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Resumen

La interacción gravitacional interviene en los procesos más energéticos del Universo y
es el mecanismo con el cual es posible analizar a la materia oscura y a la energía oscura,
las dos contituyentes del Universo que juntas suman el 96% de la densidad total de
materia-energía. Las observacionales apuntan a que el 22% del contenido de materia-
energía del Universo corresponde a materia oscura y el 74% a la energía oscura y el 4%
restante corresponde a la materia ordinaria que constituye a las estrellas, planetas, gas
interestelar, la radiación electromagnética y neutrinos. Se ha explorado la posibilidad de
que la materia oscura y la energía oscura estén compuestas por partículas elementales
o campos aún no observados. Para resolver el enigma, es necesario ampliar los modelos
teóricos considerando las observaciones astronómicas y cosmológicas para acotar la res-
puesta correcta. Por otro lado, la detección de ondas gravitacionales y el modelado de
fuentes confirmadas e hipotéticas, promete ayudar a discernir entre modelos.

En esta tesis presentamos resultados nuevos sobre la naturaleza de los campos gravi-
tacionales producidos por tres tipos de objetos compactos: las estrellas de neutrones, las
estrellas de bosones y los agujeros de gusano. Las estrellas de neutrones, son ejemplos
de configuraciones de materia usual que conocemos, las estrellas de bosones lo son de
la materia oscura y los agujeros de gusano son ejemplo de configuraciones formadas por
materia exótica. Utilizamos las ondas gravitacionales como herramienta para compren-
der la naturaleza de los sistemas astrofísicos.

De éste modo, presentamos inicialmente el modelo de un sistema binario de objetos
compactos como las estrellas de neutrones, pero en el que incorporamos a los campos
magnéticos en la dinámica de la binaria durante la fase de espireleo y en la emisión
de ondas gravitacionales. Demostramos que los campos magnéticos afectan la forma de
las ondas gravitacionales aunque de manera imperceptible para la sensitividad de los
actuales detectores de ondas gravitacionales. Obtenemos fórmulas explícitas para el de-
crecimiento en la separación de las estrellas, el tiempo para alcanzar un radio mínimo, la
luminosidad gravitacional, la tasa de cambio de la frecuencia de las ondas gravitaciona-
les, así como su amplitud, todo esto dentro de la aproximación cuadrupolar. Analizamos
casos de campos magnéticos muy intensos ∼ 1016 G, y mostramos que el efecto sobre
las cantidades observables es en orden de magnitud similar a las correcciones a segundo
orden de la aproximación PostNewtoniana, aún por fuera del rango de sensitividad de los
observatorios de ondas gravitacionales. Este trabajo aporta comprensión sobre el efecto
de los campos magnéticos en las ondas gravitacionales, y, demuestra que éstos no deben
ser despreciados en las futuras simulaciones de la colisión de las estrellas de neutrones
debido a que en un futuro muy cercano, la sensitividad permitirá estudiar los efectos de
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los campos magnéticos en la forma de las ondas gravitacionales.

Una vez entendida la dinámica de un sistema binario compuesto de materia ordinaria
y su emisión de ondas gravitacionales en el régimen lineal, pasamos a considerar un sis-
tema binario de estrellas de bosones-ℓ, conformadas por campos escalares complejos. Lo
hacemos analizando configuraciones estables de tipo materia oscura llamadas estrellas
de bosones-ℓ. Nos enfocamos en entender las propiedades intrínsecas que deber tener el
campo escalar complejo para formar estrellas de bosones-ℓ que al chocar frontalmente,
emitan ondas gravitacionales con frecuencias y amplitudes dentro del rango de sensi-
tividad de los observatorios actuales de ondas gravitacionales. Encontramos relaciones
cualitativas entre la masa intrínseca del campo escalar y el tamaño, duración y forma
de las ondas gravitacionales generadas. El parámetro ℓ modifica la masa de la binaria
y, por tanto, la forma de las ondas gravitacionales entre binarias ℓ = 0 y ℓ ̸= 0 también
difiere. Sin embargo, la comparación entre señales ℓ = 0 y ℓ ̸= 0 requiere considerar
muchos más modelos de fuentes dentro de todo el rango de compacidades posibles. Mos-
tramos de éste modo que las estrellas de bosones podrían ser detectadas por la emisión
gravitacional durante una colisión, lo cual podría ser un paso importante para describir
a la naturaleza de la materia oscura.

Finalmente, analizamos un tipo de materia distinto: materia exótica. Luego del des-
cubrimiento de la expansión acelerada del Universo, este tipo de materia está tomando
mayor interés. Construimos una nueva solución numérica de las ecuaciones de Einstein-
Maxwell-Klein-Gordon de agujero de gusano eléctrico, formado por un campo escalar
complejo acoplado a un campo eléctrico. Analizamos sistematicamente el efecto de dis-
tintos parámetros como la auto-interacción del potencial escalar y la carga eléctrica.
Encontramos expresiones aproximadas para el campo escalar y la masa del agujero de
gusano en el regimen de grandes valores del parámetro de auto-interacción. Mostramos
un acuerdo excelente entre las expresiones aproximadas y las soluciones numéricas. Ade-
más, estudiamos el efecto de la carga sobre la masa, el número de partículas y el radio
de la garganta del agujero de gusano. Cerramos esta parte con el análisis del movimiento
geodésico de partículas con y sin carga señalando que éste sería un paso en la dirección
de detectar agujeros de gusano.

En conjunto, presentamos soluciones a las ecuaciones de Relatividad General de gran
interés porque se trata de propuestas de objetos compuestos por distintos tipos de mate-
ria, lo cual nos puede ayudar a comprender no sólo la naturaleza de la materia ordinaria
y su interacción con los campos electromagnéticos, sino también la naturaleza del 96%
del contenido de materia y energía del Universo: la materia y la energía oscura y la
posiblidad de que éstas formen configuraciones autogravitantes.

Palabras clave: Relatividad General, Ondas Gravitacionales, Objetos Compactos,
Campo Escalar, Materia oscura, Materia exótica.
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1 Introducción

Relatividad General (RG) proporciona la base teórica más sólida y precisa a la fecha
para describir los campos gravitacionales [1, 2], además, predice la existencia de las
ondas gravitacionales [3]. Las ondas gravitacionales son una herramienta que promete
aportar respuestas a enigmas como la naturaleza interior de las estrellas de neutrones,
la colisión de sistemas binarios y el descubrimiento de objetos compactos y/o auto-
gravitantes[4, 5]. Además, con ondas gravitacionales se prevé avanzar en la comprensión
de la Física fundamental a densidades nucleares y probar rigurosamente la teoría de RG
en el régimen de campo fuerte[6].

Si bien los agujeros negros estelares y las estrellas de neutrones son fuentes confirmadas
de ondas gravitacionales[7, 8, 9], aún hay preguntas sin resolver sobre ellos. Respecto a
las estrellas de neutrones, aspectos como su nacimiento, su ecuación de estado y la fuente
de sus campos magnéticos, son temas vigentes de investigación [10, 11]. Además, aunque
existen muchos observatorios de ondas electromagnéticas, puede ser que existan objetos
astrofísicos, que por sus propiedades intrínsecas no emitan ondas electromagnéticas, pero
sí ondas gravitacionales. Esta posibilidad ha sido explorada de forma casi sistemática, de
modo que a día de hoy existe toda una variedad de objetos auto-gravitantes hipotéticos
[12, 13]. Quizás el más plausible es la estrella de bosones [14, 15, 16], se trata de una
solución a las ecuaciones de RG acopladas a un campo escalar complejo que pueden
interpretarse como objetos de materia oscura cuyas compacidades típicas son compa-
rables a la compacidad de las estrellas de neutrones. Existen otras soluciones teóricas
más exóticas, también de campo escalar complejo, como los agujeros de gusano[17, 18],
aunque estos estarían formados de materia exótica, en el sentido definido en la sec. 1.1.3.

Las tres investigaciones en las que colaboré durante mi doctorado, y que serán descri-
tas en los capítulos dos [19, 20], tres y cuatro [21], respectivamente, descansan sobre la
teoría de RG. En dos de las tres investigaciones trabajamos con las ondas gravitacionales
emitidas por la interacción de sistemas binarios. También, en una de las tres investiga-
ción estudiamos estrellas de neutrones (capítulo dos), y, en las otras dos investigaciones
trabajamos con configuraciones auto-gravitantes formadas de campos escalares comple-
jos, a saber, estrellas de bosones (capítulo tres) y agujeros de gusano (capítulo cuatro),
respectivamente.

En este capítulo introductorio, en la sección 1.1 se revisan los fundamentos de RG
desde su formulación, incluyendo el formalismo de la aproximación cuadrupolar y el for-
malismo Newman-Penrose. Posteriormente, en la sección 1.2 hacemos un breve recuento
histórico sobre los descubrimientos astronómicos de las ondas gravitacionales, la materia
oscura y la energía oscura. En la sección 1.3 introducimos el concepto de configuraciones
auto-gravitantes y dentro de ellas describimos los agujeros negros, las estrellas de neu-
trones, las estrellas de bosones y los agujeros de gusano, pues serán considerados en los

1



1 Introducción

subsecuentes capítulos. Finalmente, en la sección 1.4 describimos la organización general
del resto de la presente tesis.

En toda la tesis trabajamos con signatura (−,+,+,+). También, a lo largo de la tesis
utilizamos las siguientes constantes universales: Gravitación universal G = 6, 67384 ×
10−11m3kg−1s−2 = 1, 327× 1011M−1

⊙ km3s−2, a excepción del capítulo cuatro donde uti-
lizamos unidades geometrizadas.

1.1. Relatividad General

RG [22, 23, 24], formulada en 1916 [25, 26], es una herramienta teórica vigente pa-
ra el estudio de los campos gravitacionales. En el caso de los fenómenos astrofísicos y
cosmológicos, la interacción gravitacional juega un rol fundamental, por ejemplo, deter-
mina completamente la estructura a gran escala del Universo y la dinámica estelar y
galáctica[2, 1]; esto ocurre por sus particularidades que la diferencian de las otras inter-
acciones fundamentales1: es de largo alcance, siempre es atractiva, y, es universal, pues
actúa sobre todas las formas de materia y energía. RG, junto a la Mecánica Cuántica, es
uno de los cimientos más solidos y estables de la Física[27]. Para una revisión completa
del tema puede consultarse [22, 24, 23, 5, 28].

A nivel matemático, RG se desarrolla sobre una variedad diferenciable de 4 dimen-
siones dotada de una métrica gab que contiene toda la información geométrica del espa-
ciotiempo. El elemento de línea ds2 es un invariante que se utiliza para determinar la
separación entre puntos del espaciotiempo y está dado por,

ds2 = gabdx
adxb. (1.1)

La métrica gab depende de la distribución de materia y energía, y para conocer las
componentes de la métrica se deben resolver las ecuaciones de campo de RG, como más
adelante veremos. Dada una métrica, se construyen los símbolos de Christoffel2:

Γc
ab =

1

2
gcd
(
∂gbd
∂xa

+
∂gad
∂xb

− ∂gba
∂xd

)
, (1.2)

los cuales son necesarios para mantener la covarianza de las ecuaciones tensoriales dife-
renciales. Con los símbolos de Christoffel, se construye el tensor de Riemman Ra

cbd y el
tensor de Ricci Rab :

Ra
cbd = ∂bΓ

a
cd − ∂dΓ

a
cb + Γa

ebΓ
e
cd − Γa

edΓ
e
cb, (1.3)

Rab ≡ Rc
acb = ∂cΓ

c
ab − ∂bΓ

c
ac + Γc

abΓ
d
cd − Γd

acΓ
c
bd, (1.4)

1Se considera que hay cuatro interacciones fundamentales: la interacción electromagnética, gravitacio-
nal, nuclear fuerte y nuclear débil. Dependiendo de la escala física del proceso, puede predominar
una u otra [1].

2Los símbolos de Christoffel se determinan una vez dadas las coordenadas locales. Satisfacen las condi-
ciones de una conexión de Levi-Civita, es decir, preservan la métrica y son libres de torsión [22, 29].
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1.1 Relatividad General

con ∂a := ∂/∂xa. El escalar de Ricci R se define como la contracción del tensor de Ricci
con el tensor métrico:

R ≡ gabRab, (1.5)

el escalar de Ricci es el invariante que cuantifica la curvatura del espaciotiempo local
en un punto dado y depende de las segundas derivadas del tensor métrico. La densidad
lagrangiana del campo gravitacional depende directamente del escalar de curvatura R
del espaciotiempo:

LG =
c4

16πG
R, (1.6)

donde c es la velocidad de la luz en el vacío y G es la constante gravitacional universal.
El tensor métrico gab se acopla universal y mínimamente a todos los campos funda-

mentales presentes, englobados en la función lagrangiana LM, mediante la acción total
S:

S ≡
∫ √

|g|L d4x =

∫ √
|g|
[
c4R
16πG

+ LM

]
d4x, (1.7)

donde g = det(gab) es el determinante de la métrica gab, d4x = cdtd3x y L es la lagran-
giana total del sistema dada por

L ≡ LG + LM =
c4R
16πG

+ LM. (1.8)

La función lagrangiana LM puede incluir campos electromagnéticos Aa, campos fer-
miónicos y bosónicos ψ, el campo de Higgs H y en general campos escalares y vectoriales
hipotéticos [1]. A manera de ejemplo y anticipando su definición que será empleada en
el capítulo cuatro, la función lagrangiana del campo electromagnético es [22, 29],

LEM = −1

4
FabF

ab, (1.9)

donde Fab = ∂aAb−∂bAa es el tensor de Faraday, el campo eléctrico F 0i = Ei y el campo
magnético F ij = ϵijkBk .

Bajo el principio variacional aplicado a la acción de la Ec.(1.7) se deducen las ecuacio-
nes dinámicas del espaciotiempo y los campos físicos presentes. El principio plantea que
el sistema cambia en el tiempo de modo que la trayectoria seguida entre dos puntos del
espaciotiempo es aquella cuya acción es estacionaria (mínima o máxima en comparación
con trayectorias vecinas), es decir,

δS = 0. (1.10)

Luego de calcular la variación de la acción respecto al campo gravitacional, se obtienen
las ecuaciones de RG en la forma:

Rab −
1

2
gabR =

8πG

c4
Tab, con (1.11)

Tab ≡ δLM/δg
ab, (1.12)

3



1 Introducción

donde Rab es el tensor de Ricci dado en la Ec.(1.4), gab es la representación matemá-
tica del espaciotiempo: la métrica, R es el escalar de Ricci de la Ec.(1.5), Tab recibe
el nombre de tensor de energía-momento o tensor de materia-energía, y, como vemos,
depende totalmente de la métrica y los campos físicos en la función lagrangiana LM .
Las ecuaciones de campo (1.11) determinan el efecto de la curvatura del espaciotiempo
sobre el movimiento de la materia y la energía, e inversamente, la manera en que la
materia y la energía afectan la curvatura del espaciotiempo. Aunque está escrita en una
línea, se trata de un sistema de ecuaciones diferenciales, acopladas y no lineales por lo
que resolverlas no es trivial. Existen pocas soluciones exactas de interés físico a dichas
ecuaciones, en muchos otros casos se consideran soluciones aproximadas y numéricas.

1.1.1. Aproximación Cuadrupolar

Una manera de estudiar las ecuaciones de campo es trabajar en el regimen lineal de
RG, el cual consiste en expandir la métrica alrededor del espaciotiempo plano, es decir,

gab = ηab + hab, |hab| ≪ 1, (1.13)

donde ηab es el espaciotiempo de Minkowki plano ηab ≡ diag(−1, 1, 1, 1) y hab es una
pequeña perturbación a la métrica plana. Al sustituir esta métrica en las ecuaciones de
campo (1.11) se llega a la ecuación de onda

□h̄ab = −16πG

c4
Tab , (1.14)

donde □ = −1(1/c2)∂20 + ∇2, la amplitud libre de traza h̄ab se define como h̄ab ≡
hab − ηabh/2, siendo h = haa la amplitud libre de traza en la norma de Lorentz defini-
da por ∂bh̄ab = 0. En esta expresión, Tab es el tensor de la materia-energía, denotada
como fuente. Como vemos, h̄ab satisface la ecuación de onda, h̄ab es la parte del campo
gravitacional que se comporta como onda, es por ello que se interpreta como las ondas
gravitacionales. En el vacío, las perturbaciones métricas se propagan como fluctuaciones
distorsionando la planitud del espaciotiempo.

La solución general a la ecuación de onda es

h̄ab(t,x) =
4G

c4

∫
d3 x′

1

|x− x′|Tab
(
t− |x− x′|

c
,x′
)
, (1.15)

donde el tensor de energía materia está evaluada al tiempo retardado definido como tret ≡
t− |x−x′|

c
. Fuera de la fuente, la solución se puede simplificar en la norma TT utilizando

que h̄TT
ij = Λij,klh̄kl = Λij,klh̄kl (la matriz Λa

b satisface por definición que Λc
aΛb

dηcd = ηab),
y, la conservación del tensor energía-momento para expresar las componentes T0k y T00
en términos de las componentes espaciales Tkl, de modo que:

h̄TT
ij (t,x) =

4G

c4
Λij,kl

∫
d3 x′

1

|x− x′|Tkl
(
t− |x− x′|

c
,x′
)
, (1.16)
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1.1 Relatividad General

donde usamos la notación x̂ = n̂ y |x| = d . Ahora bien, la aproximación cuadrupolar es
un caso particular dentro del régimen lineal que añade las siguientes suposiciones [30]:

que la distancia a la fuente respecto al tamaño de la fuente es mucho más grande.
Si denotamos R el radio típico de la fuente, bajo la suposición de fuente lejana
dˇR, a un tiempo fijo el término del denominador se expande como: |x − x′| =
r − x′ · n̂+O (R2/d) ∼ r, lo cual simplifica la integral en la Ec.(1.15).

que la fuente es no relativista. Esta condición se expresa como λˇR, donde λ =
c/ω, siendo ω la frecuencia típica del movimiento dentro de la fuente. Bajo esta
condición, el tensor de materia-energía se simplifica.

que las longitudes de las ondas gravitacionales son mucho más grandes que el
tamaño característico de la fuente (aproximación de onda larga). Esta condición
se ocupa cuando la curvatura del espaciotiempo está determinada por la materia.

Bajo estas condiciones, se efectúa una expansión multipolar de las ondas gravitacio-
nales en el espacio de Fourier, y se encuentra que a primer orden la ec.(1.16) se reduce
a:

hTT
ij (t,x) =

1

d

4G

c4
Λij,kl(n̂)

∫
d3xT kl

(
t− |x− x′|

c
,x′
)

(1.17)

=
1

d

2G

c4
Λij,kl(n̂)M̈

kl (t− r/c) (1.18)

donde M ij ≡
∫
d3xT 00(t,x)xixj es conocido como segundo momento de masa (o tensor

cuadrupolar simétrico) y satisface, por principios de conservación de masa y energía
(∂0T 00 = −∂iT 0i) que M̈ ij = 2

∫
d3T ij(t,x).

Sin pérdida de generalidad, en un sistema de referencia donde n̂ = ẑ , es decir, las
ondas gravitacionales se propagan en la dirección z, tenemos que

Λij,klM̈kl =

(M̈xx − M̈yy)/2 M̈xy 0

M̈yx −(M̈xx − M̈yy)/2 0
0 0 0

 , (1.19)

de manera que la solución de la Ec. (1.14) se puede expresar en términos de unicamente
dos amplitudes de polarización denotadas h+ y h× dadas por,

h+(t) =
1

d

G

c4

(
M̈xx(tret)− M̈yy(tret)

)
, h×(t) =

2

d

G

c4
M̈xy(tret) . (1.20)

La energía por unidad de tiempo transportada en las ondas gravitacionales recibe
el nombre de luminosidad gravitacional, dEOG/dt ≡ LG. El cambio en la luminosidad
gravitacional por unidad de ángulo sólido se relaciona con las amplitudes de polarización
como sigue:

dLG

dΩ
=

r2c3

16πG
⟨ḣ2+ + ḣ2×⟩, (1.21)
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1 Introducción

los corchetes ⟨⟩ representan el promedio temporal sobre varios periodos de las ondas
gravitacionales3.

Luego de un tratamiento cuidadoso aprovechando todas las condiciones de la apro-
ximación cuadrupolar, al insertar la Ec. (1.20) en la Ec. (1.21) y efectuar la integral
angular, se encuentra que la luminosidad total es

LG =
G

5c5

〈 ...
M ij

...
M ij −

1

3
(
...
Mkk)

2

〉
, (1.22)

esta expresión es conocida como la fórmula cuadrupolar, fue derivada por primera vez
en 1918 por Einstein [3]; en la actualidad es una primera aproximación confiable para
estimar la luminosidad de las ondas gravitacionales. Para una revisión a detalle de la
aproximación cuadrupolar puede consultarse [4, 5, 29, 22].

La fórmula cuadrupolar permite ver que cualquier objeto con masa acelerado emite
ondas gravitacionales. Por ejemplo,un objeto en rotación cuyo eje de simetría y eje
rotacional no coinciden emite ondas gravitacionales. En tal caso emite una luminosidad
descrita por [31]

LGR
=

32GI2ϵ2Ω6

5c5
, (1.23)

donde ϵ es la elipticidad del objeto definida como ϵ ≡ (I1 − I2)/I3, In son los principales
momentos de inercia (n = 1, 2, 3). En cambio, un sistema binario de masas individuales
M1, M2 en el regimen lineal emite una luminosidad dada por [30]

LGSB
=

32GMµ3

5c5r3
(1.24)

donde M = M1 +M2, µ = M1M2/M , y, r es la distancia entre las masas M1 y M2.
Esta expresión será generalizada en el capítulo siguiente para un sistema binario con
interacción magnética dipolar. En la Sec.1.2.2, se continúa la discusión de las ondas
gravitacionales en torno a las detecciones directas recientes.

1.1.2. Formalismo Newman-Penrose

Volvamos a las ecuaciones relativistas (1.11), éstas son muy complejas, pero bajo
distintas suposiciones, pueden representarse de modos más entendibles. No hay un for-
malismo mejor que otro, más bien, hay formalismos más convenientes dependiendo del
sistema o problema.

Para el estudio de ondas gravitacionales resulta conveniente introducir el formalismo
de Newman-Penrose donde la idea básica es estudiar la radiación a lo largo de geodésicas

3Al realizar la operación de promedio, se presupone que las fluctuaciones hab se distinguen claramente
del espaciotiempo de fondo y es posible identificar periodos en la fluctuación. Lo periodos de una
señal numérica se pueden identificar con análisis espectral.

6



1.1 Relatividad General

nulas4 con dirección hacia el infinito, simplificando las ecuaciones. La expresión hacia el
infinito se refiere a que las ondas gravitacionales se propagan alejándose de la fuente,
tan lejos como el infinito.

La tetrada nula compleja es una base del espaciotiempo que consiste en dos vectores
nulos reales ℓ, n y dos vectores nulos conjugados complejos m, m̄, de modo que la
tetrada es:

{ea} = (ℓ, n, m, m̄) (1.25)

y satisface condiciones de normalización y ortogonalidad:

−ℓ · n = 1 = m · m̄, (1.26)

todos los demás productos punto son idénticamente cero. Por otra parte, la métrica
se expresa como,

gab = lanb + lbna −mam̄b −mbm̄a, (1.27)

Las ondas gravitacionales se mueven a la velocidad de la luz, la tetrada nula son las
direcciones fundamentales sobre las que las ondas gravitacionales se mueven [32, 33].

El tensor de Weyl Cabcd contiene información sobre la curvatura del espaciotiempo y
las ondas gravitacionales. El tensor de Riemman puede descomponerse como,

Rabcd = Cabcd + ga[cSd]b − gb[cSd]a, (1.28)

donde
Sab := Rab −

1

6
Rgab, (1.29)

es conocido como el tensor de Shouten. En el vacío, las ecuaciones de campo se reducen
a Rab = 0, por lo que el tensor de Shouten es igual a cero y el tensor de Weyl Cabcd es
idéntico al tensor de Riemann Rabcd.

De acuerdo al teorema de Peeling [33, 23], un componente del tensor de Weyl decae
como 1/r conforme se aleja de la fuente, y es identificado como la radiación gravitacional
saliente. El componente es justamente el escalar Newman-Penrose Ψ4, definido como,

Ψ4 ≡ −Cαβγδn
αm̄βnγm̄δ. (1.30)

En las simulaciones numéricas de ondas gravitacionales es usual extraer las señales
numéricas en términos de la cantidad Ψ4, como veremos en el capítulo tres.

El formalismo Newman-Penrose (NP) y el teorema de Peeling permiten estudiar la
estructura asintótica del espaciotiempo, por lo que es particularmente importante para
el estudio de ondas gravitacionales, como se mostrará en el capítulo tres.

4La geodésica es la trayectoria que sigue una partícula libre que no está sujeta a ninguna fuerza
externa. En particular, la geodésica nula representa la trayectoria seguida por un haz de luz, es
decir, a una partícula moviéndose a la velocidad de la luz. Dado que las ondas gravitacionales
también se mueven a la velocidad de la luz, la tetrada nula son las direcciones fundamentales donde
la radiación se mueve.
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1.1.3. Condiciones de energía y materia exótica

Las ecuaciones de campo de RG se estudiaron inicialmente bajo condiciones física-
mente lógicas tomando en cuenta las observaciones astronómicas hasta el momento, a
saber, que la Gravedad es siempre atractiva y que la densidad de la materia-energía
es positiva. Estas condiciones, más que leyes o principios fundamentales, se deben en-
tender como condiciones fenomenológicas para explicar las propiedades de la materia
observada[34, 35, 36, 37].

Condición de convergencia temporal: También llamada TCC por sus siglas en
inglés. Establece que la Gravedad siempre es atractiva, es decir,

RabV
aV b ≥ 0 , (1.31)

donde V a es cualquier vector temporal, implica, por ejemplo, que dos observadores en
caida libre, conforme pase el tiempo, se irán acercando entre sí.

Condición de energía fuerte: También conocida SEC por sus siglas en inglés.
Al sustituir las ecuaciones de campo de RG en la condición de convergencia temporal
obtenemos la condición de energía fuerte:(

Tab −
1

2
T gab

)
V aV b ≥ 0. (1.32)

La condición de energía fuerte significa que, independientemente del marco de refe-
rencia, la densidad de energía debe propagarse causalmente y ser cero o positiva.

Condición de energía débil: La densidad de energía medida por cualquier obser-
vador es no negativa:

TabV
aV b ≥ 0. (1.33)

La condición de energía débil aplicada a vectores V a nulos, se conoce como condición de
energía nula.

Condición de energía nula: Se deben satisfacer las condiciones de energía fuerte y
energía débil en el límite de los observadores nulos:

Tabk
akb ≥ 0, (1.34)

donde ka es un vector nulo. El producto punto escalar de un vector nulo consigo mismo
es igual a cero.

En la presente tesis, la materia exótica se define como aquella que viola la condición de
energía fuerte. Este concepto está en acuerdo con distintos autores como [18, 38, 39, 21].

En la siguiente sección 1.2 profundizaremos sobre el modelo ΛMOF y el concepto
de materia oscura y energía oscura. Por ahora, solo mencionaremos que, de acuerdo a
éste, la expansión acelerada del universo es producida por un término llamado constante
cosmológica Λ ó energía oscura que se puede modelar como un fluido perfecto de la
forma: Tab = diag(ρ,−p,−p,−p), siendo ρ > 0 la densidad de energía y p la presión.
Las observaciones cosmológicas son congruentes con una ecuación de estado p(ρ) = −ρ
para la energía oscura. Si evaluamos esto del lado izquierdo de la Ec.(1.32) llegamos
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a que
(
Tab − 1

2
T gab

)
V aV b = (ρ+ 3p) = −2ρ, sin embargo, dado que la densidad ρ es

positiva, el término −2ρ es negativo, lo que significa que la energía oscura no satisface
la condición fuerte de energía (SEC).

Así que, de acuerdo a la definición de materia exótica recién presentada, la energía
oscura es un tipo de materia exótica. Cabe aclarar que la energía oscura no viola nin-
gún principio fundamental de la conservación de energía y satisface las condiciones de
conservación locales de la materia-energía en RG, pero su comportamiento conduce a
una violación de la condición de energía fuerte. Dado que la energía oscura parece violar
una de las condiciones de energía tradicionales, investigar teorías que permitan tales
violaciones podría ser crucial para avanzar en nuestra comprensión de qué es la energía
oscura.

Por otra parte, algunos tipos de agujeros de gusano violan tanto la condición de energía
fuerte como la condición de energía nula. En ese sentido, aunque la energía oscura es
exótica, objetos como ciertos agujeros de gusano aún más exóticos, han sido considerados
en la literatura reciente [17, 18]. Es interesante que aún cuando estas soluciones no
satisfacen las condiciones de energía, poseen masas y tamaños finitos . Curiosamente,
algunos agujeros de gusano pueden tener masas negativas [17, 40], como veremos en el
capítulo cuatro [40, 21].

En la Sec.1.3 revisaremos las investigaciones sobre agujeros de gusano, y, en el capítulo
cuatro trabajaremos una configuración auto-gravitante de materia exótica: un agujero
de gusano con carga eléctrica formada por un campo escalar complejo, resultados que
ya se encuentran disponibles en [21] .

