. Indeed, wlth Friedrich's' 1"' 
operation, we would have that 

r'tw) 
I 

=Ink. w(1JI§ u(1_s1) 
m 

j=1+1 

-1 

(L1(k])l a*(l;.)--- 

. . '6*l51)&l5;L+1)' . .a(5n) 

m 
The trouble with that definition of Friedrich's is that L 

can vanish, and therefore make the kernel of T 'W singular . 
_ 

u. 
J 

j=1+l _ 
We have already plenty enough singularities: what we need is a regu- 
larizating operation which would have similar properties . The idea of 
Glimm was to define 

I`(W) 

II l ] .to w(_€) ) 
1=1 

a*(l5,*). . .a*(_lg1)a@i_*1) . . .a(£n) 

l` is certainly regularizing, since 

Dcrcw»= ]3(W) 
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The l"-operation of Glimm leaves invariant all W which consist only 
of annihilation operators , and it is identical with the I" of Friedrich's 
for W which consist only of creation operators . Therefore, for the 
most singular terms , the effect of l` and l" will be the same . 

Of course, there is another way of making the kernel not 
I' 4 'in 1 

singular. Since' is always real, we can add a small 

j=1+1 
imaginary part . 

We are thus led to define , following again Priedrichs , 

i 
rim) =Id_kw® i 

i=1 

- 
m 

Z 
j=1+l 

l i  is 

-1 

a*(l5,L). . '6*'51)8(]i1+1)° . a )  

and we have that 

of  r i v  
Let us now define, as a formal expression, 

T -(W) =:exp i (-n" 
n=1 

£l`_(W. . .1"_(w)- . . ) . . . )L: 

and 

T+(w) =:exp ¢r+(vv. . .1~+.(w~». . JL: 
n=1 

where (. . .) means the sum over all connected graphs , with at least 
one external" line . . 

Then one shows that (still as formal expressions) 

(Ho + W + E(W)) T m )  T m )  H o 
and 

T o w ) *  T m )  = z(w)-1 1 I 
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where Z(W) is a wave function renormalization, and E(W) an energy 
shift. We see that these operators To of Friedrich are the exact 
analogue of the Miller wave operators. An interesting formula of 
Friedrich's is the following: 

T _ = =exp(-l"_(Q_)): 

where Q2 is the solution to the equation 

Q _ : w_.4 :exp-T`_.(Q-): (<po,w11 exp-l`_(Q_): (Do) 

III.E. Dressing 'hansformations and Classification of the Interactions 

III.E. 1 . The formulas of the preceding section have clearly only a 
formal character. There is , however, a qualitative feature of the 
greatest importance , which we want to retain. We note that due to 
the intertwining property of T , To formally maps elements in the 
domain of Ho into elements of Ho + W ,  that is the total Hamiltonian. 
More generally, we shall call dressing transformation a linear map- 
ping of some dense domain of the Fock space is into the domain of the 
total Hamiltonian, which may lie in another space . What interests us 
is the fact that a dressing transformation can cancel some of the sin- 
gularities appearing in the formal expression for the Hamiltonian. It 
is this property which we want to retain, and to which one can give a 
rigorous and quantitative meaning. But for that, it is still beyond our 
technical possibilities to give an exact meaning to the expressions of 
Friedrich's . It was Glimm who realized that his F-operation permitted 
more accessible formulas , which would still lead to nontrivial dress- 
ing transformations. We have the 

III.E.2 . Lemma (Glimm): As a formal series , i n  the case I*(W) 95 W ,  

Horcw) ==w + :1`(w)Ho: 

1"(W) _ Hoze : - 

We evidently have , using Wick's theorem, that 

:W (:eF (W) :H (:eF(W) o :): :(W+HO) (:eF(W) 

Proof: 

:): 

and 

H01"(\N) + 'I-I OI`(W): 

1 
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" W =  :(Ho / =e1llW)=)(=JlW)=)= 

91 

but 

H o F M )  w and H0..L:e?(W)° I-Io+W 
Q . E . D .  

III.E.3 . In order to make something rigorous out of all this , one has 
first to introduce suitable cut-offs . We shall define 

¢ ( x . t ) =  1 
O' (2TT)S/2 

ik°x * e a { (-EJ" (£)t+ a(k) e 'j.IJ.L)t 

m 
I 

II 

A cut-off interaction Hamiltonian VO' (g) will be defined as 

s 
Vo'(Q) J d 2<.VO'L.0) Q )  

s . . . where g(J;) 6 ao(R ) is defined as previously, and VGL<,0) is some 
local Wick  polynomial, in which the fields QUO have been replaced by 
geo ' 

Clearly, the numerical kernel of vo (g) will always be £2 , if 
o < °°, g E JD, so that Vo (g) and Ho + Vo (g) are operators on the Fock 
space a. 

One defines then 
well defined for o < 

l Ti(V0). etc. which are obviously 
g are interested in taking the lim1t 0--0 °°. 

< 

III.E.4. Let VoC(g) be the pure creation part of Vo (g) , and Vcalg) = 
Vo (Q) - V00(g). For the ultraviolet limit o -o °°, the following classi- 
fication of interactions has been proposed by Glimm . 

C 
Type A: IV (Q) (»Oll 
Type B: | |VC(g)  oII = 

C - Type C: l lftv (g)) <»oll - °°, 

m 

Q :  oo C llll(v .(g)) @roll < 
a I I r (V (g)q)II< °°, M o e n  , 

where apo E is is the Fock vacuum, 8 is the subset of states in is with 
finitely many particles and n-particle wave function in x9(Rns). 

In the language of power counting, A-models have no ultra- 
violet divergences , B-models only logarithmic divergences , C -  
models only logarithmic divergences in linked graphs of the resolvent 
series l 
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If VO' (g) is not of type A,  B r C r the corresponding theory can 
still be superrenormalizable , type D; simply renormalizable, type E; 
or r nrenormalizable , type F ,  in the conventional sense , as for 1n- 
stance described by Bogoliubov and Shirkov. This latter classifica- 
tion is due to Hepp . 

Type C: 

2 

2 . B . . | n I 

III.E.5. Examples: 

Type A: =¢a nz (upper 1ndex=W1ck power; lower index = s + 1) 

Type B: =(¢N¢-4')=,~= 2¢a !¢a rMs: - 
=¢8"':, :¢43:, :(W)n23:, :¢n;5 : 

Type D: :(¢'l74')3 :¢5 

Type E: :(1Hr)2 2. =(¢li74f)4=. :¢4, : 

Type F: (Mr 

. a 
I I  

2 

III.F. Some Results 

Using the formal properties of Ti(vo(g)) (of. preceding 

(Ho + V0(9) + EWu (in) Ti(vC7 (in To (vo (in Ho 

|* 

T (vo(g))* T (v (in :iz :k O' ztvc (g»-l 1 

one expects that for theories of the type A,  Ho + v,(g) is well defined 
on AS C 3. 

From standard perturbation theory, we know that for theories 
of the type B or C ,  we will have to introduce counterterms . One 
therefore expects that, for theories of the type B ,  there exist opera - 
tors of the form Ro(Q) C &,(Q)*, of order 2 2 in g ,  such that v up E 19 

II Ti (vO' (Q) + Ro (g)) (;0ll2 I U s  m 

stays finite. Using then the formal intertwining properties of To, one 
hopes to approximate H..(Q) on Ti(V¢0(g) + R,(g))a9 in the strong topo- 
logy- (HuQ +n + Ro(g)) . 

Fort 8th II 

of order 22 "ii 'g , "and we expect that V cp € B 
we have again counterterms Ro (g) C RG (g)* 
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R o H) <p II z(VU(9) II (vO' (9) + RU(g)) 

93 

S m  

topology I 

Lhis case, we can no 
e a strong limit on 

Qrator on a new Hill: 

hope that HQ(Q) 
Milzzvut on 

LCG in 

such 

III.F. 2 . We know that in order to prove the existence of a dynamic , 
we have to show that HOl Vi (g) + R,(g) and I-I=»(Q) are self adjoint 
operators on some space , and that the local algebras are also defined 
in that space and en oy locality properties with respect to the inter- 
action Hamiltonian. Except in the case :M : ,  
yet been fulfilled, but we can state the following 
Theorem' Let V be a real scalar local Wick polynomial in free mas- 
sive fields . 

A) If v is of type A ,  then Ho + Vwis) is a real and symmetric 
operator on the dense domain D(I-Io) al D(V¢(g)) (7' low). 

B) If V is of type B ,  then there exists a family of invertible 
mappings E -n 3 (0 S o S °=, p 6 Z_,_) and Ro(g) C R0,(Q)* of order 
22  i n g ,  that Vcp € A9, 

this program has not 

-4 

S c ii T90(g)(;o =Tpm(g)q0 

(H s lim + v (g) + R (q))T 
o G 0 O' oo -» 

(geo DG Hoo(<;)T pQ(g) up 

s - l i m  
p - t o o  

( )  = T p o g o  Q) 

Ha,,(g) is real and symmetric on the dense domain Tpm AS C 3 U 
o<° 

which is disjoint from D(H ) . 
C) If V is of type c°, then there exist invertible mappings 

T (9): A9-03, 0 S o <  
O' 

TJQ): 29 -°1€(g) 

ao 

where T ( g )  19 is dense in a new Hilbert space 3-C(g) . There exist 
RU (Q) c 
zU (Q) 

RE (g)* of order 22 in g ,  and a wave function renormalization 
such that V(;0I or E 8 
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lim z (Q)(T (g)cp, T0(Q)¢) : 

O' - v i  
(Tm(g)Cpr T(g)'II} 

and 

Glimm 2ct(9) (TO'(g)cp. (Ho + Vo (Q) + RU(9)) To (QW) 

(T(g)cp .  HJQ)-T(g)¢) 

H,,(g) is real and symmetric on T,¢(g)1D, and ( .  , .) is the scalar product 
in IK:(g) . 
III.F.3 . In the particular case of a °¢24': interaction, much more 
powerful results are known (Glimm and Jaffe) . 

The essential steps are the following: Put 

Hn + V f 9 { 2 £ )  H o 

where 

v = V  n oo 19(§) = s - l i m  
A G ' - D Q  

V O' (g(§) I 

v 
O' lg<§5 

4 Q ( j1) .taG*(x)j = A 

J=0 
a O' (>£)4l1g (i) Di 

the limit existing on the Fock space because thls interaction is of 
type A .  

Then 
1) As a bilinear form on 8 x 19. 

H 2 E I n n 'Bal < 
m 

that is ,  Hn f b y a i  
ent upon n, '  use V, II also be a well defined 
bilinear form unbounded below. One chooses En to be equal t o  
the lower bound of Hn . 

2) As a b111near form over 8 X 8 .  v a > 1 , 

mEn) is positive. En is depend- 

H b = b(n,a,o) such 
that 

H a  
o + v  2 

o , n  
Sa(I-I0 n.l-b)3 
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This estimate is valid only for real, non-negative coupling constants 
K . It allows us to prove that the resolvent of the self-adjoint opera- 
tor Ho , n  converges in norm to the resolvent of a self-adjoint opera- 
tor Hn' One further shows that Hn is essentially self-adjoint on s . 
As V 
locally conditions are satisfied, one can apply the theorem of Sec- 
tion III.C.4. to  prove the existence of local Heisenberg field . 

is also essentially self-adjoint on the same domain, and as  the 

III.F.4 . In order to prove the existence of a vacuum state (of. Bor- 
chers' lectures) , one has to introduce a periodic box of volume v and 
the corresponding Fock space So. One then shows the estimate 

3) H n,v L 

BV 
2 m 2 0 

4) One than shows, using estimate 2) that H = 131 NIV n ,V  
BTV 

has a compact resolvent, hence it has a state of lowest energy, a 
vacuum vector Co on VI 

H n,V°Pon,V = 01 cponIvn = 1 

5) For some sequence of volumes Vi' S 
'O oo v. 

J 

11m = °Pon,Vj GPon 

exists and is a vacuum for Hn (renormalized) . 
6) cpon is unique . 
7) The limit w(A) : 1 gnm(qpon, A upon) exists V A  E QI and 

defines , via the Gelfand construction, a representation with positive 
energy (of. Borchers' lectures), where the time evolution is repre- 
sented by a strongly continuous family of unitary operators . 

8) This representation is locally Fock . 
III.F.5. The fact that the theory 5524 : 
announced by I. Cannon and A .  Jaffe . 

There are still a certain number of questions left open: - uniqueness of w - E of'n-point functions of the field operators - gap in the spectrum of H 
- 1-particle states 
- cluster property - asymptotic nature of the perturbation expansion 

is Lorentz invariant has been 
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That means that we are not close to being out of jobs, especially if 
one considers that a :¢3*: theory is the simplest possible nontrivial 
model ! 

III.G. Example of the Quadratic Interaction 
It is clear that everybody can solve a quadratic interaction. 

Nevertheless , this interaction has attracted people again and again , 
and for many different reasons. We have seen that in a 5-dimen- 
sional space-time, a $2553 : interaction does belong to type C.  As the 
big advantage of quadratic interactions is to be exactly soluble, we 
are going to be able to  compare the exact dressing transformations 
with the approximate ones . 
III.G.1. Let us put 

J`°§+1L) g(§) dS; V0II'1 
6 my 

2 I c: 
>o 
+ o 
m II CO 

o 
ii: 

This "interaction" thus corresponds to a mass renormalization . 
not difficult to show that 

It is 

¢ r ( f . t )  s lim 
o'-am 
n - s m  

e 
iH nt 

U r  ¢ ( f , o ) e  
-iH t 

O' ,n 

exists on B ,  and that one can write explicitly 

ik-x -f l t  * ¢r(f.t) = - - in e +ar (-_k)ei0`"} f(>;) ds; 

*kg with Q we 
a r (5) = 'E 

and 

n +u 
Q 

+ am" 

( { 
- 

a(l<_) -*Q a*(-k)} U- 
Q 

The solution is thus a Bogoliubov-Valatin transformation, which we 
may also write as 

¢r(f»t) 1 
(2n)$/2 I 

1k°x e -  __ ds _k ` 

mu 
+ a*(-_}§)[ 

i cos Q t + i - *  sinQt 

cos Qt -in sinQt ]} kw d 
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In this form, it is evident that the solution is an entire analytic 
function in (ina . This implies , in particular,that the Schwinger- 
Dys on perturbative expansion for Tbr w11l have an infinite radius of 
Convergence , which can also be verified directly . 
III.G. 2 . On the other hand, lim of H does not exist in Fock 

O' -0 W 0 , D  
n-» oo 

space; one has to perform an infinite renormalization, and change 
the Hilbert space for each am8 . 

The exact dressing transformation is given by 

T o exp [ l" d_k tgh 
\kl<o (Q **) {a*®a*(-5) -aU(-§)}  l 

This dressing transformation is highly singular in the 11mit o 
nevertheless , it is possible to show that 

-» ' 

* 
(cpl To A T 0 cp2) 

* 
T 

O' G 

lim 
I VCP1' CP2 €{5 | 

exists v A e 91 and thus defines anew Hilbert so 2 . 
Note that K is well defined as a I-lilbe' i's new 

representation of the commutation relations is no longer quasiequi- 
valent to a Fock representation however . 

Gllmm's dressing transformation, in that particular case , 
would be much less singular, indeed, we would put the system in a 
box, and thus define 

O' 
V 2 

kEA(0) 
Vk I Vk 

_ 1 
Zu {a*(5)a*(-) + a*®a<_) + a*(-pa(-_k) 

+ aL)a(-;)} 

and define 

T _k6m3cP .- 

i (_5m2r(v_))'" 
exp -IL 1"(Vk)cp = s -l im 

- n-nn m = 0  
m! cp 

which clearly exists . 
With the same notations , 
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Hk,6m3 = p{a*@alg + a*(-_k)a(-5)} + 6 m2 Vk 

Z I m g  = \lTI6m2¢0H-8 = 1 

. . =6m2 E _k,am2 = anngv N V )  81-13 

2 

K 

and one obtalns on 8 

+ . = 
(H _k,6rrr° E_k,lsnrF)T_k,am2Gp T_k,6m2 G_k,6m2'°0 

and 

H Z 
£eA(==°) 

oo 

One then shows that 

Z é 
q,6m2 T 

0'l6II13 Tf , é 
8 .]'6m3 T_k,6m2 

geubi 
provides a good domain for 

H 
0'161'112 

E + cF,6m" 2 
_15.E A(0) 

. + 
H _l$,6m2 . E§,6m2 1 

and finally, that, Vamp, \l e is 

nm 
O' -OW 

and defines the same Hilbert space as the exact transformation. 

2x(§(T@,6m2<°' Tcr,6m2 l) = (wmm2q), T<G»,6m2'l> 
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PHYSICAL OBSERVABLES AND SYMMETRY GROUPST 

H. I. Botchers 
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Gottingen, Germany 

I .  Introduction 
I want to give a sequence of lectures on the algebraic approach 

to quantum field theory. Recently this has become quite a big field , 
and it would hardly be possible to cover everything which is known 
about this subject in a course of two semesters . Therefore I have the 
choice of picking a special subject. This subject will be some 
aspects in connection with symmetry groups. I am picking these sub- 
jects since there has been some progress on these topics in recent 
years , and some things we will talk about are not published yet . 

However, before going into our main subject, let us start with 
the discussion of some fundamentals; in particular we should answer 
the question, "Why do we use C*-algebras in physics?" 

All physics is based on the fact that the set of objects we are 
dealing with can be split into 4mc classes . 
1) The first class we will call states , denoted by TheSe are 
the objects we want to analyze . 
2) The second class is called observables. denoted by @. These are 
the devices with which we study the objects of the first class . 

The splitting into the two classes is not permanent, but if we 
consider a certain theory we must have given such a splitting, which 
is fixed for this particular theory. No one can prevent us from making 
a theory of certain families of instruments . In such a case this family 
of observables will be the states which have to be investigated . 

The observables we apply to states in order to get a number . 
This process will be called a measurement . 
3) A measurement M is a process which assigns to every pair x G @ 
and up 6 J' a real number ( x ,  up) E R 

J 

m - @ x J - R  

TPresented at the INSTITUTE FOR THEORETICAL PHYSICS I 

University of Colorado, Summer 1969 . 
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We have to impose some restrictions on this process of mea- 
surement. We would not call two things different if we cannot dis- 
tinguish them by some measurement. This means 
a) G separates states, i . e .  , CD1 , up2 e J and ii 7£¢P2 then exists 
x E @ such that 

( x ,  CP1) 9* lx, CPU) 

b) J separates the observables i . e .  X1 , XI and X1 # k g  then exists 
up € :f such that 

(x l .  cp) = (XQICP) 

This setup is still very general and it is the aim of theoretical 
physics to find some additional mathematical structure which puts 
some order in the set of numbers given by measurements . 

This process of finding a theory will in general not be a unique 
one. This process is governed by fashions and in particular by our 
knowledge of mathematics . 

The modern development started off with the quantum theory of 
finite many degrees of freedom. This is a well developed and very 
successful theory. The theories now in the focus of theoretical inter- 
est are attempts to construct quantum theories of infinite many degrees 
of freedom. Since thls new theory shall be a generalization of the 
usual quantum theory, it should cover the special situation which we 
have in quantum theory . 

As everyone knows , there are two different aspects of the 
usual quantum theory, namely the Schrodinger picture and the Heisen- 
berg picture. In the first one the emphasis is on the states, while in 
the Heisenberg picture the states are more in the background and the 
important part is the algebraic structure of the commutation relations . 
Both pictures contain, of course, the same information. This is even 
true in the case where you identify the states with the vectors in the 
representation Hilbert space. That this is s o  is a consequence of von 
Neumann's uniqueness theorem, which insures that all representations 
of the canonical commutation relation for a finite number of degrees of 
freedom are quasi-equivalent . 

If one tries to generalize quantum theory from finitely many to 
an infinite number of degrees of freedom you have to  make your choice, 
namely what part you should keep and what part you should change . 
The attitude towards this question has not always been the same. The 
elder versions of quantum field theory have always put the emphasis 
on the Hilbert space , which is also true for the so-called axiomatic 
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field theory, e .g .  the I1.S .Z  . formalisms) and the Wightman field 
theory.2) I. E .  Sega13 was one who realized that one should look at 
the algebraic structure as the main ingredient of the theory. Every 
Hilbert space approach of the theory will then come out as a special 
realization of the algebraic approach . 

The main ideas of this algebraic approach are the following: 
One assumes that one can consider the observables as the self-adjoint 
elements of a C*-algebra, now denoted by M. Then the physical 
states should be identified with positive normalized linear functionals 
on this c*-algebra QI. These objects are called again states in the 
mathematical literature. If one wants to deal with a special physical 
theory one can impose structural conditions on the C*-algebra II which 
restricts the enormous sets of mathematical objects to those which 
have reasonable physical properties . 

As one knows from mathematics , most C*-algebras will have 
an uncountable number of different representations . At first sight this 
seems to be in contradiction to the assumption that C*-algebras could 
be useful for physics . But that these two statements do not exclude 
each other will be seen in the next section . 
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II. On Physical Equivalence of Representations 
In this section we follow closely a paper by R .  Haag and 

D .  Kastler.4 Let us assume we describe the observables as the self- 
adjoint elements of a C*-algebra QI. What one usually does in such a 
case is to  look for a representation Tr of this algebra, i .e  . for a reali- 
zation of the abstract algebra by bounded operators acting on a Hil- 
bert space GC- If we do this, the question immediately arises, does 
every representation describe a different physics? Only if this is not 
the case cah we say that the algebraic aspect can serve as  a possible 
tool for describing physics . 

When we have a representation Tr in a Hilbert space :K we wlll 
identify the vectors 5 E K  as  physical states and the expectation 
values (Q, or(x)*§) , where x is an observable, with the measurement of 
this state. More generally, if you want to consider a mixture given 
by a density matrix R 2 0 and tr R = l then tr R-1T(x) is the expecta- 
tion value of x in this mixture . 

Since , however, experirnentalists can make only a finite num- 
ber of measurements , and these also only with finite accuracy, we 
give the 

.11.1 . Definition: Two representations T11 and 772 on the Hilbert spaces 
K1 and [K2 are called physically equivalent, if for any finite number of 
observables X1 , Xe , . . . ,XN and density matrices R1 , . . . ,Rn € 25%) 
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and every e > 0 ,  there exists density matrices R1', . . .RN' €SBGQ2 ) 
such that 

l tr Re 7Ti(xi) t rR. '  
1 T72 (xi)1 < e I i = 1 . 2 , . . . , n .  

Moreover, if Ri = Re then Re' = ,' and vice versa . 
The problem of finding d 

physical equiva fence has been I _ I. M .  G.  Fell . 
Before stating the result we need some notation . 

mathematical cord )it1ons for 
5 

11.2. Definitions: Let 91 be a C*-algebra. We denote by 
1) QI* the dual space of at and by QI** the second dual of 21. 
2) so) the set of states on QI, i . e .  the set of w E ill* such 

that (i) VJ(X) 2 0 V X 2  0 .  x e 91 and (it) llwll = 1. 
3) Let TT be a representation of 91. Then we denote by E(rr) the 

set of vectorstates associated with TT i .e  . 
E(1T) ={w= a E K  w a x )  = (@,(><)a).  l ell = 1} 

4) Co E(Tv) nth we convex set generated by E(rr). 

5) Co E(1~d J the closure of Co E(rr) in the norm-, resp. W*- 
topology QUO*. (Remark: The W*-topology is the weak topology induced 
by the elements x E ill on QI*. It is the same as o(%I*, 21) in the termi- 
nology of Bourbaki.) 
With these notations we get the following result: 

2) Co E(1T1) 

11.3. Theorem: Let 21 be a C*-algebra and 771 and The be two repre - 
sentations of 91. Then the following statements are equivalent . 

1) 111 and We are physically equivalent . 
w w = Co E(Tr2) . 

3) Ker 771 - Ker 'ITS where Ker TT denotes the kernel of the repre- 
sentation 1-r, i .e  . the set of all X E 91 which are represented by the zero 
operator. 

Proof: 
1 => 2: The definition of physical equivalence just means that _every 
weak d of a point Co E('n1) contains a point imp 12 ) 
hencai "D Co E(rr2) . Since the assumptions are §1c , 
2 follows . 
2 =e 3: Let x be in the kernel of 771 . Then X annihilates every state 
in E(n1) and hence also in Co E(1T1) and by continuity also in 
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Co E(n1]W Co E(vr2)W. 
0 ,  which then implies I 

I OT' 

al 
any €}C11 

€2 

Ker TIP => Ker TT1 .L 
0 for all pairs €1 Q €CK: 

.of . = 
v t r €"1<;,~ . 

Ker no . Since the statements are symmetric, it followsathat Kar al = 
Ker T72 . .L 
3 =) 1: Since Ker al = = Ker "2  . 
(€1 I 171 = I 

implies that the linear combinations of these matrix elements are 
weakly dense in Ker 7T1* . Hence every matrix element of TT2 can be 
approximated by matrix elements of al . Since every matrix element 
is a 11near combination of expectation values we have that every 
expectation value of 172 can be approximated by expectation values of 
111 . Since the assumption was symmetric we get physical equivalence . 

This result tells us that the only thing which counts for phy- 
sics is the kernel of the representation, or to say it in another way | 

the algebra. However, one should not believe that the existence of 
different representations with the same kernel is something which is 
useless for physics . On the contrary, if you investigate a particular 
situation you should always adapt the representation to the particular 
situation. For example, if you describe the scattering of two partier 
oles , you look for a representation having .a two particle incoming 
state . You could, of course , describe the same situation in a differ- 
ent representation, namely with a state , which describes besides the 
two incoming particles some other things , which are far enough away , 
such that it practically does not disturb the two particle scattering . 

We have 
only if x E Ker T71° 

that (E .112 (x)E) 
hence x e 

This 

by Ag . 
the 

III. Observables and Symmetry Groups 
Every physical problem is connected with the action of a group, 

sometimes as a symmetry group of the problem, very often as  the group 
of time development, and not seldom as the combination of both . 

We now have to translate this concept of symmetry groups into 
the language of observables and states . Such a symmetry means that 
we have associated to  every element g E G two mappings, one , 
denoted acting on the observables and another, denoted by d r 
acting on states , such that for all X e ® and all Q0 E J we have g 

(a x ,  ag'cp) 
g 

( x ,  up) 

If we want to describe our observables by a C*-algebra ill then Ag shall 
map positive operators onto positive operators and furthermore com- 
muting elements onto commuting elements . The easiest way to realize 
such a mapping is by assuming that mg is an automorphism of Ill. 
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every kg E G we will have 
does not fo1.5%i**li issainarrinaaaiu preceding 

III. 1 . Definition: Let QI be a C*-algebra. A mapping or.: QI -° 91 is 
called an automorphism if it fulfills the properties : 

(1) a()»x+y) =)»<1(x) +0b(y);x, y€%I.  x E as 
(ii) (1(xy) = (x(x) a(y) 

(iii) a(x*) = (a(x))* 
0c(l) = 1 

(iv) Cr, is a bijection with lcF,(x)ll = llxll . 
The group of automorphisms acting on at is denoted by Aut as. 

If we now have a group G acting as symmetry group on our 
physical system, then, according to our preceding discussion, to 

E Aut QI. Although it 
1 that the a form a repre- 

sentation of owe will reslrlct our discussion 90 the situs - 
lion where 

an automorphism (Le 
discussion 

a°G-°Au t9 I  

is a representation of the group G, 1.e. Ag a = a and 01 = 
1 92 gl 92 

identity automorphism. In the following we will not deal with arbi- 
trary groups but with locally compact groups. This covers all groups 
which are of physical interest, the Lie groups and the discrete groups . 

Having a topological group one can, of course, define con- 
tinuity properties of the representation Ag of the group . 

! =| 

1 I 

I 

=f§II 
*in 

E 

We say the auto 
tinuous 1$ for avenge 

- r  such that I 
b) strongly continuous 

there exists a neighborhood IJ. C G of 
< G for E U 

c) u-weakly continuous if TT is a representation of QI and for 
every pair of vectors §1 , 52 e Io, and x € 91 the function (€1 ,rr(oLgX)€2) 
is a continuous function on G. 

The case where the group acts norm continuous has been 
treated by R.  Kadlson and I. Ringrose6) using the result of S . Sakai on 
derivations . 7) However, it is also known that norm continuous 
groups of automorphisms are not useful in physics because of too much 
analyticity. 

We will deal with the strongly continuous case. It is known 
from examples in field theory and statistical mechanics that this situa- 
tion occurs in physics. Since for the application of physics it is much 
more natural to work with special representations .which are adapted to 

8) 
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the special situation rather than with the abstract C*-algebra , our 
main interest will be to look for representations in which the auto- 
morphisms are implemented by unitary operators . 

Speaking about representations 7T of the C*-algebra QI we will 
always mean non-degenerated representations . If not stated other- 
wise G will be a locally compact group and we assume that we have a 
representation 

a :G*Aut9 l  

of this group . 
111.3 . Definitions : 
-T-';" "* -T1"§u""""'- _ 

;l 
-":r:"-a -F_. ..-be.. 

A representation Tr of QI is called 
if there exists a strongly continuous unitary 

bounded operators on CKITr) such that 
.;:lX E 91. 
x1s quasiequivalent to a covariant repre- 

~r :Mar l)l 
c) covariant extendible if n is unitary equivalent to  a sub- 

representation T11 of a covariant representation "2 . 
If one tries to give conditions for the covariance of a represen- 

tation in the general situation it becomes clear that one has to cope 
with cohomology and with multiplicity problems. In order that we do 
not have to  deal with these problems we will restrict ourselves to the 
case of finding conditions under which a representation is covariant 
extendible respectively under which it is a quasicovariant represen- 
tation. These problems can be solved and have simple answers . 

In the following it is always assumed that G acts as a 
strongly continuous group of automorphisms . 
W. States Which Are Continuous Under the Action of the Groups 

We will denote by E(2D the set of states on 91 and by P(2I) the 
set of pure states of M. 

I 

L1 353Y a 
for g '-N 

Engle son 
of this set follows from 

Sinuous on a state 
Ec the set of states 

IV.2 . Lemma: Let TT be a covariant representation then every vector 
state of 7T belongs to EC . 
Proof: 
ration of G implementing the automorphisms org and Q e xr, then 

Let p :  G -| M C )  be the strongly continuous unitary represen- 
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a 

Ag' u ( x )  = we(agx) = (p-1 (Q)§. n(x) 9-1 (g)€)- From this follows 

/ w=(x) - w  (x)l = I ((9'1 (Q) - 1)€. r1(x)p'1 (Q)€) + (€.rr(x)(p'1(9)-1)§)l 
- 1)l§ll - lIE II * 0 for g * l slnce p is strongly 

sentation. 
.a-.ll'§'»1"»"Ji-_1INa tells us that states giving tigse to covariant exten- 

dible representations must lie in EC' This makes it worthwhile to 
study EC more closely. Its properties are collected in 

But this implies He ' w -  all -»0 for g -» 1.  

"3 
1 . 

e Bd ILu(x*x} : l then we 6 EC where 

'Mud + (1 - Due; with 0 < 2 < 1 and 0 5 ,  Mg E 18 

IV.3 . Theorem: EC has the following properties' 
l . EC is convex. 
2 .  Et is l 4 

Ec is l 

4. up 
¢uX(Y) = UJ(X*Y'X) . 

5 .  m E EC and l 
then it follows that UUCP , L02 6 EC . 

6 . 00 E E ,  then there exists a unique decomposition w =),w1 + 
(1 - Uma with 0 S i S 1, UP1 e EC and We E E such that L02 does not 
majorise any state belonging to EC a 

7 .  There exists a family EcB C Et,  indexed by a semiordered 
set, such that 

co) EcB C BcY for B < Y 

B) ECB is convex and weakly closed 

Y) g EcB = EC 

The rest of this section is devoted to the proof of this theorem . 

+ 
1. Le tw 

(Mill (1 

will + (1 "UHF Iwe 

such that Hmm -all 

1 then lla9'0»W1 + (l - ).)w2) 

S 

-| O f o r g - ° l  

S 

-» 

Proof: 
: L D  EEpB.I1dOS}\$ _ I -»)»|f- lfngw. -m.)  + (1 -we We )lIS>~ll(.g'wr - 

' U32 II - 
2 . In order to prove the second statement we remark first that 

the transposed mapping of an automorphism is a norm preserving map 
of the dual space ill* of Vu. Let now w be a limit point in norm of EC 
then there exists a sequence up 
Hence also ||q.gIwn - ag'Lull 

3 and a usuch that [lag'Lun - (on II 
Hence lla9'w - all l lag'(w - Lon)H + l lag'wn - Will + Ho-In 
for g 6 lA. This implies Ag' acts strongly continuous on wand hence 
UJ 

E Ec such that llwn -'ull - 0 for n-» °°. 
8. Let now e > 0 then there exists an n 

% for g e u. 
_ u J H 5  Q 

S 

E Et'  



3 . This follows immediately from the group property ll0lg'0LhLu - 
0 for g -» 0 .  

ll(1g'wx - will 
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ah'wll = ll(1hi1§hw -all -' 

4 .  This follows from the relation ag'm (y) - w (y) = 
w(><*ag(y)x) - w(x*yx) = (sl1(x*u9(y):-=) - w(ag_».()8=)y a9-1)lx))) + 

0u{2§-1 (x*)y 0.9-100) .- Lu(u.g--. (x*hfx)) + %n(ag1(x*)yx) - w(x*yx)). 
This implies s llag'm - Lull llxll3 + 2 Hag1x -xll -llxll 

-| 0 for g -0 1. 
5 .  From 4 and 2 follows that with any state Lu E EC also every 

vector state belonging to no is an element of EC (Ref. 2 ,  2 .4 .8) .  Now 
every state majorised by w is a vector state (Ref. 9 ,  2 . 5 .  1). This 
implies 5 . 

6.  We have seen that with any state w 6 EC also every vec- 
tor state belonging to "w is an element of Ee' Since EC is convex and 
norm closed we see that all vector states of direct sums of represen- 
tations , whose vector states are elements of Ec, belong also to EC . 
We will collect these results in a proposition. To this end we first 
give a 
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W.4 .  Definition: We say a representation or is affiliated to EC if 
every vector state belonging to n is an element of Et .  We write aM Et.  

IV.5. Proposition: 
1. Let nnE and T11 be a subrepresentation of or then rr1T]Ec. 

2 .  Assume Trip]Ec, i E then ® TrinEs 

i e I 
3 . Let 1T'q Ec and m quasiequivalent to 7T then 7T1'r1E€. 

by n 

Proof: The first statement follows immediately from the definition of 
affiliated representations . The second statement follows from the re- 
marks given just before the definition IV.4.  There remains the third 
statement. Since 11 and T71 are quasiequivalent there exists a repre- 
sentation no quasiequtvalent to TT such that IT and "1 can be identified 
wlth subrepresentations of 'To (Ref. 10, I §4 COROLIAIRB). Taking into 
account the result of statement 1 we need only to prove that no is affi- 
11ated to Ec' Now, according to Ref. 9 ,  5 . 3 .1 ,  we can choose for 17a 
a multiple of IT . Hence HBUEc by the second statement . 

We now turn back to the proof of the theorem. Let us denote 

2 G-Daw which is by Proposition IV.5 affiliated to Er- . If we 

UJEEc 
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Mu, 

central projection P of the weak closure 
P1T NE u(1 C 

Uma 

denote by Tru the universal representation then there exists a unique 
of nu such that 71 is quasi- 

equivalent to  Prru and therefore by Proposition IV.5 . On the 
other hand if w is a vector state of P)n then o. I does not act 
strongly continuous on w by construction of up. By 8ef1n1tion of the 
universal representation nu every state w is a vector state up . Now 

.= Wpm r (1 with K II p1;]l gives the decomposi- 

state majorisecl by We is a vector state of (1 

e BC such that Hag 

.. .=.' w (1 -p)§ = 'D 

lion of "In such that U-*1 E EC and We does not majorise any state 
belonging to E . The last statement follows from the fact that every 

an P)fr . 
To prove the last part of Theorem 11.3 we remark first that for 

any w E Ec the expression llag'w - Lull defines a continuous non- 
negative function on G which vanishes at the identity. We call 'In (G) 
the maximal ideal of bounded continuous functions vanishing at the 
identity, ING) is a semi ordered set . 

For every function B E I1lll(G) we define Ec. as  the 

Be B < y ,  
ID 

8 . Since the set of functions which are smaller than a given 

llxll 'Bin thence this relation 

IV.6. Definition. 8 
set ofuJ mu-u1 l l$ l3(9) .  

It follows from the definition of Ec8 that Bc EcY for 
Furthermore, every UJ belongs to all EcB with 8(g) 2 Ho' - all hence Le EC :EC 

one is a convex set it follows th EC is a convex set. Let now run 
be a weakly convergent net in E 
relation l"-!a(**gX - x)l s 
the limit point Lu, this means um E Ec . 

8 
then we have for every x E QI the 

holds also for 

Remarks . 
1. 

IV. 7 . 
We want to emphasize that the extremal points of ECB are 

not pure states in general. This can easily be seen from the example 
of continuous functions on G vanishiNg at infinity having the trans- 
lations as a strongly continuous group of automorphisms . 

2 • 
lows that EC is not empty. For 
we define X -° xlf) = 
9.1 -0 91 . 
Now | (ag'HJt - 

f " £1 -0 

From the fact that Ag acts 
f E 

j`f(q)qg>ra . 
This implies for any wgE 

llw)(X}l lwtxtf J x(f))l 
f 

g 

strongly continuous on et it fol- 
and .]`f(g)a = 1 

map 'Boy 

l'uJ(x(fg - f )) l  

£1 (G) with f 2 0 
a linear order preserving 
E that we have a state wftxl = u1(x(f)) . 

= .. = S 

0 for g -» P. This implies *"f e Ecagfh) f(Q'*h)). 

V .  .Covariance Algebras 
This se1<i51on follows closely 513 paper of Dopllcher, Kastler , 

and Robinson, and of D. Testard . 
Let G be a locally compact group, dg a left invariant I-Iaar 

mea sure on G and Mg) the module function . 
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v.1. 

So 
W 

Pro of : 

Definitions' . -. re dengtqs set of faanstions F: G -' 91, i .e .  1='(g) e 21, 
I,.G is a Banach space 

HQIIIQ 
by (F**)(g)= =5'4 
ion denotes Thwbun 

in the algebra al. 
3 . For every two elements F,  G E QI; G we define a product 

by the equation (F A G)(g) = d g '  F(g')a I 

4 .  We define a homomorphism Hgfrom the algebra QI to the set 
of bounded linear operators acting on Q11 G by (H(x)F) (g) = xF(g) x e QI, 
P e 211 G and 

5 . A representation 6 of G in the set of bounded linear opera- 
tors acting on %I1G by (8(g')F)(g) = Ag' F(gf'l g) . 

Under the 1nvolut1on defined in 2 and the pro- 
. becomes a B*-algebra. .. has norm 

I . strongly 
B (g) is not an automorphism 

G(gI-1 g). 

211G 
Q representation of G of norm 

mln.-maswafgxl 

giant measure we get (F&(G1»&H))(g) 

* 

Since Ag is . 
fdgldgg F(91) ag1{G (g2'1 911 g ) }  and with 91 -g2 = 92 this 

becomes = .dg1 dg2' F(g1) ag1{G(g1'1 g2')} a92I1-I(92 g) = 
((F=§G)*H)(g). Next ll1=,e,Gll1 =.fog dg1|Ip(g1)ag1G(g{*)|l 

IdQdg1HF(91)H lIG(g1-1gll > {fdQI~IG(9)ll]~{lldg1 lIP(g1)H] = 
llplll IIGII1 . This proves that 9I1G is an algebra. Next ((p**)'H')(g) = 

Ag(F*)(g-1) A(g-1) =ag{a9-1 F(g)* A(g)}* A(g-1) = F(9): and (F-AG)**(g) 

= a9(HG)(9)*A(9*) = aglfdgl F(Q1)a91 G(g1-1 g'1)}* A(Q-1 ) 

=l'dgl ld991 G(g1' Q-1)}*{0¢g F(Q1)}* A(g*1 ) 

with 9'Q1 = go and A(9'1) =A(Q2'1)A(Q2QI1) we get 

= I's {ag2 G(Q2'1) A(Q2'1)} * agaiugg - lg F(g'1 Q2)A(q'* 92)} * 
=/do,, G#(g2) Ag2 r**(§;1g) = (G p**)(Q) . 
This proves Qr1G is a B*-algebra . 

Now lIH(x)l'l\1 =/d9 llxF(g)ll s llxlI.lld9 lIp(g)ll = IIxII-IIPII1 
and ll9(Q)FI11 =.fd91 Hag P(g-1g1)|l =J`d91 HF(g1)ll = HFH1 ' 
It remains to show that 9(9) acts strongly continuous . 

S 

"0 
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ll9(Q)F - FII 1 = l`dg1 ll0¢gF(Q"Q1) - F(g)ll S l`dQ1 ll€/.9 F(g-1 91) 
- F(g'1g1 )II +,tllF(9-191) - F(g1)lldg1-° 0 for g-» 1. This is first 

clear for %nuous functions F " t  by con*"'*""*€*'W£ it follows from 
this for at any F e %I1€. This; is the :ml in . 

For the later applications of the covar__nce algebras we need 
some further properties of the operators H(x) and the representation 
0(g) which we will 11st in the following 

V.3 . Proposition: For every x e QI and every g E G the operators 
I-I(x) and 9(g) defined by 

(H(x)F)(g) X F(g) 
(9(g')EW"*5* =(19' F(Q"1 Q) 

have the following pro les: 

- 

I 

k) I-I(a x)F 

a) 9(e)F = F 

9 (91) 9(gz)F : :  9(g19a )F 

b) IIS (g)FII1 = HFH1 
nm ll9(Q)F - 9 (QoIFH1 = 0 

9 °° go 

G) p a  9(g)G = (e <g'.)r)*»~ G 

(e (g)1=)#w 9 (g)G = p G 

d) (9 (9w)-¢< G = e (g)(F.§ G) 

e) H(x1)H(xa)F = H(x1x2)1= 

H(1)1= = F 

f )  lIH(x)pll1 s IIxII IIPII1 
Q) H(x)G = (H(»¢*)1=)#,ef G 

(H6=)F)7# H(x)G = F*§ H-(x*x)G 

h) (H¢x)p)-an G = H(x)(1I'1¢(G). 
1) Let T1 E E(9.I1G) and F e 2116 fixed; then w(x) E 'r1(F**# I-I(x)F) 

is a positive linear functional onillwith llwll = n(pl*# F) 

Q = 9(g)H(x)9 (g-"1)F 

a) and b) have already been L, 
of a) the second line of c) is ' 

So we have to prove the first llne : 

,_ in the last proposition . 
bd by a) and the first line . 
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=H= 
(P =¢»< 9(g.)G)(g) =fdg2 p#(g2) Ag2 9. a G(91-192-19) 

= .[`dg2A (951 ){a g2F (951 )*}a G(g -19 -lQ) g2gl 1 2 

On the other hand 

be (911 w G)(9) fdga (e (gel )F)*(q2 

II 
II 

II 

) 0. G(921 Q) 92 

.l'dg2(.g [e (g1-1)F}*(g2-1 )A (951) a G(Q21 9) 
2 

t d { -1 gun2 a 

Since now Age A(g2-l) is a right invariant measure we get by setting 

go = 92 951 

91 

92 

F(91 QUO1 ) }  * A (951 Mg G(Q;1g) 
2 

II 1]`dg:a A (QJ1) 0Lga{F(g3-1 )l * Aga 91 G(QII° 931 Q) 

This implies statement c) . 
Now statement d): 

be (91 WW( G) (9) = 

II 

tdgg (9 (91 )F) (g2)a 

.edge 

= a 
91 

g1-1 92 this be come s 

G -1 92 (go 9) 

~§1 {F(g{1 g2)} Ag2 G(g;~-1 9) 

l`dg2F(g1-1Q2) one -192 G(g2 Lg) 
1 

and with go 

II 

-1 - _ 
agitdga F(ga) mg G(g3 91 19) - 

Statements e) and f) again have been treated in the previous proposi- 
tion. Proving now g): 

=H= =H= _ (F -,or H(x)G)(9) l`dg1 F (91) a { x  G(911Q)} 

.rdgi 

II 
II 

II 

gl 

91 

{ F(g1-1 )}A (91-1 )0¢9 
1 

.fdgl -91 {x*F(Q{1 )} *A (951 ) 

.log (x*p)*(9.) a s(g;. Q) 
91 

((H(x*)p)**»ef G)(g) . 

