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Resumen

La interacciéon gravitacional interviene en los procesos mas energéticos del Universo y
es el mecanismo con el cual es posible analizar a la materia oscura y a la energia oscura,
las dos contituyentes del Universo que juntas suman el 96 % de la densidad total de
materia-energia. Las observacionales apuntan a que el 22 % del contenido de materia-
energia del Universo corresponde a materia oscura y el 74 % a la energia oscura y el 4 %
restante corresponde a la materia ordinaria que constituye a las estrellas, planetas, gas
interestelar, la radiacion electromagnética y neutrinos. Se ha explorado la posibilidad de
que la materia oscura y la energia oscura estén compuestas por particulas elementales
o campos aun no observados. Para resolver el enigma, es necesario ampliar los modelos
tedricos considerando las observaciones astronémicas y cosmologicas para acotar la res-
puesta correcta. Por otro lado, la deteccion de ondas gravitacionales y el modelado de
fuentes confirmadas e hipotéticas, promete ayudar a discernir entre modelos.

En esta tesis presentamos resultados nuevos sobre la naturaleza de los campos gravi-
tacionales producidos por tres tipos de objetos compactos: las estrellas de neutrones, las
estrellas de bosones y los agujeros de gusano. Las estrellas de neutrones, son ejemplos
de configuraciones de materia usual que conocemos, las estrellas de bosones lo son de
la materia oscura y los agujeros de gusano son ejemplo de configuraciones formadas por
materia exoética. Utilizamos las ondas gravitacionales como herramienta para compren-
der la naturaleza de los sistemas astrofisicos.

De éste modo, presentamos inicialmente el modelo de un sistema binario de objetos
compactos como las estrellas de neutrones, pero en el que incorporamos a los campos
magnéticos en la dindmica de la binaria durante la fase de espireleo y en la emision
de ondas gravitacionales. Demostramos que los campos magnéticos afectan la forma de
las ondas gravitacionales aunque de manera imperceptible para la sensitividad de los
actuales detectores de ondas gravitacionales. Obtenemos formulas explicitas para el de-
crecimiento en la separacion de las estrellas, el tiempo para alcanzar un radio minimo, la
luminosidad gravitacional, la tasa de cambio de la frecuencia de las ondas gravitaciona-
les, asi como su amplitud, todo esto dentro de la aproximacion cuadrupolar. Analizamos
casos de campos magnéticos muy intensos ~ 10'¢ G, y mostramos que el efecto sobre
las cantidades observables es en orden de magnitud similar a las correcciones a segundo
orden de la aproximacion PostNewtoniana, atn por fuera del rango de sensitividad de los
observatorios de ondas gravitacionales. Este trabajo aporta comprension sobre el efecto
de los campos magnéticos en las ondas gravitacionales, y, demuestra que éstos no deben
ser despreciados en las futuras simulaciones de la colision de las estrellas de neutrones
debido a que en un futuro muy cercano, la sensitividad permitira estudiar los efectos de
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los campos magnéticos en la forma de las ondas gravitacionales.

Una vez entendida la dinamica de un sistema binario compuesto de materia ordinaria
y su emision de ondas gravitacionales en el régimen lineal, pasamos a considerar un sis-
tema binario de estrellas de bosones-¢, conformadas por campos escalares complejos. Lo
hacemos analizando configuraciones estables de tipo materia oscura llamadas estrellas
de bosones-f. Nos enfocamos en entender las propiedades intrinsecas que deber tener el
campo escalar complejo para formar estrellas de bosones-¢ que al chocar frontalmente,
emitan ondas gravitacionales con frecuencias y amplitudes dentro del rango de sensi-
tividad de los observatorios actuales de ondas gravitacionales. Encontramos relaciones
cualitativas entre la masa intrinseca del campo escalar y el tamano, duraciéon y forma
de las ondas gravitacionales generadas. El parametro ¢ modifica la masa de la binaria
y, por tanto, la forma de las ondas gravitacionales entre binarias £ = 0 y £ # 0 también
difiere. Sin embargo, la comparacion entre senales ¢ = 0 y ¢ # 0 requiere considerar
muchos més modelos de fuentes dentro de todo el rango de compacidades posibles. Mos-
tramos de éste modo que las estrellas de bosones podrian ser detectadas por la emision
gravitacional durante una colisién, lo cual podria ser un paso importante para describir
a la naturaleza de la materia oscura.

Finalmente, analizamos un tipo de materia distinto: materia exética. Luego del des-
cubrimiento de la expansion acelerada del Universo, este tipo de materia esta tomando
mayor interés. Construimos una nueva solucién numérica de las ecuaciones de Einstein-
Maxwell-Klein-Gordon de agujero de gusano eléctrico, formado por un campo escalar
complejo acoplado a un campo eléctrico. Analizamos sistematicamente el efecto de dis-
tintos parametros como la auto-interacciéon del potencial escalar y la carga eléctrica.
Encontramos expresiones aproximadas para el campo escalar y la masa del agujero de
gusano en el regimen de grandes valores del pardmetro de auto-interaccion. Mostramos
un acuerdo excelente entre las expresiones aproximadas y las soluciones numéricas. Ade-
mas, estudiamos el efecto de la carga sobre la masa, el nimero de particulas y el radio
de la garganta del agujero de gusano. Cerramos esta parte con el anélisis del movimiento
geodésico de particulas con y sin carga senalando que éste seria un paso en la direcciéon
de detectar agujeros de gusano.

En conjunto, presentamos soluciones a las ecuaciones de Relatividad General de gran
interés porque se trata de propuestas de objetos compuestos por distintos tipos de mate-
ria, lo cual nos puede ayudar a comprender no sélo la naturaleza de la materia ordinaria
y su interaccion con los campos electromagnéticos, sino también la naturaleza del 96 %
del contenido de materia y energia del Universo: la materia y la energia oscura y la
posiblidad de que éstas formen configuraciones autogravitantes.

Palabras clave: Relatividad General, Ondas Gravitacionales, Objetos Compactos,
Campo Escalar, Materia oscura, Materia exotica.
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1 Introduccién

Relatividad General (RG) proporciona la base tedrica mas solida y precisa a la fecha
para describir los campos gravitacionales |1, 2|, ademaés, predice la existencia de las
ondas gravitacionales [3|. Las ondas gravitacionales son una herramienta que promete
aportar respuestas a enigmas como la naturaleza interior de las estrellas de neutrones,
la colision de sistemas binarios y el descubrimiento de objetos compactos y/o auto-
gravitantes|!, 5|. Ademas, con ondas gravitacionales se prevé avanzar en la comprension
de la Fisica fundamental a densidades nucleares y probar rigurosamente la teoria de RG
en el régimen de campo fuerte|(].

Si bien los agujeros negros estelares y las estrellas de neutrones son fuentes confirmadas
de ondas gravitacionales|7, &, 9], atn hay preguntas sin resolver sobre ellos. Respecto a
las estrellas de neutrones, aspectos como su nacimiento, su ecuacion de estado y la fuente
de sus campos magnéticos, son temas vigentes de investigacion |10, 11]. Ademés, aunque
existen muchos observatorios de ondas electromagnéticas, puede ser que existan objetos
astrofisicos, que por sus propiedades intrinsecas no emitan ondas electromagnéticas, pero
sf ondas gravitacionales. Esta posibilidad ha sido explorada de forma casi sistematica, de
modo que a dia de hoy existe toda una variedad de objetos auto-gravitantes hipotéticos
[12, 13]. Quizas el mas plausible es la estrella de bosones [14, 15, 16], se trata de una
solucion a las ecuaciones de RG acopladas a un campo escalar complejo que pueden
interpretarse como objetos de materia oscura cuyas compacidades tipicas son compa-
rables a la compacidad de las estrellas de neutrones. Existen otras soluciones teoricas
més exoticas, también de campo escalar complejo, como los agujeros de gusano|17, 18],
aunque estos estarian formados de materia exética, en el sentido definido en la sec. 1.1.3.

Las tres investigaciones en las que colaboré durante mi doctorado, y que seran descri-
tas en los capitulos dos [19, 20], tres y cuatro [21], respectivamente, descansan sobre la
teoria de RG. En dos de las tres investigaciones trabajamos con las ondas gravitacionales
emitidas por la interacciéon de sistemas binarios. También, en una de las tres investiga-
cion estudiamos estrellas de neutrones (capitulo dos), y, en las otras dos investigaciones
trabajamos con configuraciones auto-gravitantes formadas de campos escalares comple-
jos, a saber, estrellas de bosones (capitulo tres) y agujeros de gusano (capitulo cuatro),
respectivamente.

En este capitulo introductorio, en la secciéon 1.1 se revisan los fundamentos de RG
desde su formulacién, incluyendo el formalismo de la aproximacion cuadrupolar y el for-
malismo Newman-Penrose. Posteriormente, en la seccién 1.2 hacemos un breve recuento
historico sobre los descubrimientos astronémicos de las ondas gravitacionales, la materia
oscura y la energia oscura. En la seccién 1.3 introducimos el concepto de configuraciones
auto-gravitantes y dentro de ellas describimos los agujeros negros, las estrellas de neu-
trones, las estrellas de bosones y los agujeros de gusano, pues seran considerados en los
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subsecuentes capitulos. Finalmente, en la seccién 1.4 describimos la organizaciéon general
del resto de la presente tesis.

En toda la tesis trabajamos con signatura (—, +, 4, +). También, a lo largo de la tesis
utilizamos las siguientes constantes universales: Gravitacion universal G = 6,67384 x
107" m?kg's72 = 1,327 x 10 M km®s~2, a excepcién del capitulo cuatro donde uti-
lizamos unidades geometrizadas.

1.1. Relatividad General

RG [22, 23, 24], formulada en 1916 [25, 20|, es una herramienta teérica vigente pa-
ra el estudio de los campos gravitacionales. En el caso de los fenémenos astrofisicos y
cosmologicos, la interaccion gravitacional juega un rol fundamental, por ejemplo, deter-
mina completamente la estructura a gran escala del Universo y la dindmica estelar y
galactical?, 1]; esto ocurre por sus particularidades que la diferencian de las otras inter-
acciones fundamentales': es de largo alcance, siempre es atractiva, y, es universal, pues
acttia sobre todas las formas de materia y energia. RG, junto a la Mecénica Cuantica, es
uno de los cimientos mas solidos y estables de la Fisica|27|. Para una revision completa
del tema puede consultarse |22, 24, 23, 5, 28].

A nivel matematico, RG se desarrolla sobre una variedad diferenciable de 4 dimen-
siones dotada de una métrica g,, que contiene toda la informacién geométrica del espa-
ciotiempo. El elemento de linea ds? es un invariante que se utiliza para determinar la
separacion entre puntos del espaciotiempo y esté dado por,

ds® = gapda®da’. (1.1)

La métrica g,, depende de la distribuciéon de materia y energia, y para conocer las
componentes de la métrica se deben resolver las ecuaciones de campo de RG, como maés
adelante veremos. Dada una métrica, se construyen los simbolos de Christoffel?:

1 0 09q OGba
c cd(gbd+ YJad gb)’

ab_zg

ox*  Ozb  Oxd
los cuales son necesarios para mantener la covarianza de las ecuaciones tensoriales dife-
renciales. Con los simbolos de Christoffel, se construye el tensor de Riemman R, y el
tensor de Ricci Ry :

(1.2)

wd = Ol'og — 0al'gy + T ley — Tegle, (1.3
Ry = R, =0T%, — 0%, + T — T, (1.4)

1Se considera que hay cuatro interacciones fundamentales: la interaccién electromagnética, gravitacio-
nal, nuclear fuerte y nuclear débil. Dependiendo de la escala fisica del proceso, puede predominar
una u otra [1].

2Los sfmbolos de Christoffel se determinan una vez dadas las coordenadas locales. Satisfacen las condi-
ciones de una conexion de Levi-Civita, es decir, preservan la métrica y son libres de torsion [22, 29].
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con J, := 0/0x". El escalar de Ricci R se define como la contraccion del tensor de Ricci
con el tensor métrico:

R = g™ Ry, (1.5)

el escalar de Ricci es el invariante que cuantifica la curvatura del espaciotiempo local
en un punto dado y depende de las segundas derivadas del tensor métrico. La densidad
lagrangiana del campo gravitacional depende directamente del escalar de curvatura R
del espaciotiempo:

C4

N 167TGR’
donde c es la velocidad de la luz en el vacio y G es la constante gravitacional universal.

El tensor métrico g, se acopla universal y minimamente a todos los campos funda-
mentales presentes, englobados en la funcién lagrangiana £y, mediante la accién total

S

Lg (1.6)

s;/\/HM‘lx :/\/E [1%4;2 +£M} d*z, (1.7)

donde g = det(gqp) es el determinante de la métrica gqp, d'x = cdtd®z y L es la lagran-
giana total del sistema dada por

AR
167G
La funcién lagrangiana L£y; puede incluir campos electromagnéticos A,, campos fer-
midnicos y bosonicos ¢, el campo de Higgs H y en general campos escalares y vectoriales
hipotéticos [1]. A manera de ejemplo y anticipando su definicion que serd empleada en
el capitulo cuatro, la funcion lagrangiana del campo electromagnético es [22, 29],
1

Loy = —ZFabF“b, (1.9)

,CE,Cg—{—[,M:

+ L. (1.8)

donde F,;, = 0, A, — O, A, es el tensor de Faraday, el campo eléctrico F% = E* y el campo
magnético F'YV = ¢+ Bk

Bajo el principio variacional aplicado a la accion de la Ec.(1.7) se deducen las ecuacio-
nes dinamicas del espaciotiempo y los campos fisicos presentes. El principio plantea que
el sistema cambia en el tiempo de modo que la trayectoria seguida entre dos puntos del
espaciotiempo es aquella cuya accion es estacionaria (minima o maxima en comparacion
con trayectorias vecinas), es decir,

55 = 0. (1.10)

Luego de calcular la variacion de la accidon respecto al campo gravitacional, se obtienen
las ecuaciones de RG en la forma:

1 81G
= 71'—Tab, con (1.11)

T = 6Ln/6g", (1.12)
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donde Ry, es el tensor de Ricci dado en la Ec.(1.4), gq es la representacion matemé-
tica del espaciotiempo: la métrica, R es el escalar de Ricci de la Ec.(1.5), Ty, recibe
el nombre de tensor de energia-momento o tensor de materia-energia, y, como vemos,
depende totalmente de la métrica y los campos fisicos en la funcion lagrangiana Ly .
Las ecuaciones de campo (1.11) determinan el efecto de la curvatura del espaciotiempo
sobre el movimiento de la materia y la energia, e inversamente, la manera en que la
materia y la energia afectan la curvatura del espaciotiempo. Aunque esté escrita en una
linea, se trata de un sistema de ecuaciones diferenciales, acopladas y no lineales por lo
que resolverlas no es trivial. Existen pocas soluciones exactas de interés fisico a dichas
ecuaciones, en muchos otros casos se consideran soluciones aproximadas y numéricas.

1.1.1. Aproximacién Cuadrupolar

Una manera de estudiar las ecuaciones de campo es trabajar en el regimen lineal de
RG, el cual consiste en expandir la métrica alrededor del espaciotiempo plano, es decir,

Jab = Tab + Pap,  [hap| < 1, (1.13)

donde 7, es el espaciotiempo de Minkowki plano 7y, = diag(—1,1,1,1) y hy, es una
pequena perturbaciéon a la métrica plana. Al sustituir esta métrica en las ecuaciones de
campo (1.11) se llega a la ecuacion de onda

- 1
Ohay = 2077, (1.14)
c
donde 00 = —1(1/c?)92 + V2, la amplitud libre de traza hy, se define como hyy =

hap — Naph /2, siendo h = h? la amplitud libre de traza en la norma de Lorentz defini-
da por 9°hy, = 0. En esta expresion, Ty, es el tensor de la materia-energia, denotada
como fuente. Como vemos, hy, satisface la ecuacion de onda, kg, es la parte del campo
gravitacional que se comporta como onda, es por ello que se interpreta como las ondas
gravitacionales. En el vacio, las perturbaciones métricas se propagan como fluctuaciones
distorsionando la planitud del espaciotiempo.

La solucién general a la ecuaciéon de onda es

- 4G 1 —x
hao(t,x) = —/d3 fmTab (t — MJ/) 7 (1.15)

c

donde el tensor de energia materia esté evaluada al tiempo retardado definido como t,.; =
t— \x;qu Fuera de la fuente, la solucion se puede simplificar en la norma TT utilizando
que B};-T = Ajjuihis = Aijahi (la matriz A¢ satisface por definicion que ASAb g = nap),
y, la conservacion del tensor energia-momento para expresar las componentes Tor v Too
en términos de las componentes espaciales Tj;, de modo que:

_ 4G 1 x — x'
hij (t,x) = FAij,kz/d?’ 2 ————Ty (t - g,x’) : (1.16)

|x — x| c
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donde usamos la notacion x = n y |x| = d . Ahora bien, la aproximacion cuadrupolar es
un caso particular dentro del régimen lineal que aflade las siguientes suposiciones [30]:

= que la distancia a la fuente respecto al tamano de la fuente es mucho mas grande.
Si denotamos R el radio tipico de la fuente, bajo la suposiciéon de fuente lejana
d”R, a un tiempo fijo el término del denominador se expande como: |x — x'| =
r—a' -n+ O(R?/d) ~ r, lo cual simplifica la integral en la Ec.(1.15).

= que la fuente es no relativista. Esta condicién se expresa como A\"R, donde A =
¢/w, siendo w la frecuencia tipica del movimiento dentro de la fuente. Bajo esta
condicion, el tensor de materia-energia se simplifica.

= que las longitudes de las ondas gravitacionales son mucho mas grandes que el
tamafo caracteristico de la fuente (aproximacion de onda larga). Esta condicion
se ocupa cuando la curvatura del espaciotiempo esté determinada por la materia.

Bajo estas condiciones, se efectiia una expansiéon multipolar de las ondas gravitacio-
nales en el espacio de Fourier, y se encuentra que a primer orden la ec.(1.16) se reduce
a:

14@ . |x — x’|
TT _ 3 kl
hij (t,X) = ;Z?Aij’kl(n) /d T (t — c ,X/) (1.17)
12G e
= C_ZFAij,kl(n)Mkl (t—r/c) (1.18)

donde M%7 = [ dxT™(t,x)z'z? es conocido como segundo momento de masa (o tensor
cuadrupolar simétrico) y satisface, por principios de conservacion de masa y energia
(BT = —0;T%) que M¥ =2 [ d®T%(t,x).

Sin pérdida de generalidad, en un sistema de referencia donde n = z , es decir, las
ondas gravitacionales se propagan en la direccion z, tenemos que

Aija My = My, —(Myw — My,)/2 0], (1.19)
0 0 0

de manera que la solucion de la Ec. (1.14) se puede expresar en términos de unicamente
dos amplitudes de polarizacion denotadas h, y hy dadas por,

1G /.- . 20 -

th(t) = 86_4 (Mmz<tret) - Myy(tret)) ) hx(t> = C_lg Ty

La energia por unidad de tiempo transportada en las ondas gravitacionales recibe

el nombre de luminosidad gravitacional, dEpg/dt = Lg. El cambio en la luminosidad

gravitacional por unidad de 4ngulo sélido se relaciona con las amplitudes de polarizacion
como sigue:

(tret) : (120)

— = 1.21
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los corchetes () representan el promedio temporal sobre varios periodos de las ondas
gravitacionales?.

Luego de un tratamiento cuidadoso aprovechando todas las condiciones de la apro-
ximacion cuadrupolar, al insertar la Ec. (1.20) en la Ec. (1.21) y efectuar la integral
angular, se encuentra que la luminosidad total es

G /e i1 s
Le=t5 <MijMz'j - E(Mkk)2> ) (1.22)

esta expresion es conocida como la formula cuadrupolar, fue derivada por primera vez
en 1918 por Einstein [3]; en la actualidad es una primera aproximacion confiable para
estimar la luminosidad de las ondas gravitacionales. Para una revision a detalle de la
aproximacion cuadrupolar puede consultarse |4, 5, 29, 22].

La férmula cuadrupolar permite ver que cualquier objeto con masa acelerado emite
ondas gravitacionales. Por ejemplo,un objeto en rotaciéon cuyo eje de simetria y eje
rotacional no coinciden emite ondas gravitacionales. En tal caso emite una luminosidad
descrita por [31]

 32G 1208

" 5¢5 ’

L (1.23)
donde € es la elipticidad del objeto definida como € = (I; — I3) /13, I,, son los principales
momentos de inercia (n = 1,2, 3). En cambio, un sistema binario de masas individuales
My, M en el regimen lineal emite una luminosidad dada por [30]

32G M i3
LGSB - W (124)
donde M = M + My, up = MiMy/M, y, r es la distancia entre las masas M; y M.
Esta expresion sera generalizada en el capitulo siguiente para un sistema binario con
interaccion magnética dipolar. En la Sec.1.2.2) se contintia la discusion de las ondas
gravitacionales en torno a las detecciones directas recientes.

1.1.2. Formalismo Newman-Penrose

Volvamos a las ecuaciones relativistas (1.11), éstas son muy complejas, pero bajo
distintas suposiciones, pueden representarse de modos mas entendibles. No hay un for-
malismo mejor que otro, més bien, hay formalismos mas convenientes dependiendo del
sistema o problema.

Para el estudio de ondas gravitacionales resulta conveniente introducir el formalismo
de Newman-Penrose donde la idea béasica es estudiar la radiacion a lo largo de geodésicas

3 Al realizar la operacién de promedio, se presupone que las fluctuaciones hg;, se distinguen claramente
del espaciotiempo de fondo y es posible identificar periodos en la fluctuacion. Lo periodos de una
senal numérica se pueden identificar con analisis espectral.
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nulas* con direccion hacia el infinito, simplificando las ecuaciones. La expresion hacia el
infinito se refiere a que las ondas gravitacionales se propagan alejandose de la fuente,
tan lejos como el infinito.

La tetrada nula compleja es una base del espaciotiempo que consiste en dos vectores
nulos reales ¢, n y dos vectores nulos conjugados complejos m, m, de modo que la
tetrada es:

{e.} = (¢, n, m, m) (1.25)

y satisface condiciones de normalizacién y ortogonalidad:

—-n=1=m-m, (1.26)

todos los demés productos punto son idénticamente cero. Por otra parte, la métrica
se expresa como,

Jab = lanb + lbna — MgMp — MpMg, (127)

Las ondas gravitacionales se mueven a la velocidad de la luz, la tetrada nula son las
direcciones fundamentales sobre las que las ondas gravitacionales se mueven [32, 33].

El tensor de Weyl Cyq contiene informacion sobre la curvatura del espaciotiempo y
las ondas gravitacionales. El tensor de Riemman puede descomponerse como,

Rapea = Oabcd + ga[ch]b - gb[ch]m (128)
donde i
Sab = Rap — gRgah (129>

es conocido como el tensor de Shouten. En el vacio, las ecuaciones de campo se reducen
a Ry, = 0, por lo que el tensor de Shouten es igual a cero y el tensor de Weyl Clpeq €8
idéntico al tensor de Riemann Rgp.q.

De acuerdo al teorema de Peeling [33, 23], un componente del tensor de Weyl decae
como 1/r conforme se aleja de la fuente, y es identificado como la radiacion gravitacional
saliente. El componente es justamente el escalar Newman-Penrose Wy, definido como,

\114 = — agvgnamﬁnwmé. (130)

En las simulaciones numéricas de ondas gravitacionales es usual extraer las senales
numeéricas en términos de la cantidad W4, como veremos en el capitulo tres.

El formalismo Newman-Penrose (NP) y el teorema de Peeling permiten estudiar la
estructura asintética del espaciotiempo, por lo que es particularmente importante para
el estudio de ondas gravitacionales, como se mostraré en el capitulo tres.

4La geodésica es la trayectoria que sigue una particula libre que no esta sujeta a ninguna fuerza
externa. En particular, la geodésica nula representa la trayectoria seguida por un haz de luz, es
decir, a una particula moviéndose a la velocidad de la luz. Dado que las ondas gravitacionales
también se mueven a la velocidad de la luz, la tetrada nula son las direcciones fundamentales donde
la radiacion se mueve.



1 Introduccién

1.1.3. Condiciones de energia y materia exética

Las ecuaciones de campo de RG se estudiaron inicialmente bajo condiciones fisica-
mente logicas tomando en cuenta las observaciones astronémicas hasta el momento, a
saber, que la Gravedad es siempre atractiva y que la densidad de la materia-energia
es positiva. Estas condiciones, més que leyes o principios fundamentales, se deben en-
tender como condiciones fenomenolégicas para explicar las propiedades de la materia
observadal34, 35, 36, 37].

Condicién de convergencia temporal: También llamada TCC por sus siglas en
inglés. Establece que la Gravedad siempre es atractiva, es decir,

RuVVP >0, (1.31)

donde V* es cualquier vector temporal, implica, por ejemplo, que dos observadores en
caida libre, conforme pase el tiempo, se irdn acercando entre si.

Condiciéon de energia fuerte: También conocida SEC por sus siglas en inglés.
Al sustituir las ecuaciones de campo de RG en la condicién de convergencia temporal
obtenemos la condicién de energia fuerte:

1
(Tab — 5Tgab) Vvt > 0. (1.32)

La condiciéon de energia fuerte significa que, independientemente del marco de refe-
rencia, la densidad de energia debe propagarse causalmente y ser cero o positiva.

Condicién de energia débil: La densidad de energia medida por cualquier obser-
vador es no negativa:

TwVV > 0. (1.33)

La condicién de energia débil aplicada a vectores V¢ nulos, se conoce como condiciéon de
energia nula.

Condiciéon de energia nula: Se deben satisfacer las condiciones de energia fuerte y
energia débil en el limite de los observadores nulos:

Topk®kb > 0, (1.34)

donde k% es un vector nulo. El producto punto escalar de un vector nulo consigo mismo
es igual a cero.

En la presente tesis, la materia exotica se define como aquella que viola la condicién de
energia fuerte. Este concepto esta en acuerdo con distintos autores como |18, 38, 39, 21].

En la siguiente seccién 1.2 profundizaremos sobre el modelo AMOF y el concepto
de materia oscura y energia oscura. Por ahora, solo mencionaremos que, de acuerdo a
éste, la expansion acelerada del universo es producida por un término llamado constante
cosmologica A 6 energia oscura que se puede modelar como un fluido perfecto de la
forma: Ty, = diag(p, —p, —p, —p), siendo p > 0 la densidad de energia y p la presion.
Las observaciones cosmologicas son congruentes con una ecuacion de estado p(p) = —p
para la energfa oscura. Si evaluamos esto del lado izquierdo de la Ec.(1.32) llegamos
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a que (Tab — %T gab) VaVt = (p+3p) = —2p, sin embargo, dado que la densidad p es
positiva, el término —2p es negativo, lo que significa que la energia oscura no satisface
la condicion fuerte de energia (SEC).

Asi que, de acuerdo a la definicion de materia exética recién presentada, la energia
oscura es un tipo de materia exotica. Cabe aclarar que la energia oscura no viola nin-
gun principio fundamental de la conservacion de energia y satisface las condiciones de
conservacion locales de la materia-energia en RG, pero su comportamiento conduce a
una violacion de la condicién de energia fuerte. Dado que la energia oscura parece violar
una de las condiciones de energia tradicionales, investigar teorias que permitan tales
violaciones podria ser crucial para avanzar en nuestra comprension de qué es la energia
oscura.

Por otra parte, algunos tipos de agujeros de gusano violan tanto la condicion de energia
fuerte como la condicién de energia nula. En ese sentido, aunque la energia oscura es
exotica, objetos como ciertos agujeros de gusano aiin més exdticos, han sido considerados
en la literatura reciente [17, 18|. Es interesante que aun cuando estas soluciones no
satisfacen las condiciones de energia, poseen masas y tamanos finitos . Curiosamente,
algunos agujeros de gusano pueden tener masas negativas [17, 40], como veremos en el
capitulo cuatro [10, 21].

En la Sec.1.3 revisaremos las investigaciones sobre agujeros de gusano, y, en el capitulo
cuatro trabajaremos una configuracion auto-gravitante de materia exética: un agujero
de gusano con carga eléctrica formada por un campo escalar complejo, resultados que
ya se encuentran disponibles en [21] .

1.2. Contexto empirico

RG predice que la luz se curva por efecto de objetos muy masivos, por ejemplo, la
luz al pasar cerca del Sol. Este efecto recibe el nombre de lente gravitacional y fue
comprobado por primera vez en el eclipse solar en 1919 mediante la observaciéon de la
luz de las estrellas localizadas cerca del borde del Sol. Las mediciones de las expediciones
astronémicas encabezadas por Sir Arthur Eddington y Frank Dyson mostraron que la
posicion aparente de las estrellas se desplazaba. La observacion de 1919 proporcioné un
argumento a favor de la teoria de RG [11]|. Ademas,los principios de RG han pasado todas
las pruebas de precision a la fecha, por ejemplo, el principio de equivalencia mediante
el experimento de Eotvos[12], y, pruebas en el régimen de campo débil de alta precision
como la deflexion de la luz [43], el avance del perihelio de Mercurio|11], entre otros. Para
una revision reciente de las pruebas experimentales a RG puede consultarse [6].

A continuaciéon examinaremos el contexto empirico de tres conceptos que se entienden
dentro de RG: la materia oscura, la energia oscura y las ondas gravitacionales.

1.2.1. Materia oscura y energia oscura

El descubrimiento de la materia oscura y la energia oscura son hallazgos que han re-
volucionado nuestra comprension del cosmos. Es asi que en un siglo hemos pasado de
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una vision limitada de la Via Lactea como el universo entero a una imagen amplia y
dinamica de un universo en expansion acelerada, impulsado por componentes como la
materia oscura y la energia oscura. Los avances en astronomia y cosmologia del tltimo
siglo han transformado radicalmente la comprensiéon del tamano y composiciéon del uni-
verso [14, 2, 29]. Ahora sabemos que las galaxias se agrupan en cumulos de galaxias y
supercimulos y que a gran escala, la estructura del universo esta formada por regiones de
sobre-densidad de galaxias unidas por filamentos y separadas por huecos practicamente
vacios.

Es curioso que hasta principios del siglo XX se pensaba que la Via Lactea constituia
todo el universo. Aunque galaxias como Andrémeda ya habian sido observadas desde
siglos previos, no se sabfa que éstas eran galaxias, mas bien, se referian a ellas como
nebulosas espirales. Fue hasta 1926-1929, que Edwin Hubble descubrié que algunas ne-
bulosas espirales eran galaxias independientes a la Via Lactea [15, 46]. En 1929, Hubble
descubri6 la expansion del universo mediante la mediciéon de las velocidades de recesion
de las galaxias en funcion de su distancia a la Tierra[17]|. Las observaciones de Hubble
revelaron un universo mucho mas grande y dinamico de lo que anteriormente se pensaba.
Mas tarde, en 1933, el astronomo Fritz Zwicky [18], a través del estudio del movimiento
de las galaxias en el cimulo de Coma, encontr6é una discrepancia entre la masa luminosa
y la masa dinamica del ctimulo, lo que le llevé a proponer la existencia de la materia
oscura. Resultados sobre la dinamica galactica de Jan Oort[49], parecian entenderse me-
jor considerando también la presencia de materia oscura en las galaxias. La idea de la
materia oscura cobré mayor fuerza en 1970 cuando mediante el analisis de las curvas de
rotacion de distintas galaxias, se encontré que las estrellas més lejanas al centro galéac-
tico se mueven mas rapido que lo esperado para la cantidad de materia visible [50], lo
cual llevo a replantear la existencia de la materia oscura como la causante de la forma
de la curva de rotacion de las galaxias. En las décadas de 1980 y 1990, se realizaron
las primeras simulaciones computacionales de N-cuerpos para reproducir la estructura a
gran escala del universo [51]. Estas simulaciones mostraron que era necesario considerar
la materia oscura para replicar las observaciones cosmoldgicas. Con el paso de los anos,
la medicion de la radiacion cosmica de fondo, la distribucion de galaxias, aportaron evi-
dencia para conjeturar sélidamente la existencia de la materia oscura y que las galaxias
se encuentran rodeadas de un halo de materia oscura [52, 53, 1]. Anélisis relativamente
recientes a partir de que todas las galaxias, incluida la Via Léctea, tienen un halo de
materia oscura [52, H4].