1.2. Contexto empírico

RG predice que la luz se curva por efecto de objetos muy masivos, por ejemplo, la
luz al pasar cerca del Sol. Este efecto recibe el nombre de lente gravitacional y fue
comprobado por primera vez en el eclipse solar en 1919 mediante la observación de la
luz de las estrellas localizadas cerca del borde del Sol. Las mediciones de las expediciones
astronómicas encabezadas por Sir Arthur Eddington y Frank Dyson mostraron que la
posición aparente de las estrellas se desplazaba. La observación de 1919 proporcionó un
argumento a favor de la teoría de RG [41]. Además,los principios de RG han pasado todas
las pruebas de precisión a la fecha, por ejemplo, el principio de equivalencia mediante
el experimento de Eotvos[42], y, pruebas en el régimen de campo débil de alta precisión
como la deflexión de la luz [43], el avance del perihelio de Mercurio[41], entre otros. Para
una revisión reciente de las pruebas experimentales a RG puede consultarse [6].

A continuación examinaremos el contexto empírico de tres conceptos que se entienden
dentro de RG: la materia oscura, la energía oscura y las ondas gravitacionales.

1.2.1. Materia oscura y energía oscura

El descubrimiento de la materia oscura y la energía oscura son hallazgos que han re-
volucionado nuestra comprensión del cosmos. Es así que en un siglo hemos pasado de
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una visión limitada de la Vía Láctea como el universo entero a una imagen amplia y
dinámica de un universo en expansión acelerada, impulsado por componentes como la
materia oscura y la energía oscura. Los avances en astronomía y cosmología del último
siglo han transformado radicalmente la comprensión del tamaño y composición del uni-
verso [44, 2, 29]. Ahora sabemos que las galaxias se agrupan en cúmulos de galaxias y
supercúmulos y que a gran escala, la estructura del universo está formada por regiones de
sobre-densidad de galaxias unidas por filamentos y separadas por huecos prácticamente
vacíos.

Es curioso que hasta principios del siglo XX se pensaba que la Vía Láctea constituía
todo el universo. Aunque galaxias como Andrómeda ya habían sido observadas desde
siglos previos, no se sabía que éstas eran galaxias, más bien, se referían a ellas como
nebulosas espirales. Fue hasta 1926-1929, que Edwin Hubble descubrió que algunas ne-
bulosas espirales eran galaxias independientes a la Vía Láctea [45, 46]. En 1929, Hubble
descubrió la expansión del universo mediante la medición de las velocidades de recesión
de las galaxias en función de su distancia a la Tierra[47]. Las observaciones de Hubble
revelaron un universo mucho más grande y dinámico de lo que anteriormente se pensaba.
Más tarde, en 1933, el astrónomo Fritz Zwicky [48], a través del estudio del movimiento
de las galaxias en el cúmulo de Coma, encontró una discrepancia entre la masa luminosa
y la masa dinámica del cúmulo, lo que le llevó a proponer la existencia de la materia
oscura. Resultados sobre la dinámica galáctica de Jan Oort[49], parecían entenderse me-
jor considerando también la presencia de materia oscura en las galaxias. La idea de la
materia oscura cobró mayor fuerza en 1970 cuando mediante el análisis de las curvas de
rotación de distintas galaxias, se encontró que las estrellas más lejanas al centro galác-
tico se mueven más rápido que lo esperado para la cantidad de materia visible [50], lo
cual llevó a replantear la existencia de la materia oscura como la causante de la forma
de la curva de rotación de las galaxias. En las décadas de 1980 y 1990, se realizaron
las primeras simulaciones computacionales de N-cuerpos para reproducir la estructura a
gran escala del universo [51]. Estas simulaciones mostraron que era necesario considerar
la materia oscura para replicar las observaciones cosmológicas. Con el paso de los años,
la medición de la radiación cósmica de fondo, la distribución de galaxias, aportaron evi-
dencia para conjeturar sólidamente la existencia de la materia oscura y que las galaxias
se encuentran rodeadas de un halo de materia oscura [52, 53, 1]. Análisis relativamente
recientes a partir de que todas las galaxias, incluida la Vía Láctea, tienen un halo de
materia oscura [52, 54].

Por otra parte, el siglo XX cerró con la reafirmación mediante mediciones de superno-
vas tipo Ia5 de que la distancia entre las galaxias está aumentando, encontrando además
que la expansión ocurre de manera acelerada[57, 58]. A falta de mayor claridad, a la
energía que produce dicha aceleración acelerada se le nombra energía oscura. En seguida
se encontró que la energía oscura podía describirse mediante una constante cosmológica

5De acuerdo a la clasificación de Lidman et al. [55], un objeto se clasifica como supernova tipo Ia
si la línea de Si II o S II puede identificarse fácilmente en su espectro electromagnético, ó, si el
espectro queda bien ajustado al espectro típico de SN Ia. Distintos modelos teóricos sugieren que las
supernova tipo Ia emergen de la explosión termonuclear de una enana blanca que ha crecido hasta
su masa de Chandrasekhar; esto también puede ocurrir dentro de un sistema binario [56].
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denominada Λ en las ecuaciones de campo de RG[29]. Así pues, en los últimos años,
se ha consolidado un modelo cosmológico llamado ΛMOF6 por contener energía oscura
representada por Λ Y Materia Oscura Fría. En el cuadro 1.1 se puede consultar la pro-
porción de las fuentes del contenido de materia-energía del Universo actual de acuerdo
a las observaciones cosmológicas y el modelo ΛMOF.

Fuente Ωi = ρi/ρc

Bariones Ωb ∼ 0.04
Radiación (fotones) Ωr < 8× 10−5

Materia oscura Ωm ∼ 0.26
Energía oscura (Λ) ΩΛ ∼ 0.70

Curvatura Ωk ≤ 0.01

Cuadro 1.1: Contenido de materia-energía del universo actual de acuerdo a las obser-
vaciones cosmológicas y el modelo ΛMOF reportadas en [2]. En la actua-
lidad hay consenso internacional en ellos por su alta precisión. La canti-
dad ρc ≡ 3H2

0/(8πG) ≃ 1.88 × 10−29h2 g cm−3 es la densidad crítica, con
H0 = 100h km s−1 Mpc−1.

Es así que las observaciones cosmológicas del último siglo, particularmente de las
últimas décadas, interpretadas dentro del modelo ΛMOF, revelan que en el Universo
no solo hay materia ordinaria formada por bariones (fermiones y bosones) sino también
materia oscura y energía oscura. El modelo ΛMOF a día de hoy es el paradigma estándar
de la Cosmología y la Física.

Como ya mencionamos en la sección anterior, la energía oscura del modelo ΛMOF
viola la condición de energía fuerte, en ese sentido, es un tipo de materia exótica. No
obstante, la energía oscura del modelo ΛMOF no viola las condiciones de energía débil
ni nula. Existen otros modelos cosmológicos como modelos de materia fantasma [59] o
quintom[60], por ejemplo, que sí violan otras condiciones de energía además de la fuerte.

1.2.2. La detección de ondas gravitacionales

Las ondas gravitacionales son una fuente de información para entender algunos de los
procesos más energéticos del universo, como la colisión de agujeros negros, la explosión de
supernovas, y una posibilidad de descubrir objetos astrofísicos nunca antes imaginados.

Las ondas gravitacionales fueron predichas teóricamente en 1916 (en la subsección
(1.1.1) se aborda la deducción matemática) y fueron detectadas por primera vez en
2015[61] por la Colaboración LIGO-Virgo provenientes de la fusión de dos agujeros negros
de 35.6 M⊙ y 28.6 M⊙ [61]. Anteriormente, habían sido detectadas indirectamente a
través de la medición del cambio de periodo orbital de estrellas de neutrones en sistemas
binarios [62].

6El modelo es más conocido como ΛCDM por estar incluida la constante cosmológica Λ siglas en inglés
Cold Dark Matter.
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Para lograr las detecciones ha sido fundamental el análisis teórico de las fuentes de
ondas gravitacionales. Existen distintos enfoques teóricos, algunos de ellos caen en apro-
ximaciones lineales otros en aproximaciones perturbativas y también existen métodos
numéricos donde se encuentran soluciones a las ecuaciones de RG con herramientas
computacionales.

El descubrimiento de las ondas gravitacionales por los experimentos de interferóme-
tría laser de la colaboración LIGO y Virgo representa una novedosa herramienta para
entender los fenómenos astrofísicos que emiten ondas gravitacionales de frecuencias rela-
tivamente altas, por encima de los Hz. Teóricamente se sabe que las fuentes que emiten
ondas de estas frecuencias son principalmente, la colisión de agujeros negros y estrellas
de neutrones.

Las recientes detecciones de ondas gravitacionales están aportando información nueva
sobre objetos compactos como los agujeros negros y las estrellas de neutrones, cuya
naturaleza interna es aún en gran parte desconocida. Además de las binarias compactas,
podrían existir otros objetos auto-gravitantes, conocidos genéricamente como objetos
compactos exóticos (ECOs), como ejemplo, las estrellas de materia oscura y los agujeros
de gusano son otras posibles fuentes de ondas gravitacionales. Estos últimos dos objetos
pueden construirse con campos escalares.

Entre los detectores de ondas gravitacionales, resaltan por su éxito los detectores
basados en Interferometría Laser de la Colaboración LIGO-Virgo-KAGRA, además de
otros detectores en funcionamiento o planeación.

1.2.3. LIGO-Virgo-KAGRA

El proyecto LIGO inició en 1984 con la parte experimental y tecnológica. La cola-
boración LIGO, Virgo, KAGRA [63, 64, 65] posee instrumentos de medición de ondas
gravitacionales situados en Estados Unidos, Italia y Japón, respectivamente. Su fun-
cionamiento se basa en Interferometría Laser que consiste en estudiar diferencias en el
tiempo de llegada de un láser que viaja en una cavidad kilométrica en forma de L al
vacío con espejos a los extremos. Cuando una onda gravitacional atraviesa los detec-
tores, el tiempo de llegada de la luz del laser a los espejos se ve afectado. De forma
posterior se analizan los datos del detector con un método de comparación de los datos
con las señales gravitacionales predichas teóricamente en función de la fuente. Se evalúa
la correlación entre los datos y la señal predicha. Este método recibe el nombre de "filtro
adaptado".

La comunidad teórica sigue construyendo modelos de fuentes de radiación gravitacio-
nal para generar familias de formas de ondas gravitacionales debido a que la no-linealidad
y complejidad de los procesos hace muy complicado o costosa la obtención de solucio-
nes. Fue hasta 2005 cuando por primera vez de forma exitosa se simuló numéricamente
la coalescencia de dos agujeros negros, incluyendo la fase de espiraleo, su fusión y el
amortiguamiento final [66, 67].

A la fecha (Junio 2024), la Colaboración LIGO-Virgo-Kagra[63, 64, 65] (LVK) ha
reportado más de 90 eventos[68], todos ellos corresponden a la coalescencia de binarias
compactas con una probabilidad mayor a 50%. Esto significa que en menos de una
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Figura 1.1: Densidad del ruido de la amplitud,
√
S(f) en unidades de [Hz−1/2] de los

interferómetros. Cada curva corresponde a un detector o corrida de obser-
vación. La curva azul ’O3 H1’ corresponde al Periodo 3 del interferómetro
en Handford , de naranja se muestra la curva de ’O3 L1’ para Livingston.
El cuarto periodo de observación, ’O4’, se encuentra en operación. La curvas
O5 representa la densidad de ruido estimada para la corrida cinco de LIGO-
Virgo. ET son las siglas de Einstein Telescope mientras que CE son siglas de
Cosmic Explorer, ambos son observatorios de ondas gravitacionales en etapa
de planeación.
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1 Introducción

década, la astronomía de ondas gravitacionales ha detectado directamente ciento ochenta
objetos compactos, casi todos son agujeros negros y hay algunas estrellas de neutrones.
Estos eventos son de gran utilidad para estudiar las poblaciones de agujeros negros y
estrellas de neutrones.

1.2.4. Otros detectores

Además de la colaboración LVK, existen otros esfuerzos por detectar ondas gravita-
cionales de otro rango de frecuencias. Resalta el proyecto Laser Interferometer Space
Antenna (LISA) [69] que consistirá en tres satélites en el espacio separados por 2.5 mi-
llones de kilométros de distancia entre sí, fungirán como los vértices de un triángulo
equilátero los cuales a través de interferometria laser de alta precisión serán capaces de
detectar el paso de ondas gravitacionales. Se espera que LISA observe la coalescencia
de agujeros negros binarios de masas 104 − 107M⊙, a corrimientos al rojo por debajo
de z ∼ 10 [70]; su rango de frecuencias de detección se estima entre 1 mHz y 0.1 Hz.
Otro proyecto para la detección de ondas gravitacionales es el Einstein Telescope [71], y
aunque sigue en planeación, se estima que podrá detectar señales con frecuencias entre
10 y 10,000 Hz[9]. También, se ha anunciado el proyecto Cosmic Explorer cuyos brazos
de 40 km prometen observar ondas gravitacionales con un mayor rango de frecuencias
[72]. En la Fig.(1.1) se muestra la sensitividad de estos detectores en función de la fre-
cuencia de detección. La sensitividad se representa en términos de la densidad del ruido
de la amplitud

√
S(f), la cual se calcula a través de procesar la densidad del espectro

de potencias del ruido esperado para cada detector[73, 5]. En la figura se aprecia que
los siguientes detectores (CE y ET) tendrán una mayor sensitividad para distinguir el
ruido de las ondas gravitacionales 7.

Cabe resaltar que en China también se está avanzando en la construcción de detectores
de ondas gravitacionales, como los proyectos Taiji (muy similar a LISA)[74, 75] y TianQin
[76].

Estas observaciones astronómicas recientes, revitalizan la RG en el sentido de que nos
recuerdan y demuestran que la interpretación geométrica de la Gravedad es una poderosa
herramienta para entender los procesos más energéticos del universo y su naturaleza
misma.

La astronomía de ondas gravitacionales promete aportar claridad sobre la naturaleza
del sector oscuro del universo[77] y la Gravedad en sí misma.

1.3. Configuraciones autogravitantes

Una condición para construir configuraciones autogravitantes en RG es que los espa-
ciotiempos sean asintóticamente planos, es decir, que la curvatura tienda a cero conforme
las coordenadas tienden a infinito. En este tipo de espaciotiempos, es posible estimar

7Cabe mencionar que los datos de la Fig.(1.1) me fueron compartidos por el Dr. Mauricio Antelis, a
quien le agradezco su revisión y facilitación; él es miembro de la colaboración LIGO-Virgo-Kagra.
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cantidades globales como la masa total, el radio característico, carga eléctrica total, mo-
mento angular total y el número de partículas [35]. Dada una masa M y un radio R, se
define la compacidad de una configuración autogravitante como

C ≡ GM

c2R
. (1.35)

Puesto que las unidades del factor G/c2 son de distancia sobre masa, la compacidad es
una cantidad adimensional que permite comparar que tan densa es la materia de las
configuraciones autogravitantes.

Los agujeros negros son la primera configuración auto-gravitante obtenida a partir de
las ecuaciones de campo de RG, los examineramos a continuación como preámbulo antes
de describir las configuraciones autogravitantes que analizaremos en los siguientes tres
capítulos, estos son: estrellas de neutrones, estrellas de bosones y agujeros de gusano,
respectivamente.

1.3.1. Agujeros negros

La primera solución exacta no trivial a las ecuaciones de campo, Ec.(1.11), fue obtenida
en 1916, cuando Karl Schwarzschild resolvió las ecuaciones de la RG, describiendo el
campo gravitacional alrededor de una masa esférica, lo que llevó al concepto de un
agujero negro.

Las primeras evidencias de su existencia provinieron de fuentes de rayos X, como
Cygnus[78]. La Colaboración Event Horizon Telescope logró construir la imagen del agu-
jero negro supermasivo localizado en el centro de la galaxia M87 [79]. En 2022, recons-
truyeron a partir de interferometría la imagen del agujero negro supermasivo Sagitario
A* localizado en el centro de nuestra galaxia, la Vía Láctea [80]. Como dato adicional,
recientemente han publicado imágenes de la polarización de su campo magnético[81], lo
cual reafirma la participación de campos electromagnéticos a altas energías.

Aunque esta solución fue la primera en obtenerse a partir de las ecuaciones de RG, tar-
daron bastante tiempo desarrollar las herramientas teóricas y matemáticas para entender
que la aparente singularidad de la solución de Schwarzschild localizada en r = 2GM/c2,es
una singularidad coordenada, el espaciotiempo es regular en ella. Además de la masa, los
agujeros negros pueden tener carga eléctrica Q y momento angular total J ≤ GM2/c. El
teorema de no pelo plantea que no existe otra cantidad que pueda asociarse a los agujeros
negros más que éstas tres: M, Q y J . Es notable que tengan un comportamiento similar
a otros objetos astrofísicos.El horizonte de eventos del agujero negro, definido como

RAN ≡ 2GM

c2
, (1.36)

significa que la compacidad de todos los agujeros negros, es independiente de su masa
total:

CAN =
G

c2
M

RAN

=
1

2
. (1.37)

Los agujeros negros son las configuraciones autogravitantes con la más alta compaci-
dad, le siguen las estrellas de neutrones.
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1.3.2. Estrellas de neutrones

Cuando estrellas en secuencia principal de masas entre ∼ 8-20 M⊙ agotan su com-
bustible nuclear comienzan a colapsar gravitacionalmente. Bajo ciertas condiciones, el
colapso gravitacional es detenido por la presión de degeneración de neutrones del re-
manente estelar, el cual recibe el nombre de estrella de neutrones. Suelen tener masas
entre 1.35 y 2.1 M⊙ y radios de 8 a 15 km [30]. Al utilizar estos valores en la Ec.(1.35),
encontramos que las compacidades típicas para estrellas de neutrones C ∼ 0.08− 0.2

A día de hoy, la física del interior de las estrellas de neutrones es en gran parte desco-
nocida por lo que los modelos teóricos presentan una incertidumbre en la determinación
de la masa máxima: 1.5 M⊙ ≤Mmax ≤ 2.5M⊙. Cada ecuación de estado p = p(ρ), pre-
dice distintas características sobre las estrellas de neutrones, por ejemplo, una relación
entre el radio R y la masa total MT y una cota máxima para la masa de las estrellas de
neutrones. Se espera con ondas gravitacionales acotar la ecuación de estado del interior
de las estrellas de neutrones.

Dada una ecuación de estado p = p(ρ), el interior de la estrella queda descrita por el
siguiente tensor de energía-momento

T ab = (ρc2 + p)ua ub + pgab, (1.38)

donde ua es la tetravelocidad definida como ua ≡ dxa/dτ , siento τ el tiempo propio.
Para modelar estrellas de neutrones, en una primera aproximación se pretende cons-

truir soluciones con simetría esférica e independientes del tiempo, por lo tanto se parte
del siguiente ansatz para el tensor métrico:

gabdx
adxb = −e2Φ(r)c2dt2 +

dr2

1− 2GM(r)
c2r

+ r2(dθ2 + sin2 θdϕ2), (1.39)

que al sustituir en las ecuaciones de campo (Ec. (1.11)) implica el sistema de ecuaciones
Tolman-Oppenheimer-Volkoff:

p′(r) = −G(ρ+ p/c2)(M(r) + 4πr3p/c2)

r2 (1− 2GM(r)/(c2r))
(1.40a)

M ′(r) = 4πr2ρ (1.40b)

Φ′(r) =
G(M(r) + 4πr3p/c2)

r2(1− 2GM(r)/(c2r))
. (1.40c)

Fuera de la estrella (R ≤ r), el espaciotiempo queda descrito por la métrica de Sch-
warzschild. Por fortuna, como nos encontramos lejos de las fuentes y fuera de la estrella
(R ≤ r), el espaciotiempo queda descrito por la métrica de Schwarzschild y se puede
trabajar con aproximaciones, como el formalismo cuadrupolar, como mostraremos en el
capítulo dos.

En 2017 por fin se observaron ondas gravitacionales de la fusión de estrellas de neu-
trones. Lo más resaltable es que también se detectaron ondas electromagnéticas (rayos
gamma y luz visible en primer lugar) del mismo evento [82, 83]. Además, también se
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1.3 Configuraciones autogravitantes

detectó por primera vez una kilonova (cuya diferencia con la supernova es que la pri-
mera es de menor magnitud). Las estrellas de neutrones en binarias han emergido como
objeto principal de estudio en la astronomía de multi-mensajeros. La señal GW170817,
al tener como complemento señales electromagnéticas de rayos gamma con un tiempo
de retraso de 1.7 s, permitió derivar una constricción para la velocidad de propagación
de las ondas gravitacionales cOG respecto a la velocidad de la luz c y se obtiene que
son prácticamente iguales. Tales resultados restringen o descartan teorías de Gravedad
modificada. Recientemente, otras señales como GW190425 [84] fueron identificadas co-
mo ondas gravitacionales provenientes de la fusión de estrellas de neutrones en sistemas
binarios.

Muchas estrellas de neutrones emiten pulsos electromagnéticos muy precisos que están
relacionados con la rotación de las estrellas cuantificada a través del espín. Los espines Si

de dos estrellas de neutrones i = 1, 2 se relacionan con la frecuencia angular Ωi a través de
Si = IiΩi. Esta rotación aporta una energía cinética rotacional dada por Eroti = IiΩ

2
i /2,

donde Ωi = |Ωi| = 2π/Psi , Psi es el periodo de espín y Ii es su momento de inercia.
Para estrellas de neutrones Ii = ai(x)MiR

2
i , donde x es el parámetro adimensional de

compacidad ai que depende de las ecuaciones de estado elegidas, 0 ≤ a ≤ 1. Por un
lado, en el regimen Newtoniano, si los espines Si (i = 1, 2) son considerados, el momento
angular orbital L no es una cantidad conservada, sino el momento angular total J dado
por J = S1 + S2 + L. Si la dirección de los espines no se restringe, el sistema está
determinado por siete ecuaciones de Euler-Lagrange: una para la coordenada radial r, y
las demás para ambos espines Si. Además, la energía rotacional total Erot = Erot1 +Erot2

debe ser añadida a la función lagrangiana dada en la función lagrangiana del sistema.
Luego, en la fase inspiral, los espines introducen un acople espín-orbita y espín-espín
en la dinámica de la binaria y en las ondas gravitacionales. Estas complejas relaciones
causan que si los espines no están alineados con el momento angular orbital, entonces
los espines y el campo orbital de la binaria precesan [85], esto es, tanto los espines Si

como el momento angular orbital L precesan en torno a un momento angular total.

1.3.3. Estrellas de bosones

Para una revisión profunda sobre estrellas de bosones pueden revisarse referencias
como [14, 86, 87, 88]. A continuación se describen algunos aspectos cualitativos sobre la
construcción de estas soluciones auto-gravitantes.

Las estrellas de bosones son soluciones a las ecuaciones de Einstein-Klein-Gordon apli-
cadas a un campo escalar. Aunque se trata de objetos astrofísicos hipotéticos (su exis-
tencia no está confirmada), cada vez cobran mayor interés como posibles configuraciones
auto-gravitantes de materia oscura y fuente de ondas gravitacionales. Las estrellas de
bosones tienen asociado un tensor de materia-energía que produce una curvatura sobre
el espaciotiempo que se determina resolviendo las ecuaciones de campo de RG.

El campo escalar es un tipo de campo que ha sido utilizado para describir partí-
culas elementales y fenómenos cosmológicos, incluyendo la energía oscura, la materia
oscura [16] y la Inflación. Desde los trabajos pioneros de Kaup en 1967 [89] Ruffini y
Bonazolla[90] en 1969, consideran campos escalares para explorar configuraciones auto-
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gravitantes. En el contexto cosmológico, los campos escalares fueron propuestos por
primera vez en 1988 por C.Wetterich [91]. Él propone que la energía oscura podría ser
generada por un campo escalar dinámico y, entre otras cosas, muestra como el campo
escalar afectaría las proporciones de densidad de energía de las componentes del uni-
verso. Casi paralelamente, Ratra y Peebles estudian las consecuencias cosmológicas de
suponer un campo escalar homogéneo, auto-interactuante y en evolución temporal [92].

El campo escalar pueden interpretarse como un campo bosónico. Los bosones son
partículas elementales con espín entero, pueden tener o no masa y carga. Les distingue
que no cumplen el principio de exclusión de Pauli, por lo que un conjunto de bosones sí
puede ocupar el mismo estado cuántico dentro de un sistema.

La función lagrangiana del campo escalar es,

LΦ =
ϵ
√

|g|
2

(
gab∇aΦ∇bΦ̄ + V (|Φ|2)

)
, (1.41)

donde ϵ puede valer 1 ó -1. En casos donde el campo escalar es invariante bajo trans-
formaciones de la forma Φ → Φeiα (transformaciones globales U(1)), el campo escalar
tiene una cantidad conservada que recibe el nombre de densidad de corriente de Noether
ja dada por

jµ = −ig
µν

2
[Φ∗(∇νΦ)− Φ(∇νΦ)

∗] . (1.42)

Mediante la integración de la ley de conservación Σt se obtiene el número total de
partículas[90],

N =

∫
Σ

jµnµdV , (1.43)

siendo Σ una hipersuperficie tipo espacial, na un vector tipo-tiempo normal a Σ, con
nan

a = −1 , dV =
√
γ dη dθ dφ es el elemento de volumen, γ es el determinante de la

métrica espacial. La masa total de las configuraciones auto-gravitantes puede calcularse
mediante la expresión de Komar

M = 2

∫
Σ

Rabn
aξbdV, (1.44)

en esta expresión ξ es el vector de Killing tipo tiempo ξ = ∂t = (1, 0⃗).
Las estrellas de bosones, dadas por la función lagrangiana (1.41) con ϵ = 1, estan

formadas por un número total N de partículas elementales bosónicas de masa mϕ dadas
por la Ec.(1.43). También, poseen una masa total M dada por la Ec.(1.44) y un radio
característico que a veces se define como aquel que contiene el 99% de la masa total [93].
Las soluciones estables satisfacen una relación específica entre su masa total y su radio
total, como veremos en el capítulo tres. Mediante el análisis de las soluciones numéricas
se ha encontrado que las estrellas de bosones son menos compactas que los agujeros
negros pero pueden ser tan o más compactas que las estrellas de neutrones.

Existen distintos tipos de estrellas de bosones. La más simple corresponde a una so-
lución de campo escalar Φ real, sin masa ni espín, esta solución también es conocida
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como geón [89, 94]. En 1969, Ruffini y Bonazolla[90] presentan configuraciones auto-
gravitantes compuestas por campos escalares de bosones no-interactuantes, y, encuen-
tran que las propiedades de estas soluciones son muy distintas que las configuraciones
compuestas por fermiones.

El campo escalar Φ satisface la ecuación de Klein-Gordon, la cual es la generalización
relativista de la función de onda que satisface la ecuación de Schrodinger. La función
de onda es un concepto complejo que ocupó el centro de las discusiones entre científi-
cos como Heinserberg, Schrodinger y Einstein. En el regimen Newtoniano, la función
de onda puede acoplarse a un campo gravitacional a través del sistema de ecuaciones
Schrodinger-Poisson, donde la función de onda se interpreta como una probabilidad de
masa que genera un campo gravitacional. En cambio, en el regimen relativista, el campo
gravitacional es una propiedad geométrica del espaciotiempo que depende del tensor de
energía-momento, el cual actúa como fuente en las ecuaciones de RG. En este contexto
se pueden estudiar objetos auto-gravitantes generados por distintos tipos de tensores de
energía-momento.

Dos estrellas de bosones pueden colisionar y emitir ondas gravitacionales [93]. Se trata
de una colisión simple en el sentido de que la evolución está unicamente determinada
por la interacción gravitacional. La detección de estas ondas gravitacionales es un hecho
interesante en sí mismo, y también como posible evidencia de la existencia de objetos
compactos compuestos por materia oscura. Las estrellas de bosones pueden emitir on-
das gravitacionales cuando colisionan dos de ellas frontalmente. La masa total de dichas
estrellas está intimamente relacionada con la masa del campo escalar que la compone,
de modo tal que mientras más ligero es el campo escalar, más grandes pueden ser sus
configuraciones estables macroscópicas. Del mismo modo, mientras más ligero es el cam-
po escalar, mayor es la amplitud y duración de las ondas gravitacionales emitidas, como
demostraremos en el capitulo tres.

1.3.4. Agujeros de gusano

Las primeras soluciones de las ecuaciones de RG que representaban un agujero de
gusano atravesable fueron obtenidas en 1973 [95, 96], se trataba de soluciones exactas
asintóticamente planas y regulares en todos los puntos. En 1988 [17], se demostraba bajo
qué condiciones sería posible construir un objeto que conectase regiones distantes del
universo a través de una garganta. Así como en el caso de las estrellas de bosones, las
primeras soluciones de agujeros de gusano se obtuvieron bajo ciertas suposiciones que
con el paso de los años fueron relajándose de modo que a la fecha, se han construido
teóricamente agujeros de gusano compuestos por campos escalares con auto-interacción
[40, 97], así como agujeros de gusano compuestos por varios campos escalares [98, 99,
100], entre muchos otros tipos de agujeros de gusano.

Para no tener dependencia temporal en las ecuaciones de campo, asumimos que el
campo escalar complejo tiene un ansatz armónico dado por:

Φ(η, t) = ϕ(η)eiωt , (1.45)

donde ω es una constante real.
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Los agujeros de gusano atravesables violan la condición de energía fuerte (veáse
Sec.1.1.3), en ese sentido, están formados por materia exótica. Diversos estudios don-
de confinan materia exótica de campos escalares pueden consultarse en los artículos de
investigación: [101, 102, 16], entre otros.