(e (g1)(F>% G))(<J) 

{x} a91{ G(Q1l1g)] 

0! glG(91-1 g)} 



114 H. ]`- BORCHERS 

The second line of g) is a simple consequence of the first 11ne and 
statement e) . 

h) ((H(><)F))ér G)(9) =t0»9 x F(Q1) mg G(g1'* Q) 

= x .[`(191 F(91) 091 Gish* Q) = (I~I(x)(F* G))(g) 
1) Tl e EQIP) and F 

def1nes.a linear functional on QI. It has the properties : 
=H= w(x*x) =n(p H(x*=><)1=) =n((H(==)r)*»~ H(x)1=) 2 0 . 

e lu,1G then clearly w(x) = n(p=H+>@= H(x)F) 

This implies w is a positive linear functional on 91 . 
llw'[l =w(l) =n(F## F) 

New 

It remains to show the property 
k) We have 

(H (Ag1 x)F) (Q) = (0.91 x)F(g) = as1 {mg1-1 P(9)} 

= 9(g1)W91 1F(g1g)) = 9(g1)H(x)(ug1 LF(Q1g)) 

= 9 (91 )H (><)e (Q1-1 )F(g) 

This proves the proposition. 
We do not want to list all properties of these covariance 

i s  since we need them only as .a tool for our further 
The importance of these algebras is given in the 1 

Li. theorem: There is a one 
Briant re 
repress 

to one correspondence between' non- 
ens (n , p(g)) of the algebra 91 and 

ii of arlG given by . 

?r(F) =.['w(F(9)) p(g) dg F€9I1G 

and 

TT (x) -a (F) = n (H(x)p) 

P(g) --Fr (F) = ?r(6 (9)F) 

If we assume that 1 e 91 then we have also 

x € Q I  

g E G 
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17 (x) str.1im n(x~fn), fn e £1 (G) 
fn-v 6 

115 

P (Q) sir. 11m 
fn-» 6 

1A-Ir(6(g)fn) 

where 6 is the Dirac measure of the identity of the group and fn con- 
verges to 6 in the W*-topology in the dual of the continuous functions 
on G . 

I 

co<fl§riant representation (my then 
»§(F?""FIF é);9)hd;vthean we get 

f*(F) MG) = .[`17(F(g)p(g) 11(G(91)n(Q1) ds dg 

= J`11 (F(9)p (9) or (G(g-'1 91 )) p(Q'1 91 )d'g dg 

= .I`11(F(g)) 17(ag G(Q'1 91) P(91) dg dg 

2._| .I'Tf{ F(Q)ag G(g.-'.l. 91)} Mal) do d i  

= J`1r{ (F* G)(g1)} P (91 bg; = 1'-lr(F-A G) . 
New 

# n(F#) =fn(p (QD p(g) dg 

= .for(ag F(g-1)*) p(g) A(Q-1)dg 

= .[`p(Q) w(F(9-1L)*) A(Q-L) dg 

= {.I`11(F(Q-1)) l>(9-l) A(g-1 )dg I* 
= {.[`1'r(F(Q)) p(g) dg}* =7r"(F)* . 

a representation of 211G. Assume now the 
given then define Tm(><) 11 (p) = ?;(H(x)1=) . wag 

T!l(X.) w(x2) n"(p) = %(H(>=.) H(x2)F) = %(H(x.x)1=) = T1(x.XQ) Fr(F) 

Hence 1% defines 
lion 1"l' of 211G is 

senta- 

Now 
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MP) 1'r*(x) MG) = (%(G#)7T (><)7T(p*))* = (~(e*)%(H(x)F*))* 

=%((G**a= H(»<)F*)*) =w(((H(><*)e)* F 

=17(1=¢< H(><*)G) =7T(F) %(H(x*)G) =w(p) Tr(x*) %(G) . 
In the same manner follows p(g) TT(F) =rr(9 (g)F) with the properties 
p(91) p(g2) um we), p*(g) = D(g'1) p(Q)1T(x)p(Q'1) =1rr(0L x). The 
strong conti of p(g) follows directly from the strong continuity 
of 9 (g) . 

Finally 

n(fnx)-n(F)@ = n(x-fn F); = n(x)%lr(fn-k p)§ -» My) Tm(F)€ . 
This means Tl'(fnx) -° Tr(x) on a dense set of vectors and since Tr(fnx) is 

y II><IJ-llfll. 
s forrr(9 (g)fn) This proves the theorem . 

g 

it converges on every vector. The same argu- 

E 
0? this section will be 

VI. Characterization of Vector States of Covariant Representations 
In this section we want to prove that every state belonging to 

is a vector state of a covariant repro sentation. The main result 

VI.1. Theorem: 
1. n 
2.  r u n E  
3 .  TT 

The following statements are equivalent 
is covariant extendible 

C (see IV.4 for the definition of affiliation) 
is the direct sum of cyclic representations such 
that the states 1 the cyclic vectors , 
belong to EC . 

3 . = > 2 .  

Proof of the first part: 
1. =° 2 ,  follows from Lemma IV.2. 
2 .  =° 3 . Since every representation is direct sum of cyclic 

representations (Ref. 9 ,  2 .2 .7 ) .  
Lu i belongs to Ec'  Hence The n EC by Theorem 

1 
IV.3, 4 and 2 .  Hence 

TT = Z(-En 'n E w 
i E I go 

by Proposition IV . 5 . 

C 
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For proving the implication 3 => 1 we will use the covariance 
algetéas. By means of t f " " " ° i i " i s  between representations 
of 211 and covariant repro have a natural map cp from 
the states of lulG into the"_____.V._._....___._..._. - for a given covariant 
representation there might exist several different group representations 
implementing the automorphisms Ag , the map go will in general be many 
to one . But we have 

is onto Bow). i .e .  Q0 EQII1 ) 
VI.2.  Theorem' The image of the mapping cp from E(9,I1G) into E(9J) 

= ECw) . 
G . 

) c  EG 

function with compact support. (F F* I) G 
Proof: From Lemma IV.2 follows up E 011 1 

show the converse inclusion. Let I E 9l1G such 
ous 
function in g (Ref. 11 , Theorem 2) . 
defines a 
posed map *J 
forms of 2119. This map is given by 
11, Lemma 5) .  The rest of the proof 
the following two lemmas . 

l iner  positive map YI from arlG into 91. 
In particular 

Hence the trans- 
sends positive linear forms of QI into positive linear ' w)F =w(q#¢. p nun). (Ref. 

be given in 
(Y OE Theorem VI will 

lnu- 

l G V1.3 . lemma: Let w E E0(2I) then there exists a sequence In e 911 
continuous and with compact support Lo converge in 
norm to w . 

such that cpoYI' 
n 

Proof' We have 

u p nu) = fag(I* (Q-. nag (p(g'. h))ah(I(h`. )A (g")d9dh 

From this follows 

II w (F) .idgdh w(u»9(]#(g-1 )Ag (F(g-1 h))ah(I(h-1))) A(g-1 ) 

Now construct c0o*1']'u.(x) by replacing F(g) by x°6  (g) where 6 (g) denotes 
the Dirac measure at the identity of G.  Hence we get 

II =H= _ _ _ 
cpo'1'I w(x) l`dQw(agI (9 1)x I(g 1)) A(g 1) 

Since we have assumed that 1 6 21 we can put ]n(g) = 1 f(g), f(g) con- 
tinuous function with compact support on G.  Thus we get 

c,0oyI w(x) 
13 

G '  w(x) A(g`1)- =l`dg|f(Q_1)|2 Q 
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Since a' acts strongly continuous we can choose fn(g) such that 
|:En(g-1 ?1a A (g-1) converges to 6 (g) in the dual space of the continuous 
functions on G.  Hence cpo'1'f nu converges in norm to un. 

n 
This Lemma tells us thatcp E(%I1G) is norm dense in E (QI) . 

Therefore the proof of Theorem VI.2 is established by the following 

VI .4 .  Lemma: The image of E(%I1 G) under the mapcp is closed in norm . 

'n 1 all 

theorem exists a covariant representatlon 7T of 21 such 

son, Ref. 12) "there exists a vector n e ICC»~ with Ll) 

gibe a limit point of cp E(i'I1G) then there exists a sequence 
such that ** 0 . 

z e E('J11_) such that cpGJn : wn. Denote by H = e a  
. G A 11 in 

the representation of Ml induced by {in} . By the correspondence 
that cp LTJE = w 

for every 5 E :Le Since the vector states are norm closed (R. V .  i d i -  
1T = '"n = up Mn . 

After the proof of Theorem VI.2 we can complete the proof of 
Theorem VI. 1 . Lets be a representation of 91 with in EC then it is the 
direct sum of cyclic representation. IT €~)nw . 

i 

belongs to EC there exists (Bi E E(9I1 ) such that ¢p6.'i Now Q 
= 2 Since ii 

G i E I _ 
.- Wi'  

i e I 
Let "1 be corresponding covariant is a representation Fr of 911 1'.i- G 

We | 

representation of QI then one checks easily that or is a subrepresenta- 
tion of "1 . This proves Theorem VI. l . 

After having established necessary and sufficient conditions 
for the existence of covariant extension of a given representation we 
w11l ask next for the class of quasicovariant representations . 

Before we go into the details of the discussions we have to 
recall the condition for quasiequivalence in terms of states . Let TH 
and n2 be two quasiequivalent representations then every normal 
state on "1 defines a normal state on "2 and vice versa. Hence "1 

and T12 have the same sets of normal states. Now the set of normal 
states of a representation Tr is norm closed and coincides with the 
convex closure of its vector states . 

GB 

VI.5. Definition: Letter be a representation then we denote 
1 . E(rT) the set of all vector states of 'IT 
2 . C E(71) the norm closed convex hull of Efrr) . 

Since for any state up G €JnE(n) the representation w is quasiequiva- 
lent to a subrepresentation of or , it follows that @m is 

w e €>NE(77) 
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quasiequivalent to TT . But this implies that the two representations 171 
and Tl'2 are quasiequivalent if €5Nt("1) = €>"E(n2). 

After this discussion of quasiequivalent representations we can 
state the result . 

Let Tr be a representation of QI then Tr is quasicovari- vI .6 .  Theorem: 
ant if and only if . 

a) TTT1E§_é:nd 
B) "Q Co E(n) = €>tnE(n) for all g e G. 

E since EC is convex and norm closed it follows that 
E0 = 

E(rr1} and hence 
also the convex closure of E(n) is invariant under the action of CL' 

Proof: Let TT be a quasicovariant representation then there exists a 
covariant representation 171 which is quasiequivalent to TT . Hence 
Eon) C and 

'J 5-65 EUT1) EgnsMl but this implies thatTTT]Ec. Since 111 is a 
covariant representation it follows that :kg E t )  = 

Let now Trfulflll conditions u.) and B) then by Theorem VI. f' 
there exists a covariant representation nl such that Tr is a subrepre»- 
sentation of. Tri . Let now P bethe central carrier of IT (in the center 
of the weak closure of n.l) then PI11 is quasiequivalent to or. It 
remains to  show that Pnl is a covariant representation. To thls end 
let us denote by p(g) the strongly continuous unitary representation of 
G on SCH-1 implementing the automorphisms. L e t §  6 s 1  such that. , 

P'§ = E: then by condition 8 o(s)€ defines a normal state of W1 and 
slnce the representations Pnl and (1 - P)n1 are disjoint it follows that 
Pp (Q)€ = p(g)§ . This implies P commutes with p(g) and hence Pn1 is 
a covariant representation. This proves the Theorem . 
Remarks: . 

1 . We refrain from investing conditions under which a repre- 
sentation is covariant. The necessary condition that E(n) is invariant 
under Ag is not sufficient for solving the problem as we will sea loan 
example. As far as  I have looked into this problem the invariance of 
E(1T) will probably be sufficient in the cases where Hll is purely infinite 
and in the case where TT" is finite only when the coupling is smaller or 
equal to one , this means if Tr' is small compared to or" . 

Example: Let QI be the continuous f 
vanishing at infinity with the translations as  I 
Let T10 be the natural representation in £2 (R) r 
no' such that P 740and 1 - p ¢ 0 .  Let x be l  
least two dimensions . Define 3-C = PS2 (R) ® 
prTo(x) ® 1 (-3 (l - P) 7T0(x) . One sees immedi 

I 
q-w-ai 

R 

II 



120 H .  I .  BORCHERS 

hence E(77) is invariant under the action of a g .  However Ag is 
unitary implementable since multiplicity is a unitary invariant . 

2 . From the way we have constructed states on the covariance 
algebra 211G in the proof of Theorem V1.2 it follows that there exists a 
faithful covariant representation of 91 (compare also Ref. 11 , Lemma 
5). From this we will see that a two-sided ideal in QI is kernel of a 
covariant representation if and only if it is invariant . 

The content of the Sections IV and VI follows a paper by 
H.  I. Borchers . 13) 

not 

bf al". 
Therefore , it makes sense E 

VII. On An Algebra Related to the Covariance Alqebra 
During the next four sections G will always 

metric abelian group , i .e  . . 
character group of G whicHl KR" the i 

'5. 'cone i i  
ing V+ will denote a fixed conelin G which is closed, convex, ha S 
interior points and has its apex at the origin, such that its dual cone 
has also interior points . 

We will say that a strongly continuous unitary representation 
p'G -o B(!£) on a Hilbert space3C fulfills the spectrum condition if the 
spectrum of p is contained in V+ . 
VII. 1. Definition: A representation IT of 11 will be called positive , 
7T > 0 ,  If there exists a strongly continuous unitary representation 
p:G -° B0qVT) such that (i) p fulfills the spectrum condition and (ii) p 
implements the automorphisms, i . e .  for all x e QI and g E G we have 
p(g) rr(x) 0(9-1) =1r(r1gx)- 

A Let us denote by Co(G) the C*-algebra of continuous functions 
on G, tending to zero at infinity. Let now QI be a concrete C*-algebra 
acting on a Hilbert space :K and p:G * B(K) a strongly continuous uni- 
tary representation of G implementing the automorphisms Ag which by 
assumptions shall act strongly continuous on al. 

VI1.2. Definition: We denote by 
(1) 

(ii) I(ur,G) the smallest norm closed two slded ideal containing 
all elements of the form {xp (f), p(f)x; x e QI, f e C0(G)} 

(111) (m,G) 

(2I,G) the C*-algebra generated by lillI,p(f); f E c0(G)} 

the smallest sub C*-algebra of {sum) containing 
all operators of the form p(f1 )xp(f2) x E 9,1 fl .fa € cote) . 
As a consequence of the continuity property and the spectrum condition 
we have the important 

VII.3 . Lemma: The two sets I(%I,G) and (%I,G)0 coincide . 
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Proof: By definition we have w.G)o C I(9l,G) . In order to show the 
converse inclusion it suffices that elements of the form xp (f') and 
p(f)x contained in (%I,G)0. And since (9l,G)0 is a C*-algebra it will 
do to consider only elements of the form xp(f) . 

Now let f E C _0(G) have c o m e t *  su_pport, then pLgL:(f) = 
111.. U!! I .can; EE. 

VII.4. Proposition: Every representatlon 7T of (2I,G) whose restric- 
tion to I(&I,G) is not degenerated defines a positive representation of 
91. 

Proof: From the preceding Lemma we have I(QI,G) = 
1mp11es that Tr(p (o0(é)) is not degenerated. This in turn 1mp11es that 
we have a strongly continuous unitary representation 8(g) of G such 
that for every f e C0(G) the relation 9(f) =1r(p(f)) holds (Ref. 1, §13). 
Since the spectrum of p(g) is contained in V+, the spectrum of B(g) is 
contained in V+ too. To finish the proof it remains to show that 0(9) 
implements the automorphism GQ. For x E 91 and fl , is E c0(é) we 
have 

@1.G)0 which 

Tf(D(f1)) 9(9) 1T(x) 9'1 (Q) 11(o(f2)) 

= '*T(P(f. e19§)) Tr(x) w(o (e'ig§f2)) = 1T(P(f1 eigglxp (e-i99f2)) 

=w(o(f1)f1gxp(f2)) =w(p(f1)) 77(agx) w(o(f2)) 

and since 7r(p (C0(G))) is not degenerated it follows that 

6(9) Tr(x) 9* (Q) =or(agx) 
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lan: 
|*el.|1.||- 

proposition we will remind the reader that every 
two-sided.. ideal can be extended to a representa- 

algebra without enlarging the Hilbert space (Ref. 9 ,  
Proposition 2 . l0.4) . This last proposition is not quite what we will 
use later. Therefore we state 

of p(g) and f 6 cote) a real function with the properties f(§) 
VII.5 . Corollary: let A be a non-empty bounded set in the spectrum 

= 1 for 
g EE A and f@) < l for g if A .  Assume that w is a state on (9.I,G) with 
the property uJ(p (f)) = 1 . Then no restricted to at iS a positive 
representation. 

Proof: It follows from the properties of w that w restricted to I(9l,G) 
is . not zero. ON the other hand since p(f) S 1 and w(o (f) = 1 it follows 
that the cyclic vector go is eigenvector of Tr(p (f)) with eigenvalue 1 . 
Since the projection P onto the essential subspace of 17(I(2I,G)) com- 
mutes With 71(2I,G) and has the property PEr = €0 it follows that P =  1 . 
Thus rr(I(9I,G)) is not degenerated and the result follows from Proposi- 
tion VII • 4 . 
VIII. States Fulfilling the Spectrum Condition 

During this section we will make the simplifying assumption 
that the algebra 9,1 contains the identity. All re suits we will obtain 
can easily be translated to the case where QI does not contain an iden- 
tity. We denote by E(91) the set of states on 91 and by PGH) the pure 
states which are the extremal points of Be) . Furthermore we will 
define: 

.|. . . 
v111. 1. Definition' E (M) denotes the set of states w e Be) such 
that 'Tun > 0 .  The main goal of this section will be to prove the 
following 

we = w (x*yx] 

VIII.2 . Theorem: E+ has the following properties 
1 . E+ is convex . 
2 .  E+,x€&I=>wx€EI*lw1thuJx(y) w(X*x) year  . 
3 .  up e E+ and w=>»w1 + (1 -).)Lu2 with 0 <  )¢< 1 and 

w1,  We EE=° w1,w2 e E .  
4 .  E+ is norm closed. + 
5 . Denote by a g the transposed automorphism. Then E is 

invariant under a' 9 acts , 
6 .  Let Lu 2 E then there exists a unique decomposition up = 

M01 + (1 - Uwe with 0 S 2 S 1, Low 6 E+, we 6 E and there exists no 
state we < We with Ula E E+ (see Ref. 1, 2 . 5  for the order relation) . 

and a' strongly continuous on E+ 
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I under a g 

7 .  There exists a family En+C E+ such' that 
a) En; C En+1+ 
B) En is convex and weakly closed and invariant 

and 

lEE?) is weakly dense in En* y )  
Is) norm dense in E+ . 

The rest of this Q 1 ill be devoted to the proof of this theorem . 
For proving the first six statements may we remind the reader of a 
result due to the author . 15) 

'mr 

VIII.3 . Theorem: Let TT be any positive representation of at then 
there exists a strongly continuous unitary representation p:G -°B'GCr1) 
such that ._, . 

a) P._. the automorphism Ag 
B) l l l spectrum condition 
y) _ . _ .  elongs E>'the weak closure of n(%I) . 

From this theorem we immediately have the 

VIII.4. Corollary: 
a) The direct sum of positive representatioNs is a positive 

representation, 1,.1 let "1€I> 0 then IT = @iii > 0 . 
i e I 

b) Any subrepresentation of a positive representation is a 
positive representation . 

c) Any representation quasiequivalent to a positive repre- 
sentation is a positive representation . 

sum 
I r 

.. ,f 
t p ' f m l r i  

.1. .  .Jf 

V "  * " l  L 91 nr: 

Proof: Theorem VIII.3 permits us to choose *-he representation p(G) 
in the weak .closure ofrr(2I) . This implies b) and c) . Now the direct 

s representations is again continuous .. Hence . 
ents the automorphism for Q ® T'1' Since ev8ry pi 

i E I - i E I * 
fulfills the spectrum condition we have for all f e Co(G) , vanishing 
on v+, p1-(f) = 0 .  Hence ® pi(f) = 0 for these functions. This 

i e I 
implies Z C-B pi fulfills the spectrum condition. I 

1 6 I 

Proof of Theorem VIII.2 first part: 
1 . Let Low , UJ2 E E+ and 0 S x S 1 then Trow +(l-Um2 is unitary 

1 
equivalent to a subrepresentation of nw1 + Tru) . Hence M91 + (1-Uw2 

2 
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€ E+ by corollary VIII.4 . 
2 .  Let 00 E E+, X E QI then we gives rise to a subrepresentation 

of "w . Hence Wx E E+ . 
3 .  Le tw € E+and 0 < ) t  < 1  and =luJl + (1 -Uwe . Then 

W1 < Lu, We < w and *Up as well as we define eubrepresentations of nm 
(Ref. 2 ,  2.5.1}. Hence ml .  *U2 E E+. 

4.  Let Lu he a limit point in norm of E+. Then there exists a 
sequence "*n e E+ with Illn wll p nLUn 

n 
up with E 3-C. Now the set of vector states of IT is norm 

oloseg iv Therefore in is some vector state 
suhurepresentation of ii . Since 71 > D, it 

E+ and p:G* B(ZiC ) a strongly continuous unitary 
Thena4wu(x} = ' , TT(a )E)= 

means that a gm 0520 

ii 0.  Let 6) thenrr> 0 

and ul = € 
(R. . Kadison, Ref. 12). 

TI E MTV, and "Jn defnes a 
follows that UJ E E 

5 . Let Lu E 
representation implementing Gag. 
(0 -1 (g)§. or(x)p-1 (QE). 
which implies a w  € E+. 

Now 

This 

1[ 
m(agx) - (€ 

is a vector state 

I 

l ( p  (gm. Tf(X) 9-1 (gm - (Q. To(x)§)l 

+ 

since p is a 
4!0 

Q 6 . Q €)71w . Tl' 

w E E+ 
jection belonging to the center of Tr 
to 7T 
P g 

((p" (9) - no, 11(x)p'1 (QE) (E, n(x)(p'1 (Q)-1)€)l S 

2llxlI l(p'1 (Q)-w€ll la I 9--> 0 

strongly continuous representation. Hence Ilagw - Lu[l 
0 .  Denote by TTy the universal representation and by Tl' =". 

is a positive representation. Now there exists a pro- 

0 

such that P'TuL is 
. Therefore, every state w E EH! 

= g ,  Let n o w s  E E,  then 
and (1 - pM of 0 then 

n 
is a 

such that LD 

qua siequivalent 
vector state *Do-' of nu with 

: '""n° Assizme Pa# 0 

+ 
= w  E E  L01 PT] 

Hp \l 
'al 

and U52 = w  II-pm 
II(1-P)nlI 

KE+ 

and 

(1) ll?'UHW1 l1(1-p)nllw2 + 
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P)1Tu since P belongs to If Una < U52 then U03 is a vector state of (1 - 
the center of Nu' and hence u ,  K E+. 

To prove the la st statement we will use the results of Section 
VII. To this en we identify the algebra 9.1 of Section VII with the 
representation GB Tau) =IT and p(G) with the strongly continuous 

up 6 E+ 
unitary representation of the group G which fulfills the spectrum con- 
dition, which exists inlilrr since or > 0 .  

Let a be an interior point of V* and denote by An the sets V'!' al 
(r1°a + V") in G. We define now En*` the set of states on 91 which 
have an extension to (&I,G) such that uJlP (f)) = 1 V f E Co(G) with f('g) 
= 1, 6 e An and u)(p(f)) = 
(VII.4) that the representation no of (9I,G) defined by UJ E End is not 
degenerated on I(9l,G) and we have therefore by Proposition VlI.3 EHIC E+. The convexity of En is clear. We now want to show that 

is 
0 <  f s  1, f(§) = 1 for El E A n ,  f(€r)< 1 for 'észpAn. andrea weak limit 
point of En*-_ By this we mean that m is a limit point in the weak topo- 
logy defined by the elements X € 91. We have to  show that whas an 
extension to the algebra (9,I,G) with the desired properties . Consider 
first the linear set 1T(9J) + 7»o(f), i e C .  On this set we define an 
extension of UJ by the equation mI (1T(X) + i0(f)) = w(x) + i . 

We show now that this extension takes non-negative values 
on non-negative operators . There are two cases , the first one p(f) e 
1T(2I) . In this case nothing has to be proved, since w(p (f)) = 1 for all 
up e En* and hence also for the limit points. In the second case p»(f) 
does not belong to 1191). Then 7T(x) + m>(f) 2 = 
X = i and w' is  non-negative on such elements if 

+ 
En weakly closed. To this end let f E C (G) be a real function 

0 v f e c0(G) vanishing m An' It is clear 

0 implies w(x)* Tr(X) and 

sup w(x) s 1 S 
TT(X) s p(f) 

inf w(x) 
rr(x) 2 p(f) 

Tl' of (Q (fin 

This , however, is true for every element w 6 En* by construction of 
this set, and hence also for the limit point up. This proves that re' is 
a positive linear functional and has therefore by the extension theo- 
rem (Ref. 2 ,  2 .  10. 1) an extension up" to a state of (9I,G) with Lo" (x) = 
(Mx) for all x 6 ill and Lu" (p(f)) = l .  Since II p(f)l l  = 1 and 5 > 0 follows 
that th cyclic vector ED of the representation no' is eigenvector of 

J with eigenvalue 1 . 
choice of f that Lu" (p(h)) := 1 for all h which are one on and ru" (p(h)) 
= 0 for all h which vanish on An. But this implies w E n+ and hence 
En* is weakly closed . 

Next let In be an extremal point of En* and assume that there 
exists a decomposition [U =?\uJ1 + (l - Uwe , 0 S 1 S 1 then by VIII.2.3 

This implies together with the special 
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'iv Ja .. 

II 131 

k g  

VIII . 5 . Corollary: 
invariant state 

Assume E+ if Q) then E+ contains at least one 

Proof; Since there exists 
+ E 74 (1) a n 

this set the Markov-Kakutani fix point theorem (Ref. 16 
v. 10 .6) we get the desired result . 

such that E + if Ill . Applying to 
, Part I ,  

pos votive representations . 
developed earlier by G .  F .  Dell'Antonio17) and myself. 15) Before 
proving something we will state the result, but we need some nota- 
tion for this . + 

Let a be an interior point of v then 

IX. Some Conditions for positive Representations 
In this section we want to present the second tool for handling 

These are generalizations of techniques 

D{.1. Definition: Sa denotes _ the smallest left ideal 
by the element of the 
for 5 e -a + V+. Here f denotes the Fourier transform of f .  

in 91 generated 
form l`f(Q)0Lgx dg with x E 91 , f E £1 (G) and ?(§)=0 

With this definition we can formulate the result as follows 

the subspace of vectors Q E 3c,7 such thats(y)§ 
Then the represelritation or is positive if and only if 
inIKlr,. 

IX.2 . Theorem: Let or be a representation of at and denote by1K:a C:K1T 
= 0 for all y e  So. U 

a E V+ 
One sees immediately that this condition is fulfilled for posi- 

tive representations . The proof that this condition is also sufficient 
will be the content of this section. 

We start with 

Kg is dense 

]D{.3. Proposition: Let TT be a representation fulfilling the condition 
of The Oren IX.2 then Ker IT is invariant under the automorphisms Ag. 
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I -  

pa{ or (agx) +((»g+h><) .' or(agl x-u»hx )}pa 

The element in the bracket is an element of Ker IT if g = 0 and If 
g + h = 0 .  Hence we have for sufficiently small g and h 

P - II a{17(cx9x) +11(ag+hx) 77(aglx-ahxl)}Pal1 €ll9l1N Hg+hlI1'l 
S 

or 

p , . II a{n(ugx) +7T(dg+hx)}Pall 5CI19l1N llg+hlln + I1x-ahxll 

and since 
* v 1 .  

I 1 III iI 
J 

Hx-u,hxll he] 0 we get 2llparr (qgx)Pall 
a zero of arbitrary high order and 

r la )pa = Et which means t i t  

S GIIQII2"~ This 
since Parr (qgx)Pa is 

0 v g .  But since Pa * 1 we 
Kar 17 is invariant . follows that Pan 

g 

]X.4 . In order to prove the implementability of the automorphisms we 
have to construct some algebras such that Ag acts norm continuous so 
that we can apply the result of Sakai and Kadison. To do this we will 
investigate the algebra generated by the projections {pa} and n(QI) . 
Since the projections Pa are defined by the invariant left ideals it is 

to extend the automorphisms Ag defined by Ag" Tr(X) =n(agx) 
Doing this there remains one question, namely 

inside the algebra defined by 17(0) and Lpal 

natural or 
such that Ag" P = Pa . 
whether all re1a Ions 
remain invariant under Ag". 111 order to prove this we havgi 
detour such that we reduce the problem to the applications 
lion IX . 3 . 

We will denote by {¥(Tr (21) , Pa) the free algebra generated by 
17(2I) and the set {Pa} . On {§(rr, Pa) we will define the automorphisms 
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by sign (x)= n(agx) and &9 
of representations a faqnily 5-° B(K,,) defined by Q 

just all rgelgtions among the operators n(a x) and Pa Ii 

& Pa Pa' Furthermore we will 
: B n(x) 

BCHIT) B P = Pa E BUQT). 'irh3 kernel of the represent 

JQrr. With the help of this family of representations 
semi norm on 5 as follows 

=q 
be 
on 

S 

S 

y E 5 

sup HE 
91 

{SUP H9 
91 

91 

ll9g(Y1 Ya)H 

N(y1 YQ) N(§;1)N(y2) 
N(y) 

Proof: a) and b) are an immediate consequence of the definition 
c) 

N(y1 +y2 ) 

N(y) = sup ll99(y)Il 
g 

lX.5 . Lemma: The semi norm N on 3 has the following properties 
a) N0»y)=I>~IN(y) yea ' ,  x € c  
b) NlY*) = N(y) 
c) N(y1+y2) s N(y1) + N(y2) 
d) s 
e) N(y*y) = 

(y1)ll + sup lie = N(g1) + N(Q2) 
go 

d) 
N(Y1 YQ) sup s sup 

g g 

9 N(y1)n(y2) 
1 

e) From d) and b) follows 

N~(y*y) s nm" . 

g2 (Y2)H 

sup H6g(Y1) + 9g(y2)lI s sup{ll9g(y1)II+!l9g(y2)ll} 
g g 

H9g(Y1)H ll9g(Y2)H 

(y1)ll}{sup IIS 
go 

go (Y2)H} C l 
C 

Let now go such that 

H6 _ e  (x ( W H 2 N ¥  
go 

then follows 
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[Hag (y) + € } 2  =lI6 (y*y)|l 2€ll9 
o 

+ (y)l l  + ea 

S N(y*y) + 2e N(y) + ea . 

129 

Since e is arbitrary it follows that N(y)2 S N(y*y) . This proves the 
lemma I 

Let nows = Ly 6 3 :  N(5§*y) 
lithe E 

Tis a 
DC. _ 

algebra whi'ch we w111 emote bY 37? 

= 0} . These are, of course, all 
Pa which are preserved by the 
L 3 and N defines on 3/I a norm 

the completion off' /I is a C*- 

DC. s. lemma- 
automorphisrns on :Vi 

The mapping 5.9 defines a strongly contiuous group of 

Proof: , 
of 3, 6.9 was an automorphism of as and the two-sided ideal I is by 
definition invariant under &Q' Now the continuity property is also 
trivial 

It is clear that 6.9 defines automorphisms since by definition 

g 
N ( a 0 _ = _ ) 

a P a ) N ( P a P a P 

N(&gTTlxl _ n(x)) = NerT(agx - x) lrr (c,h(agx - x))l sup 
h 

II x) . |  0 lllT(agx f o r g - » 0  

Since the se elements generate the whole algebra 1; we have strong 
continuity on :We 

Now we are ready to use Proposition D{.3 . 
DC. 7 . Proposition: All relations among the operators 17(x) and { pa} 
in B(5CTT) are invariant under the automorphisms Ag . TT 

Proof: We may consider the C*-algebra generated by the concrete 
operators n(x) and {Pa} as the representation Go of We. If we can 
show that this representation fulfills the conditions of Theorem IX.2 
then it follows from the Proposition IX.3 that the kernel of this repre- 
sentaton invariant, which means that all relations of 3 are invari- 

onstruction of Pa we I i  
Ijweak closure n(£a)". 

G) with Ha) = 0 for 'é e 
F§55hence this holds 

, to show that for 
lions of the form 
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If(9)7 (agxl ) P 
al Q 

n(a x2)Pa 
2 

" c: 
>< U

I 
$1 

*= . on 
NU 

II 
(X2)Pa2 

Tl' i& Tr(X1)P 

)9 J-f(9 o g a1 .n (xn)} dg 

n (a ) - gvxn 

exponential type . 

> 

belong to TT(£0)-, since by linearity and norm continuity such a rela- 
tion would stay true for all elements y E 3/I. Now an element of the 
form TT(X1 )Paln(x2 )Pa . . .1rr(xn) belongs to the weak closure of n(9l) and 

2 . ' 

can therefore, according to KaplanSky's density theorem, be approxi- 
mated by a bounded family of operators TT(XB) € 17{QI) . Due tOthe fact 
that (1 - Pa) can be approximated by the approximate right identity of 
.pa we can find for every bounded countable set lgv} a bounded family 
of elements nbc ) such that n(a x ) converges to 1T(a X1 )Pa . . . 5 by B . iv .1 . 

But for any x E 21, Panda x)Pa is function of fixed 

functions converging on a properly closaen countable set lov] . Thi 
implies the convergence as entire functions by Vitalle's theorem . 
This, however, implies 

strongly f 9 pal"f(g)n((1gxB)dg Pa pa] (Q) o{&gTr(x1)Pa. . 
and since P 1 we have a a * to 

tr l 
.of(Q)rr(a x )do s on y . . -TT(X )1 dg g B n 

which gives the desired result . 
Having established that the representation 9o671) fulfills 

the condition of theorem IX. 2 we are able to give the 

an entire 
Therefore Pay(agx )P is a bounded family of entire 

18'8 

| . -1'r(xn1l dg Pa 

I lf(Q) 9 la rr(x1 )PA1 o g 

ProOf of Theorem D{.2 . Let us denote by (n(9J),P&) the C*-algebra 
generated by the operators 17(X}. x E 91 and [pal . 
can define a strongly continuous group of automorphisms " " n(x) = 
nfagxl. 6.gpa = PB (consequence of Propositions ]X.3 , 
Lemma ]X.5) . Moreover we have that Pa belongs to 7r(£ )" which 
implies that for any y E (n(9I), pa) and a fixed &up 
function of fixed exponential type . Hence Ag actsanohn continuous on 
much elements , moreover such elements form a sub G*-algebra of 
(n('2l), pa) and hence ' s  restricted to this sub algebra is unitary imple- 
mentable with unltaries belonging to the weak closure of this sub 
algebra. The spectrum of this representation is bounded and can 
easily be adjusted to  be contained in V+ fl {a+V"] . Let us call this 
representation pa (g) and denote by Fa the central carrier of Pa in 7T(QI)" . 

On this algebra we 
a 20. g 1x.6 and 

YP is an entire 
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We define a representstion 6a(g) of G in Fa3'Cnby the relation 

66(9) Y pag : ((19y) Da(q) Pa€: v i  (1T(%0. pa) I 3-C b e  77 

. . ca 
vi To this 

bleed that Bakr) is strongly continuous , unitary 
Q t morphism & It b h k d th t the 
co fained in end we write = 
= V+ H { a  + v'} , on the other hand for any b E Aa 

¢a(g) 

Ab 
we have that .t E(d§) is annihilated by or(£b) . If f E £1 (G) with t(§) = 0 

A + . for .g 6.~V wehave 

l`f(g)6a(Q) Y paa dg =.[`f(g)(&gy) Da(g)pa€ dg 

= .[t f(9)@i9§(&9v) dg E(d§)pag = 0 
Aa 

since f f(gleiggagy dg belongs to 1T(£§) 

automorphisms Ag . 
details 

. Since now the 1.u.b. of the 
Pais 1 also the 1.u.b. of the Fa is 1. This allows us to orunstruczt a 
strongly continuous unitary representation p(g) E nm) which imple- 
ments the (In the construction of 0(9) we have 
omitted several technical which can be looked up in Refs . 15 
and 17 . )  

x. On Kernels of Positive Representations 
We are now prepared for proceeding in the | 

of positive representations. But we are interested 
the two-sided ideals which may appear as  kernels 
sentations . We start again with the formulation o! 
still need a 

X .  1 . Definition: We define la as the maximal two-sided ideal con- 
tained in the left ideal Sa (Definition ]X. 1) . 

With this notation we get the following re suit: 

W. D 
I 

F 
FMS 

Denote by Io = H Ker n then 

g I . 
a a , 

I be a two-sided ideal then there exists a positive 
7T with Ker 7T C I if and only if IoC I. 
paration for the proof of this theorem we show first 
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X.3 .  Proposition: Let w e E be a state, assume there exists an 
a E vo* such that up(£a) :- 0 then w belongs to  E+ . 

91. 

Proof: Since 0J(.2a) = 0 it follows that for the cyclic vector 
IT (£ ED = 0 .  Hence Pa 75 0 .  Let now 
="'{ -+v+]  D lb+V"]; b E vo* then rT(£a+b)n(x(1'))§O = 0 hence 0. 
Let P = 1.u.b. Pa. Then for every f E £1 (G) we find Prr(x(f))§ - 

b e v  o 
TT(x(f))€0 and since (kg acts strongly continuous Pn (x)€0 = n(x)§0 V x 6 

But this implies P = 

§ e TYRT 
f E £1 (G) and supp ¥(5)° UJ 

p a  if 

1 and the result follows from Theorem IV.2 . 

> 0 by Proposition 
. 2 Hence la = . From this follows IoC VI la . Let now Aa denote the set 

we h8ve-tfw 
So (Ref. 9 ,  .9 .5) .  

Proof of Theorem X.2:  
For any state L0 annihilating Sa 

X . 3 .  But these states characterize 
Ker (-Be 

UJ 

w(£6)=0 + 
V+ 0 {a+V'} . Then every state w 6 EAt annihilates Sa. Hence la C 

0 + Ker no. From this follows 
up 6 EA 

a 
n I a a 

o f ]  F1 _l_KerTr 
a u i € E  w 

Aa 

F1 +KerTT =I0 
wEE Lu 

where the last equality follows from Theorem 111.2 . Hence Io 
and statement a) is proved. 

Let 1 In §=iinmwlHs"d 

and So and i 
propositions 
with Ker no so 

= n I a a 

st closed left ideal containing I 
ideal contained in Aa'  From the 
of a positive representation Na 

= (1 Ia. It remains to 
a 

y QUO na 

show that VI Ia 
a 

X.4 .  Lemma: la 

I .  
a 

To do so we prove first 

I + I  e a 

day 

mlgl9fr ideal, it is generated by its positive 
,.B.3). Denote by Ca the C*-algebra gen- 
qca c: .Ea since .to FE QI* is invariant under . .xn E Jim VI 91+ implies x I x .  .xn 6 So 

Ca D .na Ca 
norm closed (Ref. 9 ,  

ideal no =.f»:a + 1. Let now z E no n ax* 

VI 91+ also 'XI E Jim. Since 
Now Ca + I is 
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with norm lim 
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n 91+ a d  it exists a 
= . Hence norm lim x x Z .  n-HD n n 

=xn1 +xn" with Xn E Ca' xn e I. 

sequence yn E 91, Xn E Ca + I 
*yn*yn = Since 

é e Aa 
X 

y n-o no n n 
x E Ca + I w e  can write xn 
Therefore 

z 

133 

X * y *  x 
n I l y f l n  

X I  + 
n 

_ 1 *  * 2 *  1 1 *  * - x  y y (x. * x + x  n n n n YH YHII n ynyn 
X I  

n 

- l - X 3 *  * X 2  e c  I n y n y n n )  a +  

since 

+ 
x 1 * y * y x l E £  nm c n n o n  a C a 

a 

Aa n u*~: I + Ca and in particular la We I + Ca and 
and the rest belongs to I since it is a two-sided ideal. This implies 

n since I + C is 
a C*-algebra IaC I + Ca- Assume x1+ XI E Ca + I and y(x1+x3)z 3 
Ca + I for all y ,  z E 91 then it follows that yx1 z e Ca + I since ve e I 
with X1 6 Ca' Putting first z = 1 it follows ml E So, hence YX1 E Ca . 
This implies W1 E Ea* or yxlz E Ala* and this means that yxlz E Ca 
for all y , z  6 Sl. Hence yx1z e la and la <` I + Ia. Since the converse 
inclusion is 'trivial we have la = I + la . 

From =0 I + I 
VI I C I, which proves Theorem X.2 .  a 
a For the application in physics we are interested in conditions 
which guarantee the existence of one faithful positive representation. 
We are now able to  formulate such conditions . 

this lemma follows immediately 0 Ia 
a a I since 

X . 5 .  Theorem: The following statements are equivalent: 
a) There exists a positive representation n with Ker n = 0 .  
b) For every two-sided ideal I there exists a representation 

' l " l '>0wj_thKer~l1=I,  , 

c) Denote by P m  at the set of kernels of representations n > 0 
which are also irreducible. For every two-sided ideal I C  Qi there 
exists a set T C  Pi+im Ill with I = F1 I. 

+ re T 
d) E is weakly dense in E .  
e) fl .S = 0 . 

a e v+ a 

Remarks: It is not known whether ?*in 91 coincides with Prim 21 or not, 
i . e .  given a primitive ideal I does there exist an irreducible posltive 
representation n with Ker or = I? 
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The statement e) 
s. Doplicher.17) 

answers the question raised by the paper of 

rim 

Proof: a) and d) are equivalent by the theorem of Fe1l.5) a) and b) 
are equivalent by statement b) of theorem X.2  . If c) holds then b) 
follows trivially. If b) holds then I =2 Ia + I and Sa 

section of the maximal left Ideals which contain £a + I. A State anni- 
hilating such maximal left ideal gives rise to an irreducible positive 
representation. Hence Ta C P+ $1 such that I + la = VI I. 

I e Ta 
But this implies I = 0 I, which proves c) . 

I 6 U T a a 
If now e) holds then af] Ia 0 ,  and a) follows by Theorem X . 2  . 

If a) holds then there exists an isometric positive representation . 
Let now A be the set \r!' al {a+v"] and P the spectral projection 

Thank! c: 
0} . But since ora] is a resolution otathe identity it 

= 0 and since 11 is faithful g Ma = 0: but this 
To-lx)pa = = 
follows that n IT 

a 
implies 0 .S = 0 . a a 

associated to Aa of the representation pas) . 
"'?ma) 

+ I is the inter- 

[XEQU 

g 
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I. Introduction , . _ . . 
The formulation, .by Dirac, of the spectacularly successful rela- 

t1v1st1c wave equation for spin - particles , prompted an intensive 
search for other wave equations which could (hopefully) serve as a 
basis for a, relativistically invariant description of particles of various 
spins . The higher-spin equations which resulted from this activltyl) 
have taken many forms , their bewildering variety belng a reflection of 
the very considerable freedom in the (subjective) choice of reasonable 
criteria ,to be met, from among many possibilities which are not all 
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mutually compatible. Each choice brings its own advantages and dis- 
advantages , and the fact that efforts to find an approach which is 
satisfactory in all respects have spanned a period of some four dec- 
ades (and are still continuing) testifies to the inherent difficulty of 
the task. Nevertheless, work during the last few years has been 
instrumental in providing deep insights into several aspects of the 
problem 1, and it is with some of this work that this series of lectures 
will be primarily concerned . 

