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Theory of Classical Electrodynamics with Topologically
Quantized Singularities as Electric Charges

Bruno Golik, Dario Jukíc, and Hrvoje Buljan*

A theory of classical electrodynamics, where the only admissible electric
charges are topological singularities in the electromagnetic field, is
formulated. Charge quantization is accounted by the Chern theorem, such
that Dirac magnetic monopoles are not needed. The theory allows positive
and negative charges of equal magnitude, where the sign of the charge
corresponds to the chirality of the topological singularity. Given the trajectory
w(t) of the singularity, one can calculate electric and magnetic fields identical
to those produced by Maxwell’s equations for a moving point charge, apart
from a multiplicative constant factor related to electron charge and vacuum
permittivity. The theory is based on the relativistic Weyl equation in
frequency-wavevector space, with eigenstates comprising the position,
velocity, and acceleration of the singularity, and eigenvalues defining the
retarded position of the charge. From the eigenstates, one calculates the Berry
connection and the Berry curvatures, and identifies the curvatures as electric
and magnetic fields.

1. Introduction

Quantization of charge is one of the long-standing unresolved
questions of theoretical physics. Dirac discovered that if there ex-
ists a single magnetic monopole in our universe, this would ac-
count for the quantization of charge.[1] By exploring the behavior
of an electron in the presence of the magnetic monopole in the
realm of quantummechanics, Dirac found that the product of the
electron and magnetic monopole charge has to be quantized.[1,2]
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Bijenička c. 32, Zagreb 10000, Croatia
E-mail: hbuljan@phy.hr
D. Jukíc
Faculty of Civil Engineering
University of Zagreb
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This appealing idea attracted great in-
terest including hypothesizing the exis-
tence of dyons, that is, elementary parti-
cles carrying both electric and magnetic
charge.[3–5] The existence of magnetic
monopole structures was discovered in
classical non-Abelian gauge theories with
spontaneously broken gauge symmetry
by ‘t Hooft[6] and Polyakov.[7] However,
magnetic monopoles and dyons were not
experimentally found (for a review of lit-
erature on magnetic monopoles see[8]).
Here we attempt a more conservative ap-
proach and ask the following question:
Can we develop a theory that can account
for the quantization of charge, which
would simultaneously be consistent with
currently accepted theories and experi-
ments? Toward this goal, we formulate a
theory of classical electrodynamics where
the only admissible electric charges are

topological singularities in the electromagnetic field. There are
only two opposite - positive and negative - values of the charge,
which correspond to the two values of chirality of topological
singularities. Continuous distributions of charges are not possi-
ble, whereas quantization of charge is guaranteed by the Chern
theorem[9] (Figure 1). We point out that it may be possible to ac-
count for charge quantization by the classical theory of electrody-
namics. If in some future work this theory is quantized, and if the
quantum theory yields identical results as conventional quantum
electrodynamics, this would account for charge quantization and
answer the question posed above.
Maxwell’s theory of classical electrodynamics is convention-

ally formulated with continuous distributions of charges and cur-
rents, which are sources of electric andmagnetic fields.[10,11] Dur-
ing the development of quantum electrodynamics, several differ-
ent formulations of classical electrodynamics emerged including
Lorentz-Dirac[12] and Wheeler-Feynman formulation,[13,14] e.g.,
see Ref. [15] and refs. therein. A nice account of the problems
faced, especially that of infinities related to the self-energy of a
point charge, and the line of reasoning used in developing the
theory, can be found in Feynman’s Nobel lecture.[16] However,
these theories were not formulated to address the problem of
charge quantization.
According to Maxwell’s theory, the scalar and the vector poten-

tial for a point charge q moving along a trajectory w(t) are the
Liénard–Wiechert potentials[10,11]:

VM(x
𝜇) = 1

4𝜋𝜀0

qc
sc − s ⋅ v

, AM(x
𝜇) = v

c2
VM. (1)
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Figure 1. Comparison of Dirac’s quantization condition and the present theory. a) If a single magnetic charge g (i.e., magnetic monopole) exists in our
universe, then the interaction of the magnetic charge g and an electron e in quantum theory leads to quantization of the product ge.[1,8] b) In the present
theory we construct electric and magnetic fields by using Berry connections and curvatures from the solution of Weyl equation in frequency-wavevector
space. These solutions are identical to the solutions of Maxwell’s equations for moving point charges, obtained via the Liénard–Wiechert potentials;
however, Chern theorem plays the role of Gauss law and guarantees quantization of electric charges, which are here topological singularities in space.