Un agujero de gusano descrito con campo escalar con simetría esférica y masivo,
debe tener constante de auto-interacción λ [99].

La frecuencia del campo escalar ω está relacionada con el parámetro de masa µ.

En el capítulo cuatro, examinaremos un agujero de gusano con carga eléctrica par-
tiendo de la siguiente acción total:

S =

∫ √−g
[ R
16π

+ LΦ + LEM

]
d4x, (1.46)

donde

LΦ = −1

2

(
gµν(DµΦ)(DνΦ)

∗ + µ2|Φ|2 − λ

2
|Φ|4

)
. (1.47)

y LEM está dada por la Ec.(1.9). Notemos que LΦ anterior es igual a la Ec. (1.41)
pero con ϵ = −1, ∇a → Da y V (|Φ|) = µ2|Φ|2 − λ

2
|Φ|4. El término Da es una derivada

covariante generalizada que será descrita en el capítulo cuatro.

1.4. Como se organiza esta tesis

En este primer capítulo introductorio, se resumió el contexto astrofísico observacional.
Los siguientes capítulos están organizados de la siguiente manera. Las ondas gravitacio-
nales son el tema central en los dos siguientes capítulos. En el primero de ellos, se
estudian bajo la aproximación lineal siendo la fuente un sistema binario de estrellas de
neutrones con campos magnéticos, como se describe a detalle en el Capítulo dos. En la
segunda investigación, se estudian ondas gravitacionales generadas por la colisión frontal
de objetos auto-gravitantes de campo escalar, que aunque a la fecha no han sido obser-
vados, son una posible y potencial manera de describir a las estrellas de materia oscura,
esto se describe en el capítulo tres. En la tercera investigación, puesto que trabajamos el
tema de campo escalar y los campos electromagnéticos en las primeras dos investigacio-
nes, nos resultó interesante y natural utilizar ambos conceptos para construir una nueva
solución numérica de las ecuaciones de Einstein-Klein-Gordon-Maxwell de agujero de
gusano eléctrico, volviendo al tema de inicio, la RG, como puede estudiarse en el capí-
tulo cuatro. Finalmente, en el último capítulo se presentan conclusiones generales sobre
los campos gravitacionales producidos por estrellas de neutrones, estrellas de bosones y
agujeros de gusano.
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2 Ondas gravitacionales de binarias
magnetizadas en el regimen lineal

El presente capítulo está basado en el artículo [20], que lleva por título On the role
of magnetars-like magnetic fields into the dynamics and gravitational wave emission
of binary neutron stars y fue elaborado por Mariana Lira (ICN-UNAM), Juan Carlos
Degollado (ICF-UNAM), Claudia Moreno (UdG) y Darío Nuñez (ICN-UNAM). Todas
las figuras que aparecen en este capítulo fueron tomadas de dicho trabajo.

2.1. Resumen

Modelamos la interacción gravito-magnética de un sistema binario de estrellas de
neutrones en el esquema más simple donde cada estrella es un dipolo magnético perfecto.
Somos capaces de incluir los efectos magnéticos en la dinámica newtoniana y en la fase
espiral de su emisión de ondas gravitacionales usando una descripción equivalente de un
cuerpo. Además, en la etapa espiral determinamos el papel de la interacción magnética
en las ondas gravitacionales generadas por el sistema binario y obtenemos fórmulas
explícitas para la evolución de la separación de las estrellas, el tiempo para alcanzar
un radio mínimo, la luminosidad gravitacional y el cambio de frecuencia de las ondas
gravitacionales, todo esto dentro de la aproximación cuadrupolar. Para la magnitud
extrema del campo magnético que se considera existente en estos sistemas binarios 1016
G, somos capaces de mostrar que su efecto sobre las cantidades observables es del orden
de la corrección 2PN, ya cerca del rango de detección de los observatorios de ondas
gravitacionales. También discutimos casos en los que el campo magnético podría tener
una influencia más significativa.

2.2. Introducción

Las binarias de estrellas de neutrones son uno de los sistemas más estudiados en la
actualidad tanto por la comunidad de astronomía de ondas gravitacionales, como por la
comunidad de astrofísica teórica, al ser éstos un laboratorio ideal para poner al límite
los modelos sobre la dinámica de la materia relativista a altas energías. Las estrellas
de neutrones altamente magnetizadas están caracterizadas por periodos de espín típica-
mente entre P ∼ (10−3−12)s y con un cambio en el tiempo de dP

dt
∼ (10−16−10−12)ss−1

[11, 103]. Estas aproximaciones son consistentes con los campos magnéticos sobre la su-
perficie de los pulsares del orden de B ∼ 1011 − 1013G [104, 105], o tan intensos como
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2 Ondas gravitacionales de binarias magnetizadas en el regimen lineal

B ∼ 1014 − 1015G en magnetares [106], e incluso arriba de 1016G son valores que se han
encontrado en estrellas de neutrones recién formadas [107].

Distintos escenarios donde los campos magnéticos juegan roles importantes han sido
estudiados en la literatura reciente, por ejemplo, en [108] se realizan simulaciones mag-
netohidrodinámicas de la coalescencia de binarias de estrellas de neutrones y muestran
que los campos magnéticos de las estrellas de neutrones de 1012G son amplificados por
varios ordenes de magnitud dentro de los primeros milisegundos después de la fusión,
esto ocurre por inestabilidades de Kelvin-Helmoltz. La fusión de estrellas de neutrones
binarias también es progenitora de destellos cortos de rayos gamma debido a los campos
magnéticos intensos de una o dos estrellas de neutrones, y su alta frecuencia orbital
[109, 110, 111, 112, 113]. Otros estudios sugieren que la interacción magnética entre dos
estrellas de neutrones en proceso de fusión, modifican considerablemente la forma de
las ondas gravitacionales de la radiación [114, 115, 116]. Las simulaciones magnetohi-
drodinámicas relativistas reportadas en [87, 88] han mostrado que algunas fusiones de
estrellas de neutrones binarias son fuentes ideales para la astronomía de multimensajeros
debido a su característico flujo de Poynting y su fuerte emisión de ondas gravitacionales.

Plantillas de ondas gravitacionales han sido modeladas para la fase de espiraleo, donde
dos objetos se orbitan y se acercan uno a otro mientras la frecuencia orbital va incremen-
tando. En esta fase, el enfoque post-Newtoniano a la relatividad general ha mostrado
estar adecuado para evolucionar con un alto grado de precisión sistemas binarios [117].
[118]. A primer orden, el enfoque postnewtoniano recibe el nombre de formalismo cua-
drupolar durante la fase de espiraleo ha mostrado ser una aproximación válida siempre y
cuando la separación orbital de la binaria sea más grande que un radio mínimo al mismo
tiempo que la velocidad orbital sea muy pequeña con respecto a la velocidad de la luz.

En este capítulo, mostramos que los campos magnéticos intensos cambian la estima-
ción de los parámetros intrínsecos de la binaria; obtenemos que aunque los cambios son
muy pequeños, el efecto puede ser inferido a partir de la señal gravitacional[19].

Se ha mostrado que bajo ciertas circunstancias, distintos efectos podrían modificar la
forma de las ondas gravitacionales emitidas por la binaria a segundo orden del formalismo
postnewtoniano, algunos de ellos son: el efecto post-Newtoniano [119], el acople espín
orbita [120], espín-espín [121], auto-espín, además de un acople cuadrupolar del termino
monopolar[122, 123]. Más aún, se sabe que también puede haber contribuciones de marea
[124, 125] y éstas pueden afectar la dinámica de la binaria y por lo tanto la forma de las
ondas gravitacionales.

En este capítulo, consideramos un sistema de dos cuerpos magnetizados aislados en el
régimen lineal de relatividad general, donde el Formalismo Cuadrupolar continúa siendo
adecuado para modelar la fase de espiraleo y para estimar la emisión de ondas gravi-
tacionales. Nos concentraremos en el efecto dipolo magnético-dipolo magnético [107] y
consideraremos el caso donde los efectos de la rotación de las estrellas sobre la dinámica
orbital es insignificante. Siguiendo un enfoque introducido en la Ref. ([107]), mostramos
que utilizando el modelo dipolar para estrellas de neutrones, la dinámica de la binaria
se reduce a un problema de un cuerpo efectivo, muy similar al caso no-magnetizado.
Con este modelo calculamos el efecto de los campos magnéticos sobre la dinámica de
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2.2 Introducción

las estrellas de neutrones binarias de forma íntegra. Más aún, calculamos la amplitud
de las ondas gravitacionales o strain para distintos valores de campos magnéticos y
utilizamos estos datos para estimar la masa de las estrellas de neutrones fuente. Poste-
riormente, aplicamos este modelo de binarias magnetizadas para dos sistemas diferentes:
en el primero consideramos una binaria de estrellas de neutrones típica y explicamos el
efecto de los campos en varias observables, tales como el radio mínimo, el cambio del
periodo orbital, la luminosidad gravitacional, el cambio logaritmo de la frecuencia de
las ondas gravitacionales y el strain. Encontramos que la desviación en estas observa-
bles, con respecto a los casos respectivos no magnetizados, pueden ser hasta del orden
de O(10−5) cuando la intensidad de los campos magnéticos es B = 8 × 1016 G. En el
segundo enfoque, suponemos que la luminosidad gravitacional y el cambio logarítmico
del periodo orbital son funciones conocidas y las utilizamos para inferir el cambio de las
masas de la binaria como función de los campos magnéticos presentes. Así, encontramos
que, con intensidades de los campos magnéticos del orden de B ∼ 1016G, las masas
de las estrellas de neutrones podrían estar sub o sobre estimadas con respecto a las
fuentes no-magnetizadas por un factor hasta del 4%. En nuestro análisis, también con-
sideramos algunos resultados astrofísicos recientes, en particular consideramos el evento
GW170817, debido a su importancia como primera evidencia de la colisión de las es-
trellas de neutrones y su importancia para el subsecuente desarrollo en la astrofísica.
Nuestros resultados sobre el efecto de los campos magnéticos en ciertas observables, son
consistentes con los reportados en simulaciones magneto-hidrodinámicas recientes, [126]
de esta manera estamos dotando de una herramienta más simple para generar plantillas
de ondas gravitacionales de estrellas de neutrones binarias tomando en cuenta la inter-
acción magnética, claro, con la restricción de modelar únicamente la fase de espiraleo.

Como está organizado el resto del capítulo.
En el primer apartado de esta sección introductoria, hablaremos de las propiedades

de las estrellas de neutrones binarias incluyendo sus propiedades magnéticas. El resto
del capítulo está organizado de la siguiente manera. En la sección 2.3, introducimos
los modelos para estrellas de neutrones binarias, incluyendo campos magnéticos en el
enfoque dipolar y la dinámica del sistema binario utilizando la Gravedad Newtoniana
para describir las órbitas. En la sección 2.4 describimos la formulación cuadrupolar para
ondas gravitacionales y obtenemos la forma de las ondas gravitacionales, incluyendo am-
plitudes, frecuencias y evolución de la separación de la binaria, además de la estimación
de las masas fuente. En la sección 2.5 presentamos algunos resultados relacionados con
la estimación de parámetros. En la sección 2.5.1 describimos el ejemplo concreto de la
dinámica y emisión de ondas gravitacionales de una binaria magnetizada de masa total
de 2.8 M⊙ y campos magnéticos constantes de B1 = B2 = 8 × 1016 G. En la 2.5.2
analizamos cualitativa y cuantitativamente el efecto de la presencia de campos magné-
ticos dipolares en un rango de B ∼ 1012G a B ∼ 1016G sobre variables de la fase de
espiraleo. Este rango es similar a otros utilizados en referencias como [103, 106]. En la
sección 2.5.3, utilizamos la luminosidad gravitacional y la tasa de cambio logarítmico
del periodo orbital del evento GW170817 para mostrar que dada la incertidumbre en la
determinación de las masas a partir de los datos observacionales, es posible obtener un
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2 Ondas gravitacionales de binarias magnetizadas en el regimen lineal

límite para el valor máximo de los campos magnéticos de las estrellas de modo que las
masas estimadas en los caos magnetizados más intensos, siguen siendo consistentes con
las observaciones. Finalmente, en la sección 2.6 presentamos nuestras conclusiones de
esta investigación. En nuestro análisis, utilizamos unidades CGS-gaussianas, donde los
campos magnéticos se miden en Gauss (G = g1/2 cm−1/2 s−1) y los momentos magnéticos
en emu igual a g1/2 cm5/2 s−1.

2.3. Descripción Newtoniana de la binaria
magnetizada

En la primera parte, 2.3.1, revisamos las condiciones bajo las cuales el potencial
gravito-magnético puede ser analizado como un problema de un cuerpo para el sistema
binario magnetizado. Una vez que hemos descrito la interacción magneto-gravitacional
como un potencial central, en la segunda parte, 2.3.2, desarrollamos las ecuaciones de
movimiento a través de la función lagrangiana del sistema binario. El principal propósito
de esta sección es explorar el efecto magnético en la dinámica Newtoniana del sistema
binario, como una herramienta necesaria en la subsecuente incorporación de los efectos
magnéticos en la emisión de ondas gravitacionales, lo cual será análizado en la siguiente
sección 2.4.

2.3.1. Modelo de dos objetos compactos magnetizados

Para abordar el análisis del sistema binario magnetizado, partimos de la premisa de
que cada objeto se caracteriza intrínsecamente por sus masas M1 y M2, así como por sus
momentos magnéticos dipolares m1 y m2. Con el propósito de enfocarnos específicamente
en el efecto magnético, optamos por despreciar otras propiedades de los objetos.

Las posiciones de estas estrellas, representadas por ri(t), se definen en un marco de
referencia cuyo origen está en el centro de masa del sistema. En este marco, se cumple
por definición que M1r1 +M2r2 = 0. Esta elección de referencia presenta la ventaja de
simplificar la dinámica del sistema, reduciéndola a la descripción de un cuerpo con masa
reducida µ =M1M2/M y posición relativa r ≡ r1 − r2, donde M =M1 +M2 denota la
masa total del sistema.

Utilizaremos la aproximación magnetostática para el interior de las estrellas, donde
asumimos que la carga eléctrica neta es cero [127, 128]. También, consideraremos que
los campos magnéticos externos de las estrellas son un campo dipolar perfecto mi y por
lo tanto, el momento magnético está relacionado con el radio de la estrella [107]1. En
este regimen magnetostático, el campo magnético B1 debido a la primera estrella en un
punto arbitrario x, está determinado por:

1El radio de cada estrella está relacionado con su masa a partir de una ecuación de estado[129].
Una ecuación de estado realista para la materia de las estrellas de neutrones aún no se conoce con
precisión, sin embargo, está bien acotado que para masas de 1 a 2M⊙ [130, 115] distintas ecuaciones
de estado dan radios entre 8 y 16 km [87, 131]. Por simplicidad, usamos como valor típico del radio
de las estrellas 12 km.
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2.3 Descripción Newtoniana de la binaria magnetizada

B1(x) =
3n̂1 (n̂1 ·m1)−m1

|x− r1|3
, (2.1)

donde n̂1 = (x − r1)/|x − r1|. La energía potencial magnética resultante de la inter-
acción entre un dipolo magnético m con un campo magnético externo B está dado por
el producto punto Um = −m · B [132]. Entonces, la energía potencial magnética en la
posición r2 es,

Um(1 → 2) = −m2 ·B1(r2) = −m2 ·
3r̂ (r̂ ·m1)−m1

|r|3

= −3(m2 · r̂) (r̂ ·m1)−m2 ·m1

|r|3 , (2.2)

donde hemos utilizado la Ec. (2.1) y el vector unitario r̂ = (r2 − r1)/|r2 − r1|.
Siguiendo [126, 133], en esta investigación asumimos que los momentos magnéticos

permanecen paralelos al momento angular total del sistema L = µ (r× ṙ) durante la
fase de espiraleo; por lo tanto, m1 · r̂ = m2 · r̂=0. De este modo, la torca magnética entre
los dipolos N = m1 ×B2 es nula [132] y la Ec. (2.2) se reduce a:

Um(1 → 2) =
m2 ·m1

|r|3 . (2.3)

Más aún, vamos a asumir que los momentos magnéticos de cada estrella son de la
forma mi = R3

i Bi/2. En este punto, introducimos el parámetro magnético b como el
producto punto de los momentos magnéticos:

b ≡ m1 ·m2 = ±(R1R2)
3B1B2

4
, (2.4)

donde el signo + o − indica si los dipolos están alineados o anti-alineados, respectivamen-
te. Utilizando la Ec. (2.4) encontramos que es posible codificar la interacción magnética
entre los dipolos magnéticos a través de una energía potencial magnética de la forma
Um = b/r3.

Podemos estimar en ordenes de magnitud, la fracción de la energía potencial magnética
respecto a la contribución gravitacional a la energía potencial Ug = −GMµ/r para tener
una intuición del efecto físico del parámetro magnético. La fracción de los potenciales se
reduce a:

Um

Ug

= − b

GMµr2
(2.5)

Vamos a reescalar esta expresión en términos de las cantidades típicas de estrellas de
neutrones binarias.

En el caso de las estrellas de neutrones binarias, consideremos que sus masas indivi-
duales son iguales con valor ∼ 1.4M⊙ y los radios ∼ 12 km. Respecto a los valores de
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campos magnéticos, utilizamos ∼ 1016G porque son los valores máximos estimados en
magnetares (aunque no los máximos teorizados). Entonces,

Um

Ug EN

∼ 1.0× 10−4

(
R1

12 km

)3(
B1

1016G

)(
R2

12 km

)3(
B2

1016G

)
×
(
2.8M⊙
M

)(
0.7M⊙
µ

)(
12 km

r

)2

, (2.6)

donde hemos utilizado la Ec. (2.4).
Podemos observar a partir de la Ec. (2.6), que la contribución magnética sobre el po-

tencial gravitacional es O(10−4). Esto está en acuerdo con los análisis post-Newtonianos,
los cuales reportan que la interacción dipolo-dipolo magnético produce una corrección
de segundo orden en el formalismo post-Newtoniano [107, 134, 127].

2.3.2. Dinámica Newtoniana

Como acabamos de describir, la interacción magnética entre los dipolos magnéticos
de las estrellas del sistema binario puede ser descrito utilizando un potencial central.
Entonces, la interacción gravitomagnética, desde el centro de masa, está dado por la
suma del potencial magnético Um y gravitacionalUg:

U(r) = −GMµ

r
+

b

r3
= −GMµ

r

(
1− b

GMµr2

)
, (2.7)

donde b está definida en la Ec. (2.4). Con este potencial podemos utilizar el formalismo
lagrangiano para reducir la dinámica de la binaria a un problema equivalente de un
cuerpo de masa reducida µ localizada en r. La posición de cada estrella se recupera
utilizando las relaciones r1 = (M2/M) r y r2 = −(M1/M) r.

Como el potencial U solo depende de la posición r, el momento angular total se
conserva, entonces, el movimiento orbital se restringe a un plano. Por simplicidad y
sin pérdida de generalidad, elegimos el plano ecuatorial. Así, la función lagragiana2 del
sistema queda definida como la diferencia de la energía cinética T = µṙ2/2+µr2φ̇2/2, y
la energía potencial dada en la Ec. (2.7), esto es,

L(r, φ) = µ

2
ṙ2 +

µ

2
r2φ̇2 +

GMµ

r
− b

r3
. (2.8)

Dado que la función lagrangiana en la Ec. (2.8) es independiente de φ tenemos la con-
servación del momento angular directamente de las ecuaciones de Euler-Lagrange

d

dt
(µr2φ̇) = 0 ⇒ l = µr2φ̇ = const . (2.9)

2La función lagrangiana de la ec.(2.8) es Newtoniana, se obtiene a partir de la diferencia entre la energía
cinética y potencial del sistema newtoniano, no corresponde a la definición relativista presentada en
el capítulo introductorio en la ec.(3.2).
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2.3 Descripción Newtoniana de la binaria magnetizada

La energía total del sistema E = T + U puede escribirse como

E =
1

2
µṙ2 + Veff(r) , (2.10)

donde Veff(r) ≡ l2

2µr2
− GMµ

r
+ b

r3
es el potencial efectivo, además, hemos utilizado la

relación entre l y φ̇ dada en la Ec. (2.9). En la otra mano, la ecuación de Euler-Lagrange
de la coordenada r es

r̈ +
GM

r2
− l2

µ2r3
− 3b

µr4
= 0 . (2.11)

Con un cambio de variable u = 1/r tenemos

ṙ = − 1

u2
u̇ = − l

µ

u̇

φ̇
= − l

µ

du

dφ
y r̈ = − l

µ
φ̇
d2u

dφ2
= − l2

µ2
u2
d2u

dφ2
, (2.12)

y, después de algunas simplificaciones obtenemos que la Ec. (2.11) se vuelve

d2u

dφ2
+ u− 1

R
= δbu

2 , (2.13)

donde

R ≡ l2

GMµ2
y δb = −3µb

l2
. (2.14)

En el lado derecho de la Ec. (2.13) tenemos un término no lineal inducido por la inter-
acción dipolar magnética. Las soluciones sin campo magnético b = 0 = δb, son secciones
cónicas u(φ) = 1

R
(1 + ϵ cosφ), con excentricidad ϵ2 ≡ 1 + 2El2/(G2M2µ3).

Es notable que el término no-lineal en la Ec. (2.13) tiene la misma forma que la co-
rrección relativista al potencial Newtoniano dado por el espaciotiempo de Schwarzschild.
En la siguiente sección mostraremos que las órbitas circulares están permitidas sobre un
rango de campos magnéticos.

2.3.3. Movimiento circular

Es sabido que la emisión de ondas gravitacionales tiende a circularizar las órbitas
elípticas, al grado que antes de la fusión, las órbitas ya han sido circularizadas [135, 136,
137]. Puesto que el movimiento circular domina la dinámica de las estrellas de neutrones
binarias durante la fase de espiraleo, enfocaremos nuestro análisis a este tipo de órbitas.

Las órbitas circulares (r = cte.) son posibles si la condición r̈ = 0 en la Ec. (2.11)
se satisface. En el escenario que estamos considerando, es un caso particular para la
combinación de las direcciones entre los campos magnéticos y el momento angular.

Haciendo r̈ = 0 en la Ec. (2.11) y resolviendo para r obtenemos

rc =
R

2

(
1 +

√
1 +

12 b

GMµR2

)
, (2.15)
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Figura 2.1: Potencial efectivo Veff . Para valores no-negativos de b siempre es posible tener
órbitas circulares estables. Cuando bc < b < 0 tenemos órbitas circulares
inestables. El valor crítico bc = − l4

12GMµ3 representa la última órbita circular.
Para b < bc no hay órbitas circulares. Tomado de [20].

donde R está definida por la Ec. (2.14). Cuando b > 0, tenemos siempre órbitas circu-
lares; cuando b < 0, existe un valor crítico bc = − l4

12GMµ3 por debajo del cual las órbitas
circulares dejan de existir. Para valores más negativos de b la potencial efectivo no tiene
puntos extremos. La Fig. (2.1) muestra Veff para algunos valores representativos de b.

El momento angular l para órbitas circulares se expresa como:

lb = µ

√
GM rc

(
1− 3 b

GM µr2c

)
, (2.16)

donde el subíndice b denota una dependencia de la variable al parámetro magnético b.
Además, a partir de la Ec. (2.9), φ̇ = l/µr2, la frecuencia orbital en las órbitas circulares
está dada por:

φ̇b =

√
GM

r3c

(
1− 3 b

GM µr2c

)
, (2.17)

esta expresión es análoga a la tercera ley de Kepler para órbitas circulares y será utilizada
en la siguiente sección.
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Finalmente, la energía total de las órbitas circulares es

Eb = −GM µ

2rc

(
1 +

b

GM µr2c

)
, (2.18)

la cual es igual al mínimo del potencial efectivo Veff en la Ec. (2.10). En la Fig.(2.1)
se observa que dependiendo de la combinación de los parámetros, en el sistema pueden
existir órbitas estables y/o inestables.

2.3.4. Precesión orbital debido a los campos magnéticos

En mecánica clásica es un resultado que una órbita ligeramente no-circular oscilará
alrededor de un radio central. En la ausencia de campos magnéticos, las órbitas liga-
das permitidas son elipses, como queda de manifiesto en las leyes de Kepler para el
movimiento orbital planetario.

En nuestro caso, la presencia del término magnético modifica este comportamiento; las
órbitas se ven como elipses que van lentamente rotando respecto al centro, este fenómeno
es conocido como precesión de la órbita.

La Ec. 2.12 puede ser resuelta numéricamente con algo de esfuerzo, sin embargo, algo
de información útil puede ser obtenida a partir de analizar la solución en el límite de
pequeñas interacciones magnéticas. Asumiendo δb ≪ R, tenemos la solución aproximada
de la Ec. (2.12) en la forma:

u = u0 + βu1 , con β =
δb
R
, (2.19)

en esta expresión hemos ignorado potencias más altas de δb/R. Substituyendo la Ec.
(2.19) en la Ec. (2.13) y agrupando términos del mismo orden, obtenemos

d2(Ru0)

dφ2
+Ru0 = 1, (2.20)

d2(Ru1)

dφ2
+Ru1 = (Ru0)

2 . (2.21)

La solución de la primera ecuación, como ya hemos mencionado, es la sección cónica

Ru0 = 1 + ϵ cosφ , (2.22)

donde ϵ2 ≡ 1 + 2El2

G2M2µ3 . Por otro lado una solución particular de la Ec. (2.21) es

Ru1 =

(
1 +

ϵ2

2
+ ϵφ sinφ− ϵ2

6
cos(2φ)

)
. (2.23)

Notemos que el tercer término incrementa con cada órbita y se va volviendo más
relevante. Ignorando las otras correcciones podemos expresar la Ec. (2.19), en el límite
β ≪ 1, como sigue:

Ru ≈ 1 + ϵ cosφ+ βϵφ sinφ

≈ 1 + ϵ cos (φ− βφ) . (2.24)
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Entonces, el periodo de las órbita no es 2π sino más bien

2π

1− β
≈ 2π(1 + β) = 2π

(
1 +

δb
R

)
. (2.25)

La precesión, en unidades de radianes por órbita, queda dada por

∆φ = 2π − 2π

(
1 +

δb
R

)
= 2π

δb
R
. (2.26)

Sustituyendo las expresiones para R y δb dadas en la Ec. (2.14) y la expresión de b en
términos de la intensidad de los campos magnéticos, obtenemos la precesión de la órbita
∆φ = 2πδb

R
= ∓6πGMµ3R3

1R
3
2B1B2/(4l

4). Para valores típicos obtenemos

∆φ = ∓2.83× 10−7

(
R1

12 km

)3(
B1

1016G

)(
R2

12 km

)3

×
(

B2

1016G

)(
M

2.8M⊙

)(
µ

0.7M⊙

)3(
l0
l

)4

. (2.27)

donde el momento angular l se obtiene a partir de la expresión Kepleriana l2 = GMµ2a (1− ϵ2),
para binarias a = 103 km, l0 = 2.69× 1050g cm2s−1 = 1.35× 107M⊙ km2 s−1.

En la siguiente sección consideraremos la perdida de energía del sistema binario de-
bido a la emisión de ondas gravitacionales utilizando el formalismo cuadrupolar. Nos
enfocaremos en órbitas circulares por lo ya mencionado a inicio de esta sección: que
la emisión de ondas gravitacionales tiende a circularizar las órbitas durante la fase de
espiraleo.

2.4. Emisión gravitacional

Considerando el sistema binario (incluyendo los campos magnéticos) descrito en la
Sección 2.3, donde el eje-z es perpendicular al plano de movimiento y φb es el ángulo
del eje-x a la línea que une las masas, el segundo momento de masa del sistema es

M ij
b (t) =

1

2
µr2

 1 + cos(2φb(t)) sin(2φb(t)) 0
sin(2φb(t)) 1− cos(2φb(t)) 0

0 0 0

 . (2.28)

Entonces, utilizando la Eq.(1.22) para órbitas circulares incluyendo los campos magné-
ticos (con ṙ = 0 y r̈ = 0), la luminosidad gravitacional es

Lb =
32

5

G4M3µ2

c5r5

(
1− 3b

GMµr2

)3

, (2.29)

donde hemos usado la dependencia temporal de φb dada por la Ec. (2.17). La pérdida
de energía a través de la emisión de ondas gravitacionales vía la relación Lb + Ė = 0
implica que la separación entre las estrellas r decrece de la siguiente manera:(

dr

dt

)
b

= −64G3M2µ

5c5r3

(
1− 3b

GMµr2

)3(
1 +

3b

GMµr2

)−1

, (2.30)
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2.4 Emisión gravitacional

en esta expresión hemos utilizado la Ec. (2.29) y el hecho de que Ė = 1
2

(
GMµ
r2

+ 3b
r4

)
ṙ.

A partir del previo análisis, puede verse que cuando la magnitud del parámetro magné-
tico coincide con el valor crítico bc obtenido en el análisis Newtoniano, no hay órbitas
circulares y el sistema simplemente colapsa. Además, como una consecuencia del de-
crecimiento en r, el periodo orbital Pb = 2π/φ̇b también decrece; la tasa de cambio
logarítmico de Pb es

1

Pb

dPb

dt
=− 96G3M2µ

5c5r4

(
1− 3b

GMµr2

)2(
1− 5b

GMµr2

)(
1 +

3b

GMµr2

)−1

. (2.31)

Notemos que haciendo b = 0 en las Ecs. (2.30, 2.31) éstas se reducen a las expresiones bien
conocidas para binarias en aproximación cuadrupolar dada por ejemplo en la referencia
[31].