We begin with a brief recapitulation of the familiar notions re- 
garding the role of relativity in quantum mechanics , and then proceed 
to a presentation of the essential details concerning the s'tructLu~e of 
the group constituted by the coordinate transformations of special 
relativity (as defined conveniently through the Lie algebra , i . e .  the 
commutation relations of infinitesimal generators of the group) and 
concerning its irreducible representations . We have to have this infor- 
mation on hand for ready reference , since we will be making extensive 
use of it in a discussion of the assumptions regarding transformation 
properties of wave functions , and later, in the derivation of relativis- 
t1c Schrödinger equations for arbitrary spin. The discrete transforma- 
tions, space inversion, tlme reversal and charge conjugation (which 
do not find a place in the Lie algebra) will have an important role in 
our discussions , and a careful definition of what we mean by them 
(independently of any wave equation) is needed and will be given . 

The major part of these lectures will be devoted to relativistic 
wave equations in the Schrfjdlnger form 

i a 111L,t) 
Be =H¢(&M (1.1) 

_en 

I I  

The reasons behind the choice of this form will be clear after the dis- 
cussion of Sec. II. The operator H must be so determined as to en- 
sure invariance of (I. l) under relativistic transformations . It can be 
shown that in the c-number theory, where 41 is a numerical-valued 
function, there are two possibilities for H for particles of any given 
spin a and mass m. If invariance under boosts transverse to the mo- 

--.1.- a ! n . n g m 1  sno t  
to 4 (infinite) classes characterized 

'of the discrete transformations (Sec . 
_ he role of a quantized field operator , 

_deformity with the principle of micro- 
completely. This requirement picks 
ealization of the discrete operations 

hd insists that the ' s t i s t l c s "  be in 
Though it is 

1°-*=1= *j very complicated equations) 

4 
laini- statistics relation . 
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true that all derivations of the spin-statistics theorem have the con- 
dition of causality as their basic ingredient, the full extent of the power 
of this condition has not been marie st in earlier treatments . But 
what is perhaps the most fascinating aspect of the approach to be pre- 
sented is the possibility of seeing explicitly and precisely what hap- 
pens as the invariance requirements are imposed one by one--or 
dropped one at a tlme . 

The primary aim of these lectures will thus be to try to throw 
some light on the role of the different constraints which go Into the 
setting up of a relatlvlstlc theory of free higher-sp1n fields . About 
the difficult problem of interaction of these fields we will have noth- 
ing to say, though it is hoped that the insight gained into the struc- 
ture of higher-spin wave equations would help towards an eventual 
solution of the interacting case . 
II. Relativistic Quantum Mechanics--General Considerations 

and 

A .  The Transformations of Special Relativity 
Observers O and O'  in different inertial frames ascribe to an 

event A different sets of space -time coordinates 

xi=lxAP'] XA'={XA*JL} . (u=0 ,1 .2 ,3 )  

such that the space-t1me separation between two events A and B ,  
measured by 

I ( A x 2 §  Xl-1 x v  x i x U - x U  ) g o ( A ) ( A ) .  A A B 

is independent of the frame of reference. We employ the usual con- 
vention of summation over repeated indices . The nonvanishing ele- 
ments g v of the metric tensor are taken to be u 

goo = 'gli = 'gas = 'gas = 1 .  

(II. 1) 

(11.2) 

The index o refers to the time; 
Linear transformations J 

comprise the following : 
(i) The proper homogeneous Lorentz transformations (hereafter simply 
called Lorentz transformations): 

Ito . 
which preserve the form (II. 1) 

where the Aug a.re 

v 
xii * X11-l = All x v 

real and satisfy 

(11.3) 

/i** Av gIJ,V p o g DO' | (II.4a) 
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A00 > 0 and detA =+1 (1I.4b) 

These are induced either by transformations of the rotation group (ro- 
tations of the space coordinate axes with respect to a fixed origin) , 
in whlch case , 

A 0 0 = 1  AO and . 1 
1 

A s  0 .  (i;.1,2.3) (II.5a) 

and 

KA 1 __ l 

r (1:I.5b) 

or by going from one to another of two reference frames in uniform 
relative motion (1.e. by a "boost") , the space axe spin the two frames 
being taken parallel. In this case 

A = K 
I 

(II . 6) 

All the transformations in (II.3)Jare induced by a sequence if rotations 
and boosts , and form the proper homogeneous Lorentz group (or simply, 
the Lorentz group), of which the rotation group is a subgroup. We 
will denote the Lorentz group by £ .  
(ii) The inhomogeneous Lorentz transformations 

I I 

x U _ x r U  Xi -au (11.7) 

representing a translation of the origin of space-time coordinates by a 
four-vector al-1, The transformations (II.3)..and (II.7) together form the 
Polncare group or inhomogeneous Lorentz group. We will denote this 
group by P, and any generic element by'L. All transformations L of P 
are continuous with the identity, 1.e. there exists a continuous se- 
quence of transformations of P which links any element L to the 1den- 
tity element. (The latter relates two reference frames which coincide.) 
(iii) The improper transformations: space inversion 

1 i A 
j 

and time reversal 

1 A . 
J 

Q i i , ,  
J 

Ao o _ l  . = l i  
J 

Ao o 0 . 

(II. 8) 

(11.9) 

These are not continuous with the identity and are therefore referred to 
as  discrete transformations . The group obtained by adjoining these 
to the Poincare group will be referred to in the sequel as  the extended 
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Poincaré group. The term relativistic transformation will be used to 
denote generally any transformation belonging to the extended Poin- 
caré group . 

Besides these, we will have to deal with another discrete trans- 
formation, called charge conjugation, which can be defined only in 
relation to  representations of the group considered above, and will be 
formally introduced later . 
B .  Relativistically Invariant Description of Quantum Mechanical 

States 
The meaning of the requirement of relativistic invariance on a 

quantum mechanical system can be stated as follows : 
(i) All possible states of a quantum system, as described by an 

observer in some inertial frame of reference , at some fixed but arbi- 
trary time in his own frame, constitute a linear vector space. This 
vector space should remain unchanged with time of observation in a 
given reference frame , and should be common to all observers in the 
same or different inertial reference frames . 

(ii) An observer in a given frame describes the time evolution of 
the system by a trajectory running through the tips of the state vec- 
tors into which a given state transforms itself with the passage of 
time. The specific forms of the possible trajectories are determined 
by the dynamics of the system. For relativistic invariance, the so of 
all possible trajectories should be independent of the observer. Two 
different observers watching the evolution of a given system would 
describe it by two different trajectories , both of which, however , be- 
long to this common set. Thus one trajectory gets mapped on to ano- 
ther under a relativistic transformation; but it must be kept in mind 
that one point on a trajectory (the state at one instant of time) does 
not get mapped into one point on the other, since a fixed time in ore 
reference frame does not correspond to a single instant of time for all 
observers in a relatively moving frame . 

(iii) With every pair of states of a quantum system at a fixed 
time in any reference frame is associated a unitary inner product. To 
ensure that this inner product has a relativistically invariant meaning , 
it is necessary to demand that if two bundles of trajectories (repre- 
senting the evolution of various states of a system as seen from two 
reference frames) are "cut, " each at a fi.xed time in its own frame , 
then the two states obtained from the corresponding members of the 
two bundles should be related by a linear transformation which is uni- 
tary with respect to the inner product and depends only on the relation 
between the two frames , and not on which particular trajectory is con- 
sidered. It must be emphasized that this requirement goes beyond 
mere identity of the set of all states as seen from different reference 
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frames as demanded in (i) , or correspondence between whole trajec- 
tories as seen from different frames , required in (ii) . 

To see in more concrete terms what these statements mean, 
consider a single particle described by a coordinate space wave func- 
tion ( L t )  whose time dependence gives a "trajectory" in the i ,  
of wave functions . The above requirements are then (i) that t of 
all possible wave functions 11(5) at fixed tlme be independent oftli 
reference frame used, and (ii) that if a particular form of the function 
l;Q5,t) describes a possible time evolution (trajectory) in one reference 
frame , it gives also a possible time dependence in any other frame 
(15/0 being the s pace and time copgdrnates in the frame concerned) . 
This is usually ensured by defiri 'WS as solutions of a wave 
equation which has the same form h all frames , i .e . r a relativisti- 
cally invariant wave equation. Of course, different observers O and 
O' , watching the state of a particle evolve , would describe it by dif- 
ferent functions ¢(>_g,t) and 111 I (x.,t) , but in view of the mixing of space 
and time coordinates in boost transformations , mY at a fixed time does 
not go Into or' at a fixed time; rather, the whole trajectory (the wave 
function at all times) in any frame goes into the determination of each 
point on the trajectory (fixed time wave function) as seen from another 
moving reference frame. The assertion (iii) is now that in spite of the 
above, a unitary transformation U(L) depending only on the relativistic 
transformation L relating the reference frames exists such that 

wt, (;) It 

II U(L) \lItL) (II. 10) 

where t ,  t '  are written a s  subscripts to emphasize that or, iv' are taken 
at (arbitrary) flxed times in their respective frames. The necessity for 
the existence of a I-Iermitian operator H which acting on .fixed-time 
wave functions 4rQc-) gives 1 5\Il(¥,t)/Bt is a co1'?t*l@*"'*"'"'ce of the above 
requirement (in the special case of time translate 

III. lThe Realization of Relativistic Transformations On wave Functions 
The operators U(L) relating fixed time wave functions in two ref- 

erence frames as  in (II. 10) must form a unitary ray representation 

U(L2) U(L1) '=uJ(L2L1) U(L2L1) 

of the transformation group, in order that the effect of a succession of 
relativistic transformations on the wave function be consistent with 
the group property of the transformations themselves . (As is well 
known, the possibility of having the unimodular factor w in (III. 1) 
arises from the arbitrary phase that can be associated with any given 
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state, and as  shown by Wigner5) many years ago, is reducible to i t  
in any unitary irreducible representation of the Poincare group. ) 

We now review briefly the group structure of the relativistic 
transformations , and then present basic information regarding the ir- 
reducible representations , which will be used in the discussion of 
(II. 10) in the sequel . 
A .  Structure of the Poincaré Group P 

If we consider an infinitesimal relativistic transformation Cha - 
racterised by anéi7":|nlr|n:|¢ns1rna1 real parameter e , the,1."""""'"""'"i1ng 
element T. of the -M1-T  ` 
the identity (denotely i) : 

§ . Poincare group differs in My from 

i = i + i € @  (III. 1) 

é is called the generator of the transformation, and generates the 
whole family of elements exp(i e G) of 6° when .e .is given arbitrary real 
values . The P Aoincare group P has 10 in le-Q. - gene | : 

(i) I = (I1 , 12 , Is) which generate? about three 
space axes ,and are characterised by the commutation relations 

1 . . n  

ui , in] j e  ijk In (III. 2) 

These generate the rotation subgroup of P ,  with elements exp(i92 ;1) 
corresponding to rotations through angle 9 in the positive sense about 
the unit vector n.  

(ii) 5 = 
the space axes , 

® , 122 , kg) , which generate boosts in the directions of 
and satisfy 

i R e1jk .k (11I.3) 

and 

mi. -1 eink Kk (I11.4) 

T An abstract group is defined solely by the "multiplication table" of 
the group elements , or in the case of Lie groups like the Poincare 
group, by the commutation relations of the generators of the group, 
which defines the Lie algebra associated with the group. The ele- 
ments of the abstract group (or Lie algebra) are indicated here by sym- 
bols with "hats . " The elements in any (matrix or other operator) rea- 
lization of the group will be denoted by symbols without hats . 
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of P , V\rlth°` 

- --.1. subgroup £ 
exp{1 n 

The T. Andi her generate the homuogenl, 
| of the form 8 ___ 

(un § = 031 , i`>s , Pa), wmchki tslations of 
the origin of coordinates along the time axis and the three space axes 
respectively, without change of orientation of the axes . They satisfy 

[P .  P-]  
1 '  J 

Iii, £8] 
[21, i>j] 
[ 1 .  12,1 
up, 12,1 
{ f i I  'U 

Q
 II 

1 e'15k €>k 
i 6i1 o p 
0 

o [I 

1 
= 1 P 

(m.5) 

(III . 6) 

(111 . 7) 

(111 . 8) 

(111 . 9) 

(III. 10) 

Eqs . (III.2) through (III. 10) define the Lie algebra of the ten genera- 
Ki, Po, Pi of P .  The same com on relations will be 

,II by definition, by the represent: of these generators (de- 
noted by the same symbols but without hats) in any realization of the 
Lie algebra . 

It is pertinent to note here that by complex conjugation of the 
representatives of the group elements in any representation, one gets 
aNother representation whose generators are obtained from the original 
ones by the replacement 

G -o _G* (III. I I )  

(corresponding to spin s 

That the Lie algebra remains unchanged under this mapping is easily 
verified. In the case of the rotation group, each representation D(§) 

, s = 0 ,  %, 1, . . . ) ,  is known to be equiva- 
lent to  its complex conjugate;6) i .e .  , there exists a unitary matrix Q 
which transforms the generators s (the three-vector of spin-s angular 
momentum matrices) into -s*: 

Q-1s C = -s* I (III. 12a) 

2s 
QC : o r  1 CC*=( -1 )  , E = ( - 1 )  

2s5 
| (III. 12b) 

where the tilde sign denotes transposition. In the special case when 
the spin is s =% we have the familiar representation S ==1,»o for the 
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angular momentum operator, in terms of the Pauli matrices 01 , 02 , 03. 
The matrix Q here is io . We will need to make use of the result 
(III . 12) rather frequently . 
B .  Irreducible Representati€iT§ 5'f"ihe Lorent`*§'T§i'6i5 .B 

(1) Finite Dimensional Representations 
It follows from (III.2)-(III.4) that the combinations 

n; &=%Q+i@ and =%Q-ig) (III. 13) 

of the generators of £ obey 

1i/xi, 101.1 i t  11 

. 
J 1€ijkMk, [ N  No] 1€i1kNk, [M. No] 0(III.14) 

SO that they behave like generators of two in on groups. 
Thus M2 and N2 are Casimir operators of S ,  to with 
all generators, and are therefore given, in a npresenta- 
tion, by the unit matrix multiplied by their respective' -§genvalues . 
By choosing a specific pair of eigenvalues familiar from angular mo- 
mentum theory, namely m(m+l) of l.§_/Ia and n(n+l) of NB (where m and n 
are, independently, non-negative integers or half-integers), we get 
an irreducible representation of S , denoted by D(m,n) . It is of dimen- 
sion (2m+l)(2n+l). The representation matrices M and N here are Her- 
mitian, and lead to a I-Iermitian 

IB II"- 

Hz 
+ 21 
II 
I-q (111. 15a) 

and an anti-Hermitian 

IW
 

II J..
 

12
 

l 15
 

(111 . 1 sb) 

The representation D(m,n) is thus non-unitary, as it should be, since 
.C is a non-compact group and non-compact groups cannot have any 
non-tr1vial finite-dimensional unitary representations . 

When complex conjugation of the above representation is per- 
formed, .[_- j* and j_<* -§*, so that M * -N~* which is equivalent to 
13 in view of the remarks at the end of the last subsection. Thus the 
result of complex """""gation is effectively the interchange 1y-11 <* 151, 
so that D(rn,n) -»a. _. . _  

It is to  be noted that each irreducible representation D(m,n) of 
.S is in general reducible with respect to the rotation subgroup. This 
is clear from Eq. (III.l5a) which shows the true angular momentum 
vector (rotation generator) L to be the sum of two angular momentum- 
like vectors M and N with definite magnitudes m and n. Consequently 



148 p .  M. MATHEWS 

this representation must contain all the spin values (m +n) , (m+n-1) , . . . f m-nl , each value occurring once . More formally stated , 
D(m,n) reduces with respect to the rotation subgroup of £ into a 
direct sum of irreducible representations D(s) of the rotation group , 

D(m,n) D(rn+n) EB D(m+n-1) Q . ea Do m-nl ) (III . 16) 

It is only the representations of the types D(s,0) and D(0,s) which 
have a unique spin content s . For this reason these are especially 
interesting, and we employ these exclusively in our development of 
the theory for arbitrary spin s in later sections . For future conveni- 
ence we make a brief mention here of the salient properties of these 
representations • 

In the representation D(s ,0) , Q E *HL - in) = 0 , so  that 1§-= -in. 
Further, since it is (2s+1)-dimensional, and irreducible with respect 
to  the rotation subgroup as mentioned above/11 must be given by the 
vector s of (2s+l)-dimensional angular momentum matrices . Thus , for 

D(s,0): II >: u II I II 
MY 
U11 
II 
I-J 

.ear (III. 17) 

The complex conjugate representation, D(0 ,s ) ,  would then be charac- 
terised (according to the prescription (III. II)) by the generators 

Ju -s* and K =  -is* I (III. 18) 

but one could equally well use an equivalent set of generators, ob- 
tained by similarity transformation of (III. 18) by the matrix Q defined 
in (III.l2), wherein one has 

D(0,s):  II m
l 

II 
14 and 

ii II 
m

l (III. 19) 

The transformation of (2s+l)-component spin functions under finite 
transformations in the representations generated by (III. 17) , (III. 18) 
and (III.19) are , respectively, 

Xu aD(Lnu" Xv 
<1 

[D*(L)]u- T1v 

ED*  (L)]"<, w" 

(III. 17a) 

(I11. 18a) 

(111 . l9a) 

where the indices u, v run from 1 to  (2s+1) . The dotting on the in- 
dices in (III. 18a) serves as a reminder that the transformation matrix 
to be used is the complex conjugate of D(L) E DAS .0) (L) . And the 

r 
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raising (or lowering) of any index, accomplished by operating with the 
the matrix Q of (III. 12) , for example 

cp 
a I • 

= C 1lVT]\ or nu. (C -1 )1Inv my' 
(_)2s * w- no V 

is to be accompanied by combined transposition and inversion of the 
representation matrices . The reader is invited to  verify that (III. 18) 
and (III. 19) are generators of (III. 18a) and (III. l a )  , and that both of 
them correspond to D(0,s) within equivalence. It is a consequence 
of (III. 18a) and (III.198) that 

u' . T]u. up (sum over u) (IIL20) 

is invariant, and a similar invariant can be defined in terms of the 
undoubted indices too. The properties (III. 12b) of the index-raising 
and -lowering operator g show that 'r up" = (-l)23TlUCDL1° . 

The above notation is a generalizer ion of the usual spinoza nota- 
tion, applied to two-component spinors XA, age' etc. (A = ,2 )  which 
transform according to DO , 0) and D.(0 no) respectively. What we have 
called Xu (u = 1 , 2 ,  . . . ,2s+1) is equivalent to a spinoza of rank (2 s) 
totally symmetric in (2s) indices r each of which ranges from 1 to 2 .  

l 

Xu- XA1A2 . . 'A2s (III . 2 la) 

S1mi1ar1 Y 

cp 
u AA - * 0 1 2  " ' A 2 s  (III. 2 lb) 

More generally, a quantity transforming according to the representa- 
tion D(m,n) may be denoted equivalently by 

0 B1B2. . .B2n 
i l l  ~ ¢  

A1A2...A2m 
I (III. Zlc) 

with u = 1 , 2 , . .  . ,2m+1 and v= 1 , 2 , .  ..2n+1. 
transform according to (III. 17a) and (III. 19a) respectively: 

The indices u and v' 

air wu |jDlM'°)(L)] EDl"|°)`1(L)J uI v' Vi 
1 I it I u V u 

The infinitesimal generators may then be written as  

n x l + 1 x E( ) 1=s(m)  

(III. 22a) 

(111 . 22b) 
I 
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X 1 - l x s(n)] (III. 220) 

(m) where S and 5(n) are spin m and spin n angular momentum matrices 
which act on the indices u and v' respectively. The four-dimensional 
representation DQ , l  is of special interest because it is equivalent to 
the transformation of four-vectors, and every conventional (manifestly 
covariant) relativistic wave equation, linear in the space-time differ- 
entia_1 operators, involves a vector operator coupled to the vector 

-.- -r--v that the four linear combinations V** = 
a spinoza VAB (which transforms accord- 
one dotted and one undoubted index) __ _ The coefficients are conveniently 

defined as the elements of matrices go = o f  (i = l , 2 , 3 )  
where the co are the Pauli matrices . 

q**AB 
1 and ii = 

(ii) Infinite Dimensional Representations 
As already mentioned, the above finite-dimensional representa- 

tions of .S are not unitary. We shall not make explicit use of the in- 
finite-dimensional representations (unitary or otherwise) , but for 
completenesswe include here the classification of such representa- 
tions too . 
and N2 r 
values 

They are usually labeled, not by the eigenvalues of Ma 
but by two numbers to and C defined in terms of the eigen- 

k02 + 0 2 - 1  of f - 2(1iI2 +m2) I (III. 23a) 

and 

]_'1_g -1k C of E MY - o ._ 
8 

It is known ) that with every pair (k0,c) , 
1 0 .% r l I • 

e 

where 

k o 

(III. 23b) 

(III.23C) 

and 

c = a complex number , 
is associated an irreducible representation of s which is unitary if 
(a) c is pure imaginary (Principal series representations), or if 
(b) to = 0 and c is any real number, such that 0 S c S l (Supplemen- 
tary series representations) . 

All other representations are non-unitary, and in particular, the 
finite-dimensional ones already discussed are recovered if | cl - ko is 
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a positive integer. 
this case is 

The relation to the labels m,n used earlier for 

o k I m .N i  n and | c '" m+n+1 (III. 24) 

Quite generally, each representation reduces under the rotation sub- 
group into irreducible representations corresponding to spins s = to I 

ko+l f . . . , there being an upper limit Smax = | cl -1 only if (III.24) is 
satisfied . 
C .  Wave Functions and Their Transformations 

It is customary to  assume that the wave function we) is 
locally covariants in the sense that if the wave function at a given 
space-time point, labeled by coordinates x, t  and x '  ,t ' by different 
observers, is seen by these observers to be ¢(>-ng,t) and or' kg , t ' )  
respectively, then 

We' .t ') = s(L) vi) (IIL25) 

where S(L) is a numerical matrix independent of coordinates or differ- 
ential operators . Local covariance might seem to be a self-evident 
requirement, but there are formalisms which do not possess this . The 
transformation of the components of the wave function in Wigner's 
unitary irreducible .representations I5) for example, is given by a mo- 
mentum-dependent matrix in the momentum space , and is non-local 
(in the above sense) in configuration space. But we leave this point 
for later discussion and confine Ourselves to  (IIIQ25) for the time 
being. The S(L) are then matrices forming one of the irreducible repre- 
sentations discussed in Sec. III.B. , or a direct sum of a number of 
these. The inhomogeneous transformations (translations) are sup- 
posed to affect only the space-time coordinates, not the spin indices . 
By rewriting (III.25) as 41' (Lx) = S(L) lil(x), or 

¢'(x) S (L) ¢ (L-1 x) I (III_ 26) 

and taking an infinitesimal transformation L 
we find that under such a transformation , 

l + i € F l  S(L) 1 + i€G(5), 

TThe term "manifest covariance " has been used with different mean- 
ings in the literature . Here we reserve it to describe the explicitly 
covariant appearance of an equation (1.e a of the differential 
matrix operator acting on the wave function in the equation) . 
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if! 

Here G(s) is the "spin" part of the generator of infinitesimal trans- 
formations on Ly, and is given by the appropriate linear combination 
(depending on the actual Lorentz transformation performed) of the 

(III.22b,c) if 111 transforms according to D(m,n). For the 
" H  part G(o) , which reflects the effect of the change in argu- 

ment X * L'1 x on the functional form of \l', we have the familiar forms 

P (o) = _ 
O 

i 

I 

5o = to + 2.<po 

These generators (as well as the Gas)) satisfy Eqs . (III.5)-(III. 10). 
It might seem, from the fact that the "orbital" and "spin" parts 

of the generators are simply additive , that what we have here is a 
simple coupling of two representations, in the same sense as the 
addition of orbital and spin angular momenta in the theory of the rota- 
tion group. This would in fact be true, if we were content with having 
representations of P defined over functions '11 of space and time (or. in 
the language employed in Sec. II, representations which map whole 
. .. " `-"` _into one another). But the quantum mechanical aspect of 
EET §tlf'€"wave equations calls for a representation defined over 
wave functions at fixed time , in order that an invariant scalar product 
between fixed time states can be defined. Eqs. (III.28) do not pro- 
vide such a representation because the operator pO in (III.28a) and 
(III.28d) are clearly undefinable on f1xed-time functions . One is then 
compelled to  introduce an operator (to be denoted by -H) , which is 
defined over functions \la(x,t) at fixed t (i.e. , '*'*°"=*°= on the °"** 
index and on x .  but not on t) and produces the same effect on them as 
po (which acts On the tlme variable) . In other words, one has to have 
a wave equation 

X1 +BYX0 
=\Lr(X)+B(X. )\U(x). 

o s 
l»(=<)~ We) = [ 1  +1e:(G( MGI In we) 

a = 
1at -Po 

( ) .PL o = ET 
(o) _ L - p_ » 

(0) would be obtained from the fact that L-1x in this 
, x2 ,xa), so that to 'first order in small 

B a 
Bxo EX1 

I 

For example , K1 
case is (xo +8¥x1 

B(=v/c) , ¢(LI1x) 

I 

+ ex° 

(III. 27) 

(III. 28a) 

(III. 28b) 

(HI . 280) 

(III . 2 so) 
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pOll = _HqI or , u  
Bt He (111 . 29) 

The operator H,  which we will hereafter refer to as  the Hamiltonian 
for obvious reasons , must be such that on substituting -H for Po 
everywhere, the Eqs. (III.5)-(III. 10) remain valid, 1.e. , -H must be- 
have like Po with respect to group properties in order that (lII.29) be 
relativistically invariant. The important point now is that an operator 
H which has these properties will, quite generally, be a matrix- 
differential operator, 1.e. it acts both on the space and spin variables. 
Therefore the generators of P on the wave functions no longer contain 
a pure "orbital" part independent of the "spin" part. Consider, as an 
example, the generators in the interesting case when the transforma- 
tion of the wave function at a given space-t1me point is according to 
the reducible representation D(o,s) QB D(s ,o) . The wave function is 
then 2(2s+1)-dimensional, and we have 

P o 
a 1 t t o  

me 
go I II 
ma 

-o -H (III . 30a) 

(111.30b) 

II 
I"

' II 
l)
( X (U
 + lm
 (111 . 3 Oc) 

K .. + in . tdQ + xpo to 2{-H+i.§. (111 . sod) 

where 

to
 

II 

Lu
: o 

I 1>
* II I 

lm
 

O 

Ill
 

'o
 u [o
n (IIL 31) 

o "Ii -s 

The matrix Do is one of the Pauli matrices 

0 l o -i 1 0 
91 I Do I Os r (III.32) 

l 0 i o 0 

whose elements are to be thought of as (2s+1)-dimensional matrices . 
The pure spin parts § and i.)- of these generators are obtained by 
putting the (2s+l)-dimensional matrices (III. 19) of D(o,s) and (III. 17) 
of D(s ,o) together to  form the block-diagonal matrix of dimension 
2(2s+l) for the reducible representation D(o,s) GO D(s ,o) . We shall 
later on determine the operator H for arbitrary spin s in such a way 
that at least when invariance under the discrete operations T ,  C ,  P 
also are required, H cannot be merely a function of the dlfferent1al 
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operators, but must contain matrices constructed from s , K. etc . 
Actually this fact can already be seen from the well-known example of 
the Dirac Hamiltonian (the Dirac wave function being something which 
transforms according to D(0,é) + Do ,0)) . In the notation used here it 
is 

I 
: Z  • . 

HD1rac L E  P l m  
r I _ i . (III.33) 

*"" _Eof an invariant scalar product is 

To summarise the argument of the preceding paragraph, 1ntro- 
duction of the notion of a scalar product, essential for quantum mech- 
anical interpretation of II! , necessitates the definition of a Hamiltonian 
operator.T The explici-|- - ` ' »  

another matter. The S duct between two wave 'i'*"Qonscp, Ll 
is not, in general, g1v _ top . , because in order this quan- 
tity be invariant under relativistic trans# 1is , one must have , 
for example, .fcpt\ld3x = fol + leG)<p]*[ (1 :»' anWI ]dax, (III.34), i.e. 
the generators G must be Hermitian in the ordinary sense . But this is 
not necessarily so.  Indeed, in view of the non-I-lermitian term xH 
and the anti-Hermitian term D in (III.30d), it is evident prima facie 
that Ql..< cannot be Hermitian in the example considered there, unless 
exceptional circumstances prevail. The spin case exceptional , 
and by introducing the Dirac Hamiltonian (III.33) in (III.30d) one veri- 
fies that .lup{ is I-IermHi5*i-= In the general case, however, one has to 
define the scalar pi a59) 

T 
(<p.¢)=I¢ mwdax (IIL35) 

where M is a "metric" operator in the space of wave functions ,=I= and 
is to be determined in such a way that (III.35) is relativistically in- 
variant, i .e  . , 

_tq)Tm¢d3x = j'[ (1 + leG)cp]m[ (1 + ieG)]dax I (111. 36) 
or 

MG = G*M (IIL37) 

gpinles s 

TIt is not implied that for any specified local transformation property 
of \II, a e lion in the form (IIL 29) should exist. To take the 
example particles , the wave function or obeying the Klein- 
Gordon equation and its derivatives 8 ud1 must be taken together to get 
an equation of this form . 
#We don't have a quantized field yet, and the metric M here must be 
clearly distinguished from metrics (definite or otherwise) on the space 
of states of a quantized field . 
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Of course one must also have 

T M = M (IIL38) 

in order that (com) be real. By (III.37), the actual expression for M 
w111 depend on the expressions for the generators G ,  in particular, on 
that for H.  We must therefore postpone further consideration of M till 
after we have gone into the problem of determination of H.  

There is one question, however, which may be legitimately 
raised at this point. Why are we stuck with a metric M (which is, in 
general, a matrix-cum-differential operator) , while Fgldy, 10) for in- 
stance, is able to define a simple scalar product InC qmCd3x between 
wave functions mc, we in his "canonical" representation? The answer 
is that we are insisting on something which Foldy is not, namely, 
local covariance of the wave function in the sense of Eq. (III .25 ) . 
The "spin" part of the boost generator, 1.e . the part which acts on the 
index of the multi-component wave function ill--the counterpart of the 
term i in (III.30d)--='='i='°'5l"3l.=='@'>1-._.in Foldy's case, terms like D1 (§_ x .p)/ 
(m + E) , (where E = - !|, which are nonlocal in the configura- 
tion space. Actually 'it is this canonical representation, wherein the 
transformation of the wave function is not locally covariant, that 
emerges directly from an analysis of the unitary irreducible represen- 
tations of P according to the method of Wigner. The canonical repre- 
sentation is related to  the representation (III.30) by a similarity trans- 
formationl which is momentum-dependent, and is not, in general , 
tinitarity. The simplest way of seeing this is bY noting that if the 
Hermitian metric operator M in (III.35) is positive definite, then it 
can be decomposed in the form M = R*R, and the scalar product is then 

(cp.l1') 

II T .fop Mml'dax = tcpctqrcdax (III. 39) 

where 

1110 RWfwc Re (I.II. 40) 

Thus in terms of the transformed functions I re,  m c ,  the scalar product 
is of the simple type, without any metric operator . 
D.  The Discrete Transformations 

We have already introduced the discrete transformations of 
space and time inversion. It is obvious that performance of either of 

TThis is really a generalized Foldy-Wouthuysen transformation, for an 
explicit determination of which, see Ref. 9 (in the caIse of half- 
integral spin) . 

n • 
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these operations twice in succession leads to the identity transforma- 
tion xU- -» xl*. Further, the performance of both time and space inver- 
sion in either order, takes xi-, -xl* . Thus , for the abstract opera- 
tors P of space inversion and T of time inversion, it is true that §3= 
to = 1 , and Pi' = "fig. Naturally, F' and 'lQ should take every state of 
a quantum system into itself. However the wave function represent- 
ing the state need not be mapped identically into itself--it is quite 
sufficient if the wave function is taken into a constant multiple of 
itself, where the multiplying factor is a "phase factor" of unit modu- 
lus . This is because multiplication of a wave function by a phase 
factor does not alter the physical state which it represents :. As 
consequence , the operators P ,  T representing the effect of P ,  T on the 
wave function need satisfy only the weaker conditions 

111 

p 2 ~ 1 , I a ~ 1 , p T ~ T p  r (IIL41) 

where the sign~ means equality to within a factor of unit modulus . 
Our insistence on leaving the door open for these arbitrary phase fac- 
tors may appear a little too legalistic at this stage; however the wis -  
dom of not curtailing this freedom will become evident when we try to  
second-quantize the wave equation we derive . On the other hand, in 
commutation relations involving P or T and the generators of the con- 
nected group P ,  no free phase factors remain, for reasons of continuity 
with the identity transformation. The relations are 

PP = P P , P g = - g P , P l = 1 - I P , P K  -KP r (IIL42) 

TPO POT, TP = -QT. TO= -IT, T£=§T (III.43) 

uF61) 

These equations reproduce the familiar behaviour of 3, letc. (con- 
sidered as observables: momentum, angular momentum etc. , rather 
than merely as generators of the group) under space and time inver- 
sion. It is pertinent to observe here that the correct transformation * (IIL 43) or T are obtained only if T is chosen to  be an 

operator, i .e  . T must consist of complex conjugation 
Together With a linear operation. To illustrate this point, consider the 
operator (1 + is Ps) for a displacement through an infinitesimal distance 
e along the z-axis , followed or preceded by a time reversal. Since 
the space and time directions are completely independent, one evi- 
dently has (l + ieP3 )T = T(l + ieP3) . If T were a linear operator, this 
equation would immediately lead to PsT = TPs , which states that the 
third component of the momentum remains unchanged under time rever- 
sal. But we know that momentum does change sign under T .  To en- 
sure this property we have t o  make T antilinear, in which case 
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T + ieP3T = (1 + reP,,)T = T( l  + iePaT) = T + T(iep3) = T - i@TP3 , since 
the sign of i is changed on pulling it through an ant1llnear T .  The 
correct relation TPs = -p,5T is thus obtained. The same can be said 
of the other generators . 

The effect of P and T on wave functions 'y@,t) will thus have to 
be defined by 

P¢(>;.t) ==c5lll(-x,t) (III. 44) 

and 

Two) 
* 

TW Q_'-tl (III.45) 

where o , T are purely numerical matrices , and the antilinearity of T 
is reflected in the complex conjugation of II in (III.45) . 

Consider now the operation C ,  called charge conjugation, about 
which we have so  far been silent. Unlike T and P ,  C is n_ot. a relati- 
vistic transformation. It is not an element of the extended Poincare 
group: since c leaves the coordinates x*-* unchanged, it adds nothing 
to the group structure . Then what L C ?  It is an operation which 
maps a representation of P on to its complex conjugate, and is de- 
fined as an antilinear operator such that 

, cA8= -l18c. .05  CPO = -PoC Cl = -ac -I.§-9C.(III.46) 

For the same reasons as in the case of P and T ,  it must satisfy 

0 2 ~  1, o p ~ p c ,  C T ~ T c  . (111.47) 

Its effect on the wave function is given by 
* 

sci t) = K ¢  LXf*: (111 . 48) 

where K is a matrix wlth purely numerical elements . 
The matrices o , T , K are so far undetermined, but are strongly 

restricted by the conditions (III.41)-(III.48). Considering parity, for 
instance, it follows from the use of Eqs . (III.30) and (III.44) that the 
first two of the Eqs. (III.42) are trivially satisfied, while the last 
one, P§iL1L,t) = - @ ¢ , t ) ,  requires 

o(K\y)(-x,r) : -Kow(-;<-n,t) 

OI 

ct(-t2 - p o  +i-)_) in(-x,t) : ( - t2-  XPo »iLi)0lU(-x.t) 
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To ensure this , we must have 

o = -,LE I or 0P:a§. = '9830 (III. 49a) 

Similarly, Pa =.1UP demands 

0.§ =.§-o (III.49b) 

Eqs. (III.49) determine Cr to be a 11near combination of the Pau11 ma- 
trices 01 and Pa. We w111 develop the theory with the specific choice 

o = p 1  (IIL50) 

An over-all phase factor .which is permitted by PB~ 1 turns out to be 
not important, and mixing in Of a term proportional to- P2 in o would be 
equivalent to combining (III.50) with a transformation which changes 
the relative phase of the D(0 .%) and DG; .i0) parts Of the wave function. 
The effect of this can be studied independently, but we w11l restrict 
ourselves in the following to the identification (III.50) . 

As for the time reversal operation, again the first two of Eqs . 
(111, 43) are satisfied trivially--#keeping in mind the antilinearity of T 

=--J5i v1rtue of the explicit forms (III.30a ,b) for Po and i18. The require- 
§Tl= :IT leads to . ' » 

Tug; Aso W$,-t)] X ' i  -+ * 
Ex x +12 +§]'~lf*(&»-t) I 

o 

or 

'iS* = -S'r (III.51a) 

Similarly, from TO = 1-'gT, one finds 

OIIT2_= I (III.51b) 

1 . e .  I 

T'(1L,)* e (1L)T . or T9a§_Q* = -p3§'r (III. 510) 

To satisfy the two Eqs . (III.51a ,c) simultaneously, T must be of the 
form 

T 

T l  

0 

0 

A' I 

r1 

(IIL52) 
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where T '  , or" are matrices of dimension (ZS + 1) which satisfy 

' r IS* = J /f _ I -sT and or s*  - -s'r' (III.53) 

These equations fix T '  and 'r"to be multiples of the matrix 'Q defined 
In Eqs . (III. 12), and the requirement 'la 1 , which reduces to T"'*~ l , 
restricts these multiples to be unimodular phase factors . Thus, apart 
from an overall phase factor which we will ignore , 

; :al II L- 

19 T 

I e (1I1.s4) 
be \ 0  

in'T 
The constraint e = :al comes from the condition PT~ TP . 

An entirely analogous treatment of the charge conjugation opera- 
tor C shows that 

x II 

19 
, e  c i t  u (IIIQSS) 

The two ambiguous phases in (III.54) and (III.55) are 'uncorrelated , 
and we thus have four kinds of possibilities . In what'follows , the 
commutation rules . 

TP 
19 

e T.PT and CP 
16 C 

e PC (IIL 56) 

of PI with T and C w111 play a crucial role . It may also be noted that 

2s 
TB = (-1) (III. 57) 

and 

C2 
10 

= e c (-1) 
Zs 

(III. 58) 

Finally, we observe that the off-diagonal matrices o and K (Eqs . 
(III.50) and (III.55)) link the D(0,s) and D(s ,0) parts of the wave 
function. In general, if parity and/or charge conjugation operati-on is 
to be defined on a locally covariant wave function, then every irredu- 
cible representation of .2 contained in the wave function must be ac- 
companied by its complex conjugate irreducible representation . 
Iv. Derivation of Wave Equation Invariant Under Ipand Under the 

Discrete ODerat1ons ' 
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We are now in a position to construct an H such that Eq . 
(III.29) is invariant under the above operations . The wave function it; 
will be assumed to transform according to D(0,s) + D(s ,0) since this 
would assure a unique spin s , while at the same time permitting defi- 
nition of the discrete operations T, C, P .  Since 111 has no redundant 
components, there will be no supplementary conditions in the theory . 
This is certainly an advantage, but the price to  be paid for it is that 
the equation cannot be of the first order in all derivatives and mani- 
festly covariant (except for S =é) . The reason is that the matrix four- 
vector which is needed for coupling to the four-vector 511 in such 
equations transforms* as DQ ,II , and therefore any wave function on 
which it operates must contain, along with any part transforming as 
D(m,n) , another part transforming according to  at least one of the rep- 
resentations D(m i Q, n 5: 5).  This is obviously not satisfied for 
D(0,s) EB D(s,0) unless s =é . 

But let us insist that we will be content with having covariance , 
even if not manifest. Then what is required for invariance of the Eq . 
(III.29) is clearly that H,  as a function of the "dynamical varlables" 
involved in the problem Wz - '* n 

same c . 
T,  C ,  ill 3B pec1fically, the requirements , 

obtained by replac*m,_,,,,,., sawn! -:mir_b qs (III.8), (III.9), (III.10), 
(llI.42), (IIl.43) and (lII.46), are 

, 02 , p s ,  should have iden- 
Idthe generators Po, g ,  L K of 

LP H] 0 I (n.1) 

HE 0 ui. 

PH=HP 

I 

-1Pi , 

I 

(Iv.2) 

(Iv.3) 

(IV.4) 

TH=I-IT I (w.5) 

CH -HC (IV-6)' 

TRecalI the statement at the end of Sec. III.B.(1) that the four-vector 
transformation law is equivalent to 1)& .é) . 
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Further, in the absence of any supplementary conditions on the wave 
function, all components of 111 must satisfy the Klein-Gordon equatlon 
'corresponding to a specified mass m,  and this implies 

1-1»2 + m a - E a  pa (Iv.7) 

Our task is now to find an H which is a solution of Eqs . (IV. 1)-(IV. 7) . 
We observe first of all that Eq. (IV.1) , together with [Po , H] 

= 0 ,  requires H to be free o f ;  and t .  Eqs. (IV.2) and (IV.4) demand 
that H be a true scalar with respect to rotations and space inversion . 
Now it is easy to verify with the aid of Eqs . (III.49) that the only true 
scalar that can be constructed from the available variables are 

.Ma and ¢)1L1'£) (Iv. 8) 

»iL-.Q is reducible to a polynomial of degree 2s with 
Therefore H must be a function of these only. Now, 

coe 
pending on p = |JQ| . This is because, by virtue of the 
(III.3l) ofnil) X -2 is a matrix with (2s+l) distinct e1ge'HV§ues up (v = 
-s , -s+1 , . . . , s-1 , s) -- each eigenvalue occurring twice--so that it 
satisfies a characteristic equation of degree (2s+l) . Consequently H 
can be written as a polynomial in ( L )  plus 91 times another polyno- 
mial in (1°.=2). 

At this point it is convenient to impose the Klein-Gordon condi- 
t1on (IV. 7) before worrying about the remaining invariance conditions . 
The process of squarlngHwhlch would apparently lead to very compli- 
Cated expressions, can actually be carried out very simply and ele- 
gantly by exploiting once again the matrix nature of ( p )  . All we need 
to do is to make use of the well known spectral expansion theorem for 
any diagonalizable matrix A ,  which states that if As are projection 
operators to the eigenvalues v of A ,  then 

an of we- 

6 
p, 

A A v p, 
A u v (Iv. 9) 

I 

TWhen the wave equation has redundant I 7) cannot be 
insisted upon. The simplest example is I 'n-1 
particle as described by the Kemmer equ:n . . ,  -'A = 
EaH. But those components of the wave function which to 
the zero eigenvalue of H allowed by this equation are to 
vanish on account of a supplementary condition, which cuts down the 
independent components in the wave function from 10 to the necessary 
6 . 
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and, 
l es 

f tA)'4 (N-10) 
v 

In the present context we take for A the matrix *p E ;•2/p (where p = 
-s , -s+1~, . . f »s-1 , s .  The- GX: 

S than 
\ 

K 
p 
v 

l,gl)~so that its eigenvalues are v = 
pliclt form pf the- projection operator 1 

I - u 
- u > 

<1
 II 

1:
 

"~
4.

.E
 

< 
| x 

p 
ag-2 

p 

l » 
1 

(Iv.11) 

It is clear that Av contains both "odd and even powers of up, a feature 
which would create some inconvenience when we try to impose T and C 
invariance, if H were expressed directly in terms of the Av' To fore- 
stall this" difficulty, we define . 1 .. . 