Here, x𝜇 = (ct, r) denotes a point in spacetime, c is the speed of
light, s = r − w(tr), s = |s|, and v = dw(t)

dt
|tr is the velocity of the

point charge at the retarded time tr . The retarded time is implic-
itly defined by the equation

|r − w(tr)| = c(t − tr), (2)

which arises from the fact that information on the position, ve-
locity, and acceleration of the point charge travels at the speed
of light. The electric and magnetic fields are given by EM ( x𝜇) =
−∇VM − 𝜕AM∕𝜕t, and BM(x

𝜇) = ∇ × AM. The lower index M
stands for Maxwell’s equations.
The formulation of classical electrodynamics presented here

yields identical expressions for the electric and magnetic fields
of a point charge (except for a multiplicative constant), however,
the scalar and the vector potentials considerably differ. A funda-
mental difference between Maxwell’s equations and our theory
is the following: Maxwell’s equations allow solutions with con-
tinuous distributions of charges and currents, while the present
theory allows only point charges with two opposite (positive and
negative) values of the charge.

2. Results

The theory is based on the relativistic Weyl equation[17] in
frequency-wavevector (that is, energy–momentum) space:

c 𝜕
𝜕𝜔

𝜓̃R(k
𝜇) = −(𝜎x

𝜕

𝜕kx
+ 𝜎y

𝜕

𝜕ky
+ 𝜎z

𝜕

𝜕kz
)𝜓̃R(k

𝜇), (3)

where 𝜎i, i = x, y, z, are the Pauli matrices, and k𝜇 = (𝜔∕c, k) is
a 4-vector in the frequency-wavevector space. Equation (3) is the
right-handed form of the Weyl equation, hence the index R in
𝜓̃R(k

𝜇). The left-handed form is obtained by placing a minus sign
on the left-hand side of Equation (3). Wavefunction 𝜓̃R(k

𝜇) is a
two-component spinor. In this theory, we calculate the electro-
magnetic fields from eigenstates of the Weyl equation by using
Berry connection and Berry curvature machinery,[18] where “pa-
rameters” are space and time. Thus, 𝜓̃R(k

𝜇) should be regarded
as an auxiliary mathematical field used for generating the elec-

tromagnetic field. The auxiliary field contains information on the
trajectory of a moving point charge:

𝜓̃R(k
𝜇) = 𝜓R(x

𝜇) exp(ik ⋅ 𝝆 − i𝜔
c
𝜌0), (4)

where 𝜌𝜇 = (𝜌0,𝝆) is a displacement 4-vector

𝜌𝜇 = Λ𝜇
𝜈
(x𝜈 − w𝜈). (5)

Here, w𝜈 = (ctc,w(tc)) denotes the position of the charge at time
tc, that is, w

𝜈 describes world-line of the moving charge, whereas
x𝜈 = (ct, r) is a point in spacetime where we want to know the
electric andmagnetic fields.We did not specify howw𝜈 and x𝜈 are
related, as this connection naturally arise from the theory. Tensor
Λ𝜇
𝜈
in Equation (5) is a Lorentz transformation that depends on

the velocity and acceleration of the moving charge in a manner
specified below.
From Equations (3) and (4) we obtain an eigenvalue equation

H𝜓R(x
𝜇) = 𝝈 ⋅ 𝝆𝜓R(x

𝜇) = 𝜌0𝜓R(x
𝜇), (6)

which has two eigenstates |𝜓R,n⟩ and |𝜓R,p⟩, with opposite eigen-
values equal inmagnitude: 𝜌0 = ±|𝝆| (this is equivalent to 𝜌𝜇𝜌𝜇 =
0 in 4-vector notation). The eigenstate |𝜓R,p⟩ corresponds to the
positive eigenvalue 𝜌0 > 0, whereas the negative eigenvalue cor-
responds to |𝜓R,n⟩. Because 𝜌𝜇 is obtained from the displacement
4-vector s𝜈 = x𝜈 − w𝜈 with a Lorentz transformation, 𝜌𝜇𝜌𝜇 = 0 im-
plies that s𝜇s𝜇 = 0. Thus, the two events, x𝜈 and w𝜈 , are connected
by a signal traveling at the speed of light. The Lorentz transforma-
tion cannot reverse the time-ordering of two events separated by a
light-like interval, therefore, 𝜌0 > 0 implies s0 > 0 and vice versa.
As we have already stated, w𝜈 = (ctc,w(tc)) is the world-line