2.4.1. Estimación de las ondas gravitacionales

El decrecimiento en la separación de las estrellas de neutrones ocurre a través de una
sucesión de órbitas casi circulares, es sostenido por la emisión de ondas gravitacionales
hasta que ambas se fusionan en una sola. Sin embargo, cuando las estrellas están sufi-
cientemente cerca, la dinámica es dominada por los efectos de los campos fuertes, por lo
tanto, la aproximación cuadrupolar que estamos utilizando, deja de ser válida.

Mientras las estrellas se orbitan entre sí, las distancias orbitales decrecen causando que
la frecuencia de las ondas gravitacionales incremente hasta un valor máximo, al mismo
tiempo que se alcanza cierto rmin y termina la fase de espiraleo para dar paso a la fase
de fusión.

El tiempo al cual la binaria alcanza dicho radio mínimo rmin puede ser calculado como

τb =

∫ rmin

r0

(dr/dt)−1
b dr , (2.32)

donde r0 es la separación de las estrellas al tiempo t = 0 y el cambio en r con el tiempo
(dr/dt)b está dado por la Ec. (2.30).

Partiendo de las órbitas circulares, el segundo momento de masa dado en la Ec. (2.28)
y utilizando la Ec. (1.20), las amplitudes de polarización se expresan como:

h+b
(t) = −4G2Mµ

c4drb(t)

(
1− 3b

GMµrb(t)2

)
cos(2φb(t)) ,

h×b
(t) = −4G2Mµ

c4drb(t)

(
1− 3b

GMµrb(t)2

)
sin(2φb(t)) ,

(2.33)

aqui, rb(t) está dado por la integración de la Ec. (2.30). El strain de las ondas gravita-
cionales se define como hb =

√
h2+b

+ h2×b
y utilizando la Ec (2.33), el strain está dado

por

hb(t) =
4G2Mµ

c4 drb(t)

(
1− 3b

GMµrb(t)2

)
. (2.34)
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2 Ondas gravitacionales de binarias magnetizadas en el regimen lineal

Notemos que haciendo b = 0 en las Ecs. (2.30, 2.31) éstas se reducen a las expresiones
bien conocidas para binarias no-magnetizadas presentadas, por ejemplo, en la referencia
[31].

Para ondas gravitacionales, el término 2φb en la Ec.(2.33) puede ser aproximado como
2φb ≃ 2φ̇bt donde la frecuencia de las ondas gravitacionales, ωGW = 2φ̇b = 2ωb puede
ser obtenida. La frecuencia medida en Hertz es simplemente νb = ωGW

2π
. El número de

ciclos durante la fase integral puede calcularse con la siguiente integral:

Nb =

∫ τb

0

νb(t) dt . (2.35)

La derivada de la frecuencia orbital, ω̇b, puede ser construida con la regla de la cadena:
ω̇b =

(
dωb

dr

) (
dr
dt

)
, donde

(
dωb

dr

)
está calculado directamente a partir de la Ec. (2.17), y(

dr
dt

)
se sustituye a partir de la Ec. (2.30). De este modo, obtenemos

ω̇b =
96G3M2µ

5c5r4

√
GM

r3

(
1− 3 b

GM µr2

)
×
(
1− 3b

GMµr2

)2(
1− 5b

GMµr2

)(
1 +

3b

GMµr2

)−1

.

(2.36)

Finalmente, considerando el radio circular de las binarias no-magnetizadas en la Ec. (2.17),
podemos escribir el radio como r = (GM/(ω2

0))
1/3, con φ̇0 = ω0, donde estamos denotan-

do ω0 como la frecuencia angular correspondiente a la binaria circular no-magnetizada.
Después de un poco de manipulación algebraica obtenemos

ω̇b =
96G5/3M2/3µω

11/3
0

5c5

√
1− 3k ω

4/3
0

(
1− 5k ω

4/3
0

)
×
(
1− 3k ω

4/3
0

)2 (
1 + 3k ω

4/3
0

)−1

,

(2.37)

donde k ≡ b/(GM)5/3µ.

2.4.2. Estimación de la masa

En esta sección, mostramos como las expresiones para la luminosidad gravitacional
en la Ec. (2.29) y el cambio del periodo orbital en la Ec. (2.31) puede ser utilizada para
determinar la masa total del sistema binario. Además, a partir de la masa total y la
masa reducida, podemos obtener las masas individuales. Vamos a asumir un escenario
en el cual definimos el radio Q = Ṗ

P
, y la luminosidad gravitacional L como funciones

del tiempo conocidas durante la fase de espiraleo.
A partir de las Ecs. (2.29, 2.31) visto como sistema de ecuaciones para las masas y

después de un poco de manipulación algebráica, obtenemos la siguiente expresión para
la masa total

M =
5Lr9Q2c5

96G2

√
3A(Lr3 +Qb) + f1

f2 +
√
3Af3

, (2.38)
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y la masa reducida

µ = − 48G

Lr11Q3c5

(√
3Af4 + f5

)
, (2.39)

donde

A =
√

3L2r6 + 20QbLr3 + 12Q2b2,

f1 = 3L2r6 + 13QbLr3 + 6Q2b2,

f2 = 9L4r12 + 96L3r9Qb+ 320L2r6Q2b2 + 389Lr3Q3b3 + 144Q4b4,

f3 = 3L3r9 + 22QbL2r6 + 44Q2b2Lr3 +Q3b3,

f4 = 3L2r6 + 14QbLr3 + 12Q2b2,

f5 = 9L3r9 + 72QbL2r6 + 144Q2b2Lr3 + 72Q3b3. (2.40)

Para campos magnéticos nulos b = 0, recuperamos las expresiones bien conocidas para
la masa total y reducida [118],

M0 =
5Q2c5r3

288G2L
and µ0 = −864GL2

5Q3c5r2
. (2.41)

Para entender mejor el efecto de los campos magnéticos en la determinación de µ y M
definimos la variable

x ≡ Qb

L r3
. (2.42)

Mediante re-escribir la Ec. (2.38) en términos de x, obtenemos M(x) =M0fM(x) donde

fM(x) ≡ 3
(
3 + 13x+ 6x2 +

√
3Ax(1 + x)

)
√
3Axf6 + f7

, (2.43)

con las definiciones

Ax =
√
12x2 + 20x+ 3,

f6 = 3 + 22x+ 44x2 + 24x3,

f7 = 9 + 96x+ 320x2 + 384x3 + 144x4. (2.44)

La masa reducida en términos del parámetro x se obtiene a partir de la Ec. (2.39) como
µ(x) = µ0fµ(x), donde:

fµ(x) ≡
1

2
+
√
3Ax

(
1

6
+

7x

9
+

2x2

3

)
+ 4x+ 8x2 + 4x3. (2.45)

De acuerdo a las Ecs. (2.38, 2.39) dados algunos valores de la luminosidad gravitacionalL,
y el cambio logarítmico de la frecuencia de las ondas gravitacionales Q, es posible deducir
el valor de la masa total M y masa reducida µ. Cualquier desviación de los valores en
las Ecs. (2.41) (lo que es equivalente a tener fM ̸= 1 y fµ ̸= 1) pueden ser asociados con
la presencia de un campo magnético.
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Figura 2.2: Funciones fM y fµ, las cuales se definen en las Ecs. (2.43, 2.45). La intersec-
ción de las rectas se da en fM = 1 = fµ y x = 0, correspondiendo al caso sin
campos magnéticos.

Las masas individuales de la binaria pueden determinarse a partir de las definiciones
de masa total y masa reducida, de este modo obtenemos que:

M1(x) =
1

2
M0fM(x)

[
1−

√
1− 1

4

µ0

M0

fµ(x)

fM(x)

]
,

M2(x) =
1

2
M0fM(x)

[
1 +

√
1− 1

4

µ0

M0

fµ(x)

fM(x)

]
. (2.46)

Notemos que las masas individuales dependen de los valores M0 y µ0 y no las masas
individuales sin campos magnéticos.

Como describiremos en la siguiente sección, un campo magnético no nulo es consistente
con la actual incertidumbre en la estimación de las masas de la fuente para sistemas
binarios tanto con iguales como distintas masas individuales. Más aún, la estimación de
masa mínima y máxima puede ser utilizada para determinar límites mínimos y máximos
para los campos magnéticos de las estrellas de neutrones fuente.
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2.5 Resultados y Discusión

La Fig. 2.2 muestra gráficas de fM y fµ en términos de x. Nos estamos centrando en
una región cercana a x = 0 (campos magnéticos nulos) ya que tenemos interés en desvia-
ciones pequeñas producidas por los campos magnéticos. Cerca del origen, la pendiente
de fM es negativa mientras que la pendiente de fµ es positiva y como mostramos, este
comportamiento causará una sobre u subestimación en la masa de cada componente en
la presencia de campos magnéticos.

Valores de x > 0 corresponden a binarias con dipolos magnéticos anti-alineados y
x < 0 corresponde a dipolos alineados. Esto es consistente con el hecho de que las
configuraciones anti-alineadas almacenan más energía potencial.

En la siguiente sección mostraremos el efecto de los campos magnéticos sobre el strain
de las ondas gravitacionales y la estimación de las masas utilizando algunos ejemplos de
relevancia astrofísica.

2.5. Resultados y Discusión

En esta sección consideramos tres enfoques distintos en los cuales aplicamos cualitativa
y cuantitativamente el formalismo que hemos desarrollado en las secciones anteriores con
el propósito general de determinar el rol de los campos magnéticos en las binarias en
escenarios de interés astrofísico.

2.5.1. Efecto de la alineación de los dipolos magnéticos sobre
la binaria y sus ondas gravitacionales

En primer lugar vamos a analizar la fase de espiraleo de la binaria magnetizada.
En esta sección consideramos la fase de espiraleo del movimiento orbital utilizando dos
sistemas de estrellas de neutrones binarias: uno con masas iguales de M1 =M2 = 1.4M⊙
(M = 2.8M⊙, µ = 0.7M⊙) y otro con masas M1 = 1.8M⊙, M2 = 1M⊙ (M = 2.8M⊙,
µ = 0.643M⊙) y una separación de r0 = 100 km. Cualitativamente describimos el efecto
de los campos magnéticos en algunas variables relevantes. Tomamos el radio de las
estrellas de neutrones como R = 12 km, y fijamos el radio mínimo como rmin = 24 km. En
esta fase, tomamos campos magnéticos constantes B1 = B2 = 8×1016 G para determinar
el efecto de la alineación relativa entre los dipolos y sus consecuencias sobre la forma de
las ondas gravitacionales. Considerando el parámetro b, calculamos el tiempo τb que le
toma a las binarias alcanzar el radio mínimo, para cada configuración con dipolos anti-
alineados b < 0 y dipolos alineados b > 0. Para su comparación, también presentamos
el caso sin campos magnéticos b = 0. Los resultados se presentan en el Cuadro (2.1), en
éste, observamos que las binarias con masas iguales se fusionan antes que las que tienen
tienen diferentes masas individuales, independientemente de si hay campos magnéticos.
En constaste, para ambos sistemas binarios tenemos que cuando b < 0, el tiempo τb < τ0
y cuando b > 0, entonces τb > τ0.

La separación r(t) se obtiene de t = 0 a τb para cada caso resolviendo numéricamente
la ecuación diferencial (2.30). La Fig. 2.3 muestra r(t) para casos con masas iguales
y distintas. La alineación relativa, como hemos descrito, está dada por el signo de b.
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2 Ondas gravitacionales de binarias magnetizadas en el regimen lineal

Alineación del dipolo magnético b = 0 b < 0 b > 0

Masas iguales τ0 = 0.36647 s τb = 0.36572 s τb = 0.36724 s
(τb/τ0 = 0.9977) (τb/τ0 = 1.0028)

Masas distintas τ0 = 0.39905 s τb = 0.39815 s τb = 0.39996 s
(τb/τ0 = 0.9979) (τb/τ0 = 1.0021)

Cuadro 2.1: Tiempo para alcanzar el radio mínimo rmin = 24 km a partir de una se-
paración inicial r0 = 100 km para dos alineaciones relativas. El caso con
b = 0 corresponde al caso sin campos magnéticos. En los casos donde b ̸= 0,
también se especifica el valor del cociente τb/τ0.

Adicionalmente, determinamos la frecuencias de las ondas gravitacionales a partir de

Figura 2.3: Se presenta la evolución de la separación de las estrellas de neutrones pa-
ra casos con M1 = M2 = 1.4M⊙, y M1 = 1.8M⊙,M2 = 1M⊙. Estamos
utilizando campos magnéticos de B = 8 × 1016 G. Los paneles superiores
representan una mirada más cercana a los efectos magnéticos para hacerlos
más notables cerca de la fusión.
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νb(t) = φ̇b(r(t))/π y la Ec. (2.17). La frecuencia resultante como función del tiempo se
muestra en la Fig. 2.4.

Figura 2.4: Evolución de las frecuencias de las ondas gravitacionales durante los últimos
instantes de la fase de espiraleo para sistemas binarios con masas iguales
(arriba a la izquierda) y desiguales (arriba a la derecha). El intervalo de
tiempo y condiciones son las mismas que en la Fig. 2.3. La figura inferior
muestra seis casos durante toda la fase de espiraleo.

Las amplitudes h+ y h× se obtienen a partir de la Ec.(2.33) y la integración numérica
de las Ecs. (2.17) y (2.30). En la Fig. 2.5 la polarización h+ se grafica considerando una
distancia d = 40 Mpc (como la reportada en el evento GW170817). Esta distancia nos da
un strain en el radio mínimo de h(min)

b = 10−20, como se muestra en la Fig. 2.5. El número
de ciclos se calculó utilizando la Ec. (2.35) y presentamos los resultados en el Cuadro 2.2.
Observamos que las binarias magnetizadas con masas iguales tienen menos número de
ciclos Nb que la binaria con masas distintas, independientemente de la alineación de los
dipolos magnéticos. Vemos que debido a la relación entre las masas individuales, cuando
b < 0 entonces Nb < N′ y vice versa, cuando b > 0 entonces Nb > N′. En este análisis
hemos incluído casos con masas individuales iguales y distintas, estas diferencias afectan
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2 Ondas gravitacionales de binarias magnetizadas en el regimen lineal

Figura 2.5: En la figura inferior se muestra la polarización h+ durante la fase de es-
piraleo para binarias con masas iguales y masas diferentes comenzando de
una separación inicial de 100 km. En las figuras superiores, presentamos una
amplificación de los instantes finales, donde los efectos magnéticos son más
notables.

Alineación dipolar magnética b = 0 b < 0 b > 0

Masas iguales N0 = 110.74533 Nb = 110.46847 Nb = 111.02361
(Nb/N0 = 0.9975) (Nb/N0 = 1.0025)

Masas no-iguales N0 = 120.58936 Nb = 120.26116 Nb = 120.91928
(Nb/N0 = 0.9973) (Nb/N0 = 1.0027)

Cuadro 2.2: Número de ciclos en la fase de espiraleo para ambos sietemas binarios, co-
menzando en r0 = 100 km. La alineación dipolar magnética corresponde a
campos magnéticos de intensidad B1 = B2 = 8×8×1016 G. Por practicidad,
también se especifica el cociente Nb/N0 = para los casos correspondientes.

notablemente la frecuencias de las ondas gravitacionales emitidas.
A continuación consideraremos los casos para un rango de campos magnéticos.
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2.5.2. Efecto magnético sobre variables del espiraleo

Vamos continuar con nuestro análisis, ahora variando la magnitud de los campos
magnéticos para describir el efecto correspondiente sobre las variables de la fase de
espiraleo: el tiempo para alcanzar el radio mínimo, la luminosidad gravitacional, el strain
y la frecuencia de las ondas gravitacionales. Para el análisis en esta parte, consideramos
dos sistemas binarios, uno con masas iguales de M1 = M2 = 1.4M⊙ y otro con masas
distintas: M1 = 1.8M⊙, M2 = 1M⊙. Consideramos campos magnéticos con intensidades
entre B = 1012 G y B = 8×1016 G, consistentes con los valores y predicciones reportadas
en [106, 103]. Estas magnitudes de los campos magnéticos implican que el parámetro b
toma valores dentro del intervalo −4.77 × 1069 g cm5/s2 < b < 4.77× 1069 g cm5/s2. En
la Fig. 2.6 el valor de τb como una función de b se grafica para ambos sistemas binarios.
Estamos definiendo τ0 := τb(b = 0). Como mostramos en la Fig. 2.6, independientemente

Figura 2.6: Valores del tiempo al cual el radio mínimo es alcanzado τb a partir de una
separación inicial de r0 = 200 km y un rango de valores del parámetro mag-
nético b. El código de color representa la magnitud de los campos magnéticos,
de morado para B = 0 a amarillo para B = 8 × 1016 G.

del campo magnético, el sistema con masas iguales alcanza su radio mínimo en un tiempo
más corto τb respecto al caso con masas distintas. Sin embargo, en ambos casos, si b < 0,
τb < τ0 y si b > 0, τb > τ0. Podemos interpretar este resultado como la muestra de que
una configuración donde b > 0 (b < 0) produce un ligero incremento (decremento) en el
tiempo requerido para alcanzar rmin. Este enunciado cualitativo puede ser cuantificado
a través de la desviación magnética definida como el radio

∆X =
Xb −X0

X0

, (2.47)

donde Xb es una variable que depende del parámetro magnético b y X0 = Xb(b = 0).
Siguiendo nuestro análisis de τb, ∆τ = τb−τ0

τ0
. En los casos donde τb > τ0, entonces

∆τ > 0, esto ocurre para configuraciones con b < 0. En constaste, cuando τb < τ0,
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2 Ondas gravitacionales de binarias magnetizadas en el regimen lineal

entonces ∆τ < 0 lo cual ocurre cuando b > 0. El orden de magnitud de ∆τ se muestra
en el Cuadro 2.3, el cual es el mismo para binarias con masas iguales y desiguales. El
cambio en el tiempo para alcanzar el radio mínimo es alrededor de 10−4 con respecto al
cambio en el tiempo del sistema sin interacción magnética.

Ahora vamos a considerar el strain h
(min)
b en rmin dada por la Ec. (2.34). Si b < 0,

hmin
b < hmin

0 ; en contraste si b > 0, entonces hmin)
b > hmin

0 . En otras palabras, cuando la
alineación entre los dipolos magnéticos es tal que b < 0, el strain del sistema magnetizado
es más pequeño que el strain del sistema no magnetizado en rmin. Lo opuesto ocurre
cuando b < 0, como vemos en la Fig. 2.7. El orden de magnitud de la desviación

Figura 2.7: El strain en rmin para ambos sistemas binarios. La distancia a la fuente d
utilizada para calcular el strain es d = 40 Mpc, muy similar a la distancia
a la fuente de la señal GW170817. El código de color es el mismo que en la
figura 2.6.

B(G) 1012 1013 1014 1015 1016

∼ |∆τ | 10−12 10−10 10−8 10−6 10−4

∼ |∆h(rmin)| 10−11 10−9 10−7 10−5 10−3

∼ |∆L(rmin)| 10−10 10−8 10−6 10−4 10−2

Cuadro 2.3: Valor absoluto de la desviación sobre τb, hb(rmin) y Lb(rmin) para algunos
valores típicos de la intensidad de los campos magnéticos B presentes en las
estrellas de neutrones.

magnética para ∆hmin
b se presenta en el Cuadro 2.3. Notemos que, en contraste con la

desviación en el tiempo de fusión, el signo de la desviación del strain en rmin es positivo
cuando b < 0, lo cual significa que ∆hmin > 0 cuando los dipolos están anti-alineados, y
∆hmin < 0 cuando los dipolos magnéticos están antialineados. En este caso, el cambio en
la magnitud del strain puede se hasta de 10−3. La luminosidad Lb dada en la Ec. (2.29)
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y la frecuencia de las ondas gravitacionales νb evaluada en rmin se muestra en la Fig. 2.8
y 2.9. La frecuencia de las ondas gravitacionales νb, se grafica sin barras de colores
porque las diferencias entre los sistemas binarios son muy pequeñas. En el Cuadro

Figura 2.8: La luminosidad, Lb(rmin), evaluada en rmin = 24.89 km respecto al rango
del parámetro magnético b para estrellas de neutrones con masas iguales (iz-
quierda) y distintas (derecha). L0 corresponde a la luminosidad gravitacional
para la binaria no-magnetizada. El código de color es como en la Fig.(2.6).

Figura 2.9: (Izquierda). Frecuencia de las ondas gravitacoinales νb(r), evaluada en r =
rmin = 24.89 km como función del parámetro magnético b para casos con ma-
sas iguales. La frecuencia ν0(rmin) corresponde a una binaria no-magnetizada.
(Derecha) Lo mismo que en la Izquierda pero para casos con masas distintas.
El código de color es como en la Fig. 2.6.

2.3 se muestran las desviaciones magnéticas a las variables τ , ∆h y ∆L. Para el valor
máximo que estamos trabajando para los campos magnéticos, B ∼ 1016 G, el tiempo de
función ∆τb(rmin) ∼ 10−4, el strain ∆h(rmin) ∼ 10−3 y ∆Lb ∼ 10−2. Además, notemos
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2 Ondas gravitacionales de binarias magnetizadas en el regimen lineal

que para b > 0, todas las desviaciones, excepto ∆τb, son negativas y las desviaciones de
los casos no-magnetizados es más notable en la luminosidad gravitacional, resultando en
un cambio del orden 10−2. Los resultados presentados se extienden a lo largo de toda la
fase de espiraleo, debido al comportamiento monótono de las variables. Un resumen del
comportamiento cualitativo del tiempo τb, strain hb, la luminosidad gravitacional Lb, la
frecuencia de las ondas gravitacionales νb, y número de ciclos, Nb, dependiendo del signo
de b se muestra en el Cuadro 2.4.

Variable b = 0 b < 0 b > 0

τb τ0 τb < τ0 τb > τ0
hb h0 hb > h0 hb < h0
Lb L0 Lb > L0 Lb < L0

νb ν0 νb > ν0 νb < ν0
Nb N0 Nb < N′ Nb > N′

Cuadro 2.4: Comportamiento relativo de algunas variables astrofísicos: el tiempo para
alcanzar el radio rmin, τb, el strain, hb, la luminosidad gravitacional, Lb, la
frecuencia de las ondas gravitacionales νb y el número de ciclos Nb, entre
casos magnetizados y no magnetizados.

2.5.3. Estimación de la masa: otra aplicación.

Dado que los detectores tienen un rango de frecuencias de observación y una sensibi-
lidad, sus reportes de masas de las fuentes tienen asociadas incertidumbres.

El escenario presentado en esta parte es ligeramente diferente que los presentados
previamente. Aquí, mostramos como las incertidumbres en las mediciones de las masas de
las binarias fuentes de ondas gravitacionales, pueden ser utilizadas para establecer límites
en los campos magnéticos presentes en los sistemas binarios de estrellas de neutrones.
Para nuestro propósito, consideraremos la señal GW170817 debido a que es la primera
evidencia de la colisión de dos estrellas de neutrones y por su relevancia en el desarrollo
subsecuente de la astrofísico. Cabe señalar que algunas suposiciones son utilizadas en
el presente estudio (como la excentricidad cero de las órbitas y la no-rotación de las
estrellas de neutrones) son consistentes con aquellos reportados en [83]. Ahora vamos
a proceder como sigue: La Colaboración LIGO-Virgo reporta para la señal GW170817,
una masa total de la binaria de estrellas de neutrones igual a M = 2.74+0.04

−0.01M⊙ [83]. En
adición, los errores sistemáticos y estadísticos implican los valores límite para la masa
total del sistema:

Mmin = 2.73M⊙ and Mmax = 2.78M⊙ .

Considerando la definición de la función fM ≡M/M0, y tomando como masa promedio
M0 = 2.74M⊙ y Mmin(Mmax) como la masa mínima (máxima) posible para la masa total
M . Entonces

f
(min)
M ≡ Mmin

M0

=
2.73

2.74
= 0.99635 , (2.48)
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2.5 Resultados y Discusión

y

f
(max)
M ≡ Mmax

M0

=
2.78

2.74
= 1.0145 . (2.49)

Esto nos provee un dominio en x para la función fM ,

0.99635 ≤ fM ≤ 1.0145.

Este resultado es consistente con los datos. Utilizando el hecho de que fM es monótona
en x en una pequeña vecindad de x = 0, (esto puede ser visto a partir de la Ec. (2.43)),
y además, puede ser invertido para obtener valores máximos y mínimos de x como
xmin = −0.00225 and xmax = 0.00058. Posteriormente, a partir de la definición de la

Figura 2.10: Función fM(x) con L y Q estimadas a partir de la señal GW170817. La lí-
neas horizontales representan f (max)

M y f (min)
M como se definen en la Ec. (2.49)

y Ec.(2.48) respectivamente. Líneas verticales son utilizadas para entender
mejor los valores de xmax y xmin. La intersección de las tres líneas determi-
nan que los masas permitidas son consistentes con la señal GW170817.

variable adimensional x, Ec. (2.42), tenemos que b = Lr3x/Q. Utilizando los valores
consistentes con la señal GW170817 obtenemos los siguientes valores para la luminosidad
y cambio logarítmico del periodo: L = 1.8423× 1055 ergs/s y Q = −272.4447 Hz, y con
esto, obtenemos el siguiente rango para el parámetro magnético

bmin = −9.69× 1071xmaxemu2 = −5.623× 1068emu2,

bmax = −9.69× 1071xminemu2 = 2.18× 1069emu2. (2.50)

43



2 Ondas gravitacionales de binarias magnetizadas en el regimen lineal

Notemos que el signo de b es opuesto al signo de x, de modo que las configuraciones
con bmin < 0 corresponden a xmax > 0, y viceversa. Finalmente, a partir de la Ec. (2.4),
podemos estimar la magnitud de los campos magnéticos asociados con los valores mí-
nimos y máximos de la masa. En términos de los campos magnéticos de los dipolos, el
valor de bmin requiere dipolos anti-alineados con B = 2.74×1016 G, el máximo teorizado
para estrellas de neutrones, y bmax requiere dipolos alineados con campos magnéticos de
magnitud B = 5.41× 1016 G. En resumen, la masa más alta para GW170817 puede ser
asociada con la presencia de campos magnéticos alineados. La masa total mas pequeña
puede ser asociada con campos magnéticos anti-alineados de la misma magnitud. De
este modo, podemos inferir que las incertidumbres de la colaboración LIGO-Virgo pa-
ra la determinación de las masas, permite la presencia de campos magnéticos de hasta
B = 2.74 × 1016. Es entonces importante que la precisión en la medición de las masas
incremente, de este modo podrían determinarse los campos magnéticos en las estrellas
de neutrones que chocan y emiten ondas gravitacionales

2.6. Conclusiones del capítulo 2

En el contexto de la astronomía de ondas gravitacionales y el modelado de las fuen-
tes, los objetos compactos son un tema central de estudio. Las estrellas de neutrones
son de los objetos astrofísicos que pueden poseer los campos magnéticos más intensos
del Universo. Entonces, se espera que los campos magnéticas jueguen un rol importante
en la dinámica de las estrellas de neutrones. En sistemas binarios, la emisión de ondas
gravitacionales puede verse ligeramente afectada por la presencia de campos magnéticos
intensos como ya había sido presentado en previas investigaciones [104, 107].
En este trabajo, presentamos un simple, pero útil modelo de un sistema binario de es-
trellas de neutrones que incorpora los campos magnéticos en la dinámica de la binaria.
Nuestro enfoque está basado en el formalismo cuadrupolar para calcular las ondas gra-
vitacionales emitidas durante la fase de espiraleo para sistemas binarios magnetizados.
En un primer momento, utilizamos la descripción Newtoniana de la Gravedad y descri-
bimos los campos magnéticos de cada estrella como dipolos magnéticos perfectos para
obtener expresiones para la frecuencia orbital de la binaria magnetizada. Además, como
las ondas gravitacionales tienden a circularizar las órbitas de la binaria, nos enfocamos
en el caso circular.