\ 

I . . _ i I 

B = A  + A '  v v .--v ' except BO I: Ao ' (n.1'-za) 

and 

I 2 ( v  0) C = '- '. v As A-v . . 
which would'-make Be odd function . 
Eqs'. (IV'.l9) and '(IV.1l2) lead to " " ' |  `° | ' . 

ah even function ̀ of . 7; P and Cv an 

I 

I 

'(IV.l2b) 

v = C u C v B 
1-1 

B r v u 6 
1-1 

B v C u B v u 6 
IN 

C (iv. 13.a) 

Also,las a special case of (IV.10), 
s 

1 
_| 

v=-s 'v B 
v 2 0  v 

(n.13b) 

cl- - + 
Zn\,B\, 2 C C  

V v 
4 p, 

where t.he coeff.icient~ be, QW be' ! Co' may 
Klein-Gordon condition can now be trivially 

,. 10) to write H as a linear combination of the 
write H in terms bf Be and Cv- We thus 

. \ (Iv. 14) (Elm +2 'B  C 
N' 
'c 

.i 

or p-,.The. -- 
terms of the se 
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One finds the require- coefficients by using Eqs . (Iv. 12)-(IV. 14) . 
men to be 

163 

3 
v b 3 I 

v + b 2 
v + c v C 

)_ a 2 E -(Iv.15) 

for each v 2 0.  

Our remaining task is to use the time reversal and charge con- 
jugation invariance conditions (IV.5) and (Iv. 6) and the boost invari- 
ance condition (IV.3) to determine the coefficients in (Iv. 14) as func- 
tions of p .  Consider first time reversal. Since T = T and TO = 
-PT from Eqs . (III.43) and (III.51b), we have TQvJg) = (2;-.Q)T, so that 
T leaves the projection operators BV and Co in (IV. 14) unchanged. But 
it takes each coefficient to fats complex conjugate, and further, on 
account of (III.66), TP1 T Therefore 

191 /" . I *  TH B + Z c  + e  . b B + Z c  v v v v v 

e Pa T C 

we. * * 
C PI C v )}T. 

and condition (Iv.5) which requires this to be equal to HT--with H as 
in (IV. 14)--yields 

II C
r 

< 
* II U
' 

< in
 > 

O
 

II 
-x > 
o I 

16 e T r I * = b I  
\ )  v 

i9 T , e  c c v v 
' *  I -(IV.16) 

are reality condi n §§e coefficients , whose exact nature 
_ ds on whether the n _ e T is taken to be +1 or -l . Since we 

have no means of discriminating between these at the moment, we 
must keep both possibilities open . 

An exactly similar' analysis can be made of the requirement of 
C-invariance . The conditions obtained for T and C invariance are 
summarised in Table I. It will be observed from the table that if we 
require both T and C invariance, the be will have to vanish, as well 
as either the be' or the co' . The various forms which result for the 
possible Hamiltonians are listed below. For convenience of future 
comparison we give side by side also two possible forms of the metric 
operator in each case. Derivation of the metric operators will be 
given later . 

Case ii): TP = PT, CP = -PC. 

H c C  b '  v v + 9 1  B 
\) v (1v.17) 

with C , b I real, and v v 
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m
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Ill
 + Ba
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(Iv.1a) 
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Pos slble metric operators are 

M1 = m-1 Z be' 

( EM ) -15 b . . . v 

I 

M2 'C  VC' +51 v 
1 I l 

A 
b B 

\J v I 

(IV.19) 

(Iv.20) 

Ma 

Case (in): TP = -pT, CP = pc . . . .. 

H is of the same form as in case, (1), except that be' is now pwée 
imaginary. The metric operators are 

_ . - Qi 
M = 1 E m ' 1 l : Z c b ' B  - 1  Eb" ] .212 . 1 ( )  v v v p l v C v  ( W )  

Eb ' C v 
= PC 

E cvCv + p1` Q Cv 

I 

= (1m)'1 v 

Case (iii): TP = PT, CP 

II 
m I 

Cv 

(Iv. 22) 

(IV.23X 

c I 

v with co, real, and 

II 
w 
s > 
o I 

iv > 
o (IV.24) 
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In this case 

I 

MY 

M = -1 C I _ IB B 
1 (Em) vCv Be P1 Z Cv v 

= m-1 Z c ' c  v v 
Case (iv): TP = -PTI CP = -PC 
H has the same form as  in case (iii), except that co' is now 

imaginary. As for the metric operators , 
M1 = (1m)l1 Q cv'Bv 

m2 = (iEm)"1 + it; ] . 
I 

I c c  C w v 
18 

C C v v 

(IV.25) 

(1v.26) 

(Iv.27) 

(IV.28) 

Let us now turn to the boost invariance condition, which is the 
only one left to be considered. It can be rewritten, using (III.30d) , 
as 

EH, to -l;l<H + in] 12 (Iv.29) 

An alternative form, obtained by writing 12 = éL,Ea J 
(xH2- Hex) in (Iv.17), i t  

II 

[H, [ -  1 [2U<,H] - 23] II o (IV.30) 

Explicit evaluation of the left hand member in (IV.29) or (IV.30) is dif- 
ficult in the general case, though it can be done. However it turns 
out to be sufficient for our purposes , and much simpler, to consider 
the weaker condition obtained by scalar multiplication of (IV.30) on 
the left bye ,  namely 

H, [ -12-E; ,H]]=2[Hfx>~2] (IV.31) 

The commutator -115.H] in this equation is the gradient of H in .Q- 
space, and the scalar product with 2 llmlts the differentiation to one 
with respect to the "radial" variable p .  The restrictions imposed by 

tEq. (IV.30) shows that the velocity operator, -1[5,I-I] , is not a con- 
stant of the motion, since its commutator with H is EH, ZJ if 0 for 
any nonzero spin. It is interesting that the existence of Zitterbewe- 
gung appears as a direct consequence of the requirement of invariance 
under boosts . 
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(IV.31) thus take the form of ordinary differential equations for the . 
coefficients co and b '  or. co' occurring in H. The derivation of these 
differential equations is ..glven in the Appendix 4 As shown there , the 
equation for Co is the same in all four cases r-and is given by 

do 
_.x = £2 do cap + Zn (Ea 2 . 

This"being a first order differential equation, its solution will depend 
on one arbltr .any constant Le , which we 'defii1e"by | ` 

C a  ) (1v.32) 

I 

c E v 
- • . 

b I 
v 

._ 

and from Eq. (IV.24), that co' 
is 

c ' = v 

0 

v 

Zn 

1 1m c = ml, 
, p -| v v 

It is easy to show that the solution is 
4 4 

(E+p) v(1+&V) p' m "(~1-&) 
4v~ '4v ` (E+p) (1+x, ) + m (1-Lv) 

It follows then from Eq.' (IV. 18) that be' , occurring in cases (1) and 
(11), is 2v . Q 2H(E+p) m . (14, 2)  

4v 
(E+p) (1+&v) 

. . .2 2 . 2E-(E-I-p) ,V m V(Lva --U 
. 1 4v . 4v (E+p) , (1+!, ) + m  (1-Lv) 

' v  
4v m 1-L + ( . ) 

I 

Q 
r 

which shows up in cases (111) and (iv) , 

v 
These expressions may be cast into simpler form by the substitution 

(Iv.33) 

(n.a4) 

(Iv. 35) 

(IV.36) 

E = m c o s h 9  p = m s i n h 6  I (IV.37) 

I 

together with the replacemeNt of the parameters &v'also by hyperbolic 
functions which hoWeVer have to be chosen in' Such a way that the 
realit'""HM'"""""" I , Co' (Table 1) are ensured . 

I I  
I 

I .' 

z.§,< 1,. and we set 
. L 

cash M No I 
rr- E . - 

I ..,....__..-....i ,- ., 
r ig 

»!!!=r£~ 
i 

sink 'no . (IV.38) 
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Then (IV.34) and (IV.35) become 

C I 

v 
I 

= E tank (2v9 +'r] ) v 
b v = E sech (2v9 + nv) 

case [11): be' imaginary, Java > 1 . 
Defining ,L 

v = COS h an d 
~/Jav2 - 1 No - 

(IV.39a) 

(IV.39b) 

1 
= sink , .40 I/Lv - l Nv (Iv ) 

we get 

C V = E coth (2v 6 + no) 

2v9 ( + n\)) b ' = 1E cosech v 
Gase (iii): Co' real, avg > 1 . 
Define no through (IV.40) . Then we obtain 

(IV.4la) 

(Iv.41b) 

C v 
c I 

v 

= E coth (2v9 + nv) 

= E cosech (ZVS + no) 

f imaginary, Le* < 1. 
Defining *Tv through (IV.38) , we find 
Case (iv): Cv 

(Iv. 42a) 

(1v.42b) 

r 

c v 
r 

C v 

E tank (2v9 + nv) 

IE sech (2v9 + nv) 

(IV.43a) 

(IV.43b) 

Substitution of these expressions for the coefficients in H into 
Eqs . (Iv. 17) and (IV.23) finally yields four classes of I-Iamiltonians , 
each class being characterized by specific commutation relations of P 
with T and C , and containing an infinite number of members by virtue 
of the completely arbitrary parameters *iv which occur in them. If we 
applied the boost condition (IV.30) in full instead of its "longitudinal" 
component (IV.3l) alone, cases (ii) and (iv) would be eliminated en- 
t1rely, and in the other two cases only no = 0 would be permitted . 
The proof of this statement is quite complicated and will not be given 
here . We shall however continue to work with the infinite variety of 
Hamiltonians determined above, in order to demonstrate all the better 
the power of the constraints imposed by the requirement of quantiza- 
bility I 
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v. The Invariant Scalar Product I and Orthonormality of Solutions of 
the Wave Equation 

Let us now turn to the question of the invariant scalar product , 
which is such a vital ingredient of relativistic quantum mechanics . 
We have already noted that the scalar product must be of the form 
(III.35), with a Hermitian metric M satisfying (III.37), to be deter- 
mined. We will assume that the scalar product is invariant under 
space-inversion (MP = PM) . Its behaviour under T and C will have 
to be considered s eparately. 

As we have noted earlier, the generators P a n d ,  Eqs. (III.30b) 
and (III.30c) , are Hermitlah, and when introduced in Eq. (III.37) , 
lead t o  M .181 = PM and M]_=lM. These equations , together with MP = 
PM (s pace-inversion invariance) , state that M should be a true sca- 
lar operator, independent of space coordinates (and of time too, of 
course) . As in the case of the Hamiltonian, this means that M must 
be a polynomial i n - 3 ,  plus 91 times another such polynomial, with 
the additional restriction that this 
The boost invariance condition MK = K 

who*le expression be Hermitian. 
M becomes 

M(t.E + x H  + i )  (to + HE -DIM, (v.1) 

and the consequence of this requirement can be worked out, after 
taking a scalar product of (v. 1) withe, exactly as we determined the 
consequences of (IV.30) for H.  We get again a set of first order dif- 
ferential equations for the coefficients in the expansion of M in terms 
of the projection operators Bv and Co' Solution of these equations 
leads , in each of our four cases , to a linear combination (with arbi- 
trary constant coefficients) of two parts , one of which is invariant 
under charge conjugation, while the other changes sign. . Clearly , 
each part by itself is admissible as a metric operator, the first of 
these being positive definite and the other indefinite. We denote 
these by M1 and M2 respectively, and their expressions in the four 
cases are given* in See. IV. It may be verified in each case that 

M2 = M1 (H/E) (v.2) 

*These forms presuppose a convenient choice of arbitrary constants 
arising in the integration of the differential equations . Unlike in the 
case of H , the constants here appear as factors multiplying the terms 
corresponding to different v ' s  in the expressions for M, and are there 
fore simply normalization constants which can be chosen to normalize 
the different solutions of our wave equation according to our conve - 
nience 4 
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The overall factors of 1 in some of the M's are included to ensure Her- 
miticity, and the factors of m-1 make the metric operator dimension- 
less . 

We have thus a choice of two metric operators for each of the 
Hamiltonians, and we have no a priori reason to  choose one in prefer- 
ence to the other. The search for the invariant scalar product has 
only added to  the freedom which existed in the choice of the Hamil- 
ton1an itself! However that may be , when a scalar product is defined 
with a particular metric, all observables have to be Hermitian with 
respect to  the metric, i . e .  , if A is an operator representing an obser- 
vable , A must satisfy 

E 
'ac II 

g II (v.3) 

in order that its expectation value , 

(A) = (my, Aw) = j ` c p m A q , d 3 x  (v.4) 

Pa (§_~£/p) which commutes with the helicity (§-2/9) . 

be real. It is immaterial whether or not A is Hermitian in the ordinary 
sense. As far as observables like energy, related to the generators 
of the Poincare group are concerned, this property is already ensured 
by the invariance condition (III.37). It is interesting to note that the 
coordinate variable x does not satisfy this requirement ,T and is there- 
fore not an observable . 

Let us consider now the plane wave solutions of our wave equa- 
tion, and their normalization with respect to the metric M. Observe 
first of all that H is expressed completely in terms of the operator *D 
5 Thus plane 
wave solutions of H can be labeled by the value of the momentum* 
.g_, sign of the energy Q , and helicity h.  Let 'IJqh(x,t) be such a solu- 
tion. Clearly, "' 

»v;ihL~t) up • .oh 
3 

-Q (Zn) exp[ i(g°..;<ur €uJt)] , (V. 5a) 

tThe only exception is the case of t1'1e~ Dirac particle. In the general 
case one can define an "observable position" X = R x R-1 . This 
transformation is really a generalised Foldy-Wouthuysen transforma- 
tions . Ref. 9 gives details regarding this for the case of half- 
integral spins . 
#We use ag and w = +(g2 + ma al* for momentum and magnitude of the 
energy, to emphasize that they at; numerical values rather than 
operators .Q= -in_ and E = £93+ ma] . 
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2 was 
where ue h 
equalize 

e . ssh'  H et 
s-2 

p 
e wh Q wgh ve , = oh 

is a (ZS + 1)-componént spinoza. By considering the" 

.(v.. So) 

a 

m€ .oh am MGl1;h,(;g,r) d'ax | 

I 

1 

II 

T . I . ,  

| cv;~6) 

e 
oh 

wherein G is taken successively as 2,  H and @'.Q/p). and the condi- 
tion (III.3'7) is used, one can easily verify by virtue of (V.5b) that the 
plane wave solutions can be orthonormalized in the following way: 

T et _ . . = J`w Ln M ¢g,h,l=;,r) d3x - n 6e.S' (ash, as - £ . ' ) -  (v.7) 

The normalization is according to I . 

»n 1 1 f m  M1 (v. Ba) 

n e if M = M a  (we 
The fact that in (V.8b), 1] is, positive for positive energy states and 
negative for negative energy states reflects the indefinite character 
of the metric MY . The orthonormality properties of the spinors S Q 
are obtained from (V.7) and (V.5a): 

. be t 
oh M(s1?"1" 

e l  
ugh-, ' b e e '  shh' • 

'go 

- rv-91 
This equation can be used to obtain an expression for a certain "sum 
over states" which ~we will encounter while carrying 'Out the second 
quantization. Multiply (V.9) on the left by up and sum over h. We 
get 

loh 

e: 
¢ , 

9 . M '1 u go ugh (Q) "| 

h 

o r  
u go, 6 I b e  

e: .u go , (v.10) 

hus the bracketed operator in (V.10) is a projection operator which v 

spinors corresponding to  momentum lg and energy Erin unchanged 
it annihilates states with the wrong sign of the energy. There- 

fore 
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1vf(q)n = {  + H L ) ]  

Ill 
w

 on 

up. u6 t 
1 qh qh ew 

h 

of (V.5a) , this equation leads to the following identity 
_ I space-timedependent wave functions Was: 

T 
d3q e: ,t) ez . ) Xl l/_qhL lghtz 'v 

h 

(v.11) 

(2TT)"3 Iraq l1 H(g) 
'n + 

ew 
] M-1 Le) exp[1lc.1° Q5-x)-ie:uJ(t - ¢)]  

1n[ew + = -1€: j daq ' H )} M-1 )] ex [ i  -L- )-iew(t - (2w)=* 2w I (3 (Q P 9- .2 
(V. 12) 

It should be noted that the right hand side of (v. 12) r like the left hand 
slde,. is actually independent of which of the two metric operators M1 
or Ma is used, because 'rIM'1 (Q) = M1 -1 (g) = SME -1 (g) . We will need 
to ma ke explicit use of this expression in the next section . 

T)] 

II! 

VI. Second Quantization 
We have now carried the c-number theory of arbitrary spin fields 

as far as is possible without making extra assumptions beyond 1*nvari- 
once under the Poincaré group and the discrete trarisfcrmations . The 
next question is whether the theory is quantifiable , and if so  , what new 
restrictions or new features emerge iron e ~.=-tizauon procedure. 
We shall attempt to carry out the J 
the field W in terms of the plane 'H 

lion and so 
ions | 

'Hb 

.la- 
jecting the expans iongq 

12).-5 Thus, we write 
+ 

e )  = 2 Jdaq {¢_g__hL.t) a(g1.h) 
h 

+ * 
b "I- _gh(2Sf t) (g,h)} (VI.l) 

and suppose that 
[6(g,h) ,  a*(2' .h ' ) ] i  [b(g..h). b*(in<1' , h ' ) ]  

6hh' 6(El 'H ' )  .r (v1.2) 

with all other anticommutators/commutators vanishing. (The plus/ 
minus slgn on the brackets in (VI.2) indicate anticommutators/commu- 
tators , corresponding to Fermi/Bose statistics . We do not consider 

*It may be recalled , however (last paragraph of Sec. IV) , that invari- 
ance under transverse boosts has been held in abeyance . 
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the possibility of having more general parastatistics . )  On top of all 
the ambiguities we have noted so far, we now have one more: whether 
to use the + or - sign in (VI.2) in quantizing the theory for a specific 
spin. So matters seem to be going from bad to worse ! However this 
trend gets reversed dramatically if we impose one very natural condi- 
tion, that of microcausality, which we take in the form 

* 
[ ,Lx, i ) ,  1][Bl|.X.T)]i 

for space-like separations between the points (§,t) and (y,T), 1.e.  , 
for (t - T)2 - (5 - .y)3 < 0 . The condition (VI.3) would ensure commu- 
tation at space-like separations, of certain bilinear functions of the 
field which represent supposedly observable densities (like energy 
and momentum densities) if such densities are local functions of the 
field; this will be verified to be the case for the fields we consider . 

We shall show: 
(a) that. microcausality cannot be achieved in any theory using Hamil- 
tonlans of cases (ii) and (iv): 
(b) that case (1) is consistent with microcausality if and only if the 
spin is half-integral, the quantization is carried out uslng Fermi sta- 
tistics (i.e. plus sign in (VI.2)), and all the parameters Tlv in H, 
entering through the coefficients co and be' as  determined in (VI.39) , 
vanish; and 
(c) that case (iii) is consistent with microcausality if and only if the 
spin is integral, the minus slgn in (VI.2), (Bose statistics), is em- 
ployed, i l l  the parameters no in H, entering through the coeffi- 
cients u- . I  as  given in (VI.42), vanish. . 

To substantiate the above statements , which testify to the truly 
astonishing power of the microcausality condition, let us evaluate 
the anticommutator/commutator in (VI.3) using (vI. 1) and (VL 2) . It is 
a trivial matter to  see that 

0 (v1.3) 

[wa(§.t), w *GL.TIL B 

II 

* 
2 d a q  g,h,alE't) wh.B(z») 
h 

* 

E 

a _ ...* §Jld q ¢ . g ( , t )  ll|gh|B(y,T) 
h 

s+ '  s' (v1.4) 

where the explicit form of the sums S+ and S- has been already deter- 
mined in (v. 12) . This form suggests that we try to express SS Lx,t: in 
terms of the familiar Lorentz-invariant functions 
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A€(§, t )  
-je 

(2Tr)a 
da q 

2w 
€1e(g-5 - wt) 

I (VI . 5) 

since it is known that 

l>
 II l>
 + + > 

I 

(vI.6) 

has the causality property we are looking for (i .e. vanishing outside 
the light cone) . For, we can then hope to  pull out the factor 

[in {eLf + H(g)l M-1 (QU (VI.7) 

tonia 

and M 
(Iv.1d 

from the integrand in SS Eq. (V.*2)  by replacing Aq. by the 
"Po 

the sum S+ + S' 
is `1 

IIS 

u e u M u i l  l.-all 

, , differen- 
tial operators. = -in and am by in = , and thus express SE a s  AE: 
acted on by an operator which is a function of .Q and po . To see what 
kind of an operator emerges out of this procedure, we must first make 
the q and w dependence of the hyperbolic functions contained in M-1 
and H in (vI. 7) manifest by expanding these functions in powers of 
cash 6 = (uJ/m) and sink 9 = (q/m)- When this is done, if (VI.7) turns 
out to be of the form f(g,eu1) , without any e-dependence other than 
through the combination cu), then its role in place of the s ( u a r e -  

bracketed factor in (V.l2) is to make SE equal to f(E.-n.,)A' , so that 
= f(p.-po )A would be causal, provided the operator f 

referential operators .p, po). In 
according to  Fermion commuta- 

other hand if (VI.7) reduces to 
ice S+ - s' = f(9,-DoM which is 
bold then be required to ensure 
' , then one cannot get causality 

d such a case would have to  

is 

our 

use 

11 
be considered unphysical . 

institute in (VI.7) each of the four types of Hamil- 
ociated metric operators , and see what happens . 
educing the expressions (IV.7) and (IV.9) for H 
, into (vI. 7) , and multiplying out with the help of 
t (vI. 7) reduces to 

im [Z e cash (2v 6 + ) ~ 8 + 2  sink (2v9 + 'nv)'C v + 9  1 . (VI.8) 

Now use the expansions 

2 Go(Q/m)n 
. n . sink 2v9 = G n slnh 9 = 

n odd n odd 

(vI. 9a) 
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cash 2vH =§ 
nodd 

n Bn cash e 2 Be(uJ/m)n 

n odd 

(vI. 9b) 

for Zn odd (half-integer spin), and 

sink 2v6 II an sink 9 cosign 9= 

n odd 

Q @n(q/m)<w/nt)" . WI. 10a) 
n 'odd 

tater 

cash 2v9 WI. wb) n n Z Bn' cash. 9 = Z Be(ua/m) 

n even n even 

for 2v even (integer spin), where an. Be, an' , Be' are constants ; 
Inspection of Eqs . (vI. 8)-(VI. 10) shows that if and only if all Tlv were 
set equal to  zero and Zv is odd (1.e. the spin is half-integral), (VI.8) 
reduces to the form f(g, cw) . Under these conditions , 

to . 
f(9, -oil is a local operator. 
identifying (vI. 8) , subject to no = 

the anticommu- 
¢6* ]+  would reduce to Hg. -po)A , which is causal because 

The locality property is verified by 
0 ,  as 

f(q,€Lu) = im[eLu°wl1 cash 2)tqe + sink ziqe + p ]  (v1.11) 

with the aid of (Iv. 10) and (Iv. 12) a s  applied to the hyperbolic func- 
tions of matrices in this last expresSion, and checking that 
u)-1 cash 276q9 and Sinh 21\q9 are polynomials in2~.°s- For this last 
step, explicit expansions given in the Appendix A to Ref. 13 may be 
employed. The assertion (b) on page 172 is thus proved. The proof 
of assertion (c) regarding case (iii) follows in an entirely analogous 
fashion, the only difference being that when the H and M for this 
case, Eqs. (IV.23), (W.26) and (IV.42), are introduced into (VI.7), 
it reduces (for '!'iv = 0) to the form ef(g, ew), leading to Bose statis- 
tics since it is the commutator Na, 'ls*1_ '= S+ S' that 1 now can- 
sal. In cases (11) and (iv) , one of the terms in (VI.7) is Co (apart 

from irrelevant factors) and it is easy t o  check that it contains in'- 
verse powers of ctwhich make it impossible to  arrive at a local opera- 
tor f(.E,-po) . Therefore we cannot have microCausality in these cases, 
confirming the assertion (a) on page 172. 

Thus we see that quantization consistent with microcausality 
leads to  a theory with the standard sp1n-stat1st1cs connection which 
is unique for any given spin--except in one respect. We still do not 
know whether there is anything to choose between the two possible 

case. Even this remaining ambiguity 
d1sappears4) when the familiar role of the total energy and momentum 
metrics M1 and M2 in each 
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operators of the quantized field as translation generators on the field 
is taken seriously, requiring for instance that 

-it [ac , 41] - -1 at  

where the field I-Iamiltonian 3£ is obviously to be defined as 

_ T a -M MHqf d x 

(v1.12) 

(VL 13) 

TOT 

leads to 

* 

Evaluation of (vI. 13) using the field expansion (vI. 1) and the proper- 
ties (V.5b), -(V.7) and (V.8) of the plane waves ilgh 

Zjdaq L0 [ a  (gm) a(g,h) 4= b(g,h) b*(q,h)] 
h . 

(vI. 14) 

where the upper (minus) sign in (VI.14) results if the choice M = M1 
of the metric is made, and the lower (plus) Sign if we take M = MY . 
It is a simple matter to verify now that with this expires sign for H ,  
(vI. 12) is satisfied only if 

(a) the minus sign in (VI.l4) is used (1.e. M = M1 , positive 
definite charge density) with fermion commutation rules , and 

(b) the plus sign (1.e. M = M2 , indefinite charge density) is 
used with boson commutation rules . 

A remarkable aspect of this result is that the connection estab- 
lished is between the positive definiteness or indefiniteness of the 
charge density and the statistics of the particles (instead of the spin 
of the particles as in Paul1's classical proof) . 

Finally, it should be observed that in the cases where we have 
found quantization consistent with microcausality t o  be possible, the 
quantities like charge , morneentum and energy are expressible as in- 
tegrals of local functions of the field (provided tlme derivatives are 
admitted) , even though we did not introduce locality as a separate 
requirement . 
operator, given by Ill; TMiL'dax. Here M is to be taken as M1 for fer- 
m1on fields and MY for boson fields , aS indicated above. In case (1) , 
which we showed to be appropriate for half-1ntegral spin fermion 
fields I 

To see this , consider first the total charge or number 

H EZ Q1 
h We 

- 1 tan EZ .C  .|. 
v sech 2v9-B v 

E(tanh 2}\p6 + 91 sech Ape) (VL 15) 

and 
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M1 = (E/m)zsech 2v9'BV (E/m) sech 2kp9 , (VI.l6) 

in view of (IV.l7), (IV.19), (IV.39) and the fact that no = 0,  proved in 
the last section. It follows from (vI. 15) and (vI. 16) that 

_ _ 1 
2m M1 (P1 H + H91) (v1.17) 

We therefore have 
a a T 

IwM.¢dax  Illfp. 15-g - i pa] __}_ 
2m da x (VL 18) 

on using the Hermiticity of H and the wave equation. In case (111) , 
appropriate for integral spin boson fields , one has to take the metric 
to be M2 . It is found that 

T MY (P1H+! P1) l 
2m (VL 19) 

(Note that H is not I-Iermitian in this case , though MH = H+M.) 
One again obtains 

T a I 6111 D1 1 5 - l a t  p l w l d a x  . 
It is trivial to verify with the a1d of (vI. 18) and (vI. 20) that momentum 
and energy densities are also local functions of ex. 

a 1 J`wM=¢d x = / [ *  (VI.20) 

VII. Discussion 
The theory we have presented above is very different in appear- 

ance from theories of manifestly covariant wave equations , many dif- 
ferent forms ofinvli1;§h h.ave been proposed and studied extensively for 
over th§'tyug.Q.q{s e field theoretic, ma ibialgebra! anggr6up 

_.W, and discussed at c 
b Orson and Umezawa ,,*8') Fierz and Pauli, . 

aNd m'any others , are expressible in the form 
1~ 6) 

which has been investigated with great generality by Bhabha 

(1B" au + my = 0 (v1I.1) 

17) and 
Harish-Chandra. 18) A11 equations of this form, with the sole excep- 
tion of the Dirac equation for spin Q* , involve wave functions wlth a 
~@@§5ue spin content. The reason, as has been briefly mentioned 

is that a set of matrices Be transforming like a vector, which 



PARTICLES OF ARBITRARY SPIN 177 

is equivalent to DQ .é) I cannot be defined over wave functions trans- 
forming irreducibly, say as D(m,n) , under £ .  Doré ,%) must necessarily 
connect D(m,n) with one or more of the representations D(m 5: - ,n i Tb). 
and it is only with D(é ,0) + D(0 ,é) that one can meet this requirement 
and yet maintain a unique spin value, if . In all other cases the equa- 
tion must describe a multi-spn (and multi-mass) system such as  the 
case discussed by Bhabha,1 or else one must make Bo in (VII.l) 
singular in such a way that tlme derivatives of only those components 
of 11: which belong to the correct spin appear with nonzero coefficients 
( i .e .  have equations of motion) , the other components being then 
merely subject to supplementary conditions (free of time derivatives) 
which serve to eliminate them. The conditions necessary for ensuring 
that particles described by (VII. 1) have unique mass and spin e 
been found under very general conditions by Harish-Chandra . A 
clear and succinct account of these, with explicit construction of the 
matrices Be for spins é , 3 , g , is given in a recent paper by Capri. 19) 

While the theory of manifestly covariant wave equations is ex- 
tremely elegant, the presence of supplementary conditions creates 
difficulties I 
ed. 20) More pertinent from our point of view is the fact that invari- 
ance under proper transformations and under all or at least some of 
the discrete transformations come packaged together and cannot be 
separated if covariance is to be manifest. This can be seen already 
from the case of the Dirac equation (spin é) which is actually invari- 
ant under T ,  c and P though none of these was asked for while deriv- 
ing the equation. Therefore if the effects of various invariance condi- 
tions are to be separately analysed, the assumption of manifest cova- 
riance must be given up. 

The first attempt to  treat this question systematically was in a 
very interesting paper by poldy,l0) who used a "canonical" form of 
the wave equation, which is not manifestly covariant and involves 
a wave function which does not possess local covariance. Foldy 
drew attention to the existence of ambiguities associated with various 
possible commutation rules for discrete symmetry operators , but did 
not carry the analysis much further. Consideration of this question 
within the very restricted freedom allowed by manifest covariance is 
also contained in a paper by PurseyZllwhich deals with a general 
classification of relativistic wave equations through an analysis of 
the relations that must exist between the different Lorentz-irreducible 
parts D(m,n) of a wave function when a unique spin and mass content 
is imposed by expressing each of them in terms of the relevant unitary 
irreducible representation of the Poincare group. In both the above 
papers, only the c-number theory is considered. Equations without 
manifest covariance, of the type corresponding to our case (i) with 

notably when the introduction. of interactions is attempt- 
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0 nv , were first obtained (with explicit determination of H for a few 
low-spin values) by Weaver, Hammer and Good,22) by starting from a 
special form assumed for the Hamiltonian of a particle at rest. Actu- 
ally none of our general classes of Hamiltonians except this particu- 
lar type, has a definite limit as 4Q -' 0 .  And of course the Hamilto- 
nians H in all higher-spin cases are nonlocal operators in configura- 
tion space . Despite these apparently disturbing features , the second- 
quantizable theories do have observables expressed locally in terms 
of the field functions , as we have shown in the last section. The 
wave functions in these partlcular cases coincide , as is to be ex- 
pected, with those obtained by Welnberg,1) who takes by to be a 
quantized field from the beginning. . 
which remain, and are under investigation: for example whether, if 
one or more of the discrete symmetries are "broken, " one would get 
more general types of quantifiable theories . For the present we will 
conclude by noting that our wave equation (invariant under T,  C and 
P separately) , in the quantifiable cases determined in the last sec- 
tion, is really the essence of all manifestly covariant wave equations : 
for this equation is what would result if, starting from any manifestly 
covariant equation which involves various irreducible representations 
D(m,n), all except the D(0,s) and D(s ,0) parts were ex 
terms of these two by making use of the supplementary 

There are interesting questions 

l 

Appendix: Implementation of the Boost-Invariance Condition 
To illustrate how the coefficients of and be' or co' in H are de- 

termined by the boost-invariance condition in the form (IV.31), we 
exhibit here the details of the calculation in case (1). It is conveni- 
ent to use for this purpose two different ways of writing I-I' 

'Z = 01 Z be H C C v v B v (A-l)  

or 

H=2 
L o d d  

/L 
f,(L'2) + 0 1  ml' 

JL even 

I (A-2) 

and 
Th 
be . 

I 
I 

.,," 

v 
=° C = A L v 

S 

S 

) 
v 

la 
(L _Q / p ) 

1; 
) 

p 
(X 

t o  only for odd values 
en the coefficients in 
from the spectral rep- 

(A-3) 
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so that 
s L 

x- ) (v p 
v 

L 
(x p ) 

S 2 
v II B v 

x, 
p ) ( v 

0 
2 

v 

(L even) 
(A.4a) 

2 (»p)** C\) 

v20 

(JL odd) 
(A.4b) 

Introducing (A.4) Into (A.2) and comparing with (A. 1) , we find that 

JL Cv (vp) 

Z, 

f ,  b / 

v (vp)!' 94; 2 (A-5) 

Now, using the fact that -1L>5.H] is just the gradient of H in 2-space , 
it is easy to verify that 

-in°[;<,,H] =§ df 
L + f  dup'  »f, (m 

L 

+ p 1  
dg 

Z(d§P + L go (L.'2)& (A.e) 
al, 

By using (A.4) and (A.5) we can reduce this' to 

do v 
-Z p dp -12• ,HJ ' C  

V 

db \)' 
+ 91 dp p ' B  v (A-7) 

Substituting this in the left hand slde of (A. 1) and using the represen- 
tation (A.4b) for 2--9 on the right hand side, we obtain, after evaluat- 
ing the commutators , 4 

do db I v I - c  v 
v v dp b do 2 v b '  v (A.8) 

But we already havelthe relation 

C a - | - b  l a  v V 
ET (A.9) 

from which it follows that 
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db v '  
+ b ' do 

do 
C v 

V do V 
p (A.10) 

Solution of the simultaneous equations (A.8) and (A.10) for the deri- 
vatives of C v and be' yields 

C Zeb f a J' + v = 
E2 

. _  . ,, . 
| 

do 
\J 

do (A.11) 

+ prov' 
E2 

db v '  - Zvcv b\) ' 
dp = Q (A.1z) 

1) we can obtain a simple equation for (Q/El, which can be 
,..__.__,,. . .  ...Jy solved. With the use of the initial condition (IV.33) one 
gets the solution to be (IV.34), and then be' (IV.35) is deduced using 
(A»9). 

I 

It is a striking characteristic of the coefficients co, be' , cv' , 
Eqs . (IV.34), (IV.35), (IV.36), that they are independent of the spin 
of the particle . 
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Summary 
The main purpose of the present notes is to  discuss in some de- 

tail a recent three-dimensional "quasipotential" approach to the rela- 
tivistic two-body problem developed by C .  Itzykson, V .  Kadyshevsky 
and the author. The quasipotential equation is derived from conven- 
tional local Hamiltonian formalism on the basis of Kadyshevsky's 
diagram technique for the "non-covariant" perturbation expansion . 
The quasipotential is defined as  a series of irreducible graphs, ana- 
logous to the series for the kernel of the Bethe-Salpeter equation . 
The whole approach is related to the 4-dimensional B . - S  . formalism 
as the old fashioned off-energy-shell perturbation theory is related to 
the off-mass-shell covariant technique of Feynman and Dyson. The 
non-uniqueness of the off-energy-shell extrapolation of the scattering 
amplitude is used to obtain a simpler "local" version of the quasipo- 
tential equation. It is shown that for the scalar Coulomb potential 
V(p ,q) = the latter equation isgg talent to a simple infinite- 
componeg as equation (similar, but identical, to the equations 
considered"By-Nambu, Fronsdal and Barut) . The energy eigenvalues 
are calculated in this case and are found to be SO(4)-degenerate (just 
as  in the non-relativistic Coulomb problem) . In contrast with the 
Wick-Cutkosky model they do not depend on any additional quantum 
member (other than the principal quantum number n) . 

As an introduction the Lippmann-Schwinger and the Bethe-Sal- 
peter equations are briefly reviewed . 
I. Introduction: linear Off-Shell Equations for the Scattering Ampli- 
tude 

Two methods have been applied for the determination of the rela- 
tivistic elastic scattering amplitude : 

(i) Linear off-mass-shell or off-energy-shell equations (the 
Bethe-Salpeter and the quasipotential equation) . 

(ii) Nonlinear on-shell equations based on unitarily and disper- 
sion relations . 

The second method has never been exactly formulated . All closed 
sets of equations treated up to now make, for example, the two-par- 
ticle approximation in the unitarily condition. The complete formula- 
tion is expected to  involve an infinite set of equations for the multi- 
particle scattering amplitudes . However, the analytic structure of the 
multi-particle amplitudes is far from being understood . 
. We shall deal in these lectures with the first approach only. It 
is not uniquely defined because of the non-uniqueness of the off-shell 
extrapolation of the scattering amplitude . We shall start with a brief 
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review of non-relativistic Lippmann-Schwinger equation and relativis - 
tic Bethe-Salpeter equation . 
A .  SchrOdinger Wave-Function and Non-Relativistic Off-Energy-Shell 

Scattering Amplitudes | 21 
The non-relativistic scattering amplitude has been first defined 

by the asymptotic expression of the SchrOdinger wave function satis- 
fying certain boundary conditions . Thus , its off-shell extrapolation 
is dictated by the SchrOdinger equation. One simplifying feature of 
the non-relativistic two-body problem is that the center-of-mass mo- 
tion can be trivially extracted reducing thus the problem to the study 
of scattering and bound states of a single particle in an external field . 
In the time-independent formulation the scattering of an (effective) 
particle of reduced mass rnR, initial momentum g., and energy E' is de- 
termined by the SchrOdinger equation 

l 
2mR A +u(>;) E 0 (1.1) 

with the boundary condition 

WE@f§) = 61 + Q0E(>;) 

where 

where the "Green function" GE is given by 

GE L-xF - 2mR 

a lim go ( § )=0 ,  nm -up 115)- i /2m E up (x) = 0 ,  r =  
r -O Q E r -4 jar E R E ] 

Eqs . (I. 1) and (1.2) can be combined in a single integral equation 

WE@f§) = e1g-x + fGE(>;-x)U(x)¢E(§fxldax 

exp[i/2mRE la-XI] -2mR 

4tfl§-xl . -  (2ffJ" 

TE(2.9.) fe"&1f(x)¢E(m) 

WE(9.,§l dax 

e -ilL~xJ 
g.2 -2 MRE -10 

We define the off-shell scattering amplitude T as the Fourier 
transform of the product -USB: 

= _ _ 1 
4rr 

= _ _ 1 
41T I@'1H'i ( ) 1 A + E  2mR 

d3 § 

I (f. 23 

(1.3) 

d a g .  (1.4) 

(1.5) 
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(E is the final momentum of the reduced particle). Let the potential V 
in momentum space be 

V(2-51) l" w )  e1(H-Q5 day; 1 
41T 

(I. 6) 

1 _ U @ 
obtain the 

[We have chosen the normalization in such a way that the Yukawa 
potential _ e*I` goes into (n2+(E-51)a)"1 .J Let us multiply both sides 
of Eq. (1.35 by and take the Fourier transform. Using (1.4)- 
(1.6) we Lippmann-Schwlnger equation for the off-shell 
amplitude : 

TE(Q,91) + V(2-9) + 
m 

R 
- The 

TEL»3) 
I v(2-k) k°-2mRE-10 0 _k a d (I-7) 

The energy shell is defined by 

BE 2 E .  
mR (1.8) 

[We note that on the surface (I.8) the denominator of the integrand in 
(I. 7) vanishes . ]  
fast enough so  that 

It can be provedl) that if UQ) decreases at infinity 

J`lu(>;)l dux < =» 

then II: , has the following asymptotic behaviour E 
eider 

Q.) r 
1b£(9»5) eigéi + 

(r 
as 
-o 

(I.9) 

(1.10) 

where L is the on-shell amplitude , q- = ,t 2MREI and the three-d1men- 
sional unit vector . 1 1 is defined by r_n = ;:_. [Eq. (I. 10) is often taken 
as a definition of the scattering amplitude . ]  
B.  Bethe-Salpeter Equat1on3)l7l 

Consider the problem of two relativistic interacting particles 
associated wlth the local Heisenberg fields kg (x) and s (x) . All 1n- 
formation (both about the scattering and the bound states problem) is 
contained in the Green function G defined as the vacuum expectation 
value of the time-ordered product of four fields : 

é.(x1 ,xi; y1,y2) (of, (x lm(x2),*(v1m2*(v)) |  0) .(1. 11) 

Let Ala (p) , a = 1 ,2 ,  be the complete (or "modifled") Feynman propa- 
gators (1.e. , the two-particle Green functions in momentum space) 
and let I(p1 ,pa; quo ,q2)6(p1+p2 'quo -quo) be the sum of all ¢1+¢2- 
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irreducible Feynman graphs without radiative corrections on the exter- 
nal lines . [We say that the diagram D of the (l1+¢2 -elastic scatter- 
1ng amplitude is In +1112 -reducible if it can be decomposed by cutting a 
al 1 and a 1112 lines in two graphs D' and D"of the same process such 
that D' contains both incoming lines of D (with momenta q1 , qB) and 
D" contains both outgoing lines of D (with momenta P1 , pa).  If this 
is not possible the diagram D is called (1Lr1+\l2)-irreduc1ble.] Then, 
the Bethe -Salpeter (B. -S . )  equation for the Green function G (defined 
through the Fourier transform of (I. II) by factoring out the 4-d1men- 
sional 6-function which exhibits energy-momentum conservation) has 
the form 

6 (P1 +P2'q1 'quo) G(P1 rPm; quo .quo)= A?1(p1) AF2(p2){6 (Pl 'quo) 6(P2lq.2) 

_ i 
(2Tr)2 

X c(k1 ,k2s <11 .q2) d4=k1 d'*k2 . 
6 (p1+p2 "quo "quo) y I(P1 rPm; k1 ,kg) 6(k1+k2 'quo ̀ q2) 

(1.12) 

Equation (I. 12) can be rewritten in terms of the off-mass-shell 
scattering amplitude in a form similar to the Lippmann-Schwinger 
equation (I. 7) . To do this we introduce the following set of independ- 
ent variables: the center-of-mass momentum 

P = PI +p2 = Q1+qI 

and the relative momenta p and q defined by 

(1.13) 

P:U2P1 'IJ'1Pgr q=lJ-2q1 
M a 

- l-11q2 ' Ua = rn,_+m2 

(P1 =L11P+PI Pa =u»>P ' p) . 
I a =  1,2,  

(1.14) 

The off-mass-shell amplitude To(p,q) , equal to  the sum of all con- 
nected Feynman diagrams without radiative corrections on the external 
lines , is related to the Green function G by 

AF1(p1) AF2(p2) Tp(p.q) AF1(q1) AF2(q2) 

II (2rr)'* [G(p1 PA .q1q2)-AP1 (al Mp2 (p2)6 (p-(115) 

Multiplying both sides of Eq. (I. 12) by the product of the inverse two- 
particle Green functions and using (I. 15) we obtain the following 
equation for T: 
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To(p,q) Ip(p.q) 
1 - , k  ' P+k ' -k k 4 . (21T)2 jip(p )AF1(U'1 )AF2(U-QP Hp( ,q)d k 

(I. 16) 

The corresponding homogeneous equation for the B. -S  . wave function 

(D) 

II 
II I(0lTuL.(§)2(-))1p,(») d"*x 

app a j`(0 T(i1_1(x);|l_2(y))IP,a) exp{i[(u1P+p)x+(u2P-y)y]}d4(x-y) 

x ipx 2 e 

( | P,a) being a bound state of total momentum P and other quantum 
numbers of) is 

LAF(U.P+P) AF2(up-pnl  (p) 
-1 

"Pp 

The wave function up is simply related to the residue at the pole of the 
Green function for P2 = where is the mass of the bound state 
(see Ref. 8) .  
two-particle mass-shell: P = 
substitution 

_ -i 
- 2rr 2 ( ) (I. 18) 

MB2 MB 
We mention that if Eq. (I. 18) is extrapolated to the 

q1+q2, quo = mg, a = 1 , 2 ,  then the 

l"1P(p.k) cpp(k) dank. 