Por otra parte, el siglo XX cerrd con la reafirmacion mediante mediciones de superno-
vas tipo Ia® de que la distancia entre las galaxias estd aumentando, encontrando ademas
que la expansion ocurre de manera aceleradal57, 58]. A falta de mayor claridad, a la
energia que produce dicha aceleracion acelerada se le nombra energia oscura. En seguida
se encontré que la energia oscura podia describirse mediante una constante cosmologica

®De acuerdo a la clasificacion de Lidman et al. [55], un objeto se clasifica como supernova tipo Ia
si la linea de Si II o S II puede identificarse facilmente en su espectro electromagnético, 6, si el
espectro queda bien ajustado al espectro tipico de SN Ia. Distintos modelos teoricos sugieren que las
supernova tipo Ia emergen de la explosiéon termonuclear de una enana blanca que ha crecido hasta
su masa de Chandrasekhar; esto también puede ocurrir dentro de un sistema binario [50].
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denominada A en las ecuaciones de campo de RG[29]. Asi pues, en los tltimos anos,
se ha consolidado un modelo cosmolégico llamado AMOF® por contener energia oscura
representada por A Y Materia Oscura Fria. En el cuadro 1.1 se puede consultar la pro-
porcion de las fuentes del contenido de materia-energia del Universo actual de acuerdo
a las observaciones cosmologicas y el modelo AMOF.

’ Fuente \ Q; = pi/pe ‘
Bariones Q, ~ 0.04
Radiacion (fotones) | ©, < 8 x 107°
Materia oscura Q,, ~ 0.26
Energia oscura (A) Qp ~ 0.70
Curvatura Q. <0.01

Cuadro 1.1: Contenido de materia-energia del universo actual de acuerdo a las obser-
vaciones cosmologicas y el modelo AMOF reportadas en [2]. En la actua-
lidad hay consenso internacional en ellos por su alta precision. La canti-
dad p. = 3HZ/(87G) ~ 1.88 x 107*h% g cm™ es la densidad critica, con
Hy = 100h km st Mpc~1.

Es asi que las observaciones cosmologicas del ultimo siglo, particularmente de las
ultimas décadas, interpretadas dentro del modelo AMOF, revelan que en el Universo
no solo hay materia ordinaria formada por bariones (fermiones y bosones) sino también
materia oscura y energia oscura. El modelo AMOF a dia de hoy es el paradigma estandar
de la Cosmologia y la Fisica.

Como ya mencionamos en la secciéon anterior, la energia oscura del modelo AMOF
viola la condicién de energia fuerte, en ese sentido, es un tipo de materia exdtica. No
obstante, la energia oscura del modelo AMOF no viola las condiciones de energia débil
ni nula. Existen otros modelos cosmolégicos como modelos de materia fantasma [59] o
quintom|60|, por ejemplo, que si violan otras condiciones de energia ademas de la fuerte.

1.2.2. La deteccién de ondas gravitacionales

Las ondas gravitacionales son una fuente de informacién para entender algunos de los
procesos més energéticos del universo, como la colisiéon de agujeros negros, la explosion de
supernovas, y una posibilidad de descubrir objetos astrofisicos nunca antes imaginados.

Las ondas gravitacionales fueron predichas teéricamente en 1916 (en la subseccion
(1.1.1) se aborda la deduccién matematica) y fueron detectadas por primera vez en
2015]61] por la Colaboracion LIGO-Virgo provenientes de la fusion de dos agujeros negros
de 35.6 My y 28.6 Mg [61]. Anteriormente, habian sido detectadas indirectamente a
través de la medicion del cambio de periodo orbital de estrellas de neutrones en sistemas
binarios [62].

5E]l modelo es mas conocido como ACDM por estar incluida la constante cosmolégica A siglas en inglés
Cold Dark Matter.
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Para lograr las detecciones ha sido fundamental el analisis teérico de las fuentes de
ondas gravitacionales. Existen distintos enfoques teéricos, algunos de ellos caen en apro-
ximaciones lineales otros en aproximaciones perturbativas y también existen métodos
numéricos donde se encuentran soluciones a las ecuaciones de RG con herramientas
computacionales.

El descubrimiento de las ondas gravitacionales por los experimentos de interferéme-
tria laser de la colaboracion LIGO y Virgo representa una novedosa herramienta para
entender los fenémenos astrofisicos que emiten ondas gravitacionales de frecuencias rela-
tivamente altas, por encima de los Hz. Teéricamente se sabe que las fuentes que emiten
ondas de estas frecuencias son principalmente, la colision de agujeros negros y estrellas
de neutrones.

Las recientes detecciones de ondas gravitacionales estan aportando informacién nueva
sobre objetos compactos como los agujeros negros y las estrellas de neutrones, cuya
naturaleza interna es atun en gran parte desconocida. Ademés de las binarias compactas,
podrian existir otros objetos auto-gravitantes, conocidos genéricamente como objetos
compactos exoticos (ECOs), como ejemplo, las estrellas de materia oscura y los agujeros
de gusano son otras posibles fuentes de ondas gravitacionales. Estos tltimos dos objetos
pueden construirse con campos escalares.

Entre los detectores de ondas gravitacionales, resaltan por su éxito los detectores
basados en Interferometria Laser de la Colaboracion LIGO-Virgo-KAGRA, ademas de
otros detectores en funcionamiento o planeacion.

1.2.3. LIGO-Virgo-KAGRA

El proyecto LIGO inici6 en 1984 con la parte experimental y tecnoldgica. La cola-
boracion LIGO, Virgo, KAGRA |63, 64, 65] posee instrumentos de medicion de ondas
gravitacionales situados en Estados Unidos, Italia y Japdn, respectivamente. Su fun-
cionamiento se basa en Interferometria Laser que consiste en estudiar diferencias en el
tiempo de llegada de un laser que viaja en una cavidad kilométrica en forma de L al
vacio con espejos a los extremos. Cuando una onda gravitacional atraviesa los detec-
tores, el tiempo de llegada de la luz del laser a los espejos se ve afectado. De forma
posterior se analizan los datos del detector con un método de comparaciéon de los datos
con las senales gravitacionales predichas tedricamente en funcion de la fuente. Se evalaa
la correlacion entre los datos y la senal predicha. Este método recibe el nombre de "filtro
adaptado".

La comunidad teorica sigue construyendo modelos de fuentes de radiacion gravitacio-
nal para generar familias de formas de ondas gravitacionales debido a que la no-linealidad
y complejidad de los procesos hace muy complicado o costosa la obtenciéon de solucio-
nes. Fue hasta 2005 cuando por primera vez de forma exitosa se simul6 numéricamente
la coalescencia de dos agujeros negros, incluyendo la fase de espiraleo, su fusion y el
amortiguamiento final [66, 67].

A la fecha (Junio 2024), la Colaboracion LIGO-Virgo-Kagral63, 64, 65] (LVK) ha
reportado mas de 90 eventos|08], todos ellos corresponden a la coalescencia de binarias
compactas con una probabilidad mayor a 50 %. Esto significa que en menos de una

12
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Figura 1.1: Densidad del ruido de la amplitud, \/S(f) en unidades de [Hz='/?] de los
interferometros. Cada curva corresponde a un detector o corrida de obser-
vacion. La curva azul ‘O3 H1’ corresponde al Periodo 3 del interfer6metro
en Handford , de naranja se muestra la curva de O3 L1’ para Livingston.
El cuarto periodo de observacion, ’O4’; se encuentra en operacion. La curvas
Ob5 representa la densidad de ruido estimada para la corrida cinco de LIGO-
Virgo. ET son las siglas de Einstein Telescope mientras que CE son siglas de
Cosmic Explorer, ambos son observatorios de ondas gravitacionales en etapa
de planeacion.
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década, la astronomia de ondas gravitacionales ha detectado directamente ciento ochenta
objetos compactos, casi todos son agujeros negros y hay algunas estrellas de neutrones.
Estos eventos son de gran utilidad para estudiar las poblaciones de agujeros negros y
estrellas de neutrones.

1.2.4. Otros detectores

Ademés de la colaboracion LVK, existen otros esfuerzos por detectar ondas gravita-
cionales de otro rango de frecuencias. Resalta el proyecto Laser Interferometer Space
Antenna (LISA) [69] que consistira en tres satélites en el espacio separados por 2.5 mi-
llones de kilométros de distancia entre si, fungirdn como los vértices de un triangulo
equilatero los cuales a través de interferometria laser de alta precision seran capaces de
detectar el paso de ondas gravitacionales. Se espera que LISA observe la coalescencia
de agujeros negros binarios de masas 10* — 107 M, a corrimientos al rojo por debajo
de z ~ 10 [70]; su rango de frecuencias de deteccion se estima entre 1 mHz y 0.1 Hz.
Otro proyecto para la deteccion de ondas gravitacionales es el Einstein Telescope |71], y
aunque sigue en planeacion, se estima que podra detectar senales con frecuencias entre
10 y 10,000 Hz[9]. También, se ha anunciado el proyecto Cosmic Explorer cuyos brazos
de 40 km prometen observar ondas gravitacionales con un mayor rango de frecuencias
[72]. En la Fig.(1.1) se muestra la sensitividad de estos detectores en funcion de la fre-
cuencia de deteccion. La sensitividad se representa en términos de la densidad del ruido
de la amplitud /S(f), la cual se calcula a través de procesar la densidad del espectro
de potencias del ruido esperado para cada detector|73, 5]. En la figura se aprecia que
los siguientes detectores (CE y ET) tendran una mayor sensitividad para distinguir el
ruido de las ondas gravitacionales .

Cabe resaltar que en China también se esta avanzando en la construccion de detectores
de ondas gravitacionales, como los proyectos Taiji (muy similar a LISA)[74, 75| y TianQin
[76].

Estas observaciones astronémicas recientes, revitalizan la RG en el sentido de que nos
recuerdan y demuestran que la interpretacion geométrica de la Gravedad es una poderosa
herramienta para entender los procesos méas energéticos del universo y su naturaleza
misma.

La astronomia de ondas gravitacionales promete aportar claridad sobre la naturaleza
del sector oscuro del universo|77]| y la Gravedad en si misma.

1.3. Configuraciones autogravitantes

Una condiciéon para construir configuraciones autogravitantes en RG es que los espa-
ciotiempos sean asintoticamente planos, es decir, que la curvatura tienda a cero conforme
las coordenadas tienden a infinito. En este tipo de espaciotiempos, es posible estimar

"Cabe mencionar que los datos de la Fig.(1.1) me fueron compartidos por el Dr. Mauricio Antelis, a
quien le agradezco su revision y facilitacion; él es miembro de la colaboracion LIGO-Virgo-Kagra.
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1.3 Configuraciones autogravitantes

cantidades globales como la masa total, el radio caracteristico, carga eléctrica total, mo-
mento angular total y el nimero de particulas [35]. Dada una masa M y un radio R, se
define la compacidad de una configuracion autogravitante como

_GM

=R
Puesto que las unidades del factor G//c? son de distancia sobre masa, la compacidad es
una cantidad adimensional que permite comparar que tan densa es la materia de las
configuraciones autogravitantes.

Los agujeros negros son la primera configuracién auto-gravitante obtenida a partir de
las ecuaciones de campo de RG, los examineramos a continuacién como predmbulo antes
de describir las configuraciones autogravitantes que analizaremos en los siguientes tres
capitulos, estos son: estrellas de neutrones, estrellas de bosones y agujeros de gusano,
respectivamente.

(1.35)

1.3.1. Agujeros negros

La primera solucion exacta no trivial a las ecuaciones de campo, Ec.(1.11), fue obtenida
en 1916, cuando Karl Schwarzschild resolvié las ecuaciones de la RG, describiendo el
campo gravitacional alrededor de una masa esférica, lo que llevo al concepto de un
agujero negro.

Las primeras evidencias de su existencia provinieron de fuentes de rayos X, como
Cygnus|78]. La Colaboracion Fvent Horizon Telescope logro construir la imagen del agu-
jero negro supermasivo localizado en el centro de la galaxia M87 [79]. En 2022, recons-
truyeron a partir de interferometria la imagen del agujero negro supermasivo Sagitario
A* Jocalizado en el centro de nuestra galaxia, la Via Lactea [30]. Como dato adicional,
recientemente han publicado imagenes de la polarizacion de su campo magnético[31], lo
cual reafirma la participaciéon de campos electromagnéticos a altas energias.

Aunque esta solucion fue la primera en obtenerse a partir de las ecuaciones de RG, tar-
daron bastante tiempo desarrollar las herramientas tedricas y mateméticas para entender
que la aparente singularidad de la solucién de Schwarzschild localizada en r = 2GM/c? es
una singularidad coordenada, el espaciotiempo es regular en ella. Ademas de la masa, los
agujeros negros pueden tener carga eléctrica ( y momento angular total J < GM?/c. El
teorema de no pelo plantea que no existe otra cantidad que pueda asociarse a los agujeros
negros mas que éstas tres: M, ) y J. Es notable que tengan un comportamiento similar
a otros objetos astrofisicos.El horizonte de eventos del agujero negro, definido como

2GM
Rax = ERE (1.36)
significa que la compacidad de todos los agujeros negros, es independiente de su masa
total: c M .
CaN=—=—=—. 1.37
AN C2 RAN 2 ( )

Los agujeros negros son las configuraciones autogravitantes con la més alta compaci-
dad, le siguen las estrellas de neutrones.
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1.3.2. Estrellas de neutrones

Cuando estrellas en secuencia principal de masas entre ~ 8-20 M., agotan su com-
bustible nuclear comienzan a colapsar gravitacionalmente. Bajo ciertas condiciones, el
colapso gravitacional es detenido por la presion de degeneracion de neutrones del re-
manente estelar, el cual recibe el nombre de estrella de neutrones. Suelen tener masas
entre 1.35 y 2.1 M, y radios de 8 a 15 km [30]. Al utilizar estos valores en la Ec.(1.35),
encontramos que las compacidades tipicas para estrellas de neutrones C ~ 0.08 — 0.2

A dia de hoy, la fisica del interior de las estrellas de neutrones es en gran parte desco-
nocida por lo que los modelos tebricos presentan una incertidumbre en la determinacion
de la masa maxima: 1.5 Mgy < My < 2.5 M. Cada ecuacion de estado p = p(p), pre-
dice distintas caracteristicas sobre las estrellas de neutrones, por ejemplo, una relaciéon
entre el radio R y la masa total My y una cota maxima para la masa de las estrellas de
neutrones. Se espera con ondas gravitacionales acotar la ecuacién de estado del interior
de las estrellas de neutrones.

Dada una ecuacién de estado p = p(p), el interior de la estrella queda descrita por el
siguiente tensor de energia-momento

T = (pc + p)u’ v’ + pg™, (1.38)

donde u® es la tetravelocidad definida como u® = dx®/dr, siento T el tiempo propio.

Para modelar estrellas de neutrones, en una primera aproximacion se pretende cons-
truir soluciones con simetria esférica e independientes del tiempo, por lo tanto se parte
del siguiente ansatz para el tensor métrico:

2

Japdzdaz® = —e?* M 2dt? + dO? + sin® 0d¢?), (1.39)

2
| _ 2GM() +r7(

c2r
que al sustituir en las ecuaciones de campo (Ec. (1.11)) implica el sistema de ecuaciones
Tolman-Oppenheimer-Volkoff:

G(p+p/c*)(M(r) + 4mr’p/c?)

P = == =2 @) (1.402)
M'(r) = 4mr?p (1.40Db)
O (r) = G(M(r) + 4nr3p/c?) (1.400)

r2(1 —2GM(r)/(c?r))

Fuera de la estrella (R < r), el espaciotiempo queda descrito por la métrica de Sch-
warzschild. Por fortuna, como nos encontramos lejos de las fuentes y fuera de la estrella
(R < r), el espaciotiempo queda descrito por la métrica de Schwarzschild y se puede
trabajar con aproximaciones, como el formalismo cuadrupolar, como mostraremos en el
capitulo dos.

En 2017 por fin se observaron ondas gravitacionales de la fusiéon de estrellas de neu-
trones. Lo mas resaltable es que también se detectaron ondas electromagnéticas (rayos
gamma y luz visible en primer lugar) del mismo evento [382, 83]. Ademas, también se
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1.3 Configuraciones autogravitantes

detect6 por primera vez una kilonova (cuya diferencia con la supernova es que la pri-
mera es de menor magnitud). Las estrellas de neutrones en binarias han emergido como
objeto principal de estudio en la astronomia de multi-mensajeros. La senal GW170817,
al tener como complemento senales electromagnéticas de rayos gamma con un tiempo
de retraso de 1.7 s, permitié derivar una constricciéon para la velocidad de propagacion
de las ondas gravitacionales cog respecto a la velocidad de la luz ¢ y se obtiene que
son practicamente iguales. Tales resultados restringen o descartan teorias de Gravedad
modificada. Recientemente, otras sefiales como GW190425 [34] fueron identificadas co-
mo ondas gravitacionales provenientes de la fusion de estrellas de neutrones en sistemas
binarios.

Muchas estrellas de neutrones emiten pulsos electromagnéticos muy precisos que estan
relacionados con la rotacion de las estrellas cuantificada a través del espin. Los espines S;
de dos estrellas de neutrones ¢ = 1, 2 se relacionan con la frecuencia angular €2, a través de
S; = [,€2;. Esta rotacion aporta una energia cinética rotacional dada por E,, = [;Q%/2,
donde Q; = |Q;| = 27/P;,, P, es el periodo de espin y I; es su momento de inercia.
Para estrellas de neutrones I; = a;(x)M;R?, donde z es el parametro adimensional de
compacidad a; que depende de las ecuaciones de estado elegidas, 0 < a < 1. Por un
lado, en el regimen Newtoniano, si los espines S; (i = 1, 2) son considerados, el momento
angular orbital L no es una cantidad conservada, sino el momento angular total J dado
por J = S; + Sy + L. Si la direcciéon de los espines no se restringe, el sistema esta
determinado por siete ecuaciones de Fuler-Lagrange: una para la coordenada radial r, y
las demés para ambos espines S;. Ademas, la energia rotacional total E.o = Eiot; + Erot,
debe ser anadida a la funcién lagrangiana dada en la funcién lagrangiana del sistema.
Luego, en la fase inspiral, los espines introducen un acople espin-orbita y espin-espin
en la dindmica de la binaria y en las ondas gravitacionales. Estas complejas relaciones
causan que si los espines no estan alineados con el momento angular orbital, entonces
los espines y el campo orbital de la binaria precesan [35], esto es, tanto los espines S;
como el momento angular orbital L precesan en torno a un momento angular total.

1.3.3. Estrellas de bosones

Para una revision profunda sobre estrellas de bosones pueden revisarse referencias
como [14, 86, 87, 88]. A continuacion se describen algunos aspectos cualitativos sobre la
construccion de estas soluciones auto-gravitantes.

Las estrellas de bosones son soluciones a las ecuaciones de Einstein-Klein-Gordon apli-
cadas a un campo escalar. Aunque se trata de objetos astrofisicos hipotéticos (su exis-
tencia no esta confirmada), cada vez cobran mayor interés como posibles configuraciones
auto-gravitantes de materia oscura y fuente de ondas gravitacionales. Las estrellas de
bosones tienen asociado un tensor de materia-energia que produce una curvatura sobre
el espaciotiempo que se determina resolviendo las ecuaciones de campo de RG.

El campo escalar es un tipo de campo que ha sido utilizado para describir parti-
culas elementales y fenémenos cosmologicos, incluyendo la energia oscura, la materia
oscura [16] y la Inflacion. Desde los trabajos pioneros de Kaup en 1967 [89] Ruffini y
Bonazolla|90] en 1969, consideran campos escalares para explorar configuraciones auto-
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gravitantes. En el contexto cosmologico, los campos escalares fueron propuestos por
primera vez en 1988 por C.Wetterich [91]. El propone que la energfa oscura podria ser
generada por un campo escalar dindmico y, entre otras cosas, muestra como el campo
escalar afectaria las proporciones de densidad de energia de las componentes del uni-
verso. Casi paralelamente, Ratra y Peebles estudian las consecuencias cosmologicas de
suponer un campo escalar homogéneo, auto-interactuante y en evolucion temporal [92].

El campo escalar pueden interpretarse como un campo bosoénico. Los bosones son
particulas elementales con espin entero, pueden tener o no masa y carga. Les distingue
que no cumplen el principio de exclusion de Pauli, por lo que un conjunto de bosones si
puede ocupar el mismo estado cuantico dentro de un sistema.

La funcién lagrangiana del campo escalar es,

€ _
Lo = # (9*V, 2V, @ + V(|2]%)), (1.41)
donde € puede valer 1 6 -1. En casos donde el campo escalar es invariante bajo trans-
formaciones de la forma ® — ®e™ (transformaciones globales U(1)), el campo escalar
tiene una cantidad conservada que recibe el nombre de densidad de corriente de Noether

7% dada por

ig"
2

Mediante la integraciéon de la ley de conservacion >; se obtiene el niimero total de
particulas[90],

j“ = [CI)*(VVCI)) - CI)(VV(I))*] . (142)

N = / J'n,dv, (1.43)
%

siendo X una hipersuperficie tipo espacial, n® un vector tipo-tiempo normal a 3, con
nen® = =1 ,dV = /ydndfdy es el elemento de volumen, 7 es el determinante de la
métrica espacial. La masa total de las configuraciones auto-gravitantes puede calcularse
mediante la expresion de Komar

M =2 / Rayn€bdV, (1.44)
%

en esta expresion ¢ es el vector de Killing tipo tiempo & = 8, = (1,0).

Las estrellas de bosones, dadas por la funcion lagrangiana (1.41) con € = 1, estan
formadas por un namero total N de particulas elementales bosonicas de masa m, dadas
por la Ec.(1.43). También, poseen una masa total M dada por la Ec.(1.44) y un radio
caracteristico que a veces se define como aquel que contiene el 99 % de la masa total [93].
Las soluciones estables satisfacen una relaciéon especifica entre su masa total y su radio
total, como veremos en el capitulo tres. Mediante el analisis de las soluciones numeéricas
se ha encontrado que las estrellas de bosones son menos compactas que los agujeros
negros pero pueden ser tan o mas compactas que las estrellas de neutrones.

Existen distintos tipos de estrellas de bosones. La més simple corresponde a una so-
lucién de campo escalar ¢ real, sin masa ni espin, esta soluciéon también es conocida
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1.3 Configuraciones autogravitantes

como gedn (89, 94|. En 1969, Ruffini y Bonazolla|90] presentan configuraciones auto-
gravitantes compuestas por campos escalares de bosones no-interactuantes, y, encuen-
tran que las propiedades de estas soluciones son muy distintas que las configuraciones
compuestas por fermiones.

El campo escalar ¢ satisface la ecuacion de Klein-Gordon, la cual es la generalizacion
relativista de la funciéon de onda que satisface la ecuacion de Schrodinger. La funcion
de onda es un concepto complejo que ocupd el centro de las discusiones entre cientifi-
cos como Heinserberg, Schrodinger y Einstein. En el regimen Newtoniano, la funcion
de onda puede acoplarse a un campo gravitacional a través del sistema de ecuaciones
Schrodinger-Poisson, donde la funciéon de onda se interpreta como una probabilidad de
masa que genera un campo gravitacional. En cambio, en el regimen relativista, el campo
gravitacional es una propiedad geométrica del espaciotiempo que depende del tensor de
energia-momento, el cual actiia como fuente en las ecuaciones de RG. En este contexto
se pueden estudiar objetos auto-gravitantes generados por distintos tipos de tensores de
energia-momento.

Dos estrellas de bosones pueden colisionar y emitir ondas gravitacionales [93]. Se trata
de una colision simple en el sentido de que la evoluciéon estd unicamente determinada
por la interaccion gravitacional. La deteccion de estas ondas gravitacionales es un hecho
interesante en si mismo, y también como posible evidencia de la existencia de objetos
compactos compuestos por materia oscura. Las estrellas de bosones pueden emitir on-
das gravitacionales cuando colisionan dos de ellas frontalmente. La masa total de dichas
estrellas estd intimamente relacionada con la masa del campo escalar que la compone,
de modo tal que mientras mas ligero es el campo escalar, mas grandes pueden ser sus
configuraciones estables macroscopicas. Del mismo modo, mientras mas ligero es el cam-
po escalar, mayor es la amplitud y duracion de las ondas gravitacionales emitidas, como
demostraremos en el capitulo tres.

1.3.4. Agujeros de gusano

Las primeras soluciones de las ecuaciones de RG que representaban un agujero de
gusano atravesable fueron obtenidas en 1973 [95, 96], se trataba de soluciones exactas
asintoticamente planas y regulares en todos los puntos. En 1988 [17], se demostraba bajo
qué condiciones serfa posible construir un objeto que conectase regiones distantes del
universo a través de una garganta. Asi como en el caso de las estrellas de bosones, las
primeras soluciones de agujeros de gusano se obtuvieron bajo ciertas suposiciones que
con el paso de los anos fueron relajandose de modo que a la fecha, se han construido
tedricamente agujeros de gusano compuestos por campos escalares con auto-interaccion
[40, 97], asi como agujeros de gusano compuestos por varios campos escalares [98, 99,
100], entre muchos otros tipos de agujeros de gusano.

Para no tener dependencia temporal en las ecuaciones de campo, asumimos que el
campo escalar complejo tiene un ansatz armoénico dado por:

®(n,t) = ¢p(n)e™" (1.45)

donde w es una constante real.
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Los agujeros de gusano atravesables violan la condicién de energia fuerte (veéase
Sec.1.1.3), en ese sentido, estan formados por materia exdtica. Diversos estudios don-
de confinan materia exética de campos escalares pueden consultarse en los articulos de
investigacion: [101, 102, 16], entre otros.

» Un agujero de gusano descrito con campo escalar con simetria esférica y masivo,
debe tener constante de auto-interaccion A [99].

= La frecuencia del campo escalar w esta relacionada con el parametro de masa pu.

En el capitulo cuatro, examinaremos un agujero de gusano con carga eléctrica par-
tiendo de la siguiente accion total:

s [ i 0
donde
1 A
£ = (0D 4 or - S0t (1.47)

y Lpum estd dada por la Ec.(1.9). Notemos que Lg anterior es igual a la Ec. (1.41)
pero con € = —1, V, = D, y V(|®]) = p?|®|? — 4|@|*. El término D, es una derivada
covariante generalizada que sera descrita en el capitulo cuatro.

1.4. Como se organiza esta tesis

En este primer capitulo introductorio, se resumio6 el contexto astrofisico observacional.
Los siguientes capitulos estan organizados de la siguiente manera. Las ondas gravitacio-
nales son el tema central en los dos siguientes capitulos. En el primero de ellos, se
estudian bajo la aproximacion lineal siendo la fuente un sistema binario de estrellas de
neutrones con campos magnéticos, como se describe a detalle en el Capitulo dos. En la
segunda investigacion, se estudian ondas gravitacionales generadas por la colision frontal
de objetos auto-gravitantes de campo escalar, que aunque a la fecha no han sido obser-
vados, son una posible y potencial manera de describir a las estrellas de materia oscura,
esto se describe en el capitulo tres. En la tercera investigacion, puesto que trabajamos el
tema de campo escalar y los campos electromagnéticos en las primeras dos investigacio-
nes, nos resulté interesante y natural utilizar ambos conceptos para construir una nueva
solucion numérica de las ecuaciones de Einstein-Klein-Gordon-Maxwell de agujero de
gusano eléctrico, volviendo al tema de inicio, la RG, como puede estudiarse en el capi-
tulo cuatro. Finalmente, en el ultimo capitulo se presentan conclusiones generales sobre
los campos gravitacionales producidos por estrellas de neutrones, estrellas de bosones y
agujeros de gusano.
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2 Ondas gravitacionales de binarias
magnetizadas en el regimen lineal

El presente capitulo estd basado en el articulo [20], que lleva por titulo On the role
of magnetars-like magnetic fields into the dynamics and gravitational wave emission
of binary neutron stars y fue elaborado por Mariana Lira (ICN-UNAM), Juan Carlos
Degollado (ICF-UNAM), Claudia Moreno (UdG) y Dario Nunez (ICN-UNAM). Todas

las figuras que aparecen en este capitulo fueron tomadas de dicho trabajo.

2.1. Resumen

Modelamos la interaccion gravito-magnética de un sistema binario de estrellas de
neutrones en el esquema mas simple donde cada estrella es un dipolo magnético perfecto.
Somos capaces de incluir los efectos magnéticos en la dinamica newtoniana y en la fase
espiral de su emision de ondas gravitacionales usando una descripcion equivalente de un
cuerpo. Ademaés, en la etapa espiral determinamos el papel de la interaccion magnética
en las ondas gravitacionales generadas por el sistema binario y obtenemos férmulas
explicitas para la evolucion de la separacion de las estrellas, el tiempo para alcanzar
un radio minimo, la luminosidad gravitacional y el cambio de frecuencia de las ondas
gravitacionales, todo esto dentro de la aproximacion cuadrupolar. Para la magnitud
extrema del campo magnético que se considera existente en estos sistemas binarios 1016
G, somos capaces de mostrar que su efecto sobre las cantidades observables es del orden
de la correccion 2PN, ya cerca del rango de deteccion de los observatorios de ondas
gravitacionales. También discutimos casos en los que el campo magnético podria tener
una influencia mas significativa.

2.2. Introduccién

Las binarias de estrellas de neutrones son uno de los sistemas més estudiados en la
actualidad tanto por la comunidad de astronomia de ondas gravitacionales, como por la
comunidad de astrofisica tedrica, al ser éstos un laboratorio ideal para poner al limite
los modelos sobre la dindmica de la materia relativista a altas energias. Las estrellas
de neutrones altamente magnetizadas estan caracterizadas por periodos de espin tipica-
mente entre P ~ (1072 —12)s y con un cambio en el tiempo de % ~ (10716 —1071?)ss!
[L1, 103]. Estas aproximaciones son consistentes con los campos magnéticos sobre la su-
perficie de los pulsares del orden de B ~ 10" — 103G [104, 105], o tan intensos como
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B ~ 10" — 10'°G en magnetares [106], e incluso arriba de 10'°G son valores que se han
encontrado en estrellas de neutrones recién formadas [107].

Distintos escenarios donde los campos magnéticos juegan roles importantes han sido
estudiados en la literatura reciente, por ejemplo, en [108] se realizan simulaciones mag-
netohidrodinamicas de la coalescencia de binarias de estrellas de neutrones y muestran
que los campos magnéticos de las estrellas de neutrones de 102G son amplificados por
varios ordenes de magnitud dentro de los primeros milisegundos después de la fusion,
esto ocurre por inestabilidades de Kelvin-Helmoltz. La fusién de estrellas de neutrones
binarias también es progenitora de destellos cortos de rayos gamma debido a los campos
magnéticos intensos de una o dos estrellas de neutrones, y su alta frecuencia orbital
[109, 110, 111, 112, 113]. Otros estudios sugieren que la interaccion magnética entre dos
estrellas de neutrones en proceso de fusion, modifican considerablemente la forma de
las ondas gravitacionales de la radiacion [114, 115, 116]. Las simulaciones magnetohi-
drodinamicas relativistas reportadas en [387, 88] han mostrado que algunas fusiones de
estrellas de neutrones binarias son fuentes ideales para la astronomia de multimensajeros
debido a su caracteristico flujo de Poynting y su fuerte emision de ondas gravitacionales.