Asumiendo que la contribución de los espines individuales al momento angular total
del sistema binario es muy pequeño, la contribución gravitacional y magnética domina
la contribución del momento angular orbital y entonces las ecuaciones que contienen la
interacción gravitacional y magnética puede ser expresadas en una forma muy simple y
analítica. En particular, podemos argumentar que en la aproximación de dipolos magné-
ticos para las estrellas de neutrones, los momentos magnéticos individuales se mantienen
en general alineados con el momento orbital angular. Bajo esta consideración mostramos
que la dinámica de las binarias puede ser reducida a un problema de un cuerpo.
Mediante el estudio del potencial efectivo del problema equivalente de un cuerpo, mos-
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tramos que existe un valor crítico para los campos magnéticos por debajo del cual no
existen órbitas ligadas. Este valor crítico emerge solamente cuando los momentos mag-
néticos están anti-alineados. Esto es, los sistemas ligados no existen si los campos son
suficientemente intensos y con sus dipolos alineados entre sí porque la repulsión magné-
tica es más fuerte que la atracción gravitacional.
En nuestro análisis determinamos el efecto de los campos magnéticos sobre algunas
variables astrofísicas relevantes para un sistema binario tales como la luminosidad gra-
vitacional, la tasa de cambio logarítmico del periodo orbital, el tiempo para alcanzar
un radio mínimo y la masa total. Como esperábamos los resultados presentados aquí
se reducen al problema binario de órbitas circulares en ausencia de campos magnéticos,
descrito por ejemplo en [118].
Como una aplicación a nuestro modelos, mostramos que para sistemas binarios con masa
total M = 2.8M⊙, y magnitud de sus campos magnéticos de B ≃ 1016 G el radio entre
el potencial magnético y gravitacional Um/Ug es del orden de ∼ 10−4 cuando las estrellas
están cerca de la colisión. También, encontramos que las desviaciones en la frecuencia y
strain de las ondas gravitacionales con respecto a los casos no-magnéticos son del orden
de ∼ 10−4 y las desviaciones en la luminosidad son un poco más grandes, son ∼ 10−2

con respecto al caso no magnetizado.
Por otro lado aplicamos este modelo a dos posibles escenarios astrofísicos.
(i) Considerando que la luminosidad gravitacional y la tasa de cambio logarítmico del

periodo orbital pueden ser extraídas de los datos observacionales, nuestro modelo nos
permite estimar el efecto de los campos magnéticos en la determinación de las masas in-
dividuales sobre la binaria. Mostramos que la masa total y masa reducida, puede ser sub
o sobre-estimadas con respecto a un sistema binario sin interacción magnética. Además,
si los momentos magnéticos están alineados, la masa total es subestimada mientras que si
los momentos magnéticos están anti-alineados, la masa total se sobre-estima. Lo opues-
to ocurre con la masa reducida. En concreto, para magnitudes de B ∼ 1016 G, pueden
causar una sobre-estimación o sobre-estimación hasta 2% de la masa total. Aunque este
porcentaje parece pequeño, la desviación cae dentro de los rangos de incertidumbre de
los detectores de la Colaboración LIGO-Virgo [138]. (ii) Usamos como ejemplo el evento
GW170817 y lo aplicamos a nuestro modelo para calcular la incertidumbre en la deter-
minación de la masa de los progenitores reportadas en la literatura. Este procedimiento,
naturalmente impone un rango de posibles magnitudes de los campos magnéticos de la
fuente de la señal GW170817. Concretamente, los posibles valores mínimos y máximos
de la masa total asociada con la señal GW170817 dan un rango para que la binaria
progenitora tenga magnitudes de los campos magnéticos de B ∼ 1016 G, lo cual está
dentro de lo esperado.

Como estimamos en la Sec. 2.5 los efectos de los campos magnéticos son muy pequeños
como para ser detectados con los actuales detectores de ondas gravitacionales, a menos
que estos tuviesen campos magnéticos tan intensos como B = 1017 G. Puesto que en un
futuro la sensitividad y alcance de las observaciones de ondas gravitacionales permitirán
la detección de los campos magnéticos y sus efectos en las propiedades de la binaria y las
ondas gravitacionales, estudios como éste son de gran importancia. Basado en nuestros
resultados, las plantillas de ondas gravitacionales pueden ser generadas y posteriormente

45



2 Ondas gravitacionales de binarias magnetizadas en el regimen lineal

efectuar la correspondiente búsqueda utilizando los datos publicados por la colaboración
LIGO. Los resultados del presente capítulo pueden consultarse en [20]. Se agradece a los
autores de dicho trabajo por sus valiosos aportes.
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3 Ondas gravitacionales de la
colisión frontal de estrellas de
bosones-ℓ

Este capítulo está basado en una investigación en elaboración que próximamente será
enviada para su publicación. La investigación tiene por título: Detection of gravitational
waves emitted from head-on collisions of ℓ-boson stars y los autores son: Mariana Lira
(ICN-UNAM), Mtra. Laura O. Villegas (UdG), Dra. Claudia Moreno (Udg), Dr. Javier
M. Antelis (Tec de Monterrey), Dr. Víctor Jaramillo (USTC) y Dr. Darío Nuñez (ICN,
CIDMA).

3.1. Resumen

Se examinan distintas señales de la colisión frontal de estrellas de bosones-ℓ, las cuales
son posibles objetos compactos de materia oscura. Presentamos una revisión a los aspec-
tos generales y propiedades de este tipo de objetos. Utilizamos los resultados de trabajos
previos para analizar distintos perfiles de ondas gravitacionales generados en estas coli-
siones. Para fijar ideas, elegimos como distancia a la fuente 100 Mpc y determinamos el
rango de masas y amplitudes del campo escalar que compone a las estrellas de bosones-
ℓ. Posteriormente, procesamos las señales y obtenemos las imagenes como podrían ser
detectadas por los detectores de la colaboración LIGO-Virgo-Kagra y otros. Además,
comparamos cualitativamente las caracteristicas de este tipo de señales gravitacionales
con las producidas por colisiones de agujeros negros.

3.2. Introducción

Desde la primera detección de ondas gravitacionales (OGs) por la Colaboración LIGO-
Virgo (CLV) en 2015 [61], la era de la astronomía de ondas gravitacionales ha comenzado
y está avanzando rapidamente. A la CLV [139] se le ha sumado el grupo KAGRA en
Japón [140]. El método empleado para analizar los datos de los detectores de CLV y
KAGRA (CLVK) se llama filtro por empate y requiere forzosamente de modelos teóricos
de ondas gravitacionales, sin ellos, no sería posible extraer las señales y asociarlas a
una fuente. Es decir, son necesarios los modelos teóricos y un procesamiento de datos
para encontrar señales gravitacionales de origen astrofísico. La CLVK ha terminado tres
periodos de observación cuyos resultados pueden consultarse en el Tercer Catálogo de
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Ondas Gravitacionales Transientes[138]. Reportan 90 eventos confirmados de 2015 a
la fecha, todos estos eventos están asociados con la fusión de estrellas de neutrones o
agujeros negros binarios. El cuarto periodo de observación O4 comenzó en Mayo de 2023
y sigue activo.

Dentro del estado-del-arte de las investigaciones en este tema, se modelan principal-
mente agujeros negros y estrellas de neutrones binarias como fuentes de OGs, ampliando
el espacio de parámetros y los modelos. Más aún, con OGs, existe una gran oportunidad
para probar modelos teóricos de otras posibles fuentes teóricas de ondas gravitacionales,
como las estrellas de bosones [86] y las estrellas de Proca[141]. Las estrellas de bosones
son sistemas astrofísicos teóricos cuya existencia aún no ha sido comprobada ni descar-
tada. Se construyen dentro del marco teórico de la Relatividad General como soluciones
auto-gravitantes al sistema de ecuaciones Einstein-Klein-Gordon, donde los bosones se
describen a partir de un campo escalar complejo [142]. El campo escalar está tomando
cada vez mayor interés como candidato para describir la materia oscura del Universo
[16]. Es un campo del espaciotiempo cuatridimensional donde a cada punto xa se le
asigna una cantidad escalar compleja: Φ. Para una revisión detallada y actualizada del
tema, existen algunos artículos de revisión como [15].

Hay una amplia variedad de modelos de estrellas de bosones, las más simples fueron
construidas a finales de los 1960s [89, 143], conformadas por un solo campo escalar.
Una de las configuraciones más interesantes son las estrellas de bosones-ℓ [142, 144].
Una estrella de bosones-ℓ es esféricamente simétrica y está formada por 2ℓ + 1 campos
escalares complejos.

Se han planteado varios escenarios bajo los cuales se podrían detectar las estrellas de
bosones-ℓ y así confirmar (o descartar) su existencia. Una posible manera sería a través
de la detección de sus ondas gravitacionales producto de la interacción de dos de ellas.
En simulaciones numéricas recientes, se ha encontrado que si dos estrellas de bosones
chocan frontalmente, emiten ondas gravitacionales [86].

En el trabajo [145] se analiza bajo que valores de la masa bosónica, las estrellas de
bosones binarias podrían ser imitadores de agujeros negros binarios.

En simulaciones recientes de colisiones frontales de estrellas de bosones-ℓ, se encuentra
que dependiendo de la masa de las estrellas de bosones-ℓ, el remanente de la colisión
puede ser un agujero negro, una estrella de bosones-ℓ, ó un producto desviado de la
simetría esférica con un campo escalar en disipación. Del mismo modo, la forma de las
ondas gravitacionales es distinta en cada caso [146] .

En el presente capítulo analizamos distintos ejemplos de sistemas binarios de estre-
llas de bosones-ℓ en colisión frontal, las cuales son posibles objetos de materia oscura.
Presentamos una revisión a los espectos generales de este tipo de configuraciones auto-
gravitantes y utilizamos estos resultados para analizar los perfiles de ondas gravitaciona-
les emitidos en la colisión. Elegimos como distancia a la fuente 100 Mpc, y, determinamos
el rango de energía intrínseca del campo escalar que compone a las estrellas que podrían
ser detectadas por los actuales observatorios de ondas gravitacionales. Además, procesa-
mos las señales y obtenemos los espectogramas y datos que verían los observatorios en
la colisión frontal de estrellas de bosones y, resaltamos las similitudes y diferencias con
las señales gravitacionales producidas en la colisión de agujeros negros.
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3.3 Fundamentos teóricos

Como está organizado este capítulo. En este trabajo, exploramos los ocho mode-
los de colisiones frontales de estrellas de bosones-ℓ generados en [146] (cuatro correspon-
den a binarias con ℓ = 0 y cuatro a binarias ℓ = 1). Aprovechando la libertad de elección
de energía intrínseca del campo bosónico mΦc

2, hacemos predicciones sobre los valores de
energía que debería tener el campo escalar de las estrellas de bosones, para que éstas, al
chocar frontalmente, emitan ondas gravitacionales con frecuencias y amplitudes dentro
del rango de detección de la colaboración LIGO, Virgo, Kagra. Procesamos las señales
para obtener la amplitud, energía y frecuencia característica de las ondas gravitacionales
para el rango de mΦc

2 estimado. Posteriormente, elegimos un valor conveniente de la
energía mΦc

2 (lo cual fija los valores de las masas y radios de la fuente, así como el
tiempo de la colisión) y comparamos las señales entre fuentes con el mismo radio pero
distinto valor del parámetro ℓ. En la sección de Resultados, mostramos que las señales
de estrellas de bosones ℓ = 1 son más fáciles de ser detectadas por LIGO-Virgo-KAGRA
que las estrellas de bosones con ℓ = 0. Sintetizamos ésta y otras conclusiones en la última
sección del presente capítulo.

3.3. Fundamentos teóricos

En las subsecciones 3.3.1 y 3.3.2 se describen las estrellas de bosones estándar ( ℓ = 0)
y las estrellas de bosones-ℓ, respectivamente. En la subsección 3.3.3, vamos a conside-
rar sistemas binarios de ambos tipos de estrellas de bosones que interactúan entre sí
unicamente a través de la Gravedad de acuerdo al sistema de ecuaciones de Einstein-
Klein-Gordon.

3.3.1. Estrellas de bosones (ℓ = 0)

Sabemos que la acción en Relatividad General S está dada por la integral volumé-
trica de la función lagrangiana L de modo que: S =

∫ √−gL d4x. Las ecuaciones que
rigen toda la dinámica del sistema se obtienen a partir del principio de mínima acción
que establece que δS = 0. Para más detalles sobre el formalismo lagrangiano se puede
consultar la sección 1.1 del capítulo 1 de la presente tesis.

Las estrellas de bosones son configuraciones auto-gravitantes que satisfacen el sistema
de ecuaciones Einstein-Klein-Gordon (EKG). El sistema EKG se deduce aplicando el
principio variacional a la siguiente acción total:

S =

∫ √
|g|
[
c4R
16πG

+ LΦ

]
d4x, (3.1)

siendo LΦ la función lagrangiana del campo escalar Φ dada por:

LΦ = −1

2

(
∇aΦ∇a Φ

∗ + V
(
|Φ|2

))
, (3.2)

donde V (|Φ|2) es un potencial efectivo en principio arbitrario. El tensor Tab se obtiene
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a partir de la variación de la función lagrangiana respecto a la métrica:

Tab =
δL
δ gab

=
1

2

(
∇aΦ∇bΦ

∗ +∇bΦ∇aΦ
∗ − gab

(
gcd∇cΦ∇dΦ

∗ + V
(
|Φ|2

)))
. (3.3)

Al sustituir la función lagrangiana en la acción total y estimar la variación respecto
a los campos gravitacional y escalar se obtiene el sistema de ecuaciones Einstein-Klein-
Gordon (EKG):

Rab −
1

2
gabR =

8πG

c4
Tab, (3.4)

□Φ =
∂V

∂Φ∗ , (3.5)

con □ ≡ gab∇a∇b para un espaciotiempo estático y con simetría esférica descrito por
la métrica en la Ec. (3.6). La expresión anterior implica un sistema de tres ecuaciones
diferenciales para las funciones métricas y el campo escalar.

La ecuación para Φ es esencialmente una ecuación de onda y describe la dinámica del
campo escalar en un espaciotiempo dado por el tensor métrico gµν . Cuando resolvemos
junto a las ecuaciones de Einstein con el tensor dado por la Ec. (3.3), se obtiene una
estructura auto-gravitante compuesta de campo escalar. Para resolver es necesario definir
el potencial escalar y simplificar un poco el sistema de ecuaciones a través de la elección
de una métrica de prueba (anzatz) adecuada:

Anzatz y potencial escalar

Para construir soluciones esférico simétricas se considera el siguiente elemento de línea:

ds2 = −α(r) c2 dt2 + dr2

1− 2M(r)G
c2 r

+ r2dΩ2, (3.6)

donde dΩ es el elemento de línea de la 2-esfera y α(r) y M(r) son las funciones a resolver.
En esta simetría resulta lógico plantear como anzatz para el campo escalar una función
de onda plana con frecuencia ω, esto es,

Φ = ϕ(r) ei ω t. (3.7)

así como considerar el siguiente potencial escalar V

V
(
|Φ|2

)
= µ2ΦΦ∗, (3.8)

con µ conocido como parámetro de masa con unidades de inverso de longitud, que se
relaciona con la masa asociada a la partícula bosónica, mΦ, con

µ =
mΦ c

ℏ
, (3.9)
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3.3 Fundamentos teóricos

con c la rapidez de la luz en el vacío y ℏ la constante de Planck divida por 2π.
Por otra parte, al demandar que el espaciotiempo sea asintóticamente plano, condición

necesaria para obtener un objeto auto-gravitante, se encuentra que ω2/c2 < µ2. Es decir,
existe una relación entre la frecuencia de oscilación y la masa intrínseca del campo
escalar.

Al resolver numéricamente el sistema de ecuaciones, se deben considerar condiciones
iniciales y se obtienen configuraciones auto-gravitantes de campo escalar que reciben el
nombre de estrella de bosones caracterizadas por su masa total MKomar, el radio que
encierra el 99% de dicha masa, R99, el campo escalar y las funciones métricas. Este
procedimiento puede repetirse muchas veces para obtener una familia de estrellas de
bosones, como se aprecia en la Fig. (3.1). En esa figura, se grafica la masa MKomar

contra el radio R99.
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Figura 3.1: Se muestra la familia de estrellas de bosones ℓ = 0 estables en unidades. A la
izquierda se muestra la masa de Komar M̂Komar como función del radio R̂99

frecuencia de oscilación del campo escalar ω̂ = ω/(cµ) en el eje horizontal
y la masa total de la estrella M̂ = GµM/c2. A la derecha se muestra la
compacidad C en función de ω̂. El símboloˆ( gorrito ) denota que la cantidad
es adimensional.

3.3.2. Estrellas de bosones-ℓ

Las estrellas de bosones convencionales pueden ser generalizadas utilizando en lugar
de uno, varios campos escalares clásicos acoplados mínimamente a la Gravedad, [147],
como es el caso de las estrellas de bosones-ℓ de modo que en vez de considerar la función
lagrangiana de la Ec. (3.2) consideraremos ahora la siguiente lagrangiana:

L = −1

2

ℓ∑
m=−ℓ

(∇aΦm ∇a Φ
∗
m + V (|Φm|)) . (3.10)

Estas configuraciones ya han sido estudiadas a detalle, por ejemplo, en [144]. Cuando se
considera el parámetro ℓ se está suponiendo que la estrella de bosones-ℓ está compuesta
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3 Ondas gravitacionales de la colisión frontal de estrellas de bosones-ℓ

por el número impar 2ℓ+ 1 de campos escalares complejos Φℓm de la forma

Φℓm(t, r, ϑ, φ) = e−iωtϕℓ(r)Yℓm(ϑ, φ), (3.11)

donde ω es una frecuencia real, Yℓm(φ, ϕ) son los armónicos esféricos estándar, ℓ está
asociado al momento angular, m es el número de nodo. Cuando ℓ = 0, la ecuación
anterior se reduce a la Ec. (3.7). Cuando ℓ = 1, puede tomar los valores −1, 0, 1 por lo
que la estrellas de bosones ℓ = 1 queda descrita por tres campos escalares complejos:
Φℓ=1 = e−iωtϕ1(r)(Y11(ϑ, φ) + Y10(ϑ, φ) + Y1−1(ϑ, φ)); y así sucesivamente.

Siguiendo el mismo procedimiento que con las estrellas de bosones convencionales
(ℓ = 0), el tensor de energía-momento se obtiene a través de la variación de la Ec.
(3.10), de donde se obtienen 2ℓ+ 1 términos de la forma del tensor dado en la Ec. (3.3)
para un solo campo escalar. En el caso de las estrellas de bosones-ℓ,

Tµν =
1

2

∑
m

(
∇µΦm ∇ν Φ

∗
m +∇ν Φm ∇µΦ

∗
m − gµν

(
gαβ ∇αΦm ∇β Φ

∗
m + µ2ΦmΦ∗

m

))
.

(3.12)
Para comprobar que el tensor de energía-momento tiene simetría esférica y es indepen-
diente al tiempo, utilizamos el teorema de suma de los armónicos esféricos:

ℓ∑
m=−ℓ

|Y ℓm(ϑ, φ)|2 = 2ℓ+ 1

4π
, (3.13)

junto con el hecho de que aqui hay eigen-funciones del operador angular laplaciano:(
∂2

∂ θ2
+ cot θ

∂

∂ θ
+

1

sin2 θ

∂2

∂ φ2

)
Y ℓm = −ℓ(ℓ+ 1)Y ℓm, (3.14)

con esta relación puede demostrarse[142] que la dependencia angular de las soluciones
desaparece, el tensor de energía-momento se mantiene con simetría esférica [148].

La ecuación Klein-Gordon también pierde su dependencia angular, aunque mantiene
un término con ℓ (ℓ+ 1) /r2. Finalmente, se obtienen, al igual que con las estrellas de
bosones (ℓ = 0), configuraciones esféricas de campo escalar con un radio conteniendo el
99% de su masa, reciben el nombre de estrellas de bosones-ℓ [142].

Estos objetos son una generalización de las anteriores estrellas de bosones ya mencio-
nadas. Para un valor dado de ℓ, se puede obtener una familia de soluciones variando el
valor de ω y determinando las cantidades globales de cada solución, como se muestra en
la Fig. 3.2 la cual incluye tanto las estrellas de bosones con ℓ = 0 así como la familia
ℓ = 1. En ambos casos, el valor máximo de las curvas separa las configuraciones estables
de las inestables [149, 150]. En [144], distintas propiedades de las configuraciones de mul-
tiples campos escalares fueron analizadas, y, obtienen que la familia de soluciones ℓ = 1
tiene propiedades cualitativas muy similares a los otros casos. Las estrellas de bosones-ℓ
parecen ser estables ante perturbaciones esféricas, lo cual demuestra que oara cada valor
fijo de ℓ, existen estrellas de bosones linealmente estables ante fluctuaciones radiales.
Incluso, los resultados en [150] sugieren que la familia ℓ = 1 es un caso partícular de una
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familia más amplia de solitones auto-gravitantes, estáticos y posiblemente estacionarios.
Estas configuraciones, también pueden interpretarse como condensados-ℓ, de naturaleza
semi-clásica con número cuántico m.

Por otra parte, familias con valores grandes de ℓ ya han sido resueltas y construidas
en [151] y obtuvieron que las soluciones con grandes valores de ℓ tienden a formar un
cáscaron como estructura. Además, soluciones análogas pero usando materia exótica
han sido considerados en [99] con lo que se han construido ya soluciones de agujeros de
gusano-ℓ.

3.3.3. Colisión frontal de estrellas de bosones-ℓ

Como mencionamos en la introducción, aún cuando técnicamente las estrellas de
bosones-ℓ no colisionan, su interacción gravitacional genera una interferencia que mo-
difica la geometría del espaciotiempo y se producen ondas gravitacionales cuando una
estrella pasa a través de la otra. Mas aún, contrario a la colisión de agujeros negros, don-
de se generan ondas gravitacionales bien definidas, en cambio, para estrellas de bosones
ℓ = 0 y ℓ ̸= 0 [146], existe una variedad amplia de perfiles de ondas gravitacionales que
dependen de distintos parámetros, siendo la compacidad de las estrellas una de las más
determinantes.

Para valores grandes de compacticidad, el perfil de onda comienza a asemejarse al
generado por colisión de agujeros negros con sus características fases de fusión y amor-
tiguamiento, mientras que estrellas poco compactas al colisionar frontalmente general
perfiles de ondas gravitacionales muy distintos a la colisión de agujeros negros, no es
claro que haya fusión ni amortiguamiento, aunque sí algunas oscilaciones de periodo si-
milar en orden de magnitud, lo cual también las diferencian de las ondas gravitacionales
tipo destello o burst.

Para construir el sistema binario, designamos los índices i = 1, 2 para cada una de
estrellas de bosones-ℓ. Cada una está descrita por los campos escalares complejos Φ(i)

de la forma
Φ(i) = Φ

(i)
ℓm(t, r, ϑ, φ) = e−iωtϕ

(i)
ℓ (r)Yℓm(ϑ, φ), (3.15)

En el caso del sistema binario de estrellas de bosones-ℓ partimos de la siguiente función
lagrangiana

LΦSB = −
∑
i=1,2

ℓ∑
m=−ℓ

(∇aΦ
(i)
ℓm∇aΦ̄

(i)
ℓm + µ2∥Φ(i)

ℓm∥2), (3.16)

donde ∇a es la derivada covariante, µ ≡ mΦc
ℏ es el parámetro de masa, mΦ es la masa

intrínseca de la partícula bosónica que constituye a los campos escalares complejos de-
tonados Φ

(i)
ℓm con i = 1, 2 para representar a cada estrella. Φ̄(i)

ℓm son los campos escalares
conjugados.

En esta propuesta la simetría es esférica y la dependencia temporal es armónica. El
tensor de materia energía del sistema binario Tab está dado por la suma de los tensores
de materia-energía individuales T (1)

ab y T (2)
ab , es decir, Tab = T

(1)
ab + T

(2)
ab , con
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T (i)
a =

1

2

ℓ∑
m=−ℓ

[∇aΦ̄
(i)
ℓm∇bΦ

(i)
ℓm +∇aΦ

(i)
ℓm∇bΦ̄

(i)
ℓm − gab(∇αΦ̄

(i)
ℓm∇αΦ

(i)
ℓm + µ2Φ̄

(i)
ℓmΦ

(i)
ℓm)] (3.17)

con i = 1, 2, para referirse a la primera y segunda estrella, respectivamente.
Cada campo escalar satisface su correspondiente ecuación de Klein-Gordon:

gab∇a∇bΦ
(i)
ℓm − µ2Φ

(i)
ℓm = 0. (3.18)

Como en el caso de las estrellas de bosones individuales, se considera una métrica
estática y simétricamente esférica de la siguiente forma:

ds2 = −c2α2dt2 + a2dr2 + r2dΩ2, (3.19)

donde α = α(r) y a = a(r) son las funciones métricas a determinar y dΩ2 = dϑ2 +
sinϑ2dφ2 es el elemento de línea de la esfera-2 unitaria, entonces, las ecuaciones de
Klein-Gordon se simplifican a:

ϕ′′
ℓ = −ϕ′

ℓ

(
2

r
+
α′

α
− a′

2a

)
+ aϕℓ

(
µ2 +

ℓ(ℓ+ 1)

r2
− ω2

c2α2

)
, (3.20a)

a′

a
=

(1− a)

r
+ 4πra

[
(ϕ′

ℓ)
2

a
+ ϕ2

ℓ

(
µ2 +

ℓ(ℓ+ 1)

r2
+

ω2

c2α2

)]
, (3.20b)

α′

α
=

(a− 1)

r
+
a′

2a
− 4πraϕ2

ℓ

(
µ2 +

ℓ(ℓ+ 1)

r2

)
. (3.20c)

Para resolver este tipo de ecuaciones, se han desarrollado diversas infraestructuras
computacionales. Resalta Einstein Toolkit, especializado en la resolución de sistemas
relativistas[152]. Muchas de sus herramientas resuelven las ecuaciones en coordenadas
cartesianas para la parte espacial. Es por esto que las soluciones se transforman a las
coordenadas cartesianas mediante

x1 = x = r cosϕ sinφ, x2 = y = r sinϕ sinφ, x3 = z = r cosφ. (3.21)

La métrica también conviene reexpresarla como

ds2 = −c2α2dt2 + γjkdx
jdxk, (3.22)

donde γjk es la métrica espacial.
Consideremos un sistema binario compuesto por la superposición de dos estrellas de

bosones-ℓ aisladas. Las estrellas están inicialmente en reposo centradas en (xc, 0, 0) y
(−xc, 0, 0). Como dato inicial (t = 0) se considera que:

γjk = γ
(+)
jk (x− xc, y, z) + γ

(−)
jk (x+ xc, y, z)− ηjk(x, y, z) (3.23)
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donde ηjk es la métrica espacial plana. Bajo estas elecciones se utiliza la formulación
Baumgarte-Shapito-Shibata-Nakamura (BSSN) con el método de líneas localizado en la
espina MoL para resolver el sistema de ecuaciones. Estos métodos de evolución de campos
escalares han sido recientemente utilizados para el análisis de estrellas de bosones-ℓ. En la
sección III.B del artículo [146] se encuentran todos los detalles técnicos del mecanismo
empleado para generar las ondas gravitacionales que serán analizadas en la siguiente
sección del presente capítulo.

Las dos estrellas de bosones-ℓ están compuestas por el mismo conjunto de campos
escalares. Esta configuración recibe el nombre de estado coherente y se modela con un
conjunto de campos N = 2ℓ+1 localizados en dos regiones distintas del espacio, es decir,
al tiempo t = 0

Φ
(1)
lm ̸= 0, y Φ

(2)
lm = 0 (3.24)

para todo m. El sistema binario está compuesto por 2ℓ + 1 campos escalares inde-
pendientes. Existe otra posibilidad, llamado estado incoherente y consiste en que cada
estrella esté compuesta por un conjunto distinto de 2ℓ + 1 campos escalares, es decir,
Φ

(1)
lm ̸= 0, y Φ

(2)
lm ̸= 0 para todo m, sin embargo, en la presente investigación nos restrin-

gimos al análisis de sistemas binarios coherentes.
Para la simulación numérica conviene expresar la condición inicial de los campos

escalares del sistema binario coherente como

Φ(1)
m (t = 0, x, y, z) = Φ(+)

m (x− xc, y, z) + Φ(−)
m (x+ xc, y, z) (3.25)

y Φ
(2)
m = 0.

Nos restringimos al análisis de sistemas binarios de estrellas de bosones-ℓ en estado
coherente (mismo conjunto de campos escalares).

Una vez resueltas las ecs. (3.20) se obtienen las funciones métricas α(r) y a(r) además
de la parte espacial del campo escalar ϕ(r) introducido en la Ec. (3.15). Con ellas es
posible estimar las componentes del tensor de materia-energía. En particular, es posible
monitorear la densidad de energía de la materia a través de ρ = nanbTab (na es el vector
unitario normal a la superficie Σ) durante el tiempo de la colisión. De esta manera
se cuantifica el cambio en la energía antes y después de la colisión. Además, se puede
cuantificar las desviaciones de la simetría esférica, para ello se computan los momentos
de inercia Ixx, Iyy y Izz definidos como

Ixixi ≡
∫
Σ

√
γd3xαρ(r2 − xi

2

). (3.26)

Como mostramos en la sección 1.1, particularmente en la subsección sobre la aproxima-
ción cuadrupolar, los momentos de inercia están muy relacionados con el comportamiento
ondulatorio del espaciotiempo, es decir, con la emisión de ondas gravitacionales. Esta es
la esencia de los mecanismos de extracción de las ondas gravitacionales a través de la
cantidad Ψ4 de las simulaciones numéricas. A continuación veremos algunos elementos
básicos sobre la extracción de Ψ4 de la simulación numérica. Para más detalles sobre
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la cantidad Ψ4 y el formalismo Newman-Penrose puede consultarse la sección 1.1.2 del
capítulo introductorio.

3.3.4. Extracción de Ψ4 de la simulación numérica

Luego del procedimiento computacional recién descrito, dentro de los datos de salida
se encuentra el escalar-4 de Newman Penrose Ψ4, como es común en las simulaciones
de fusiones de sistemas binarios compactos [153]. El escalar 4 de Newman Penrose se
define como Ψ4 ≡ −Cabpqn

am̄bnpm̄q, donde Cabpq es el tensor de Weyl (ver sección 1.1.2
del primer capítulo) y l, n, m, m̄ conforman una tetrada nula [32]. La tetrada nula
tiene la propiedad de que algunos de todos sus productos internos se anulan, excepto
−l · n = 1 = m · m̄.

De acuerdo al teorema de Peeling, Ψ4 es el componente del tensor de Weyl que cae
como 1/r desde la fuente, por lo que se asocia a la radiación gravitacional saliente [154].
Una cuestión a resaltar de las colisiones frontales de cualquier tipo de objeto compacto
es que por la simetría, Ψ4 no tiene parte imaginaria.