(1.17) 

(2rr)2 i 6(p-q) + AF1(u1P+p) AF2(u2P-p) To(p,q) (x0?(p) : 

would reduce it to Eq. (I. 16) for the off-shell amplitude T .  
Both the Green functions AFa and the kernel IP of Eq. (I. 18) are 

defined by their perturbation expansions . Consider as an example 
the simplest case of two complex scalar fields 1111 and $2 interacting 
via a neutral scalar field up of mass l.J, wlth an interaction Lagrangian 

* * 
L(x) = g=(\l'1 (xW1 (x) + 412 (x)\1r2(x)) ':p(x)= 

(1.19) 

(I.20) 

[ g  has the dimension of mass (i.e. , of inverse length) in this model] . 
Then, in lowest order in perturbation theory (for both AFa and In) Eq . 
(I. 18) reads 

1 2 2 

Et? 'lLl1P'+'P) lfmi-(u2P-p)3 ]q0?(p) = ( g ) "  »ua"(p-k)" -10 "PP 
(k)d4k. 

(1.21) 

This is the so  called ladder approximation in the B .  -S . equation . 
(The iterative solution of the corresponding approximate equation for 
the off-shell amplitude gives the sum of all ladder graphs -) 

Comparison of Eq. (I. 18) or (I.2l) with the non-relativistic 
SchrOdinger equation displays a number of undesirable features of the 
B . - S .  equation (see Ref. 5 ) .  First of all, it involves a fourth 
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gina B.-S . 
Eenergy (or the r e l a t i m e  in 

physical I 

1 
I 

coordinate , 
U) whic' g o t  have a - 

ing; its presence makes obs cure the non-relativistic limit of the B .-S . 
equation and leads to extra (unphysical) solutions (see Sec. I .C . )  . 
The operator in the left-hand side of (I.21) is a fourth-order polyno- 
mial in p (i.e . , a 4th order differential operator in coordinate space) . 
This is another source for extra solutions of the B.-S . equation (at 
least in the limit g -» 0).  The strong singularity of the kernel of Eq . 
(I. 16) does not permit to apply standard mathematical tools to this 
equation. There is no positive definite scalar product in the space of 
wave functions. [About the normalization of the solutions of (I. 18) 
(or (I.21)) see Refs. 8 and 9 . ]  
C .  Stability Conditions and Wick Rotatlon.5) A Solvabls Model: The 

Scalar Coulomb ProblemS r 51 I 1(1) I I 17 
w1¢P57 observed that an important additional information about 

the B.-S . wave function can be obtained from the stability condition 
for particles l and 2: 

f o r q a < r n 2  a =  . n a ' (0l1»_a(x)IqnH)' 0 1 2 

The B .  -S . wave function (I. 17) may be written as 

(1.22) 

cpp(p) In 9 (xO) 2 n (0|_\k.(3;')lqnn)(qnn|§'|-2(8)1Pc1) 

Qin? 
+G(-xo) 

n 
qznzmg 

(of, (-§)l qnn) (qnnlgb G.;-) la=(»)} e1pxd4'x=cpp+(p)+¢pp (p). 

(1.23) 

(As usually, the sum over intermediate states E incorporates integra- 
n 

tion over the continuous variables .) In the rest frame of the bound 
state , for 

P " (ZE, 0) = (m1+m2 -B,p_) (B > 0) (I.24) 

we have 
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"*'p (p) (2103 
n 

E 2E In 1P 

(OIQ.(0)|q1nH><Q1nNI&2(0)|Pa) 

P -E +E+10 o In 
6(§ -2% 

In (1.25) 

app (p) (21'r)a 2 (0112 (0)1 q2nn)<q2nnl2£1 (0) I pa) 

P +E -E-il] n o 2n 
EZIIZEZP E ( a s  

6 + (g2 n B) 

/ é + 2 "Mn 2 I 
(1.26) 

:|: 
that up (p) are analytic functions of We see from these expressions 

po with cuts for 

2 po E1p-E = /mi +23 - Q (ml +m2 -B) E+ I 

and 

Po s E-E2p = ( M 1  +m2 -B) - Itf12+2" = E_ 

(p) is analytic in the Po plane 

r 

respectively. Hence , their sum *OP a 
with the two cuts (I.27) . We mention that for non-zero binding energy 
(1.e. , for B > 0) there is always a real interval of analytlclty, since 

(1.27) 

E + - E _ = E 1 p - I - E z p  'M l  - m a  + B >  0 .  

For the sake of simplicity, we shall only treat the equal-mass case 

(1.28) 

M 1 = M 2  E+ rn, -E = E  - - P 
m + QB (Et= ~/m2 +23 ) (1.29) 

E (ma +p8 -ES P +4E2 pi] cpE (p) = <2i3, 

ve function 
Direction ) faster than - and 

of the bouixd-state 

p owe can rotate the line O of in- 
1i\n angle Q in the positive direc- 

§§§"§,p4 and to by 1k4 . Thus, we 

up (in E (I.30) 

where pa =22 +p? = pa +p§+p8+pi . In the unphysical point E = 0 ("the 
point of maximal binding") this equation has a manifest O(4) symmetry 
which has been extensively exploited in re cent years (for a biblio- 
graphy see Ref. 7) .  



TWO-BODY PROBLEM 191 

It is much less obvious that Eq. (1.30) possesses a "hidden" 
0(4) symmetry for any eigenvalue of E in the case of zero-mass ex- 
change (1 = 0) in which the bound-state problem has been solved 
exact1y.5)»5) A standard way to see this is to extend the method of 
Fock12l (used originally to display the 0(4) symmetry of the non- 
relat1v1stlc Coulomb problem) , and to perform the following stero- 
graphic projection of the 4-dimensional momentum space onto the unit 
sphere in 5 dlmenslon: 

-u 2P5 -» 

§ i52l*Ps2 P I 

is" -pa 
lie :-. p52 +-52 I 

p5 m2 _ E2 (1.31) 

In these variables Eq. (I.30) (for u 

cm=- (1+€4,2)E='w£(€) = I 
= 0) becomes13)* 

WE(vI)6 or? ms" ~1) 

1"L'l'§sU5 

go 
(2TT)2 (1.32) 

where 

II;£(E) = (1 +1€6)3 cpE(D) (I.33) 

Equation (I.32) obviously allows an 0(4) invariance group in the 
(1 , 2  . 3  ,5)-space . It is reduced to  an ordinary second order differen- 
tial equation in 54 (see Refs . 6 and 10; we will skip the details). The 
equation in QUO will obviously introduce a new quantum number, say k ,  
in addition to  the usually encountered quantum numbers n. L ,  Q (=L2) 
Which span the Q(4) representation space. In particular, the 0(4)- 
degenerate energy levels Etn will depend on this extra quantum num- 
ber which has no non-relativistic analogue and no clear physical 
meaning; it corresponds to the relative energy (or the relative tlme) . 
That seems to be a serious defect of the B. -S .  equation. The unphy- 
sical variable comes in not only in some intermediate step--in the 
equation--but also in the observable result- ln the energy eigen- 
values. Besides , this feature is certainly not peculiar to  the Wick- 
Cutkosky model only, since it originates from a simple counting of 
variables (and their conjugate quantum numbers) . If the situation 

p 

*In order to obtain (1.32) from (1.30) one makes use of the following 
identities: 

-o _ 2P5 -s 

1+"§5 g . p2 =4(m'*-Eg) 
1'€6 
1+g5 

1 'guNs 
(1+z_;5)(1+*15) 

d4'k = 16 

I ( p - P  = 8(m3 -EZ ) 

(m2-E" F d4 n 
(1'l"Us )* ITs I 
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would remain unchanged for the B.  -S . equation for the pos1tron1um 
(or the hydrogen atom) , where the energy levels are measured wlth a 
high precision, we would find out that nothing in nature corresponds 
to the quantum number k .  

Is there any way out of this difficulty (other than just throwing 
away part of the solutions on the basis that they do not have a non- 
relativistic limit)? Before drawing far going conclusions we should 
look more carefully at Eq. (I .32). It is not a standard equation for 
the energy eigenvalues. For fixed E it could be considered as  a ca- 
nonical equation for the eigenvalues of the dimensionless coupling 

x 9a 
2m2 (1.34) 

This would lead to a set of eigenvalues 

E 
= f (- ) kn m 7`kn 

In particular, if E = 0 ,  Eq. (I.32) becomes O(5) symmetric and the 
eigenvalues in depend only on the sum k + n: 

do in 
= E  

\in (0) fkn 

II (k+n)(k+n+1), k = 0 , 1 , 2 , . _ . ,  

I ) Only if the equation A fk can be solved with respect to E for 

ft; 

n = 1 , 2 , . . . 
(I.35) 

= _ .  E 
all 71 may we consider Bkna Mas defined for any k ,  n and X . However 
we cannot assume that all values of the coupling constant are admis - 
sible in Eq. (1.32) . If we postulate (aS if is customary)that the bound 
state energy should be non-negative, then the coupling constant X 
cannot exceed 2 .  Indeed, according to (I.35), 2 is the lowest value 
of K for E = 0: hence , for X > 2 the lowest energy eigenvalue would be 
negative , since E01 (i) is a decreasing function of X . On the other 
hand, the bound state eigenvalues Ekn should not exceed the elastic 
scattering threshold m . According to the Cutlgosky analysis this ex- 
"""""**""5`5'*te1genvalues Ekn with k > 0 if A < in In the admissible 

i 2 f however, some Of the extra solutions (with k 2 1) 
fact appear. The l317-fsihpn arises whether the condition Ekn < m 

hreShold w1I1 be stiff cert  to exclude the positive k 's  in a more 
realistic sltuatlon, say for the positronium. I would be glad if some 
of you give me the answer to this question. In any case , the sim- 
plest and most straightforward calculation of the fine-structure of the 
hydrogen (and of the positronium) spectrum are performed within the 
framework of the quasipotential equation which we are going to 
consider next I 
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. For a further aNalysis of the Wick-Cutkosky model in connection 
withlrelativlstlc symmetries and infinite-cbmponent wave equations 
we refer to Refs. 10 and 11 . 

Relativistic Quasipotential Equation 

R(%1 mg) + Emf -we) +-- .J`I(»1 -ac) 

II 14]-20) 

A.  Review of Non~Covariant Perturbation Theory21) 
Our aim now is to derive a (3-dimensional ! )  relativistic ana- 

logue of the Lippmann-Schwinger equation .on the basis of the con- 
ventional Hamiltonian formalism. First of all, we derive a graph tech- 
nique for the old fashioned ("non-covar1ant") perturbation theory . 

We start with the equation for the operator-valued fu.nction 

1 l : 

Z1T at - 10 

where 17101) is the Fourier transform of the interaction Hamiltonian 
H(T): 

R(u,na)dn 0 (11.1) 

I-I('r) H(x) d35, I7I(n) = jHwe'1"Td¢ (11.2) 

The direction of the time axis will be specified later . 
is related to the scattering operator S = S(°¢,-°°) by 

' eixfr 

rv.-10 S('r.-°°) 1 ln R(m,0) in 

The operator R 

(11.3) 

or 

S = s(~,-==) = 1+iR(0,0). (11.4) 

[We have used the. identity 

1 
27T l 

11m 
'r-d==° 

l6(x) 
0 

(for T -° +==) 
(for T -» -°) . ] 

21) . 16) A diagram technique was developed by Kadyshevs by for the 
calculation of the matrix elemeNts of R.  In the case of a theory of 
spineless particles it can be summarized in the following way. To any 
ordinary Feynman diagram of N vertices we let correspond a set of N I 
new graphs having the same picture as the original one with all pos - 
sible numeration of the vertices 1,  . . . ,N. Every internal line is or1- 
entated toward the vertex with smaller number. Furthermore we let a 
spurious (dotted) line enter the vertex 1 , connect 1 with 2 , 2 with 3 
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and s o  on (always oriented toward the vertex with larger number), and 
finally go out of the vertex N. [For instance, to the second order 
Feynman graph of Fig. la , correspond the two diagrams of Fig . lb and 
lc. ]  The conservation law in each vertex of the new diagrams takes 
Into account the energies of the dotted lines . For instance , to vertex 
1 of the graph shown in Fig. lb corresponds the factor 

_ Q 

vi? 6(q1+k - p1+(n1 -MN) 

where n is a 4-dimensional unit vector in the direction of the tlme 
axis . To a sblid line of mass 1J. and momentum k we make correspond 
the "on-mass-shell propagator" 

6 *u(k) = 9(k0) 6(k5 -ua)  

To an internal dotted line with "energy" u. we make correspond the 
propagator 

(11.5) 

1 
21T 

1 
1c-10 (II. 6) 

These rules give rise to the old-fashioned ("non-covar1ant") pertur- 
bation expansion for the scattering amplitude. If we start with a local 
interaction Hamiltonian I-l(x) the on-shell amplitude (for **1 = %2 = 0) 
does not depend on the choice of the direction of the time axis . For 
instance , the contribution from the diagrams on Fig. lb, C is 

l 
(21T)3 6 (P1 +p2 'quo -q2+(n2 -al )n) T(2) 

where 

Tm; is" 1 1 
o m 91 -<11 %1 +q° ̀ P1 +w 

1 + -10 Lu 
PI 'quo PA 'is 

l 
K1 4-qg -pg -Hops _q2-10 

(II. 7) 

(11.8) 

Fornl =%2 = 0 ,  q1 - P1 = p B  
Feynman rule for the on-shell amplitude T: 

wk 

- q2 Eq. (II.7) reduces to the covariant 

Tm) -11 

Wp1 'quo 

go 

-(po -Q8 P -i0 
92 

U2 -(pi 'quo )2 -10 
(II. 9) 
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Two-Particle Quasipotential Equation 

All ultraviolet divergences in higher order diagrams can be reduced to 
divergences in the integration over the variable n. and renormaliza- 
tion can be carried out in a way similar to the subtraction procedure 
in dispersion integrals (for more details see Ref. 21) . 

In general, the Kadyshevsky series (or. if you prefer, the old- 
fashioned perturbation expansion) is nothing else but a rearrangement 
of the familiar series of Feynman graphs. However, the physical pic- 
ture corresponding to individual diagrams in the two approaches is 
different: While in a Feynman graph the 4-momentum on each internal 
line is off-mass-shell but the energy-momentum is conserved in each 
vertex, in our case each internal 4-momentum is on its mass-shell 
but the conservation law in each vertex is violated along the n-axls 
(though the overall energy momentum is conserved provided that K1 = 
Ke = 0). An undeniable formal advantage of the Feynman rules is their 
compactness: one Feynman graph with N vertices corresponds to N ! 
different graphs in the Kadyshevsky formalism . 
B . . 

We consider the model (1.20) of interaction of two complex sca- 
lar fields low and 112 of mass m and a real scalar field cp of mass u. 
The interaction Hamiltonian for this model is 

I-I(x) -L(x) -god' (><)¢.(x)<p (x) : + =¢Z lxMz (xkp (x) :) (11.10) 

Our aim will be to write an equation for the (off-shell) elastic scat- 
tering amplitude of two equally charged particles i l l  and $2 . [It is 
known that contrary t o  the electromagnetic interaction via a vector 
field A ,  the scalar interaction (II. 10) of two such particles is attrac- 
tive . ] 

First of all, following Ref. l , we remark that Eq. (II. 1) may be 
written in a more compact symbolic form 

R + ii + ITIGoR = 0 . 
If we introduce the quasi-particle states In)  normalized by 

(11.11) 

(%1l**:a)=6(141 '*12) (11.12) 

and put 

(**-1IRI1*2) =R(n1,n2), (u l l i ln2)  =II(%1'742)' (7*1IG0l'*'2) 
6 011 `K2) 

2rr (K.i -iD) 

(II. 13) 
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and define the "matrix" multiplication as an integral over K , then Eq . 
(II. 1) is "obtained" from (II. 11) by taldng the matrix element between 
al and K2 . Iterating once Eq. (II. 11) we get 

R -Ii+1?1G 1F1+1'71G FIG R o o O 
(II. 14) 

We take the matrix element of both sldes of (II. 14) between two 
¢1+1'2 -particle states (pa Pa' and Iii quo) . (We use the covariant nor- 
malization 

(p lq)  = 2E NH-9). E =/m"+£" 
p p 

for one-particle states of momenta p and q and mass m.) 
that for the interaction Hamiltonian (II. 10) 

(11.15) 

Observing 

(plp2li-ilq1q2) 

Q
 II (11.16) 

and separating the con1:ributlon of the intermediate 1l:1+¢2 -particle 
state we obtain 

(al Pal RI CI1 is )=( P1 Pa IFIGoIEI quo pa > 
+ ,,l(P1 PA l1iG01§l kl kg)Go( k1 1% I RI Q1 is > (dk1)(dk2 ) 

don(kl . . . . fkn)(p1 QUO I HGoHI k1 . . .kn> + 2 
n> 2 

x Go(k1 . ..kn[R|q1q2) 

where (dk) = 6+ (k)d4.k and dcn(k1 , . . .kn) is the corresponding invari- 
ant measure for the n-particle intermed1ate.state. [We mention that 
the matrix elements of the type (pa pa IRl q1q2) are st111 considered as 
operators in the space of the spurious energies n.]  Our aim is to de- 
fine a kernel K which incorporates the contribution from the n-particle 
states (n > 2) in order to obtain a linear equation for the two-particle 
amplitude . Let l a  be the projection operator on the subspace of two 
different Alf-particles 1111 and 12 . We define the kernel K by 

(II. 17) 

K L FIG 171 o l 

=H~ Go E + "  HG 
- Go(1-UMHGoH 

HG (1 na)HG H + o o o (II.l8) 
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Then Eq. (II. 17) can be rewritten in the form 

<p1p2IRIQ1q2> =<p1p2IK l f»11q2)  

+ J`(p1p2lKI k.k2)GO(k.1<2|Riq1q2) (dk1udk) 

(11.19) 

[We have to ken into account that HE commutes with co so that 
Go(1-n2) .= (1-n2)(8.o(1-n2).] 

In what follows it w111 be useful to introduce the complete 
"Green function" G(k1 ,kg) which includes all possible radiative cor- 
rections on the lines with on-mass-shell momenta k1 and kg . For 
instance , in second order in perturbation theory , 

2 

(n|G(2)(k1,k2)|n')=-aM-M) ( ) 1 1 __ 
Zn 11-10 + 

= 6(n-n') Gl2l(k. ,k,) 

g 
Zrr 

F(>f.n,k1) 
2k=0 

F(H.1'I,k2) 
+ km II 

(11.20) 

where 
m 

dx f(xa__k3 ) 
(k) 

F(ur1.k) = j  
Xo 

Xo (k) = I (M+1-U2 +kB ] I 

b¢+nJ(1~£-px5) + 2xk§ 
u<3 -»@ FE (x+n-10)2 -kg J I 

k 
O 

(nk), k2 = k g  -_If =m2 (II.20a) 

and f is defined by the phase space integral' 

9(kO) 9(k2-(M*11)a) f(  2 )  . 

f(z) [z2 -2(m2 +l12 )z-I-(m2 -p3)3 ] 

1 + + 4 _ 
n .|`6m(k q) 6 ( q )  d q 

1 i 
- 8z ' 

Let us define the connected scattering amplitude RC as the sum 
of all "solid -line-connected" graphs (i.e . graphs which remain con- 
nected when the dotted lines carrying momenta in are removed) . 
Then an equation identical t o  (II. 19) holds true for RC with Go re- 
placed by G and (pa Do l KI ii quo) replaced by the sum (pa Us | KCl k1 kg ) 
of all (two-particle) irreducible diagrams, defined in the following 
way. A (connected)diagram of the 1111112 -scattering amplitude is called 
irreducible if it cannot be split in two parts which are linked by a Q11 
and a 112 -lines oriented in the direction of the external llnes (say, 
from right to  left) and one dotted line oriented in the opposite 
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direction (see Fig. 2) and if it does not contain radiative corrections 
on the external 11nes . 

-1. 

_ _ . _  

4 

. _ -  

/. 

. . .__ 

I 
" _ I  

-4 

1 

- 

Reducible Graph 

FIG. 2 
In order to take the energy-momentum conservation explicitly 

into account, we put 
C 

(p1p2l(K1 IR lu2)lq1q9> = 6(p1+p2 -ql-qa-(% 3)n)T 
C . 

lP1Pal (m I K ln2)l quo quo) -6(p0+p2-q1-q2-(K1 -%2)n)V 

T 
74.1712 

+ 

(P1 Pg FCI1 C12) + v  
This allows us to rewrite Eq. (II. 19) in the form 

%1%2(p1pg:q1q2) + 

. . .is (191 +p2 'k1 'k2 -(n1 -n2)n) VK1 n 

(dk1)(dk2) 
d34. 

(P1 p2;k1 kg ) 

x G (k1 k2I Tm2 M. (k1 k27q1 quo) 0 I 

K1 %2(p1 PA ;quo is) . 
%1 %2(p1 Pa :ql qs) . 

(II . 2 1) 

(11.22) 

where 

G m.(k1 »kg) 1 _ _9_'* . 
2 u - 1 0 )  *lznl R(k1,k2,g2)  r 

(II.23) 

R being regular for m. = D (the first member of the series P is given 
by (II.20)). The "potential" V is given by the sum of all strictly irre- 
ducible graphs defined by the condition that they cannot be repre- 
sented in the form of Fig. 2 .  
vlstic limit Vu m. goes 
see this later in 2sac. 
1ntera ctlon . 

It can be shown that in the non-relatl- 
into the non-relativistic potential. We shall 

W.A for the special case of scalar coulomb 
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C . Center of Mass Variables . Equation for the Wave Function 
In what follows we shall treat Eq. (II.22) in the center of mass 

frame (assuming that the unit vector n,  which defines the time axis , 
is collinear to P1 +p2) . [If we were interested in the t-channel be- 
havior of the scattering amplitude (i.e. for time-like P1 -(211) it would 
have been advantageous to choose n along P1 ' i i  lI In this frame 
we put 

II 

T 
2*1**2 

E 
p 

(p1p2; q1q2) 

R1 =_22 =R1,gl = - g s = g , Q = 0 ;  

p8 =p8 = p o .  q? =QZ = q o :  

IPO! i / M B + * H f P o  ' % 1 = q o  ' é ` " - 2 5 B -  

: :  T I I V E(p q) %1 M»2 

k = -k -= 2 . e (  . ,k2) G2(ko_El(ko'-k, kO, _) ko GE(k) 

In these variables Eq. (II.21) can be written in the form 

TE(p.q) + vE(p.q) +llvE(p,k)GE(k)TE(k.q)(dk) = 0 .  

The corresponding equation for the complete two-particle Green 
function 

• = + 6 _ + T E(p,q) GO(p)(po qo) (Q Q) GE(P) E(p.q)GE(q) 

(P1P2 i q1q2) 

(II. 24) 

V £00 I q) I 

(II.25) 

(II.26) 

(11.27) 

is 

¢E'(p.q) + GE(P) l"vE(p.k)QE'u<,q)(dk) = (po+qo)6(Q-g.)GE(p) . 
Let there exist a r-fold degenerate (r 2 1) bound state of mass 

2B in the illqfe-system. Assume that in analogy with the Bethe-Sal- 
peter equation and with the non-relativistic Lippmann-Schwinger 
equation the Green function (Ink) has a simple pole for = B and 
in the neighbourhood of this Po e can be written in the form 

r 

Q;(p I q) = N B 2 ¢pBa(n) <?)Ba(q) 

B - E - i0 + regular terms for E - B, 
(11.29) 

(11.28) 

covafjqnt 
JThe ibrrn of the singular term in (II.29) is consistent with the non- 

perturbation rules described in Sec. II.A if we assume the 
existence of r particles of mass 2B coupled to 1111 and Ila . 
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where [p] 
state ;;Brass 
is a normalization factor. 
paring the residues at the pole E 

r 

will be interpreted as the wave function of the bound 
2B and other quantum numbers specified by a and NB 

Inserting (II.29) in Eq. {11.28) and com- 
= B we obtain 

2 IIcpBa(p) + GB(P) .tvB(p.kk0Ba(k)(dk)] to>Ba(q) = 0 
a=1 

geneous equation for each of the wave functions (p) : 
Since q)Ba (q) are linearly independent this implies the following homo- 

*DB 
GB. (D) t0B(Ir)) + §v8(p.k)<pBlkxdk) = 0 .  

In order to  obtain the normalization condition for the wave 
function we apply to both sides of Eq . (II. 28) the integral operator 

(IL 30) 

_ [ ` ( p . p ' )  GE'1(p')~(dp') 

This leads to the following nonlinear equation for%: 

f ( p . k )  GE1 (k)gE(k,q)(dk) + 

+ l l J " ( p , k . )  vE(k. ,k2)E(k2,q) (dk. ) (d1<)  =g; (p.q)- (II.31) 

Inserting (II.29) in (II.31) and comparing the residues at the pole E = 
B in both sides we obtain the following orthonormalization condition 
(of. Refs. 30 ,  31) 

NB 
_ a 

BB If (BBB. u<1)[ (GBC (k1)2Ek1 6 (&1 -152) + VB(k1 ,kg)] 

X v,0Bb(k2)(dk1)(dk2) 6 . ab 

Consider the special case when VI(p,q) does not depend on E and Gn 
is replaced by the first term in the expansion (II.23) , so that, accord- 
ing to (II.25) 

(11.32) 

-1 k R-J SIT - GE ( ) Et(Ek E) . 
= 1 . . .§. T . . . .. thls case to the normalization condi lon for the nonrelatlvlstlc Schro- 

diNger wave function 

we reduce Eq. (II.32) in Choosing the normalization factor N 

(11.33) 
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I<58a@) *°8bL) d3g; = 6ab° (11.34) 

We stress that Eq. (II.30) does not suffer from the diseases of the 
4-dimensional Bethe-Salpeter equation discussed at the end of Sec. 
I.B. In contrast to the Bethe-Salpeter equation the three-dimensional 
Eq. (II.30) admits an unambiguous non-relativistic limit. However , 
we pay a certain price for the nice features of the quasipotential 
equation. If we replace the potential VE by its second order approxi- 
mation then the known analytic properties of the scattering amplitude 
will be distorted by the iterative solution of Eq. (II.26) (which is not 
the case for the corresponding Bethe-Salpeter equation) . 
III. Simplified Version of the Quasipotential Equation Consistent 

with Elastic Unitarity 
A .  Non-Uniqueness of the Off-Shell Extrapolation of the Scattering 

Amplitude and of the Corresponding Quasipotential Equation 
In spite of the attractive general properties of the quasipoten- 

tial equation (11.24) (or (II.26)} discussed at the end of the previous 
section, it has one defect: it is too complicated to provide exactly 

Indeed , already 
in lowest order in perturbation theory the potential V 2]evaluated from 
the second order graphs at Fig. l has the "non-loca * form 

= 9a - 
2 _ _ _ UJ p_q( E Po c10 Lup_q+10) 

soluble problems in any reasonable approximation . 

vl2l(p.q) (III_ 1) 

was 
and the corresponding quasipotential equa- 

ctly even in the limit of zero mass ex- 
where "'p_ = 
lion cannot bi M 

change (U, = 0 ) .  
However, it is known, that one can write different three-dimen- 

sional (quasipotential) equations which give rise to the same pertur- 
bation expansion for the on shell amplitude . For instance, the origi- 
nal quasipotential equation of Logunov and Tavkhe11dze14l** 

T E lH,g.)+V 
q 

E (1a»sJ + 
q 

1 
4rr 

\ l | . r l l I  ul 

I V E  (I-1»_k? 
q 

I II 4da.1; 
"I = 0 2Ek (111 . 2) 

*In analogy wlth the non-relativlstic SchrOdinger equation we call a 
potential V(p,q) "local" if it depends on the difference p-q only . 

**We have changed the sign convention for V adopted in Ref. 14 . 
Our choice fits the non-relativistic 11m1t for the potential . 
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differs from our Eq. (11.24) both in the Green's function (Le. the en- 
ergy denominator) and the potential [their choice of the second order 
off-shell amplitude and potential being 

(2) TE q (P.vS.)='V (2) E (Ba) 
q 

9" 
ua + (n-9.)2 ] 

Both Eqs . (II.24) and (III. 2) belong to a large family of linear equa- 
tions of the type 

T + V + V G T = 0  (III . 3) 

which have the following property in common- for real V ,  in the phy- 
sical region, they lead automatically (at least formally) to the elastic 
unltarlty condition . 

To describe the whole class of equations of the type (III.3) with 
this property we write the solution of (III.3) as  

l 
1 + VG v - T l -  - 1 

- V l + G v  (III. 4) 

If the potential is I-Iermitian, v 
the s-channel is given by 

* = V , then the discontinuity of T in 

* 
T T -1 + 1 + v G V  

1 
1 + v G * V  T(G - G*) T* (III . 5) 

In order to make Eq . (III.5) identical with the elastic unitarily condi- 
tion 

w . 1 
* 

.'L(p.q) -,L (p.q)-  E ; ( p . k ) L  ( k , q ) 6 ( K  - EB) d 

(where , for the on shell amplitude T(p,q) , Po = to = E)we have to 
specify accordingly the discontinuity of the Green function. It is 
readily verified that for both Green functions GE (II.25) and 

1 - _ + 3 k (E 10) J Gémk) = 41T[ E" 

(111 . 6) 

(corresponding to Eqs . (II.Z4) and (III.2) , respectively) the discon- 
tinuity is the same: 

1 
4E 

* _ f I *  
G E ' G E ' G E ' G E  6(Ek-E)  (III. 7) 
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and 
men 

B .  

on the upper hyperboloid) . 

[We require , 

it $ 5 - d s t o  (III. 6) (we use in both cases the invariant volume ele- 

2 Ek. 
We will exploit the freedom of the off-shell extrapolation of the 

scattering amplitude in order to write a simpler equation consistent 
with (III.7) (i.e . with the elastic unitarily condition) . The potential 
in any such modified quasipotential equation is calculated from a de - 
finite off-shell extrapolation of the perturbation expansion of the am- 
plitude T (see Ref. 14). for instance that iN the lowest 
order v(2) = -T(2), where T(2) coincides on shell with (II.9); this lat- 
ter requirement is violated in the quasipotential equation proposed in 
Ref. 18.]  

(IIL 3) 

Discussion of a Simplified Version of the Quasipotential Equation 
We will consider the following model equation of the type 

1 
TO(p,q) +VE(p.q) + 8,mEIVE(P.q) 

k Q( O) 
k -E-i0 o 

TE(k,q)6 (kg ' 12)d4k=0.  

(ez (to) s n k  
Q O 

e (ko) 6(-ko)) (III_ 8) 

and the corresponding homogeneous equation 

l 
STTE - k 6 - 2 d k (E Po) <pE(p) .J`vE(p. ) Q0£(k) e(ko) (kg m ) 4 

It is readily checked that the Green function 

k e( 0) 
81TE(ko-E-10) GE(k) II 

= 0 .  
(111.9) 

corresponding to these equations fulfills the elastic unitarily condi- 
tion (III.7). This choice of GE is among the simplest possibilities 
(consistent with (III.7)) since the operator in the left-hand side of 
(IIL 9) is a first degree polynomial in po. Besides we will restrict 
ourselves to the second order approximation in the potential choosing 
it as  the "local" energy independent extrapolation 

9.2 
(p-q)2 -IJ2 +10 

vE(p.q) 

II (III . 10) 

T (k.q) 
at 

of _I(2) (11.9) . An important feature of Eqs. (III.8), (III.9) is that 
they involve integration over the two-sheeted hyperboloid kg = m2 . 
(We mention that could be interpreted for ko < 0 a s  the ampli- 
tude of a process four incoming particles, which is possible off 
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IL 
GE(k) = 8nHk(kD-B-10) 

energy shell.) We will see in Sec. IV that in the case of scalar Cou- 
lomb potential (1.e. for U, = 0) the presence of the l.ower Sheet of the 
hyperboloid ka: m2 in the domain of integration in (III.9) is essential 
in order to  ensure the 0(4) symmetry of the bound state problem. . 

A more complicated model, with Green's function 

(and also involving integration over a two-sheeted hyperboloid) was 
considered in Ref. 22 . It leads to the same 0(4) degeneracy of the 
energy levels . 

As some justification of Eq. (III. 8) we observe that the exact 
expression for the fourth order box diagram (Fig . 3) after integration 
over the internal energy to in the center-of-rnass frame can be written 
in the form: 

(111.11) 

= 1 . . _ 
1b0»<(P'q) 81TE kO - E - in 

wB _k+uJa _k+uJ _km 
+ €(ko) _P q P 

_[`VE(p.k) l 

_ E- 1 q _ k (  kn)p 

uJp_kuJq_k{wp__k*1uq_k) 
]wE(k,q)a (k2-m2)d4 k 

(111. 12) 

The comparisoN between (III. 12) and the second iteration of 
(III.9), 1.e. the integral 

where VE is giver by (III. 11) . We se.e that this expression contains 
the Second' iteration of Eq . (III. 9) plus a term which is regular in the 
physical region and, hence , does not contribute to the imaginary part 
of T .  

(EQ) -um (E+ko,£) 
-1 - (E-,q2) 

It 
( k  .ls-D) 

o ' or (k0,5-2) 
-1 1 
( E t )  (E "kg ,-k) (E,-q_) 

FIG . 3 
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To 
1 

(IJ-k)2 -u3 
e (to ) 1 

ko -E-10 (k-QF -u2 6(k2-m3)d4k (1II.13) 

(for Po = to = E) may glve us a feeling of the discrepancy of the fourth 
order calculated from the Bethe-Salpeter equation in the ladder approx- 
1mat1on and the quasipotential equation (III.9) . It is possible to 
evaluate explicitly both (III. 12) and (III. 13) for the case of forward 
scattering. The result for the box diagram is 

TboxlP . D) to4. 
4m"1..P F(E) (III. 14) 

where 

F (E) 
I t .  a the 1 -1; the + eo ctgElD 

01120. + cos 290 
for E a m  (111. 15a) 

with 

COS to _LL 
2m I chq, m , 0 > 0  . 

I 

9 ctg9 - Bo ctg9o 

1=(E) = cos2EI - cos2B¢ for E2 = me sin2 9 < me (III.15b) 

Eq. (III. 15a) may be considered as analytic continuation of (III. 15b) 

from (III.13t for E 2 m is 

- 94 T2 ' 4rn2 up 

for complex 9 (9 =11 + in). With the same notation the forward contri- 
bution 2- lithd.-l-gtggo) 

ch2q, + c0s290 (III. 16) 

The imaginary parts of (III. l5a) and (III. 16) coincide as they should . 
IV. The Scalar Coulomb Problem: Solution and Relation to Inf1rLtte- 

Component Wave EquationsZZl ,205 
A.  0(4) Symmetry of the Scalar Coulomb Problem in Fock Variables 

In thlslsectlon we shall exhibit the O(4) symmetry and solve 
Eq. (III. 10) with the attractive scalar coulomb potential 

,r 2am2 v ,k = E(P~ , ) n(p - k)3 . 

22) 

(Iv.1) 

(1.e. with the potential (III.11) for 1.1 = 0 ,  g2 = 
shall use the Fock variables p4-»u, be-vv where 

a 21" ) .  To do this we 
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u . 
J Pi'  1 = 1 , 2 . 3 ,  UP 

IT-Po (1) 

Po -wm | 

Po 
m 1+L01.14 

114+U.} I p. 
J 

u 
l14+0.) j m I (D <1 (IV.2) 

p3 m2 onto the 
' _  1 1 

vary on the upper sheet of the hyperboloid, then u would cover only 
(It is 

(of. the treatment of Wick-Cutkosky model in Sec. I .C). Eqs. (IV.2) 
a = 

can unit sphere in 4 dimension: If we restrict p to 

clear at this 

define map of the two-sheeted hyperboloid Euclid- 
= & + @ =  

the part of the unit sphere for which -w S L14 S 1. 
point that our subsequent results would not be true had we restricted 
the integration in the right-hand slde of Eq. (III. 10) to the upper hy- 
perboloid.) The Jacobian of the transformation (IV.2) Is 

D(p0 :Pl 1PglPg) 
D(u1 ,up ,up .L14 ) 

_mm 
15 

l 'in (Iv.3) 

The singularity at U4 = -w corresponds to 'Po' - =°. It is compensated 
in the integrand of (III.10) by the assumed decrease of CPE(k) at infi- 
r11ty. Using (W.3) and the identities 

(p -k )2  =m2 (w= - 1) (u -Vlad 
(LL, +w) (vU-w) 

I €(ko)(v4+Lu) = lV4.+U~)l r 

no E 1113 m 
UP +uJ I ka -ms = ma (1-L02 ) 1 - 232 

(v.,.+w)" 
(Iv.4) 

we transform (III. 10) into 

u = u L 
*u_](V) 

G-GF (Iv.5) 

where 

¢w(u) 
<¥>E(p) 
(u4+1n)" I as .am 

and d0- is the volume element on the unit sphere in four dimension . 
Eq. (IV.5) coincides with the non-relativistic Schrödinger equation for 
the Coulomb problem in Fock variables if we replace we 1 - wa in the 

right-hand side of , where 1J. is the reduced mass . lust as 

well as in the non-relativistic case this equation is manifestly o(4)- 
invariant. A complete set of solutions of the eigenvalue problem 
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(Iv. 5) is given by the spherical harmonics in four 
which satisfy 

dimension Y rM G) 

Y n£,Q (H) 
n 

4112 
t L_. 

2 1-uv Y n&',Q (v) do-°, n v 1 , 2 , . . . ,  (IV.7) 

0 ,  EL" -1L(L+1)]Y = (L -~ = 0 ,  - ac; a nJLQ 
where _L is the angular momentum operator in three dimension, 2, = 0 ,  
1, . . . , n-1, -L s Q s L (see e . g .  Ref. 23). Comparing (IV.5) with 
(Iv. 7) we see that the eigenvalues of up are determined by the equation 

a 

C)Y 

LU ' /1 - we n n 
Zn 

(Iv.8) 

(Iv. 9) 

This leads to 

w n %+é * (Iv.10) 

(We have excluded the second root of (Iv.9) by the requirement that 
*Un -» 1 for a -» 0 . )  The binding energy B = 2m(l - --Un) goes to the cor- 
rect non-relativistic expression 

E NR 
Up" 
2 n2 u 

m 
2 ( ) (Iv.ll) 

for a -° 0 .  The 0(4)-degeneracy of Eq. (IV.5) (just as  well as the de- 
generacy of the Wick-Cutkosky equation (I.32)) dis plays the main 
qualitative distinction between the scalar "Coulomb" interaction and 
the real electromagnetic interaction (via a 4-vector potential) which 
necessarily leads to a fine splitting of the relativistic energy levels 
with respect to the total angular momentum . 
.B. Algebraization of the Scalar Goulomb Prob1em24)'25) ,26) ,22) 

Now we w111 establish a one-to-one correspondence between 
the quasipotential equation 

- = go 1 k kg _m2 do k (E Po) cpE(D) 81TE I' (p-k)2 CUE( ) €(kO) 6 (  ) (Iv.12) 

and an infinite-component wave equation written in terms of the gen- 
erators of the zero helicity representation of the conformal group 
so(4,  2) . A similar algebraization has been carried out for the Bethe - 
Salpeter equation (for the same case of scalar Coulomb interaction) 
in Ref . 10 . 
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We will make use of the well known degenerate representation 
of SO(4,2) which can be realized on the set of homogeneous functions 
on the upper light cone Uo = »./LL? + up + up + up of degree of homo- 
geneity -2  or -1 (see e . g .  Ref. 25) . It is equivalent to  the zero heli- 
city representation27) of the conformal group [for an explicit demon- 
stration of the equivalence of the two representations see Ref. 22a 
(Appendix)] . This representation can be realized equivalently on the 
space GCI of functions defined on the double sheeted hyperboloid p2 =l , 
equipped with the scalar product 

(t,0.1lr)= 4 fw(p)  (P _ QF My) 6(p2-1)a(q2-1)d4p d4=q. (Iv.13) 

The (homogeneous) Lore Ritz group acts in 361 as a group of argument 
trans formations : 

[U(f\)11l] (q) = l1(A'1q) 

The generators 
Dirac y-matrices 

I" and T5 of SO(4,2) (1.e. 
ii %y 

representation) are refined 

l` = cpl(D) 

the representatives of the 
and éy5 in this infinite -dimensional unitary 

by the following non-local operators: 
q 

-L j I (pL1q)2]3 cp(q) €(q0) 6(q2 -1) d4q (IV.14) 

[r I (p) 
2 -QI E (9-1 PP cp(q) @(qO) McE'-1) d'*q . (IV.15) 

comparing (Iv. 14) with (Iv. 15) we see that 

cp(p) = (D) Pp, I (01 
__ 1 
F5 

F u (Iv.l6) 

It can be verified directly (see Ref. 22) that the operators PUT= F l` 
p»p" - .  

_L 
commute between themselves and that - 1 . It is also not S 

difficult to check that the inverse of the operator (Iv. 15) is given by 

1 -1 
T5 (D"CI)2 [- D] (p) 

1 
2TT2 ¢p(q) €(Q0)(s(q2 -l)d4q 

u 

(IV.l7)  

Changing p and q in (IV. 16) , 
in Eq. (IV. 12) we get the following 
tential equation: 

(Iv. 17) to p/rn, q/m and inserting 
"algebraic form" of the quasipo- 
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where a 

m 
F l 6 

EI 
F = .um 

o cpE an6 *DE 
TT . on : 2 g2 . The discrete spectrum corre spondmg to Eq. (IV. 18) 

can be foungl by multiplying both sides by F5 from the left and per- 
forming a rotation in the (0,5)-plane (of. Ref. 24) . The result is 

ma) *°E = ( ./my E -E2  to a 
2 0 . 

(IV.18) 

(Iv.19) 

£2 n 

Finally we recall that the eigenvalues of l"o in the glven representa- 
tion are all positive integers (see e .g .  Ref. 22) and find _ my _ ._ .. 

1 += _ 
l*_l"` *r 

in agreement with (IV. 10) . Eq. (Iv. 18) admits also a continuous spec- 
trum corresponding to the two-particle scattering states . 

In conclusion we would like to make the following remarks . 
1) The preceding argument gives a simple prescription for the 

"algebraization" of the (free) 4-momentum: 

m 
F5 

p, F 
IJ, p, 

(Iv.20) 

(see (IV. 16)) . This prescription is independent of the interaction 
under consideration . 

2) The simple algebraization of the potential based on Eq . 
(Iv. 17) is peculiar to the case of zero mass exchange. The potential 
(III. II) with 1 > 0 leads already to considerable complications (see 
Sec. 111.2 of Ref. 22) . The reason is that the kernel in the scalar 
product (IV. 13) in Tl-C1 is closely related to the Coulomb potential. If, 
on the other hand, we adapt the scalar product in our representation 
space to the potential for u > 0 the simplicity of the free Hamiltonian 
will be distorted. However, we can use Eqs . (Iv. 15) r (Iv. 17) and 
(1v.20) to solve the inverse problem: given ad hoc an infinite-com- 
ponent wave equation in the representation space of the ladder rep- 
resentation of U(2 ,2) (see Refs . 24,  25 , 26) to reconstruct an equi- 
valent integral equation in momentuM space . 

3) The potential in the right-hand side of (Iv. 18) (with a minus 
r coincide with the non-relativistic attractive Goulomb po- 

I/ . if we 1aen"'°'=w=°*="*" F5 . 
It has been i .17 that in 

the relativistic on of r is given 
where _L and N._ are thru generators of the homo- 

our case _I_;F' -_I_a =T`5E°` . 