Plantillas de ondas gravitacionales han sido modeladas para la fase de espiraleo, donde
dos objetos se orbitan y se acercan uno a otro mientras la frecuencia orbital va incremen-
tando. En esta fase, el enfoque post-Newtoniano a la relatividad general ha mostrado
estar adecuado para evolucionar con un alto grado de precision sistemas binarios [117].
[118]. A primer orden, el enfoque postnewtoniano recibe el nombre de formalismo cua-
drupolar durante la fase de espiraleo ha mostrado ser una aproximacion valida siempre y
cuando la separacion orbital de la binaria sea més grande que un radio minimo al mismo
tiempo que la velocidad orbital sea muy pequena con respecto a la velocidad de la luz.

En este capitulo, mostramos que los campos magnéticos intensos cambian la estima-
cion de los pardmetros intrinsecos de la binaria; obtenemos que aunque los cambios son
muy pequenos, el efecto puede ser inferido a partir de la senal gravitacional|l9].

Se ha mostrado que bajo ciertas circunstancias, distintos efectos podrian modificar la
forma de las ondas gravitacionales emitidas por la binaria a segundo orden del formalismo
postnewtoniano, algunos de ellos son: el efecto post-Newtoniano [119], el acople espin
orbita [120], espin-espin [121], auto-espin, ademas de un acople cuadrupolar del termino
monopolar|[122, 123]. Més atin, se sabe que también puede haber contribuciones de marea
[124, 125] y éstas pueden afectar la dindmica de la binaria y por lo tanto la forma de las
ondas gravitacionales.

En este capitulo, consideramos un sistema de dos cuerpos magnetizados aislados en el
régimen lineal de relatividad general, donde el Formalismo Cuadrupolar continiia siendo
adecuado para modelar la fase de espiraleo y para estimar la emisiéon de ondas gravi-
tacionales. Nos concentraremos en el efecto dipolo magnético-dipolo magnético [107] y
consideraremos el caso donde los efectos de la rotacion de las estrellas sobre la dinamica
orbital es insignificante. Siguiendo un enfoque introducido en la Ref. ([107]), mostramos
que utilizando el modelo dipolar para estrellas de neutrones, la dindmica de la binaria
se reduce a un problema de un cuerpo efectivo, muy similar al caso no-magnetizado.
Con este modelo calculamos el efecto de los campos magnéticos sobre la dindmica de
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las estrellas de neutrones binarias de forma integra. Mas atn, calculamos la amplitud
de las ondas gravitacionales o strain para distintos valores de campos magnéticos y
utilizamos estos datos para estimar la masa de las estrellas de neutrones fuente. Poste-
riormente, aplicamos este modelo de binarias magnetizadas para dos sistemas diferentes:
en el primero consideramos una binaria de estrellas de neutrones tipica y explicamos el
efecto de los campos en varias observables, tales como el radio minimo, el cambio del
periodo orbital, la luminosidad gravitacional, el cambio logaritmo de la frecuencia de
las ondas gravitacionales y el strain. Encontramos que la desviaciéon en estas observa-
bles, con respecto a los casos respectivos no magnetizados, pueden ser hasta del orden
de O(107°) cuando la intensidad de los campos magnéticos es B = 8 x 10'% G. En el
segundo enfoque, suponemos que la luminosidad gravitacional y el cambio logaritmico
del periodo orbital son funciones conocidas y las utilizamos para inferir el cambio de las
masas de la binaria como funciéon de los campos magnéticos presentes. Asi, encontramos
que, con intensidades de los campos magnéticos del orden de B ~ 10'G, las masas
de las estrellas de neutrones podrian estar sub o sobre estimadas con respecto a las
fuentes no-magnetizadas por un factor hasta del 4 %. En nuestro anélisis, también con-
sideramos algunos resultados astrofisicos recientes, en particular consideramos el evento
GW170817, debido a su importancia como primera evidencia de la colision de las es-
trellas de neutrones y su importancia para el subsecuente desarrollo en la astrofisica.
Nuestros resultados sobre el efecto de los campos magnéticos en ciertas observables, son
consistentes con los reportados en simulaciones magneto-hidrodinamicas recientes, [120]
de esta manera estamos dotando de una herramienta més simple para generar plantillas
de ondas gravitacionales de estrellas de neutrones binarias tomando en cuenta la inter-
accion magnética, claro, con la restriccion de modelar tinicamente la fase de espiraleo.

Como esta organizado el resto del capitulo.

En el primer apartado de esta seccién introductoria, hablaremos de las propiedades
de las estrellas de neutrones binarias incluyendo sus propiedades magnéticas. El resto
del capitulo esta organizado de la siguiente manera. En la seccién 2.3, introducimos
los modelos para estrellas de neutrones binarias, incluyendo campos magnéticos en el
enfoque dipolar y la dindmica del sistema binario utilizando la Gravedad Newtoniana
para describir las 6rbitas. En la secciéon 2.4 describimos la formulacién cuadrupolar para
ondas gravitacionales y obtenemos la forma de las ondas gravitacionales, incluyendo am-
plitudes, frecuencias y evolucion de la separacion de la binaria, ademas de la estimacion
de las masas fuente. En la seccion 2.5 presentamos algunos resultados relacionados con
la estimacion de parametros. En la seccion 2.5.1 describimos el ejemplo concreto de la
dindmica y emision de ondas gravitacionales de una binaria magnetizada de masa total
de 2.8 M, y campos magnéticos constantes de B; = By = 8 x 106 G. En la 2.5.2
analizamos cualitativa y cuantitativamente el efecto de la presencia de campos magné-
ticos dipolares en un rango de B ~ 102G a B ~ 105G sobre variables de la fase de
espiraleo. Este rango es similar a otros utilizados en referencias como [103, 106]. En la
seccion 2.5.3, utilizamos la luminosidad gravitacional y la tasa de cambio logaritmico
del periodo orbital del evento GW170817 para mostrar que dada la incertidumbre en la
determinaciéon de las masas a partir de los datos observacionales, es posible obtener un
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2 Ondas gravitacionales de binarias magnetizadas en el regimen lineal

limite para el valor maximo de los campos magnéticos de las estrellas de modo que las
masas estimadas en los caos magnetizados més intensos, siguen siendo consistentes con
las observaciones. Finalmente, en la secciéon 2.6 presentamos nuestras conclusiones de
esta investigacion. En nuestro analisis, utilizamos unidades CGS-gaussianas, donde los
campos magnéticos se miden en Gauss (G = g'/? cm™'/2 s7!) y los momentos magnéticos
en emu igual a g'/? cm®? 571,

2.3. Descripcién Newtoniana de la binaria
magnetizada

En la primera parte, 2.3.1, revisamos las condiciones bajo las cuales el potencial
gravito-magnético puede ser analizado como un problema de un cuerpo para el sistema
binario magnetizado. Una vez que hemos descrito la interaccion magneto-gravitacional
como un potencial central, en la segunda parte, 2.3.2, desarrollamos las ecuaciones de
movimiento a través de la funcion lagrangiana del sistema binario. El principal proposito
de esta seccion es explorar el efecto magnético en la dindmica Newtoniana del sistema
binario, como una herramienta necesaria en la subsecuente incorporacion de los efectos
magnéticos en la emision de ondas gravitacionales, lo cual serd analizado en la siguiente
seccion 2.4.

2.3.1. Modelo de dos objetos compactos magnetizados

Para abordar el anélisis del sistema binario magnetizado, partimos de la premisa de
que cada objeto se caracteriza intrinsecamente por sus masas M; y Ms, asi como por sus
momentos magnéticos dipolares m; y my. Con el propdésito de enfocarnos especificamente
en el efecto magnético, optamos por despreciar otras propiedades de los objetos.

Las posiciones de estas estrellas, representadas por r;(t), se definen en un marco de
referencia cuyo origen esta en el centro de masa del sistema. En este marco, se cumple
por definicion que Mir; + Mors = 0. Esta eleccion de referencia presenta la ventaja de
simplificar la dinamica del sistema, reduciéndola a la descripcion de un cuerpo con masa
reducida p = M1 Ms/M y posicion relativa r = ry — ry, donde M = M; + M, denota la
masa total del sistema.

Utilizaremos la aproximaciéon magnetostatica para el interior de las estrellas, donde
asumimos que la carga eléctrica neta es cero [127, 128]. También, consideraremos que
los campos magnéticos externos de las estrellas son un campo dipolar perfecto m; y por
lo tanto, el momento magnético esta relacionado con el radio de la estrella [107]'. En
este regimen magnetostético, el campo magnético B; debido a la primera estrella en un
punto arbitrario x, estd determinado por:

'El radio de cada estrella estd relacionado con su masa a partir de una ecuacién de estado[l29].
Una ecuacién de estado realista para la materia de las estrellas de neutrones atn no se conoce con
precision, sin embargo, esta bien acotado que para masas de 1 a 2Mg, [130, 115] distintas ecuaciones
de estado dan radios entre 8 y 16 km [37, 131]. Por simplicidad, usamos como valor tipico del radio
de las estrellas 12 km.
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2.3 Descripcion Newtoniana de la binaria magnetizada

Bl(X) _ 3n1 (n1 . m1> — 1My

2.1

—r : (2.1)

donde n; = (x — ry)/|x — ry|. La energia potencial magnética resultante de la inter-

accion entre un dipolo magnético m con un campo magnético externo B esta dado por

el producto punto U,, = —m - B [132]. Entonces, la energia potencial magnética en la
posicién ry es,

3r (f'ml) — 1M,

Um(]- — 2) = —Imy- B1<I'2> = —my - |I‘|3

- MmO ) 22)
r

donde hemos utilizado la Ec. (2.1) y el vector unitario & = (ry — ry)/|ry — ry|.

Siguiendo [126, 133], en esta investigacion asumimos que los momentos magnéticos
permanecen paralelos al momento angular total del sistema L = p (r x ) durante la
fase de espiraleo; por lo tanto, m; -t = my - r=0. De este modo, la torca magnética entre
los dipolos N = m; x By es nula [132] y la Ec. (2.2) se reduce a:

ms - 11

Un(l—2) = e

(2.3)

Mas atin, vamos a asumir que los momentos magnéticos de cada estrella son de la
forma m; = R? B;/2. En este punto, introducimos el pardmetro magnético b como el
producto punto de los momentos magnéticos:

b=m; -my = , (2.4)

i(R1R2)SBlB2
4
donde el signo + o — indica si los dipolos estan alineados o anti-alineados, respectivamen-
te. Utilizando la Ec. (2.4) encontramos que es posible codificar la interaccion magnética
entre los dipolos magnéticos a través de una energia potencial magnética de la forma

Un =0b/r3.
Podemos estimar en ordenes de magnitud, la fracciéon de la energia potencial magnética
respecto a la contribucion gravitacional a la energia potencial U, = —GM p/r para tener

una intuicién del efecto fisico del parametro magnético. La fraccion de los potenciales se
reduce a:

Un _ b (2.5)
U, GM pr?
Vamos a reescalar esta expresion en términos de las cantidades tipicas de estrellas de
neutrones binarias.
En el caso de las estrellas de neutrones binarias, consideremos que sus masas indivi-
duales son iguales con valor ~ 1.4 M y los radios ~ 12 km. Respecto a los valores de
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2 Ondas gravitacionales de binarias magnetizadas en el regimen lineal

campos magnéticos, utilizamos ~ 10'*G porque son los valores maximos estimados en
magnetares (aunque no los méaximos teorizados). Entonces,

= 0 () (wv) () (%)
Uy pn 12km /) \10G /) \12km ) \ 101G

) (2.8]24@) (0.7;\4@> (127f<m)27 (2.6)

donde hemos utilizado la Ec. (2.4).

Podemos observar a partir de la Ec. (2.6), que la contribucion magnética sobre el po-
tencial gravitacional es O(107%). Esto esta en acuerdo con los analisis post-Newtonianos,
los cuales reportan que la interaccion dipolo-dipolo magnético produce una correcciéon
de segundo orden en el formalismo post-Newtoniano [107, 134, 127].

2.3.2. Dinamica Newtoniana

Como acabamos de describir, la interaccion magnética entre los dipolos magnéticos
de las estrellas del sistema binario puede ser descrito utilizando un potencial central.
Entonces, la interaccion gravitomagnética, desde el centro de masa, estd dado por la
suma del potencial magnético U,, y gravitacionalUy:

_GM/L_{_E__GM,M | b
N GMpur?

U(r) = (2.7)

r 73 r

donde b estéa definida en la Ec. (2.4). Con este potencial podemos utilizar el formalismo
lagrangiano para reducir la dindmica de la binaria a un problema equivalente de un
cuerpo de masa reducida p localizada en r. La posicién de cada estrella se recupera
utilizando las relaciones ry = (My/M)r y ro = —(M;/M)r.

Como el potencial U solo depende de la posicion r, el momento angular total se
conserva, entonces, el movimiento orbital se restringe a un plano. Por simplicidad y
sin pérdida de generalidad, elegimos el plano ecuatorial. Asi, la funciéon lagragiana? del
sistema queda definida como la diferencia de la energia cinética T' = ur?/2 + ur?¢? /2, y
la energia potencial dada en la Ec. (2.7), esto es,

GMpu b
N T  al ay (2.8)

Lir.¢) = 2" Ty r r3

Dado que la funcion lagrangiana en la Ec. (2.8) es independiente de ¢ tenemos la con-
servacion del momento angular directamente de las ecuaciones de Euler-Lagrange

d
E(,mjgb) =0 = [=ur’*)=const . (2.9)

2La funcion lagrangiana de la ec.(2.8) es Newtoniana, se obtiene a partir de la diferencia entre la energia
cinética y potencial del sistema newtoniano, no corresponde a la definicion relativista presentada en
el capitulo introductorio en la ec.(3.2).
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2.3 Descripcion Newtoniana de la binaria magnetizada

La energia total del sistema £ =T + U puede escribirse como

1
E = 5;”*2 + Veg (1) (2.10)
donde Veg(r) = 252 — G—]X[H + r% es el potencial efectivo, ademas, hemos utilizado la

relacion entre [ 'y ¢ dada en la Ec. (2.9). En la otra mano, la ecuacion de Euler-Lagrange
de la coordenada r es

P = —— =0, (2.11)

1 [ [ du | . du ? ,d*u
TR T e T e Y n g T Rt g (2.12)
y, después de algunas simplificaciones obtenemos que la Ec. (2.11) se vuelve

d*u 1 N

d—gpz—l—u—}—%:ébu , (213)

donde )
[ 3ub
= = ——. 2.14
=G ¥ %= (2.14)

En el lado derecho de la Ec. (2.13) tenemos un término no lineal inducido por la inter-
accion dipolar magnética. Las soluciones sin campo magnético b = 0 = 3, son secciones
conicas u(p) = % (1 4 ecos ), con excentricidad €2 = 1+ 2E1?/(G2M*11?).

Es notable que el término no-lineal en la Ec. (2.13) tiene la misma forma que la co-
rreccion relativista al potencial Newtoniano dado por el espaciotiempo de Schwarzschild.
En la siguiente secciéon mostraremos que las orbitas circulares estan permitidas sobre un
rango de campos magnéticos.

2.3.3. Movimiento circular

Es sabido que la emisiéon de ondas gravitacionales tiende a circularizar las orbitas
elipticas, al grado que antes de la fusion, las orbitas ya han sido circularizadas [135, 130,
137]. Puesto que el movimiento circular domina la dinamica de las estrellas de neutrones
binarias durante la fase de espiraleo, enfocaremos nuestro analisis a este tipo de 6rbitas.

Las orbitas circulares (r = cte.) son posibles si la condicion # = 0 en la Ec. (2.11)
se satisface. En el escenario que estamos considerando, es un caso particular para la
combinacion de las direcciones entre los campos magnéticos y el momento angular.

Haciendo # = 0 en la Ec. (2.11) y resolviendo para r obtenemos

R 126
=—11 14+ ——— 2.1
e =3 ( + +GM/LR2) , (2.15)
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2 Ondas gravitacionales de binarias magnetizadas en el regimen lineal
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Figura 2.1: Potencial efectivo V.. Para valores no-negativos de b siempre es posible tener
orbitas circulares estables. Cuando b, < b < 0 tenemos orbitas circulares
inestables. El valor critico b, = _u(;l—M,ﬁ representa la dltima orbita circular.

Para b < b. no hay orbitas circulares. Tomado de [20].

donde R esta definida por la Ec. (2.14). Cuando b > 0, tenemos siempre 6rbitas circu-

lares; cuando b < 0, existe un valor critico b, = —ﬁ por debajo del cual las érbitas

circulares dejan de existir. Para valores més negativos de b la potencial efectivo no tiene

puntos extremos. La Fig. (2.1) muestra V.g para algunos valores representativos de b.
El momento angular [ para orbitas circulares se expresa como:

3b

donde el subindice b denota una dependencia de la variable al pardmetro magnético b.
Ademés, a partir de la Ec. (2.9), ¢ = [/ur?, la frecuencia orbital en las 6rbitas circulares

esta dada por:
GM 3b
Dy = 1l—— 2.1
” \/ (1= gary) 247

esta expresion es anédloga a la tercera ley de Kepler para orbitas circulares y seré utilizada
en la siguiente seccion.
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2.3 Descripcion Newtoniana de la binaria magnetizada

Finalmente, la energia total de las 6rbitas circulares es

GMpu b
= — 1+ —-— 2.1
Ey 2r, ( +GM/M“§> ’ (2.18)

la cual es igual al minimo del potencial efectivo Vg en la Ec. (2.10). En la Fig.(2.1)
se observa que dependiendo de la combinacién de los pardmetros, en el sistema pueden
existir orbitas estables y/o inestables.

2.3.4. Precesién orbital debido a los campos magnéticos

En mecénica clasica es un resultado que una orbita ligeramente no-circular oscilara
alrededor de un radio central. En la ausencia de campos magnéticos, las érbitas liga-
das permitidas son elipses, como queda de manifiesto en las leyes de Kepler para el
movimiento orbital planetario.

En nuestro caso, la presencia del término magnético modifica este comportamiento; las
orbitas se ven como elipses que van lentamente rotando respecto al centro, este fenémeno
es conocido como precesion de la orbita.

La Ec. 2.12 puede ser resuelta numéricamente con algo de esfuerzo, sin embargo, algo
de informacién tutil puede ser obtenida a partir de analizar la soluciéon en el limite de
pequenas interacciones magnéticas. Asumiendo , < R, tenemos la soluciéon aproximada
de la Ec. (2.12) en la forma:

)
u = ug + Puy , con 8= Eb , (2.19)

en esta expresion hemos ignorado potencias mas altas de ¢,/ R. Substituyendo la Ec.
(2.19) en la Ec. (2.13) y agrupando términos del mismo orden, obtenemos

d2<R Uo)

ot = 1 (2.20)
d*(Ru
%ﬂLRul = (Rup)?. (2.21)

La solucion de la primera ecuacion, como ya hemos mencionado, es la seccion conica

Rupg=1+e€ecosyp , (2.22)
donde 2 =1 + % Por otro lado una solucion particular de la Ec. (2.21) es
€ €
Ruy = (1 + Bl + epsiny — 3 cos(2g0)) . (2.23)

Notemos que el tercer término incrementa con cada oOrbita y se va volviendo mas
relevante. Ignorando las otras correcciones podemos expresar la Ec. (2.19), en el limite
B < 1, como sigue:

Ru 1 4+ ecosp + Bepsing

~ 1+ecos(p— o) . (2.24)

Q
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2 Ondas gravitacionales de binarias magnetizadas en el regimen lineal

Entonces, el periodo de las 6rbita no es 27 sino mas bien

2 (5(,
~ 2m(1 =2 |1+ =) . 2.2
3 w(1+5) w(+R) (2.25)
La precesion, en unidades de radianes por orbita, queda dada por
Op Op
Ap=2m—2r 1+ —= ) =27r— . 2.26
=21 — 27 ( + R) o (2.26)

Sustituyendo las expresiones para R y J, dadas en la Ec. (2.14) y la expresion de b en
términos de la intensidad de los campos magnéticos, obtenemos la precesion de la 6rbita
A= 2% = £6rGMp® R R3By By /(41%). Para valores tipicos obtenemos

. ( R \’( B Ry \*
Ap = F283x 1077
R S <12km> (10%(}) (12km)

(ve) (i) (o) (1) - e

donde el momento angular [ se obtiene a partir de la expresion Kepleriana I? = GMp?a (1 — €2),
para binarias a = 10°km, Iy = 2.69 x 10°gcm?s~! = 1.35 x 107 Mg km?s~ .

En la siguiente seccion consideraremos la perdida de energia del sistema binario de-
bido a la emisiéon de ondas gravitacionales utilizando el formalismo cuadrupolar. Nos
enfocaremos en Orbitas circulares por lo ya mencionado a inicio de esta secciéon: que
la emision de ondas gravitacionales tiende a circularizar las érbitas durante la fase de
espiraleo.

2.4. Emisién gravitacional

Considerando el sistema binario (incluyendo los campos magnéticos) descrito en la
Seccion 2.3, donde el eje-z es perpendicular al plano de movimiento y ¢, es el angulo
del eje-z a la linea que une las masas, el segundo momento de masa del sistema es

- 1 1+ cos(2¢pp(t))  sin(2pp(t)) 0
M) (t) = §,ﬂ~2 sin(QE)ob(t)) 1— coséngb(t)) 8 . (2.28)

Entonces, utilizando la Eq.(1.22) para érbitas circulares incluyendo los campos magné-
ticos (con 77 = 0y 7 = 0), la luminosidad gravitacional es

_ RGN () 3\’
5 b GMur?)
donde hemos usado la dependencia temporal de ¢, dada por la Ec. (2.17). La pérdida

de energia a través de la emision de ondas gravitacionales via la relacion L, + E = 0
implica que la separacion entre las estrellas r decrece de la siguiente manera:

AG3 M? ’ -
dr _ _GaG M) 3 L T (2.30)
dt J, 5cor3 GMpr? GMpr?

Ly (2.29)
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2.4 Emisién gravitacional

en esta expresion hemos utilizado la Ec. (2.29) y el hecho de que E= % (% + f—i’) 7.
A partir del previo analisis, puede verse que cuando la magnitud del parametro magné-
tico coincide con el valor critico b. obtenido en el anélisis Newtoniano, no hay o6rbitas
circulares y el sistema simplemente colapsa. Ademés, como una consecuencia del de-
crecimiento en 7, el periodo orbital P, = 27/, también decrece; la tasa de cambio

logaritmico de P, es

1 dP, 32 ? -
1dP, _ 96GMu (3 5 LB 231
P, dt 5cord G M pr? G M pr? G M pr?

Notemos que haciendo b = 0 en las Ecs. (2.30, 2.31) éstas se reducen a las expresiones bien
conocidas para binarias en aproximaciéon cuadrupolar dada por ejemplo en la referencia

[31].

2.4.1. Estimacién de las ondas gravitacionales

El decrecimiento en la separacion de las estrellas de neutrones ocurre a través de una
sucesion de orbitas casi circulares, es sostenido por la emision de ondas gravitacionales
hasta que ambas se fusionan en una sola. Sin embargo, cuando las estrellas estéan sufi-
cientemente cerca, la dindmica es dominada por los efectos de los campos fuertes, por lo
tanto, la aproximacion cuadrupolar que estamos utilizando, deja de ser valida.

Mientras las estrellas se orbitan entre si, las distancias orbitales decrecen causando que
la frecuencia de las ondas gravitacionales incremente hasta un valor maximo, al mismo
tiempo que se alcanza cierto r;, v termina la fase de espiraleo para dar paso a la fase
de fusion.

El tiempo al cual la binaria alcanza dicho radio minimo r,;, puede ser calculado como

Tb:/mm(dr/dt)bldr, (2.32)

70
donde 1y es la separacion de las estrellas al tiempo ¢ = 0 y el cambio en r con el tiempo
(dr/dt), esta dado por la Ec. (2.30).
Partiendo de las orbitas circulares, el segundo momento de masa dado en la Ec. (2.28)
y utilizando la Ec. (1.20), las amplitudes de polarizacion se expresan como:

_ _% 3 cos
ha (1) = Adry(t) (1 GM/M“b(t)Q) 22l (2.33)
o, () = —% (1 B #f*b(t)?) el

aqui, rp(t) estd dado por la integracion de la Ec. (2.30). El strain de las ondas gravita-
cionales se define como hy = \/h3, + h%, vy utilizando la Ec (2.33), el strain esta dado

por
4G M 3b

h(t) =—F—— (1 —=———]. 2.34

o(t) ctdry(t) ( GM,urb(t)2> (2:34)
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2 Ondas gravitacionales de binarias magnetizadas en el regimen lineal

Notemos que haciendo b = 0 en las Ecs. (2.30, 2.31) éstas se reducen a las expresiones
bien conocidas para binarias no-magnetizadas presentadas, por ejemplo, en la referencia
[31].

Para ondas gravitacionales, el término 2y, en la Ec.(2.33) puede ser aproximado como
2pp ~ 2t donde la frecuencia de las ondas gravitacionales, wgw = 2¢, = 2w, puede
ser obtenida. La frecuencia medida en Hertz es simplemente v, = “¢*. El ntimero de
ciclos durante la fase integral puede calcularse con la siguiente integral:

Ny = / "t dt (2.35)

La derivada de la frecuencia orbital, wy, puede ser construida con la regla de la cadena:

wy = (%) (%), donde (%) esta calculado directamente a partir de la Ec. (2.17), y

(@) se sustituye a partir de la Ec. (2.30). De este modo, obtenemos

i
. _96G3M2u GM 1 3b
b peopd 73 G M pr?

(3 21_ 5b O -
GM pr? GM pr? GM pr? '

Finalmente, considerando el radio circular de las binarias no-magnetizadas en la Ec. (2.17),
podemos escribir el radio como 7 = (GM/(w?))'/3, con g = wy, donde estamos denotan-
do wy como la frecuencia angular correspondiente a la binaria circular no-magnetizada.
Después de un poco de manipulaciéon algebraica obtenemos

(2.36)

.96 G5/3M2/3,uw(1)1/3
Wy =
5cd

2 -1
x(l—Bkwé/?’) (1+3kw3/3> ,

1 - 3k W'/ (1 . 5kw§/3> .

donde k = b/(GM)*>p.

2.4.2. Estimacion de la masa

En esta seccion, mostramos como las expresiones para la luminosidad gravitacional
en la Ec. (2.29) y el cambio del periodo orbital en la Ec. (2.31) puede ser utilizada para
determinar la masa total del sistema binario. Ademas, a partir de la masa total y la
masa reducida, podemos obtener las masas individuales. Vamos a asumir un escenario
en el cual definimos el radio ) = %, y la luminosidad gravitacional L como funciones
del tiempo conocidas durante la fase de espiraleo.

A partir de las Ecs. (2.29, 2.31) visto como sistema de ecuaciones para las masas y
después de un poco de manipulacion algebréica, obtenemos la siguiente expresion para
la masa total

_ 5Lr°Q%c® V3A(Lr3 + Qb) + f1
96G?2 fo+V/3Afs

, (2.38)
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2.4 Emisién gravitacional

y la masa reducida

48G
p= _LT‘%Q?’C‘:’ (\/§Af4 + f5> ; (2.39)

donde

A = /3L2r6 +20QbLr3 + 12Q202,

fi = 3L*° +13QbLr® + 6Q%*?,

fo = 9L 4 96L3°Qb + 320L%r°Q%? + 389Lr3Q3b® + 144Q"b*,

fs = 3L +22QbL*r® + 44Q*V* Lr® + Q*V?,

fi = 3L%*° + 14QbLr® + 12Q%V?,

fs = 9L + 72Q0L%*r® + 144Q*W*Lr® + 72Q0°b°. (2.40)

Para campos magnéticos nulos b = 0, recuperamos las expresiones bien conocidas para
la masa total y reducida [118],

5Q%cr? 864G L2

- e 241
"Sosscer M T g (2:41)

Para entender mejor el efecto de los campos magnéticos en la determinacion de py M
definimos la variable

Qb

Lr3 "

x (2.42)

Mediante re-escribir la Ec. (2.38) en términos de x, obtenemos M (z) = My fy;(z) donde

3 (3 + 13z + 622 3A,(1+=x
fu(z) = B+ \%A f:f;? d+ >), (2.43)

con las definiciones

A, = V1222 420z + 3,
fo = 3+ 22z + 442” + 2423,
fr = 9+ 962 + 3202 + 3842° + 1442™. (2.44)

La masa reducida en términos del parametro x se obtiene a partir de la Ec. (2.39) como
p(z) = pofu(x), donde:

1 e 22
+/34, (6 + g + %) + Az + 822 + 4a°. (2.45)

1
fulz) = 2
De acuerdo a las Ecs. (2.38, 2.39) dados algunos valores de la luminosidad gravitacional L,
y el cambio logaritmico de la frecuencia de las ondas gravitacionales @), es posible deducir
el valor de la masa total M y masa reducida p. Cualquier desviaciéon de los valores en
las Ecs. (2.41) (lo que es equivalente a tener fy; # 1y f, # 1) pueden ser asociados con

la presencia de un campo magnético.
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1.04 ~

b<0
Dipolos antialinead6s
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1.00 A1

fm, fu

0.99 A
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0.97 A

0.96 A

—0.004 —0.002 0.000 0.002 0.004

Figura 2.2: Funciones fy; y f,, las cuales se definen en las Ecs. (2.43, 2.45). La intersec-
cion de las rectas se da en fyy =1 = f, y * = 0, correspondiendo al caso sin
campos magnéticos.

Las masas individuales de la binaria pueden determinarse a partir de las definiciones
de masa total y masa reducida, de este modo obtenemos que:

Mi(x) = Myfulo) 1—\/1—1ﬂM ,

2 I 4MofM(fU)_
My(z) = %MOfM(x) 1+\/ —%1]‘\2—‘; ff]‘;((?) . (2.46)

Notemos que las masas individuales dependen de los valores My y po y no las masas
individuales sin campos magnéticos.

Como describiremos en la siguiente seccién, un campo magnético no nulo es consistente
con la actual incertidumbre en la estimacién de las masas de la fuente para sistemas
binarios tanto con iguales como distintas masas individuales. Més atn, la estimaciéon de
masa minima y méaxima puede ser utilizada para determinar limites minimos y maximos
para los campos magnéticos de las estrellas de neutrones fuente.
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2.5 Resultados y Discusion

La Fig. 2.2 muestra graficas de fy; y f, en términos de z. Nos estamos centrando en
una region cercana a x = 0 (campos magnéticos nulos) ya que tenemos interés en desvia-
ciones pequenas producidas por los campos magnéticos. Cerca del origen, la pendiente
de fur es negativa mientras que la pendiente de f, es positiva y como mostramos, este
comportamiento causara una sobre u subestimacion en la masa de cada componente en
la presencia de campos magnéticos.

Valores de x > 0 corresponden a binarias con dipolos magnéticos anti-alineados y
x < 0 corresponde a dipolos alineados. Esto es consistente con el hecho de que las
configuraciones anti-alineadas almacenan méas energia potencial.

En la siguiente seccion mostraremos el efecto de los campos magnéticos sobre el strain
de las ondas gravitacionales y la estimacion de las masas utilizando algunos ejemplos de
relevancia astrofisica.

2.5. Resultados y Discusion

En esta seccion consideramos tres enfoques distintos en los cuales aplicamos cualitativa
y cuantitativamente el formalismo que hemos desarrollado en las secciones anteriores con
el proposito general de determinar el rol de los campos magnéticos en las binarias en
escenarios de interés astrofisico.