El escalar Ψ4 , a su vez, se relaciona con la amplitud de las ondas gravitacionales en
la norma TT, mejor conocida como strain h+, h× cuyas componentes son [155, 156],

Ψ4 =
∂2(h+ − h×)

c2∂t2
, (3.27)

Además, en la simulación numérica se descompone Ψ4 utilizando los armónicos esfé-
ricos con peso de espin s = −2 −2Ylm(θ, φ):

Ψ4(t, r, θ, φ) =
∑
lm

Ψlm
4 −2Ylm(θ, φ), (3.28)

de forma equivalente, el strain total se puede obtener sobre la suma de todos los
modos:

h ≡ h+ − ih× =
∞∑
l=2

l∑
m=−l

(hlm+ − ihlm× )−2Ylm(θ, φ). (3.29)

De hecho, en las evoluciones numéricas de colisiones frontales de objetos compactos se
ha encontrado que el modo dominante es el modo lm = 22 y será el analizado en lo que
sigue.

3.3.5. Análisis de las señales gravitacionales

Transformar Ψ4 a h no es una cuestión trivial, el método que actualmente más se
emplea es el llamado método de integración de frecuencia-fija (IFF) [157, 158]. Consiste
en hacer una transformada de Fourier sobre los términos Ψlm

4 y utilizar una frecuencia
de brinco para bajas frecuencias. De esta manera, en vez de hacer una doble integral
sobre el tiempo:
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hlm+ (t)− ihlm× (t) =

∫ t(∫ t

ψlm
4 (t′′) dt′′

)
dt′ + Almt+Blm, (3.30)

donde Alm y Blm son constantes de integración (que deben ser calculadas tomando
en cuenta las condiciones físicas, por ejemplo, que h → 0 conforme r → ∞), se efectúa
una división en el espacio de Fourier y se aplica la transformada inversa de Fourier para
obtener las series de tiempo hlm+ (t) y hlm× (t) .

Aunque el procedimiento por la vía de la doble integral parece directo, tiene problemas
pues al obtenerse de simulaciones numéricas, incluye ruido aleatorio, que al integrarse in-
troduce efectos no lineales que no son físico sino asociados a la metodología de resolución.
Por esta razón utilizamos el método IFF.

Los datos de salida de las simulaciones numéricas deben ser transformados en el strain
de las ondas gravitacionales.

Una vez obtenidas las señales en su representación h+ y h×, se procede a efectuar en
análisis de los datos para conocer, entre otras cosas, la energía radiada por las ondas
gravitacionales EOG, la frecuencia característica fpico.

Para el análisis, se utiliza la transformada de Fourier de la señal siguiendo la siguiente
convención:

h̃(f) = F [x(t)] =

∫ ∞

∞
x(t)e−2πift dt, (3.31)

h(t) = F−1x̃(t) =

∫ ∞

∞
x̃(f)e2πift dt (3.32)

La cantidad hrss se define como,

hrss = 2

∫ ∞

0

[
|h̃+(f)|2 + |h̃×(f)|2

]
df (3.33)

Mientras que la energía de las ondas gravitacionales en la aproximación isotrópica es

EGW =
c3

G
π2D2

∫ ∞

−∞

(
|h̃+(f)|2 + |h̃×(f)|2

)
f 2 df. (3.34)

Otra cantidad relevante es el radio Señal-Ruido o SNR por sus siglas en ingles. Se
define como el producto punto del strain, procesado con la densidad del espectro de
potencias del ruido S(f):

SNR =

√∫
4|h̃(f)|2
S(f)

df . (3.35)

Por otro lado, a partir del análisis de las frecuencias de las señales gravitacionales,
puede determinarse la frecuencia máxima fpico.

Existen diversos códigos, algunos de acceso libre como PyCBC [159], que permiten
automatizar el análisis de las señales gravitacionales. En la siguiente sección se presen-
tarán resultados utilizando la paqueteria SN-LIBRARY para Python desarrollada por
Marek Szczepanczyk 2020 (marek.szczepanczyk@ligo.org).
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3.4. Casos de estudio

Vamos a considerar ocho configuraciones iniciales que corresponden a dos estrellas con
mismo valor de ℓ (ver Fig.(3.2)) de masas individuales iguales entre sí M1 = M2 ≡ M0.
Cuatro de ellas corresponden a estrellas con ℓ = 0 y cuatro con ℓ = 1. Las señales que
procesamos en este trabajo fueron obtenidas y reportadas por [146]. En dicho trabajo, las
estrellas se colocan en sus posiciones y configuraciones iniciales y se les deja evolucionar
en el tiempo, posteriormente se estiman algunas propiedades del remanente resultante
de la colisión, las cuales se muestran en el cuadro (3.1). En dicho cuadro y a partir de
ahora, las cantidades con el símbolo ˆ son adimensionales, mientras que las cantidades
sinˆtienen unidades físicas.

En la Fig. (3.2) se muestran la familias de estrellas de bosones ℓ = 0 y ℓ = 1. Aunque
cualitativamente ambas familias siguen el mismo comportamiento, se observa que las
estrellas de bosones con ℓ = 1 alcanzan masas M̂ ≡ GµM/c2 y radios R̂99 ∼ µR99 más
altos que las estrellas de bosones con ℓ = 0, dado un valor de ω̂ = ω/(cµ). Se observa
que en ambas familias, existe un valor máximo de M̂ = GµM/c2; se ha demostrado
que a la izquierda del máximo, las soluciones son inestables, mientras que a la derecha,
son estables. La masa máxima permite clasificar las soluciones entre la rama estable
y la rama inestable. En la misma figura se etiqueta con una pequeña estrella las ocho
configuraciones que se consideran en [146] y en el presente capítulo.
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Figura 3.2: Izquierda: Masa total M̂ = GµM/c2 de las estrellas de bosones aisladas para
el los casos ℓ = 0 y ℓ = 1 contra la frecuencia de oscilación del campo escalar,
ω̂ = ω/(cµ). Derecha: Radio y compacidad (subfigura) para las mismas es-
trellas de bosones. En ambas gráficas se marcan los modelos utilizados para
la colisión frontal en este trabajo, los cuales se muestran en el cuadro (3.1).
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Modelo M̂0 R̂99 C = Ĉ ω̂ Remanente
Estrellas de bosones con ℓ = 0

hℓ0A 0.296 31.5 0.0221 0.985 BS
hℓ0B 0.333 27.5 0.0282 0.980 BS
hℓ0C 0.364 24.7 0.0391 0.976 BS
hℓ0D 0.548 13.5 0.0838 0.931 BH

Estrellas de bosones con ℓ = 1
hℓ1A 0.697 31.5 0.0221 0.970 BS
hℓ1B 0.775 27.5 0.0282 0.962 BS
hℓ1C 0.837 24.7 0.0391 0.954 BH
hℓ1D 1.17 13.5 0.0838 0.883 BH

Cuadro 3.1: Modelos de estrellas de bosones para la colisión frontal. M̂0 es la masa
adimensional inicial de cada estrella, R̂99 corresponde al radio adimensional
que contiene el 99% de la masa, C es la compacidad, y ω̂ es la frecuencia
adimensional de los bosones. El remanente de la colisión puede ser una
estrella de bosones o un agujero negro, como se especifica en la última
columna. Todos los modelos fueron obtenidos en [146].

Notemos que los dos modelos A, independientemente de si corresponden a ℓ = 0 ó
ℓ = 1 tienen el mismo valor de R̂99 y C. Lo mismo pasa entre los modelos B, C y D.
En cambio, los valores de M̂0 son distintos para cada modelo. Las compacidades de
las fuentes toman valores C ∼ 0.0221 − 0.0838. La compacidad, al ser por construcción
adimensional (ver Ec.(1.35)), permite comparar la densidad de las estrellas de bosones
con otro tipo de objetos compactos. Recordemos que estamos utilizando como definición
de configuración autogravitante, un objeto ligado gravitacionalmente con compacidad
superior a una estrella de secuencia principal cuyo comportamiento es asintóticamente
plano. La compacidad más alta se alcanza en los agujeros negros y es C = 1/2, en cambio,
las estrellas de neutrones, los segundos objetos más compactos del Universo conocido,
alcanzan compacidades . En ese sentido, aunque las compacidades de las estrellas de
bosones-ℓ que estamos considerando, son relativamente densas.

Por otro lado, podemos observar en el cuadro 3.1 que los modelos hℓ0D, hℓ1C hℓ1D
tienen por remanente un agujero negro, mientras que los demás, una estrella de bosones-
ℓ. Para estimar sí el remanente es un agujero negro, se utilizó la espina AHFINDER de
Einstein Toolkit [152], y en los casos donde el remanente resultó ser agujero negro, se
estimó su masa a través de la relación, MBH = A/(16π), que es válida para un agujero
negro de Schwarzschild.
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Figura 3.3: Cantidad Ψ̂4 en el tiempo extraída de la simulación numérica de colisiones
frontales de estrellas de bosones-ℓ.

3.4.1. Redimensionalización

A partir de ahora vamos a considerarG = 1.34×1011M−1
⊙ km3s−2, c = 2.99×105 km s−1

y ℏ = 6.58 × 10−16 eV s para expresar distancias en kilómetros, masas en masas solares,
tiempo en segundos y energía en electronvoltios.

Un aspecto resaltable de las configuraciones de estrellas de bosones es que las solucio-
nes tienen un parámetro libre: µ. Esto es, el sistema de ecuaciones del sistema binario
de estrellas de bosones (con o sin ℓ), ante el cambio de variables

t̂ := cµt, r̂ := µr, ω̂ :=
ω

cµ
(3.36)

mantiene la misma forma y queda expresado de forma independiente al parámetro
µ. Las cantidades con gorrito son adimensionales, mientras que las cantidades sin gorro
tienen unidades físicas: [t] = [T ], [r] = [D] y [ω] = [T ]−1.

Utilizando la invarianza del sistema de ecuaciones bajo el re-escalamiento anterior,
se obtienen soluciones para valores arbitrarios de µ. Para recuperar las unidades físicas
de las soluciones, es necesario multiplicar por las constantes correspondientes a cada
cantidad. En el cuadro (3.2) se muestran las cantidades relevantes para las estrellas de
bosones-ℓ y las ondas gravitacionales, tanto en unidades adimensionales como en físicas
así como la relación entre ambas.
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3.4 Casos de estudio

Cantidad Unidades Unidades Factor de conversión
adimensionales físicas

Distancia radial r̂ r r̂ = µr
Tiempo t̂ t t̂ = µct

Frecuencia Campo Escalar ω̂ ω ω̂ = ω/(cµ)

Radio de la estrella R̂ R R̂ = µR

Masa M̂ M M̂ = GµM/c2

Compacidad C C C = GM/Rc2

Longitud de onda OGs λ̂ λ λ̂ = µλ

Frecuencia OGs f̂ f f̂ = f/(cµ)

Cuadro 3.2: Unidades de las cantidades y variables de las estrellas de bosones-ℓ

3.4.2. Estimación de ordenes de magnitud respecto a la energía
del campo escalar

En realidad, la cantidad física de interés no es el parámetro de masa del campo escalar
µ, sino su energía intrínseca definida como

EΦ ≡ mΦc
2 = 10−n eV, (3.37)

donde n es un número arbitrario que nos permitirá fácilmente visualizar las escalas
físicas de las estrellas de bosones en términos del orden de magnitud de la energía
intrínseca EΦ en unidades de eV, como suele tratarse en modelos de materia oscura y
física de partículas. Por ejemplo, el bosón de Higgs tiene una energía intrínseca tal que
n = −9, los axiones n = 5, mientras que los modelos de campos escalares ultraligeros
consideran n = 22.

La relación entre µ y mΦ nos permite estimar el orden de magnitud de µ en términos
de n:

µ =
mΦc

ℏ
=
EΦ

ℏc
=

1

1.96
1010−nkm−1, (3.38)

siguiendo con los ejemplos anteriores, para el bosón de Higgs µ ∼ 1019 km−1, en los
axiones µ ∼ 105 km−1 y en los campos escalares ultraligeros µ ∼ 10−12 km−1. Con esto,
todas las cantidades físicas se pueden re-expresar en términos de n.

Comencemos por el radio que contiene el 99% de la masa de la estrella de bosones
M0, es decir, R99. En este caso, de la simulación numérica (ver cuadro 3.1) se conocen
los valores R̂99 = µR99, entonces:

R99 =
R̂99

µ
=
c2ℏR̂99

EΦ

= 5.8826× 10n−5 km. (3.39)

Ahora veamos la masa total de las configuraciones. De la simulación numérica cono-
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3 Ondas gravitacionales de la colisión frontal de estrellas de bosones-ℓ

cemos el valor adimensional M̂0 = GµM0/c
2, e inversamente,

M0 =
ℏc3

GEϕ

M̂ = 1.3126× 10n−10M̂ M⊙. (3.40)

También, de la simulación numérica conocemos las compacidades de las estrellas de
bosones definidas como C ≡ GM0/(c

2R99), se trata de una cantidad adimensional útil
para comparar densidades entre la materia. Utilizando que M̂0 = GµM0/c

2 y R̂99 =
µR99, podemos demostrar que C = M̂0/R̂99, de modo que la compacidad no se requiere
redimensionalizar.

Ahora pasemos a propiedades ya no de la fuente sino de las OGs: su frecuencia fOG,
longitud de onda λOG y amplitud característica h. Dado que las ondas gravitacionales
se propagan a la velocidad de la luz, λOGfOG = c.

La longitud de onda de las ondas gravitacionales tiene unidades de distancia y para
recuperar unidades a partir de algún valor numérico adimensional λ̂OG se tiene que

λOG = µλ̂OG =
EΦ

ℏc
λ̂OG = 5.1020× 109−nλ̂OG km. (3.41)

La cantidad fOG debe tener unidades de Hertz, entonces, f̂OG = fOG/(cµ), es decir,

fOG = cµf̂ = EΦf̂/ℏ = 1.51× 1015−nf̂OG Hz. (3.42)
Además, la amplitud de las señales ĥ, aunque es una cantidad por construcción adi-

mensional, depende del inverso de la distancia a la fuente, D, y se reescala mediante

h =
ĥ

µD
=

ℏc
DEϕ

= 5.1579× 10n−32 ĥ

D100Mpc.

(3.43)

donde hemos utilizado que D100Mpc = 100 Mpc= 3.08× 1021 km.
Sabemos que las cantidades λOG,fOG, h son funciones del tiempo cuya evolución du-

rante la colisión de las estrellas de bosones permite inferir propiedades las ondas gra-
vitacionales. Sin embargo, nos resultará útil designar un mecanismo para designar un
valor característico para cada señal gravitacional en términos de la energía intrínseca
del campo escalar mediante las ecs. (3.41), (3.42) y (3.43). El mecanismo que utiliza-
remos es el siguiente, para cada señal gravitacional identificamos el valor máximo de
la amplitud ĥmax en el cuadro (3.3) y calculamos el tiempo al que ocurre; en seguida,
identificamos el segundo valor máximo de la amplitud más cercano y vemos el tiempo
al que corresponde; finalmente, calculamos el valor absoluto de los tiempos y de esta
manera construimos una longitud de onda característica que denotamos λ̂. A partir de
esta cantidad, obtenemos una frecuencia característica f̂ = 1/λ̂. Esta es la manera en la
que se obtienen los valores del cuadro (3.3).

3.4.3. Estimación del rango detección por LVK

Mediante la Ec. (3.43) podemos ver que mientras n > 10, la señal tiene una amplitud
h > 10−22, es decir, que estrellas de bosones con E ∼ 10−10 eV o menor energía, produ-
cirían ondas gravitacionales detectables por los observatorios de la colaboración LVK.

62



3.5 Resultados

No obstante, debemos tener en cuenta los detectores tienen un rango de detección en el
espacio de frecuencias entre 10 y 1000 Hz.

Ahora, vamos a continuar el análisis anterior para entender el rango de energías in-
trínsecas del campo escalar que debe tener para formar configuraciones auto-gravitantes
que al colisionar frontalmente, emitan ondas gravitacionales de frecuencias entre 10 y
1000 Hertz, es decir, en la banda de detección de los detectores de la Colaboración
LIGO-Virgo-Kagra. Para más información sobre los detectores se puede consultar la
SEc.(1.2.2). Para ello, partimos de la Ec.(3.42), de esta manera encontraremos los valo-
res de n que producen ondas gravitacionales con fLIGO = 10 − 1000 Hz. A partir de la
Ec.(3.42), se sigue que

n = 15.17− log(fLIGO)− log(f̂). (3.44)

En el cuadro (3.1) , la columna n1 corresponde al valor de n sustituyendo λ̂c de la
hilera correspondiente en lugar de λ̂ y fLIGO = 10 Hz; la columna n2 corresponde al valor
de n sustituyendo el mismo valor de λ̂c y fLIGO = 1000 Hz.
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Figura 3.4: Amplitud de las OGs contra el tiempo adimensional para los modelos del
cuadro (3.1). Se muestran los puntos de las dos amplitudes máximas locales
cuya diferencia en el tiempo asociamos a la longitud de onda característica
λ̂c.

En el cuadro (3.3) mostramos los valores adimensionales de las ondas gravitacionales
que surgen del análisis de los datos numéricos de la colisión frontal de estrellas de bosones-
ℓ.

3.5. Resultados

Dividimos los resultados en tres subsecciones. En la primera de ellas consideramos todo
un rango de valores de energías del campo escalar Eϕ y los ocho modelos de estrellas de
bosones binarias que se muestran en la SEc. (3.4).
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3 Ondas gravitacionales de la colisión frontal de estrellas de bosones-ℓ

Modelo ĥmax λ̂c 1/λ̂c = f̂c n1 n2

Estrellas de bosones con ℓ = 0
hℓ0A 0.014 122.5 0.008 12.08 10.08
hℓ0B 0.0284 101.25 0.009 12.16 10.16
hℓ0C 0.051 86.25 0.011 12.23 10.23
hℓ0D 0.236 39.37 0.025 12.49 10.49

Estrellas de bosones con ℓ = 1
hℓ1A 0.006 47.5 0.021 12.49 10.49
hℓ1B 0.022 99.37 0.010 12.17 10.17
hℓ1C 0.144 27.5 0.036 14.73 10.73
hℓ1D 0.065 36.25 0.027 12.61 10.61

Cuadro 3.3: Valores adimensionales de la máxima amplitud y frecuencia pico de las ocho
señales gravitacionales correspondientes a los modelos hℓ0A−D y hℓ0A−D.
El símboloˆdenota que la variable es adimensional.

3.5.1. Varios valores de mΦc
2 para todos los modelos

Dado que el valor experimental del parámetro de masa del campo escalar complejo no
ha sido establecido aún, tenemos la libertad de elegir un rango de µ adecuado a nuestros
fines. Con base en nuestras estimaciones de la subsección (3.4.1), el intervalo de la energía
intrínseca mΦc

2 del campo escalar que podría ser detectado por la colaboración LVK es
aproximadamente 10−15−10−10 eV . Por este motivo, vamos a considerar específicamente
el intervalo mΦc

2 ∈ (1.9 × 10−15, 1.9 × 10−10) eV. Dividimos este intervalo en cierto
número de partes iguales (46) y para cada modelo y valor de mΦc

2, reescalamos la señal
gravitacional y la procesamos para obtener su espectograma, la cantidad hrss (root-sum-
square amplitude), la energía de las ondas gravitacionales EGW , la frecuencia pico fpico
y el radio señal-ruido SNR (signal-to-noise ratio), de acuerdo a las definiciones de la
subsección (3.3.5). Elegimos como distancia a la fuente D = 100 Mpc, esta elección es
arbitraria. A manera de comparativa, mencionamos que la distancia a la fuente de la
señal GW170817 se estimó en 40 Mpc mientras que la distancia a la fuente de la señal
GW150914 se estimó en 410 Mpc[9].

Sería repetitivo mostrar las 8 × 46 señales gravitacionales que por este mecanismo
estamos analizando en esta sección. En cambio, cada señal queda globalmente caracte-
rizada por su amplitud máxima, frecuencia máxima y energía total. Por ello, elegimos
las cantidades hrss, fpico y EGW para mostrar la relación entre las propiedades físicas de
las señales gravitacionales en función de la masa intrínseca del campo escalar. Esto es
lo que se muestra en las Figuras (3.5,3.6,3.7), respectivamente.

Además, con el fin de tener un punto de comparación de las señales generadas por es-
trellas de bosones, vamos a considerar también un sistema de agujero negro-agujero negro
(AN-AN) de masas M1 =M2 = 10M⊙ . Para esto utilizamos el modelo SEOBNRv4 del
Software Libre PyCBC que resuelve la señal gravitacional de agujeros negros sin espín
ni carga eléctrica, unicamente descritos por sus masas individuales M1 = M2 = 10M⊙
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localizados también a D = 100 Mpc.
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Figura 3.5: Amplitud característica de las ondas gravitacionales hrss (adimensional) con-
tra el rango de mΦc

2 ∼ 10−15 − 10−10 eV. La recta punteada corresponde al
caso de dos agujeros negros. Todas las señales están localizadas a 100 Mpc.

En la Fig.(3.5) se muestra la amplitud característica a través de la cantidad hrss contra
el valor del parámetro mΦc

2 . Observamos que en todos los modelos, conforme más ligero
es el campo escalar, más grande es la amplitud de las ondas gravitacionales. En la misma
Fig., también se muestra el caso de la colisión de los agujeros negros (AN-AN). Como
los agujeros negros no dependen del parámetro mΦ, lo que vemos en este caso es una
recta horizontal a hrss = 7.35× 10−22.

Observamos que a mΦc
2 constante, es decir, fijando la masa intrínseca del campo

escalar, el modelo más intenso es hℓ0D, seguido del modelo hℓ1C y hℓ1D . Los modelos
hℓ1B y hℓ1C son casi indistinguibles en esta representación. El modelo menos intenso es
hℓ1A. Aunque en estos casos no es claro si hay una relación entre los modelos con ℓ = 0
y ℓ = 1, lo que sí vemos es que en general, conforme más compacta es la fuente, más
intensa será la amplitud de sus señales gravitacionales.
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Figura 3.6: Frecuencia pico fpico versus distintos valores de la masa intrínseca del campo
escalar mΦc

2. Se muestra la actual banda de detección de la colaboración
LIGO (10-1000 Hz) de color verde. La recta horizontal punteada representa
el caso de dos agujeros negros de 10 M⊙ cada uno.

En la Fig.(3.6) lo que se muestra es la frecuencia característica nombrada fpico para el
mismo rango de parámetros del campo escalar mΦc

2. Observamos un comportamiento
proporcional entre la masa mΦ y la frecuencia de las ondas gravitacionales. En cambio,
notamos las mismas relaciones respecto a la intensidad de los modelos que en la Fig.(3.5).
También observamos que efectivamente, el rango elegido demΦc

2 produce algunas señales
gravitacionales dentro del rango de detección de LIGO, representado como una banda
de color verde en dicha figura.

66



3.5 Resultados

10 14 10 13 10 12 10 11 10 10

m c2 [eV]

1042

1044

1046

1048

1050

E
ne

rg
ía

G
W

  [
er

g] EGW AN-AN

h 0A
h 0B
h 0C
h 0D

h 1A
h 1B
h 1C
h 1D

Figura 3.7: Energía total emitida en forma de ondas gravitacionales EGW para el mismo
rango de energía del campo escalar mΦc

2 [eV] de la figura anterior. Una línea
punteada horizontal muestra la energía emitida en OGs por parte de un
sistema binario de agujeros negros de 10 M⊙ cada uno.

Para visualizar la relación entre la masa del campo escalar mΦ y la energía emitida por
las ondas gravitacionales, tenemos la Fig.(3.7). En ella se aprecia un comportamiento
inversamente proporcional entre ambas cantidades, como en el caso de la amplitud de
las ondas gravitacionales.
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Figura 3.8: Radio señal-ruido versus el rango de masas del campo escalar de las figuras
anteriores. Notamos que el comportamiento entre estas variables no es lineal.
De la misma manera que en las figuras anteriores, se muestra la solución para
agujeros negros binarios de 10 M⊙ cada uno.

3.5.2. Todas las señales con mΦc
2 = 5.9× 10−13 eV

Ahora bien, en la sección anterior analizamos un rango amplio de energías del campo
escalar. Ahora fijamos mΦc

2 = 5.9× 10−13 eV y analizamos los ocho modelos.
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3.5 Resultados

Figura 3.9: Espectograma de los ocho modelos de colisión de estrellas de bosones-ℓ para
un campo escalar con mΦc

2 = 5.9× 1013 eV. Los modelos hℓ1C y hℓ0D son
más similares al espectograma reportado para agujeros negros, pues se puede
apreciar el incremento exponencial en la frecuencia de las ondas gravitacio-
nales.

En la Fig. (3.9) se muestran los ocho espectogramas de cada modelo del cuadro (3.1).
En estos, se muestra la evolución de la frecuencia de las ondas gravitacionales con un
código de color para representar la evolución de la magnitud de la amplitud. Notamos
que la colisión de estrellas de bosones-ℓ, en la mayoría de los casos, es muy diferente
a los espectogramas de colisión de agujeros negros o estrellas de neutrones. Los únicos
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3 Ondas gravitacionales de la colisión frontal de estrellas de bosones-ℓ

modelos que tienen el comportamiento de chirp de las colisiones de agujeros negros o
estrellas de neutrones son hℓ0D y hℓ1D.
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Figura 3.10: Raíz de la densidad del ruido la amplitud
√
S(f) en unidades de [Hz−1/2].

Se muestra como se verían las señales en un diagrama de sensitividad de
las proximas observaciones de ondas gravitacionales: O5 (gris claro), Cos-
mic Explorer (gris oscuro) y Einstein Telescope (gris medio). A la par, se
muestra como se vería la señal de la colisión de dos agujeros negros de 10
M⊙. Comprobamos que si mΦc

2 ∼ 10−12 eV, las señales caerían dentro del
espacio de sensitividad.

En la Fig.(3.10) se muestra como se verían las señales tomando en cuenta las curvas
de sensitividad de la próxima corrida de la colaboración LVK: O5, el proyecto Cosmic
Explorer y Einstein Telescope. Actualmente, la colaboración LVK se encuentra en su
cuarto periodo de observación, O4. Notamos, que en un futuro, todos los modelos con
mΦc

2 = 5.9× 10−13 eV.

3.6. Conclusiones de este capítulo

Hemos presentado resultados sobre el análisis de ondas gravitacionales producidas
en la colisión frontal de estrellas de bosones-ℓ. Nuestra perspectiva va hacia aportar
elementos para la futura búsqueda de objetos auto-gravitantes de campo escalar en los
datos de los observatorios de ondas gravitacionales. El campo escalar tiene el potencial
de describir a la materia oscura, en ese sentido, será interesante ampliar el espacio de
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3.6 Conclusiones de este capítulo

parámetros de las estrellas de bosones-ℓ e inyectar los modelos en los datos disponibles
y futuros. La generación de ondas gravitacionales de este tipo de fuentes es un tema
aún en pañales que se ha trabajado desde el área de las simulaciones numéricas. Pocos
trabajos se detienen a explorar las escalas físicas a las que corresponderían las señales
numéricas. Este trabajo aporta claridad sobre las escalas de las estrellas de bosones en
función de los parámetros intrínsecos del campo escalar, en particular su masa mΦ.

Encontramos que si mΦc
2 tiene valores entre 10−14 − 10−10 eV, las señales gravitacio-

nales provenientes de colisiones a 100 Mpc, podrían detectarse por los observatorios de
ondas gravitaconales. Con esto en mente, nos centramos en analizar todos los modelos

De forma particular, mostramos que los campos escalares ligeros forman estrellas de
bosones más grandes y masivas. Consideramos que esta es la razón por la que nuestros
resultados muestran que a menor masa del campo escalar, mayor es la amplitud y energía
de las ondas gravitacionales, y menor es su frecuencia característica. Por otro lado, el
parámetro ℓ permite a las estrellas alcanzar una masa un poco mayor que los casos con
ℓ = 0, sin embargo, este hecho cualitativo no se traduce de forma clara en las propiedades
de las ondas gravitacionales: encontramos modelos con la misma compacidad donde la
señal del caso ℓ = 1 tiene mayor intensidad que el caso ℓ = 0; paralemente, encontramos
casos con distinta compacidad donde la señal con ℓ = 0 fue más intensa que la señal
ℓ = 1. Para encontrar el motivo de este comportamiento será necesario examinar modelos
con valores de ℓ más grandes y más compacidades.

Recapitulando, estudiamos los fundamentos teóricos que sustentan la colisión de es-
trellas de bosones ℓ = 0 y ℓ ̸= 0, para ello, aprovechamos la formulación lagrangiana en
Relatividad General. Luego, utilizando ocho modelos reportados en [21], los reescalamos
y procesamos para analizar las relaciones del campo escalar con la amplitud, frecuencia
y energía de ondas gravitacionales, así como el Radio Señal-Ruido de los detectores de
la colaboración LVK y los próximos detectores Cosmic Explorer y Einstein Telescope.
Mostramos las diferencias con colisiones de agujeros negros y estimamos que si el cam-
po escalar tuviese una masa de ∼ 10−13, los ocho modelos serían perceptibles para los
detectores recién mencionados.

Se agradece especialmente a la Mtra. Laura O. Villegas (UdG), Dra. Claudia Moreno
(Udg), Dr. Javier M. Antelis (Tec de Monterrey), Dr. Víctor Jaramillo (USTC) y Dr. Da-
río Nuñez (ICN, CIDMA) por sus aportes en la discusión de este capítulo. Próximamente
ampliaremos y publicaremos los resultados y discusiones.
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4 Agujeros de gusano con carga
eléctrica

Este capítulo está basado en el artículo , el cual se encuentra publicado en [21]. Fue
elaborado por Victor Jaramillo (ICN-UNAM), Mariana Lira (ICN-UNAM), Daniel Or-
tega (ICN-UNAM) y Darío Nuñez (ICN-UNAM). Todas las figuras que aparecen en este
capítulo fueron tomadas de dicho trabajo.