M1 

gene 
by F 
gene 

a l  
r & This ob- 
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4) As mentioned before, the simplest evaluation of the lamb 
shift corrections to the hydrogen or positronium energy levels (or of 
the hylaerfin splitting of the hydrogen levels due to the nucleon form- 
factor 8) ,29  ) has been done on the basis of the Logunov-Tavkhelidze 
quasipotential equation. It would be interesting to carry out this more 
realistic calculations on the basis of the quasipotential equation 
(III. 10) and of the algebraic technique developed here . 
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LOCALIZED SOLUTIONS 
OF REIATIVISTIC NONLINEAR DIFFERENTIAL EQUATIONST 

Eric H. Roffman 
Department of Mathematics 

State University of New York At Stony Brook 
Stony Brook, New York 11790 

Introduction 
For linear equations such as  the Schrödinger equation, the 

typical behavior of a wave packet is that it will spread and its maxi- 
mum value will tend to zero as time passes . 

Many physical phenomena have a different behavior, if fric- 
tion is neglected. For example , think of drops on a window pane 
sliding downward under the force of gravity. They may fragment . 
They may collide with other drops on the way down. They may leave 
a trail of tiny drops behind them . But they do retain a coherent local- 
ized shape, more or less , all the way down. 

This kind of behavior--localized units which interact without 
spreading--may be typical of certain solutions of a whole class of 
nonlinear partial differential equations . These lectures will sum- 
marize what is known about constructing such equations , and solving 
them . 

First we shall treat some ordinary differential equations . 
This will illustrate the characteristics of nonlinearity. Furthermore , 
the equations we study--the Riccati equation, the elliptic equations , 
and the Vander Pol equation--will have features that we shall use 
when treating partial differential equations . 

We shall then be concerned with properties of nonlinear wave 
equations of the form 

CP = ma CP - - 
°P((=°<0) + BCP(cpl)2 

cp I 

with positive definite energy. 

~tPresented at the INSTITUTE FOR THEORETICA7.. PHYSICS I 

University of Colorado, Summer 1969.  
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These are the simplest prototypes of the differential equations 
of quantum field theory. Quantum f1eld theory considers nonlinear 
equations for linear operators . We are looking for solutions which 
are old functions . (Well behaved functions , in fact, which go 
to zero nentially for large Ix .) 

We shall describe stationary solutions , and the interaction 
process . We shall describe several kinds of behavior which an equa- 
tion might, a priori, give rise to. 

Then we shall show that the strongest possible property--the 
strong particle scattering property--is satisfied by at least one equa- 
tion, the Kortewegde Vreis equation. We shall report on the work 
that ha.s been done on this and related equations . 
I. Nonlinear Ordinary Differential Equations 

In this lecture our main object is the study of the Riccatl dif- 
ferential equation, the equations for elliptic functions , and the Van 
der Pol equation. Each of these equations has features we shall refer 
to again . 

We shall begin with a very simple example which illustrates 
the differences between linear and nonlinear differential equations . 

Consider the linear differential equation 

if 
dt of (1.1) 

The solution is 
f = f(0) it e (1.2) 

t t Note that the functions pa = ae)` , Tb = hex and £a-I-b = (a-I-b)et = 
fa+ Tb all satisfy the equation. Also note that if f(0) is finite then 
f(t) is finite for all time . 

On the other hand , consider 

£ =  
dt K? (1.3) 

This has a solution obtained by writing 

i-2 if = mr 
t 
dt 

t=t o 

= X ¢ 4  

f(t) 
j f-2 of = xi 
f(t=to) 

- f ' ~  ( t)  + f-1 (0) (1.4) 
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Hence 

few) = 1 
flu) 

\f(0) (t-to) 
(1.5) 

f a 
a 

1 - pa(t-rO) and 1 Tb 
b 

4-  Xblt-tO) (I.5) 

both satisfy the equation, and so does 

i(6+l) 1 
a+b . 

-\(a+b)t ' but far # f a  
+ f 

b 

Furthermore, even if fa (to) : s a  is finite, fa (t) is not finite for 
all time, if \ is real. It becomes infinite in a finite time, namely 

t 
I 

Finally, a linear differential equation may have singularities, but' 
they 'are independent of the' boundary values . On the other hand , 
here we see that the position of the singularity depends on the value 
a of f at  to' This is called a 'moving Pole", because its position' . 
moves with the boundary value . 
A.  Rlccati Equation . 

The first equation is called the Riccati equation, which was 
first considered in a special case by Iohn Bernoulli in 1694, and first 
solved in a special case in 1701 . 

We will derive the equation from its solutioN , 
= a(x) + k b(XJ 

c(x) + k d(x) 
v 

y I where be of ad . (1.6) 

k is the constant' of integration, and to obtain the differential equa- 
tion we must eliminate k. r . 

Y; a' + kb,' 
c + kd 

(c'+ kd')y 
c + kd (I.7) 

Solving for k 

k a 
b . u  

to yd from (I.6) 

also 
k - (a' -y'<= 

b ' - y ' d  
_ 0'y) 

d ' y  from (I.7) . 
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So, recalling the assumption that be-ad if 0 ,  

lel'd - ad' + be' - b'c) (Cd' 
(be: - ad) (he y' + y + 

'by 
ad) t 

= a ' b  - ab' 
(be -ad) (I .~8) 

This is often written as 

Note that if P 
we obtain v' 

y' + Qy+Ry'2 = P  (1.9) 

= 0 thena = 0 ,  b = 0 ,  or a = ) b .  Also, setting y - Qv = R a linear equation with general solution 
. x 

v = Ce I<1)d>< + e~Qdx .IR(t) e-JIQdt dt 

v 

(1.10) 

It is an exercise for the reader to show the relationship between this 
solution and the previous one (Eq. (I. 6)) . 

One of the most interesting properties of the Riccati equation 
is the following : 
Theorem: To every Riccati equation corresponds a linear second order 
differential equation, and to every llnear second order differential 
equation corresponds a family of Rlccati equations . 
Proof: Set 

_'1_l 
R Y (109 u) ' 

then Eq. (1.9) becomes 

Ru" q- (R' - QR)u' - PR2u = 0 (I.11) 

Conversely, the equation 

Au I I  + B u ' + c u = 0  

becomes the Riccati equation 

y '  + [(log R) '  + BIAly + R/ = - C/AR 

We can choose R so that 

R = e-.['X(B/A)dx 

giving 
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B .  Elliptic Functions 
Consider the equation 

all a _ b2 y (I. 12) 

The solution is 

a 
b2 y + a sin(bx + B) 

If we mu1tlp` ly by y '  and integrate we g`et 

(y' )2 
2 

- . be 2t ] Const 

The constant is evaluated at x -8/b and i s  

( y ' P  =[(%b>"-if] 
l 

.Qi 
Ba S O  

The simplest generalization of Eq. (1.12) is 
N 

y" =2 a :fn n (L13) 

or 

(y' )2 
a n 
n+1 

n+1 
Y + b  (1.14) 

If 1 < N S 3 the solution is an elliptic function . 
The following transformations and definitions are standard . 

If the polynomial roots are i t  and it/k the equation may be written 

(¥')2 = (1 - v2)(1 - k2y2l 

letting y = sin e we obtain 

(e ')2 = (1 _ k@3ih2 e) . 
We de fine F(x , k) 

F(x,k) X dx 
O (1 ->a=)(1 - Saxe) 
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or 
e 

p(e,k) =I 
o l - 

do 
kg Sinscp 

uk(9) 

Define 

so(u,k) = sin 9 

in(u,k) = COS B 

The transformation from Eq. (I .,13) to Eq. (I. 14) w111 be particularly 
useful later . 
c .  Van der Pol Equation 

The equation 

S 5 - € ( l  - y . 3 ) 9 + a y = 0  (1.15) 

was discussed by B .  Van der Pol in 1926 in connection with the oscil- 
lations in a triode amplifier circuit . 

Since the elliptic functions were discus sed extensively in the 
early 1800's, and Rlccatl's equation in the early 1700's , we have 
roughly a century passing between the study of each of these three 
nonlinear equations . 

If we set x = y' in Eq. (I. 15) we have 

ex -Fay - exy.9 (I. 16a) 

(I. 16b) 

Note that if we set x = y = U,  the equation becomes 

Q 
dt 0 

QI: 
dt 

0 

Hence x(t) = y(t) = 0 is a constant solution . 
diagonalize Eqs . (I. 16) . 

Set 

Nearx y O w e  can 
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X=A§+B'r l  

y=C€+D11 

(I . I'7a) 

(I. 17.b) 

and look for a solution of the form 

mm 
dt 

= 3  11 (1.18) 

near.x = y = 0 (i.e. the ex;/B term is neglected).- 
Substituting Eqs . (I. 17) in Eqsw .(I_ 16) and using (I. 18) we 

obta,1n 

AX15 + Bean MAY +'B'fII|) -l8 a(C§ + D'n) 

CME +Dxsn =Ag + Be 

So 

M =A/Q = €  + a  c/A 

g =B/D=€_+.aD/B 

or 
I 

0\1-». kg) = (A/c, B/D) JE" - pa S i  Ea 
2 

So, :hear x = y = 0 the solution is 
t 

\ / 2
 

- -4a et  e = et* I + e 
. - |  

Y 
_.2 

l . 
| 

%¢€2_4a ) 
(I.19a) 

x e (e: cash §.X_ 'het 
dt 

It 
\2 Je" -pa )) t I+§J€2 -4a sink £2 Jg- 4a .(I.l9b) 

Nearx = y = 0 we see that fore  > 0 ,  a >  D ,  xand yare both 
growing. If €2< 4a the trajectory spirals because fer" - 4a is 
imaginary. ' ` ~  

In fact, when one studies the 11'ajeCt'ory in detail one sees 
that one family of trajectories moves out from x = y'= 0 'to a certain 
limiting closed trajectory. A second family starts from large x and y 
and spirals down to the same llmitlng closed trajectory . 

The diagram which shows the trajectories of solutions is 
called the phase diagram. It looks like thls for the Van der Pol 
equation: 
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€ 

Note that for any finite time we can start at any point on the 
x , y  plane, and then for t - +°° we will be asymptotic to the limit 
cycle . For t - -<» there are only three places to start from--x -» 0 ,  
y -o 0: X -> °==, y - =°: or someplace on the limit cycle . Thus, the 
boundary conditions that can be imposed at t - :be are somewhat dif- 
ferent from the boundary conditions at finite time . 

Another interesting feature of the Van der Pol equation is the 
way it approaches a linear equation as e »-o 0 .  From Eq.(I. 19), we see 
that as  - 0 ,  near X = y = 0 the solution approaches a circle. How- 
ever, no matter how small e may be, as long as it is greater than 
zero, the solution after spiraling long enough will eventually reach 
the one and only one limit cycle characteristic of the Van der Pol 
equation. The approach to  the linear equation as  e - 0 is therefore 
not uniform . 
II. Stationary and Elementary Solutions of Field Equations 

We now begin the main subject of these lectures, the proper- 
ties of certain self-interacting scalar fields . 

Starting with an equation of the form 

-EICP =m2<p -)~tp(zr)5p) + sq)@<Ep m2,)».B> 0 (11.1) 

We want to know when such an equation has solutions of the form 

-. t 
q)(x,t;) = e 1w e (x) (11.2) 

Such a solution is called stationary. 
We shall always require positive definite energy for any solu- 

t1on of any equation we study . 
A .  Integral Invariants 

We shall begin by recalling the derivation of the field equa - 
ions and the energy-momentum tensor from the Lagrangian. 

Consider the Lagrangian 

II 
,;| lf£d'x tuéw) §@i<p1)-v@q))Jd»< 

i 

(II. 3) 

dx denotes an integral over space and time . 
The field equation is given by 
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I 

_L- *2 0 as olfl 
.. "Z inn + q>F¢PFp) 

1 . _  
cp 1- 0 (II Q 4) 

1 

a nd 

where F(y) = V' (y) 
B (qui) . . 

B65 f 

The lagrangian is invariant under two groups of transforma- 
tions. First, the translations and rotations making up the Poincaré 
group leave the Lagrangian invariant. Second, phase changes of the 
form cp -o 

is understood a .s `°Pii 

et. iv also leave it invariant. 
From the translation invariance we obtain energy momentum 

conservation . 1 . ,, ; \ 

au T uv (11.5) 

where 

T . lJ.V iv §== 
up u 0Pa Q .or (II. SI 

From Eqs. (11.5) and (11.6) 
served, where 

we see that the energy E is con- 

E =' fed; = y'TOOd?< = 

I N  +2 ¢p1 "Pi + V@¢p)] 

i 

(LI. 7) 

dE denotes an integral over space . . 
Notice that the energy is positive definite if and only if the 

Potential V is positiVe-definite . T 

The momentum is also conserved 

w
 

I-
* 

II _ . .J
 

1 
l'
l°

 QU
O II I Toi do 

2 .[`Rea1 251) dx (II. 8) 
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From invariance under transformations belonging to the homogeneous 
Lorentz group we may obtain the conservation of angular momentum 
and the "center of mass relation," 

From the gauge invariance of the first kind 

in 
CP -n e QUO 

we obtain the conservation of " charge " 
Q=21mJI@(4>)d>'€. no; (II. 9) 

B . Stationary Solutions 
After this brief discussion of some important integral invari- 

ants of any solution of Eq. (II.4), let us return to the solutions (11.2) 
of (II. 1). BY substitution we obtain 

v36  =6(m2-L02-X92 +B9'"') for real 9 (II. 10) 

do 
dr2 

This is now an elliptic (time independent) differential equation . 
Compared to Eq. (1) it is trivial . 

We shall seek solutions of (LID) with the boundary conditions 
' 0 ,  0 is everywhere smooth 

= 0. 

.Q_ 
dr 

8'(x = 0) - 0 ,  9(I=<1 -» ~=») - 0. 9 ' ( l x \  -» ~) -» 
and finite. We shall also seek solutions symmetrical about x 

We can write 

-1 va9 9(r°) + Nr 9(r) = 9(r)([m2- u,2]->_[6(r)]='=2+ 8[9(t)]') 

Notice 

H-1 3 

where r represents the coordinate in n space dimensions . 
that in one space dimension the second term drops out . 

. Recalling the procedure we adopted for the elliptic functions , 
we multiply through by Qi and integrate dr t1 

d n-1 
dr r dr ' 8(r) + w392- V ( | ( r ) 1  = - l` de za 

dr (-) 
Ra I2 I 

Using the boundary conditions at °° we obtain 
I l` 

(9' (r))2 + wa 92 (r) - v(e (r)) = - I _ 1  3 
n dr 

on r 
dB 
dr (-I (11.12) 

Notice that in one space dimension the right hand side is 
absent, making possible many s1mplif1cat1ons . 
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I 
I 

I 

Equation (II.l2) has many Important consequences: *definite potential (which we always require) 
as 1113> 0 .  ' 

dary conditions , at the origin 9' (r) = 0 , hence 

n- 1 ( )  
°° a 

0?e3(0) -v(e(0)) =.f 5; dr . 
o 

For positive definite V this is possible only if wa > 0 .  
Because of the absence of the second term in Eq.(II. 11), the 

case of one space dimension can be solved quite explicitly. We 
shall now assume one space dimension . 
Cor.2: In one space dimension, coming from a positive definite 
potential, there is a stationary solution of the form (II.2) for 
Eq. (II.l) if and only if 

(a) the equation 

w2y2 = V(y) 

has a solution 
. (b) 

yo>  0 and 

You'a - xv; ~+ By .) 
dv(yo.) 

< I dy 0 

I 
Furthermore If (a) and (b) are true , then 

we = v(vo)/y; 6(x=0) = yo 

and 

lim 
txt -0 

ca 
9 =ce-lxufnm 

Proof: 
In one space dimension Eq. (II. 12) becomes 

(6' (r))2 .+ we BE (r) = V(9 (r)) (II.13) 

(Because 6 is symmetric about x = 0 ,  we use r for \xl . )  
the origin, for a localized solution, 

Hence at 

wa e3 or) = VW (r)) Zn.14) 
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Conversely, if 9(0) = Yo# 

mg v(v;) 
and 9 '  (0) 0 then Eq. (II.13) is satisfied. Since 

duly ) 
= O < 0 

by  
9" 

the slope 9 I  becomes negative . 
If we now integrate Eq. (II. 13) 

eI  =-Jv(s) -of as (11.15) 

we obtain a function which satisfies Eq. (II. 13), and at r=0 is sloplhg 
downward. The function w111 continue tO de crease until it is asymp- 
totic to  9=0. It cannot cross 9=0 because at 9=0 e'=0 from Eq. (II. 13), 
and it cannot turn up or stop decreasing because from Eq. (II. 13) if 
9'=0 then w2 92= V(6) , but this equation, from the form of the poten- 
t1al, has no solutions other than 9=y =E)(r=0) and 6=0.  
. We have already seen that »a(?=0) = 
the equation 

yo and that w2 satisfies 

w2 y2 o V(Yo) 

If wB were such that this equation had no solution., then we 
Cannot carry out this procedure and there would be no stationary 
Solution with frequency w . 

From Eq. (II. 13) we see that not only does 9 (r) go to zero for 
large r ,  lt goes to zero like 

..]'111 r 
9(r) e -up -» (11.16) 

Note that one can eas fly write generalizations of Cor. 2 for more 
general potentials . | 

By means of Eq . (II. 12) , and corollaries one and two, we have 
obtained quite a complete picture of when stationary localized solu- 
tions can exist and what they look like . 

Now we also canuse Eq. (II. 12) to derive some of their integral 
properties . These are interesting because it turns out that the energy 

1ITl tensor of a s ta t id ' *so lu t iou  has a rather special form . 
For a stationary sq ,up = e-JJwt 8(x) in one space 

intension 
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e 2V(9(x)) (II.17) 

P 0 (II.18) 

T11 = 0 . 

= 2(UJa BE (X) ;v(9(x)) = -2(e' (x))==? .c 
(11.19) 

(11.20) 

2 = 2 w  92(X) r (11.21) 

Proof: 
- 6° comes out zero since é is imaginary . 

the definition. For the rest, substitute 
D is immediate from 

4 
1 

(B')'=' =V(6) -w292 r 

into their respective definitions . ' 
We see that the energy momentum tensor may be written 

r I 

I 

s 

iv 

Tub = () 

4 

Of 

01 
(11.22) 

As an example , we shall work out in some detail the proper- 
tles~of the potential . 

V(a) = m2a - Kas + Baa 

Here we have 
rial of Eq. (II. 1)we had V(w) 
... . We write Vfa) = awa) 
V occurs at 1/219 = a at which 

+ 
made some changes of notation. 

= rn2cpfp - "i lipfi 12 
= (ma -»pa +8aa)a. 

(For the poten- 
L6/3)&w)" - )  

The minimum of 

L 

Tr = (mg - K3 I48) 
I 

hence VI t 
' definite if ma > 12/4B.` . 

solution exists , according 
V(a). Therefore 

to Cor. 2 ,  1f.uFa Q 
- i n  

my > we > m2 I 

(11 . 23a) 

and, 

a 
K 

2B 
_/Ja _, (ma .Ii 

4 8 )  
(II.23b) 
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where 

9(x-0) /a 

for a r frequency w . 
a 

2 
ma , - 0,  while for We* (m2 -g ) .  

So to family of stationary solutions 
x = 0 wlth maxima ranging from zero to "K/26 o 

It is .not possible to have -a stationary solution with wB = 
9(x=0) = "M2B- For at x = 0, the equation for 6 is . 2-21 m . . 4 5 ,  

2 aL a -0 28' 
centered about 

e l l ~ =  0(m2-w2- Zka + 383a) 

Substitution gives \ 

9" 0 . 
Hence. (II.23a) is a strict inequality. 

c. Elementary Solutions 
We have already noted that the Lagrangian for Eq. (II. 1) is 

invariant under the Uansformations of the Poincaré Group. Hence 
<v@<,) is any solution of Eq. (II. 15. translations; 
boosts may be applied to q> and they yield new 51 

if 
tz- 

1) . 
JI 

°P .(Xa+ a u) 
is obtained after translation . 

op(x)*q)(A V X + a )1 u 1-1 v u 
is the most general transformation of up by elements of the Poincaré 
group. If up 
fies Eq. (11.1 . 

If a stationary solution e 
we Obtain a solution of the form 

satisfies Eq. (II.l}, then q)(r\u 
-'iwt 

v x  + a )a lsu  satis- 
v U- 

9(x) is transformed 111 this way 

(II.24) 

-m)Aoc»<'u-a") u 
e . . e[A1 (Xi -au)] = cp(x.t) (11.25) 

Such a solution 
Xi = al-1' and is moving wlth Velocity V1 
in shape . 

is called an elernentary s?\J61t1on. It is 
= i I 

- o 
A o 

ceiitered at 
without any change 
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III. Dynamics and Scattering 

A .  Introduction and Formalism 
We have been studying the localized, stationary solutions of 

field equations , and we have also noted that, as a consequence of 
Poincaré invariance , a whole family of elementary solutions , which 
can be centered anywhere and may be moving with arbitrary velocity 
(0 S v < 1) , can be generated from the stationary solutions . 

We now ask whether these stationary solutions can scatter . 
That is , in some sense can we have a solution of the wave equation 

-UCP =w(m158-K@®) +B(<@(;5P) (III_ 1) 

which at t = -°° looks like two or more elementary solutions approach- 
ing each other. And if so ,  what does such a solution look like at 
t = -I-40. 

Before going into this problem in more detail, let us recall the 
characteristic features of solving the linear SchrOdinger equation. 
. If <0 is a solution of 

- iB tQp =V2cp -V(x)  cp 

then we can expand cp in the form 

cp =fivE cpE(x) 
+iE1Z e 

where (x) is a solution of *DE 
E cpE(x) = v2 'PE - V(x) "DE 

The particular solution is determined essentially by boundary 
conditions . 

We see that because we are dealing with a linear equation, 
for which the superposition principle is valid, we have been able to 
give the general time dependent solution by means of a superposition 
of functions each of which has trivial time dependence, and is deter- 
mined by the solution of a time independent elliptic equation . 

Unfortunately, these techniques do not apply to nonlinear 
equations • 

Our first objective is to f1 
.is a striking res 

and the 5 ituents elEt q0E(x] 

suitable boundary conditions . 
between stationary solutions 

made up a general solution of 
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sons which 
a solution c 

the Schrödinger equation. This suggests that stationary and, more 
generally, elementary solutions are of particular interest. Of course , 
superpositions of elementary solutions are not themselves solutions 
of Eq. (III. 1), because of the nonllnearlty. However, as we shall 
see , to a limited extent, the sum of elementary solutlons can be 
asymptotic to a solution . 

We shall investigate the following sort of property: A partial 
differential equation will be said to have a particle interpretation if 

(a) It has a family of slemenlary solutions 
(b) For any 

a solution 
l 
I u 

in . . . IN of elementary solu- 

0 for all i , j  (i 75 1). there is 
Eq- (III.1) such that 

lim 
t-v +°° cp+(xI-1) 

N 

Z q1(Xu) 
i=1 

11m 
t -» -Q up _ (xi) <p1(x) 

1=l 

We denote by § the set of all such solutions "P+ and by Q' the 
Set of all such solutions <p.1-. . ' 
7 (c) There exist solutions which are in both §"and § .  Such 
a solution is asymptotic to a sum of elementary solutions at t = -°° 
and, whatever happens at finite times , at t = +¢» it again becomes 
asymptotic to a sum of elementary solutions . Denote such a set of 
functions by Q . Clearly . 

+ _ 
Q C Q n Q (III . 2) 

Note that if cp 6 Q , then 

lim 
t -0 -Q (P cp1(xu) 

1=1 

and 

11m 
t-»+<==»q' "PJ (xu) 

1=1 
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where the collection {gp1} i=1 • N is not necessarily the same as the 

collecti 51 {¢¢1}'1=1 | . . .m° : 

(d) For any CD1 E Q, such.that . 

lim 
t -» -+<=Q "Pa "Pi 

i=1 

-0 

there is a 'Pa E Q, such that 

-» lim 
t .* -oo "Pa 

1=1 
*°1 

11m 
t -»  -m CP 

and the converse is also true . 
This says that any state which is the result of a scattering 

process can also glve rise to a scattering process. And every 1nitla1 
state is also the result of a scattering process . 

For any equation which satisfies the conditions a-d, a set Q 
of (nontrivial) solutions which satisfies c and d will be called a par- 
t1c1e space . 

We have used the conditions at t = ion to select out certain 
.types of boundary conditions as particularly interesting. This is 
reminiscent of the Van der Pol equation for which the boundary condi- 
tions one might specify at t = iw- were different from those at finite 
time . . . . 

In.addltion to the condition of a particle interpretation , 
several other kinds of behavior are a priori possible for a nonlinear 
partial differential equation. Some are stronger, some weaker than 
conditions a-d . 

.. . First, we shall define the notion of the spectrum of a particle 
space . 

Let Q be a particle space. Then anycp E Q satisfies 

fpi(x) 
1=1 

lim 
't -o +eo cp 

M 

E ¢p1(x) 
1-1 

where ¢pi(x) and "Pi (x) are elementary solutions . 
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frame . Each elementary j 
We define the so 

on pi has a certain energy E1 in its rest 
1m of up, &1q3,as the pair 

E 1=1 ' N l  { ] 
cp 

8 (I Ei} 1 1  1,M) (III . 3) 

Then we define the spectrum of Q, SQ, as the collection of the 
spectra of its elements 

Fe Sql q)lcpE §} . (111 . 4a) 

Equivalently , 
I 

E 1l % 
' lim _ 

t * - c o C P - C P 1 +  Cpk.cp€§ 
k=l 

I 

+ 11m ~ _  

Ejlt_,+,,¢p-aol C P f W €  Q 
»t,=1 

(111.4b) 

writing 

e = (s+. e:_) , 

we note that because of condition (d), 8+ €_ hence 

(8.6) 8 : 
Q I + ._ 

We can also define the spectra of Q , Q I 
:l: and cp* E § I 

(111 . 5) 

1 . e .  if 

lim ' 

t -|;1|:m0P:|: '*'1 

then E t  = ii] and % = {e 1 respectively. 
With the concept o f ?  Spectrum, we can make the following 

definition: 
An equation has the strong particle scattering property if 
(a) it has a particle interpretation 
(b) 'it has a particle space 6 which satisfies 

1) The spectrum of Q is discrete and flnlte 
11) If CP e Q : 
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lim _ 
t -o-mCP- "Pi I 

elementary . 
such that : 
t H 

'nose rest energy is in the spec- 
cp = 0 ,  then there is a solution 

i lim _ + = 
t-o..cnCP1 "Pa *°1 t - o _ o o  

1=1 

1' 1m (cps + Clp) 

Another possible behavior that the equation can have is the 
general scattering property: 

Some (or all) solutions of the equation may be written asymp- 
totically as  the superposition of a sum of elementary solutions and a 
solution of the linearized equation. (For Eq. (III. 1) , the linearized 
equation is Eq. (III. l) with I = [3 = 0.)  

We would like to be able to prove that a particle interpretation 
holds for Eq . (III. 1) , or even that the strong particle scattering prop# 
erty holds . We have so far achieved only weaker results which we 
give below . 
B .  

a >  

. 
E Icp(x,t)l Mp(t) is the maximum value of the 

Lat cp attenuates If (t) 
< a .  Mm 

-~ 0 ,  i . e . ,  if for any 
that MT[t) 

To begin the investigat on of scattering, let us note that a set 
of initial conditions--called Cauchy data--for Eq. (III. 1) consists of 
giving the function at t = 0 ,  and its time derivative, ¢(x,t=0) , at 
t = 0 .  

up 
If »l(x,r) is a function, we shall say that ¢ is Cauchy data for 

if we set 

q(>(x.to) ¢(x.to) 

q5(X,to) ¢(x,t0) 

We shall now prove the main result for the nonlinear Klein-Gordon 
equation' 
Theorem: There exist nonattenuating solutions of nonlinear Klein- 
Gordon equations. In particular, if Eq. (III. 1) has stationary solu- 
tions cp which satisfy 
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Q(cpl) > -  E(cpi) (III. 6) 

Then a solution cp(x.t) wlth Cauchy data or does not attenuate , 
where 

II' =§ pi([ As] 
i 

*iv Xv + [a1]u) (III . 7) 

with (A Iat) a transforrgafion in the 
one O N (1.e. (As) 1), while (ai)u 

Suppose 

Poincaré group such that As is - (aj)u is large aNd space- 

2 
I n .  - _  <0=@t1 Ate q)v(l¢pl'*) ( I.8a) 

where 

dV (a) 
do 

and 

V(a) =am2 -kg3 +Baa 

m2m. e > 0  andV(a)>01f  a > 0  (111 . sb) 

Then, if 

M ( t ) < e :  , 
cp 

m + 6  8(x) where 6 -o E2(x) S 0 as e -o 0 

a V(a)2am2 - 6 1 ,  f o r O s a s  QUO a s e  0 .  61 is simply the 
hm of IV(a) - ama | in this range . 

Also, 

=1(=<) = 2 lm (¢(x) op(x))s (l¢l2+ m°l¢F)l°) 

-0 

_ 1 
m 

$.l.e_._1 
m m 

1 

(111 . 9) 

where 63 = IcpI(x)l3 . Then, certainly 

1 El(x)s ( m + 6 ) 8  and 6 0 as e - » 0 .  

Lemma: If, given any Cauchy data 11' for cp, 

-v 
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1 of )  

then there is an e such that 
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1 > . + ( in  b) E 010 | (III. 10) 

Proof: 

point , 

S 

M Up(t) > e for all time 

Choose e small enough so that for 'cp(x) < e: 

1 
( m 

that m%°(r0) < e ,  .then (III.-11) is 

2Qp(x)) + Is) e(q»(><)) (III. 11) 

true at each, . 

Qm¢) (IIIQ 12) 1 s ( m + 6) E(<p) 

However, thls is impossible since E and Q are each con- 
served, and satisfy (III. 10) at the 1n1t1a1 time . 

It now follows that the theorem is true if we can exhibit 
Cauchy data which satisfy (III. 10),.. 

One set of Cauchy data which suffices in one space d1men- 
s1on was given by P.  D. Lax: 

For any a > 0 such that V(a) < m2a, set 

L 

a cp(x) 

cp(x) = a ( R +  1 - l=¢l) 

tp(x)=0 

o f  lxlSR 
R S l x l S R - F 1  

R + l s l x \  

ii>(x) = it<p(x) . (III.13) 

For R sufficiently large , this Satisfies' Et. (III. 10) and the 
function ¢p(x,t) which evolves from this Cauchy data does not 
attenuate . ' 

Let us now turn to the nonattenuation of certain functions 
with Cauchy data of the form (III. 7) . 

Recall that a stationary solution with frequency Lu exists for 
a potential of the form (III.8b) If ' ' 

m'°> uJ8> me - 22 /4B 

and that 
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=e¢4>.(><)) = 2 V(¢p(x)) = Nm" I<l>12- >»|<p|4'+ Blwl6) 

Q = Zw leroI3 
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minimum. . 
For a stationary solution e 

Now ma - Xa + Ba" decreases monotonically from m2 t o  its 

iwt 9(x) ,  we have 

we 92 (x=0) v(e (0)) 

and 9(x) and V(6 (x)) both decrease monotonically from x = 0 .  Hence 

m2 92 (x) > V(9 (x)) > w2 93 (x) 

Set 

L 0 " m 6  6 < 1  

near 

x 0 V(e(x)) 
3(6(x)) 

m6 <.m 

for 

X -o an v(e (XD 
g(9(x)) m/6, > in. 

however both V and Hz are small . 
Numerical calculations show that in fact it is possible to  flnd 

stationary solutions of wave equations in one , two and three dimen- 
sions which satisfy Eq. (III. 10) . The argument above explains why 
this is plausible: near x = 0 where both the energy density and charge 
density are large the densities satisfy an inequality 

Although this condition is violated for large \xl , the densities there 
are small. Most of the contribution to the integrals for E and Q obvi- 
ously comes from the region where the densities are large . 

For an elementary solution, translation obviously does not 
change the energy. A Lorentz transformation varies the energycon- 
tlnuously. If E is the energy of a stationary solution, then (A 00)E is 
the energy of a boosted solution. Charge is a scalar under Poincaré 
transformations . 
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Hence if a 
elementary solution 

stationary solution ¢i(xu) satisfies (III. 10) , the 

X ©i(f\ + a v ) u v +1 

satisfies (III.10) providing A0o is sufficiently close to 1. 
Now let us consider sums of elementary solutions, of the 

form (IIL7). 1' 
It is easy to see that if for each pair i , j  , (at - J u = p J 

is large and spacelike , then, when we compute the energy and c arge 
we find 

(a-) 

EW) =§ Elcpi) + (Remainder)1 

i 

L 
4 

1 . 1  . 

Q(¢) =y Qépi) + (Remainder)2 

i 

consist products cp 5 
...oo' oil of 

because of the 
where if 
to zero 
static 

It now follows directly that Eq. (III. 10) is satisfied for the 
sum if it is satisfied for each cpl, and if the remainders are suffici- 
ently small. Hence a solution cp with Cauchy data II does not atten- 
uate , as  asserted . 

We have now proved that some solutions which start out as 
superpositions of elementary solutions never attenuate. They have 
even a stronger property, in fact. For they have finite total energy, 
and there is necessarily a finite energy concentrated around the maxi- 
ma of the function. So that we have in fact proved that "tanglble " 
lumps of energy scatter into other "tangible " lumps of energy . 

It would be very desirable to obtain exactly the form of the 
functions for t = +l°°. 

We shall give another result which is consistent with, and 
even suggestive of the possibility that a particle interpretation, or 
something like it, holds for Eq. (III.I) . 

A crude variational calculation indicates that of all solutions 
wlth charge q .  the stationary solution with charge q has the lowest 
energy • 

which go rapidly 
decrease of 
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E = ,[`E$(;0 -5% +V@p 5)] do 

Q = if J` k? or) - 5 up) do 

If we mihimize E subject to the constraint Q = q/2 , then using 
Lagrange multipliers , we minimize 

E = / { [ 5 € )  - - 5 ¢ J 3 d x - q  'CP cu  +V(np ¢p)] +)~Ef4> CP 

Varying with respect to np(x) , we find 
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w My 0 (III. 15a) 

from which we obtain 

i t e cp(x.t) 9(x) (III. l5b) 

Varying with respect to cp , we find 

B V  cp] . 
"Pa +<p a¢p@2.) 4-'Mp 

Using Eq.(III.l5), we see that Eq. (III.16) is 

Ae = @( BVU-32 1 
A Q "  

0 (III. 16) 

which is precisely the equation for a stationary solution . 
Of course , variation with respect to 'L now requires the charge 

of elt 6(x) to be exactly q/2 , for we get, using (III. 15) , 

lm 1*.f(l9|2)dx II .Q
 

C . Numerical Results 
Extensive numerical calculations have been performed to 1n- 

vestigate the dynamical behavior of scattering solutions . We give a 
brief summary of the results . 

a) We have noted that for a positive definite potential there 
are no real, stationary solutions. Nevertheless we have shown 
numerically that real functions 9(x,t) exist which dissipate their 
energy very slowly . 

b) If two localized wave packets are made to move toward 
one another, they will interact, then separate , remaining more or less 
Intact, with more or less their original shape, but with a possible 
change in velocity, phase, and perhaps a time delay in overall 
position . 
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c) One can plot such quantities as the position of maxima of 
the modulus of the function itself, or the position of the maxima of 
the energy density, to obtain a "scattering diagram. " 

d) It is obvious , though amusing in practice , to see the 
effects of Lorentz contraction, time dilation and the relativity of 
"simulaneity" on moving wave packets . 

f )  One can make motion pictures of the scattering process . 
g) Interesting effects can be observed for different values of 

the parameters of a scattering process . In one case a "resonant" 
intermediate state was formed: During the interaction a single wave 
packet was formed from the two incoming packets , and it lasted a 
particularly long time before it separated into two outgoing packets . 
IV. Other Equations 

It might seem unlikely that any equation has a particle 1nter- 
pretation, and even more unlikely that one could establish it, given 
the difficulties of analyzing nonlinear partial differential equations . 
However, there is an equation, the Korteweg-de Vreis (K-de V) equa- 
tion, which has been found to  satisfy the strong particle scattering 
property (when restated wlth slightly different terminology) . In addi- 
tion, this equation can be solved completely, in the sense that, given 
a function at t = 0 ,  u(x) , one can find a solution of the K-de V equa- 
tion u(x,t) which satisfies u(x,0) = u(x). In fact, in some cases 
u(x,t) can be vln'itten as an explicit rational fraction of sums of 
exponentials I 

The K-de V equation is nonrelativistic. We will show, how- 
ever, that even for relativistic equations some remarkable properties 
can hold . 
A .  Relativistic Equations 

First, we ask the reader, as  a challenge to his manipulative 
ability, to investigate the equation 

w (Iv.1) 

The objective is to find the general solution of Eq. (Iv. 1) . 
A general solution is a function 

I 

¢ A B (  x , t  ) 

which is a solution and which is known, given that 
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(b(x.0) =A(x) 

¢3(x,0) =B(x) 

We offer the following hints. Letting 

g = ~ ( X + t )  n =é(>< - t) 
the equation becomes 

: c p  
cpin e 

(IV.2) 

Notice that this implies 

. .. S = 0 

which means that a solution of (IV;2) satisfies 

Making the Riccati transformation 

for arbitrary f(§) 

"PQ 

u 2_5 
u 

we obtain 

z "Ag + 2  2; 
u u ( 5 -iv - 

u p  
Jo u. z( ) +f('§) = 0  

- 

which is a linear equation. The problem of obtaining the general 
solution ¢AB(x,t) is now left to the reader. . 

. Before treating the K-de v equation, we will study another 
relativistic equation, the sin-Gordon equation 

up = sin up 

for real cp in one space dimension. . 
We again make the transformation 

x - % & + 0  r -é (><-0  I 

(IV . Sa) 

giving 
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cpxt = sin cp 

We will show that Eq. (Iv.3) has an infinite number of con- 
servation laws. The method we use is a formallzat1on, by David 
Wiley, of the method used to prove that the K-de V equation has an 
infinite number of conservation laws . 

Let us consider a new function y which satisfies 

(IV.3b) 

y = ( ; p + p ( y X ,  e )  (1v.4) 

and the equation 

yxt = s1n (y) k(yx,e) (Iv.s) 

We suppose that y satisfies these two equations for every 
value of S . We now take the xt derivatives of Eq. (IV.4), and apply 
(Iv.s) and (Iv.a). 

_ I /I 
y it -q)xt + p (ex e)(yxt)x + P (yX.€) Yxt Y:oc 

(IV.6a) 
sin y k(yx. e)=  sincp - - p '  (sin y)x k + p '  sin y k'(yx,e)ym{ 

_*_ al/ 
sin Y k(yx. e) Yxx 

It is clear that this equation can be satisfied only if the 
coefficient of YJc{ vanishes. That is ' 

(Iv . eb) 

plkl _*_p//k_=0 
(n.7) 

furthermore 

s1n y k == sin(y - p) + p'(sln y)x k . 
These conditions are sat1sfled, with the additional coriditionss p 0 
as . e - 0: and k -o 1 as e: -» 0 ,  if for EqS; (IV.3), (IV.4),and (IV.5) 
we have 

(IV.8) 

cpxt = sin cp 

Ym = sin y -./1 - eayxs 

= $1n'1 Y up + (wx) 

q 

(Iv.9) 

(1v.10) 

(Iv.11) 
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Eq. (n.10) is particularly interesting because it has a conservation 
law for each e: . 

ea 
(J1 - (eyx)z 1) 

t 
(cos y)x (Iv.12) 

Eq. (IV.12) is written in that form so that as e 
smoothly to 

-O 0 it converges 

2 = é(q)x )t (cos cp)X 

which is a conservation law for (1V,9) 
Equations (Iv. 9) and (Iv. 10) are not equivalent under the 

mappin.g (Iv.11). 
Equation (IV.11) plus Eq. (IV.l0) Imply Eq. (IV.9): 

(IV.13) 

+ 
Pxt 

I 
JT-IEW" 

e x t  
sin Y J1 - (€yXl 

e 

x 

CPxt + cos y Yx = sin y»/l - (eyX)2 

"Pm = s1n (y - s1n"1 (eyX)) : r  sin up 

However, Eq. (W.l1) plus Eq. (IV.9) does not imply Eq. 
(Iv. 10) , but rather a more general equation: 

We obtain , first 

Yxt 
- ~/1 - (sTd 

¢ 

eYxt I 
I 

sin (y - s1n'1 (pyX)) 
X 

= sin y~/1 - (€vX)2 - eye cos y f  

Now we cannot simplify the second term, so we obtain 

If 1 ( e y x f  -r -)( e a  
Bx 

( Yet _ 
1 _ 'Q ii I yxl 

which does not imply Eq. (IV. 10) , although it is satisfied if Eq. (Iv. 10) 
is true. . 

To obtain an infinite number of conservation laws, it is only 
necessary now to expand lEq. (Iv. 12) as a formal power series in e , and 

s iny l=  0 
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use Eq. (Iv. II), also iterated formally in e as a power serlles 1n'q> and 
its derivatives. The first few conservation laws obtained in this way 
are 

F1 

FE ' 
2 l + _  

Fa 5 

1 . . f (  §c9x2) dx = constant 

L 4 _ ( 2 CPxzc 8 qpx ) dx - constant 

_l 2 + _ 2 2 + _L 6 do 
l(2¢0}c)0{ 4 cPx CPxx 16*°x ) 

These conservation laws are expressed for Eq. (IV.3b) . To 
obtain the conservation laws for the original equation (IV.3a) requires 
only a change of variables . 

cons tent . 

B. The Korteweg-de Vreis Equation 
The K-de V equation is 

+uu + u  x :acc Ut - 0 

This equation has been found to be relevant to  many problems 
in plasma physics and fluid motion. Considering the interesting 
properties it has , it is noteworthy that the equation was studied for 
its physical properties rather than "Invented" for its mathematical 
properties • 

We shall show that the K-de V equation can be solved--that 
is , given u(x) we can find a solution u(x,t) such that u(X) = u(x,t=0) . 
Furthermore, it turns out that the solutions have the strong scattering 
property. 

To begin with, we note that the function 

(IV.14) 

cps()C/c) = 3a3 sech3 
a 1 

(IV.15) 

is a solution of (IV. 14) which, obviously, does not change shape as 
it moves . The functions cps (x,t) are the elementary solutions of the 
K-de V equation . 

Historically, the theory of the K-de v equation was developed 
by first noticing numerically the stability of Isolated or solitary wave 
packets . Then many conservation laws were discovered by trlal and 
error manipulation of the equation. The fact was noted that another 
equation also had ma.ny conservation laws, namely- 

v + v 9 v  + v  = 0  t x xxx (Iv . 16-Y 
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It was conjectured that Eqs . (Iv. 14) and (IV. 16) both had an 
1hf1n1te number of conservation laws and that the two equations were 
related . This was proved , and then the general solution was found . _ Let us .relate u and v by the Riccatl equation: 

u = v a i 1 / 6 v  
X 

(Iv.17) 

Then substitution reveals 

"t +uu + u  x xxx (ZV . i/6 52-2)(vt + am) . (Iv. 18) +vav  
X 

We now apply the 11near1z1ng change of variables for the 
Rlccatl equation to v 

4' 
v = X \l' 

and obtain for u, after translation of u by X , 
, 1 

¢m+E 

i / 6 -  

- lL) l i=0 • 

(IV.19) 

(Iv.20) 

This is a remarkable equation, because it turns out that 
(IV.20) in conjunction with (Iv. 16), the K-de V equation, allows 
(IV. 16) to be solved completely. It turns out to be convenient later 
to replace u by -6u, then the K-de V equation becomes 

ut 

and Eq. (IV.20) becomes 

_ 6uu + u  = 0  X :acc (IV. 14a) 

in - u \l' - my 

At each time to, Eq. (IV .20a) is a Sturm-L1ouv11le equation 
for II, with potential u(x,to) . 

It turns out that, by means of Gelfand-Levitan inverse scatter- 
1ng theory, u can be obtained from \|;. On the other hand, from the 
K-de V equation, given u(x,0) , we can find if at every time . 