2.5.1. Efecto de la alineacién de los dipolos magnéticos sobre
la binaria y sus ondas gravitacionales

En primer lugar vamos a analizar la fase de espiraleo de la binaria magnetizada.
En esta seccion consideramos la fase de espiraleo del movimiento orbital utilizando dos
sistemas de estrellas de neutrones binarias: uno con masas iguales de My = My = 1.4 Mg,
(M =28Mg, p=0.7Mg) y otro con masas My = 1.8 Mo, My =1M, (M = 2.8 M,
p = 0.643 M) y una separacion de ro = 100 km. Cualitativamente describimos el efecto
de los campos magnéticos en algunas variables relevantes. Tomamos el radio de las
estrellas de neutrones como R = 12km, y fijamos el radio minimo como r,;, = 24 km. En
esta fase, tomamos campos magnéticos constantes B; = By = 8 x 10'6 G para determinar
el efecto de la alineacion relativa entre los dipolos y sus consecuencias sobre la forma de
las ondas gravitacionales. Considerando el parametro b, calculamos el tiempo 7, que le
toma a las binarias alcanzar el radio minimo, para cada configuraciéon con dipolos anti-
alineados b < 0 y dipolos alineados b > 0. Para su comparaciéon, también presentamos
el caso sin campos magnéticos b = 0. Los resultados se presentan en el Cuadro (2.1), en
éste, observamos que las binarias con masas iguales se fusionan antes que las que tienen
tienen diferentes masas individuales, independientemente de si hay campos magnéticos.
En constaste, para ambos sistemas binarios tenemos que cuando b < 0, el tiempo 7, < Ty
y cuando b > 0, entonces 1, > 7.

La separacion r(t) se obtiene de t = 0 a 7, para cada caso resolviendo numéricamente
la ecuacion diferencial (2.30). La Fig. 2.3 muestra r(t) para casos con masas iguales
y distintas. La alineaciéon relativa, como hemos descrito, estd dada por el signo de b.
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2 Ondas gravitacionales de binarias magnetizadas en el regimen lineal

’ Alineacion del dipolo magnético \ b=10

\ b<0 \ b>0

Masas iguales 70 = 0.36647 s | 1, = 0.36572 s 7, = 0.36724 s
(1p/70 = 0.9977) | (1/70 = 1.0028)
Masas distintas 70 = 0.39905s | 7, =0.39815 s 7, = 0.39996 s
(1p/70 = 0.9979) | (1/70 = 1.0021)

Cuadro 2.1: Tiempo para alcanzar el radio minimo ry;, = 24 km a partir de una se-
paracion inicial rp = 100 km para dos alineaciones relativas. El caso con
b = 0 corresponde al caso sin campos magnéticos. En los casos donde b # 0,
también se especifica el valor del cociente 7,/ 7.

Adicionalmente, determinamos la frecuencias de

r (km)

r (km)

M1 =M2= 1.4M9

las ondas gravitacionales a partir de

My =1.8My, Ma=1M,

— b=0
— b<0
—— i h>0

0.395 0.490

100 A

90 A

80

70 4

60 1

501

40

301

0.10 0.15 0.20
t (s)

Figura 2.3: Se presenta la evolucion de la separacion de las estrellas de neutrones pa-
ra casos con My = My, = 14 Mg, y
utilizando campos magnéticos de B = 8 x 106 G. Los paneles superiores
representan una mirada mas cercana a los efectos magnéticos para hacerlos
més notables cerca de la fusion.
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2.5 Resultados y Discusion

vp(t) = @p(r(t))/m y la Ec. (2.17). La frecuencia resultante como funcion del tiempo se
muestra en la Fig. 2.4.

My =M;=1.4M;y M;=1.8Mg, Ma=1Mg
1600 1600
— b=0
— b<0
1400 A — h>0

1200 A

vy (Hz)

1000 A

16001 —— Mi=Mz b=0
My =M, b=0
14001 —— My =M,, b<0
— M1>M; b=0
. i | s
E 10004 —— Mi1>M,, b<0
= 800 1
600 -
400 A
200 A
0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40

t(s)

Figura 2.4: Evolucion de las frecuencias de las ondas gravitacionales durante los taltimos
instantes de la fase de espiraleo para sistemas binarios con masas iguales
(arriba a la izquierda) y desiguales (arriba a la derecha). El intervalo de
tiempo y condiciones son las mismas que en la Fig. 2.3. La figura inferior
muestra seis casos durante toda la fase de espiraleo.

Las amplitudes hy y hy se obtienen a partir de la Ec.(2.33) y la integraciéon numérica
de las Ecs. (2.17) y (2.30). En la Fig. 2.5 la polarizacion h, se grafica considerando una
distancia d = 40 Mpc (como la reportada en el evento GW170817). Esta distancia nos da
un strain en el radio minimo de hl(,min) = 1072°, como se muestra en la Fig. 2.5. El ntimero
de ciclos se calcul6 utilizando la Ec. (2.35) y presentamos los resultados en el Cuadro 2.2.
Observamos que las binarias magnetizadas con masas iguales tienen menos nimero de
ciclos V, que la binaria con masas distintas, independientemente de la alineacion de los
dipolos magnéticos. Vemos que debido a la relaciéon entre las masas individuales, cuando
b < 0 entonces N, < N, y vice versa, cuando b > 0 entonces N, > N,. En este analisis
hemos incluido casos con masas individuales iguales y distintas, estas diferencias afectan
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Figura 2.5: En la figura inferior se muestra la polarizacion h, durante la fase de es-
piraleo para binarias con masas iguales y masas diferentes comenzando de
una separacion inicial de 100 km. En las figuras superiores, presentamos una
amplificacion de los instantes finales, donde los efectos magnéticos son més

notables.
‘ Alineacién dipolar magnética ‘ b=0 ‘ b<0 ‘ b>0 ‘
Masas iguales Ny =110.74533 | N, = 110.46847 Ny = 111.02361
(Ny/No = 0.9975) | (Ny/ Ny = 1.0025)
Masas no-iguales Ny =120.58936 | N, = 120.26116 N, = 120.91928
(No/No = 0.9973) | (N}/ Ny = 1.0027)

Cuadro 2.2: Numero de ciclos en la fase de espiraleo para ambos sietemas binarios, co-
menzando en ry = 100 km. La alineacién dipolar magnética corresponde a
campos magnéticos de intensidad B; = By = 8 x8x 10'® G. Por practicidad,
también se especifica el cociente N,/ Ny = para los casos correspondientes.

notablemente la frecuencias de las ondas gravitacionales emitidas.
A continuacién consideraremos los casos para un rango de campos magnéticos.
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2.5 Resultados y Discusion

2.5.2. Efecto magnético sobre variables del espiraleo

Vamos continuar con nuestro anélisis, ahora variando la magnitud de los campos
magnéticos para describir el efecto correspondiente sobre las variables de la fase de
espiraleo: el tiempo para alcanzar el radio minimo, la luminosidad gravitacional, el strain
y la frecuencia de las ondas gravitacionales. Para el analisis en esta parte, consideramos
dos sistemas binarios, uno con masas iguales de M; = M, = 1.4 M y otro con masas
distintas: My = 1.8 My, My = 1 M. Consideramos campos magnéticos con intensidades
entre B = 102 Gy B = 8x10'% G, consistentes con los valores y predicciones reportadas
en [106, 103]. Estas magnitudes de los campos magnéticos implican que el parametro b
toma valores dentro del intervalo —4.77 x 109 gem?®/s? < b < 4.77 x 10% gem®/s?. En
la Fig. 2.6 el valor de 7, como una funciéon de b se grafica para ambos sistemas binarios.
Estamos definiendo 7y := 7,(b = 0). Como mostramos en la Fig. 2.6, independientemente

M1=M2=1.4M0 M1=1.8Mo, M2=1MO lel6

e e | 6.412 - 8
6.411 A 7
5.887
6.410 - 6
55861 6.409 - 5
4 T0=5.8848s ) _ —
58854 ___ [ i N NSO = 6.4084-...T10=6.4079s __ & __ ___________ "2
= @
5.884 6.407 - .
£ s 6.406 - 5
6.405 -
5.882 1
6.404 - 5
-4 -2 0 2 4 -4 -2 0 2 4
b (emu?) 1eG9 b (emu?) 1e69

Figura 2.6: Valores del tiempo al cual el radio minimo es alcanzado 7, a partir de una
separacion inicial de 7o = 200 km y un rango de valores del parametro mag-
nético b. El codigo de color representa la magnitud de los campos magnéticos,
de morado para B = 0 a amarillo para B = 8 x 106 G.

del campo magnético, el sistema con masas iguales alcanza su radio minimo en un tiempo
més corto 7, respecto al caso con masas distintas. Sin embargo, en ambos casos, si b < 0,
T, < Toysib>0,7 > 1. Podemos interpretar este resultado como la muestra de que
una configuracion donde b > 0 (b < 0) produce un ligero incremento (decremento) en el
tiempo requerido para alcanzar r,,;,. Este enunciado cualitativo puede ser cuantificado
a través de la desviacion magnética definida como el radio

Xp — Xo
AX = ——, 2.47
o (247
donde X, es una variable que depende del parametro magnético b y Xy = X;(b = 0).
Siguiendo nuestro analisis de 7,, AT = % En los casos donde 7, > 7, entonces

AT > 0, esto ocurre para configuraciones con b < 0. En constaste, cuando 7, < 7y,
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2 Ondas gravitacionales de binarias magnetizadas en el regimen lineal

entonces A1 < 0 lo cual ocurre cuando b > 0. El orden de magnitud de A7 se muestra
en el Cuadro 2.3, el cual es el mismo para binarias con masas iguales y desiguales. El
cambio en el tiempo para alcanzar el radio minimo es alrededor de 10~* con respecto al
cambio en el tiempo del sistema sin interaccion magnética.

Ahora vamos a considerar el strain hl()mm) en rni, dada por la Ec. (2.34). Si b < 0,
hi"m < hPin: en contraste si b > 0, entonces hfﬁn) > RS, En otras palabras, cuando la
alineacion entre los dipolos magnéticos es tal que b < 0, el strain del sistema magnetizado
es més pequeno que el strain del sistema no magnetizado en r.,;,. Lo opuesto ocurre

cuando b < 0, como vemos en la Fig. 2.7. El orden de magnitud de la desviacion

1e55 My =M;=1.4Mg 1e55 M1 =18Mg, M =1M;y 1e16 5
2.24 1
1.89 7
=23 1.88 4 6
—~ 222 - 5
2 L 1.87 - =
o Lo=2.2105e55 e o Lo=1.8643e55 e o
8221 -7 T T U il it 4 =
= = 1.86 - @
2.20 1 2
1.85 1 5
2.19
1.84 1 1
2.18
T 0
-4 -2 0 2 4 -4 =2 0 2 4
b (emuz) 1le69 b (emuz) 1le69

Figura 2.7: El strain en r,;, para ambos sistemas binarios. La distancia a la fuente d
utilizada para calcular el strain es d = 40 Mpc, muy similar a la distancia
a la fuente de la senal GW170817. El cédigo de color es el mismo que en la
figura 2.6.

| B(G) [ 10" [ 10" [ 10™ [ 10" [ 106 |

~ |AT| 1072110719 1078 | 1079 | 101
~ [Ah(rym)| | 1072 1 107 | 1077 | 107° | 1073
~ |AL(ryn)| | 1071 1078 [ 1075 | 107* | 1072

Cuadro 2.3: Valor absoluto de la desviacion sobre 7, hy(rmin) ¥ Lp(Tmin) para algunos
valores tipicos de la intensidad de los campos magnéticos B presentes en las
estrellas de neutrones.

magnética para A" se presenta en el Cuadro 2.3. Notemos que, en contraste con la
desviacion en el tiempo de fusion, el signo de la desviacion del strain en r,;, es positivo
cuando b < 0, lo cual significa que Ah™® > 0 cuando los dipolos estdn anti-alineados, y
Ah™ < ( cuando los dipolos magnéticos estan antialineados. En este caso, el cambio en
la magnitud del strain puede se hasta de 107. La luminosidad L; dada en la Ec. (2.29)
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2.5 Resultados y Discusion

y la frecuencia de las ondas gravitacionales v, evaluada en r;, se muestra en la Fig. 2.8
y 2.9. La frecuencia de las ondas gravitacionales 14, se grafica sin barras de colores

porque las diferencias entre los sistemas binarios son muy pequenas.

1e—21

M=M= 1AMy

ha=hoglie — 20

—4

b {=mu)

1a—30

Mi=LEM., M;=1M,

En el Cuadro

lrls

B 1G]

-2 0

B {emu?)

163

Figura 2.8: La luminosidad, Ly(rmpm), evaluada en ry;, = 24.89 km respecto al rango
del parametro magnético b para estrellas de neutrones con masas iguales (iz-
quierda) y distintas (derecha). Ly corresponde a la luminosidad gravitacional
para la binaria no-magnetizada. El codigo de color es como en la Fig.(2.6).
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Figura 2.9: (Izquierda). Frecuencia de las
Tmin = 24.89 km como funcién del parametro magnético b para casos con ma-
sas iguales. La frecuencia vy(ry;, ) corresponde a una binaria no-magnetizada.
(Derecha) Lo mismo que en la Izquierda pero para casos con masas distintas.
El codigo de color es como en la Fig. 2.6.
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ondas gravitacoinales v,(r), evaluada en r =

2.3 se muestran las desviaciones magnéticas a las variables 7, Ah y AL. Para el valor
méximo que estamos trabajando para los campos magnéticos, B ~ 10'¢ G, el tiempo de
funcion Ay (rmim) ~ 1074 el strain Ah(rpm) ~ 1073 y AL, ~ 1072, Ademés, notemos
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2 Ondas gravitacionales de binarias magnetizadas en el regimen lineal

que para b > 0, todas las desviaciones, excepto A, son negativas y las desviaciones de
los casos no-magnetizados es més notable en la luminosidad gravitacional, resultando en
un cambio del orden 1072. Los resultados presentados se extienden a lo largo de toda la
fase de espiraleo, debido al comportamiento monoétono de las variables. Un resumen del
comportamiento cualitativo del tiempo 7, strain hy, la luminosidad gravitacional L, la
frecuencia de las ondas gravitacionales v, y niimero de ciclos, Ny, dependiendo del signo
de b se muestra en el Cuadro 2.4.

’Variable‘b:O‘ b<0 ‘ b>0 ‘

Tp 70 T < To Ty > To
hb ho hb > h() hb < hg
Ly Ly Ly > Ly Ly, < Ly
Vp 1) Vp > 1) vy, < 1
Ny No [Ny <N, | Ny > N,

Cuadro 2.4: Comportamiento relativo de algunas variables astrofisicos: el tiempo para
alcanzar el radio ry,, 7, €l strain, h;, la luminosidad gravitacional, L, la
frecuencia de las ondas gravitacionales v, y el nimero de ciclos N, entre
casos magnetizados y no magnetizados.

2.5.3. Estimacién de la masa: otra aplicacién.

Dado que los detectores tienen un rango de frecuencias de observaciéon y una sensibi-
lidad, sus reportes de masas de las fuentes tienen asociadas incertidumbres.

El escenario presentado en esta parte es ligeramente diferente que los presentados
previamente. Aqui, mostramos como las incertidumbres en las mediciones de las masas de
las binarias fuentes de ondas gravitacionales, pueden ser utilizadas para establecer limites
en los campos magnéticos presentes en los sistemas binarios de estrellas de neutrones.
Para nuestro propoésito, consideraremos la senal GW170817 debido a que es la primera
evidencia de la colision de dos estrellas de neutrones y por su relevancia en el desarrollo
subsecuente de la astrofisico. Cabe senalar que algunas suposiciones son utilizadas en
el presente estudio (como la excentricidad cero de las érbitas y la no-rotacion de las
estrellas de neutrones) son consistentes con aquellos reportados en [33]. Ahora vamos
a proceder como sigue: La Colaboracion LIGO-Virgo reporta para la senal GW170817,
una masa total de la binaria de estrellas de neutrones igual a M = 2.74105% M, [33]. En
adicion, los errores sistematicos y estadisticos implican los valores limite para la masa
total del sistema:

Mpin = 2.73 My and My = 2.78 M, .

Considerando la definicion de la funcion fy, = M /My, y tomando como masa promedio
My =274 Mg y Myin(Mpax) como la masa minima (méxima) posible para la masa total

M . Entonces M 273
(min) min .

= —=0. 2.4
Y M, X7 0.99635 , (2.48)
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(max) _ Mmax  2.78
= = — =1.0145. 2.49
Ta M, 2.74 (2.49)

Esto nos provee un dominio en z para la funciéon fj;,

0.99635 < fur < 1.0145.

Este resultado es consistente con los datos. Utilizando el hecho de que fj; es mondtona
en z en una pequena vecindad de = = 0, (esto puede ser visto a partir de la Ec. (2.43)),
y ademas, puede ser invertido para obtener valores méximos y minimos de x como
Tmin = —0.00225 and z,., = 0.00058. Posteriormente, a partir de la definicién de la

1.020 A

D T e o i mc s i s s i - S A

1.010 A

fu

1.005 A

1.000 A
min)
i

0.995 A

—0.0030 -0.0025 -0.0020 -0.0015 -0.0010 -0.0005 0.0000 0.0005 0.0010
X

Figura 2.10: Funcion fy/(x) con Ly @ estimadas a partir de la senal GW170817. La li-

(max (min)

neas horizontales representan f;, ) v fas  como se definen en la Ec. (2.49)
y Ec.(2.48) respectivamente. Lineas verticales son utilizadas para entender
mejor los valores de T, V Tmin. La intersecciéon de las tres lineas determi-
nan que los masas permitidas son consistentes con la senal GW170817.

variable adimensional z, Ec. (2.42), tenemos que b = Lr3z/Q. Utilizando los valores
consistentes con la senal GW170817 obtenemos los siguientes valores para la luminosidad
y cambio logaritmico del periodo: L = 1.8423 x 10° ergs/s y Q = —272.4447 Hz, y con
esto, obtenemos el siguiente rango para el parametro magnético

bin = —9.69 x 10" zaemu? = —5.623 x 10%%emu?,

boax = —9.69 x 10"z emu® = 2.18 x 10%emu?. (2.50)
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2 Ondas gravitacionales de binarias magnetizadas en el regimen lineal

Notemos que el signo de b es opuesto al signo de x, de modo que las configuraciones
con by, < 0 corresponden a Zy.x > 0, y viceversa. Finalmente, a partir de la Ec. (2.4),
podemos estimar la magnitud de los campos magnéticos asociados con los valores mi-
nimos y méximos de la masa. En términos de los campos magnéticos de los dipolos, el
valor de by, requiere dipolos anti-alineados con B = 2.74 x 10'® G, el maximo teorizado
para estrellas de neutrones, y by, requiere dipolos alineados con campos magnéticos de
magnitud B = 5.41 x 10'® G. En resumen, la masa maés alta para GW170817 puede ser
asociada con la presencia de campos magnéticos alineados. La masa total mas pequena
puede ser asociada con campos magnéticos anti-alineados de la misma magnitud. De
este modo, podemos inferir que las incertidumbres de la colaboracion LIGO-Virgo pa-
ra la determinacion de las masas, permite la presencia de campos magnéticos de hasta
B = 2.74 x 10'°. Es entonces importante que la precision en la medicién de las masas
incremente, de este modo podrian determinarse los campos magnéticos en las estrellas
de neutrones que chocan y emiten ondas gravitacionales

2.6. Conclusiones del capitulo 2

En el contexto de la astronomia de ondas gravitacionales y el modelado de las fuen-

tes, los objetos compactos son un tema central de estudio. Las estrellas de neutrones
son de los objetos astrofisicos que pueden poseer los campos magnéticos mas intensos
del Universo. Entonces, se espera que los campos magnéticas jueguen un rol importante
en la dinamica de las estrellas de neutrones. En sistemas binarios, la emisiéon de ondas
gravitacionales puede verse ligeramente afectada por la presencia de campos magnéticos
intensos como ya habia sido presentado en previas investigaciones [104, 107].
En este trabajo, presentamos un simple, pero ttil modelo de un sistema binario de es-
trellas de neutrones que incorpora los campos magnéticos en la dindmica de la binaria.
Nuestro enfoque esté basado en el formalismo cuadrupolar para calcular las ondas gra-
vitacionales emitidas durante la fase de espiraleo para sistemas binarios magnetizados.
En un primer momento, utilizamos la descripcion Newtoniana de la Gravedad y descri-
bimos los campos magnéticos de cada estrella como dipolos magnéticos perfectos para
obtener expresiones para la frecuencia orbital de la binaria magnetizada. Ademas, como
las ondas gravitacionales tienden a circularizar las érbitas de la binaria, nos enfocamos
en el caso circular.

Asumiendo que la contribucién de los espines individuales al momento angular total
del sistema binario es muy pequeno, la contribucién gravitacional y magnética domina
la contribucién del momento angular orbital y entonces las ecuaciones que contienen la
interaccion gravitacional y magnética puede ser expresadas en una forma muy simple y
analitica. En particular, podemos argumentar que en la aproximacion de dipolos magné-
ticos para las estrellas de neutrones, los momentos magnéticos individuales se mantienen
en general alineados con el momento orbital angular. Bajo esta consideracién mostramos
que la dindmica de las binarias puede ser reducida a un problema de un cuerpo.
Mediante el estudio del potencial efectivo del problema equivalente de un cuerpo, mos-
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2.6 Conclusiones del capitulo 2

tramos que existe un valor critico para los campos magnéticos por debajo del cual no
existen oOrbitas ligadas. Este valor critico emerge solamente cuando los momentos mag-
néticos estan anti-alineados. Esto es, los sistemas ligados no existen si los campos son
suficientemente intensos y con sus dipolos alineados entre si porque la repulsion magné-
tica es mas fuerte que la atracciéon gravitacional.

En nuestro anélisis determinamos el efecto de los campos magnéticos sobre algunas
variables astrofisicas relevantes para un sistema binario tales como la luminosidad gra-
vitacional, la tasa de cambio logaritmico del periodo orbital, el tiempo para alcanzar
un radio minimo y la masa total. Como esperabamos los resultados presentados aqui
se reducen al problema binario de 6rbitas circulares en ausencia de campos magnéticos,
descrito por ejemplo en [118].

Como una aplicacién a nuestro modelos, mostramos que para sistemas binarios con masa
total M = 2.8 M, y magnitud de sus campos magnéticos de B ~ 106 G el radio entre
el potencial magnético y gravitacional U,, /U, es del orden de ~ 10~ cuando las estrellas
estan cerca de la colision. También, encontramos que las desviaciones en la frecuencia y
strain de las ondas gravitacionales con respecto a los casos no-magnéticos son del orden
de ~ 107 y las desviaciones en la luminosidad son un poco més grandes, son ~ 1072
con respecto al caso no magnetizado.

Por otro lado aplicamos este modelo a dos posibles escenarios astrofisicos.

(i) Considerando que la luminosidad gravitacional y la tasa de cambio logaritmico del
periodo orbital pueden ser extraidas de los datos observacionales, nuestro modelo nos
permite estimar el efecto de los campos magnéticos en la determinacién de las masas in-
dividuales sobre la binaria. Mostramos que la masa total y masa reducida, puede ser sub
o sobre-estimadas con respecto a un sistema binario sin interacciéon magnética. Ademas,
si los momentos magnéticos estan alineados, la masa total es subestimada mientras que si
los momentos magnéticos estan anti-alineados, la masa total se sobre-estima. Lo opues-
to ocurre con la masa reducida. En concreto, para magnitudes de B ~ 10'¢ G, pueden
causar una sobre-estimacion o sobre-estimacion hasta 2 % de la masa total. Aunque este
porcentaje parece pequeno, la desviacion cae dentro de los rangos de incertidumbre de
los detectores de la Colaboracion LIGO-Virgo [138]. (ii) Usamos como ejemplo el evento
GW170817 y lo aplicamos a nuestro modelo para calcular la incertidumbre en la deter-
minacion de la masa de los progenitores reportadas en la literatura. Este procedimiento,
naturalmente impone un rango de posibles magnitudes de los campos magnéticos de la
fuente de la senal GW170817. Concretamente, los posibles valores minimos y maximos
de la masa total asociada con la senal GW170817 dan un rango para que la binaria
progenitora tenga magnitudes de los campos magnéticos de B ~ 101 G, lo cual esta
dentro de lo esperado.

Como estimamos en la Sec. 2.5 los efectos de los campos magnéticos son muy pequenos
como para ser detectados con los actuales detectores de ondas gravitacionales, a menos
que estos tuviesen campos magnéticos tan intensos como B = 10'7 G. Puesto que en un
futuro la sensitividad y alcance de las observaciones de ondas gravitacionales permitiran
la deteccion de los campos magnéticos y sus efectos en las propiedades de la binaria y las
ondas gravitacionales, estudios como éste son de gran importancia. Basado en nuestros
resultados, las plantillas de ondas gravitacionales pueden ser generadas y posteriormente

45



2 Ondas gravitacionales de binarias magnetizadas en el regimen lineal

efectuar la correspondiente busqueda utilizando los datos publicados por la colaboracion
LIGO. Los resultados del presente capitulo pueden consultarse en [20]. Se agradece a los
autores de dicho trabajo por sus valiosos aportes.
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3 Ondas gravitacionales de la
colision frontal de estrellas de
bosones-/

Este capitulo esta basado en una investigacion en elaboracion que préoximamente sera
enviada para su publicacion. La investigacion tiene por titulo: Detection of gravitational
waves emitted from head-on collisions of £-boson stars y los autores son: Mariana Lira
(ICN-UNAM), Mtra. Laura O. Villegas (UdG), Dra. Claudia Moreno (Udg), Dr. Javier
M. Antelis (Tec de Monterrey), Dr. Victor Jaramillo (USTC) y Dr. Dario Nugiez (ICN,
CIDMA).

3.1. Resumen

Se examinan distintas sefiales de la colision frontal de estrellas de bosones-/, las cuales
son posibles objetos compactos de materia oscura. Presentamos una revision a los aspec-
tos generales y propiedades de este tipo de objetos. Utilizamos los resultados de trabajos
previos para analizar distintos perfiles de ondas gravitacionales generados en estas coli-
siones. Para fijar ideas, elegimos como distancia a la fuente 100 Mpc y determinamos el
rango de masas y amplitudes del campo escalar que compone a las estrellas de bosones-
¢. Posteriormente, procesamos las seniales y obtenemos las imagenes como podrian ser
detectadas por los detectores de la colaboracion LIGO-Virgo-Kagra y otros. Ademés,
comparamos cualitativamente las caracteristicas de este tipo de senales gravitacionales
con las producidas por colisiones de agujeros negros.

3.2. Introduccién

Desde la primera deteccion de ondas gravitacionales (OGs) por la Colaboracion LIGO-
Virgo (CLV) en 2015 [61], la era de la astronomia de ondas gravitacionales ha comenzado
y estd avanzando rapidamente. A la CLV [139] se le ha sumado el grupo KAGRA en
Japon [140]. El método empleado para analizar los datos de los detectores de CLV y
KAGRA (CLVK) se llama filtro por empate y requiere forzosamente de modelos teoricos
de ondas gravitacionales, sin ellos, no seria posible extraer las senales y asociarlas a
una fuente. Es decir, son necesarios los modelos tedricos y un procesamiento de datos
para encontrar sefiales gravitacionales de origen astrofisico. La CLVK ha terminado tres
periodos de observaciéon cuyos resultados pueden consultarse en el Tercer Catalogo de
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Ondas Gravitacionales Transientes|1358]. Reportan 90 eventos confirmados de 2015 a
la fecha, todos estos eventos estédn asociados con la fusion de estrellas de neutrones o
agujeros negros binarios. El cuarto periodo de observacion O4 comenzé en Mayo de 2023
y sigue activo.

Dentro del estado-del-arte de las investigaciones en este tema, se modelan principal-
mente agujeros negros y estrellas de neutrones binarias como fuentes de OGs, ampliando
el espacio de parametros y los modelos. Mas atn, con OGs, existe una gran oportunidad
para probar modelos teéricos de otras posibles fuentes teéricas de ondas gravitacionales,
como las estrellas de bosones [36] y las estrellas de Proca|l41]. Las estrellas de bosones
son sistemas astrofisicos teodricos cuya existencia atin no ha sido comprobada ni descar-
tada. Se construyen dentro del marco teérico de la Relatividad General como soluciones
auto-gravitantes al sistema de ecuaciones Einstein-Klein-Gordon, donde los bosones se
describen a partir de un campo escalar complejo [1412]. El campo escalar esta tomando
cada vez mayor interés como candidato para describir la materia oscura del Universo
[16]. Es un campo del espaciotiempo cuatridimensional donde a cada punto z* se le
asigna una cantidad escalar compleja: . Para una revisiéon detallada y actualizada del
tema, existen algunos articulos de revision como [15].

Hay una amplia variedad de modelos de estrellas de bosones, las mas simples fueron
construidas a finales de los 1960s [39, 143], conformadas por un solo campo escalar.
Una de las configuraciones mas interesantes son las estrellas de bosones-¢ [142, 144].
Una estrella de bosones-¢ es esféricamente simétrica y esta formada por 2¢ + 1 campos
escalares complejos.

Se han planteado varios escenarios bajo los cuales se podrian detectar las estrellas de
bosones-¢ y asi confirmar (o descartar) su existencia. Una posible manera seria a través
de la deteccion de sus ondas gravitacionales producto de la interaccion de dos de ellas.
En simulaciones numeéricas recientes, se ha encontrado que si dos estrellas de bosones
chocan frontalmente, emiten ondas gravitacionales [36].

En el trabajo [115] se analiza bajo que valores de la masa bosonica, las estrellas de
bosones binarias podrian ser imitadores de agujeros negros binarios.

En simulaciones recientes de colisiones frontales de estrellas de bosones-¢, se encuentra
que dependiendo de la masa de las estrellas de bosones-¢, el remanente de la colision
puede ser un agujero negro, una estrella de bosones-¢, 6 un producto desviado de la
simetria esférica con un campo escalar en disipacién. Del mismo modo, la forma de las
ondas gravitacionales es distinta en cada caso [110] .

En el presente capitulo analizamos distintos ejemplos de sistemas binarios de estre-
llas de bosones-¢ en colision frontal, las cuales son posibles objetos de materia oscura.
Presentamos una revision a los espectos generales de este tipo de configuraciones auto-
gravitantes y utilizamos estos resultados para analizar los perfiles de ondas gravitaciona-
les emitidos en la colision. Elegimos como distancia a la fuente 100 Mpc, y, determinamos
el rango de energia intrinseca del campo escalar que compone a las estrellas que podrian
ser detectadas por los actuales observatorios de ondas gravitacionales. Ademas, procesa-
mos las senales y obtenemos los espectogramas y datos que verian los observatorios en
la colision frontal de estrellas de bosones y, resaltamos las similitudes y diferencias con
las senales gravitacionales producidas en la colision de agujeros negros.
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3.3 Fundamentos tedricos

Como esta organizado este capitulo. En este trabajo, exploramos los ocho mode-
los de colisiones frontales de estrellas de bosones-¢ generados en [116] (cuatro correspon-
den a binarias con ¢ = 0 y cuatro a binarias £ = 1). Aprovechando la libertad de eleccion
de energia intrinseca del campo bosénico mec?, hacemos predicciones sobre los valores de
energia que deberia tener el campo escalar de las estrellas de bosones, para que éstas, al
chocar frontalmente, emitan ondas gravitacionales con frecuencias y amplitudes dentro
del rango de deteccion de la colaboracion LIGO, Virgo, Kagra. Procesamos las senales
para obtener la amplitud, energia y frecuencia caracteristica de las ondas gravitacionales
para el rango de mec® estimado. Posteriormente, elegimos un valor conveniente de la
energfa mgc? (lo cual fija los valores de las masas y radios de la fuente, asf como el
tiempo de la colision) y comparamos las seniales entre fuentes con el mismo radio pero
distinto valor del pardmetro ¢. En la seccion de Resultados, mostramos que las senales
de estrellas de bosones ¢ = 1 son més féciles de ser detectadas por LIGO-Virgo-KAGRA
que las estrellas de bosones con ¢ = 0. Sintetizamos ésta y otras conclusiones en la tltima
seccion del presente capitulo.