of the moving charge, whereas we aim to calculate the electro-
magnetic fields at x𝜈 = (ct, r). If we rewrite s𝜇s𝜇 = 0 as c(t − tc) =
±|r − w(tc)|, we see that the positive (negative) sign in this equa-
tion corresponds to t > tc (t < tc, respectively). This means that
when we use |𝜓R,p⟩ together with c(t − tc) = |r − w(tc)| to calcu-
late the electromagnetic fields, we obtain retarded field solutions.
In contrast, from |𝜓R,n⟩ and c(t − tc) = −|r − w(tc)| we obtain ad-
vanced field solutions. By applying the same procedure for the
left-handed form of the Weyl equation, we find that its eigen-
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states |𝜓L,p⟩ and |𝜓L,n⟩ yield the retarded and advanced fields, re-
spectively. The positive eigenvalue implies c(t − tc) = |r − w(tc)|,
which is fully equivalent to Equation (2) with tr = tc, i.e., positive
eigenvalues define the retarded time tr . Here we consider only
the retarded solutions as they are consistent with causality.
The Lorentz transformation Λ is of the form Λ = RB, where

B(v) is a pure boost by velocity of a moving charge v(tr) at the re-
tarded time tr , whereas R(𝜽) is a rotation R(𝜽) = ei(𝜃xJx+𝜃yJy+𝜃zJz),
which depends on the velocity and acceleration of the point
charge at the retarded time tr : 𝜽(tr) = n̂ ⋅ ∫ tr (𝝎Th(t

′) ⋅ n̂)dt′, where

𝝎Th(t
′) = 1

c2
𝛾2

𝛾 + 1
(a(t′) × v(t′)) (7)

is the Thomas precession frequency,[19] and n̂ is a fixed unit vector
alignedwith a × v at the retarded time tr . Here, Ji are generators of
rotations, and 𝛾 = 1∕

√
1 − v2∕c2 is the Lorentz contraction. Later

in the text, we will demonstrate that the electromagnetic fields
depend only on the derivatives of the angle variables d𝜽(tr)∕dtr =
𝝎Th(tr) at tr . For a 1D motion of the charge, a × v = 0 and Λ is a
pure boostΛ = B(v). For curvilinearmotion, the boost is followed
by rotation. If the curvilinear motion is confined to a plane, the
definition of the angle simplifies to 𝜽(tr) = ∫ tr 𝝎Th(t

′)dt′.
The vector and the scalar potentials in present theory are given

by the Berry connection[18]:

A = i⟨𝜓|∇|𝜓⟩, V = − 1
c2
i⟨𝜓| 𝜕

𝜕t
|𝜓⟩. (8)

The electric and magnetic fields are given by the Berry curvature:

E = ∇ × A, B = ∇V + 1
c2
𝜕A
𝜕t
. (9)

In Equation (8), |𝜓⟩ is either |𝜓R,p⟩ or |𝜓L,p⟩. The two eigenstates
|𝜓R,p⟩ and |𝜓L,p⟩ have a well-defined chirality. By calculating the
direction of the electrostatic field (see below), we find that posi-
tive charge corresponds to the fields obtained from the eigenvec-
tor |𝜓L,p⟩, whereas fields obtained from |𝜓R,p⟩ correspond to the
negative charge. For this reason, in the rest of the text we use the
notation |𝜓+⟩ = |𝜓L,p⟩ and |𝜓−⟩ = |𝜓R,p⟩.
Two technical notes are in order: While evaluating the deriva-

tives in Equations (8) and (9), one should take into account the
fact that the retarded time tr , which is implicitly defined with
Equation (2), depends on the coordinates x𝜈 = (ct, r). Therefore,
derivatives of v(tr) and a(tr) with respect to spatial coordinates x, y,
and z are not zero. The connectionA has a singularity fully equiv-
alent to the Dirac string of the Dirac magnetic monopole.[1] This
was clarified by Wu and Yang, who have shown that two connec-
tions are required to cover the entirety of parameter space, which
is real space here; see Figures 2a,b,d,e and 3a,b,d,e for illustra-
tion. The two connections are related by a gauge transformation
in a region where they overlap.[20]