The Gelfand-Levitan equation is 

(IV.20a) 

m 

K(x,y) + B(x+y) +.f` B(y+z) K(x,Z)dz 
x 

0 (IV.21) 

B is a known function, evaluated from Eq. (IV.20a). K is 
solved for in Eq. (IV.2l). Then 
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I _ d 

dx' = -2 K(x IX) (IV.22) 

The time is here a hidden parameter, (IV.21-) and (IV.22) both 
being evaluated at each time . B is defined by 

B(§) =i_ 
2Tr 

+00 

.[` b(k) eikgdk + 
-as 

C a  
n 

..Kn§ 
e (IV.23) 

where k, Kn | Cn and b(k) are defined as follows: 

-Kn2 = km) , the nth discrete eigenvalue of Eq. (IV.20) 
(IV.24a) 

k2 =As represents the continuous spectrum . (1v.24b) 

The Cn are normalization constants in the following sense . 
For a bound state wave function 1l'(N we require 

+00 

l" 'l:(N)3 d x = 1  (IV.25a) 

Then as x -» +e= 
- K x  

l a * C e  n n (IV.25b) 
I 

_ -ilex - e  

For the continuous spectrum, since u - 
linear combination of e+1kx and e-ikx_ We set 

ilex w + b(k) G+ » 

-ilex e ¢=a(10 

0 a s l x l * < ° , q l 1 s a  

a s x - » + =  (IV.26a) 

X - O - Q  (n.26b) 

b(k) represents the reflection of a plane wave by the potential u, a(k) 
represents the transmission, and 

la(k)l2 I b ( k ) l 3 = 1  • (IV.26c) 

We now set out to evaluate these quant.1ties . 
There are *we ways to prove 

state eigenvalues X n) are constant 
de v equation. ' - 

First we write 

the remarkable fact that the bound 
if u evolves according to the K- 
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Wxx u = X + II 

245 

substituting this into the K-deV =equatlon yields 

Xtw" + [wex - wxnnx = 0 (IV.27a) 

where 

R = ¢ t + ¢ x x  - 3 ( -u + 7\)t'X 

Notice that we can now integrate (IV . 27a) to give 
-to 

0 = l tm a dx = >.t.[l¢ 2 d x = it 

Another way to prove that X is constant reveals much about 
the structure of the K-de V equation . 

Suppose that to some differential equation 

(n.27b) 

(IV.28) 

ut = K(u) 

there is .. associated a 11near operator Lu 

u(t) - Lua) 

(IV.29) 

in some Hilbert space, 1.e. , 

Lu(t): H-° H . (W.30) 

The et 
to (IV 
i . e . ,  if 

f. 
o tiI'1é\(t) will remain constant as u evolves according 

evolution of L is effected by unitary operators , 

L up) = U-1 (t) Lu(o) U(t) (IV.31) 

where U(t) is a unitary operator for each t .  
we obtain 

Differentiating (Iv.31) 

/dLu\ u 

du /  t 

dL up 
du / K(u) B] (]V**32) 

where B is the generator of the unitary transformation U. 
in u, as is the operator 

If L is linear 

| L(u) = - u  
as 

axe 

in Eq. (Iv.20a), then (IV.32) becomes 

I (IV.33) 
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K(u) c[Lu, B] (1v.34) 

wlth c a constant (equal to one for the operator in (lV.33)). 
Conversely, given a generator B,  a~nd ,an operator L linear in 

u. evaluating the commutator in (IV.34) yields a function K(u) which 
generates a differential .equation such that if 

Ut = K(u) , 
then the eigenvalues of `Lu 1;) remain dons ant 1'n time . 

Taking for L the lirear operator + 1 u. and for B the 
operator 6 

_L 
12 B a as 1 1 = . + -  - +-  Bxa 4 Unix 8 Ux | 

we find 

a i t = [ L ,  B] = 12 as 1 ' 6a 1 l +- , + -  -- - ax" su ax-9 4"5x+8 1ll x 

uu - u  
X XJDC I 

which is the K-de v equation of Eq. (Iv; 14) . This proves that 'the 
eigenvalues 'X of L are constant, since if u(t) transforms by K-de V, 
then L 11'ansform's unitarily . 

Using Eqs . (IV.28), one obtains the differential equation for 
the time development of of. Using the fact that 111 is a bound state 
solution, we find that . 

o R ¢ t + l » m x - 3 ( u + x ) ¢ x  (IV.35) 

cn(t) 

b(k,t) 

is the equation of motion for al. For continuum solutions , one must 
be a little more detailed . 

Using Eqs. (IV.24), (IV.25), and (IV.26) and noting that u -o 0 
asymptotically, we obtain simple equations for a ,  b, and c with 
solutions 

Cn(0) 
= b(ko)e811<at 

4»K'at n e 

a(k,t) =a(k,o) 

(Iv. 36a) 

(IV.36~b) 

(IV.36C) 
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The quantities Cn(o) , b(k,o) and a(k,o) are all obtained by 
solving Eq . (W.20a) with the initial data up) = u(x,o) . 

From this information a complete analysis of the properties of 
the K-de V equation can be made. One result is that u(x,o) is a 
potential for which b(k,o) = 0 if and only if u(x,t)1 as  t -» in is com- 
posed only of solitons, i.e . a superposition of elementary solutions 
of the form (IV. 15). 

Moreover, if b = 0 ,  theo it follows from the Gelfand-Levitan 
equation that u(x .t) is a rational fraction of exponentials . 

As an example , consider the solitary wave 

u(x,t) = -2 sech2 (x ` 4t) 

the n 

u(x,o) = -2 sech2x 

It turns out that the problem 

- VI \h + (2 Sech2 (X) 
N; 

can be solved exactly, and it has one eigenvalue . 
K 1 = 1  

01 (0) =,/`2 

b(k,0) = 0  

The solitary wave, as we noted, is reflectionless . .The Gelfand- 
Levitan equation .be comes 

K(xur) + 2 e8t-(x+y) oo 

+ 2e8t-Y ln 'K(x,z) e-Zdz 
x 

0 . 
Let K(x,y) = L(x)e'*' as an ansatz, then 
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. 8t_ 
L(x) + Ze x + 2 e  8tI(X) j as 

-Zz e 
x 

d z - 0  

-2 e8t-x 

1-(x) = -2x 
1 + 2e8t G 2 

-2e-M1 
K(x,x) = _8.t 

e + e -2x 
-2 

e2X-8t+l 

u = - 2  
Zx-8t (-2)(2e = _2 

+ e'X+4t 
1 2 

x-4t e 2x-'8t _*1)3 (e 

2 

= -2 secl-12 (x - 4t) 
Wlth the initial condition 

u(x.0) = -6 sech2x 

there are two distinct eigenvalues 
K1 = l ,  K2 II N

 

and the exact solution turns out t o  be 

u(x,t) = -12 3 + 4 cash (Zx-Bt) + cosh(4x-64t) 
[ 3  cash (x-28t) + cosh(3x-36t)]2 . 

. This solution exhibits the following properties, which are 
typical of solutions of the K-de V equation 

a) As t -° -Ho or -oo u describes two solltons wlth velocities 
VI = (2K1)2 and V2 = (2Ke)2 . . 

b) The two solitons as t -° -co are positioned so that the faster 
is approaching the slower, and as t -o +°° so that the two solltons are 
diverging . 

c) The solitons are displaced from the position they would 
have occupied if they had not interacted . 
V. Conclusions and Summary 

For the K-de V equation a strong particle scattering property 
holds . This equation is dissimilar to  the equations of particle phy- 
sics in the following respects: the solutions are real, the equation 
has high derivatives in x .  and is nonrelativistic, wlth only one space 
dlmenslon . 
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For the sin-Gordon equation, which is real and one dimen- 
sional but relativistic, we have proved the existence of an infinite 
number of conservation laws . 

For the nonlinear Klein-Gordon equation, we have shown that 
solutions exist, which do not attenuate, in one, two, and three 
dimensions, but we have not proved either a particle interpretation , 
or an infinite number of conservation laws . 

No equations are known which have a finite number of conser- 
vation laws and a particle interpretation . 

If a strong particle scattering property held for a relativistic, 
realistic equation, it would give rise to a mathematical model for the 
relativistically invariant dynamics o f  classical extended particles . 
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I am rather hesitant to  give a series of mathematical lectures 
to  an audience consisting principally of physicists. It is not that 
physicists know too little mathematics , but on the contrary that they 
know too much mathematics , or more precisely that they know too well 
exactly which mathematical problems they want solved. They want to 
know the holomorphy envelope of a particular domain reeking with 
physical significance, or the nature of the singularities of a particu- 
lar Feynman integral of phenomenal importance. Consequently they 
frequently feel a certain lack of rapport with mathematicians , who 
persist in backing off to look at more general problems or broader 
classes of problems, and who often prove quite useless as aides for 
solving a particular problem. These differing viewpoints seem part of 
the nature of things , or we would not have evolved separately into 
mathematicians and physicists over the past few centuries; and I 
shall not attempt to reverse this possibly irreversible consequence of 
the specialization forced upon us by the increase of knowledge but 
not of intellectual capacity . 

My aim here is to give a survey of what mlght be called the 
local-geometrical aspect of the theory of functions of several complex 
variables . There has been a good deal of mathematical activity in 
this area in the recent and the not so recent past, leading to some 
quite deep and some quite surprising results . Some of the purely 
mathematical advances have been achieved by physicists, such as 
Federbush, Pham, and others , who were led to this work through the 
study of Feynman integrals. I cannot attempt to discuss the relevance 
of these results to physics , since I do not know enough physics to do 
so; and I shall not pretend that these lectures will be directly and 
immediately relevant to current work in physics. However it may be 
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of some interest and even of some use to physicists to see a general 
survey of this field, avoiding for the most part detailed proofs or 
technical complications that do not shed much light on the present 
picture . 

which will be denoted by 
banidgntified 

f(z1 n) , . . . , z  

I. Complex Analytic Functions 
To begin this survey, it may be in order to review briefly the 

elementary properties of analytic functions of' several complex vari- 
ables; to a great extent these properties are direct extensions of the 
familiar properties of analytic functions of a single complex variable . 

Consider the set (Bn of n-tuples of complex numbers , points of 
z = (Zi , . . . ,z  ) where 21 E 03; thls set will 

as a topological space witch the ordinary Euclidean space 
R of dimension Zn. A complex-valued function f(z) in an open sub- 
set US. CN is called complex analytic (or holomorphic) in U if in some 
open neighborhood of any point a = (al , . . . ,an) 6 U the values of the 
function are given by a convergent multiple power series 

i 
(I. 1) 

V1 VN c (z -at) . . . ( z  - a )  v1...vn 1 n n 
V11.°.Vn=0 

It is familiar from elementary analysis that such a series is absolutely 
and uniformly convergent in any suitably small polydisc 

A a 
(Q) ={(z1, . . . ,zn)ea:N Izzy-aj l<ej  for j = 1 , .  

of center a = (al , . Ian) and polyradius e = (€1 , 

..,n} 
.. (1.2) 

. . . , e n ) w 1 t h e j > 0 ,  
s o  the order in which the series is summed is quite immaterial. Note 
that when all the coordinates Zj  except zk are given the values al , 
the series expansion reduces to  

f (a1 , . . . ,  ak_1 , zk, a k+1 , . . .  .an) 

oo 

= E C (z -a )"k 0 . . . 0Vk0 . . . 0  k k 
Vk=0 

I 

so  that f(a1 , . . . ,ak_l I 2k'ak+1 , . . . 
lion of the single complex variable Zn in the usual sense; that is to 
say, a complex analytic function of several complex variables is ana- 
lytic in each variable separately. Consequently many of the familiar 
results from the theory of functions of a single complex variable can 
be applied quite directly. For instance, the Cauchy integral formula 

,an) is a complex analytic func- 
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can be applied to each variable separately, to obtaln an iterated 
integral formula 

f(z1 I . zn) 
l 

(21Ti)n 
dgn 

f(;. . . . . .cnb 
(Cl 'Zi ) • . • (C 1-2 

11 :en 

Id1... I 
ls~a1I=@1 len-a 

nl 

valid for all points Z E Aa(e) whenever f(z) is complex analytic in an 
open neighborhood of the closure of the polydisc Aa(e:) . Since the 
function f(z) is continuous , this iterated integral is equivalent to the 
multiple integral 

f(z1 , . 2n )=  1 
(2'l'l'j.)N 

I 
|§i-aaJ|=€J 

f(c1 

(§1'21) 

f I -- Ln) 

-(Cn-znl 
dglmdgn , 

(1.3) 

which is the several complex variable form of the Cauchy integral 
theorem. It should be pointed out that this integral is not over the 
full boundary of the polydisc Aa(e:) when n 2 2 , so that this formula 
is not an exact analogue of the one variable Cauchy integral formula; 
indeed there is no exact analogue of the classical formula when n 2 2 , 
but rather there are a number of integral formulas embodying various 
aspects of the classical formula . 

Note that in deriving the integral formula (1.3) it is not really 
necessary to  require that the function f(z) be a complex analytic func- 
tion of n variables; it is sufficient merely to  assume that f(z) is ana- 
lytic in each variable separately in a neighborhood and is 
smooth enough (say continuous or Lebesgue that the above 
iterated integral is equivalent to a multiple integral. Having obtained 
formula ( I .3) ,  however, note also that 

of Aa(e) , 
integrable) 

1 
(g. -2.) . . . (Co-zn) 

Z Vn _ ( n a n )  i (Z1"a1 )VI . . . 
v., .¥.=0 (5. 'a."'.+1 - .(Qn-an)l""+1 

.r 

where this series is absolutely and uniformly convergent for Isnl = en 
and for any fixed point Z E Aa(s): and upon substituting this series in 
(1.3) and integrating term by term, there results a multiple power 
series expansion of the form (I. 1). Consequently, whenever f(z) is 
analytic in each variable separately in an open neighborhood of a poly- 
disc AA(€) and is smooth enough, it is an analytic function of n vari- 
ables in A3(e) ,  and indeed has a series expansion (I. 1) converging 
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throughout Aa(e) . Actually the smoothness assumption is also unite - 
cessary; any function analytic in each variable separately is complex 
analytic as a function of n variables . This result, first due to  Har- 
togs , is surprisingly much harder t o  prove , though . 

If f(z) is a complex-valued function of one complex variable 
z = X + iy which is differentiable in the underlying real coordinates 
x , y ,  the classical Cauchy-Riemann criterion for f(z) to be complex 
analytic is that 

Q 
BE 0 where l§,;*1) 

Consequently a function f(z1 , . . . ,zn) of n complex variables z j  
xi + iy. 
Xi I y .  

, which is differentiable in the underlying real coordinates 
J , ]is complex analytic if and only if 

of 
a 2 ,  

J 
0 for j II 1 , .  ,n 

One of the fundamental properties of analytic functions of one com- 
plex variable , an immediate consequence of the Cauchy-Riemann con- 
ditions , is that the composition of two analytic functions is again 
analytic. For several complex variables , the analogous condition 
involves a complex analytic mapping G: Gun -0 Gln defined by an n-tuple 
of complex analytic functions go 
a coordinate change in en". introducing new coordinates - g for 
f = 7 I . 
composition f(G(z)) : f(g,* (z), . . . "gnrzn is also complex analytic; for 
by the chain rule . 

(z); such a mapping can be viewed as 
w . -  (2) . . ,n. Then if f(w1 , . . . ,w ) is a complex analytic luncheon, the 

Elf{G(z]) 
B z j  

n 8 9 k  

BE 
k = 1  1 

B .f 
Bwk 

o f  ask 
+ aw- SE 

k J 

s 
O

 II 

plex analytic Eunction in Gun whose zero locus is 
zn z 

variables . 

since the functions f,g1 , . . . ,go are all analytic. This result is of 
course purely local, so the function f(w) and the mapping G(z) need 
only be defined locally . 

The set of zeros of a non-constant analytic function of one 
complex variable consists of a discrete set of points in the domain of 
analyticity of the function. This is no longer true for functions of 
more than one complex variable; the coordinate function Zn 15 a com- 

he linear subspace 
0 ,  which is equivalent to the full space Gun' of n-l complex 

For a general analytic function of several complex 
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select a polydisc Aa(e) C U. There is a point b E Aaé-e) 

variables , the zero locus can be quite complicated indeed; the aim 
of the present lectures is to provide a surrey of the properties of such 
sets . An easy preliminary property is that a function f(z) analytic in 
an open connected subset U c  (En vanishes on an open subset of U if 
and only if f(z) vanishes identically on U.  To see this , let E be the 
interior of the set of points at which f(z) = 0 ,  so that E is a non- 
empty open subset of U. To see that E = U, which is of course the 
desired result, it is only necessary to  show that E has no boundary 
points inside U. Suppose that a e U lies on the boundary of E; and 

VI E ,  since a 
is a boundary point of E; and evidently As&'s] E U. The function f(z) 
has a multiple power series expansion centered at b and converging 
throughout Abs 
identically, hence 
However a E As(é€). hence a is an interior point of E ,  contradicting 
the assumption that a was a boundary point of E and thereby conclud- 
ing the proof. 

ez): but since b E E ,  this series necessarily vanishes 
the function f(z) is identically zero in Ahéle). 

II. Analytic Hypersurfaces in Standard Form 
A subset V of an open domain UE (En is said to be an analytic 

hypersurface of U if in some open neighborhood of each point of U the 
subset v is the set of zeros of a complex analytic function. Such a 
subset is necessarily relatively closed in U; and, except for the 
trivial case in which the defining function vanishes identically, V is 
a proper subset of U containing no interior points . The aim of the 
present section is to derive a useful general description of an analy- 
tic hypersurface in an open neighborhood of a point on it; after chang- 
ing coordinates if necessary, it can be assumed that the point of in- 
terest is the origin . 

Consider then a complex analytic function f ( z )  in a polydisc 
A(e) = l(z1 , . . . ,zn l2jl < e j }  centered at the origin in on, and the 
hypersurface 

V = { z  pA (e ) l f ( z )  = 03 

Suppose that the function f(z) is regularity the variable zn, in the 
sense that f(0, . . . , 0 ,zn) considered as an analytic function of the 
single complex variable zn does not vanish identically. This is not 
a serious restriction, since any analytic function can be made regular 
in this sense by a suitable linear change of coordinates in in, pro- 
vided that the function does not vanish identically; for select any 
point b G A(e) for which f(b) if 0 ,  and choose coordinates such that 
b = (0, . . . , 0 ,  1) . Suppose further that the hypersurface V actually 
passes through the origin. The function f(0, . . . ,0,zn) as a function 
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isolated, so by choosing the radius suff1L.ientl.y small it can fur- 
ther be assumed that f(0, . . . |0|2n) lzn|1-~=1 en, wlth 

this closed disc of radius e centered at the origin Zn 

of the single complex variable ZH will then have a zero of some order 
r > 0 at the origin ZN = 0 . The zeros of the function f(0 , . . . ,U ,zn) are 

'in 1 

if 0 for 0 <: __ 
f (0,  . . . , 0  , z  ) being defined and analytic in an open neighborhood of 

= 0 . Thus there 
is a constant 6 > 0 such the l f ( 0 ,  . . . I0Iznl| ?. 0 whenever I znl = en. 
With these preparations out of the way, it is quite easy to give a 
rough general description of the hypersurface V.  

Since the function f(z) is continuous , after choosing the con- 
stants el  , . . . ,€n_1 sufficiently small it can be assumed that 

4' 

lflzl | • 9 » .2n) f(0 I 1 1 . ,0,zn)| < 6 (II. 1) 

whenever 

1211 < € 1  I ' l2n-1 I < e: | zn1 n-1' Q D n 

Now consider the polydisc 

A ' ( € ' )  ={z' = (21. Z I n-1 )EG7N-1l  lzjl<€ J _ f  or j l , . . . , n - 1  . 
I 

. . ,0 ,z  ) has zeros of total order r in the disc | zn 
the function . . . 

and for each fixed point z '  6 A ' (e ' )  , consider the function f(z1 , . . . , 
2n-1 ,zn as a function of the complex variable Zn alone. Since f(0 , . < en, and since 

f(z1 , , z  _1,  zn) satisfies (II. l) ,  it follows from 
Rouché's theorem that f?21 , . . . IZn-l ,zn) has zeros of total order r in 
the disc lznl < en, and of course no zeros on the boundary of that 
disc. label these r points CD1 (z' ) , . . . 
that they depend on the choice of the point z '  6 A I(€ '), and taking 
multiplicities into account by repeating a multiple zero the correct 
number of times. Of course the labeling is quite random, so the func- 
tionscp.(z') need not even be continuous when considered as functions 
of z '  ERA ' (Q ' ) ;  however if this random element is eliminated by con- 
sidering symmetric polynomials in the functions 'my ( z ' ) ,  the resulting 
function is well behaved, indeed is analytic in A (ez ' ) .  To see this , 
note that it follows from the usual Cauchy integral formula for func- 
tions of one complex variable that 

,q:*r(z') in some order, noting 

l 
217 i 

lcnl 

QA' B 
5§nf(z1 1 . I u IZn_1lgn) 

21 , . . . IZn-1 ,in f(  ) 
dgn 

r 

Z crpi(21 
j=1 

.1 . . • , z  n-1 
)V 

I 
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while the above integral is evidently a complex analytic function in 
A'(e'); and since any symmetric polynomial in the functions q01(z') can 
be expressed as a polynomial in these power sums , any such expres- 
sion is complex analytic in A ' (e:') . In particular, introduce the func- 
tion 

p(-21..-.,zn) 
r n n 'Cpj(z1 I I . . Z I n-1 

1=1 

, r r-1 z + z n n C1 (z') +...+cIr(z') I 

a polynomial of degree r in the variable Zn with coefficients which 
are the elementary symmetric functions of the cp, (z') and hence which 
are analytic in £1 ' (e ' ) .  This polynomial thus has leading coefficient 
1 , and the remaining coefficients are complex analytic functions in 
A'(e ' )  which vanish at the origin; such a polynomial is called a Wei-  
erstrass polynomial at the origin in the variable zn. By construction , 
for any fixed point z '  e A '  (e') this Weierstrass polynomial has the 
same zeros in Zn as the original function f(z); consequently there 
always exists a Weierstrass polynomial defining the same analytic 
hypersurface as the given analytic function f(z) . 

Consider the special case in which the function f(z) is regular 
in the variable ZN at the origin and f(0 , . . . ,0,zn) has a zero of order 1 
at ZH = 0: this is equivalent to saying that 

f ( 0 , . . . , 0 ) = 0 ,  o f  0 az ( I  
n 

, 0 ) 7 5 0  (II. 2) 

equation Zn 

In this case the associated Weierstrass polynomial has the special 
form p(z) = Zn - (91 (21 , . . . I 2n_1) where cpl (z') is analytic in A '(e ' ) ;  
so  the hypersurface V defined by either the function f(z) or the Weier- 
strass polynomial p(z) can be described very simply by the parametric 

=¢1(21 , . . . , 2 .  _1) for z E A (e ) .  In this case, it is 
further possible to introducne a new coordinate system (W1 , . . . rwn) in 
some open neighborhood of the origin defined by 

W1 21""IWn-1 z n-1 I W Z n n ' CP1 (21 I | . • Z ' n-1 ) : 

it is easily verified that the Iacobian of this change of variables is 
non-singular. For the new coordinate system, the hypersurface is 
merely the coordinate hyperplane Wn = 0.  In general, a point on an 
analytic hypersurface v is called a regular point if it is possible to 
choose coordinates in an open neighborhood of a in CN such that 
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locally v is a coordinate hyperplane; and a hypersurface v is called a 
complex manifold of complex dimension n - l if it is regular at each 
point. If a subvariety v is defined by an analytic function f(z) satis- 
fying (II.5) , it then follows that v is regular at the origin, that is , 
that the origin is a regular point of v: and of course conversely when- 
ever V is regular at the origin, it can be defined by an analytic func- 
tion f ( z )  satisfying (II.2) in some set of coordinates . It is obvious 
that this problem of the correct choice o f  a set of coordinates for veri- 
fying condition (II. 2) can be avoided by noting that an analytic hyper- 
surface V is regular at the origin in (En if and only if it can be defined 
by an analytic function f(z) such that 

f ( 0 , . . . , 0 ) = 0  (0 ; . I I 

zn 
n d HE Or 

a 

_1 Zn (2. ' (al 

as; ,0) 7' 0 for some j .  
J 

The points of V which are not regular points are called singular points . 
(It should be noted that the preceding observations include a proof of 
the complex analytic form of the implicit function theorem; for if f(z) 
is an analytic function satisfying (II.2), the zero locus of f(z) is des- 
cribed parametrically by =qn1 (21 , . . . IZn-1) , hence f(z1 , . . . 

c QP1(0 l - - -»0 )=0 - )  
Returning once more to the general case, the discriminant of 

the Weierstrass polynomial p(z) is the function defined by 

(II.3) 

'2n-1 I 

6(2 ' )  or 
1i7*v 

|.\Iv=1..-. ,r 

cp9(2') -cpV(z') | 

I (11.4) 

this is also a symmetric hence it is a com- 
plex analytic function of z '  in A '  (e ' ) .  It is a familiar algebraic result 
that this discriminant does not vanish identically if the polynomial 
p(z) has no multiple factors . (If it is possible to write the polynomial 
p(z) as a product of polynomials in zn of lower degrees Mth coeffici- 
ents analytic in (z1 , . . . ,2n_1) , say p(z) = pa (z). . -p5(2). the polyno- 
mials p (z) are called factors. If two factors are the same, the poly- 
nomial is said to have a multiple factor. It is obvious that any re- 
peated factor can be dropped , and the resulting polynomial wlll define 
the same analytic hypersurface v.) Clearly there is no loss of gener- 
ality in considering only polynomials p(z) with no multiple factors ; 
hence it can be assumed that the discriminant 6 (z')  does not vanish 
identically in A '  (e ' ) .  The set 

polynomial in the cps (z ')  , 

D = { z ' = ( z 1 ,  ,2n_1 ) e A ' ( @ ' ) I @ ( z ' ) = 0 l  (11.5) 
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is then a complex analytic hypersurface in the polydisc A' (e ' )  in the 
space of n - 1 complex variables . Now consider the natural projec- 
tion from the polydisc A (e) Q CN onto the polydisc A '  (Q ' ) Q Gin' which 
takes a point z = (Zi ,. . . Izn) € A(e) to the point z '  = (21 I . . . e 
A '  (e ' )  . Under this projection the hypersurface ac  A (e) is mapped onto 
the entire polydisc A ' (e: ' ) .  For any fixed point a '  = 
A '(e ' )  - D there are exactly r distinct points in the hypersurface v 
mapping onto the point a '  , namely the points with coordinates (al. . . . , 
a _ I I  = 
age for the defining function, hence is a regular point of the hyper- 
surface; and as noted in the preceding paragraph, it is possible to 
select complex analytic functions 'Pi (z') in some open neighborhood of 
a '  e A '  (a ')  such that cpj(a') have the specified values and that in a 

described parametrically by the equation Zn =up (z') . Thus over a 

cp.(a')) for j 1, . . . , r .  Each of these points is a point of order 

neighborhood of the point (al , . . . ,an_1 ,cp1(a')) the hypersurface is 

small enough open neighborhood of a '  the hyper surface consists of r 
sheets , each of which is mapped onto the neighborhood of a '  homeo- 
morphically by the projection; equivalently, the projection exhibits 
the points of v lying over A '  (e ' )  - D as  an r-sheeted covering space 
o fA ' (e ' )  - D. It is evident that as  z '  E A ' (e ' )  - D approaches a point 
of D ,  some of these distinct sheets approach coincidence; in parti- 
cular as z '  approaches the origin, all the sheets come together at the 
origin in Gin . 

The points of v lying over D will be called the branch points 
of this covering, and the set of branch points will be denoted by B C v: 
the set B is thus defined by the pair of analytic equations 

1 Zn,_1) 

(61 , . . . ,B.n__1) E 

B = { z € A @ H f @ ) = 6 @ ) = 0 }  I (II. 5) 

hypersurface fig the the 
equations f(z) 

where of course 6 (z1, . . . Izn) = 6 (21 , . . . lZn_1) is independent of the 
variable Zn' Clearly all the points of v - B are regular points of the 
hypersurface, so that v - B is a complex analytic submanifold of 
dimension n - l of the domain (A'(s ' )  - D) x ( lznl  < en)§_A(e)C Gun. 
It is possible that some further points of the set B may also be regular 
points of the hypersurface V ,  but appear as branch points only be- 
cause of the particular choice of projection in this representation of 

set B can be viewed as being defined by the 
:: Bz 0 ,  while the singular points of V are possibly 

11 = Of z = :2)f(z) = az, . . . BZn 
Examples of this will be given later. 

Before discussing this situation further, a brief digression to 
establish another general property of analytic functions of several 
complex variables is in order. Recall from classical function theory 

the points given by the further equations f(z) 0 .  
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< c -1 , | znl en; so the function g(z) remains analytic in the region 
< 

that a bounded analytic function in a punctured disc 0 < lzl < e in the 
complex plane can always be extended analytically to a function in 
the entire disc \zl < e ;  this is the Riemann removable singularities 
theorem. An equivalent formulation of course is that a function f(z) 
bounded and analytic in the complement of an analytic subvariety of a 
disc extends analytically to a function in the entire disc; and this 
formulation extends to functions of several complex variables. To see 
this , consider the analytic hypersurface v i  A (e) as described above; 
and suppose that q(21 , . . . ,zn) is a bounded analytic function in the 
open set A (e) - V.  Note that the hypersurfaca v avoids an open neigh- 
borhood of any boundary point (21 , . ,zn) with | 21 I < 61 , . , lzn_1l 

lzlnt < e1 ,  . . . , |zn_1| < ¢n.._1, cn*$ | znl an for some number cn*. 
Consider the integral 

h (21 If 1 I , z  l 
n) -2ITi I 

jen! * 
9(21 . - - - ,2n_1.£D)  

n n 

I 

he extended to  an annalytic function throughout the disc lz I < en, but 

noting that this is analytic in the polydisc of radius (€1 f . . . 'En-1 ,s:nsu) : 
for the function Q(21 , . . . ,zn_1,Qn) is analytic in l21 I < el , . . . , 

n-1 . 
the function g(z1 , . | zn__1] < e whenever Icnl = en*. Now for any fixed point (21 , . . . ,zn_1) , . . , z  -1 ,zn) as a function of zn alone 

is bounded and analytic in the compIlement of an analytic subvariety 
of the disc I znl < e so  by the classical theorem this function can 

then necessarily g(z1 , . . . ,zn) = h(z1 , . . . ,zn) , so that h(zr provides 
the desired analytic extension . 

An analytic hypersurface V in the form described above can 
also be viewed as the graph of a multiple valued analytic function of 
n - l complex variables. For consider the segment of v lying over an 
open neighborhood of a point a '  E A '  (e:') - D and parametrized by the 
equation Zn =°P1 {z'); this portion of V is just the graph of the analy- 
tic function CPI (z' ) .  Now the function cpl (z')  can evidently be con- 
tinued analytically along any path in A '  (e ' )  - D in a uniquely defined 
manner, and the graph is always a portion of the hyper surface v. After 
analytic continuation around a closed path in A '  (e ' )  - D beginning and 
ending at a '  , there results an analytic function in an open neighbor- 
hood of aI  describing some portion of v,  but not necessarily the same 
portion described by the function Q91 (z'); that is , after such an analy- 
tic continuation, the function up, (2') may return to coincide with 'Pi (z) 
for some index l < j s r .  This function cpl (z') in turn can be con- 
tinued along another closed path, and may return to coincide with yet 
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tlons cpj(z') can be continued from any point a '  € A' (6') 

rent is parametrized by the functions cpl (z' ) , . . . ,cps (z ' )  

elements cpj(z' ) ,  corresponding to a permutation of the sheets 

another cpk(z"). There are only r possible effects of such continuation; 
and any continuation will have the effect of a permutation of the r 
function 
of the covering space V - B over A '  (e ' )  - D .  The set of all functions 
cpj(z') can be viewed thus as  a single r-valued analytic function in 
A ' (€ ' )  - D,  and V - B is the graph of this function. 

Note that the space A '  (6')-D is connected, so  that the func- 
- D to any 

other point b '  e A '  (e')  - D, and the full set v - B is described as 
above. (To see this, suppose contrariwise that A '  (e ' )  - D is not con- 
nected. Consider the function g(z') defined in A '  (e ' )  - D by setting 
g(z')  = 0 for all points z '  in one connected component of A '  (e ' )  - D 
and g(z ' )  = 1 for all points z '  in the remainder of A '  (e') - D .  The 
resulting function is bounded and analytic in the complement of the 
analytic hypersurface D C  A '  (e ' ) ,  SO by the generalized Riemann re- 
movable singularities theorem extends to a complex analytic function 
throughout A '  (e: ' ) ;  but this is clearly impossible , for the function 
g(z') would have to  vanish identically since it is zero in an open sub- 
set of A '  (e ' ) . )  On the other hand, the space V - B need not be con- 
nected. Consider a single connected component VI of V - B,  and sup- 
pose that over an open neighborhood of a '  e A '  (e:') - D this compo - 

for s < r .  It 
is evident that after any analytic continuation along a closed path in 
A '  (e ' )  - D these functions will be merely permuted among themselves , 
as will be the remaining set of function elements cpS_,_1(z'), . . . ,cpr(z'); 
indeed, the functions cpl (z') , . . . ,op$(z') will be permuted transitively 
among themselves by the set of all possible such continuations, since 
V1 is assumed to be connected. Now the function 

PI (2) n s 
z ( n  - <pi(z')) 

j=1 

S z n + 01 (21 , Z ' n~l 
s-1 ) z n  + . . . + c 5 ( z 1 , . . .  

¢ p 1 ( z I ) I , , .  

l2n1 

describes the set V1 , for points z '  E A'(e;') - D; but this is a poly- 
nomial in ZH with coefficients which are symmetric polynomials in 

.<pF.(z' ) , hence which are single-valued complex analytic 
functions in A (e ' )  - D.  These coefficients are also bounded, since 

< e ; hence by the generalized Riemann removable singularities 
theorem they extend to  analytic functions in all of A ' (e ' )  , and con- 
sequently the function P1 (z) itself extends to a complex analytic func- 
tion throughout A' (e ' ) .  Clearly the point set closure of V1 in A (Q) is 
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the analytic hypersurface { z  6 A (€)l P1 (z) = 0] . An analytic hyper- 
surface v in A(e) is said to  be irreducible if it cannot be written as the 
union of two hypersurfaces properly contained in V .  These observa- 
tions show that V is irreducible precisely when V - B is connected , 
and that any hypersurface can be written as the union of finitely many 
irreducible hypersurfaces in a sufficiently small polydlsc. 

Finally a few words should be said about the set of all possl- 
ble analytic functions defining a given hypersurface V. Suppose that 
V is represented as above in a polydisc A(e) Si; Gn, and that p(z) is the 
Weierstrass polynomial with no multiple factors defining that hyper- 
surface; and consider an arbitrarily complex analytic function f(z) in 
an open neighborhood of this polydisc A (ez). The Weierstrass division 
theorem asserts that this function f(z) can be written in a unique way 
in the form f(z) = p(z)q(z) + r(z) , where q(z) , r(z) are analytic in A (e) 
and r(z) is a polynomial in Zn of order strictly less than the order r of 
the Weierstrass polynomial p(z) . (To see that this is so,  introduce 
the function 

q(2) .I 
lcnI=t= n 

f(21 I » • • I 2n_1 ,in) 

p(z1 . - - _ '2n-1 ,in) 

dgn 

in - Zn 
r 

the denominator p(z , . . . 'zn_1 ,in) is non-zero 
en. Write this difference 

noting that this is clearly a complex analytic function in A (e) since 
for I 21 I 

'Zn- l \  < Cn_1. lsnl = 

r(z) = f(z) - p(z) q(z) 

so, < ..., 

1 
2n i I 

l(;nl 

r . . . 
- 

f(z1 I Zn_1 lgn) 

in Zn 
p(21 . • - 

(Qn 

den 

1 
2rri 

:e n 

I 
l 

a n  

. ,zn) f(z1 , . 
z n) p (z1 , . . -  

"Zn-1'gnl dg 

'2n-l'C'n) N 

l 
2rT i 

f(Z1r . - - .2n_1.Cn) [p(21. . . . '2n-1 .€n)-p(21.--- .2n_1.zn)] dg 
. • lZn_llCn) in - Zn nI I P(Z1.r° mnun 
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note that this function is analytic in A (e) , and since the numerator in 
the integrand is divisible by (in - zn) with quotient a polynomial in 
zu of order strictly less than r ,  the entire integral r(z) is a polynomial 
in Zn of order strictly less than r .  This proves the existence of such 
a representation for the function f(z) , while the uniqueness is fairly 
evident directly.) Now suppose that the function f(z) vanishes on the 
hypersurface v; so that writing f(z) - p(z)q(z) = r(z) , the polynomial 
r(z) also vanishes on V .  However for any fixed point z' Q A '  (e') - D 
there are r points of V lying over z '  , hence there are r distinct zeros 
of the polynomial r(z) , while the degree of this polynomial in Zn is 
strictly less than r: this can only happen if the polynomial is iden- 
tically zero, so that the coefficients of the polynomial r(z) vanish 
throughout A f  (e ' )  - D,  and consequently r(z) E 0 .  That is to say, 
whenever f(z) is analytic in A(e) and vanishes on V,  then necessarily 
f(z) = p(z)q(z) for some analytic function q(z) in A (e) , where p(z) is 
the Weierstrass polynomial with no multiple factors defining the 
hypersurface V. In particular, if f(z) has the same order at the regu- 
lar points of V as has the polynomial p(z), then f(z) = p(z)q(z) where 
q(z) is complex analytic and non-vanishing in A (e) . 

It is clear from this that the set of singular points of the 
hypersurface V defined by the Weierstrass polynomial p(z) with no 
multiple factors is precisely the point set defined by the analytic 
equations 

p(2) 0 =6p(z)= . 
B z  n ' 

for the regular points are precisely those for which f(z) =Bf(z)/5 zj if 0 
for some function f(z) vanishing on v and some index j ,  and any such 
function f(z) must be of the form f(z) = p(z)q(z) . Further, if the hyper- 
surface V is reducible, let Pi (z) , . . . ,pt(z) be the Weierstrass polyno- 
mials defining the various components; any function vanishing on V 
is necessarily of the form f(z) = qlz)p1 (z) . . .pt(z) for some analytic 
function q(z) . Then in the obvious sense, the hypersurface V is irre- 
ducible precisely when the function f(z) defining the hypersurface is 
irreducible . 
III. Geometry of Analytic Hypersurfaces 

The simplest non-11*ivial analytic hypersurface is of course an 
irreducible analytic hypersurface in GO2 ; and the local geometrical or 
topological properties of any such hypersurface can be described quite 
easily in terms of the standard form discussed in the preceding sec- 
tion. The natural projection from the polydisc A (e) Q GO2 to the poly- 
disc A'  (e ' )  C (171 exhibits V - B as a connected r-sheeted covering of 
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A '  (e ' )  - D.  The analytic subvariety D of the disc A '  (e ' )  in the com- 
plex plane is a discrete set of points; and choosing e '  = 6 1  suffi- 
ciently small, it can be assumed that D is just the origin itself . 
Topologically there is a unique r-sheeted connected covering of the 
punctured disc; the covering space is again a punctured disc, and 
the covering projection wraps this r times around the base space . 
The entire space V is just this covering space, a punctured disc , 
with the set B added; and in this case B consists of the origin itself, 
so that topologically v is merely a disc. 

This result can be derived another way,  providing at the same 
time a useful additional analytic parametrization of the hypersurface 
V in G32 . The mapping t e GO -o Z1 = to E G exhibits the punctured t -  
plane as an r-sheeted connected covering of the punctured 21 -plane , 
so must be topologically the same as the covering projection from V - B  
to A ' (e ' )  - D; this suggests that the latter covering projection might 
be described in terms of this simple power mapping. To do so  quite 
explicitly, consider one of the function elements cpl (21) describing 
one sheet of the hypersurface V over a neighborhood of the point 21 = 1; 
this function element can be continued analytically along any path in 
the punctured disc A ' (e') - D, and there results a multiple-valued 
analytic function in A '  (e ' )  - D with graph v - B.  Now e (t) =q)1 (F) is 
clearly a well defined analytic function element in a neighborhood of 
t = 1 , and it can be continued analytically along any path in a punc- 
tured disc in the t-plane. However when t varies in a closed path 
circling the origin once, 21 = to' varies in a closed path in the 21 - 
plane circling the origin r times, and the continuation of cp1[z1) along 
such a path evidently leads back to the original function c,01(z1 ); con- 
sequently analytic continuation of 9 (t) yields a single-valued com- 
plex analytic function in a punctured disc in the t-plane. Since | 9 (t) | 
= Icpl ( t f ) l  < € 2  , it follows from the Riemann removable singularities 
theorem that 9 (t) can be continued to an analytic function at the origin 
as  well, and of course 9 (0) = 0 .  It is clear that the analytic hyper- 
surface V C  A(e) can be described parametrically as the set of all 
points (21 , 22) E A(s) given by 

_ r 
21 - t  , Z2 6 (t) I (III. 1) 

and the mapping t -° (to, 6 (t)) is a homeomorphism from a disc in the 
t-plane onto the entire hypersurface V C  A(e) . Conversely any func- 
tion 6(t) for which this mapping is a homeomorphism does describe a 
complex analytic hypersurface v c  A(e) in standard form . 

Although the set V is just a disc topologically, it is imbedded 
in the polydisc A (e) in a possibly rather complicated manner. The 
boundary of V,  the set K at which v intersects the boundary of A (6) , 
is described parametrically by the equations 
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_ ism 
21 - 6 1 e  I 

is e z 2 = B ( e 1  ) for0<s<_21T • 
r 

| 

I this is the knot 21 , 22 

21 

the boundary of A(e) is topologically the three-dimensional sphere Sa , 
and K = v VI S3 is a smooth curve m S3 that is to say, is a knot in Sa . 
For instance , when r = 2 and 9(t) = t B =  e21S = 
6315, 0 5 s 5 2rr, lying on the torus Izzy | = ] Za' = 1 in the boundary 
S:3; this is a non-trivial knot in the three sphere , wrapping around the 
torus twice in one direction and three times in another. There has 
been a rather extensive study of the knots that arise this way and 
their relationship to the parametrizing functions tr , 9(t) , for the hyper- 
surface v; indeed these knots have been taken as  a basis for the 
classification of the singularities of hypersurfaces in CD2 . The details 
will not be given here, but the interested reader is referred to Refs . 8 
and 9 . 

For analytic hypersurfaces in polydiscs in Gun for dimensions 
f ig  2 the situation is much more complicated, and relatively little is 
known about the topological properties of the singularities . Actually 
this aspect of several complex variables has only come under inten- 
sive investigation quite recently, and is presently a rather active 
field of research. These investigations require some further mathe- 
matical machinery, since the topological properties of higher dimen- 
sional spaces cannot be described readily in familiar and intuitive 
terms . Consequently the discussion here necessarily will be rather 
sketchy, and some of the concepts used may not be too familiar. A 
brief review of some of the topology required can be found in Ref. 10 , 
and a more encyclopedic survey in Ref. 11 . 

11 Consider first the analytic hypersurface v of the entire space 
GO defined as the set of zeros of a polynomial f(z) of the form 

a an . f(z) = 1+. . .+zn for integers as > 0 .  

Note that Bf(z)/B 21 of at 21aj-1 so that V is nonsingular at all of its 
= 1 for some index j; and restricting attention to 

the inters sting case in which at > l for all j , the hypersurface v has 
an isolated singularity at the origin while all other points are regular 
points . To consider this singularity, introduce the (Zn - 1) dimen- 
sional sphere 

points whenever al 

(III. 2) 

Zn-1 S z e c n  I Z 1 l 2 + .  lznl2 =1} . .+  I 

and let K == V al S2n-1 . It is easily verified that K is a real differen- 
tiable submanifold of dimension 2n - 3 in the sphere S2N'17 and since 
it is evident that V is topologically a cone over K, the topological 
nature of V at its singularity is described quite completely by the 
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the special case n 

of K itself. 
(BTI 

kJ 

!na!1 

§'r»a=#!¢ 

H a s  

"Q 

O is the hypersurface V defined by 

mapping f [2N- l_K) 
n- - K and any posi- 

El/ai j tothe po1n1:<p(z.1,...,zn:x) 21, 

topological nature of K.  This is of course parallel to the situation in 
= 2 described above . 