3.3. Fundamentos tedricos

En las subsecciones 3.3.1 y 3.3.2 se describen las estrellas de bosones estandar ( £ = 0)
y las estrellas de bosones-¢, respectivamente. En la subseccién 3.3.3, vamos a conside-
rar sistemas binarios de ambos tipos de estrellas de bosones que interactian entre si
unicamente a través de la Gravedad de acuerdo al sistema de ecuaciones de Einstein-
Klein-Gordon.

3.3.1. Estrellas de bosones (¢ = 0)

Sabemos que la acciéon en Relatividad General S estd dada por la integral volumé-
trica de la funcion lagrangiana £ de modo que: S = [ /=g Ld*z. Las ecuaciones que
rigen toda la dinamica del sistema se obtienen a partir del principio de minima accién
que establece que 05 = 0. Para mas detalles sobre el formalismo lagrangiano se puede
consultar la seccion 1.1 del capitulo 1 de la presente tesis.

Las estrellas de bosones son configuraciones auto-gravitantes que satisfacen el sistema
de ecuaciones Einstein-Klein-Gordon (EKG). El sistema EKG se deduce aplicando el
principio variacional a la siguiente accién total:

s— [ <R 4 el a 3.1

siendo Lg la funciéon lagrangiana del campo escalar & dada por:

Lo = —% (VIO V, 0" +V (|9)), (3.2)

donde V(]®|?) es un potencial efectivo en principio arbitrario. El tensor T, se obtiene
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a partir de la variacion de la funcion lagrangiana respecto a la métrica:

0L

Ty = ——
b 5gab

1
=5 (Va@V, 2" 4+ V, 0V, @7 — g (V.2 V2 +V (|2%))).  (3.3)

Al sustituir la funcion lagrangiana en la accion total y estimar la variacion respecto
a los campos gravitacional y escalar se obtiene el sistema de ecuaciones Einstein-Klein-
Gordon (EKG):

1 81G
Rab_égabR = _4Tab7 (34)
C
oV
¢ = — .
9% (3:5)

con [ = ¢ V, V, para un espaciotiempo estético y con simetria esférica descrito por
la métrica en la Ec. (3.6). La expresion anterior implica un sistema de tres ecuaciones
diferenciales para las funciones métricas y el campo escalar.

La ecuacion para ® es esencialmente una ecuacion de onda y describe la dinamica del
campo escalar en un espaciotiempo dado por el tensor métrico g,,. Cuando resolvemos
junto a las ecuaciones de Einstein con el tensor dado por la Ec. (3.3), se obtiene una
estructura auto-gravitante compuesta de campo escalar. Para resolver es necesario definir
el potencial escalar y simplificar un poco el sistema de ecuaciones a través de la eleccion
de una métrica de prueba (anzatz) adecuada:

Anzatz y potencial escalar

Para construir soluciones esférico simétricas se considera el siguiente elemento de linea:

2
dr — +r2d0?, (3.6)

-

ds* = —a(r) ®dt* +

donde d2 es el elemento de linea de la 2-esfera y a(r) y M (r) son las funciones a resolver.
En esta simetria resulta logico plantear como anzatz para el campo escalar una funcion
de onda plana con frecuencia w, esto es,

d = p(r) e, (3.7)
asi como considerar el siguiente potencial escalar V'
V(|2]) = p* @27, (3.8)

con g conocido como parametro de masa con unidades de inverso de longitud, que se
relaciona con la masa asociada a la particula bosonica, mg, con

me C

b= (3.9)
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con c la rapidez de la luz en el vacio y A la constante de Planck divida por 2.

Por otra parte, al demandar que el espaciotiempo sea asintéticamente plano, condicion
necesaria para obtener un objeto auto-gravitante, se encuentra que w?/c? < p?. Es decir,
existe una relacion entre la frecuencia de oscilacién y la masa intrinseca del campo
escalar.

Al resolver numéricamente el sistema de ecuaciones, se deben considerar condiciones
iniciales y se obtienen configuraciones auto-gravitantes de campo escalar que reciben el
nombre de estrella de bosones caracterizadas por su masa total Mgomar, €l radio que
encierra el 99% de dicha masa, Rgg, el campo escalar y las funciones métricas. Este
procedimiento puede repetirse muchas veces para obtener una familia de estrellas de
bosones, como se aprecia en la Fig. (3.1). En esa figura, se grafica la masa Mg omar
contra el radio Rgg.

—— Estrella de bosones £ =0 —— Estrella de bosones £ =0

0.6 0.10 4

0.5 2 0.08
N
~
5 z
Eoa g 0.06
= =
Il
2 0.04
0.3 1 o
0.02 -
0.2 4
T T T T T 000 L T T T T T
10 20 30 40 50 10 20 30 40 50
Rgg R99

Figura 3.1: Se muestra la familia de estrellas de bosones ¢ = 0 estables en unidades. A la

izquierda se muestra la masa de Komar M Komar como funcion del radio ﬁgg
frecuencia de oscilacion del campo escalar @ = w/(cu) en el eje horizontal
y la masa total de la estrella M = GuM /c*. A la derecha se muestra la
compacidad C en funcion de w. El simbolo” ( gorrito ) denota que la cantidad
es adimensional.

3.3.2. Estrellas de bosones-/

Las estrellas de bosones convencionales pueden ser generalizadas utilizando en lugar
de uno, varios campos escalares clasicos acoplados minimamente a la Gravedad, [147],
como es el caso de las estrellas de bosones-¢ de modo que en vez de considerar la funcion
lagrangiana de la Ec. (3.2) consideraremos ahora la siguiente lagrangiana:

1
£=— Z_e(v Dy, Vo Oy, + V (|®])) - (3.10)
Estas configuraciones ya han sido estudiadas a detalle, por ejemplo, en [141]. Cuando se
considera el parametro ¢ se esta suponiendo que la estrella de bosones-f estd compuesta
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por el namero impar 2¢ + 1 de campos escalares complejos &4, de la forma

Do (t, 7,9, 0) = € “p(1) Yo (Y, ), (3.11)

donde w es una frecuencia real, Yy, (p, ¢) son los armonicos esféricos estandar, ¢ esta
asociado al momento angular, m es el nimero de nodo. Cuando ¢ = 0, la ecuaciéon
anterior se reduce a la Ec. (3.7). Cuando ¢ = 1, puede tomar los valores —1,0,1 por lo
que la estrellas de bosones ¢ = 1 queda descrita por tres campos escalares complejos:
By = e i (r) (Y (9, ) + Yio(9, ) + Yi_1(V, ¢)); y asi sucesivamente.

Siguiendo el mismo procedimiento que con las estrellas de bosones convencionales
(¢ = 0), el tensor de energia-momento se obtiene a través de la variacion de la Ec.
(3.10), de donde se obtienen 2¢ + 1 términos de la forma del tensor dado en la Ec. (3.3)
para un solo campo escalar. En el caso de las estrellas de bosones-/,

1
Ty = 2 Z (vu 0V, @5 +V, 8,V 0% — g (gaﬂ Vo @ Vi @ + 1° Oy q)*m)) :

m

(3.12)
Para comprobar que el tensor de energia-momento tiene simetria esférica y es indepen-
diente al tiempo, utilizamos el teorema de suma de los armoénicos esféricos:

14

2 41
Im 2
> Yrwe)f ==, (3.13)

m=—/
junto con el hecho de que aqui hay eigen-funciones del operador angular laplaciano:

i 60 LNy g4 1yt 14

(@‘FCOJC %—Fma—w) ——(+) ) (3 )

con esta relacion puede demostrarse|l12] que la dependencia angular de las soluciones
desaparece, el tensor de energia-momento se mantiene con simetria esférica [115].

La ecuacion Klein-Gordon también pierde su dependencia angular, aunque mantiene
un término con ¢ (¢ + 1) /r%. Finalmente, se obtienen, al igual que con las estrellas de
bosones (¢ = 0), configuraciones esféricas de campo escalar con un radio conteniendo el
99 % de su masa, reciben el nombre de estrellas de bosones-¢ [142].

Estos objetos son una generalizacion de las anteriores estrellas de bosones ya mencio-
nadas. Para un valor dado de /¢, se puede obtener una familia de soluciones variando el
valor de w y determinando las cantidades globales de cada solucién, como se muestra en
la Fig. 3.2 la cual incluye tanto las estrellas de bosones con ¢ = 0 asi como la familia
¢ = 1. En ambos casos, el valor maximo de las curvas separa las configuraciones estables
de las inestables [119, 150]. En [144], distintas propiedades de las configuraciones de mul-
tiples campos escalares fueron analizadas, y, obtienen que la familia de soluciones ¢ = 1
tiene propiedades cualitativas muy similares a los otros casos. Las estrellas de bosones-¢
parecen ser estables ante perturbaciones esféricas, lo cual demuestra que oara cada valor
fijo de ¢, existen estrellas de bosones linealmente estables ante fluctuaciones radiales.
Incluso, los resultados en [150] sugieren que la familia £ = 1 es un caso particular de una
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familia més amplia de solitones auto-gravitantes, estaticos y posiblemente estacionarios.
Estas configuraciones, también pueden interpretarse como condensados-¢, de naturaleza
semi-clésica con nimero cuéntico m.

Por otra parte, familias con valores grandes de ¢ ya han sido resueltas y construidas
en [151] y obtuvieron que las soluciones con grandes valores de ¢ tienden a formar un
cascaron como estructura. Ademaés, soluciones analogas pero usando materia exdtica
han sido considerados en [99] con lo que se han construido ya soluciones de agujeros de
gusano-/.

3.3.3. Colisidon frontal de estrellas de bosones-/

Como mencionamos en la introducciéon, ain cuando técnicamente las estrellas de
bosones-¢ no colisionan, su interaccion gravitacional genera una interferencia que mo-
difica la geometria del espaciotiempo y se producen ondas gravitacionales cuando una
estrella pasa a través de la otra. Mas atn, contrario a la colisiéon de agujeros negros, don-
de se generan ondas gravitacionales bien definidas, en cambio, para estrellas de bosones
¢ =01y {+#0[140], existe una variedad amplia de perfiles de ondas gravitacionales que
dependen de distintos parametros, siendo la compacidad de las estrellas una de las mas
determinantes.

Para valores grandes de compacticidad, el perfil de onda comienza a asemejarse al
generado por colisiéon de agujeros negros con sus caracteristicas fases de fusion y amor-
tiguamiento, mientras que estrellas poco compactas al colisionar frontalmente general
perfiles de ondas gravitacionales muy distintos a la colision de agujeros negros, no es
claro que haya fusién ni amortiguamiento, aunque si algunas oscilaciones de periodo si-
milar en orden de magnitud, lo cual también las diferencian de las ondas gravitacionales
tipo destello o burst.

Para construir el sistema binario, designamos los indices ¢+ = 1,2 para cada una de
estrellas de bosones-¢. Cada una esta descrita por los campos escalares complejos &)
de la forma

O = ) (t,7,9, ) = €6 (1) Vi (9, ), (3.15)

En el caso del sistema binario de estrellas de bosones-¢ partimos de la siguiente funcion
lagrangiana

Losp=— Y Z (Vo) V@), + 120§ [1), (3.16)

i=1,2m=—¢

donde V, es la derivada covariante, u = "< es el pardmetro de masa, mg es la masa

intrinseca de la particula bosénica que constituye a los cam os escalares complejos de-
tonados @é) con ¢ = 1,2 para representar a cada estrella. @ son los campos escalares
conjugados.

En esta propuesta la simetria es esférica y la dependencia temporal es armonica. El
tensor de materia energia del sistema binario T}, estd dado por la suma de los tensores
de materia-energia individuales Ta(;) y T(b), es decir, Ty, = Téb) + T(b), con
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l
i 1 = (¢ 7 7 = (7 x (2 ax (T = (7 7
T =2 3 V@i Vidi, + Vo) Vi) — gu(Va®i, VOB, + 1*®f @40)] (3.17)
m=—/

con ¢ = 1,2, para referirse a la primera y segunda estrella, respectivamente.
Cada campo escalar satisface su correspondiente ecuacién de Klein-Gordon:

gV, v, — 2ol — o, (3.18)

Como en el caso de las estrellas de bosones individuales, se considera una métrica
estatica y simétricamente esférica de la siguiente forma:

ds* = —c*a’dt* + a*dr® + r*dQ?, (3.19)

donde @ = a(r) y a = a(r) son las funciones métricas a determinar y dQ? = dv* +
sin 9?dp? es el elemento de linea de la esfera-2 unitaria, entonces, las ecuaciones de
Klein-Gordon se simplifican a:

v (2 o d , Ll+1) w?
¢ = _¢g (; + E - %) + agbg (,LL + T2 - 620[2 s (320&)
/ 1 — /\2 1 2
A €l S {Mﬂbz (;ﬂJrWJQr ) 4 52)} (3.20D)
a r a r o
’ 1 ’ 1
=D @ e (2 YY) (3.20¢)
! r 2a 72

Para resolver este tipo de ecuaciones, se han desarrollado diversas infraestructuras
computacionales. Resalta Einstein Toolkit, especializado en la resoluciéon de sistemas
relativistas|152]. Muchas de sus herramientas resuelven las ecuaciones en coordenadas
cartesianas para la parte espacial. Es por esto que las soluciones se transforman a las
coordenadas cartesianas mediante

t' =z =rcosgsing, 2> =y=rsingsing, 2°=2z=rcosp. (3.21)

La métrica también conviene reexpresarla como
ds® = —ca’dt? + v da’ da”, (3.22)

donde 7, es la métrica espacial.

Consideremos un sistema binario compuesto por la superposicion de dos estrellas de
bosones-¢ aisladas. Las estrellas estan inicialmente en reposo centradas en (z.,0,0) y
(—x.,0,0). Como dato inicial (¢ = 0) se considera que:

Vi =0 (@ = 20y, 2) + 5 (@ + ey, 2) — (.Y, 2) (3.23)
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3.3 Fundamentos tedricos

donde n;, es la métrica espacial plana. Bajo estas elecciones se utiliza la formulacion
Baumgarte-Shapito-Shibata-Nakamura (BSSN) con el método de lineas localizado en la
espina MoL para resolver el sistema de ecuaciones. Estos métodos de evoluciéon de campos
escalares han sido recientemente utilizados para el analisis de estrellas de bosones-£. En la
seccion I11.B del articulo [146] se encuentran todos los detalles técnicos del mecanismo
empleado para generar las ondas gravitacionales que seran analizadas en la siguiente
seccion del presente capitulo.

Las dos estrellas de bosones-f estan compuestas por el mismo conjunto de campos
escalares. Esta configuracion recibe el nombre de estado coherente y se modela con un
conjunto de campos N = 2+ 1 localizados en dos regiones distintas del espacio, es decir,
al tiempo t =0

O A0,y @2 =0 (3.24)

para todo m. El sistema binario estd compuesto por 2¢ + 1 campos escalares inde-
pendientes. Existe otra posibilidad, llamado estado incoherente y consiste en que cada
estrella esté compuesta por un conjunto distinto de 2¢ 4+ 1 campos escalares, es decir,
@;;2 #0,y ‘I)z(;) # 0 para todo m, sin embargo, en la presente investigacién nos restrin-
gimos al anélisis de sistemas binarios coherentes.

Para la simulaciéon numérica conviene expresar la condicién inicial de los campos
escalares del sistema binario coherente como

q)%)(t - 07x7y7 Z) = ¢£:)(x - xcayWZ) + (I)gr:)('r + x67y7z) (325>

y o) =0.

Nos restringimos al anélisis de sistemas binarios de estrellas de bosones-¢ en estado
coherente (mismo conjunto de campos escalares).

Una vez resueltas las ecs. (3.20) se obtienen las funciones métricas a(r) y a(r) ademaés
de la parte espacial del campo escalar ¢(r) introducido en la Ec. (3.15). Con ellas es
posible estimar las componentes del tensor de materia-energia. En particular, es posible
monitorear la densidad de energfa de la materia a través de p = nn’Ty, (n® es el vector
unitario normal a la superficie ¥) durante el tiempo de la colision. De esta manera
se cuantifica el cambio en la energia antes y después de la colision. Ademas, se puede
cuantificar las desviaciones de la simetria esférica, para ello se computan los momentos
de inercia I,,, I, vy 1., definidos como

Lyigi = / Vidzap(r? — 2t). (3.26)
2

Como mostramos en la seccion 1.1, particularmente en la subseccién sobre la aproxima-
cion cuadrupolar, los momentos de inercia estdn muy relacionados con el comportamiento
ondulatorio del espaciotiempo, es decir, con la emisiéon de ondas gravitacionales. Esta es
la esencia de los mecanismos de extraccion de las ondas gravitacionales a través de la
cantidad ¥, de las simulaciones numéricas. A continuacién veremos algunos elementos
béasicos sobre la extracciéon de ¥, de la simulacién numérica. Para mas detalles sobre
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3 Ondas gravitacionales de la colision frontal de estrellas de bosones-{

la cantidad W4 y el formalismo Newman-Penrose puede consultarse la seccion 1.1.2 del
capitulo introductorio.

3.3.4. Extraccion de V¥, de la simulacién numérica

Luego del procedimiento computacional recién descrito, dentro de los datos de salida
se encuentra el escalar-4 de Newman Penrose V4, como es comtn en las simulaciones
de fusiones de sistemas binarios compactos [153]. El escalar 4 de Newman Penrose se
define como ¥, = —Cabpqn“mbnpmq , donde Cypp, es el tensor de Weyl (ver seccion 1.1.2
del primer capitulo) y [, n, m, m conforman una tetrada nula [32|. La tetrada nula
tiene la propiedad de que algunos de todos sus productos internos se anulan, excepto
—l-n=1=m-m.

De acuerdo al teorema de Peeling, W, es el componente del tensor de Weyl que cae
como 1/r desde la fuente, por lo que se asocia a la radiacion gravitacional saliente [154].
Una cuestion a resaltar de las colisiones frontales de cualquier tipo de objeto compacto
es que por la simetria, U4 no tiene parte imaginaria.

El escalar ¥, , a su vez, se relaciona con la amplitud de las ondas gravitacionales en
la norma T'T, mejor conocida como strain h, h, cuyas componentes son [155, 156],

32(h+ - hx)

v, =
4 c20t2? ’

(3.27)

Ademas, en la simulacién numeérica se descompone W, utilizando los armoénicos esfé-
ricos con peso de espin s = —2 Y}, (0, ¢):

y(t, 7,0, ) = pr Y6, 0), (3.28)

de forma equivalente, el strain total se puede obtener sobre la suma de todos los
modos:

[e%9) l

=2 m=—1
De hecho, en las evoluciones numéricas de colisiones frontales de objetos compactos se
ha encontrado que el modo dominante es el modo Im = 22 y seré el analizado en lo que
sigue.

3.3.5. Analisis de las senales gravitacionales

Transformar ¥, a h no es una cuestion trivial, el método que actualmente més se
emplea es el llamado método de integracion de frecuencia-fija (IFF) [157, 158]. Consiste
en hacer una transformada de Fourier sobre los términos Wi™ y utilizar una frecuencia
de brinco para bajas frecuencias. De esta manera, en vez de hacer una doble integral
sobre el tiempo:
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3.3 Fundamentos tedricos

t t
B (1) — B (1) — / < / A dt”) dt' + Amt 4 BT, (3.30)

donde A'"™ y B'™ son constantes de integracién (que deben ser calculadas tomando
en cuenta las condiciones fisicas, por ejemplo, que h — 0 conforme r — 00), se efectua
una division en el espacio de Fourier y se aplica la transformada inversa de Fourier para
obtener las series de tiempo h"(t) y hi7(¢) .

Aunque el procedimiento por la via de la doble integral parece directo, tiene problemas
pues al obtenerse de simulaciones numéricas, incluye ruido aleatorio, que al integrarse in-
troduce efectos no lineales que no son fisico sino asociados a la metodologia de resolucion.
Por esta razon utilizamos el método IFF.

Los datos de salida de las simulaciones numéricas deben ser transformados en el strain
de las ondas gravitacionales.

Una vez obtenidas las senales en su representacion h, y hy, se procede a efectuar en
analisis de los datos para conocer, entre otras cosas, la energia radiada por las ondas
gravitacionales Fogq, la frecuencia caracteristica fpico.

Para el analisis, se utiliza la transformada de Fourier de la senal siguiendo la siguiente
convencion:

h(f) = Flz(t)] = / z(t)e 2"t dt, (3.31)
h(t) = FUa(t) = / () at (3.32)
La cantidad h,s se define como,
=2 [ [l PP + o ()] df (3.33)
0
Mientras que la energia de las ondas gravitacionales en la aproximacion isotrépica es
S o [T 2,7 2\ 2
Bow = 5n°D* | (I (PP + [he () £2df. (3.34)

Otra cantidad relevante es el radio Senal-Ruido o SNR por sus siglas en ingles. Se
define como el producto punto del strain, procesado con la densidad del espectro de
potencias del ruido S(f):

B Ah(f)?
SNR = / S (3.35)

Por otro lado, a partir del analisis de las frecuencias de las senales gravitacionales,
puede determinarse la frecuencia maxima fpico.

Existen diversos codigos, algunos de acceso libre como PyCBC [159], que permiten
automatizar el analisis de las senales gravitacionales. En la siguiente seccién se presen-
taran resultados utilizando la paqueteria SN-LIBRARY para Python desarrollada por
Marek Szczepanczyk 2020 (marek.szczepanczyk@ligo.org).
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3 Ondas gravitacionales de la colisién frontal de estrellas de bosones-{

3.4. Casos de estudio

Vamos a considerar ocho configuraciones iniciales que corresponden a dos estrellas con
mismo valor de ¢ (ver Fig.(3.2)) de masas individuales iguales entre si My = My = M.
Cuatro de ellas corresponden a estrellas con ¢ = 0 y cuatro con ¢ = 1. Las senales que
procesamos en este trabajo fueron obtenidas y reportadas por [146]. En dicho trabajo, las
estrellas se colocan en sus posiciones y configuraciones iniciales y se les deja evolucionar
en el tiempo, posteriormente se estiman algunas propiedades del remanente resultante
de la colision, las cuales se muestran en el cuadro (3.1). En dicho cuadro y a partir de
ahora, las cantidades con el simbolo ~ son adimensionales, mientras que las cantidades
sin " tienen unidades fisicas.

En la Fig. (3.2) se muestran la familias de estrellas de bosones ¢ = 0y £ = 1. Aunque
cualitativamente ambas familias siguen el mismo comportamiento, se observa que las
estrellas de bosones con ¢ = 1 alcanzan masas M = GuM/c? y radios ﬁgg ~ g9 mas
altos que las estrellas de bosones con ¢ = 0, dado un valor de @ = w/(cp). Se observa
que en ambas familias, existe un valor maximo de M = GuM/c?*; se ha demostrado
que a la izquierda del méximo, las soluciones son inestables, mientras que a la derecha,
son estables. La masa maxima permite clasificar las soluciones entre la rama estable
y la rama inestable. En la misma figura se etiqueta con una pequena estrella las ocho
configuraciones que se consideran en [146] y en el presente capitulo.

1.2 D 50
1.0 40
C
0.8 B 30
< A 2
3 <
U 20 -

=3
>
*
w)

- C -
0.4 - Cg 10

0.70 0.75 0.80 0.85 0.90 0.95 1.00 0.70 0.75 0.80 0.85 0.90 0.95 1.00

w/(cp) w/(cp)

Figura 3.2: Izquierda: Masa total M = GuM /c?* de las estrellas de bosones aisladas para
el los casos £ = 0y £ = 1 contra la frecuencia de oscilacion del campo escalar,
w = w/(cp). Derecha: Radio y compacidad (subfigura) para las mismas es-
trellas de bosones. En ambas graficas se marcan los modelos utilizados para
la colision frontal en este trabajo, los cuales se muestran en el cuadro (3.1).
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~

Modelo | M, 1%99 c=C w Remanente
Estrellas de bosones con ¢ = 0

h/0A | 0.296 | 31.5 | 0.0221 | 0.985 BS

h/0B | 0.333 | 27.5 | 0.0282 | 0.980 BS

h/0C | 0.364 | 24.7 | 0.0391 | 0.976 BS

h/0D | 0.548 | 13.5 | 0.0838 | 0.931 BH
Estrellas de bosones con ¢ =1

h/1A | 0.697 | 31.5 | 0.0221 | 0.970 BS

h/1B | 0.775 | 27.5 | 0.0282 | 0.962 BS

h(1C | 0.837 | 24.7 | 0.0391 | 0.954 BH
h(1D 1.17 | 13.5 | 0.0838 | 0.883 BH

Cuadro 3.1: Modelos de estrellas de bosones para la colisiéon frontal. M, es la masa

adimensional inicial de cada estrella, Rgg corresponde al radio adimensional
que contiene el 99 % de la masa, C es la compacidad, y @ es la frecuencia
adimensional de los bosones. El remanente de la colision puede ser una
estrella de bosones o un agujero negro, como se especifica en la ultima
columna. Todos los modelos fueron obtenidos en [146].

Notemos que los dos modelos A, independientemente de si corresponden a £ = 0 6
¢ =1 tienen el mismo valor de Ry y C. Lo mismo pasa entre los modelos B, C y D.
En cambio, los valores de M, son distintos para cada modelo. Las compacidades de
las fuentes toman valores C ~ 0.0221 — 0.0838. La compacidad, al ser por construcciéon
adimensional (ver Ec.(1.35)), permite comparar la densidad de las estrellas de bosones
con otro tipo de objetos compactos. Recordemos que estamos utilizando como definicion
de configuracion autogravitante, un objeto ligado gravitacionalmente con compacidad
superior a una estrella de secuencia principal cuyo comportamiento es asintéticamente
plano. La compacidad més alta se alcanza en los agujeros negros y es C = 1/2, en cambio,
las estrellas de neutrones, los segundos objetos méas compactos del Universo conocido,
alcanzan compacidades . En ese sentido, aunque las compacidades de las estrellas de
bosones-¢ que estamos considerando, son relativamente densas.

Por otro lado, podemos observar en el cuadro 3.1 que los modelos h/0D, h/1C h/1D
tienen por remanente un agujero negro, mientras que los demas, una estrella de bosones-
(. Para estimar si el remanente es un agujero negro, se utilizé la espina AHFINDER de
Einstein Toolkit [152], y en los casos donde el remanente resulté ser agujero negro, se
estimo su masa a través de la relacion, Mpy = A/(167), que es valida para un agujero
negro de Schwarzschild.
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Figura 3.3: Cantidad Uy en el tiempo extraida de la simulacién numérica de colisiones
frontales de estrellas de bosones-/.

3.4.1. Redimensionalizacién

A partir de ahora vamos a considerar G = 1.34 x 10" M 'km®s =2, ¢ = 2.99x 10° km s~
y b =6.58 x 10719eV s para expresar distancias en kilémetros, masas en masas solares,
tiempo en segundos y energia en electronvoltios.

Un aspecto resaltable de las configuraciones de estrellas de bosones es que las solucio-
nes tienen un parametro libre: u. Esto es, el sistema de ecuaciones del sistema binario
de estrellas de bosones (con o sin /), ante el cambio de variables

ti=cut, ©:=pur, &:= “ (3.36)

mantiene la misma forma y queda expresado de forma independiente al parametro
1. Las cantidades con gorrito son adimensionales, mientras que las cantidades sin gorro
tienen unidades fisicas: [t] = [T, [r] = [D] y [w] = [T]7".

Utilizando la invarianza del sistema de ecuaciones bajo el re-escalamiento anterior,
se obtienen soluciones para valores arbitrarios de u. Para recuperar las unidades fisicas
de las soluciones, es necesario multiplicar por las constantes correspondientes a cada
cantidad. En el cuadro (3.2) se muestran las cantidades relevantes para las estrellas de
bosones-¢ y las ondas gravitacionales, tanto en unidades adimensionales como en fisicas
asi como la relaciéon entre ambas.
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Cantidad Unidades Unidades | Factor de conversion
adimensionales | fisicas
Distancia radial 7 r 7= ur
Tiempo t t t = pct
Frecuencia Campo Escalar w w w=w/(cu)
Radio de la estrella R R R= uR
Masa M M M = GuM/c?
Compacidad C C C = GM/Rc?
Longitud de onda OGs A A A= LA
Frecuencia OGs f f f=f/(cp)

Cuadro 3.2: Unidades de las cantidades y variables de las estrellas de bosones-¢

3.4.2. Estimacion de ordenes de magnitud respecto a la energia
del campo escalar

En realidad, la cantidad fisica de interés no es el parametro de masa del campo escalar
/4, sino su energia intrinseca definida como

Ep = mec® = 107" eV, (3.37)

donde n es un ntmero arbitrario que nos permitira facilmente visualizar las escalas
fisicas de las estrellas de bosones en términos del orden de magnitud de la energia
intrinseca Fg en unidades de eV, como suele tratarse en modelos de materia oscura y
fisica de particulas. Por ejemplo, el boson de Higgs tiene una energia intrinseca tal que
n = —9, los axiones n = 5, mientras que los modelos de campos escalares ultraligeros
consideran n = 22.

La relacion entre p1 y mg nos permite estimar el orden de magnitud de p en términos
de n:

mec  Eg 1 10—n1 . —1
p=—— == 1.9610 km™", (3.38)
siguiendo con los ejemplos anteriores, para el boson de Higgs 1 ~ 10 km ™', en los
axiones ;1 ~ 10° km™" y en los campos escalares ultraligeros p ~ 10~'2 km ™. Con esto,
todas las cantidades fisicas se pueden re-expresar en términos de n.
Comencemos por el radio que contiene el 99 % de la masa de la estrella de bosones
My, es decir, Rgg. En este caso, de la simulacion numérica (ver cuadro 3.1) se conocen
los valores figg = 1 Ryg, entonces:

Rgg C2 FLRgg

— 9 _ = 5.8826 x 10"° km. .
Rgg u Fa 5.8826 x 10 m (339)

Ahora veamos la masa total de las configuraciones. De la simulaciéon numérica cono-
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3 Ondas gravitacionales de la colision frontal de estrellas de bosones-{

cemos el valor adimensional Mo = GuMy/c?, e inversamente,

hc?
- GEy
También, de la simulacién numérica conocemos las compacidades de las estrellas de
bosones definidas como C = GM;/(c*Ryg), se trata de una cantidad adimensional 1til
para comparar densidades entre la materia. Utilizando que My = GuMy/c* y Rog =
1 Ro9, podemos demostrar que C = M, / Rgg, de modo que la compacidad no se requiere
redimensionalizar.

Ahora pasemos a propiedades ya no de la fuente sino de las OGs: su frecuencia fog,
longitud de onda A\pg v amplitud caracteristica h. Dado que las ondas gravitacionales
se propagan a la velocidad de la luz, Ao fog = c.