Although the theory is written for a single charge, by postulat-
ing the superposition principle it is straightforward to expand it
for a number of charges; for simplicity we will discuss a single
charge. Note that in our theory the electric field is a curl of the vec-
tor potential A. This means that the only admissible charged ob-
jects are singularities of the electromagnetic field in space where
∇ ⋅ (∇ × A) = 0 is not applicable.Moreover, by the construction of

the electric field, these singularities are topological, that is, Chern
theorem guarantees that

∮ S
E ⋅ da = 2𝜋 × integer, (10)

where the integer corresponds to the number and chiralities
of the topological singularities inside the closed surface S, see
Figure 1. In our theory, the sign of the charge corresponds to the
chirality of the topological singularity in space. We emphasize
that the quantization of charge [Equation (10)] is not an assump-
tion in our theory. More specifically, the postulated equations are
Equations(3)–(5) and (7)–(9), whereas Equation (10) can be ana-
lytically derived from the postulates (via the Chern theorem).
The electric andmagnetic fields in Equation (9) differ from the

conventional Maxwell fields by a multiplicative constant

EM =
q

2𝜋𝜀0
E, BM =

q
2𝜋𝜀0

B, (11)

where q is the electron charge.
First, we demonstrate that Equation (11) indeed holds.We start

with the simplest example of a stationary point charge at a posi-
tion w, v = 0, where Hamiltonian Equation (6) takes the form
H = 𝝈 ⋅ (r − w). This is a well-known Hamiltonian that yields a
Berry monopole at w, that is,

E = ±1
2

r − w
|r − w|3 , B = 0; (12)

positive (negative) sign corresponds to fields obtained with |𝜓+⟩
(|𝜓−⟩, respectively). The electric field in Equation (12) and the
corresponding connections A are illustrated in Figure 2a–c.
Next, we consider a point charge moving with the constant

velocity along the z-axis, w = vztẑ, where Hamiltonian in Equa-
tion (6) takes the form

H = x𝜎x + y𝜎y + 𝛾(z − vzt)𝜎z. (13)

By calculating the Berry connections and curvatures (Section SI,
Supporting Information), we obtain:

E = ±1
2

𝛾(r − vztẑ)[
x2 + y2 + 𝛾2(z − vzt)2

]3∕2 , B = 1
c2
vzẑ × E, (14)

which are exactly the electric and magnetic fields of the point
charge moving at a constant velocity. This result is perhaps not
surprising because we have essentially Lorentz boosted the sta-
tionary Hamiltonian 𝝈 ⋅ (r − w) to obtain Equation (13). The elec-
tric field in Equation (14) and the corresponding connections A
are illustrated in Figure 2d–f.
However, what we find surprising is that this approach yields

correct Maxwell expressions for the field of a charge that ac-
celerates and radiates. First, we address motion of a charge
along a straight line, where velocity and acceleration are collinear
(as in Bremsstrahlung). Because a × v = 0, we have R = 14,
and Lorentz transformation in Equation (5) is a pure boost,
Λ = B(v(tr)). Without losing generality, we set the motion of the
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Figure 2. The Berry connectionA, and the corresponding electric field E = ∇ × A for a stationary topological singularity (a–c), and a topological singularity
moving at velocity v = 0.995c along the z-axis (d-f). The unit convention for illustrations is c = 1. a,b) The two connections A for a stationary point charge.
Two connections are needed to cover the real space due to the presence of the Dirac string singularities, which are indicated with black solid lines. The
amplitude of the connections is indicated by using the color map, whereas the direction is asimuthal, i.e., perpendicular o the plane with the direction
indicated on the plot. The connections in (a) and (b) are connected by a gauge transformation in a region where they overlap. c) The electric field
calculated from the connections in (a,b). The magnitude of the electric field is indicated by using the color map, whereas the direction is indicated with
arrows (the length of the arrow does not correspond to the magnitude of the field). d–f) The same layout as in (a–c) for a moving topological singularity.

charge along the z-axis. The Hamiltonian Equation (6) is given
by

H = x𝜎x + y𝜎y + 𝛾(tr)(z − wz(tr) − vz(tr)(t − tr))𝜎z. (15)