4.1. Resumen

Construimos y analizamos las propiedades de un agujero de gusano cargado eléctrica-
mente, formado a partir de un campo escalar masivo y complejo, con autointeracción, y
dotado de una carga eléctrica, mediante la resolución del sistema de ecuaciones Einstein-
Klein-Gordon-Maxwell, donde el campo escalar está mínimamente acoplado al campo
gravitacional y al campo electromagnético. Exploramos el espacio de los parámetros
intrínsecos de los agujeros de gusano eléctricos, y, presentamos la dependencia las solu-
ciones con respecto al valor de los diferentes parámetros, enfatizando el papel que juega
la carga eléctrica en cantidades globales de los agujeros de gusano eléctricos, como su
masa, tamaño de garganta y su número de partículas. Posteriormente, nos centramos
en el regimen de grandes valores del parámetro de autointeracción y encontramos un
comportamiento genérico del campo escalar, que a su vez nos permite determinar expre-
siones analíticas explícitas para los campos, la función métrica y las cantidades globales
como la masa de Komar y el número de partículas. Finalmente, se reporta el movimiento
geodésico en estos espaciotiempos.

4.2. Introducción

El paradigma relativista de la Gravedad, a saber, que la geometría y la materia están
interrelacionados, aplicado al caso donde la materia viola las condiciones de energía,
no solo ofrece una mayor comprensión de dicho paradigma, sino también un marco
teórico para describir la expansión acelerada del Universo [58, 44]. Tanto la expansión
acelerada del Universo como los modelos de Inflación en el Universo Temprano demandan
la existencia de materia que viole al menos la condición fuerte de energía. Esta condición
establece que, independientemente del marco de referencia, la densidad de energía debe
ser no negativa y propagarse de manera causal, como se puede consultar en la sección
1.1.3 del capítulo introductorio. La materia que no satisface la condición fuerte de energía
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se conoce como materia exótica. Se ha mostrado en recientes trabajos [160], que bajo
ciertas condiciones la materia exótica puede ser confinada, lo cual representa un pequeño
paso hacia describir objetos formados de materia exótica tales como los agujeros de
gusano.

Los campos escalares complejos son un tipo de materia que existe dentro del núcleo
duro de la Relatividad General, los cuales son ideales para describir materia exótica,
como ya ha sido analizado en Refs. como [101, 102, 16, 161, 162, 160]. Hace cincuenta
años se encontró la primera solución exacta de agujero de gusano asintóticamente plano
y regular en todos los puntos [95, 96]. Los agujeros de gusano funcionan como túneles
de una región del espaciotiempo a otra, en ese sentido, puede que acorten la distancia
entre regiones, ésta última idea fue considerada seriamente desde Relatividad General
en un artículo de Morris y Thorne [17]. Posteriormente, otras soluciones han sido encon-
tradas, por ejemplo, aquellas configuraciones con campos escalares auto-interactuantes
[40, 97], auto-interacción [163] y soluciones con varios campos escalares [98, 99, 100].
Las soluciones de agujero de gusano se obtienen resolviendo las ecuaciones de Relativi-
dad General (RG) con un tensor de materia-energía que viola la condición de energía
nula [17, 164, 165, 166]. En los trabajos pioneros de Morris y Thorne [17], se presentan
agujeros de gusano atravesables. Encuentran que las condiciones necesarias de atrave-
sabilidad son: la métrica debe ser estática, simétricamente esférica, sin horizontes, con
una garganta que conecta dos regiones del espacio asintóticamente planas y estable ante
perturbaciones.

Distintas propiedades de los agujeros de gusano han sido establecidas en las últimas
décadas. Por un lado, en la Ref. [99] se muestra que cuando el campo escalar que cons-
tituye al agujero de gusano es masivo y con simetría esférica , éste debe tener constante
de auto-acople λ no nula. Por otro lado, e igual que el caso de las estrellas de bosones
[89], la condición de planitud asintótica implica que la frecuencia del campo escalar ω
está ligado al valor del parámetro de masa µ del campo escalar en consideración de
modo que |ω| ≤ µ. Los autores en [97] demuestran otros interesantes resultados: que
las soluciones de agujero de gusano regulares soportadas por un campo escalar complejo
fantasma con un potencial cuártico y coeficiente de auto-interacción, λ, existen para
todos los valores 0 ≤ ω ≤ µ; que las masas de los agujeros de gusano caen dentro de
una región delimitada por las curvas ω/µ = 0 y ω/µ = 1 siendo positivo para ω/µ ∼ 0
y negativo para ω/µ → 1, y que entonces λ → ∞ la masa incrementa sin limite y los
valores del campo escalar en la garganta tienden a cero. En contraparte, hasta ahora no
se han presentado soluciones de agujeros de gusano estable. Se ha mostrado que tanto
los agujeros de gusano más simples formados por campos escalar sin masa como los agu-
jeros de gusano formados por campos escalares complejos masivos con autointeracción,
las configuraciones son inestables. Estos análisis se han hecho a través de perturbaciones
lineales y simulaciones numéricas de la evolución no-lineal [167, 168, 169, 40]. Además,
el proceso de formación de los agujeros de gusano sigue siendo poco claro. Posibles ideas
sobre la formación de éstos son presentados en[170] y de estabilización [171] por fuera
de RG, dentro de la teoría f(R).

Con el propósito de continuar estudiando estos espaciotiempos generados por materia
exótica, un paso siguiente es explorar las características de los agujeros de gusano cuando
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otros campos físicos están presentes. En el reciente trabajo [160], varios autores presenta-
mos una nueva solución a las ecuaciones de Relatividad General que describe un agujero
de gusano regular y esfericamente simétrico acoplado a un campo eléctrico. En nuestro
modelo, la corriente escalar es la fuente del campo eléctrico. Lo construimos siguiendo el
procedimiento para acoplar campos eléctricos a estrellas de bosones planteado en [172]
y que consiste en el acoplamiento de un campo escalar complejo al electromagnético a
través de una derivada gauge covariante. Algunos de los autores de la investigación que
presentamos en este capítulo utilizaron dicha formulación para construir una estrella de
bosones magnetizada [173]. Este procedimiento, convenientemente preserva la invarianza
de gauge, contrario a otros formalismos donde el campo escalar interactúa con el campo
electromagnético a través de un producto eαϕ F 2 directamente en la función lagrangiana
(ver por ejemplo [174, 175]). Soluciones de agujeros de gusano con un campo escalar real
sin masa en el sistema Einstein-Klein-Gordon-Maxwell se obtuvieron en la Ref. [176].
En el presente capítulo, presentamos a detalle el procedimiento, resultados en conclusio-
nes de dicha investigación. Aquí, exploramos las propiedades de un agujero de gusano
eléctrico en relación a los valores de sus parámetros (de masa, de autointeracción y la
frecuencia del campo escalar), con énfasis sobre el rol de la carga eléctrica; mostramos
que la carga no afecta las propiedades del agujero gusano, siendo la más notable, que
el espaciotiempo sigue siendo asintóticamente plano. Nuestro análisis sugiere un com-
portamiento peculiar de las funciones métricas, del campo escalar y del campo eléctrico
cuando el parámetro de auto-interacción es grande λ. Siguiendo el trabajo de Colpi y sus
colaboradores [177] sobre estrellas de bosones, fuimos capaces de determinar expresiones
analíticas para el campo escalar y la masa total de los agujeros de gusano en el régi-
men de λ grandes, además de corroborar dichas expresiones con simulaciones numéricas
para tales casos. Estas expresiones permiten una mejor comprensión de los parámetros
del sistema, es decir, el parámetro de masa y la frecuencia µ, ω y la carga eléctrica q.
Estos parámetros determinan la masa total y el número de partículas de las soluciones
de agujero de gusano.
Este capítulo está organizado de la siguiente manera. En la Sección 4.3, introducimos el
modelo, establecemos que nuestro espaciotiempo es estático y simétricamente esférico,
introducimos el ansätze para un campo escalar complejo eléctricamente cargado, y ex-
presamos las ecuaciones diferenciales para los coeficientes métricos, el campo escalar así
como el campo eléctrico. Cerramos esta primera sección presentando expresiones para
algunas cantidades globales como la masa de Komar y el número total de partículas.
Una vez que tenemos las ecuaciones, en la Sección 4.4, damos condiciones de frontera
para obtener soluciones asintóticamente plantas y regulares, además, hacemos una im-
portante constricción sobre los campos en la garganta del agujero de gusano. Esto lo
implementamos en un código para resolver las ecuaciones de campo con las condiciones
necesarias. Luego de esto, resolvemos numéricamente soluciones, es decir, soluciones de
agujeros de gusano para distintos intervalos de los parámetros. En seguida, presentamos
el perfil de la masa total del espaciotiempo y el valor del radio de la garganta, G, como
función del campo escalar en la garganta. Además, presentamos la masa total como fun-
ción de λ para distintos valores de la frecuencia del campo escalar ω y la carga q, también
presentamos el perfil del campo eléctrico y la densidad de energía, τ , como función del
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radio. Agregamos gráficas de la masa total como función de la frecuencia. Estos resulta-
dos en conjunto sugieren un comportamiento del campo escalar para valores grandes del
parámetro de auto-interacción, λ. En la parte 4.4.4, desarrollamos estas ideas sobre las
ecuaciones del sistema y obtenemos expresiones analíticas para las cantidades globales,
probando además su validez al compararlas con las soluciones actuales. En la parte 4.4.5
analizamos el movimiento de partículas con masa total positiva, negativa y cero, para
masas neutras y eléctricamente cargadas.
Finalmente, en la Sección 4.5 planteamos nuestras conclusiones. En este capítulo uti-
lizamos unidades geométricas c = G = 1 y la signatura de la métrica (−,+,+,+).
Adicionalmente, hacemos igual a uno la permeabilidad magnética del vacío µ0.

4.3. Fundamentos teóricos

4.3.1. Ecuaciones de campo

Consideramos un modelo de campo escalar complejo Φ, mínimamente acoplado a las
ecuaciones de relatividad general y electrodinámica utilizando una generalización del
operador derivada. La acción del sistema está dada por:

S =

∫ √
|g|
[ R
16π

+ LM

]
d4x, (4.1)

donde R es el escalar de Ricci y la función lagrangiana de la materia-energía LM incluye
la contribución del campo escalar LΦ y del campo electromagnético LEM:

LM = LΦ + LEM (4.2a)

LΦ = − ϵ

2

(
gµν(DµΦ)(DνΦ)

∗ + µ2|Φ|2 − λ

2
|Φ|4

)
(4.2b)

LEM = −FµνF
µν

4
. (4.2c)

donde µ es el parámetro de masa de la partícula del campo escalar, λ es la constante
de acoplamiento Fµν = ∂µAν − ∂νAµ es el tensor de Faraday y Dµ = ∇µ + iqAµ es el
operador de derivada covariante que acopla el campo escalar con el campo gauge Aµ

a través de la constante electromagnética q. Aquí, ϵ es igual a uno cuando el campo
escalar es canónico y es menos uno cuando el campo escalar describe materia fantasma.
El campo escalar define la corriente electromagnética de la fuente, y a su vez, los campos
electromagnéticos de la fuente afectan la geometría a través de las ecuaciones de Einstein.

La ecuaciones del sistema se obtienen tomando una variación de la Eq. (4.1), con
respecto a los diferentes campos del sistema. La variación con respecto a los diferentes
campos del sistema genera las ecuaciones de Euler-Lagrange (ver e.g. [178]). La variación
con respecto a gµν nos da las ecuaciones de relatividad general:

Rµν −
1

2
Rgµν = 8πTµν , (4.3a)

Tµν = TΦ
µν + TEM

µν , (4.3b)
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donde el tensor de energía está dado por:

TΦ
µν := −1

2
[(DµΦ)(DνΦ)

∗ + (DνΦ)(DµΦ)
∗]

−1

2
gµν

(
gαβ(DαΦ)DβΦ)

∗ + µ2|Φ|2 + λ

2
|Φ|4

)
, (4.4)

TEM
µν :=

(
FµσFνλg

σλ − 1

4
gµνFαβF

αβ

)
. (4.5)

La variación de la acción con respecto al campo escalar Φ nos arroja la ecuación de
Klein-Gordon,

gµνDνDµΦ = µ2Φ− λ|Φ|2Φ . (4.6)

Finalmente la variación con respecto al campo gauge (potencial electromagnético) Aµ

nos da las ecuaciones de Maxwell, y a su vez, define al cuadri-vector de corriente que
actúa como fuente del campo,

∇νF
µν = Jµ := qjµ , (4.7)

donde jµ se entiende como la corriente de Noether del campo complejo Φ

jµ = −ig
µν

2
[Φ∗(DνΦ)− Φ(DνΦ)

∗] . (4.8)

aquí jµ es la corriente de Noether del campo escalar complejo Φ.

Espaciotiempo con simetría esférica y Ansätze para los campos

Consideremos un elemento de línea con simetría esférica en coordenadas isotrópicas

ds2 = −N2dt2 +Ψ4
[
dη2 + (η2 + η0

2) dΩ2
]

(4.9)

tal que las funciones métricas N y Ψ solamente dependen de la coordenada radial η, dΩ2

es el ángulo sólido unitario y hemos incluido la constante η0 que hace que el agujero de
gusano tenga un radio mínimo no nulo. A causa de este hecho, la coordenada radial no
describe el radio de área y por esa razón no la denotamos como r (como por ejemplo en
[97, 179]).

Con miras a no tener dependencia temporal en las ecuaciones de campo, asumimos
que el campo escalar complejo tiene un Ansätz armónico dado por:

Φ(η, t) = ϕ(η)eiωt , (4.10)

donde ω es una constante real.
Finalmente, para ser consistentes con la simetría esférica, consideramos que el poten-

cial gauge Aµ tiene solo una componente temporal, la cual está dada por

Aµdx
µ = V (η) dt , (4.11)

donde V (η) define el potencial eléctrico.
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Descomposición 3+1 del tensor de materia-energía y sistema de ecuaciones
para los campos

Las ecuaciones de la teoría de Relatividad General pueden ser escritas como un con-
junto de ecuaciones elípticas tales que las fuentes se expresan en términos de cantidades
explícitas como la densidad de energía τ , la densidad de momento Pµ y el tensor de
esfuerzos Sµν . Vamos a comenzar con la descomposición 3+1 del tensor de momento-
energía la cual consiste en la proyección del tensor de materia-energía Tµν :

τ = Tµν n
µ nν , Pµ = −nσ Tσα γ

α
µ , Sµν = Tαβ γ

α
µ γ

β
ν , (4.12)

donde γµν = δµν + nµ nν es el operador de proyección y n = (1/N, 0, 0, 0) es el vector
normal a las hipersuperficies. Utilizando las expresiones para Tµν dadas en la Ec. (4.4)
y la Ec. (4.5), dentro de la Ec. (4.12) y considerando la métrica en la Ec.(4.9), podemos
expresar las cantidades proyectadas explícitamente:

τ =
1

2Ψ4

(
1

N2
V ′2 − ϕ′2

)
− ϕ2

2

(
µ2 − λϕ2

2
+

(V q + ω)2

N2

)
, (4.13)

Sη
η =

1

2Ψ4

(
− 1

N2
V ′2 − ϕ′2

)
+
ϕ2

2

(
µ2 − λϕ2

2
− (V q + ω)2

N2

)
, (4.14)

Sθ
θ = Sϕ

ϕ =
1

2Ψ4

(
1

N2
V ′2 + ϕ′2

)
+
ϕ2

2

(
µ2 − λϕ2

2
− (V q + ω)2

N2

)
, (4.15)

y Pα es igual a cero en este caso. Aquí y a partir de ahora utilizaremos la notación
f ′ := df

dη
.

La Ec. (4.13) impone condiciones que implican que el tensor mixto de Einstein y el
tensor de materia-energía son diagonales. Una ecuación diferencial de segundo orden
para la función lapso N pues ser obtenida a parir de la adición de las componentes
espaciales menos la componente temporal, y la ecuación para el factor conforme Ψ se
obtiene a partir de la componente temporal de las ecuaciones de campo.

De este modo, el sistema toma la forma:

∆3Ψ+
1

4

η20
(η2 + η20)

2
Ψ = −2πΨ5 τ , (4.16)

∆3N + 2
Ψ′N ′

Ψ
= 4π N Ψ4 (τ + S) , (4.17)

∆3ϕ+ 2
Ψ′ϕ′

Ψ
+
N ′ϕ′

N
= Ψ4

(
µ2 − λϕ2 −

(
qV + ω

N

)2
)
ϕ , (4.18)

∆3V + 2
Ψ′V ′

Ψ
− N ′V ′

N
= − qΨ4(qV + ω)ϕ2 , (4.19)

donde ∆3 :=
d2

dη2
+ 2η

η2+η20

d
dη

es un operador.
También, escribimos explícitamente la ecuación para la componente radial-radial de

las ecuaciones de campo. Ésta es una ecuación de constricción necesaria para resolver
numéricamente el sistema de ecuaciones

78



4.3 Fundamentos teóricos

Ψ′2

Ψ2
+
N ′Ψ′

NΨ
+

η

η2 + η20

(
Ψ′

Ψ
+
N ′

2N

)
− η20

4 (η2 + η20)
2 = 2πSη

η . (4.20)

Por último, hemos definido S como la traza del tensor de materia-energía S := γijSij =
Sη

η + Sθ
θ + Sφ

φ, con las siguientes expresiones explícitas para S y para el término que
aparece en la ecuación para la función de lapso:

S =
1

2Ψ4

(
1

N2
V ′2 + ϕ′2

)
+

3ϕ2

2

(
µ2 − λϕ2

2
− (V q + ω)2

N2

)
, (4.21)

τ + S =
1

Ψ4N2
V ′2 + ϕ2

(
µ2 − λϕ2

2
− 2(V q + ω)2

N2

)
. (4.22)

4.3.2. Cantidades globales

Para espaciotiempos asintóticamente planos, las expresiones de Komar nos permiten
calcular cantidades globales [35]. En particular, la masa total del espaciotiempo puede
calcularse con la siguiente expresión de Komar

MK =
1

4π

∫
Σt

Rµνn
µξνdV , (4.23)

donde Σt denota la hipersuperficie tipo espacio, nµ es el vector tipo-tiempo normal a
Σt con nµn

µ = −1, tal que n =
(

1
N
, 0⃗
)
, ξ = ∂t =

(
1, 0⃗
)

es el vector de Killing tipo-
tiempo, dV =

√
γ dη dθ dφ es el elemento de volumen y γ es el determinante de la métrica

espacial. En nuestro caso, ξµ = Nnµ y utilizando las ecuaciones de campo, esta expresión
puede reescribirse como:

MK =

∫
(2Tµν − Tα

αgµν)n
µξν

√
γ dη dθ dφ , (4.24)

además, tenemos que (2Tµν − Tα
α gµν)n

µξν = N
(
T µ

µ − 2T t
t

)
.

Por el otro lado, el número total de partículas N puede obtenerse a partir de la
cuatri-corriente jµ definida en la Ec. (4.8). La cuatri-corriente jµ surge a partir de la
invarianza de la acción Eq. (1.46) bajo las transformaciones globales U(1) con Φ → Φeiα,
esto implica que la corriente (4.8) es una densidad de corriente de Noether y satisface
la ley de conservación ∇µj

µ = 0. La integración de la ley de conservación sobre una
hipersuperficie tipo-espacio Σt define la corriente conservada de Noether.

N =

∫
Σt

jµnµdV , (4.25)

la cual puede ser asociada con el número toral de partículas[90]. La carga eléctrica total
de la solución puede ser definida como Q = qN . Además, utilizando la masa de Komar
y el número de partículas dadas en la Ec. (4.23) y la Ec. (4.25), es posible calcular Mk a
partir del gradiente de la función de lapso N sobre una 2-esfera en el infinito espacial (ver
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por ejemplo [180]), mientras la carga Q puede ser calculada a partir del gradiente del
potencial gauge V . De este modo, las soluciones globales Mk y Q pueden ser extraídas
a partir del comportamiento asintótico de la métrica (4.13) y el potencial gauge V (η),
haciendo MK = ĺımη→∞ η2N ′ y Q = 4π ĺımη→∞ η2V ′.

4.3.3. Escalares geométricos

Las siguientes expresiones de los escalares geométricos serán de utilidad para caracte-
rizar las soluciones de agujeros de gusano eléctricos. El escalar de Ricci es:

R = − 2

Ψ4

(
∆3N

N
+ 4

∆3Ψ

Ψ
+ 2

N ′ Ψ′

N Ψ
+

η0
2

(η2 + η02)
2

)
. (4.26)

El escalar de Weyl:

W =
4

3Ψ8

(
N ′′

N
− η

η2 + η02
N ′

N
− 2

(
Ψ′′

Ψ
− η

η2 + η02
Ψ′

Ψ
− 3

(
Ψ′

Ψ

)2
)

− 4
N ′ Ψ′

N Ψ
− 2 η02

(η2 + η02)
2

)2

, (4.27)

y el escalar de Kretschmann:

K =
4

Ψ8

(
N ′′

N

(
N ′′

N
− 4

N ′ Ψ′

N Ψ

)
+

8Ψ′′

Ψ

(
Ψ′′

Ψ
−
(
2

(
Ψ′

Ψ

)2

− 2 η

η2 + η02
Ψ′

Ψ
− η0

2

(η2 + η02)
2

))

+4

(
Ψ′

Ψ

)2
(
6

(
Ψ′

Ψ

)2

+ 4
η

η2 + η02
Ψ′

Ψ
+

2 (3 η2 − 2 η0
2)

(η2 + η02)
2 + 3

(
N ′

N

)2
)

+
2

η2 + η02

(
N ′

N

)2 (
4 η

Ψ′

Ψ
+

η2

(η2 + η02)
2

)
+

3 η0
2

(η2 + η02)
2

)
. (4.28)

En la Fig. (4.1), presentamos gráficas de estos escalares para entender mejor como
los parámetros modifican la geometría del espaciotiempo de agujero de gusano. Las
gráficas corresponden a distintas soluciones de agujero de gusano cuya construcción será
más adelante detallada. El escalar de curvatura R es proporcional a la traza del tensor
de estres, R = −8 π (τ + S), y en la figura presentamos ambas cantidades dada su
importancia en la determinación de la masa total.

80



4.4 Soluciones y Discusión

−4 −2 0 2 4

µ η

−0.004

−0.003

−0.002

−0.001

0.000

τ

Womhole with µM < 0

Wormhole with µM = 0

Wormhole with µM > 0

−4 −2 0 2 4

µ η

−0.3

−0.2

−0.1

0.0

0.1

R
−4 −2 0 2 4

µ η

0.000

0.002

0.004

0.006

0.008

0.010

0.012

W

−1 0 1
0

1

2

3
×10−7

−5 0 5

µ η

0.000

0.005

0.010

0.015

0.020

0.025

0.030

K

q̃ = 0, λ̃ = 10

−4 −2 0 2 4

µ η

−0.004

−0.003

−0.002

−0.001

0.000

τ

Womhole with µM < 0

Wormhole with µM = 0

Wormhole with µM > 0

−4 −2 0 2 4

µ η

−0.3

−0.2

−0.1

0.0

0.1

R

−4 −2 0 2 4

µ η

0.0000

0.0025

0.0050

0.0075

0.0100

0.0125

0.0150

W
−1 0 1

0

1

2

3
×10−7

−4 −2 0 2 4

µ η

0.00

0.01

0.02

0.03

0.04

0.05

K

q̃ = 0.3, λ̃ = 10

Figura 4.1: Escalar de Ricci R, Weyl W , Kretschmann K y densidad de energía τ para
los agujeros de gusano con λ̃ = 10, q̃ = {0, 0.3} y ω/µ = {0, ωzm/µ, 1},
cuyas masas son positiva, cero y negativa, respectivamente.

Es notable que el cambio sobre la geometría depende de la masa total del sistema.
Esta influencia se ve principalmente en el escalar de Weyl cuyo máximo para el caso de
masa cero es al menos la mitad que los casos de masa negativa; en cambio, para casos
de masa positiva, el perfil del escalar de Weyl es más de cuatro ordenes de magnitud
más chico que en otros casos. Estas soluciones nos invitan a realizar una investigación
más aplica de la geometría del espaciotiempo para materia exótica, como lo es el campo
escalar complejo con auto-interacción y carga eléctrica.

4.4. Soluciones y Discusión

4.4.1. Condiciones de frontera

Para construir soluciones electrostática que describan a un agujero de gusano es nece-
sario establecer valores para los parámetros {ω, λ, q}, y resolver el sistema de ecuaciones
diferenciales para las funciones {N,Ψ, ϕ, V } a través de imponer condiciones de frontera
apropiadas sobre el campo escalar, el potencial gauge y las funciones métricas. En primer
lugar imponemos simetría de reflexión sobre la garganta, es decir, en η = 0, de modo
que las funciones satisfacen que:

N ′|η=0 = 0, Ψ′|η=0 = 0, ϕ′|η=0 = 0, V ′|η=0 = 0 . (4.29)

Pedir que el espaciotiempo sea asintóticamente plano implica que

N |η→∞ = 1, Ψ|η→∞ = 1, ϕ|η→∞ = 0, V |η→∞ = 0 , (4.30)

81



4 Agujeros de gusano con carga eléctrica

mientras que el límite asintótico sobre el campo escalar implica la condición ω2 < µ2.
Adicionalmente, estas condiciones de frontera implican una constricción sobre las fun-
ciones evaluadas en la garganta y el sistema de parámetros. Para ver esto, utilizamos un
radio de circunferencia R dado por

R = Ψ2
√
η2 + η02 , (4.31)

vemos que la circunferencia mínima se alcanza en la garganta del agujero de gusano,
esto es, en η = 0, entonces, el radio de la garganta está dado por G = Ψ2

thη0.
Por otro lado, otra expresión para dicho radio de garganta puede ser obtenido a partir

de la Ec. (4.20). De esta forma, evaluando esta expresión en la garganta, η = 0, y
utilizando las condiciones de frontera, podemos obtener otra expresión para el radio
de garganta. Al igualarlo con la anterior expresión, podemos derivar una ecuación de
constricción para determinar el parámetro η0 en términos de otros parámetros y los
valores de las funciones en la garganta:

G2 = Ψ4
thη

2
0 =

1

4πϕ2
th

(
−µ2 +

λϕ2
th

2
+ (Vth q+ω)2

N2
th

) , (4.32)

donde Nth := N(0) > 0, Ψth := Ψ(0), ϕth := ϕ(0) > 0, y Vth := V (0) son los valores en la
garganta de los coeficientes métricos N , Ψ, el campo escalar ϕ y el potencial eléctrico V .
Dicho de otro modo, ésta es una ecuación de constricción sobre los parámetros utilizando
las condiciones de frontera del sistema.

4.4.2. Detalles sobre la obtención de las soluciones y las
gráficas

Para una revisión detallada de la resolución numérica del sistema de ecuaciones pue-
den consultarse referencias como [181]. El mecanismo empleado se llama método de
colocación espectral. El dominio En ella, utilizamos los polinomio de Chebyshev como
base espectral de las funciones a resolver.

Como ya hemos detallado a lo largo de este capítulo, los parámetros que describen a
los agujeros de gusano eléctricos son cuatro: el parámetro de masa del campo escalar,
µ, la frecuencia del campo escalar, ω, el parámetro de auto-interacción, λ, y la carga
o parámetro de acople, q. También vimos que µ re-escala los otros tres parámetros, de
modo que para obtener soluciones numéricas basta con variar los últimos tres parámetros
y obtener soluciones para µ arbitrarios. En un análisis posterior, se puede especificar µ
para describir al sistema en escalas físicas. Por ahora, vamos a comenzar describiendo el
método para obtener las soluciones numéricas. En primer lugar, construimos familias de
n agujeros de gusano eléctricos fijando dos de los tres parámetros y variando el tercero en
cierto intervalo dividido en n partes iguales; además, damos como entrada una solución
inicial y el número de coeficientes espectrales en que serán descompuestas las funciones
a determinar, en general usamos 24, 30 o 32 coeficientes espectrales. Contamos con tres
códigos escritos en el lenguaje Python: electro-wormhole.py, omega-electro-wormhole.py

82
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y q-electro-wormhole.py. Los tres códigos funcionan básicamente de la misma manera:
resuelven el sistema de ecuaciones diferenciales parciales y no lineales con el método de
colocación espectral, donde los polinomios de Chebyshev se usan como base espectral
de las funciones métricas N y Ψ así como el campo escalar ϕ y el potencial eléctrico V ,
todo esto en un dominio compactificado.

La diferencia sustancial entre los tres códigos es que con electro-wormhole.py se ob-
tienen familias de agujeros de gusano dados valores fijos de ω y q y un intervalo de
λ ∈ [λi, λf ] dividido en n partes. Con omega-electro-wormhole.py se obtienen soluciones
con q y λ fijos pero ω ∈ [ωi, ωf ]. Mientras que con q-electro-wormhole.py se mantiene
constante λ y ω pero se varía el parámetro q. En la Fig.(4.2) se muestra un resumen del
procedimiento empleado, comenzando con el código ewh.py

El código calcula el valor del campo escalar en la garganta ϕc, la masasMKomar, MADM ,
R99, C, Q y η0 para cada solución, éstos valores los almacena en archivos de datos titula-
dos uc.dat, Mkomar.dat, MADM.dat, R99.dat, C.dat, Q.dat y eta0.dat, respectivamente.
Cada uno de éstos archivos contiene una sola columna con n filas.