La longitud de onda de las ondas gravitacionales tiene unidades de distancia y para
recuperar unidades a partir de algtin valor numérico adimensional ;\OG se tiene que

Mo

M =1.3126 x 10" 1M M. (3.40)

>\OG = ,U/\OG = h—i/\oc = 5.1020 x 109_n/\0G km. (341)

La cantidad fog debe tener unidades de Hertz, entonces, fOG = foc/(cu), es decir,

foc =cuf = Eef/h =151 x 10" " foq Hz. (3.42)

Ademés, la amplitud de las senales iz, aunque es una cantidad por construcciéon adi-
mensional, depende del inverso de la distancia a la fuente, D, y se reescala mediante

~

h he h
= = =5.1579 x 10" ——— 3.43
pD  DEy Dioo mpe. (343)

donde hemos utilizado que Digompe = 100 Mpe= 3.08 x 102! km.

Sabemos que las cantidades Aog,foq, h son funciones del tiempo cuya evolucion du-
rante la colision de las estrellas de bosones permite inferir propiedades las ondas gra-
vitacionales. Sin embargo, nos resultara tutil designar un mecanismo para designar un
valor caracteristico para cada senal gravitacional en términos de la energia intrinseca
del campo escalar mediante las ecs. (3.41), (3.42) y (3.43). El mecanismo que utiliza-
remos es el siguiente, para cada senal gravitacional identificamos el valor méximo de
la amplitud ez €n el cuadro (3.3) y calculamos el tiempo al que ocurre; en seguida,
identificamos el segundo valor méximo de la amplitud mas cercano y vemos el tiempo
al que corresponde; finalmente, calculamos el valor absoluto de los tiempos y de esta
manera construimos una longitud de onda caracteristica que denotamos A A partir de
esta cantidad, obtenemos una frecuencia caracteristica f = 1 / . Esta es la manera en la
que se obtienen los valores del cuadro (3.3).

3.4.3. Estimacién del rango deteccién por LVK

Mediante la Ec. (3.43) podemos ver que mientras n > 10, la senal tiene una amplitud
h > 10722, es decir, que estrellas de bosones con E ~ 107! ¢V o0 menor energia, produ-
cirfan ondas gravitacionales detectables por los observatorios de la colaboraciéon LVK.
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No obstante, debemos tener en cuenta los detectores tienen un rango de deteccion en el
espacio de frecuencias entre 10 y 1000 Hz.

Ahora, vamos a continuar el analisis anterior para entender el rango de energias in-
trinsecas del campo escalar que debe tener para formar configuraciones auto-gravitantes
que al colisionar frontalmente, emitan ondas gravitacionales de frecuencias entre 10 y
1000 Hertz, es decir, en la banda de deteccion de los detectores de la Colaboracion
LIGO-Virgo-Kagra. Para mas informacién sobre los detectores se puede consultar la
SEc.(1.2.2). Para ello, partimos de la Ec.(3.42), de esta manera encontraremos los valo-
res de n que producen ondas gravitacionales con frjco = 10 — 1000 Hz. A partir de la
Ec.(3.42), se sigue que )

n = 15.17 — log( fuico) — log(f). (3.44)

En el cuadro (3.1) , la columna n; corresponde al valor de n sustituyendo X de la
hilera correspondiente en lugar de A v fuico = 10 Hz; la columna ny corresponde al valor
de n sustituyendo el mismo valor de Ae v fLico = 1000 Hz.

A: [JR99=31.5 B: [JR99=27.5

100

(ri) (h%2)]

C: WRg9 =247 ' ' " D: pRg=135
[]
s — 1=0 — 1=0
W 01 A =1 —t=1
=
CTRY S SR — —
é— 0.0 \./ \ > \/ﬂ Av“
3
= -0.1-
200 300 400 500 600 700 800 200 300 400 500 600 700 800
uct pct

Figura 3.4: Amplitud de las OGs contra el tiempo adimensional para los modelos del
cuadro (3.1). Se muestran los puntos de las dos amplitudes maximas locales
cuya diferencia en el tiempo asociamos a la longitud de onda caracteristica
Ae-

En el cuadro (3.3) mostramos los valores adimensionales de las ondas gravitacionales
que surgen del analisis de los datos numéricos de la colision frontal de estrellas de bosones-
L.

3.5. Resultados

Dividimos los resultados en tres subsecciones. En la primera de ellas consideramos todo
un rango de valores de energias del campo escalar Ey y los ocho modelos de estrellas de
bosones binarias que se muestran en la SEc. (3.4).
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Modelo | e | A [1A=Ff ] m | ny |
Estrellas de bosones con ¢ =0

h/0A 0.014 | 122.5 0.008 12.08 | 10.08

h/0B | 0.0284 | 101.25 0.009 12.16 | 10.16

h/0C 0.051 | 86.25 0.011 12.23 | 10.23

h/0D 0.236 | 39.37 0.025 12.49 | 10.49

Estrellas de bosones con ¢ =1
h/1A 0.006 47.5 0.021 12.49 | 10.49
h/1B 0.022 | 99.37 0.010 12.17 | 10.17
h/1C 0.144 27.5 0.036 14.73 | 10.73
h?1D 0.065 | 36.25 0.027 12.61 | 10.61

Cuadro 3.3: Valores adimensionales de la maxima amplitud y frecuencia pico de las ocho
senales gravitacionales correspondientes a los modelos h/0A—D y h{0A—D.
El simbolo "~ denota que la variable es adimensional.

3.5.1. Varios valores de mgc? para todos los modelos

Dado que el valor experimental del parametro de masa del campo escalar complejo no
ha sido establecido atn, tenemos la libertad de elegir un rango de p adecuado a nuestros
fines. Con base en nuestras estimaciones de la subseccion (3.4.1), el intervalo de la energia
intrinseca mgc? del campo escalar que podria ser detectado por la colaboracion LVK es
aproximadamente 1071%—1071% eV/. Por este motivo, vamos a considerar especificamente
el intervalo mgc? € (1.9 x 1071°/1.9 x 107'%) eV. Dividimos este intervalo en cierto
niimero de partes iguales (46) y para cada modelo y valor de mgc?, reescalamos la senal
gravitacional y la procesamos para obtener su espectograma, la cantidad h,ss (root-sum-
square amplitude), la energia de las ondas gravitacionales Egw, la frecuencia pico fyico
y el radio senal-ruido SNR (signal-to-noise ratio), de acuerdo a las definiciones de la
subseccion (3.3.5). Elegimos como distancia a la fuente D = 100 Mpc, esta eleccion es
arbitraria. A manera de comparativa, mencionamos que la distancia a la fuente de la
senal GW170817 se estim6 en 40 Mpc mientras que la distancia a la fuente de la senal
GW150914 se estimo en 410 Mpcl9].

Seria repetitivo mostrar las 8 x 46 senales gravitacionales que por este mecanismo
estamos analizando en esta seccién. En cambio, cada senal queda globalmente caracte-
rizada por su amplitud maxima, frecuencia maxima y energia total. Por ello, elegimos
las cantidades hy,ss, fpico Y Eaw para mostrar la relacion entre las propiedades fisicas de
las senales gravitacionales en funcién de la masa intrinseca del campo escalar. Esto es
lo que se muestra en las Figuras (3.5,3.6,3.7), respectivamente.

Ademas, con el fin de tener un punto de comparacion de las senales generadas por es-
trellas de bosones, vamos a considerar también un sistema de agujero negro-agujero negro
(AN-AN) de masas M; = My = 10 M, . Para esto utilizamos el modelo SEOBNRv4 del
Software Libre PyCBC que resuelve la senal gravitacional de agujeros negros sin espin
ni carga eléctrica, unicamente descritos por sus masas individuales M; = My = 10 M,
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localizados también a D = 100 Mpc.

10—18_
10—20_
B e oS e ANAN
<
10—22_
—— hI0A
10724 4 ht0B —— hI1B
—— hi0C hilcC
—— h{0D — h{1D
S04 103 10°®2 S0t 10710

mgyc? [eV]

Figura 3.5: Amplitud caracteristica de las ondas gravitacionales h,s (adimensional) con-
tra el rango de mgc? ~ 1071 — 10719 eV. La recta punteada corresponde al
caso de dos agujeros negros. Todas las senales estdn localizadas a 100 Mpc.

En la Fig.(3.5) se muestra la amplitud caracteristica a través de la cantidad h,.ss contra
el valor del parametro mgc? . Observamos que en todos los modelos, conforme mas ligero
es el campo escalar, mas grande es la amplitud de las ondas gravitacionales. En la misma
Fig., también se muestra el caso de la colisién de los agujeros negros (AN-AN). Como
los agujeros negros no dependen del pardmetro me, lo que vemos en este caso es una
recta horizontal a h,s, = 7.35 x 10722

Observamos que a mgc? constante, es decir, fijando la masa intrinseca del campo
escalar, el modelo mas intenso es h/0D, seguido del modelo h/1C y h/1D . Los modelos
h/1B y h¢1C son casi indistinguibles en esta representaciéon. El modelo menos intenso es
h/1A. Aunque en estos casos no es claro si hay una relaciéon entre los modelos con ¢ = 0
y ¢ = 1, lo que s vemos es que en general, conforme més compacta es la fuente, mas
intensa serd la amplitud de sus senales gravitacionales.
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Figura 3.6: Frecuencia pico fp., versus distintos valores de la masa intrinseca del campo
escalar mgc?. Se muestra la actual banda de detecciéon de la colaboracion
LIGO (10-1000 Hz) de color verde. La recta horizontal punteada representa
el caso de dos agujeros negros de 10 M, cada uno.

En la Fig.(3.6) lo que se muestra es la frecuencia caracteristica nombrada fy;., para el
mismo rango de parametros del campo escalar mgc?. Observamos un comportamiento
proporcional entre la masa mg y la frecuencia de las ondas gravitacionales. En cambio,
notamos las mismas relaciones respecto a la intensidad de los modelos que en la Fig.(3.5).
También observamos que efectivamente, el rango elegido de mgc? produce algunas sefiales
gravitacionales dentro del rango de deteccion de LIGO, representado como una banda
de color verde en dicha figura.
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Figura 3.7: Energia total emitida en forma de ondas gravitacionales Eqy para el mismo

rango de energfa del campo escalar mgc? [eV] de la figura anterior. Una linea
punteada horizontal muestra la energia emitida en OGs por parte de un
sistema binario de agujeros negros de 10 M cada uno.

Para visualizar la relacion entre la masa del campo escalar me v la energia emitida por
las ondas gravitacionales, tenemos la Fig.(3.7). En ella se aprecia un comportamiento
inversamente proporcional entre ambas cantidades, como en el caso de la amplitud de
las ondas gravitacionales.
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Figura 3.8: Radio senal-ruido versus el rango de masas del campo escalar de las figuras
anteriores. Notamos que el comportamiento entre estas variables no es lineal.
De la misma manera que en las figuras anteriores, se muestra la solucioén para
agujeros negros binarios de 10 M cada uno.

3.5.2. Todas las sefales con mgc? = 5.9 x 10713 eV

Ahora bien, en la seccién anterior analizamos un rango amplio de energias del campo
escalar. Ahora fijamos mgc? = 5.9 x 10713 eV y analizamos los ocho modelos.
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Figura 3.9: Espectograma de los ocho modelos de colision de estrellas de bosones-¢ para
un campo escalar con mec® = 5.9 x 10'3 V. Los modelos h/1C y h/0D son
mas similares al espectograma reportado para agujeros negros, pues se puede
apreciar el incremento exponencial en la frecuencia de las ondas gravitacio-
nales.

En la Fig. (3.9) se muestran los ocho espectogramas de cada modelo del cuadro (3.1).
En estos, se muestra la evolucion de la frecuencia de las ondas gravitacionales con un
codigo de color para representar la evolucion de la magnitud de la amplitud. Notamos
que la colision de estrellas de bosones-¢, en la mayoria de los casos, es muy diferente
a los espectogramas de colision de agujeros negros o estrellas de neutrones. Los tinicos
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modelos que tienen el comportamiento de chirp de las colisiones de agujeros negros o
estrellas de neutrones son h/0D y h/1D.
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Figura 3.10: Raiz de la densidad del ruido la amplitud /S(f) en unidades de [Hz /2|,
Se muestra como se verian las senales en un diagrama de sensitividad de
las proximas observaciones de ondas gravitacionales: O5 (gris claro), Cos-
mic Explorer (gris oscuro) y Einstein Telescope (gris medio). A la par, se
muestra como se veria la senial de la colision de dos agujeros negros de 10
M. Comprobamos que si mgc? ~ 10712 €V, las senales caerian dentro del
espacio de sensitividad.

En la Fig.(3.10) se muestra como se verfan las sefiales tomando en cuenta las curvas
de sensitividad de la proxima corrida de la colaboracion LVK: O5, el proyecto Cosmic
Explorer y Einstein Telescope. Actualmente, la colaboracion LVK se encuentra en su
cuarto periodo de observacion, O4. Notamos, que en un futuro, todos los modelos con
mec® = 5.9 x 10713 eV.

3.6. Conclusiones de este capitulo

Hemos presentado resultados sobre el analisis de ondas gravitacionales producidas
en la colision frontal de estrellas de bosones-f. Nuestra perspectiva va hacia aportar
elementos para la futura bisqueda de objetos auto-gravitantes de campo escalar en los
datos de los observatorios de ondas gravitacionales. El campo escalar tiene el potencial
de describir a la materia oscura, en ese sentido, sera interesante ampliar el espacio de
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parametros de las estrellas de bosones-¢ e inyectar los modelos en los datos disponibles
y futuros. La generaciéon de ondas gravitacionales de este tipo de fuentes es un tema
aun en panales que se ha trabajado desde el area de las simulaciones numéricas. Pocos
trabajos se detienen a explorar las escalas fisicas a las que corresponderian las senales
numéricas. Este trabajo aporta claridad sobre las escalas de las estrellas de bosones en
funciéon de los pardametros intrinsecos del campo escalar, en particular su masa me.

Encontramos que si mgc? tiene valores entre 10714 — 10710 eV, las senales gravitacio-
nales provenientes de colisiones a 100 Mpc, podrian detectarse por los observatorios de
ondas gravitaconales. Con esto en mente, nos centramos en analizar todos los modelos

De forma particular, mostramos que los campos escalares ligeros forman estrellas de
bosones méas grandes y masivas. Consideramos que esta es la razon por la que nuestros
resultados muestran que a menor masa del campo escalar, mayor es la amplitud y energia
de las ondas gravitacionales, y menor es su frecuencia caracteristica. Por otro lado, el
pardmetro ¢ permite a las estrellas alcanzar una masa un poco mayor que los casos con
¢ = 0, sin embargo, este hecho cualitativo no se traduce de forma clara en las propiedades
de las ondas gravitacionales: encontramos modelos con la misma compacidad donde la
senal del caso ¢ = 1 tiene mayor intensidad que el caso ¢ = 0; paralemente, encontramos
casos con distinta compacidad donde la senal con ¢ = 0 fue mas intensa que la senal
¢ = 1. Para encontrar el motivo de este comportamiento sera necesario examinar modelos
con valores de ¢ més grandes y mas compacidades.

Recapitulando, estudiamos los fundamentos teéricos que sustentan la colision de es-
trellas de bosones ¢ = 0 y ¢ # 0, para ello, aprovechamos la formulacion lagrangiana en
Relatividad General. Luego, utilizando ocho modelos reportados en [21], los reescalamos
y procesamos para analizar las relaciones del campo escalar con la amplitud, frecuencia
y energia de ondas gravitacionales, asi como el Radio Senal-Ruido de los detectores de
la colaboracion LVK y los proximos detectores Cosmic Explorer y Einstein Telescope.
Mostramos las diferencias con colisiones de agujeros negros y estimamos que si el cam-
po escalar tuviese una masa de ~ 10713, los ocho modelos serfan perceptibles para los
detectores recién mencionados.

Se agradece especialmente a la Mtra. Laura O. Villegas (UdG), Dra. Claudia Moreno
(Udg), Dr. Javier M. Antelis (Tec de Monterrey), Dr. Victor Jaramillo (USTC) y Dr. Da-
rio Nuniez (ICN, CIDMA) por sus aportes en la discusion de este capitulo. Proximamente
ampliaremos y publicaremos los resultados y discusiones.
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4 Agujeros de gusano con carga
eléctrica

Este capitulo esta basado en el articulo , el cual se encuentra publicado en [21]. Fue
elaborado por Victor Jaramillo (ICN-UNAM), Mariana Lira (ICN-UNAM), Daniel Or-
tega (ICN-UNAM) y Dario Nufiez (ICN-UNAM). Todas las figuras que aparecen en este
capitulo fueron tomadas de dicho trabajo.

4.1. Resumen

Construimos y analizamos las propiedades de un agujero de gusano cargado eléctrica-
mente, formado a partir de un campo escalar masivo y complejo, con autointeraccion, y
dotado de una carga eléctrica, mediante la resolucion del sistema de ecuaciones Einstein-
Klein-Gordon-Maxwell, donde el campo escalar estd minimamente acoplado al campo
gravitacional y al campo electromagnético. Exploramos el espacio de los pardmetros
intrinsecos de los agujeros de gusano eléctricos, y, presentamos la dependencia las solu-
ciones con respecto al valor de los diferentes parametros, enfatizando el papel que juega
la carga eléctrica en cantidades globales de los agujeros de gusano eléctricos, como su
masa, tamano de garganta y su numero de particulas. Posteriormente, nos centramos
en el regimen de grandes valores del parametro de autointeraccion y encontramos un
comportamiento genérico del campo escalar, que a su vez nos permite determinar expre-
siones analiticas explicitas para los campos, la funcién métrica y las cantidades globales
como la masa de Komar y el niimero de particulas. Finalmente, se reporta el movimiento
geodésico en estos espaciotiempos.

4.2. Introduccién

El paradigma relativista de la Gravedad, a saber, que la geometria y la materia estan
interrelacionados, aplicado al caso donde la materia viola las condiciones de energia,
no solo ofrece una mayor comprensiéon de dicho paradigma, sino también un marco
teorico para describir la expansion acelerada del Universo [58, 44]. Tanto la expansion
acelerada del Universo como los modelos de Inflacion en el Universo Temprano demandan
la existencia de materia que viole al menos la condicion fuerte de energia. Esta condicion
establece que, independientemente del marco de referencia, la densidad de energia debe
ser no negativa y propagarse de manera causal, como se puede consultar en la seccién
1.1.3 del capitulo introductorio. La materia que no satisface la condiciéon fuerte de energia
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se conoce como materia exdtica. Se ha mostrado en recientes trabajos [160], que bajo
ciertas condiciones la materia exética puede ser confinada, lo cual representa un pequeno
paso hacia describir objetos formados de materia exotica tales como los agujeros de
gusano.

Los campos escalares complejos son un tipo de materia que existe dentro del nucleo
duro de la Relatividad General, los cuales son ideales para describir materia exdtica,
como ya ha sido analizado en Refs. como [101, 102, 16, 161, 162, 160]. Hace cincuenta
anos se encontro la primera solucion exacta de agujero de gusano asintoéticamente plano
y regular en todos los puntos [95, 96]. Los agujeros de gusano funcionan como ttneles
de una region del espaciotiempo a otra, en ese sentido, puede que acorten la distancia
entre regiones, ésta ultima idea fue considerada seriamente desde Relatividad General
en un articulo de Morris y Thorne [17]. Posteriormente, otras soluciones han sido encon-
tradas, por ejemplo, aquellas configuraciones con campos escalares auto-interactuantes
[10, 97|, auto-interaccion [163] y soluciones con varios campos escalares [98, 99, 100].
Las soluciones de agujero de gusano se obtienen resolviendo las ecuaciones de Relativi-
dad General (RG) con un tensor de materia-energia que viola la condicion de energia
nula [17, 164, 165, 166]. En los trabajos pioneros de Morris y Thorne [17], se presentan
agujeros de gusano atravesables. Encuentran que las condiciones necesarias de atrave-
sabilidad son: la métrica debe ser estética, simétricamente esférica, sin horizontes, con
una garganta que conecta dos regiones del espacio asintéticamente planas y estable ante
perturbaciones.

Distintas propiedades de los agujeros de gusano han sido establecidas en las ultimas
décadas. Por un lado, en la Ref. [99] se muestra que cuando el campo escalar que cons-
tituye al agujero de gusano es masivo y con simetria esférica , éste debe tener constante
de auto-acople A no nula. Por otro lado, e igual que el caso de las estrellas de bosones
[29], la condicion de planitud asintotica implica que la frecuencia del campo escalar w
estd ligado al valor del parametro de masa p del campo escalar en consideracion de
modo que |w| < p. Los autores en [97] demuestran otros interesantes resultados: que
las soluciones de agujero de gusano regulares soportadas por un campo escalar complejo
fantasma con un potencial cuértico y coeficiente de auto-interaccion, A, existen para
todos los valores 0 < w < p; que las masas de los agujeros de gusano caen dentro de
una region delimitada por las curvas w/pu = 0y w/p = 1 siendo positivo para w/u ~ 0
y negativo para w/p — 1, y que entonces A\ — oo la masa incrementa sin limite y los
valores del campo escalar en la garganta tienden a cero. En contraparte, hasta ahora no
se han presentado soluciones de agujeros de gusano estable. Se ha mostrado que tanto
los agujeros de gusano mas simples formados por campos escalar sin masa como los agu-
jeros de gusano formados por campos escalares complejos masivos con autointeraccion,
las configuraciones son inestables. Estos anélisis se han hecho a través de perturbaciones
lineales y simulaciones numéricas de la evolucion no-lineal [167, 168, 169, 40]. Ademas,
el proceso de formacion de los agujeros de gusano sigue siendo poco claro. Posibles ideas
sobre la formacion de éstos son presentados en|170] y de estabilizacion [171] por fuera
de RG, dentro de la teoria f(R).

Con el proposito de continuar estudiando estos espaciotiempos generados por materia
exotica, un paso siguiente es explorar las caracteristicas de los agujeros de gusano cuando
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otros campos fisicos estan presentes. En el reciente trabajo [160], varios autores presenta-
mos una nueva solucion a las ecuaciones de Relatividad General que describe un agujero
de gusano regular y esfericamente simétrico acoplado a un campo eléctrico. En nuestro
modelo, la corriente escalar es la fuente del campo eléctrico. Lo construimos siguiendo el
procedimiento para acoplar campos eléctricos a estrellas de bosones planteado en [172]
y que consiste en el acoplamiento de un campo escalar complejo al electromagnético a
través de una derivada gauge covariante. Algunos de los autores de la investigacion que
presentamos en este capitulo utilizaron dicha formulacién para construir una estrella de
bosones magnetizada |1 73]. Este procedimiento, convenientemente preserva la invarianza
de gauge, contrario a otros formalismos donde el campo escalar interacttia con el campo
electromagnético a través de un producto e®® F? directamente en la funcién lagrangiana
(ver por ejemplo [174, 175]). Soluciones de agujeros de gusano con un campo escalar real
sin masa en el sistema Einstein-Klein-Gordon-Maxwell se obtuvieron en la Ref. [176].
En el presente capitulo, presentamos a detalle el procedimiento, resultados en conclusio-
nes de dicha investigacién. Aqui, exploramos las propiedades de un agujero de gusano
eléctrico en relacion a los valores de sus parametros (de masa, de autointeraccion y la
frecuencia del campo escalar), con énfasis sobre el rol de la carga eléctrica; mostramos
que la carga no afecta las propiedades del agujero gusano, siendo la mas notable, que
el espaciotiempo sigue siendo asintoticamente plano. Nuestro analisis sugiere un com-
portamiento peculiar de las funciones métricas, del campo escalar y del campo eléctrico
cuando el pardametro de auto-interaccion es grande A. Siguiendo el trabajo de Colpi y sus
colaboradores [177] sobre estrellas de bosones, fuimos capaces de determinar expresiones
analiticas para el campo escalar y la masa total de los agujeros de gusano en el régi-
men de A\ grandes, ademés de corroborar dichas expresiones con simulaciones numéricas
para tales casos. Estas expresiones permiten una mejor comprension de los pardmetros
del sistema, es decir, el pardmetro de masa y la frecuencia u, w y la carga eléctrica q.
Estos parametros determinan la masa total y el nimero de particulas de las soluciones
de agujero de gusano.

Este capitulo esta organizado de la siguiente manera. En la Seccién 4.3, introducimos el
modelo, establecemos que nuestro espaciotiempo es estatico y simétricamente esférico,
introducimos el ansétze para un campo escalar complejo eléctricamente cargado, y ex-
presamos las ecuaciones diferenciales para los coeficientes métricos, el campo escalar asi
como el campo eléctrico. Cerramos esta primera seccién presentando expresiones para
algunas cantidades globales como la masa de Komar y el niimero total de particulas.
Una vez que tenemos las ecuaciones, en la Secciéon 4.4, damos condiciones de frontera
para obtener soluciones asintéticamente plantas y regulares, ademas, hacemos una im-
portante constriccion sobre los campos en la garganta del agujero de gusano. Esto lo
implementamos en un cédigo para resolver las ecuaciones de campo con las condiciones
necesarias. Luego de esto, resolvemos numéricamente soluciones, es decir, soluciones de
agujeros de gusano para distintos intervalos de los pardmetros. En seguida, presentamos
el perfil de la masa total del espaciotiempo y el valor del radio de la garganta, G, como
funcion del campo escalar en la garganta. Ademés, presentamos la masa total como fun-
cion de A para distintos valores de la frecuencia del campo escalar w y la carga ¢, también
presentamos el perfil del campo eléctrico y la densidad de energia, 7, como funciéon del
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radio. Agregamos graficas de la masa total como funciéon de la frecuencia. Estos resulta-
dos en conjunto sugieren un comportamiento del campo escalar para valores grandes del
parametro de auto-interaccion, A. En la parte 4.4.4, desarrollamos estas ideas sobre las
ecuaciones del sistema y obtenemos expresiones analiticas para las cantidades globales,
probando ademas su validez al compararlas con las soluciones actuales. En la parte 4.4.5
analizamos el movimiento de particulas con masa total positiva, negativa y cero, para
masas neutras y eléctricamente cargadas.

Finalmente, en la Seccién 4.5 planteamos nuestras conclusiones. En este capitulo uti-
lizamos unidades geométricas ¢ = G = 1 y la signatura de la métrica (—,+,+,+).
Adicionalmente, hacemos igual a uno la permeabilidad magnética del vacio u.

4.3. Fundamentos tedricos

4.3.1. Ecuaciones de campo

Consideramos un modelo de campo escalar complejo ®, minimamente acoplado a las
ecuaciones de relatividad general y electrodinamica utilizando una generalizaciéon del
operador derivada. La accion del sistema esta dada por:

S:/\/E L%ﬁﬁM} d*z, (4.1)

donde R es el escalar de Ricci y la funciéon lagrangiana de la materia-energia £y incluye
la contribucion del campo escalar L¢ y del campo electromagnético Lgy:

Ly = Lo+ Lou (4.2a)
€ A

to = =5 (0 + 20k - 5 jol') (4.20)
Fyp P

Lo = _%. (4.2¢)

donde u es el pardmetro de masa de la particula del campo escalar, A es la constante
de acoplamiento F,, = 0,A, — 0,A, es el tensor de Faraday y D, = V, +iqgA,, es el
operador de derivada covariante que acopla el campo escalar con el campo gauge A,
a través de la constante electromagnética ¢q. Aqui, € es igual a uno cuando el campo
escalar es canonico y es menos uno cuando el campo escalar describe materia fantasma.
El campo escalar define la corriente electromagnética de la fuente, y a su vez, los campos
electromagnéticos de la fuente afectan la geometria a través de las ecuaciones de Einstein.

La ecuaciones del sistema se obtienen tomando una variacion de la Eq. (4.1), con
respecto a los diferentes campos del sistema. La variacion con respecto a los diferentes
campos del sistema genera las ecuaciones de Euler-Lagrange (ver e.g. [178]). La variacion
con respecto a g, nos da las ecuaciones de relatividad general:
Ry, — %Rguv =81 (4.32)

T =T%, +T"™,, , (4.3b)
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4.3 Fundamentos tedéricos

donde el tensor de energia esta dado por:

1

%, = -1 (D@)D.0) + (D0)(D,0)
1 ) A
g (5 D)D) + Rl + Sl (4.4
1
™, = (FMUFMg“—ZgWFaBFaﬁ) . (4.5)

La variacion de la acciéon con respecto al campo escalar ¢ nos arroja la ecuacion de
Klein-Gordon,
9" D,D,® = 1*® — \|O[*D . (4.6)

Finalmente la variacién con respecto al campo gauge (potencial electromagnético) A,
nos da las ecuaciones de Maxwell, y a su vez, define al cuadri-vector de corriente que
actiia como fuente del campo,

V,F = JF .= q* | (4.7)
donde j* se entiende como la corriente de Noether del campo complejo ®
igh”
2

aqui j* es la corriente de Noether del campo escalar complejo .

j# - = [(I)*(DV(I)) - q)(Du@)*] : (48>

Espaciotiempo con simetria esférica y Ansatze para los campos

Consideremos un elemento de linea con simetria esférica en coordenadas isotropicas
ds* = —N?dt* + U* [dn* + (7° + 10*) d9°] (4.9)

tal que las funciones métricas N y ¥ solamente dependen de la coordenada radial n, d€)?
es el angulo s6lido unitario y hemos incluido la constante 19 que hace que el agujero de
gusano tenga un radio minimo no nulo. A causa de este hecho, la coordenada radial no
describe el radio de area y por esa razon no la denotamos como r (como por ejemplo en
(07, 179]).

Con miras a no tener dependencia temporal en las ecuaciones de campo, asumimos
que el campo escalar complejo tiene un Ansétz armoénico dado por:

O(n,t) = p(n)e™" (4.10)

donde w es una constante real.
Finalmente, para ser consistentes con la simetria esférica, consideramos que el poten-
cial gauge A, tiene solo una componente temporal, la cual esta dada por

Ay dat =V (n) dt, (4.11)
donde V' (n) define el potencial eléctrico.
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4 Agujeros de gusano con carga eléctrica

Descomposicién 341 del tensor de materia-energia y sistema de ecuaciones
para los campos

Las ecuaciones de la teoria de Relatividad General pueden ser escritas como un con-
junto de ecuaciones elipticas tales que las fuentes se expresan en términos de cantidades
explicitas como la densidad de energfa 7, la densidad de momento P, y el tensor de
esfuerzos S,,. Vamos a comenzar con la descomposicion 3+1 del tensor de momento-
energia la cual consiste en la proyeccion del tensor de materia-energia 7,

T=Tuwn'n", Pp=-n"Toa"y, Suw="Tas7" .7, , (4.12)

donde v, = 6", + n*n, es el operador de proyeccion y n = (1/N,0,0,0) es el vector
normal a las hipersuperficies. Utilizando las expresiones para 7),, dadas en la Ec. (4.4)
y la Ec. (4.5), dentro de la Ec. (4.12) y considerando la métrica en la Ec.(4.9), podemos
expresar las cantidades proyectadas explicitamente:

1 Lon n) (. A (Vitw)
ST <N2V ¢ > o\ T TN ) (4.13)
1 1 ? \§? Vg+w)?
Sy = g <‘WV'2 ‘¢’2> ) (“2 e R (St
1 /1 ¢ A? (Vg +w)?
0 _ ¢ 12 /2 o 2 _
Sy = Si=50 (—N2v +¢ >+ 5 (u : - o (415)

y P, es igual a cero en este caso. Aqui y a partir de ahora utilizaremos la notacion
fh= j—{].

La Ec. (4.13) impone condiciones que implican que el tensor mixto de Einstein y el
tensor de materia-energia son diagonales. Una ecuacion diferencial de segundo orden
para la funcién lapso N pues ser obtenida a parir de la adicién de las componentes
espaciales menos la componente temporal, y la ecuacion para el factor conforme ¥ se
obtiene a partir de la componente temporal de las ecuaciones de campo.

De este modo, el sistema toma la forma:

1 77(2) 5

AU+ -— 0 = 97y 4.1

I 1
! !