Although it is essentially the same Hamiltonian as in the pre-
vious example, the derivative dvz(t)∕dt|tr is now not necessarily
zero, which gives rise to the radiation field. By applying the ma-
chinery of connections and curvatures (Section SII, Supporting
Information), we find the electric and magnetic fields to be:

E = ± 1
2

s
(s⋅u)3

[
(c2 − v2z)u + s × (ĉs × (azẑ))

]
,

B = 1
c
ŝ × E,

(16)

coinciding with Maxwell’s theory. Here, we have used u ≡ ĉs − v
following.[10] In Figure 3 we illustrate the electric field fromEqua-
tion (16), and pertinent connections A, for a topological singu-
larity oscillating along the z-axis. Figure 3a–c corresponds to the
topological singularity at the amplitude of the oscillating motion
where v = 0 and the magnitude of the acceleration is maximal.
In Figure 3d–f we show A and E when the singularity passes the
origin, a = 0 and the magnitude of the velocity is maximal.
Now we turn to curvilinear motion. For simplicity, let us first

address motion of a charge in a plane, which we choose to be
the xy plane without loss of generality. In this case, the rotation

component of the Lorentz transformation Λ = RB is of the form
R(𝜃z(tr)) = ei𝜃z(tr )Jz , where 𝜃z(tr) = ∫ tr 𝜔Th(t

′)dt′, whereas the boost
is B(vx(tr)x̂ + vy(tr)ŷ). The Thomas precession frequency is at any
point of motion orthogonal to the xy plane: 𝝎Th(t

′) = 𝜔Th(t
′)ẑ. By

using Λ = RB, we construct the Hamiltonian Equation (6) and
apply Equations (8) and (9) to calculate the fields. A detailed ex-
pression for Λ = RB and calculation of the electric field compo-
nent Ez is written in Section SIII (Supporting Information), while
the other field components can be obtained in an analogousman-
ner yielding

E = ±1
2

s
(s ⋅ u)3

[
(c2 − v2)u + s × (u × a)

]
, B = 1

c
ŝ × E. (17)

The resulting fields in Equation (17) coincide with those given by
Maxwell’s theory.[10]

Next, consider a curvilinear motion in three-dimensions (3D).
First, we note that Equation (17) coincides with solutions of
Maxwell’s theory for a 3D curvilinear motion of the charge.[10]

The reason behind this is that the electromagnetic fields at a point
x𝜇 depend on the instantaneous velocity and acceleration at the
retarded position of the charge. The retarded velocity and acceler-
ation vectors are in a plane that is perpendicular to the unit vector
n̂ = a(tr) × v(tr)∕|a(tr) × v(tr)| (see Figure 4 for illustration). Thus,
we can always invent a 2D motion in the plane perpendicular

Laser Photonics Rev. 2025, 19, 2400217 2400217 (4 of 7) © 2024 The Author(s). Laser & Photonics Reviews published by Wiley-VCH GmbH
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Figure 3. The Berry connection A, and the corresponding electric field E = ∇ × A for an oscillating topological singularity. The motion is described by
z = A cos(𝜔t), where A = 1 and A𝜔 = 0.95 (using c = 1 unit convention). a–c) A and E at t = 0 when the topological singularity is at the amplitude of
the oscillating motion, where v = 0 and the magnitude of the acceleration is maximal. d–f) A and E at 𝜔t = 𝜋

2
when the singularity passes the origin,

a = 0 and the magnitude of the velocity is maximal. The direction and magnitude of the vector fields is indicated as in Figure 2.

to n̂ that has identical instantaneous velocity and acceleration at
the retarded position of the charge as a given 3D curvilinear mo-
tion, and the electromagnetic fields at x𝜇 must be, according to
Maxwell, identical for the two different motions. In other words,
if we have two world-lines, one describing 2D and the other
3D curvilinear motion, such that at the retarded position w𝜈 =
(ctr ,w(tr)) the velocity and acceleration of the two motions coin-
cide, these twomotions will yield identical electromagnetic fields
at points x𝜇 = (ct, r), which are connected withw𝜈 by a signal trav-
eling at the speed of light: s𝜇s𝜇 = 0, s𝜇 = x𝜇 − w𝜇. Therefore, as
we wish our theory to yield identical solutions as Maxwell’s the-
ory, we define the unit vector n̂ to be fixed perpendicular to the
plane spanned by the retarded velocity and acceleration, and de-
fine the angle of rotation as 𝜽(tr) = n̂ ⋅ ∫ tc (𝝎Th(t