It seems easier to describe the topology of S2Tl."'l- E 
Note first of all that the . , 

- v ,  which takes any point (21 , . . . ,zn) E S 
five rea number x = (xl/a1 . . . an zn] with x > 0 ,  is a homeomorphism; so slnce R+ is 
really topologically trivial, it suffices to describe the set GH - v. 
the complement of the hypersurfflce v in Gn. now consider the map- 
ping f :  GN -| GJ defined by the polynomial function (I11.2): the set 
f-1 (0) is just the hypersurface V itself, while the set f-1 (Q) for any 
Q e as Q 

={z S CN l z131-1-. 

°" " IS a ! 
' is :Isle 

an . .+z 
n . .C 

are of 
e aM it is 

known how the topology of the bundle c51 be calculated in terms of 
the topology of the fibre and the structure of the bundle. It can be 
shown that the fibro VI has the hornotoriy type of a set of u = 
(a1 11faa - l m.. we l) spheres sn- with a single point in com - 
mon. (This cal! I§1s not difficult, but it is too much of a digres- 
sion to be cons1de_- -n detail here . It is perhaps of interest to note 
that the calculation was first carried out b physicists , in connection 
with the study of Feynman integrals;12) r 15 another calculation is 
given in Ref. 16.) It can also be shown that the fibro bundle is defi- 
nitely not a trivial bundle, that is to say, that the fibre bundle is not 

c sub 
an 
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itself under the 
J 

bundle . 11) 
z", and (urn 
"1 (Gun - J) 
?in(Elin 
as in Ref. 111; 
n 

I 

topologically equivalent merely to the product space (GJ - O) X Vi' 
(To see this it suffices to consider the effect of translating the fibro 
V1 around the origin once, using the l o c i & " ¥ § £ & = ~  
As 5 ranges once around the unit circle 
are smoothly deformed into one another; 
not translated back to itself unchanged 

acton/bf the transform 
X:  ( 21 , - - . . 2  * (e Tri at 21 ,.. . ,e2'Ti B. 
is not generarily topologically trial, lnd._._... _ 
logy of V1 is calculated explicitly in Refs . 13 and 16, although again 
the details will not be given here . The final result is that on the 
homology group I-In_1{V1 ..Z) = Z the induced mapping .X* is a linear 

2rri(E1+. . .+ " )  
transformation with eigenvalues e 1 for 0 < v < at . 
The structure of the bundle is determined by this automorphism X* . ) 
The homotopy groups of the bundle space (En -,V are then almost fully 
determined immediately by the exact homotopy sequence of the 

For no 3 it follows that 171 tan" - v) = 2. Tln_1(Mn - v) = - V) f '  0 otherwise; while for n r- 2 ,  it follows that 
is an extension o f f  by a free group of rank al , and - V) = .0 otherwise. The homology groups of the bundle space 

V can be calculated from the spectral sequence of the bundle , 
fo rng3 , i t fo l l ows  that - V , Z ) = D f o r  j ? 5 D ,  l ,  

- 1, n, and that Hn_1(Gn - V ,  Z) = Hn V ,  Z) = 0 precisely when 

v 
2TT1 l -.+. . ,+-'l a 

1 - e rl' 

an 

n 
0< \ ) .<a ,  

J J 

'1 

11 d: 1 (III. 3) 

Ref. 14. 

to, zl 

H 1  (S2""1-K, Z) - I-I3.!.1(GN - V. Z) . Consequently 
i U I " " 

To return to the manifold K itself than, it follows from Poincaré 
dlalily that He = 2N"3"j (K, Z) , from Alexander duality that 
H n- "1 Up, z) - H r s  n-1 -K. z), and from earlier observations that 

-- H 
11 - 2 ,  n 1. Zn 3: andl-In_2(K,z) =Hn_1{K*j2) = 

when condition (1lI.3) is fulfilled. A separate calculation is neces- 
sary to show that for f ig 4 the manifold K is simply-connected, as  in 

When n_> 4 and the exponents a,  are such that (III.3) holds , 
the manifold K has dimension Zn - 3 ;  5 and has the homology of the 
(Zn - 3)-sphere; and it follows from the generalized Poincaré hypo- 
thesis that K is really homeomorphic to  the sphere S211-3 . In these 
cases, the hypersurface V is topologically a manifold at its singular 
point, quite parallel to the special case n 2 described above. How- 
ever when (III.3) does not hold, or when n 3 , the manifold K is not 

(K. Z) = 0 for 
0 precisely 
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a sphere, and V is then not topologically a manifold at its singular 
point; these exceptional cases have not been described in very much 
detail • 

A very surprising recent observation q) ' 15) ' 16) is that even in 
those cases that K is horne omorphic to the sphere S211-3 , the differen- 
tiable manifold K is not necessarily differentiably homeomorphic to 
the sphere S2I1-3 with its usual differentiable structure . For instance , 
the 28 differentiable manifolds 1<(k) = $9 n v(k) where v(k)  = { z  ec" I 
z12 + 2 2 2 +  2 3 2 +  2 4 3 +  z56k'1 = of , are the 28 different differentiable 
manifolds homeomorphic to  the 7 sphere, for k = l ,  . . . , 28 .  

All of these considerations so  far have been limited t o  hyper- 
surfaces defined by polynomials f(z) of the form (III.2) . Partial ex- 
tensions have been made to general polynomial hypersurfaces with an 
isolated singularity, though without such detailed results . 16) Very 
little is really known beyond this , although some results obtained 
with quite a different approach will be mentioned later . 
IV. Analytic Functions on 1-lypersurfaces 

If v 13 a complex hypersurface in a polydisc A(e) in Cn, a 
complex valued function ?(z) defined only on the set V is called an 
analytic function on the hypersurface V if it is locally the restriction 
to V of an analytic function in as", that is to say, if for each point 
a e v there is an analytic function fu(z) in an open neighborhood U of 
the point a in (En such that iI U VI V = ful V. Actually the function f(z) 
is analytic on v if and only if lt Is the restriction to v of a function 
f(z) analytic throughout all of the polydisc A (e); the proof of this 
assertion is quite nontrivial (see Theorem VIII A 18 in Ref. 4), and 
will not be given here at all, but the result will be used to simplify 
the present discussion. Note that there are many different functions 
analytic in A (e) which restrict to the same function f on V; any two 
differ by an analytic function in A (e) which vanishes on V .  At the 
regular points of v this definition coincides with what would naturally 
be taken to  be the definition of an analytic function on V; for in a 
neighborhood U in which local coordinates W1 , . . . IWn can be chosen 
so  that v 0 U is the hyperplane Wn = 0 ,  it is apparent that a function 
f'(w1 , . . . ,wn_1) is analytic on v precisely when it is a complex ana- 
lytic function of the n - 1 complex variables W1 , . . . IWn-l . At the 
singular points the situation is certainly not so clear, but the useful- 
ness of this notion will be more apparent later . 

The set of  analytic functions on v can be described algebraic- 
ally in the following manner. Let on denote the set of all analytic 
functions of n complex variables in the polydisc A (ez), and Q, denote 
the set of all analytic functions on the hypersurface v. It is clear 
that these are both rings, in the algebraic sense; and that restriction 
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G /J(v), the quotient (or residue class) ring 

is ri g h m m rphism fr m On I; ®v' To k r 1 E this homornor- 
phlsm, the subset of all elements of an mapping to the zero element 
of et, is just the ideal JW) of all functions f E On vanishing on V: 
this will be called merely the ideal _of the hypersurface v for short . 
Thus algebraically GV = G / 
of On modulo the ideal m?) . Now suppose that V is in the standard 
form, and is defined by a Weierstrass polynomial p of degree r in the 
variable Z . The ideal J(v) is the principal ideal generated by p(z), 
that is ,  J('v) onslsts of all elements p(z)f(z) for f(z) € in. Letting 
Sn_1 denote the subset of On consisting of all functions which are 
independent of the variable Zn, it is clear that (9n-1 al JW) = 0: there 
are no nontrivial multiples of p(z) independent of Zn' This means that 
under the restriction mapping from On to So the subring (911-1 is mapped 
isomorphically to  its image; thus the subring 'gn-1 C (9n can be iden- 
tified with its image in Go, hence it can be viewed as a subring @~n_1 
c Of.  Further let $n-l1 zn] denote the ring of polynomials in ZIP with 
coefficients in the ring ®n-1 . As a consequence of the Weierstrass 
division theorem , any function f(z) G ®n can be written in the form 
f(z) = p(z) q(z) + r(z) for some polynomial r(z) G @n_1[ z n :  and slnce 
p(z) q(z) e J W ) ,  the functions f(z) and r(z) will have the same restric- 
tion to V. Therefore to define analytic functions on V it is sufficient 
to consider merely polynomials in @'-112n1 so that Of = an_1[ z l /  
.D{V) al G\n_.1[ zu] . The function Zn E On restricts 
Zn on V ,  which satisfies the polynomial equation Min) = 0 .  That is 
to say , GV = @n-1[ En] is an algebraic extension of the ring 9n-l by a 
single element "Zn which is the root of an algebraic equation with co- 
efficients in ®n_1; indeed, this polynomial equation has leading co- 
efficient 1 , s o  that ZN is actually integral over 9n-1 in the algebraic 
sense . 

As noted above , at the regular points of V the analytic func- 
tions on V can be characterized intrinsically as the functions which 
are analytic in the local coordinates on V; but at the singular points 
of V this characterization is of course impossible. However, recalling 
that the singular points of V lie in the set of zeros of an analytic func- 
t1on on V ,  it naturally occurs to one to try an analogue of the general- 
ized Riemann removable singularities theorem to handle the singular 
points . Although this does not really work, it leads to an additional 
useful construction. A complex valued function 1'(z) defined only on 
the regular points of v is called a weakly analytic function on=V if it 
is complex analytic on the regular points of V and locally bounded at 
all points of v: thus the restriction Of such a function to some open 
neighborhood of any singular point of v is a bounded analytic function 
on the regular points of V contained within that neighborhood. As de- 
fined here , the weakly analytic functions on V may be a properly large 

to an analytic unction 
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class of functions than the analytic functions on V. The analytic 
hypersurface V is said to be normal precisely when these two classes 
of functions coincide, that is to say, when every weakly analytic 
function on V is actually analytic on v: so the normal hypersurfaces 
are just those hypersurfaces for which the generalized Riemann remov- 
able singularities theorem holds for the analytic functions on the 
hypersurface . 

Not all analytic hypersurfaces are normal. To see this , con- 
sider for example an analytic hypersurface V of a polydisc A(e) in G2 ; 
and recall that such a hypersurface can be described parametrically 
by Z1 = to, ZN = 9(t) for some analytic function El (t) with 9 (0) = 0 . 
Clearly the singular locus is at most the origin 21 = ZN = 0 ,  (t = 0); 
and that point really is a .singular point only when r > 0 and 9 '(0) = 0 .  
Now the parametrizing coordinate t can be viewed as a complex-valued 
function on the hypers surface V, and it is evidently weakly analytic 
since outside of the 

in zn. As usual, introduce the discriminant 6 (2') IZn_1) 

origin it can be expressed as an analytic function 
of 21 , namely t = 21 1 r .  If this function is also analytic on V,  it is 
the restriction to V of a complex analytic function T(z1 , zz) in some 
open neighborhood of the origin in G32 ; and so t = T(t1", 9 (t)). It is 
obvious that such a relation can hold only when either r = l or 9 '  (0) if 
0: and therefore V is normal if and only if it is regular at all points . 
Thus a hypersurface of a polydisc in GOa can never be .normal when it 
has singularities; but there are normal hypersurfaces of polydiscs in 
Gun for n > 2 which have singularities . 

To examine this situation in somewhat more detail , consider a 
hypersurface V of a polydisc Me) C Cn, and suppose that V is repre- 
sented in standard form by a Weierstrass polynomial p(z) of degree r 

= 6 (Zi , . . . of 
the polynomial p(z), and let D = { z '  e A' (€ ' ) l  6 ( z ' )  = 0] . For any 
point z '  6 A '  (e ' )  - D,  the points of V lying over an open neighborhood 
of z '  form r separate sheets of regular points of V ,  described para- 
metrically by the r equations Zn = §0j(z') for j = l , . . . , r .  If f'(z) is a 
weakly analytic function on V,  its values on these r separate sheets 
will be the r complex analytic functions t(z1 , . . . ,zn_l , cp-(21 , 
2n-1" of 2' . The problem is to find an analytic function llz) such 
that the restriction of t'(z) to the hypersurface V is the given function 
f (z ) .  For any fixed point z '  = (Z1 , . . . |ZN-1) E A '  (e ' )  - D, the values 
of the function f(zl , . . . IZn-l , z  ) are given at the r points zn = CPU(ZI)$ 
the simplest way to construct anfunction f(z) with these values is by 
means of polynomial interpolation. Thus suppose that f(z) is taken t o  
be in the form of a polynomial 

l I l I 

f(z)  c1(z') -1 2 r  + n c z ' z  + r-1( ) n  
+ c r(zI) . 

r 
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the conditions on the coefficients that this polynomial have the 
required values at the r points Zn = 

I I _ r I r-1 f(z . cpj(z )) - c1(z )Qpi(2 ) 

cp.(zI) are just that 
J 

+. . .+c r._1(zI) cpj(z') + cr(z') I 

ck(z') J 

for j = I , . . . , r .  These are r linear equations among the r unknown 
coefficients c k ( z ' ) ;  so  by Cramer's rule the solutions are given by 

-1 
det@.(z')" '*°J .<¢8(z'). 1) 

- r-1 detkpj (2') 

(z'f'k+l.f(z',8(z')). 

.cpi(z'). l) ; . I I 

Nk(z') 

D(z') I 

where a typical row is shown for each matrix. It is clear that inter- 
changing any two of the functions co (z')  has the effect of interchang- 
ing two rows of the matrix, hence changes the sign of both the numera- 
tor expression Nk(z') and the denominator expression D(z') . Writing 
ck(z') = nk(z')/d(z') where nk(z') = Nk(z') D(z') and d(z') = D(z')2 , 
it follows that n(z') and d(z') are both symmetric polynomials in the 
expressions q)j(z'); and therefore, as  proved earlier, both n(z') and 
d(z') are complex analytic functions in all of A '(e ') . Actually the 
denominator d(z ' )  is a well known expression, called the van der 
Monde determinant, which is identical with the discriminant 6 (z') of 
the polynomial p(z). The function 

6(z ' )  f(z) 
r-1 

Z n n1(z') + +nr_1(z') n z + n  r(z') 

is therefore an analytic function in all of A (e) , even a polynomial in 
the variable z ; and the restriction of this function to the hypersur- 
face v is 6s(2'l"t(z). 

This shows that for any weakly analytic function t'(z) on the 
hypersurface V,  the product 6 (z)f(z) is an analytic function on V ,  
where 6(z) = 6 (z') is the discriminant of the Weierstrass polynomial 
p(z) defining the hypersurface; hence any weakly analytic function 
f(z) is at least the restriction to V of a meromorphic function in GIn , 
with a fixed denominator 6 (z I ) .  Not all meromorphic functions in *En 
restrict to  weakly analytic functions on V ,  of course . 

As a flnal remark, it can be shown that the weakly analytic 
functions form a finite dimensional module over the ring of analytic 
functions in the strict sense, at least when the polydisc A (e) is suffi- 
ciently small; that is to say, there are finitely many weakly analytic 
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functions 31 (z) , . . . 8'm(2) on V such that any other weakly analytic 
function can be written in the form t'(z) ' 

for some analytic functions g~-(z) on V .  
though, so the proof will not be given here . 

.-. 91 (z) £1 (z)+. . -`*'gm(Z) ¥m(z) 
This is rather more difficult , 

V.  Analytic Subvarieties in Standard Form 
Generalizing the notion of an analytic hypersurface , a subset 

V of an open domain U C  CN is said to be an analyti»c. subvarietv of U 
if in some open neighborhood of each point of U the subset v is the 
set of common zeros of a finite number of complex analytic functions . 
A point a on a subvariety V is called a regular point if it is possible 
t o  choose coordinates (w1 , . . . ,wn) in an open neighborhood of Z in 
Gon such that locally V is a linear subspace {wlwk.,.1=. . .=wn=0] , for 
some integer k called the complex dimension of V; a subvariety V is 
called a complex manifold of complex dimension k if it is regular and 
of complex dimension k at each point. The points of a subvariety 
which are not regular points are called the singular points. An analy- 
tic subvariety V of an open polydisc A (e) C GN can be determined as 
the set of common zeros of a finite number of functions analytic 
throughout A ( e ) ,  provided the polydisc is sufficiently small. The set 
of all analytic functions in A (e) which vanish on V form an ideal JW) 
in the ring Gm of all analytic functions in A (e) , called for short the 
ideal of V. A subvariety V of A (e) is called irreducible if it cannot 
be written as a union V = V1 U V2 where Vi are analytic subvarieties of 
A (e) properly contained in v. It is easy to see that a subvariety v of 
A (e) is irreducible precisely when the ideal =9(v) is a prime ideal in 
(9n7 recall that an ideal JI C (in is said to be prime if whenever fl fe E J 
at least one of the elements f j  is contained in Jl. n 

An analytic subvariety V of an open polydisc A (e) in GO can be 
represented in a standard form somewhat similar to the standard form 
for a hypersurface, as discussed in Sec. II. It is first necessary to 
choose a suitable system of coordinates in the ambient space GN . 
Selecting any nontrivial function fn(z) 6 J(V) , after a suitable non- 
singular linear change of coordinates in GJ" it can be assumed that 
fn(z) is regular in the variable zn and then of course fn(z) can be 
replaced by a Weierstrass polynomial in Zn having the same zero 
locus, which polynomial will then be called fn(z) . Then select a non- 
trivial function f _1(Z) 6 JW) which depends only on the coordinates 
21 , . . . I2n-15 amer a change of coordinates involving only these vari- 
ables, it can be assumed that fn_l(z) is a Weierstrass polynomial in 
2n-1 wlth coefficients analytic in 21 , . . . ,zn_2 . The process can then 
be ccntlnued until for some integer k the ideal J(V) contains no func- 
tions depending only on the variables 21 , . . . ,zk; and there remains 
the sequence of Weierstrass polynomials Pk+1 , . . . ,pn in J'(V) , noting 



COMPLEX ANALYTIC VARIETIES 275 

. lsiialo 
it . In 

that the further coordinate changes leave these in the form of Weier- 
strass polynomials . 

The further normalization is perhaps described most easily in 
terms of analytic functions on the subvariety V ,  and in a rather alge- 
1.....-1,-. re let (9, be the ring of all analytic functions in 
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are consequently analytic functions in ('in which belong to the ideal 
JW) . 
G . 
pnolynomials of lowest degree of the required form in =9(V), they are 
uniquely determined Weierstrass polynomials . This set of n - k poly- 
nomials will be called the first set Q canonical polynomials for the 

Suppose further that the ideal J(V) is really a prime ideal in 
It then follows that when the functions p.(z) are taken to be the 
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a polynomial in E 
functions in Nile? 

be written as a polynomial in 2k+I with coefficients in M so the 

ideal JW) . It also follows that the ring GV is an integral domain, a 
ring with no divisors of zero, hence has a well defined quotient field 
My, the field of meromorphic functions on V: and that My =lT1k[Ek+1 , . . . ,ink , an algebraic extension of the field HE of meromorphic func- 
tions of k complex variables . Now if the coordinates 2k+1 , . . . ,zn are 
suitably chosen, the field My will be generated by the image of a 
single coordinate, say Z +1" 
rent. 17) Since My = t1*»k[kzk+1] r every meromorphic function on V can 

field My is described completely by the single polynomia equation 
Pk+l . Indeed, every analytic function f E GV can also be 

lt;:+1' or 
However for an analytic function E' E Of,  the denominator of the coef- 
ficients of the representing polynomial can be taken to be a fixed ele- 
ment, the discriminant 6 € So of the _g.olynomlal Pk+1? that is to say r 
for any element "f E L'-JV, the product of  E @k[zk+1] . In particular, for 
each coordinate z- for j = k+2 , 
G5¢[ik+1] such that a'é :: 'In 
analytic functions 

this is the theorem of the primitive ele- 

written as 
but again the coefficients are meromorphic 

it is not necessarily true that QV = @1[ik+11 . 

J * . . . ,n, there is a polynomial ii 6 
j (Ek+1); and consequently the complex 

quo (z) 6 (21 , zk) I • • 1 Z . 
J 

* quo (Z1 I ,zk: Zk+1) I 

(n-2) 

which are polynomials in zk+1 and z j  , belong to the ideal =9(V)~ These 
will be called the second get Q .oa»non_ica1 polynomials for the ideal 
=9(V) . The further discussion of the standard form for general analytic 
subvarieties rests just on these two sets of canonical equations . 

First, one formal algebraic property of these canonical poly- 
nomials should be noted . If f(z) is an arbitrary analytic function in 
A ( )  , an application it 
can be written in the form f(z) = p s) (z) (z) , where. g (z) , 
f(""11(z) are analytic in A(s) and 'l z) is a polynomial in znn 
Applying the division theorem again, each coefficient of the polyno- 
mlal f(n-l){z) can be divided by pn_1(z) | leaving as remainder a poly- 
nomial in zn_1; so  that f(z) = + 
f (z), where all the functions are analytic in a (e) and f 
a polynomial in Zn-l 
that 

of the Weierstrass division thorern shows that 
+ f(In'1 

n- 1 

pn(22) quiz) pn_1(2) 9n_1(2) 

(z) is 
and zn. Repeating the argument, finally secure 

+ 
(n-2) 

f(z) = pk+2(2) 9k+2(2) + . . . +  pn(2) Qn(Z) + i(k+1) (2) r (v.1) 

h I . k 1 I where all these functions are analytic in A (6) and f (  + )(z) 1S a poly- 
nomial in the variables 21<+2» . . . ,zn- Now notice that for j = k+2 , 
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. . . ,n and for any positive integer v , it follows that Biz V is equal to 
a multiple of the canonical polynomial q.(z), plus a remainder which- 
is an analytic function only of the varialles 21 , . . . .rZk+1l indeed , 
which is even a polynomial in 2k+1 . Gonsequently (V. l) can be 
rewritten, for some integer N, as 

n n 
6 Nf(z) (z) (z) p_ 

J g_ 
J 

+ 
j k4J2 j=k+2 

qj(z) hj(z) + al (z) l (v.2) 

where all the functions are analytic in A (e) and the remainder al (z) 
depends only on the variables 21 , . . . . The function fl (z) can 
then be divided by the Weierstrass polynomial Pk4-1(2) SO that 

'Zk+1 

6Nf(z) 
n 

2 
j =k+ l  

Dj(z) 91(2) + 

n 

qi(2) hj(z) + fo (z) I 

j=k+2 
(V-3) 

where to (z) E G [ z  +I] and the degree of for)  in the variable 2k+I is 
strictly less then the degree r of the polynomial Pk+1(2) . Ii the ori- 
ginal element f(z) belongs to the Ideal JW) , so does the remainder 
to (z); but since p + (z) is the polynomial in (9 [ z n  
degree , necessary 0(2) = 0 .  Notice further that if (z) 
beginning a polynomial in the variables Zk+l , . . , 
in the above construction is unnecessary; so that f?z) can be written 
in the form (V.3) with gk_*_2 (z) = (2) = 0 .  If f(z) is also an 

zero' so that when- 
ever f(z) E J(V) n @k+1[Zk+2, . . . ,zn] f the product 6Nf(z) can be ex- 
pressed as a linear combination of the canonical polynomials Pk+1 , 
qk+2 f . . . ,qn. This holds in particular for the polynomials Pk+2' . . . , 

, these terms 
The final result then is that for any 

element of the ideal ,_q(V) , the remaindernfo (z) is 

. , z  

pal so after multiplying {V.3) by a further power of 6 
can be omitted Erom that formula . 
analytic function f(z) in A(e) , 

I 0 JW) of lowest 
is from the 

the first step 

6Nf(z) = 9k+1(2) 9(2) + qk+2(2) hk+2(2)+' -*on(z) hn(z) + for) I (V-4) 

for some integer N, where all these functions are analytic in A (e) and 
fo (z) depends only on the variables z1, . . . I 2k+1 and is a polynomial 
in 2k+1 of degree strictly less than r .  the degree of pk+1(2): moreover 
if f(z) e JW) , necessarily to (z) = 0 . 

To describe the standard form for the irreducible subvariety V,  
introduce the subset B c: v defined by B = { z  6 V]6 (z) = of , where 6 (z)= 
6 (21 , . . . IZn) is , as above , the discriminant of the polynomial Pk+1(2). 
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pletely by the canonical polynomials pk.l.1(z), qk_l_2(z) 

Note that B is itself an analytic subvariety of A(€) contained in v. It 
follows immediately from (V.4) that the set v - B is determined com- 

, . . . ,qn(z), for 
any function f(z) e Jo) has the property that 6Nf(z) is expressible as 
a linear combination of these canonical polynomials , so that provided 
6 (z) 9* 0 ,  the function f(z) vanishes at z if and only if these polyno- 
mials vanish at z .  That is to say , 

V B 

Vk-l. 1 

{ z e A ( @ ) l a ( z ) ¢ 0 , p k + l ( z l =  .. 
For any point z = (21 , . . . ,zn) e V,  necessarily 
2k+1) = 0: so that the natural projection 1*k+1= 03" -° 
7Tk_l_1(z1,...,z ) =  (z1, . . . ,z  1 
hypersurface Vk+1 C Ck-I-1 d e f e d  by 

{(z. , . °"Zk+ll e A(€)|pk+1(z1.-- 

qk+2(2)= -=qn(2) = 0 

Pk+1(Z) : :  Pk.l.1(Z1 I a • • I 

G3k+1 defined by 
) maps the subvariety V c  GH Into the 

,zk+1) 

+1 
of a polydiso A '  (e ' ) §  ¢,»l' 

This hypersurface is in the standard form described in Sec. II: the 
natural projection no: Ck+1 * Et exhibits v as an r-sheeted 
branched covering and the branch points 
in Vk+1 form the subvariety 

Bk+1 6 {(z1 ,zk+1) e Vk+1l (2. ' f • . I lzk) 0 

D 

consisting of those points of Vk+1 lying over the hypersurface 

= { (z , . . . . , zk )  e A '  (@')l6(z1 , . . .zk) = 0} 

k+1 

of the polydiso A' (e ' )  . The complement Vk+1 
signal analytic submanifold of (A' (1:') - 
by the r analytic functions 2k+1 (z1 
open neighborhood of any point of A 

Zk+2' ,z  

- Bk_*_1 is a k-dimen- 
D) x GJ, given parametrically 
. . . , z k ) ,  j = 1 , . . . , r ,  over an 
- D. Since the coordinates 
B are expressed analytically 

=cp. I 

1 (e I ) 
of a p o 1 n t ( z 1 , . . . , z n ) € V -  

in terms of Phe coordinates 21 , . . . |2k+1 by the canonical equations 
qk+ (z) == . . . = qn(z) : 0 ,  it follows that the induced mappingtr +1°| 
V -Q If leads to a one-to-one mapping from v - B onto Vk+1 - 1§k+1 . 
The complement V - B is a -dimensional complex analytic submand- 
fold of (A' (Q ' )  - D) x EN - r an r-sheeted covering of A' (e ') - D under 
the mapping 'TkT'k+1F and over an open neighborhood of any point of 
A '  (e:') - D the r sheets of the manifold V - B are described parametric- 
ally by the equations . 
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zk+1 =CPj(Z1 . z k ) .  I • I . z m 

* 
am (21 1 . . . lzk;  <p1(21 

6 ( z 1 , . . . , z k )  

1 l » . .Mk) 

m = k + 2 , . . . , n  

for j = 1, . . . ,r.  This situation can be perhaps best kept in mind by 
referring to the following diagram . 

v -- B 

U
I v C Cn 

l 1 1 
C 

(r-sheeted 
covering, branch 
locus Bk_*1) 

i 
(homeomorphism) V - B V ®k+1 

k+1 k+1 k+1 l 
1 k 

A ' ( e ' ) - D c  A ' ( e ' ) C  C 

C '"k+1 

"k 

The canonical equations do not serve to describe the points 
of V lying over the discriminant locus D C  A ' (e ' )  . The equations 
qk+2(z) =. . .= qn(z) = 0 are trivial whenever z '  E D: and although 
the equations Pk+1(Z) =. . .= pn(z) = D show that Were are at most 
finitely many points Z e V lying over any point z' € A'(e ' )  even over 
a point z '  E D, these equations generally describe an analytic sub- 
variety properly larger than V. However, this problem can be fines- 
sed by observing that V is the point set closure of V - B in A(e),  hence 
that it suffices merely to describe the set V - B; the proof of this is 
not altogether trivial, and will be omitted here. | 

Turning now to some consequences of this standard form for 
analytic subvarieties , it should be pointed out first of all that at no 
point in the entire preceding discussion was any use made of the con- 
d1tion that the prime ideal under consideration be precisely the ideal 
of all analytic functions vanishing on an irreducible subvariety. Be- 
ginning with an arbitrary prime ideal JI C (9n, the canonical polyno- 
m1als can be constructed as above r and the set of common zeros of 
all the functions in the ideal .9 is an analytic subvariety in the stan- 
dard form. The ideal of all analytic functions vanishing on V is now 
a prime ideal MV) which contains the original ideal J; actually these 
two ideals coincide, s o  any prime ideal is precisely the ideal of all 
functions vanishing on an irreducible subvariety. (To see this , con- 
sider any analytic function f E JN). As before after dividing through 
by the canonical polynomials p. ,  q , 
where to E .9 and ii is an analytic unMen depending only on the vari- 
ables 21 , . . . ,zk+1, indeed, a polynomial in 2k+1 of degree strictly 
less than the degree of Pk+1 . The remainder ii vanishes on Vk+1; 

it follows that 6.n = f0 + f1 
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U1 C a n d w 1 , . . .  

ions in a polydisc Ma), if V [ 2  E Ameulfl (zT=. 

but again this can only happen when f1 vanishes identically, so that 
actually 6 of e J . Since .3 is a prime ideal and 6 E J , it follows fur- 
ther that f 6 J,  and the desired result is therewith demonstrated.) 
Knowing this , it is essentially a purely algebraic argument to derive 
next the Hilbert zero theorem: if fl (2) , . . . , f  (z) are analytic func- 

= . .= f (z) = , 
1f f(z) is another analytic function in A(e) which vanishles on V ,  then 
fN = g1 f1+. . .+ f for some integer N and some analytic functions 
91 I . I . ,gm 

next, it is worth commenting in some detail on the relations 
b t r  been the analytic subvariety V C  CN and the hypersurface Vk+1 c 
(D appearing in the above standard representation for V. This of 
course involves a comparison of analytic subvarieties of polydiscs in 
complex spaces of different dimensions; and such comparisons arise 
in many other contexts as well. In general, consider complex analy- 
tic suhvarieties VI C A ((-r1); Gel and V2 C A(e2 ) C az"2 . A continuous 
mapping f :  V1 "* V2 is said to be a complex analytic mapping between 
these two subvarieties if there is a complex analytic mapping 
F:A(e1)-° <8;2 such that the restriction of F to the subset V1 is just f ,  
or in symbols, such that F[V1 = f; and these two subvarieties are 
said to  be analytically equivalent if there are complex analytic map- 
pings f: V1 * V2 and g: V2 -» V1 such that the compositions fg and gf 
are the appropriate identity mappings . Note that this latter condi- 
tion can be restated as the condition that there exist complex analytic 
mappings F: A(e1) * (Use and G: Meg) -o 01"1 such that FGI VI and GFIV1 
are both the identity mappings; this does not moan that FG and GF are 
themselves identity mappings, so  A(e:1) and A(e2) st111 may be polyp 
discs in complex spaces of different dimensions. This notion of 
equivalence thus allows one to speak of analytic subvarieties without 
reference to the spaces in which they are imbedded; an equivalence 
class is called an analytic variety, and a space which has locally the 
structure of an analytic variety is called an analytic space. As an- 
other approach to the same end, note that whenever f: V1 -c V2 is a com- 
plex analytic mapping and g is an analytic function on VI , the compo- 
sition gf is clearly an analytic function on VI; and conversely, if 
f :  VI -° V2 is a continuous mapping such that gf is an analytic function 
on V1 whenever g is an analytic function on V2 , then f is a complex 
analytic mapping. (To see this , let 21 , . . . ,zn1 be the coordinates in 

,wng be the coordinates in GDP . Note that the res- 
trlction of WI to the subvariety V2 is a complex analytic function on 
va: therefore wlf is a complex analytic function on VI , the restriction 

lions F1 , . . . ,Fna define a complex analytic mapping F: A (21) -° enc : 

g 
in A(eT. n*1'he details can be found in Ref. 4 and elsewhere . 

to VI of some complex analytic function F- in A(e1). The set of func- 

0] and 
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and clearly the restriction of this mapping to V1 is precisely the given 
mapping f ,  since the restriction of the function Pa gives the wj--coor- 
dinate of the image under f of a point on V1 . )  Thus analytic mappings 
are precisely the continuous mappings which preserve complex analy- 
tic functions; and analytic equivalences are topological homeomor- 
phisms which identify the rings of complex analytic functions . 

In the representation in standard form for the subvariety V ,  the 
natural projection induces a complex analytic mapping from V onto 
V i ;  but this mapping is not generally an analytic equivalence . For 
on t e one hand, the mapping need not be a topological homeomorphism , 
since some of the points of the subset B may be collapsed upon pro- 
jection to  Bk+1F and on the other hand, even if it is a homeomorphism, 
the inverse map may not be analytic, since there may be analytic 
functions on V which do not induce analytic functions on Vk+1 . How- 
ever, since the restriction of the projection mapping is a complex 
analytic equivalence between the complex manifolds V - B and - 
Bk.I-1 , it is evident that it induces a one-to-one 
tween the weakly analytic functions on v and Vk+1F so that the varie- 
tles V and Vk+l can be viewed as being weakly equivalent. Actually 
the coordinates 2k+2' . . . ,zn of a point z E V are weakly analytic 
functions of the point (21 , . . . ,zk-I-1) e Vk+1 , and hence they define a 
weakly analytic mapping from Vk+1 back to V, exhibiting the weak 
analytic equivalence in yet another way; it should be noted that these 
functions are really only defined on the regular points of Vk+1 , since 
an inverse mapping need not be a single-valued function on Bk+1- If 
the hypersurface Vk+1 is normal, so that weakly and strongly analytic 
functions coincide , then of course the subvarieties V and Vk+1 are 
necessarily analytically equivalent. For any hypersurface Vk+1 it can 
be shown that there exists a normal analytic subvarlety V such that 
Vl 1 
to on; this subvariety is called the normalization of Vk+1' and is , 
roughly speaking, the analytic subvariety arising from Vk+1 by making 
all the weakly analytic functions strictly analytic. 

Finally, the integer k appearing prominently in the preceding 
discussion is called the (complex) dimension of the analytic subvari- 
ety V .  This integer can be defined in terms of the above standard form, 
although of course it is then apparently dependent on the choice of 
coordinates in (BN: however the dense open subset V - B of V is a 
complex analytic manifold of dimension k,  so that this can be taken 
as another definition of the complex dimension of the entire subvariety 
V,  and it is then clear that this dimension is intrinsically defined . 
It is also clear that an analytic hypersurface of a polydisc in (Cn is an 
analytic subvariety of dimension n - l ,  and conversely; so that the 
analytic subvarieties of dimension n - l are precisely the analytic 

is just the projection of into mk+1 , as in the standard represen- 

" + 1  
corres pondence e _ 
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subvarieties that can be defined as the set of zeros of a single analy- 
tic function. Somewhat more generally, if V1 and V2 are irreducible 
analytic subvarieties of a polydisc in Gn of dimensions Ki and kg, 
then each irreducible component of the intersection V1 al Vs has dimen- 
sion 2 Ki +k2 -n; the proof is not difficult, and will not be given here , 
but details can be found in Ref. l or 7 .  (To motivate this formula to 
some extent, consider the case that V1 and V2 are coordinate planes 
in (BN: then V1 is defined by setting n - k1 coordinates equal to zero , 
V2 is defined by setting n - kg coordinates equal to  zero, so V1 al V2 
is defined by setting at most Zn - k1 - kg coordinates equal to zero 
and hence has dimension not less than n - (Zn-k1 -kg) = Ki +k2 -n.) 
As a consequence , each irreducible component of the set of common 
zeros of n - k analytic functions in a polydisc in (En has dimension 
; k .  It should be emphasized that the converse is not generally true; 
that is , an analytic subvariety consisting of one or more irreducible 
components of dimension k in a polydisc in CN cannot necessarily be 
defined as  the set of common zeros of n - k analytic functions . The 
precise characterization of this special class of subvarieties , called 
geometrical complete intersections , is a rather difficult matter that is 
not yet completely understood . 
VI. _Ivlls c:ellaneous Properties 

Of course a great deal more is known about complex analytic 
varieties than it has been possible even to mention here; but the pre- 
ceding lectures may have provided some sort of general picture of what 
these varieties are like and how they are handled, and also may have 
illuminated some pitfalls to be avoided when physically faced with an 
analytic variety. Before concluding, though, at least a few words 
must be said about some of the major topics not previously mentioned; 
and it must be repeated that the entire discussion has been limited to 
the purely local and essentially geometrical properties of complex 
analytic varieties . 

In studying complex analytic functions with singularities , 
there are a number of theorems guaranteeing that certain classes of 
singularities are really removable; the Riemann removable singulari- 
ties theorem is one example, and its usefulness has been apparent in 
the preceding discussion. Similar questions arise in studying 'com- 
plex analytic varieties. Suppose that W is an r-dimensional analytic 
subvariety of a polydisc A in in, and that v is a k-dimensional analy- 
tic subvariety of the open subset A - W of that polydisc; the question 
arises whether the subvariety V can be continued through W to be an 
analytic subvariety of all of A . This subvariety V can always be so 
extended when r < k ,  and there are further conditions under which 
such an extension is possible when r = k; these questions are treated 
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in Refs. 18 and 19 for instance , where further references can also be 
found . 

The tangent space to a manifold is a very useful auxiliary 
tool in studying the properties of that manifold, and it would of course 
be quite desirable to have an analogue in the case of a complex ana- 
lytic variety with singularities . Actually there are a number of candi- 
dates for the tangent set to a complex analytic variety, with various 
properties and applications; some examples are mentioned in Ref. 4 ,  
and a much more extensive discussion can be found in Refs . 20 and 
21 1 

Finally, perhaps the strongest possible tool for studying the 
singularities of complex analytic varieties and subvarieties is the 
resolution o f  singularities . For a one -dimensional analytic variety V 
with a singular point, as has been demonstrated in the preceding lec- 
tures , there exists a complex analytic manifold V admitting an analy- 
tic mapping n: Y/ * v which is a topological homeomorphism; and the 
properties of the singularity of V can be described directly in terms 
of this regular parametrization, by means of the properties of analytic 
functions and mappings on the complex manifold V .  In higher-dimen- 
sional cases , varieties with singularities are not necessarily topo- 
logically home omorphic to manifolds; but nonetheless there is an 
analogue of the one-dimensional situation. If V is an irreducible 
analytic subvariety of a polydisc in in, and if S is the singular locus 
of V ,  there exists a complex manifold if admitting an analytic mapping 
71: V -° V with the following properties: (i) the restriction of IT is a 
complex analytic homeomorphism between the complex manifolds 
V - Tr'l (S) and V - S; (ii) rr"1 (S) is an analytic subvariety of V ,  and 
the restriction of'H is a proper analytic mapping from TT-1 (S) onto S .  
(To say that 7T is proper is merely the assertion that the inverse image 
of a compact set is compact; generally the inverse image of a point 
of S will not even be a finite point set, but rather a compact complex 
analytic subvariety of V.)' The properties of the singularities of V can 
then be described in terms of the properties of the complex manifold V 
and this parametrization. For two-dimensional subvarieties, this pro- 
cess was described in Ref. 22; and some applications to the topolo- 
gical properties of the singularities were given in Ref. 23 . Note that 
this case proved exceptional in the discussion in Sec. III: but a good 
deal of light has been shed on this problem by the resolution o f  singu- 
larities techniques , and the subject is now being very actively inves- 
tigated. The three-dimensional analytic case was treated in Ref. 24 , 
and the general case in Ref. 25;  the general results are quite deep 
and involved, and it will be some time before the situation is really 
thoroughly understood . 



284 R. C .  GUNNING 

References 
Among the books and general surveys of various aspects of the 

theory of functions of several complex variables are the following: 
1 . S. Abhyankar, Local Analytic Geometry (Academic Press, New 

York, 1964). 
2 .  H. Behnke and P .  Thullen, Theorie der Funktionen mehrerer kom- 

plaxer Veréinderlichen (Chelsea, New York, reprint) . 
3 . S . Bochner and W .  T .  Martin, Several Complex Variables (Prince- 

ton Univ. Press, Princeton, 1948) . 
4.  R .  c.  Gunning and H. Rossi, Analytic Functions of Several Com- 

plex Variables (Prentice-Hall, Englewood cliffs, n, I ,  , 1965). 
5 . L. I-Iiirmander, An Introduction to  Complex Analysis in Several 

Variables (Van Nostrand, Princeton, 1966) . 
6.  B. Malgrange, Lectures on the Theory of Functions of Several 

Complex Variables (Tata Institute, Bombay, 1960) . 
7 .  R .  narasimhan, Introduction to the Theory of Analytic Spaces 

(Springer Verlag, Berlin, 1966). 

Additional books and papers referred to in the lectures are the 
following: 

8 .  I. E .  Reeve, Rend. Sem. Mat. Torino 14, 159 (1955). 
9 .  O.  Zariski, Algebraic Surfaces (Chelsea, New York,  reprint) . 

10. M. I. Greenberg, Lectures on Alqebralc Topology (W. A .  Benja- 
min, New York, 1967). 

11. E.  Spanier, Algebraic Topology (McGraw-Hill, New York, 1967) . 
12. P .  Federbush, I. Math. Phys. 6 ,  941 (1965). 
13. F .  Pham, Bull. Soc. Math. France , 333 (1965). 
14. E.  Brieskorn, invent. Math. 2 ,  1 (1966). 
15. F.  Hirzebruch and K. H. Mayer, O(n)-Mannigfaltigkeiten, exo- 

tische Sphéiren, und Singularltéiten (Springer, Berlin, 1968) . 
16. I. w. Milnor, Singular Points of Complex Hypersurfaces (Prince- 

ton Univ. Press, Princeton, 1968). 
17. B.  L. Van der Waerden, Modern Algebra, Vols. I and II (Frederick 

Ungar, New York, 1950). 
18. R. Remment and K. Stein, Math. Ann. 126, 263 (1953). 
19. G. Stolzenberg, Volumes, Limits, and Extensions of Analytic 

Varieties (Springer, Berlin, 1966) . 
20. H. Whitney, Annals of Math. go, 469 (1965). 
21. H. Whitney, Local Properties of Analytic Varieties, Differential 

and Combinatorial Topology (Princeton Univ. Press, Princeton , 
1965), pp. 205-244. 

22 .  F.  Hirzebruch, Math. Annalen 126, 1 (1953). 
23 .  D. B .  Mumford, Inst. Hautes Etudes Sci. Publ. Math. 9 I 5 (1961). 



COMPLEX ANALYTIC VARIETIES 285 

24. N. Kuhlmann, Math. Annalen 151, 304 (1963); 154, 387 (1964). 
25.  H. Hironaka, Annals of Math. kg, 109 (1964). 