AsN +2 =47 NU* (1 +9) , (4.17)
\I]/(b/ N/gb, qV—i—w 2

A 2 VA TR 4.1
\I]/ ! N/Vl

AV 42 \DV Sl v gV (qV +w)e? , (4.19)

4 2n _d
donde Aj := oz T T dy €5 un operador.
También, escribimos explicitamente la ecuacién para la componente radial-radial de
las ecuaciones de campo. Esta es una ecuacién de constriccion necesaria para resolver

numéricamente el sistema de ecuaciones
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4.3 Fundamentos tedéricos

v? N vN 0
— + + 277 2(_4__)_#2:2735”37_ (4.20)
v NV n24+ng \¥ 2N 4(n?+n3)

Por altimo, hemos definido S como la traza del tensor de materia-energfa S := %S,; =
S, + 8% + S%,, con las siguientes expresiones explicitas para S y para el término que
aparece en la ecuacion para la funcién de lapso:

_ 1 Lo ? 3% [ _ Ag? _ (Vg +w)?
S T <N2V +¢ >+ 2 \# T RNE o (@20)
1 A2 2(Vg+w)?
THS = gV e (/f— T N . (4.22)

4.3.2. Cantidades globales

Para espaciotiempos asintoticamente planos, las expresiones de Komar nos permiten
calcular cantidades globales [35]. En particular, la masa total del espaciotiempo puede
calcularse con la siguiente expresion de Komar

1

Mw = — pev 4.2
K At /Ztlen 5 dV, ( 3)

donde ¥; denota la hipersuperficie tipo espacio, n* es el vector tipo-tiempo normal a
> con n,nt = —1, tal que n = (%,5), E=0 = <1,6> es el vector de Killing tipo-
tiempo, dV = /7 dn df dy es el elemento de volumen y 7y es el determinante de la métrica

espacial. En nuestro caso, £# = Nn* y utilizando las ecuaciones de campo, esta expresion
puede reescribirse como:

Mg = / (2T, — T g,) nME"\/ydndd dy , (4.24)

ademaés, tenemos que (27}, — TS g,) " = N (T‘; — 2Ttt).

Por el otro lado, el ntimero total de particulas N puede obtenerse a partir de la
cuatri-corriente j, definida en la Ec. (4.8). La cuatri-corriente j, surge a partir de la
invarianza de la acciéon Eq. (1.46) bajo las transformaciones globales U(1) con ® — ®¢',
esto implica que la corriente (4.8) es una densidad de corriente de Noether y satisface
la ley de conservacion V,j* = 0. La integracién de la ley de conservacion sobre una
hipersuperficie tipo-espacio ¥; define la corriente conservada de Noether.

N = [ jn,dv , (4.25)

P

la cual puede ser asociada con el ntimero toral de particulas|90]. La carga eléctrica total
de la solucién puede ser definida como @ = ¢g/'. Ademas, utilizando la masa de Komar
y el ntimero de particulas dadas en la Ec. (4.23) y la Ec. (4.25), es posible calcular M, a
partir del gradiente de la funcién de lapso N sobre una 2-esfera en el infinito espacial (ver
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4 Agujeros de gusano con carga eléctrica

por ejemplo [180]), mientras la carga @) puede ser calculada a partir del gradiente del
potencial gauge V. De este modo, las soluciones globales M vy () pueden ser extraidas
a partir del comportamiento asintotico de la métrica (4.13) y el potencial gauge V' (n),
haciendo My = lim, oo *N' y Q = 47 lim, o n*V".

4.3.3. Escalares geométricos

Las siguientes expresiones de los escalares geométricos seran de utilidad para caracte-
rizar las soluciones de agujeros de gusano eléctricos. El escalar de Ricci es:

2 A3N Ag‘l’ N’V 7]()2
R=—— 4 2 . 4.26
\1;4( R S S NCE (426
El escalar de Weyl:
_ 4 N n N/ N2 n o’ o’ 2 N’/ v/ 27]02 2
s (¥ ey (e (8)) N )

y el escalar de Kretschmann:

4 N" [/ N" N/ O/ U [y K 2 ) % 2
P i R O Y 4 T G
W\ \N\N " NU v\ v U) P4 U (24 n2)

U\ 2 VAN U 2 (312 —2n2 N\ 2
+4 (—) 6(—) Ay <;7 2n§)+3<_)
\\ )\ n* 4+ np* ¥ (N2 + no?) N

2 N/ 2 \If/ 7,]2 3772
T (W) (4773+ ; 22)+ e |
7% 4+ o (7 4 10?) (n* + n0?)

En la Fig. (4.1), presentamos gréficas de estos escalares para entender mejor como
los parametros modifican la geometria del espaciotiempo de agujero de gusano. Las
graficas corresponden a distintas soluciones de agujero de gusano cuya construccion sera
més adelante detallada. El escalar de curvatura R es proporcional a la traza del tensor
de estres, R = —87m (7+S), y en la figura presentamos ambas cantidades dada su
importancia en la determinacion de la masa total.
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Figura 4.1: Escalar de Ricci R, Weyl W, Kretschmann K y densidad de energia 7 para
los agujeros de gusano con A = 10, ¢ = {0, 0.3} y w/p = {0, w.m/p, 1},
cuyas masas son positiva, cero y negativa, respectivamente.

Es notable que el cambio sobre la geometria depende de la masa total del sistema.
Esta influencia se ve principalmente en el escalar de Weyl cuyo maximo para el caso de
masa cero es al menos la mitad que los casos de masa negativa; en cambio, para casos
de masa positiva, el perfil del escalar de Weyl es més de cuatro ordenes de magnitud
més chico que en otros casos. Estas soluciones nos invitan a realizar una investigacion
maés aplica de la geometria del espaciotiempo para materia exotica, como lo es el campo
escalar complejo con auto-interaccion y carga eléctrica.

4.4. Soluciones y Discusién

4.4.1. Condiciones de frontera

Para construir soluciones electrostatica que describan a un agujero de gusano es nece-
sario establecer valores para los parametros {w, A, ¢}, y resolver el sistema de ecuaciones
diferenciales para las funciones { N, ¥, ¢, V'} a través de imponer condiciones de frontera
apropiadas sobre el campo escalar, el potencial gauge y las funciones métricas. En primer
lugar imponemos simetria de reflexiéon sobre la garganta, es decir, en n = 0, de modo
que las funciones satisfacen que:

N'lyeo=0, ¥|,0=0, ¢|=0=0, V'|,=0=0. (4.29)
Pedir que el espaciotiempo sea asintoéticamente plano implica que

N‘n%oo =1, q;‘nﬁoo =1, ¢|n%oo =0, V‘n%oo =0, (430)
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4 Agujeros de gusano con carga eléctrica

mientras que el limite asint6tico sobre el campo escalar implica la condicién w? < p?.
Adicionalmente, estas condiciones de frontera implican una constriccion sobre las fun-
ciones evaluadas en la garganta y el sistema de parametros. Para ver esto, utilizamos un
radio de circunferencia R dado por

R= 0\t (4.31)

vemos que la circunferencia minima se alcanza en la garganta del agujero de gusano,
esto es, en 1 = 0, entonces, el radio de la garganta esta dado por G = W ng.

Por otro lado, otra expresion para dicho radio de garganta puede ser obtenido a partir
de la Ec. (4.20). De esta forma, evaluando esta expresion en la garganta, n = 0, y
utilizando las condiciones de frontera, podemos obtener otra expresiéon para el radio
de garganta. Al igualarlo con la anterior expresion, podemos derivar una ecuacion de
constriccion para determinar el parametro 7y en términos de otros pardmetros y los
valores de las funciones en la garganta:

G =Vl nd = ! (4.32)
- ~“th'/lo — 2 2\ :
2 AP (Vin g+w)
g}, (2 + 25 + Cngrel)
donde Ny, := N(0) > 0, ¥y, := U(0), ¢, := ¢(0) > 0, y Vi, := V(0) son los valores en la
garganta de los coeficientes métricos NV, ¥, el campo escalar ¢ y el potencial eléctrico V.

Dicho de otro modo, ésta es una ecuacién de constriccion sobre los parametros utilizando
las condiciones de frontera del sistema.

4.4.2. Detalles sobre la obtencién de las soluciones y las
graficas

Para una revision detallada de la resoluciéon numeérica del sistema de ecuaciones pue-
den consultarse referencias como [181]. El mecanismo empleado se llama método de
colocacion espectral. El dominio En ella, utilizamos los polinomio de Chebyshev como
base espectral de las funciones a resolver.

Como ya hemos detallado a lo largo de este capitulo, los pardametros que describen a
los agujeros de gusano eléctricos son cuatro: el parametro de masa del campo escalar,
i, la frecuencia del campo escalar, w, el parametro de auto-interaccion, A, y la carga
o parametro de acople, ¢. También vimos que u re-escala los otros tres parametros, de
modo que para obtener soluciones numeéricas basta con variar los tiltimos tres parametros
y obtener soluciones para p arbitrarios. En un anélisis posterior, se puede especificar
para describir al sistema en escalas fisicas. Por ahora, vamos a comenzar describiendo el
método para obtener las soluciones numéricas. En primer lugar, construimos familias de
n agujeros de gusano eléctricos fijando dos de los tres parametros y variando el tercero en
cierto intervalo dividido en n partes iguales; ademas, damos como entrada una soluciéon
inicial y el nimero de coeficientes espectrales en que serdn descompuestas las funciones
a determinar, en general usamos 24, 30 o 32 coeficientes espectrales. Contamos con tres
codigos escritos en el lenguaje Python: electro-wormhole.py, omega-electro-wormhole.py
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4.4 Soluciones y Discusion

y g-electro-wormhole.py. Los tres cddigos funcionan basicamente de la misma manera:
resuelven el sistema de ecuaciones diferenciales parciales y no lineales con el método de
colocacion espectral, donde los polinomios de Chebyshev se usan como base espectral
de las funciones métricas N y ¥ asi como el campo escalar ¢ y el potencial eléctrico V',
todo esto en un dominio compactificado.

La diferencia sustancial entre los tres codigos es que con electro-wormhole.py se ob-
tienen familias de agujeros de gusano dados valores fijos de w y ¢ y un intervalo de
A € [\, Af] dividido en n partes. Con omega-electro-wormhole.py se obtienen soluciones
con q y A fijos pero w € [w;,ws|. Mientras que con g-electro-wormhole.py se mantiene
constante A y w pero se varia el parametro ¢. En la Fig.(4.2) se muestra un resumen del
procedimiento empleado, comenzando con el codigo ewh.py

El codigo calcula el valor del campo escalar en la garganta ¢.., la masas Mg omar, Mapnr,
Rygg, C', Q v 1y para cada solucion, éstos valores los almacena en archivos de datos titula-
dos uc.dat, Mkomar.dat, MADM.dat, R99.dat, C.dat, Q.dat y eta0.dat, respectivamente.
Cada uno de éstos archivos contiene una sola columna con n filas.

*Entrada: *Entrada: *Entrada

*Valores de q, w =Archivos de datos de cada solucién *Archivo de datos de una o varias
sun intervalo de 2 dividido en n partes por procesar soluciones {n. ¢. N, @.V.¢" N,
iguales *Namero de coeficientes espectrales l/As]
*solucidn inicial =Salida:
*NUOmero de coeficientes espectrales =Archivo de datos de cada solucion con *Salida:
«Salida: susfunciones{n, ¢, N, ¢.V.¢' N *Graficas de la densidad de energia del
«Cantidades globales: ¢, M, Res, 1, Y, ?'} donde * denota la primera agujero de gusano, del escalar de Ricci,
derivada respecto a eta de Kretschmanny de Weyl
#*n archivos de datos por procesar
- S - J

script.sh+gorla.py

*Entrada:
*Los n archivos de datos por procesar
+*NOmero de coeficientes espectrales
*Salida:
*Radio de garganta de los n agujeros de
gusano, ©,vs ¢,

Figura 4.2: Detalle del procedimiento para generar soluciones del sistema de ecuaciones
EKGM asociadas a agujeros de gusano eléctricos con parametro de auto-
interaccion

También, el codigo genera como salida n soluciones por procesar de agujeros de gu-
sano contenidas en n archivos.dat cuyo nombre particular permite identificar el valor
del parametro variable al que corresponde dicha solucién. Por ejemplo, con el codi-
go electro-wormhole.py el nombre de cada soluciéon se construye con iniciando con la
letra N, seguida del ntimero de coeficientes espectrales, luego se agrega la palabra lamb-
da mas el valor particular de A de la solucién. Por ejemplo, la solucién con nombre

N24lambdal.00+01.dat fue generada con 24 coeficientes espectrales para el valor de
A =10.
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4 Agujeros de gusano con carga eléctrica

Es importante resaltar que de los archivos de las soluciones particulares recién salidas
de estos tres codigos siguen expresadas en términos de los polinomios de Chebyshev, no
es posible leer directamente las funciones incognita: N(n), ¥(n), ¢(n), V(n), sino que es
necesario auxiliarnos de un coédigo de nombre lector.py. En éste, se debe especificar la
solucion particular del tipo N24lambdal.00+01.dat para obtener el archivo de salida de
la variable 7, las funciones incognita y sus primeras derivadas, de modo que el archivo
de salida tiene nueve columnas:

{n, N, ¥, ¢, v, dN/dn, dV/dn, dp/dn, dV/dn}.

Ahora si, con estos valores es posible estimar otras cantidades relevantes del sistema
como, sus escalares geométricos y su densidad de energia para cada agujero de gusano
eléctrico. De esta manera calculamos la densidad de energia, el escalar de Ricci, de Weyl
y de Kretschmann que aparecen en la Fig. (4.1).

De forma posterior calculamos el radio de garganta G de una familia de agujeros de
gusano con ayuda de un script.sh que ejecuta la rutina garganta.py para cada solucion
particular; generan como salida el conjunto de valores de G asociados a cada valor de
campo escalar evaluado en la garganta ¢,.

Entre los detalles técnicos, podemos decir que para las soluciones con w cercano a cero,
g~ 0,y X € [1,30], basta con ocupar 24 coeficientes espectrales para que haya conver-
gencia en la determinacion de soluciones. En cambio, para As més grandes, w cercano
a uno y gs distintos de cero, llegamos a ocupar 32 y 36 coeficientes en la aproximacion
para que las soluciones convergieran.

4.4.3. Sobre la simulacién numérica y soluciones particulares

Recapitulando, el sistema de ecuaciones diferenciales parciales y no lineales (4.16-4.19)
se resuelve numéricamente junto con las condiciones de frontera (4.29) y (4.30) utilizando
un método de colocacion espectral con los polinomios de Chebyshev como base espectral
de las funciones desconocidas {N, ¥, ¢, V'} en un dominio compactificado. Para detalles
del método se pueden consultar distintas referencias, por ejemplo la Ref. [I81]. Las
soluciones presentadas en este trabajo utilizan iteraciones de Newton-Raphson.

De este modo, hemos construido una variedad de soluciones de agujeros de gusano
variando el parametro A en el intervalo % < M4m < 100, la frecuencia del campo
escalar w se explora en todo su intervalo fisicamente posible, es decir, 0 < w/pu < 1,
y analizamos las soluciones para casos fijos de ¢, incrementandolo gradualmente entre
0<gq/ V81 < 0.5. Este procedimiento coincide con el utilizado por [10], y los intervalos
los hemos elegido asi para obtener soluciones fisicamente aceptables y comparables con
éste y otros trabajos previos.

Ahora, vamos a comenzar discutiendo el comportamiento general de los agujeros de
gusano eléctricos. Como ya mencionamos, obtenemos soluciones numéricas para distintos
valores del parametro w, A y ¢. Utilizando la invarianza de las ecuaciones (4.16-4.19) bajo

el re-escalamiento:

r—opr, o w—w/p, A= Mt q—=q/u, (4.33)
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4.4 Soluciones y Discusion

hemos obtenido soluciones para valores arbitrarios de p. Todos las deméas cantidades
reportadas a partir de este punto, serdn dadas en términos de la masa del campo escalar
1. Adicionalmente, utilizamos el escalamiento para la carga y el campo escalar para
facilitar la comparacion con otros trabajos como [97],

. q T 0 A

q T 0] N7 A . (4.34)

En la Fig. 4.3, presentamos soluciones para la masa total M y el radio de la garganta,
G del agujero de gusano eléctrico como una funciéon del campo escalar en la garganta.
En la misma figura estamos mostrando con color negro las soluciones con w/pu = 0y
de color violeta las soluciones con w/u = 1 variando ) e [1,30]. Hemos agregado lineas
punteadas representando soluciones con algunos valores de 5\, pero en este caso variando
w/p e [0,1].

La curva w/pu = 0 delimita la masa maxima de los agujeros de gusano y es indepen-
diente al valor de ¢, mientras que la curva w/pu = 1 si varia con ¢. Cuando w/p ~ 1,
conforme ¢ incrementa, la masa total y radio de la garganta también incrementa en
magnitud conforme ¢ incrementa.

Las soluciones con ¢ = 0 son consistentes con el resultado en [10] como puede verse
comparando sus Figs. 2 y 3 con la primera fila en la Fig. 4.3. Las soluciones con ¢ > 0
siguen la misma relacion cualitativa entre las cantidades globales que las soluciones con
g = 0. También presentamos como la masa de los agujeros de gusano y el radio de la
garganta dependen del campo escalar evaluado en la garganta. La diferencia con el caso
neutron es que los agujeros negros cargados con frecuencia w/ . cercanas a uno, alcanzan
masas mas grandes (negativas) y gargantas mas grandes que las correspondientes a agu-
jeros de gusano no cargados. El comportamiento comiin para los valores de ¢ utilizados
es que para pequenios ¢, el radio de la garganta incrementa casi exponencialmente,
mientras que para valores grandes, el radio de la garganta tiende a cero. Para los casos
neutros, la masa total con w/pu = 0 es siempre positiva, mientras que cuando w/pu = 1
la masa total es siempre negativa, aunque este comportamiento puede cambiar con la
carga eléctrica, como veremos. También, notemos que para cada valor de gzzth, el radio
de garganta es siempre més grande para w/p = 1 respecto al valor de w/p = 0, un he-
cho que se conserva en los agujeros de gusano eléctricos. En esta figura también hemos
incluido casos para distintos valores del parametro 5\, donde las frecuencias varian de
w/p=0aw/u = 1. Ahora bien, para estudiar el comportamiento de la carga ¢ sobre las
soluciones, en el codigo fijamos el valor de ¢, analizamos las soluciones variando A y w, y
repetimos para otro valor de la carga ¢. En [97], los autores analizan las propiedades de
las soluciones de los agujeros de gusano no cargados y se enfocan enel comportamiento
de . Siguiendo su procedimiento, en la Fig. 4.4, graficamos la masa total M como una
funcion de A para distintas valores de w /1, v en la Fig. 4.5, mostramos el nimero de
particulas N' como funcion de A para distintos valores de la carga, con un valor fijo
de w/u. De esta manera podemos enfatizar las diferencias entre los agujeros de gusano
electricamente cargados con los no cargados, los cuales se estudian en [97].

En la Fig. 4.4,vemos que el comportamiento de la masa total como funcién de function
of X en los casos cargados es muy similar que el caso neutro: para valores pequenos de
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Figura 4.3: En las graficas de la izquierda graficamos la masa total de los agujeros de
gusano M y del lado derecho graficamos el radio de la garganta como funcion
del valor del campo escalar en la garganta, éth. Notemos que A y éth estan
monotonamente relacionadas, es decir, cada valor de ¢y, corresponde un valor
. Las lineas solidas son soluciones para w/u = 0 (negro) y w/u = 1 (violeta).
Hemos incluido casos para distintos valores fijos del pardmetro A (naranja)
donde las frecuencias toman valores entre 0y 1, con X € [1,30].
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Figura 4.4: La masa de las soluciones de los agujeros de gusano contra el pardmetro .

Mostramos la masa M como funciéon de A > 0 en todo el intervalo posible
para la frecuencia del campo escalar w/p € [0, 1] para distintos valores del
campo eléctrico del campo escalar ¢ € [0, 0.5]. Los tridngulos invertidos
representan el maximo de la masa M,,,, de las soluciones con carga eléctrica
para distintas frecuencia. Los valores de los parametros de las soluciones en
estos puntos estan dados en el cuadro 4.1.

w/p=0.5 w/ip=1
" w/i w/p
— G=0 s 140 4 q=0
35 =03 7 =03
,,,,, =04 s 120 G=04
304 ——- =05 o i=05
e 100 4
251 >
//, 80 4
= 2 L =
- e 60
10 404
54 24
0 0
2 4 6 8 10 2 4 6 8 10
A A

Figura 4.5: Nimero de particulas para agujeros de gusano cargados como funciéon del

pardmetro A\ para valores representativos de ¢. Las lineas soélidas represen-
tan casos no cargados mientras que las lineas punteadas representan casos
cargados eléctricamente.
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4 Agujeros de gusano con carga eléctrica

), la masa total es negativa y esencialmente independiente de la frecuencia w /u, v en
este caso, como vemos en la Fig. 4.3, el radio de la garganta tiende a cero. Conforme A
incrementa, las soluciones con w/u = 0 adquieren una masa total positiva que incrementa
linealmente con .

Por légica, debemos tener una frecuencia, visualmente notamos que es cercana a w/pu =
0.5, para la cual la masa total es igual a cero para cada valor de A por encima de ~ 2;
conforme la frecuencia incrementa, la masa total alcanza un valor maximo y luego se
vuelve mas negativa, con una dependencia lineal de A

La presencia de la carga mantiene el comportamiento general de la funcién de masa
respecto a A pero tiene algunas notables diferencias. Las soluciones w /i = 0 son inde-
pendientes de la carga, con se esperaba, puesto que en este caso el campo escalar es real
y no hay posibilidad de que se cargue electricamente. Para w/p # 0, el rol de la carga
eléctrica comienza a ser notable, cambiando el valor de la frecuencia a la cual el agujero
de gusano agnquiere una masa total igual a cero; esto como vemos es esencialmente
independiente de \, y haciendo la pendiente de la dependencia de la msa total como una
funcion de A mucho més pronunciada.

Hasta aquf nos hemos enfocado en valores especificos de A en los cuales la masa total
alcanza un méaximo segin el valor de ¢ y w. En la Fig. 4.4, presentamos graficas de la
masa total M para distintos valores de la frecuencia w/u dado un valor de ¢; cada panel
corresponde a distintos valores de la carga, éstos son: ¢ = 0, 0.3, y 0.5. Hemos marcado
los puntos de la masa maxima sobre las diferentes gréaficas y en el cuadro 4.1 aparecen
sus valores. También, hemos identificado las frecuencias en las cuales la masa total de la
solucion es igual a cero, para cada valor de la carga, esta frecuencia la denotamos como
Wym-

Para soluciones con w > w,y,, no hay un méaximo local para la masa, en cambio, la
masa incrementa linealmente con 5\, mientras que para w < w,y, la masa total crece con
A, alcanzando un valor maximo, y entonces un decrecimiento lineal.

En el caso de ¢ = 0, tenemos que wyy,/p = 0.5, y la masa incrementa (decrece)
linealmente para w/p > 0.5 (w/u < 0.5) como ha sido reportado en [97].

El valor de w,,, decrece conforme ¢ incrementa; esto lo podemos ver observando las
soluciones con ¢ = 0, 0.3, 0.4, y 0.5 dados en el cuadro. 4.1, donde w,,, corresponde a
los valores de la frecuencia tales que la masa se vuelve cero.

Respecto al nimero total de particulas, la Ec. (4.25), y el efecto de la carga del campo
escalar, ¢, sobre las cantidades globales, en la Fig. 4.5 describimos la dependencia del
numero de particulas respecto al parametro A, para distintos valores de ¢ y w. Como en
el caso de la masa total, para valores de A no muy pequenos (méas grandes que ~ 1.5), el
nimero de particulas A incrementa linealmente con A, para un valor fijo de ¢. El efecto
de la carga ¢ es que la pendiente del namero de particulas A’ como una funcion de A
incrementa con ¢, alcanzando una pendiente maxima para ¢ = 0.5. Resolver el sistema de
ecuaciones para valores de ¢ mas grandes que éste valores, se vuelve computacionalmente
muy demandante, posiblemente indicando el hecho de que hay un valor maximo para la
carga ¢ por encima de la cual ya no hay configuraciones estaticas y esféricas.

Presentamos el caso para dos valores de la frecuencia. Ambos casos son muy similares
en cuanto al comportamiento del nimero de particulas como funciéon de 5\7 con una
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4.4 Soluciones y Discusion

q w/p (M0 A

0 0.5" 0 00

0 0.7 —0.578 1.289

0 1 ~1.132 0919
0.3 0.4375* 0 00
0.3 0.5 ~0.3678  1.636
0.3 0.7 ~0.6978  1.091
0.3 1 ~1.3305  0.814
04  0.3875* 0 00
0.4 0.5 —0.467 1.388
0.4 0.7 ~0.809  0.992
0.4 1 ~1.554  0.694
0.5  0.3125* 0 00
0.5 0.5 —0.604 1.091
0.5 0.7 —~0.995  0.861
0.5 1 —1.877  0.636

Cuadro 4.1: Maximo local de la masa M,,,, dado un valor de la carga ¢ y frecuencia
w < w,n. Configuraciones con M,,,, = 0 definen la frecuencia w,,; para
casos donde la frecuencia es mas grande que ésta, w > w,,, la masa no tiene
maximo local e incrementa linealmente con .

pendiente incrementando para valores grandes de ¢, la diferencia es que, dado un valor
de ), el ntumero de particulas con ¢ es mas grande que en el caso neutrén, sobre todo
para valores grandes de w/p.

Notemos que con la expresion Eq. (4.25), no podemos obtener el niimero de particulas
de particulares relacionado a la masa negativa y otra correspondiente a masas positivas;
seria interesante derivar expresiones que diferencien tales ntimeros.

En la Fig. 4.6, presentamos el radio de la garganta G como funcién de A y algunos
valores de la carga ¢ para dos valores de la frecuencia w/u. Es resaltable que el radio de
la garganta sigue un comportamiento muy similar al ntimero de particulas, posiblemente
indicando una relaciéon entre estas cantidades y las cantidades globales.

Otro interesante aspecto de los agujeros de gusano cargados que presentan la posibi-
lidad de probar la validez del teorema para agujeros de gusano no cargados, [99], el cual
plantea que el pardmetro de auto-interaccion, A es una condicién necesaria para tener
un agujero de gusano. Entonces, exploramos la posibilidad de que la carga, ¢, juegue el
rol del pardmetro de auto-interaccion. Sin embargo, en nuestros experimentos numéricos
encontramos que este no es el caso y el pardmetro de auto-interaccion sigue siendo una
condicion necesaria para la existencia de un agujero de gusano, ain si esta cargado.

Finalmente, en la Fig. 4.7, presentamos nuevamente el comportamiento de la masa
total, ahora como una funcién de la frecuencia del campo escalar w para distintos valores
de X y ciertos valores de la carga g.

Con los factores dados en la Ec. (4.34), somos capaces de comparar con los resultados
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4 Agujeros de gusano con carga eléctrica

w/p=10.5 w/p=1
20.0 35
— =0 - i=0

175 4 =03 7 304 §=03
- §=04 L G=04
501 -—- §=05 7 95 §=05

Figura 4.6: Presentamos algunas soluciones numérica para el radio de garganta G como

funcion de A para valores diferentes de la carga ¢ y dos valores de w/pu. El
tamano de la garganta crece linealmente con ), cuando el parametro no es
también muy pequeno, y la pendiente incrementa con ¢. El tamano de la
garganta incrementa con w.

presentados en la literatura, por ejemplo en [10], para casos neutros. Como ya mencio-
namos, genéricamente, uno de los efectos de la carga es el cambio del valor de frecuencia
que hace cero la masa de Komar, ésta es w.,,.

En los cuatro paneles de la Fig. 4.7, tenemos una linea vertical indicando el valor
wym/p = 0.5, el cual corresponde al caso neutro. De esta manera es méas claro que el
efecto de la carga es reducir el valor de w al cual la masa de Komar se anula; ademas,
notemos que esto es independiente de A para un carga dada.

Notando que el sistema de ecuaciones, Ecs. (4.16), es invariante bajo cambios tanto
en la carga ¢ como en el potencial eléctrico, V', vemos que no hay un cambio notable en
el comportamiento de la masa total debido al cambio del signo de la carga escalar q.

Las fuentes de los campos gravitacionales pueden ser ttiles para clarificar la estructura
de los agujeros de gusano asi como sus propiedades globales. En la Fig. 4.8, graficamos
la densidad de energia 7 para soluciones con A € [0.5, 30], frecuencia w/u € [0,1] y
carga § € [0,0.5]. De izquierda a derecha, los paneles muestran valores de A € [0.5, 30],
mientras que de arriba a abajo los paneles muestran distintos valores de ¢. Cuando A= 0,
la distribucion de la energia tiene cualitativamente el mismo perfil para todos los valores
de w/p, lo cual indica que la frecuencia se vuelve irrelevante cuando A — 0, (recordemos
que para A = 0, no hay soluciones de agujero de gusano). Méas atin, para pequenos valores
de X el rol de la carga es también despreciable, mientras que para valores grandes de
)\ el rol de la carga en la densidad de la energia se vuelve mas relevante, causando un
aplanamiento del valor de la densidad de la energia en la garganta.

Respecto al comportamiento del perfil de la densidad de la energia de la Fig. 4.8,
vemos que hay un maximo en la garganta n = 0, seguido de un decrecimiento hacia un
valor minimo negativo, luego de ahi, la funcién tiende asintéticamente a cero conforme
n — 00.

Mas atn, como puede ser claramente visto en la grafica de arriba a la izquierda, el
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Figura 4.7: La masa de los agujeros de gusano para distintos valores del parametro )\ con
diferentes valores de ¢. Aunque los perfiles son muy similares, en el limite
)\ — oo la masa se vuelve cero para cierta frecuencia denotada w,n,/p. El
simbolo cuadrado corresponde a tal frecuencia para distintos valores de ¢,
los cuales son reportados en el cuadro 4.1.

perfil de la densidad de energia para valores pequenos de A practicamente no cambia,
aun cuando corresponda a casos con masa de Komar negativa con w/u = 1.

En la Fig. 4.9 algunas soluciones para el campo escalar ¢ se presentan, notando que
¢ esta re-escalado por un factor v/X. Podemos ver que para valores grandes de A, las
soluciones presentan un comportamiento muy similar entre si, indicando un posible re-
escalamiento de la forma ¢ — v/ ¢ en el régimen A\ — oo.

De esta manera, hemos visto que para A grande, el nimero de particulas A y el radio
de garganta G, incrementan con A, la masa M depende linealmente de A\ y finalmente
podemos ver que las soluciones de VA ¢ tienden a tener un perfil muy similar para
A grandes. Estos resultados nos sugieren re-escalar las cantidades ¢, := VX @, ngs :=
no/\, N := N /Xy M, := M/\ para estudiar el comportamiento de las soluciones con
frecuencias w y cargas ¢ constantes en el régimen A\ — co. Esto es lo que haremos en el
siguiente apartado.

Concluimos el presente apartado presentando en la Fig. 4.10 los perfiles del cam-
po eléctrico E = —VV para algunos valores de los parametros A\, w y ¢q. Por nuestra
implementaciéon numérica, el efecto repulsivo del parametro ¢ no nos permite obtener
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Figura 4.8: La densidad de energia 7 como funcién de 7 para varias soluciones con\ €

[0.5,30] y ¢ € [0, 0.5]. La densidad de energfa decrece con . Para casos con
carga ¢ y A > 0.5 la densidad de energia decrece tanto que es negativa en
todo el dominio.

soluciones por arriba del valor ¢ ~ 0.5. Conforme uno se acerca a este valor, el tamano de
la garganta incrementa, este hecho podria indicar la existencia de un valor critico para
la carga del agujero de gusano. El parametro w, también afecta la dificultad de obtener
soluciones, atin con soluciones con valores pequenos de ¢. En varios de nuestros resulta-
dos, somos capaces de mostrar soluciones con ¢ # 0 y algunas frecuencias acercandonos
aw/p < 1, aunque sin llegar a la igualdad. En la siguiente seccion, uniremos la observa-
ciones recién descritas para derivar una posible explicacion de dichos comportamientos.