′) ⋅ n̂)dt′. With this
definition, we have economically constructed the Lorentz trans-
formation Λ = R(𝜽(tr))B(v(tr)) that yields correct expressions for
the electromagnetic field of a moving charge. Besides the general
analytical construction described above, we have verified this re-
sult numerically as well.
Let us address the Lorentz covariance of the theory. Suppose

that we observe the motion of a charge in an inertial frame S. We
insert theworld-line of that chargew𝜇, which contains the velocity
v and acceleration a of the charge in frame S into Equations (3)–
(5) and (7)–(9) that constitute our theory, and obtain the fields E
and B at x𝜇 in frame S. If we move to another inertial frame S′,
where theworld-linew′𝜇, the velocity v′, and acceleration a′ can be
obtained via Lorentz transformations, and insert these quantities
in the same Equations (3)–(9), but now with primed quantities,

we obtain the fields E′ and B′ at x′𝜇 in frame S′. We know that the
fields E and B transform into E′ and B′ as a 2nd rank tensor un-
der Lorentz transformations, simply because they are solutions
of Maxwell’s equations. Therefore, the Lorentz covariance of our
theory is connected to the fact that we reproduceMaxwell’s theory
(for point charges). TheWeyl Equation (3) ismanifestly covariant.

3. Discussion

The idea for formulating electrodynamics in terms of the Weyl
equation in frequency-momentum space arose from studies of
the Weyl semimetals in condensed-matter physics, photonics,
and ultracold quantum gases (e.g., see Refs. [21–25]). Under
specific circumstances, Weyl points may occur in momentum
space of crystalline, photonic, or optical lattices. These momen-
tum space topological singularities are located somewhere in the
Brillouin zone(s) of these materials. The equivalent of Gauss
law for these Weyl points in momentum space is the Chern
theorem.[21–25] The idea for this study was simply to exchange
the real and momentum space to obtain quantized topological
charges as electric charges in real space, such that the Gauss law
in real space would be equivalent to the Chern theorem.
It has been previously shown that Maxwell’s equations can

be derived from the massless Dirac equation in spinor form
(e.g., see Refs. [26, 27] and refs. therein). These approaches are
equivalent to Maxwell’s electrodynamics that allows for contin-
uous distributions of charges, and therefore they considerably
differ from our theory. The Berry phase effects have been ad-

Laser Photonics Rev. 2025, 19, 2400217 2400217 (5 of 7) © 2024 The Author(s). Laser & Photonics Reviews published by Wiley-VCH GmbH
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Figure 4. A topological singularity (i.e., electric charge) moving on an ar-
bitrary, non-planar trajectory in 3D space, with its velocity and acceleration
shown at two arbitrary points of the trajectory: A and B. Circles CA and CB
describe the local curvature of the trajectory, and lie in the same planes as
the velocity and acceleration vectors evaluated at the corresponding points
(every 3D trajectory is locally identical to a 2D circular curve).

dressed in momentum space of the massive,[28] and more re-
cently the massless Dirac (i.e., Weyl) equation,[29] with Dirac
monopoles in momentum space. Ref. [29] also addressed the
monopole in momentum space of Maxwell equations. These cal-
culations are in sharp contrast to this theory, which addresses
electric monopoles in real space arising from the Weyl equa-
tion in frequency-wavevector space, and establishes the connec-
tion to the fields obtained fromLiénard–Wiechert potentials.[10,11]

Nevertheless, by drawing upon the analogy between the solutions
of the Maxwell equations for moving point charges in real space,
which are fully equivalent to solutions of our theory, one could get
inspiration for potential observations of analogous phenomena
in momentum space of Weyl semimetals in condensed matter,
photonic or optical lattices. By changing the parameters of these
lattices, Weyl points can be moved in the Brillouin zone (i.e., in
momentum space), which is analogous to the motion of charges
in real space.
Although the physics of Weyl semi-metals is most closely re-

lated to this work, we point out there are numerous studies of
topological quantization in condensed matter physics, photon-
ics, ultracold atomic gases, acoustic crystals and other systems,
for example, see Refs. [30–39]. Our focus here is solely on the
quantization of electric charge within the realm of classical elec-
trodynamics.
Up to this point, we have considered the field 𝜓̃R,L(k

𝜇) sim-
ply as an auxiliary field that enforces quantization of charge
via Chern theorem, which very conveniently yields, via Berry
connection-curvature machinery, electromagnetic fields of mov-
ing point charges. One may ask, are these Weyl fields more
than a mathematical convenience? Can they be interpreted as
particles that interact with electric charges and how? The hy-
pothetical particles described by fields 𝜓̃R,L(k

𝜇) are solutions of
the Weyl equation in frequency-wavevector space, that is, in

energy–momentum space. Therefore, they live in a space dual to
Minkowski spacetime. However, the dynamics in the two spaces
are not independent. When a particle moves through spacetime,
under the influence of interactions, its energy and momentum
can change. Inversely, if a hypothetical particle described by the
field 𝜓̃R,L(k

𝜇) moves through energy–momentum space, its spa-
tial and temporal coordinates can change. For dynamics in such
a space, one should find the laws of “conservation of space”
and “conservation of time,” which are analogous (or perhaps
dual) to conventional laws of conservation of momentum and
energy, respectively. Equation (8) would represent interactions of
these hypothetical 𝜓̃R,L(k

𝜇) particles with electric charges. Thus,
when such a particle moves through spacetime, its wavefunction
𝜓̃R,L(k

𝜇) acquires a phase fully analogous to the (geometric) Berry
phase;[18] in this case spacetime coordinates can be thought of as
parameters, such that a change of parameters imprints the geo-
metric phase on the particle’s wavefunction. This discussion im-
plies that to think of 𝜓̃R,L(k

𝜇) as a physical field, we should change
the standard paradigms of physics such as conservation of energy
and momentum. Therefore, in this paper we regard 𝜓̃R,L(k

𝜇) as
auxiliary mathematical fields, and leave potential manifestation
of their physical reality for future studies.
In this theory, we establish the electromagnetic fields from the

world-lines of topological singularities (sources). Up to this point,
we have not discussed the force on the singularities, that is, the
Lorentz force on point charges. In conventional classical electro-
dynamics, the Lorentz force is postulated (e.g., see Refs. [10, 11]):

F = q(EM + v × BM). (18)

In classical mechanics, it is used to derive the motion of charges
in electromagnetic fields, while Maxwell’s equations are used to
calculate the fields from these charges. In a fully equivalent man-
ner, we can postulate an appropriate version of the Lorentz force
for our theory,

F =
q2

2𝜋𝜀0
(E + v × B), (19)

which is identical to the force in Equation (18). The coupling
constant q2∕2𝜋𝜖0 is not fixed by our theory, however, the cou-
pling constant is also not fixed in conventional electrodynamics;
it rather follows from experimental observations. The key dis-
tinction is that our theory allows only two opposite values of the
charge, and they are necessarily point charges, which are con-
straints on the fields not contained in Maxwell’s theory.

4. Conclusion

In conclusion, we have formulated a theory of classical electro-
dynamics where electric charges are topological singularities in
the electromagnetic field, and their sign corresponds to the chi-
rality of the singularity. Charge quantization is thus accounted by
the Chern theorem. The electric and magnetic fields are identi-
cal to those produced by the Maxwell’s equations, apart from the
multiplicative constant q∕2𝜋𝜖0. Quantization of charge conven-
tionally relies on the prediction of magnetic monopoles.[1] How-
ever, these theories addressing quantization of charge are inher-
ently quantum,[8] whereas our theory is entirely classical. The

Laser Photonics Rev. 2025, 19, 2400217 2400217 (6 of 7) © 2024 The Author(s). Laser & Photonics Reviews published by Wiley-VCH GmbH
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theory is based on the relativistic Weyl equation in frequency-
wavevector space, with eigenstates depending on the spacetime
coordinates. From the eigenstates, we calculate the Berry con-
nection and curvatures, by using spacetime coordinates as “pa-
rameters”, and then identify the curvatures as electric and mag-
netic fields. In outlook, we foresee efforts to develop the quan-
tum version of this theory to test whether it will yield identical
results as conventional quantum electrodynamics. One of the
greatest challenges of these efforts will be to resolve the issue of
infinities related to self-energy of a point charge; it is not clear at
this point whether conventional quantum electrodynamics tech-
niques could be used to address this challenge in that new theory.
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