4.4.4. Comportamiento para )\ grandes

Basados en nuestros resultados previamente presentados, y siguiendo el anélisis del
re-escalamiento de las estrellas de bosones para valores grandes A planteado por Colpi
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Figura 4.9: Presentamos algunas soluciones numéricas para el campo escalar re-escalado

por el factor v/ v diferentes valores de ¢. Las soluciones son muy similares
para valores grandes de v/\ mientras que para valores pequeiios de v/ las
soluciones exhiben perfiles muy distintos entre si.

et. al. en 1986 |177], ahora vamos a considerar soluciones de agujero de gusano eléctrico
cuando A > 1.

Un analisis del comportamiento de la geometria del espaciotiempo y el perfil radial del
campo escalar cuando la auto-interaccion es grande, hace evidente un re-escalamiento de
distintas funciones y parametros de la solucion. Por ejemplo, ya vimos en la Fig. 4.9 que
las soluciones convergen a un perfil independiente de A igual a ¢, = v\ ¢ conforme A
incrementa. Por otro lado, también vemos un comportamiento lineal entre el parametro
de la garganta dado por 19, = 10/ \; los coeficientes métricos ¥, N y el potencial eléctrico
convergen a funciones constantes, sea éstas, Wy, Ny, v Vin en un region cercana a la
garganta que incrementa también linealmente con \. De este modo, nuestros resultados
muestran que no solo el campo escalar se vuelve independiente de A\ en el régimen de
lambdas grandes, sino toda la solucién. Con este resultado en mente, es posible encontrar
expresiones analitica para el agujero de gusano cargado en el régimen de A > 1, siendo
un caso particular de este analisis de agujero de gusano neutro, ¢ = 0.

Vamos a comenzar re-escalando la ecuacion de constriccion (4.32) para la garganta
del agujero de gusano, obtenemos que:

1
%, | (Vingtw)?
A(—p2 4 e o Dangrel)

2
Nt h

donde, puesto que las cantidades ¢, Ny y el producto Ui n2 ¢% . son finitos para
A — oo, entonces el lado derecho de la Ec. (4.35) debe seguir la misma dependencia
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Figura 4.10: Campo eléctrico E (—VV) como funciéon de n para w/p = 0.5 (izquierda)
y w/p = 1 (derecha), con las cargas ¢ = 0.3 (arriba) y ¢ = 0.5 (abajo).
El campo eléctrico incrementa con ¢. En el caso de valores grandes de A
es dificil obtener soluciones cerca de ¢ = 0.5, mientras que soluciones con
grandes A y pequenos valores ¢ si son posibles.
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para mantener la consistencia de la ecuaciéon de constriccion:

2 2
2 P (Ving+w) 1 -2
— — ~ -+ 0\ 7). 4.36
b~ o0 (1.36)
Ahora, vamos a tomar el limite A — oo, manteniendo 7 fija en la Ec. (4.36). Vamos a
definir las siguientes cantidades limite con el subindice oo,

Ny, = Nhooo, Yo =Vbe, P = Pilasoes Vo = Voo (4.37)

Ju

esto nos permite expresar el valor del campo escalar en la garganta en el limite A — oo
como,

b= b =0) = |2 (w - %) , (4.38)

donde Vy := Vi _(n = 0) y Ny := N,_(n = 0). Esta ecuacion implica que siempre
debe pasar que w + qVy_ > 1, para que el valor de la funcién de lapso tome valores
suficientemente grandes que mantengan la Ec. (4.38) real, lo cual explica porque es
mas posible obtener soluciones numéricas con valores altos de ¢ y w. Esto puede ser
corroborado mirando las primeras dos columnas de los cuadros 4.2 y 4.3, més adelante
explicaremos con cuidado ambos cuadros. Ahora, insertando las cantidades re-escalas ¢,
y 1Mo« en el sistema de ecuaciones de Einstein-Klein-Gordon-Maxwell y tomando el limite
A — oo (con 7 constante y asumiendo |n/ny| < 1), se obtiene el sistema de ecuaciones
siguiente:

d2

d—nQ%w =0, (4.39)
d2

N, =0 (4.40)
dnz )\oo Y

d2

d—n2VAm =0, (4.41)
d? Vao +w\?

d_7’]2¢*)\°° - \I/)\oo‘l (MQ _ ¢*>\002 _ (%) ) ¢*Aoo =0. (442)

Ests soluciones son validas en el intervalo —Ang,. << 1 << Anjgs.

Imponiendo las condiciones de simetria en la garganta dadas en la Ec. (4.29) y uti-
lizando las definiciones dadas en la Ec. (4.37), el sistema de ecuaciones (4.39) tiene la
solucion,

Nao(m) = No, VUi () =Yy, Vi, (m)=W; (4.43)
2
Gir., () = ¢o sech (\Ilf/gon> , (4.44)

con ¢q constrenido por la Ec. (4.38). Dada ¢ y w, los ntimeros Ny, Vo, Vo y ¢ son
estimados mediante interpolacién y apartir de soluciones con valores altos de \. En el
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4 Agujeros de gusano con carga eléctrica

Cuadro 4.2: Cantidades Ny_, ¥,_, ¢&x, v Vo, para w/p = 0.5 y diferentes valores de
la carga ¢. Estas cantidades se relacionan con las condiciones de frontera en
la garganta para A — 0o, en acuerdo con las Ecs. (4.37) y Ecs. (4.38).

q Ny v, ®o Vo (w+qVo)/No
0 1 0.7099 1.225 0 0.5
0.2 1.0860 0.6897 1.193 0.0882 0.5418
0.3 1.2153 0.6617 1.1365 0.1515 0.5990
0.5 1.9767 0.5504 0.8926 0.4146 0.7787

Cuadro 4.3: Cantidades limite Ny, Uy v ¢ para ¢ = 0 (Vy = 0) y valores diferentes de

w/ .
w/p No v, ®o w/No
0 0.5820 0.9001 1.4189 0
0.2 0.6895 0.8427 1.3551 0.2901
0.5 1 0.7099 1.2250 0.5
0.7 1.2401 0.6347 1.1707 0.5645
1 1.6153 0.5448 1.1131 0.6191

cuadro 4.2 presentamos algunos de los valores numéricos utilizados para el caso w/p = 0.5
En el cuadro 4.3 reportamos las mismas cantidades para el caso ¢ = 0, w.

Con el objetivo de comparar nuestras expresiones analiticas en el régimen A — oo
con nuestro codigo y soluciones numéricas, en la Fig. 4.11 presentamos la convergencia
de los perfiles numéricos ¢,y respecto a su perfil dado por la Ec. (4.44). Concluimos
que las expresiones analiticas son buenas aproximaciones para estos casos. También
hemos verificado la validez de las aproximaciones (4.43) para los funciones métricas,
comprobando el crecimiento lineal de éstas y del potencial eléctrico respecto al parametro
A. Previamente describimos que la masa (y el nimero de particulas) tienen también un
escalamiento lineal en el régimen A\ — oo , y més atn remarcable, la masa total tiende
a cero para configuracion con exactamente w = 0.5y conforme A\ — oo. Las Ecs. (4.43)
y (4.44) proveen una explicacion a esta propiedades. Utilizando ¢,y v 7o« es posible
mostrar que la masa de Komar en la Ec. (4.24) escala como M, = M/ para A > 1. Mas
aun, una expresion analitica para M, puede ser obtenida notando que cuando A > 1
la raiz cuadrada del determinante puede aproximarse como /7 ~ A?W§_ng sinf, y el
integrando N (T‘L — 2Ttt) puede ser simplificado a orden 1/\ como

Ny 02\ (2 #%, (¢Vr +w)’
N (TH —9Tt) ag 20 "*Ao | 7 THAco _ ©© ) 4.4
(7" 2 A 2 4 N (4.45)
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Figura 4.11: Diferencia entre el campo escalar re-escalado numérico qg* y analitico gg* Ao s
dado en la Ec. (4.44) y los parametros dados en el cuadro 4.2, como una

funcion de la coordenada radialn en el régimen de A\ — co. Estamos consi-
derando casos con w/p =0, 0.5,1y ¢=0,0.3.

Entonces, insertando la expresion de la masa de Komar (4.24), obtenemos

2 w + V
M, = 8N, \1’0770* / (b*xwdﬂ‘f‘ %—( q 0) / ¢*Amd77 )

1/2 )
8 (@ + V%)’ 4(w+qVo)
= 3™V Voo, | 1° — TN = N |- (4.46)

Aqui hemos utilizado que la expresi(’)n para el campo escalar de la Eq. (4.44), implica

20 _ 493
que )" @2y dn = V2u2” Jo din. dn = 3V202°
Como estdbamos buscando, estas ecuaciones nos permiten ver la masa del sistema se
hara cero si y solo si la condicion w = w,, se satisface, con

Wom = 2 — gV . (4.47)

Sustituyendo los valores en el cuadro 4.2 para las soluciones ¢ = 0 y w = 0.5 vemos que
si se satisface la condicion, de la misma manera podemos comprobar con las configuracion
con ¢ >0, A > 1y sus M son igual a zero. Mas atin, puede mostrarse’ que en los casos

!Considerando la expansion completa de la funcién de lapso, después del término constante Ny _, (el
cual es consistente con el sistema de ecuaciones (4.16-4.19)) (y considerando las posibles constri-
buciones de las expansiones de los otros campos) se debe tener N = Ny_ + A"1Ny(n) + O(A72),
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4 Agujeros de gusano con carga eléctrica

neutros, ¢ = 0, el valor de Ny es exactamente igual a 1, entonces por esta razoén en
w = 0.5 la masa de Komar es igual a cero, como ya habian reportado en [10, 97].
En general, tales valores se modifican en presencia de la carga ¢, como se muestra en
las figuras previas. Notamos a partir de los cuadros 4.2 y 4.3 que las cantidades Ny y
Vo tienen un incremento monoétono respecto a la frecuencia y la carga, mientras que
las cantidades ¢y y ¥y decrecen mondétonamente, igualmente respecto a la frecuencia
y la carga, por lo tanto, para cada valor de w y ¢, corresponde un solo valor de estas
cantidades, en particular, Ny, tales que la masa M, es igual a cero.

Finalmente, utilizando el mismo procedimiento es posible ver que el nimero de par-
ticular N dados por la Ec. (4.25) re-escalan como N, = N /X en el régimen X\ > 1. Asi
que podemos encontrar una expresion analitica para N, resultando en:

go oo
N, = drnd, (w+qu)F°/ ¢2,_dn ,
0Jo

1/2
4 2
2 o 2 (W+qh)
aqui hemos utilizado la expresion para la corriente j dada en la Ec. (4.8) y el ansatz de
la Ec. (4.10) para obtener j° = —j\),é” (Vi ¢+ w).
Aoo

4.4.5. Movimiento de particulas

Estudiar el movimiento de particulas en los espaciotiempos generados por agujeros
de gusano cargados tiene el propoésito de comprender mejor las propiedades de dichas
geometrias y predecir posibles efectos sobre otras particulas.

La accién completa de la particula cargada con masa m y carga e interactia con un
campo electromagnético relativista es 36|,

1 1
A:—/de—l—/eAuu“dT+/d4x\/—_g 16_7TR_Z L

F“Z’} . (4.50)

con N satisfaciendo la ecuacion diferencial N{' = 47Ny W} ¢7(u® — ¢7/2 — 2w? /N3 ) junto a la
condicion de frontera Ni(n = 0) = 0. Bajo esta consideracion, la solucion es,

Ni(n) = ATNx_ ¢25 K;’ - Ii) In (cosh (b)) + ésech2 (bn)} + k1, (4.48)
con Kk = 2¢;)\200 w?/Na, y b=93_ bux../V/2. Estas soluciones son vélidas en el dominio |n| < Ao,
la funcién de lapso completa N = Ny__ +A"1N7(n) + O(A~2) debe empatar con la solucién exterior
Ny—oo = 1+ K1/1 en un cierto punto 1 < 7, < A, pero este es precisamente en el caso de masa
cero que kK = 1/3, como se obtiene a partir de la Ec. (4.44), asi que el término A1 N; contribuye
insignificantemente (no asi cuando k # 1/3). Méas atn, se puede argumentar que las contribuciones
O(X72) son igualmente insignificante en el punto de empate, de modo que N, _ debe satisfacer la
condiciéon de frontera en infinito, Ny = 1, para la familia de soluciones ¢ = 0 si y solo si M, = 0.
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donde u* es la cuatri-velocidad de la particula. Variando A respecto a la trayectoria de
las particulas obtenemos las ecuaciones de movimiento de la particula,

mu'V,u’ =e F¥ u® | (4.51)

notemos que se trata de la Ley de Lorentz. Ahora, consideremos el campo vectorial
de Killing K del espaciotiempo, entonces se puede mosr que la ecuaciéon de Killing
VK = 0 no implica que u*V ,(K,u”) = 0 como en el caso de las geodésicas, sino que
se satisface que u*V, [K,(mu” + eA”)] = 0 ahora cuando la Ec. (4.51) se utiliza y se
asume que el campo electromagnético es consistente con la simetria asociada a K [35]
(como en el caso de nuestra solucion de agujero de gusano eléctrico) . Esto significa que
las cantidades

K,(mu” +eA") (4.52)

son constantes a lo largo de la linea de mundo de las particulas cargadas. Regresando al
espaciotiempo de agujero de gusano, el campo de Killing tipo tiempo £ y el campo de
Killing axial 1) = 0, implican la existencia de una energia conservada £ := —¢&,(mu” +
eA”) y el momento angular conservado azimutalL := 1, (mu” + eA”), las cuales, en las
coordenadas descritas en la Ec. (4.13) obtenemos & = mN?u! — eV and L = m¥*(n? +
n?) sin® 6 u¥. Puesto que tanto el campo gravitacional como eléctrico son simetricamente
esférico, podemos estudiar el movimiento sobre el plano ecuatorial § = 7 /2 sin pérdida de
generalidad. De este modo, la normalizacion de la cuatri-velocidad nos permite obtener
una ecuacion simple para el movimiento radial:
2 2 2
m2N2p! (ﬁ) +m?N? — (E4+eV)* + N_LE , (4.53)
or Ut 92 4+ np?

cuyas soluciones permiten entender mejor las propiedades de los agujeros de gusano y
sus parametros. Ahora, podemos definir el potencial efectivo U.g como el valor minimo
permitido de £ dado un 7, es decir,

N(n)? L2

. 4.54
V) 2+ (4.54)

Ugt(n) = —eV(n) + \/TTLQN(T])Q +

Dado £ y L, entonces, las regiones permitidas para el movimiento de las particulas estan
dadas por aquellos valores de 7 tales que Ueg(n) < &.

Para ilustrar el movimiento de las particulas alrededor del agujero de gusano cargado,
algunos potenciales efectivos se muestran en la Fig. 4.12. En el panel de la izquierda,
estamos considerando tres espaciotiempos distintos tales que su masa total de Komar es
M >0, M <0y M =0, suponemos que una particula neutra con momento angular
L/m = 0.1 cae dentro del agujero de gusano cuando su masa es positiva, es repelida
cuando la masa es negativa, y contintia con su movimiento en linea recta cuando M = 0,
todo esto, lejos de la garganta. En el panel de la derecho de la Fig. 4.12, consideramos
un agujero de gusano con M = 0 y damos algunos valores para la carga de la particula;
podemos ver que tenemos casos tanto con interaccién electromagnética atractiva como
repulsiva.
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—— wormhole with M < 0 —— particle with e/m < 0
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Figura 4.12: Potencial efectivo Ueg para una particula con momento angular L/m = 0.1.
Panel de la izquierda: Particula neutral moviendose en un agujero de gusano
eléctrico con A = 30 v § = 0.1 hay diferentes valores de w /e tales que la
masa total del espaciotiempo es positiva, cero y negativa (w/u = 0.475,
0.4875 y 0.5 respectivamente). Panel de la derecha: particulas cargadas con
e/m =1, 0, —1 moviéndose en el espaciotiempo del agujero de gusano con
M = 0, igual que en el panel de la izquierda.

4.5. Conclusiones de este capitulo

La energia oscura y la Inflaciéon son dos conceptos actualmente bien aceptados dentro
de la comunidad cientifica para describir, respectivamente, las propiedades del Universo
y su origen. Tanto la energia oscura como la Inflaciéon estarian compuestas por materia
exotica en el sentido de que puede tener regiones del espaciotiempo con densidades de
energia negativa. El modelado de la materia exética es, entonces, de gran interés para
mejorar la comprension del Universo a gran escala y su origen. Dentro de los estudios de
la materia exdtica, los agujeros de gusano representan una configuracion de gran interés
desde que Einstein y Rose propusieron el concepto de puente entre espaciotiempos.
Posteriormente, se han propuesto otras soluciones de agujeros de gusano, siendo todas
ellas al parecer, inestables en el tiempo. Aun falta entender bastante como interacciona
la materia exdtica con otros campos fisicos, como el electromagnético. Estos podrian
jugar algin rol en la naturaleza y estabilidad de la materia exdtica.

En el trabajo presentado en este capitulo [21], hemos derivado y resuelto el sistema de
ecuaciones Einstein-Maxwell-Klein-Gordon para el caso de un campo escalar complejo y
exotico, con término de auto-interacciéon, minimamente acoplado al campo electromag-
nético. Imponiendo condiciones de frontera apropiadas, obtuvimos un espaciotiempo
asintoticamente plano que describe un agujero de gusano con carga eléctrica. Asi, obte-
nemos soluciones con las ya conocidas regiones de densidad positiva cerca de la garganta
y regiones de densidad negativa, permitiendo esto obtener soluciones cuya masa total
es positiva, negativa e igual a cero, dependiendo de los valores de los parametros del
sistema. Obtenemos que la carga eléctrica afecta la morfologia de los agujeros de gusano
y juega un rol importante en la determinaciéon de su masa total y niimero de particulas.
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Ademés, el movimiento de particulas en regiones lejanas a la garganta del agujero de
gusano es diferente dependiendo de la masa total del sistema y su carga.

Nuestro analisis sugiere que, para valores grandes de A, la soluciéon para el campo esca-
lar tiende a un mismo comportamiento. Nos detuvimos en este hecho y fuimos capaces de
obtener expresiones analiticas para el campo escalar que reproducen su comportamien-
to. Comprobamos comparando las soluciones numéricas con las expresiones analiticas,
obteniendo un excelente acuerdo. Esto no permitié entender mejor el rol de los parame-
tros en la determinacion de las propiedades globales de los espaciotiempos de agujero de
gusano cargado, tales como la masa total y el nimero de particulas, en funciéon de los
parametros u, w, q, No«, asi como el potencial eléctrico y los coeficientes métricos eva-
luados en el caso donde A es muy grande. Es interesante notar que la carga y el campo
eléctrico juegan un rol importante no solo en la determinaciéon de la masa total sino que
también modifica las condiciones en las cuales la masa es igual a cero.

Otro hecho que queremos resaltar es que nuestros experimentos numéricos nos per-
miten conjeturar que la carga no puede suplir el rol del pardmetro de autointeraccion,
implicando que atin con carga eléctrica, los agujeros de gusano deben tener un parame-
tro de auto-interaccién no nulo en aras de tener soluciones en equilibrio. Ademés, atn
cuando no se deduce de las ecuaciones la existencia de un valor critico para la carga,
en nuestros experimentos numéricos, si encontramos dificultades al incrementar ¢ por
encima de 0.5, lo cual sugiere la existencia de algun valor critico por encima del cual ya
no hay soluciones de equilibrio.

Finalmente, presentamos el movimiento de particulas tanto cargadas como neutras,
obteniendo un comportamiento en términos de la masa total de las soluciones de agujero
de gusano. En particular, en la regiéon donde la masa total encerrada ya es constante, las
particular siente una atraccion hacia el agujero de gusano si éste tiene masa positiva, se
repele en el caso donde la masa es negativa y, no se afecta su movimiento cuando la masa
total es cero. Las soluciones donde @ # 0y M = 0 son importantes porque significan que
aunque el campo electromagnético contribuye como fuente a las ecuaciones de Einstein,
el sistema completo de ecuaciones (campo electromagnético + campo escalar) es tal que
una particula cargada, lejos de la garganta, podria sentir la presencia del agujero de
gusano, mientras que una particula neutra no.

Mas atn, nos ha sido posible construir soluciones donde ) > M sin que esto implique
la existencia de alguna singularidad desnuda. Las futuras investigaciones sobre el mo-
vimiento geodésico alrededor de los agujeros de gusano eléctrico y su posible distincion
de otros posibles objetos compactos (como por ejemplo hicieron en [182, 183] )) pueden
trabajarse en un futuro trabajo.

Las ideas y procedimiento aqui descrito puede ser adaptado un campo electromagné-
tico mas general incluyendo la construccién de un agujero de gusano magnético. Tales
ideas ya estan en desarrollo por algunos autores de la investigacion presentada en este
capitulo basado en el articulo [21] .
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5 Conclusiones generales

A través de estos capitulos comprendimos y utilizamos distintas herramientas para
el estudio de los campos gravitacionales en condiciones extremas -y no tan extremas-
. Entre las herramientas que utilizamos incluimos a la Fisica Newtoniana, la teoria
electromagnética clasica, la Relatividad General, la teoria de perturbaciones a primer
orden (aproximaciéon cuadrupolar), la Relatividad Numeérica en su actual estado-de-
arte, asi como el estudio de las ondas gravitacionales. Con estas herramientas, durante
mi doctorado investigué algunas configuraciones auto-gravitantes, comenzando por los
sistemas binarios de estrellas de neutrones. Ademaés, exploré la teoria de los campos
escalares complejos para construir estrellas de bosones-¢ y agujeros de gusano. En el
caso de las estrellas de neutrones y de las estrellas de bosones-f, analicé sus ondas
gravitacionales. Al mismo tiempo, durante mis investigaciones exploré la interaccion
entre los campos electromagnéticos y gravitacionales en configuraciones auto-gravitantes
con campos electromagnéticos (particularmente, trabajé con estrellas de neutrones con
campos magnéticos dipolares y agujeros de gusano con campos eléctricos).

En las ultimas décadas, las observaciones astronémicas han explorado regiones cada
vez mas amplias y con mejor resolucion del Universo y han observado miltiples formas
de organizacion de la materia y la energia. Y, aunque la Astronomia ha aportado mu-
cho conocimiento a la humanidad (por ejemplo, sobre la naturaleza de las particulas
elementales, la evolucion de las estrellas y la Cosmologia), también ha abierto muchas
interrogantes y grandes retos para la comunidad de Fisica Teorica. Parece que en nues-
tro Universo no solo existe la materia ordinaria, también existe la materia oscura y muy
probablemente algtin tipo de materia exdtica (de acuerdo a la definicion de la seccion
1.1.3). En esta tesis, estudiamos el efecto gravitacional producido por objetos de los
tres tipos de materia: estrellas de neutrones, compuestas por materia ordinaria, estrellas
de bosones, interpretadas como objetos de materia oscura, y agujeros de gusano com-
puestos por un tipo de materia exotica. Es decir, los resultados obtenidos durante mi
doctorado aportan informacién sobre los campos gravitacionales y su interaccién con los
campos electromagnéticos a través del estudio de objetos como las estrellas de neutrones
magnetizadas y los agujeros de gusano eléctricamente cargados.

Reafirmamos que la Gravedad, atin siendo la interacciéon fundamental mas débil, a
escalas astrofisicas, galdcticas y cosmologicas, rige la dinamica de la materia y energia.
Las ondas gravitacionales contienen informacién sobre las propiedades de la materia y
la energia.

Concretamente, durante mi doctorado colaboré en tres investigaciones, dos de las
cuales ya se encuentran publicadas en revistas internacionales. La primera investigacion
tratd sobre el efecto de los campos magnéticos en las ondas gravitacionales emitidas
durante la coalescencia de dos estrellas de neutrones magnetizadas, en esta investigacion
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soy primera autora y se encuentra publicada en la Revista General Relativity and Gra-
vitation |20] y esta descrita en el capitulo dos. En la segunda investigacion construimos
un agujero de gusano con carga eléctrica, en este trabajo soy segunda autora y puede
consultarse en Physical Review D [21] y en el capitulo cuatro de la presente tesis. La
tercera investigacion, en la que soy primera autora, esté por ser enviada para su publica-
cion, en ella exploramos la deteccion de ondas gravitacionales de estrellas de bosones-¢
en colision frontal (capitulo tres).

Es asi que en el primer capitulo de la presente tesis, es una introduccién a las inves-
tigaciones, colocando en primer lugar el contexto observacional y en segundo lugar, la
Relatividad General como marco teérico comin. En el segundo capitulo, examinamos el
campo gravitacional y electromagnético producido por dos estrellas de neutrones en la
etapa de espiraleo rumbo a su fusion. Demostramos que la interaccién magnética entre
las estrellas de neutrones afecta tanto la luminosidad gravitacional como la forma de
las ondas gravitacionales durante el espiraleo, esto porque la dindmica de la binaria (su
periodo orbital y radio) depende de la magnitud de los campos magnéticos. Restringimos
nuestro estudio al caso de drbitas circulares, argumentando que es bien sabido el proceso
de circularizacion de las 6rbitas en este tipo de sistemas. Asi, encontramos que cuando
los dipolos magnéticos se atraen entre si, el tiempo de fusién es mas corto en compara-
cion con el caso sin interaccion magnético. En cambio, cuando los dipolos magnéticos se
repelen, este tiempo se alarga. En el primer caso, el potencial magnético tiene el mismo
signo que el potencial gravitacional, por lo que se suman sus efectos haciendo mas rapida
la fusion de las estrellas. Sin embargo, también encontramos que el efecto magnético,
atn en los casos extremos de magnetares con B ~ 10'® G, genera una correccién muy
pequena, del orden de 10~* en variables como la frecuencia y la amplitud de las ondas
gravitacionales y del orden de 1072 en la luminosidad gravitacional. Concluimos que la
cantidad de energia que transportan las ondas gravitacionales depende de la naturaleza
de la fuente y que detectores mas sensibles seran capaces de ver la huella de los campos
magnéticos en la forma de las ondas gravitacionales. Hicimos predicciones sobre el efecto
de los campos magnéticos de las estrellas de neutrones binarias en la emisiéon de ondas
gravitacionales y comprobamos que conforme la sensitividad de los detectores incremen-
te, serd posible poner cotas més precisas sobre la natureleza magnética de las estrellas
de neutrones.

En el capitulo tres, analizamos las ondas gravitacionales generadas en la colision fron-
tal de estrellas de bosones-£. Este tipo de estrellas de bosones estan descritas por campos
escalares complejos, y, aunque su existencia no ha sido confirmada, son interesantes can-
didatas a ser configuraciones autogravitantes de materia oscura formada por particulas
bosoénicas de masa intrinseca mg y parametro angular . En nuestro trabajo, estudiamos
qué valores de masa intrinseca deberia tener el campo escalar para conformar estrellas
de bosones-¢ de escalas astrofisicas y emitir ondas gravitacionales con frecuencias y am-
plitudes dentro del rango de deteccion de las actuales y proximas observaciones de la
colaboracion LIGO-Virgo-Kagra. Encontramos que mientras mas ligero es el campo es-
calar, mas energia transportan las ondas gravitacionales y mayor es su amplitud, aunque
menos es su frecuencia pico. A compacidad constante, no encontramos relaciones genera-
les entre las propiedades de las senales producidas por estrellas de bosones ¢ # 0 respecto
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a colisiones de estrellas de bosones con ¢ = 0. Concluimos que si la energia intrinseca del
campo escalar que conforma a las estrellas de bosones-¢ fuese entre 1074 — 1071 eV y
estuviesen localizadas a 100 Mpc, al chocar frontalmente podrian ser detectectadas por
los interferémetros actualmente en funcionamiento.

En el capitulo cuatro, demostramos que la carga eléctrica puede acoplarse a la ma-
teria exoOtica para conformar un agujero de gusano cargado descrito por el sistema de
ecuaciones Einstein-Maxwell-Klein-Gordon. En esta interpretacion, la materia exoética
esta representada por un campo escalar complejo con pardmetro de auto-interaccion.
Encontramos que las relaciones entre las cantidades globales que describen a los agu-
jeros de gusano sin carga son cualitativamente similares a los agujeros de gusano con
carga. Sin embargo, también encontramos que la carga juega un rol determinante en el
valor de la masa total, el radio de garganta y el niimero de particulas. La carga eléctrica
afecta el tamano de la garganta del agujero de gusano haciéndola més grande confor-
me se incrementa la carga. Lo mismo ocurre con el nimero de particulas. Otro aporte
de esta investigacion fue que encontramos una soluciéon analitica para el campo escalar
complejo en el régimen de grandes valores del parametro de auto-interaccion, que aplica
tanto para el agujero de gusano sin carga eléctrica como el caso con carga eléctrica. La
soluciéon analitica coincide bastante bien con las soluciones numeéricas con A, probando
asi la validez del método de integracion utilizado para resolver el sistema de ecuaciones.
Por otro lado, al estudiar el movimiento geodésico de particulas prueba cargadas y/o
neutras en la vecindad de dicho agujero de gusano, nos encontramos que el hoyo de gu-
sano, aun sin carga eléctrica, puede tener una masa asintotica tal que éste sea positiva,
cero o inclusive negativa; la carga tiene el efecto de modificar la frecuencia a la cual la
masa asintotica del hoyo de gusano sea cero. Estudiamos con detalle el movimiento geo-
désico mencionado y, efectivamente, hay particulas que lejos no sentirian ningin efecto
gravitacional y otras que sentirian sélo un efecto electromagnético. Esto podria tener
consecuencias observacionales.

Durante décadas se ha planteado la posibilidad de extender el paradigma actual de
la cosmologia y la fisica y se han buscado en experimentos de colisiones més particulas
elementales, sin embargo, siguen sin detectarse. Esto ha dado pie a que otros modelos
se planteen para explicar la naturaleza del sector oscuro del universo. Las capacidades
computacionales estan permitiendo explorar otras posibles configuraciones de la materia
y la energia.

En estos tiempos, podria pensarse que la Astronomia y Fisica estan en crisis al saber
muy poco sobre la mayoria del Universo, no obstante, son tiempos muy interesantes
porque hay muchas herramientas y colaboraciones cientificas que estan trabajando y
avanzando rapidamente en todas las posibilidades teéricas y sus implicaciones observa-
cionales, para asi ir descartando soluciones a las ecuaciones de la dinamica de la materia
y la energia, y quedarnos con aquellas configuraciones auto-gravitantes de distintos ti-
pos de materia, sea ésta ordinaria, oscura o exdtica, que si existen en nuestro Universo.
A través del anéalisis de ondas gravitacionales es posible descartar, acotar o reafirmar
modelos sobre las fuentes. A casi una década de la primera deteccion de ondas gravi-
tacionales, ya no podemos decir que las ondas gravitacionales son una nueva ventana
para comprender el Universo, més bien, son una herramienta en completo desarrollo
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5 Conclusiones generales

y auge que seguird aportando informacién sorprendente sobre los objetos y fenémenos
del Universo. El actual esquema tedrico de la Fisica Contemporanea es un compendio
de teorias y modelos con preguntas abiertas pero que en lo general es una muy buena
aproximacion a la realidad.
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