Figura 4.2: Detalle del procedimiento para generar soluciones del sistema de ecuaciones
EKGM asociadas a agujeros de gusano eléctricos con parámetro de auto-
interacción

También, el código genera como salida n soluciones por procesar de agujeros de gu-
sano contenidas en n archivos.dat cuyo nombre particular permite identificar el valor
del parámetro variable al que corresponde dicha solución. Por ejemplo, con el códi-
go electro-wormhole.py el nombre de cada solución se construye con iniciando con la
letra N, seguida del número de coeficientes espectrales, luego se agrega la palabra lamb-
da más el valor particular de λ de la solución. Por ejemplo, la solución con nombre
N24lambda1.00+01.dat fue generada con 24 coeficientes espectrales para el valor de
λ = 10.
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4 Agujeros de gusano con carga eléctrica

Es importante resaltar que de los archivos de las soluciones particulares recién salidas
de estos tres códigos siguen expresadas en términos de los polinomios de Chebyshev, no
es posible leer directamente las funciones incógnita: N(η), Ψ(η), ϕ(η), V (η), sino que es
necesario auxiliarnos de un código de nombre lector.py. En éste, se debe especificar la
solución particular del tipo N24lambda1.00+01.dat para obtener el archivo de salida de
la variable η, las funciones incógnita y sus primeras derivadas, de modo que el archivo
de salida tiene nueve columnas:

{η, N, Ψ, ϕ, v, dN/dη, dΨ/dη, dϕ/dη, dV/dη}.

Ahora sí, con estos valores es posible estimar otras cantidades relevantes del sistema
como, sus escalares geométricos y su densidad de energía para cada agujero de gusano
eléctrico. De esta manera calculamos la densidad de energía, el escalar de Ricci, de Weyl
y de Kretschmann que aparecen en la Fig. (4.1).

De forma posterior calculamos el radio de garganta G de una familia de agujeros de
gusano con ayuda de un script.sh que ejecuta la rutina garganta.py para cada solución
particular; generan como salida el conjunto de valores de G asociados a cada valor de
campo escalar evaluado en la garganta ϕc.

Entre los detalles técnicos, podemos decir que para las soluciones con ω cercano a cero,
q ∼ 0, y λ ∈ [1, 30], basta con ocupar 24 coeficientes espectrales para que haya conver-
gencia en la determinación de soluciones. En cambio, para λs más grandes, ω cercano
a uno y qs distintos de cero, llegamos a ocupar 32 y 36 coeficientes en la aproximación
para que las soluciones convergieran.

4.4.3. Sobre la simulación numérica y soluciones particulares

Recapitulando, el sistema de ecuaciones diferenciales parciales y no lineales (4.16-4.19)
se resuelve numéricamente junto con las condiciones de frontera (4.29) y (4.30) utilizando
un método de colocación espectral con los polinomios de Chebyshev como base espectral
de las funciones desconocidas {N,Ψ, ϕ, V } en un dominio compactificado. Para detalles
del método se pueden consultar distintas referencias, por ejemplo la Ref. [181]. Las
soluciones presentadas en este trabajo utilizan iteraciones de Newton-Raphson.

De este modo, hemos construido una variedad de soluciones de agujeros de gusano
variando el parámetro λ en el intervalo 1

2
≤ λ/4π ≤ 100, la frecuencia del campo

escalar ω se explora en todo su intervalo físicamente posible, es decir, 0 ≤ ω/µ ≤ 1,
y analizamos las soluciones para casos fijos de q, incrementándolo gradualmente entre
0 ≤ q/

√
8π ≤ 0.5. Este procedimiento coincide con el utilizado por [40], y los intervalos

los hemos elegido así para obtener soluciones físicamente aceptables y comparables con
éste y otros trabajos previos.

Ahora, vamos a comenzar discutiendo el comportamiento general de los agujeros de
gusano eléctricos. Como ya mencionamos, obtenemos soluciones numéricas para distintos
valores del parámetro ω, λ y q. Utilizando la invarianza de las ecuaciones (4.16-4.19) bajo
el re-escalamiento:

r → µr, ω → ω/µ, λ→ λ/µ2, q → q/µ , (4.33)
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hemos obtenido soluciones para valores arbitrarios de µ. Todos las demás cantidades
reportadas a partir de este punto, serán dadas en términos de la masa del campo escalar
µ. Adicionalmente, utilizamos el escalamiento para la carga y el campo escalar para
facilitar la comparación con otros trabajos como [97],

q̃ =
q√
8π
, ϕ̃ =

ϕ√
4π
, λ̃ =

λ

4π
. (4.34)

En la Fig. 4.3, presentamos soluciones para la masa total M y el radio de la garganta,
G del agujero de gusano eléctrico como una función del campo escalar en la garganta.
En la misma figura estamos mostrando con color negro las soluciones con ω/µ = 0 y
de color violeta las soluciones con ω/µ = 1 variando λ̃ ∈ [1, 30]. Hemos agregado líneas
punteadas representando soluciones con algunos valores de λ̃, pero en este caso variando
ω/µ ∈ [0, 1].

La curva ω/µ = 0 delimita la masa máxima de los agujeros de gusano y es indepen-
diente al valor de q, mientras que la curva ω/µ = 1 sí varía con q. Cuando ω/µ ∼ 1,
conforme q incrementa, la masa total y radio de la garganta también incrementa en
magnitud conforme q incrementa.

Las soluciones con q̃ = 0 son consistentes con el resultado en [40] como puede verse
comparando sus Figs. 2 y 3 con la primera fila en la Fig. 4.3. Las soluciones con q̃ > 0
siguen la misma relación cualitativa entre las cantidades globales que las soluciones con
q = 0. También presentamos como la masa de los agujeros de gusano y el radio de la
garganta dependen del campo escalar evaluado en la garganta. La diferencia con el caso
neutrón es que los agujeros negros cargados con frecuencia ω/µ cercanas a uno, alcanzan
masas mas grandes (negativas) y gargantas más grandes que las correspondientes a agu-
jeros de gusano no cargados. El comportamiento común para los valores de q utilizados
es que para pequeños ϕ̃th, el radio de la garganta incrementa casi exponencialmente,
mientras que para valores grandes, el radio de la garganta tiende a cero. Para los casos
neutros, la masa total con ω/µ = 0 es siempre positiva, mientras que cuando ω/µ = 1
la masa total es siempre negativa, aunque este comportamiento puede cambiar con la
carga eléctrica, como veremos. También, notemos que para cada valor de ϕ̃th, el radio
de garganta es siempre más grande para ω/µ = 1 respecto al valor de ω/µ = 0, un he-
cho que se conserva en los agujeros de gusano eléctricos. En esta figura también hemos
incluido casos para distintos valores del parámetro λ̃, donde las frecuencias varían de
ω/µ = 0 a ω/µ = 1. Ahora bien, para estudiar el comportamiento de la carga q sobre las
soluciones, en el código fijamos el valor de q, analizamos las soluciones variando λ y ω, y
repetimos para otro valor de la carga q. En [97], los autores analizan las propiedades de
las soluciones de los agujeros de gusano no cargados y se enfocan enel comportamiento
de λ. Siguiendo su procedimiento, en la Fig. 4.4, graficamos la masa total M como una
función de λ̃ para distintas valores de ω/µ, y en la Fig. 4.5, mostramos el número de
partículas N como función de λ̃ para distintos valores de la carga, con un valor fijo
de ω/µ. De esta manera podemos enfatizar las diferencias entre los agujeros de gusano
electricamente cargados con los no cargados, los cuales se estudian en [97].

En la Fig. 4.4,vemos que el comportamiento de la masa total como función de function
of λ̃ en los casos cargados es muy similar que el caso neutro: para valores pequeños de
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Figura 4.3: En las gráficas de la izquierda graficamos la masa total de los agujeros de
gusano M y del lado derecho graficamos el radio de la garganta como función
del valor del campo escalar en la garganta, ϕ̃th. Notemos que λ̃ y ϕ̃th están
monótonamente relacionadas, es decir, cada valor de ϕth corresponde un valor
λ̃. Las líneas sólidas son soluciones para ω/µ = 0 (negro) y ω/µ = 1 (violeta).
Hemos incluido casos para distintos valores fijos del parámetro λ̃ (naranja)
donde las frecuencias toman valores entre 0 y 1, con λ̃ ∈ [1, 30].
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Figura 4.4: La masa de las soluciones de los agujeros de gusano contra el parámetro λ̃.
Mostramos la masa M como función de λ̃ > 0 en todo el intervalo posible
para la frecuencia del campo escalar ω/µ ∈ [0, 1] para distintos valores del
campo eléctrico del campo escalar q̃ ∈ [0, 0.5]. Los triángulos invertidos
representan el máximo de la masa Mmax de las soluciones con carga eléctrica
para distintas frecuencia. Los valores de los parámetros de las soluciones en
estos puntos están dados en el cuadro 4.1.
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Figura 4.5: Número de partículas para agujeros de gusano cargados como función del
parámetro λ̃ para valores representativos de q̃. Las líneas sólidas represen-
tan casos no cargados mientras que las líneas punteadas representan casos
cargados eléctricamente.
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λ̃, la masa total es negativa y esencialmente independiente de la frecuencia ω/µ, y en
este caso, como vemos en la Fig. 4.3, el radio de la garganta tiende a cero. Conforme λ̃
incrementa, las soluciones con ω/µ = 0 adquieren una masa total positiva que incrementa
linealmente con λ̃.

Por lógica, debemos tener una frecuencia, visualmente notamos que es cercana a ω/µ =
0.5, para la cual la masa total es igual a cero para cada valor de λ̃ por encima de ∼ 2;
conforme la frecuencia incrementa, la masa total alcanza un valor máximo y luego se
vuelve más negativa, con una dependencia lineal de λ̃.

La presencia de la carga mantiene el comportamiento general de la función de masa
respecto a λ̃ pero tiene algunas notables diferencias. Las soluciones ω/µ = 0 son inde-
pendientes de la carga, con se esperaba, puesto que en este caso el campo escalar es real
y no hay posibilidad de que se cargue electricamente. Para ω/µ ̸= 0, el rol de la carga
eléctrica comienza a ser notable, cambiando el valor de la frecuencia a la cual el agujero
de gusano agnquiere una masa total igual a cero; esto como vemos es esencialmente
independiente de λ̃, y haciendo la pendiente de la dependencia de la msa total como una
función de λ̃ mucho más pronunciada.

Hasta aquí nos hemos enfocado en valores específicos de λ̃ en los cuales la masa total
alcanza un máximo según el valor de q y ω. En la Fig. 4.4, presentamos gráficas de la
masa total M para distintos valores de la frecuencia ω/µ dado un valor de q; cada panel
corresponde a distintos valores de la carga, éstos son: q̃ = 0, 0.3, y 0.5. Hemos marcado
los puntos de la masa máxima sobre las diferentes gráficas y en el cuadro 4.1 aparecen
sus valores. También, hemos identificado las frecuencias en las cuales la masa total de la
solución es igual a cero, para cada valor de la carga, esta frecuencia la denotamos como
ωzm.

Para soluciones con ω > ωzm, no hay un máximo local para la masa, en cambio, la
masa incrementa linealmente con λ̃, mientras que para ω < ωzm, la masa total crece con
λ, alcanzando un valor máximo, y entonces un decrecimiento lineal.

En el caso de q̃ = 0, tenemos que ωzm/µ = 0.5, y la masa incrementa (decrece)
linealmente para ω/µ > 0.5 (ω/µ < 0.5) como ha sido reportado en [97].

El valor de ωzm decrece conforme q incrementa; esto lo podemos ver observando las
soluciones con q̃ = 0, 0.3, 0.4, y 0.5 dados en el cuadro. 4.1, donde ωzm corresponde a
los valores de la frecuencia tales que la masa se vuelve cero.

Respecto al número total de partículas, la Ec. (4.25), y el efecto de la carga del campo
escalar, q, sobre las cantidades globales, en la Fig. 4.5 describimos la dependencia del
número de partículas respecto al parámetro λ, para distintos valores de q y ω. Como en
el caso de la masa total, para valores de λ̃ no muy pequeños (más grandes que ∼ 1.5), el
número de partículas N incrementa linealmente con λ̃, para un valor fijo de q. El efecto
de la carga q es que la pendiente del número de partículas N como una función de λ̃
incrementa con q̃, alcanzando una pendiente máxima para q̃ = 0.5. Resolver el sistema de
ecuaciones para valores de q más grandes que éste valores, se vuelve computacionalmente
muy demandante, posiblemente indicando el hecho de que hay un valor máximo para la
carga q̃ por encima de la cual ya no hay configuraciones estáticas y esféricas.

Presentamos el caso para dos valores de la frecuencia. Ambos casos son muy similares
en cuanto al comportamiento del número de partículas como función de λ̃, con una
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q̃ ω/µ µMmax λ̃

0 0.5∗ 0 ∞
0 0.7 −0.578 1.289
0 1 −1.132 0.919
0.3 0.4375∗ 0 ∞
0.3 0.5 −0.3678 1.636
0.3 0.7 −0.6978 1.091
0.3 1 −1.3305 0.814
0.4 0.3875∗ 0 ∞
0.4 0.5 −0.467 1.388
0.4 0.7 −0.809 0.992
0.4 1 −1.554 0.694
0.5 0.3125∗ 0 ∞
0.5 0.5 −0.604 1.091
0.5 0.7 −0.995 0.861
0.5 1 −1.877 0.636

Cuadro 4.1: Máximo local de la masa Mmax dado un valor de la carga q y frecuencia
ω ≤ ωzm. Configuraciones con Mmax = 0 definen la frecuencia ωzm; para
casos donde la frecuencia es más grande que ésta, ω > ωzm, la masa no tiene
máximo local e incrementa linealmente con λ.

pendiente incrementando para valores grandes de q̃, la diferencia es que, dado un valor
de λ̃, el número de partículas con q es más grande que en el caso neutrón, sobre todo
para valores grandes de ω/µ.

Notemos que con la expresión Eq. (4.25), no podemos obtener el número de partículas
de particulares relacionado a la masa negativa y otra correspondiente a masas positivas;
sería interesante derivar expresiones que diferencien tales números.

En la Fig. 4.6, presentamos el radio de la garganta G como función de λ̃ y algunos
valores de la carga q̃ para dos valores de la frecuencia ω/µ. Es resaltable que el radio de
la garganta sigue un comportamiento muy similar al número de partículas, posiblemente
indicando una relación entre estas cantidades y las cantidades globales.

Otro interesante aspecto de los agujeros de gusano cargados que presentan la posibi-
lidad de probar la validez del teorema para agujeros de gusano no cargados, [99], el cual
plantea que el parámetro de auto-interacción, λ̃ es una condición necesaria para tener
un agujero de gusano. Entonces, exploramos la posibilidad de que la carga, q̃, juegue el
rol del parámetro de auto-interacción. Sin embargo, en nuestros experimentos numéricos
encontramos que este no es el caso y el parámetro de auto-interacción sigue siendo una
condición necesaria para la existencia de un agujero de gusano, aún si está cargado.

Finalmente, en la Fig. 4.7, presentamos nuevamente el comportamiento de la masa
total, ahora como una función de la frecuencia del campo escalar ω para distintos valores
de λ̃ y ciertos valores de la carga q.

Con los factores dados en la Ec. (4.34), somos capaces de comparar con los resultados
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Figura 4.6: Presentamos algunas soluciones numérica para el radio de garganta G como
función de λ̃ para valores diferentes de la carga q y dos valores de ω/µ. El
tamaño de la garganta crece linealmente con λ̃, cuando el parámetro no es
también muy pequeño, y la pendiente incrementa con q. El tamaño de la
garganta incrementa con ω.

presentados en la literatura, por ejemplo en [40], para casos neutros. Como ya mencio-
namos, genéricamente, uno de los efectos de la carga es el cambio del valor de frecuencia
que hace cero la masa de Komar, ésta es ωzm.

En los cuatro paneles de la Fig. 4.7, tenemos una línea vertical indicando el valor
ωzm/µ = 0.5, el cual corresponde al caso neutro. De esta manera es más claro que el
efecto de la carga es reducir el valor de ω al cual la masa de Komar se anula; además,
notemos que esto es independiente de λ̃ para un carga dada.

Notando que el sistema de ecuaciones, Ecs. (4.16), es invariante bajo cambios tanto
en la carga q̃ como en el potencial eléctrico, V , vemos que no hay un cambio notable en
el comportamiento de la masa total debido al cambio del signo de la carga escalar q̃.

Las fuentes de los campos gravitacionales pueden ser útiles para clarificar la estructura
de los agujeros de gusano así como sus propiedades globales. En la Fig. 4.8, graficamos
la densidad de energía τ para soluciones con λ̃ ∈ [0.5, 30], frecuencia ω/µ ∈ [0, 1] y
carga q̃ ∈ [0, 0.5]. De izquierda a derecha, los paneles muestran valores de λ̃ ∈ [0.5, 30],
mientras que de arriba a abajo los paneles muestran distintos valores de q. Cuando λ̃→ 0,
la distribución de la energía tiene cualitativamente el mismo perfil para todos los valores
de ω/µ, lo cual indica que la frecuencia se vuelve irrelevante cuando λ̃→ 0, (recordemos
que para λ̃ = 0, no hay soluciones de agujero de gusano). Más aún, para pequeños valores
de λ̃ el rol de la carga es también despreciable, mientras que para valores grandes de
λ̃ el rol de la carga en la densidad de la energía se vuelve más relevante, causando un
aplanamiento del valor de la densidad de la energía en la garganta.

Respecto al comportamiento del perfil de la densidad de la energía de la Fig. 4.8,
vemos que hay un máximo en la garganta η = 0, seguido de un decrecimiento hacia un
valor mínimo negativo, luego de ahí, la función tiende asintóticamente a cero conforme
η → ∞.

Más aún, como puede ser claramente visto en la gráfica de arriba a la izquierda, el
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Figura 4.7: La masa de los agujeros de gusano para distintos valores del parámetro λ̃ con
diferentes valores de q̃. Aunque los perfiles son muy similares, en el límite
λ̃ → ∞ la masa se vuelve cero para cierta frecuencia denotada ωzm/µ. El
símbolo cuadrado corresponde a tal frecuencia para distintos valores de q̃,
los cuales son reportados en el cuadro 4.1.

perfil de la densidad de energía para valores pequeños de λ̃ prácticamente no cambia,
aún cuando corresponda a casos con masa de Komar negativa con ω/µ = 1.

En la Fig. 4.9 algunas soluciones para el campo escalar ϕ se presentan, notando que
ϕ está re-escalado por un factor

√
λ. Podemos ver que para valores grandes de λ, las

soluciones presentan un comportamiento muy similar entre sí, indicando un posible re-
escalamiento de la forma ϕ→

√
λ ϕ en el régimen λ→ ∞.

De esta manera, hemos visto que para λ grande, el número de partículas N y el radio
de garganta G, incrementan con λ, la masa M depende linealmente de λ y finalmente
podemos ver que las soluciones de

√
λ ϕ tienden a tener un perfil muy similar para

λ grandes. Estos resultados nos sugieren re-escalar las cantidades ϕ∗ :=
√
λ ϕ, η0∗ :=

η0/λ, N∗ := N /λ y M∗ := M/λ para estudiar el comportamiento de las soluciones con
frecuencias ω y cargas q constantes en el régimen λ→ ∞. Esto es lo que haremos en el
siguiente apartado.

Concluimos el presente apartado presentando en la Fig. 4.10 los perfiles del cam-
po eléctrico E = −∇V para algunos valores de los parámetros λ, ω y q. Por nuestra
implementación numérica, el efecto repulsivo del parámetro q no nos permite obtener
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Figura 4.8: La densidad de energía τ como función de η para varias soluciones conλ̃ ∈
[0.5, 30] y q̃ ∈ [0, 0.5]. La densidad de energía decrece con λ̃. Para casos con
carga q̃ y λ̃ ≥ 0.5 la densidad de energía decrece tanto que es negativa en
todo el dominio.

soluciones por arriba del valor q̃ ∼ 0.5. Conforme uno se acerca a este valor, el tamaño de
la garganta incrementa, este hecho podría indicar la existencia de un valor crítico para
la carga del agujero de gusano. El parámetro ω, también afecta la dificultad de obtener
soluciones, aún con soluciones con valores pequeños de q. En varios de nuestros resulta-
dos, somos capaces de mostrar soluciones con q ̸= 0 y algunas frecuencias acercándonos
a ω/µ < 1, aunque sin llegar a la igualdad. En la siguiente sección, uniremos la observa-
ciones recién descritas para derivar una posible explicación de dichos comportamientos.

4.4.4. Comportamiento para λ grandes

Basados en nuestros resultados previamente presentados, y siguiendo el análisis del
re-escalamiento de las estrellas de bosones para valores grandes λ planteado por Colpi
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Figura 4.9: Presentamos algunas soluciones numéricas para el campo escalar re-escalado
por el factor

√
λ y diferentes valores de q. Las soluciones son muy similares

para valores grandes de
√
λ mientras que para valores pequeños de

√
λ las

soluciones exhiben perfiles muy distintos entre sí.

et. al. en 1986 [177], ahora vamos a considerar soluciones de agujero de gusano eléctrico
cuando λ≫ 1.

Un análisis del comportamiento de la geometría del espaciotiempo y el perfil radial del
campo escalar cuando la auto-interacción es grande, hace evidente un re-escalamiento de
distintas funciones y parámetros de la solución. Por ejemplo, ya vimos en la Fig. 4.9 que
las soluciones convergen a un perfil independiente de λ igual a ϕ∗ =

√
λϕ conforme λ

incrementa. Por otro lado, también vemos un comportamiento lineal entre el parámetro
de la garganta dado por η0∗ = η0/λ; los coeficientes métricos Ψ, N y el potencial eléctrico
convergen a funciones constantes, sea éstas, Ψth, Nth y Vth en un región cercana a la
garganta que incrementa también linealmente con λ. De este modo, nuestros resultados
muestran que no solo el campo escalar se vuelve independiente de λ en el régimen de
lambdas grandes, sino toda la solución. Con este resultado en mente, es posible encontrar
expresiones analítica para el agujero de gusano cargado en el régimen de λ ≫ 1, siendo
un caso particular de este análisis de agujero de gusano neutro, q = 0.

Vamos a comenzar re-escalando la ecuación de constricción (4.32) para la garganta
del agujero de gusano, obtenemos que:

4πΨ4
thη

2
0∗ϕ

2
th∗ =

1

λ
(
−µ2 +

ϕ2
th∗
2

+ (Vth q+ω)2

N2
th

) , (4.35)

donde, puesto que las cantidades ϕth∗, Nth y el producto Ψ4
thη

2
0∗ϕ

2
th∗ son finitos para

λ → ∞, entonces el lado derecho de la Ec. (4.35) debe seguir la misma dependencia
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Figura 4.10: Campo eléctrico E (−∇V ) como función de η para ω/µ = 0.5 (izquierda)
y ω/µ = 1 (derecha), con las cargas q̃ = 0.3 (arriba) y q̃ = 0.5 (abajo).
El campo eléctrico incrementa con q̃. En el caso de valores grandes de λ
es difícil obtener soluciones cerca de q̃ = 0.5, mientras que soluciones con
grandes λ̃ y pequeños valores q̃ sí son posibles.
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para mantener la consistencia de la ecuación de constricción:

µ2 − ϕ2
th∗
2

− (Vth q + ω)2

N2
th

∼ 1

λ
+O(λ−2) . (4.36)

Ahora, vamos a tomar el límite λ → ∞, manteniendo η fija en la Ec. (4.36). Vamos a
definir las siguientes cantidades límite con el subíndice ∞,

Nλ∞ = N |λ→∞, Ψλ∞ = Ψ|λ→∞, ϕ∗λ∞ = ϕ∗|λ→∞, Vλ∞ = V |λ→∞ , (4.37)

esto nos permite expresar el valor del campo escalar en la garganta en el límite λ→ ∞
como,

ϕ0 := ϕ∗λ∞(η = 0) =

√√√√2

(
µ2 − (ω + q V0)

2

N2
0

)
, (4.38)

donde V0 := Vλ∞(η = 0) y N0 := Nλ∞(η = 0). Esta ecuación implica que siempre
debe pasar que ω + q Vλ∞ ≫ 1, para que el valor de la función de lapso tome valores
suficientemente grandes que mantengan la Ec. (4.38) real, lo cual explica porque es
más posible obtener soluciones numéricas con valores altos de q y ω. Esto puede ser
corroborado mirando las primeras dos columnas de los cuadros 4.2 y 4.3, más adelante
explicaremos con cuidado ambos cuadros. Ahora, insertando las cantidades re-escalas ϕ∗
y η0∗ en el sistema de ecuaciones de Einstein-Klein-Gordon-Maxwell y tomando el límite
λ → ∞ (con η constante y asumiendo |η/η0| ≪ 1), se obtiene el sistema de ecuaciones
siguiente:

d2

dη2
Ψλ∞ = 0 , (4.39)

d2

dη2
Nλ∞ = 0 , (4.40)

d2

dη2
Vλ∞ = 0 , (4.41)

d2

dη2
ϕ∗λ∞ −Ψλ∞

4

(
µ2 − ϕ∗λ∞

2 −
(
qVλ∞ + ω

Nλ∞

)2
)
ϕ∗λ∞ = 0 . (4.42)

Ests soluciones son válidas en el intervalo −λη0∗ ≪ η ≪ λη0∗.
Imponiendo las condiciones de simetría en la garganta dadas en la Ec. (4.29) y uti-

lizando las definiciones dadas en la Ec. (4.37), el sistema de ecuaciones (4.39) tiene la
solución,

Nλ∞(η) = N0, Ψλ∞(η) = Ψ0, Vλ∞(η) = V0 ; (4.43)

ϕ∗λ∞(η) = ϕ0 sech

(
Ψ0

2ϕ0√
2
η

)
, (4.44)

con ϕ0 constreñido por la Ec. (4.38). Dada q y ω, los números N0, Ψ0, V0 y ϕ0 son
estimados mediante interpolación y apartir de soluciones con valores altos de λ. En el
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Cuadro 4.2: Cantidades Nλ∞ , Ψλ∞ , ϕλ∞ y Vλ∞ para ω/µ = 0.5 y diferentes valores de
la carga q. Estas cantidades se relacionan con las condiciones de frontera en
la garganta para λ→ ∞, en acuerdo con las Ecs. (4.37) y Ecs. (4.38).

q̃ N0 Ψ0 ϕ0 V0 (ω + qV0)/N0

0 1 0.7099 1.225 0 0.5
0.2 1.0860 0.6897 1.193 0.0882 0.5418
0.3 1.2153 0.6617 1.1365 0.1515 0.5990
0.5 1.9767 0.5504 0.8926 0.4146 0.7787

Cuadro 4.3: Cantidades límite N0, Ψ0 y ϕ0 para q = 0 (V0 = 0) y valores diferentes de
ω/µ.

ω/µ N0 Ψ0 ϕ0 ω/N0

0 0.5820 0.9001 1.4189 0
0.2 0.6895 0.8427 1.3551 0.2901
0.5 1 0.7099 1.2250 0.5
0.7 1.2401 0.6347 1.1707 0.5645
1 1.6153 0.5448 1.1131 0.6191

cuadro 4.2 presentamos algunos de los valores numéricos utilizados para el caso ω/µ = 0.5
En el cuadro 4.3 reportamos las mismas cantidades para el caso q = 0, ω.

Con el objetivo de comparar nuestras expresiones analíticas en el régimen λ → ∞
con nuestro código y soluciones numéricas, en la Fig. 4.11 presentamos la convergencia
de los perfiles numéricos ϕ∗λ∞ respecto a su perfil dado por la Ec. (4.44). Concluimos
que las expresiones analíticas son buenas aproximaciones para estos casos. También
hemos verificado la validez de las aproximaciones (4.43) para los funciones métricas,
comprobando el crecimiento lineal de éstas y del potencial eléctrico respecto al parámetro
λ. Previamente describimos que la masa (y el número de partículas) tienen también un
escalamiento lineal en el régimen λ → ∞ , y más aún remarcable, la masa total tiende
a cero para configuración con exactamente ω = 0.5µ conforme λ → ∞. Las Ecs. (4.43)
y (4.44) proveen una explicación a esta propiedades. Utilizando ϕ∗λ∞ y η0∗ es posible
mostrar que la masa de Komar en la Ec. (4.24) escala como M∗ =M/λ para λ≫ 1. Más
aún, una expresión analítica para M∗ puede ser obtenida notando que cuando λ ≫ 1
la raíz cuadrada del determinante puede aproximarse como √

γ ≈ λ2Ψ6
λ∞
η20∗ sin θ, y el

integrando N
(
T µ

µ − 2T t
t

)
puede ser simplificado a orden 1/λ como

N
(
T µ

µ − 2T t
t

)
≈ 2Nλ∞ϕ

2
∗λ∞

λ

(
µ2

2
− ϕ2

∗λ∞

4
− (qVλ∞ + ω)2

N2
λ∞

)
. (4.45)
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Figura 4.11: Diferencia entre el campo escalar re-escalado numérico ϕ̃∗ y analítico ϕ̃∗λ∞ ,
dado en la Ec. (4.44) y los parámetros dados en el cuadro 4.2, como una
función de la coordenada radialη en el régimen de λ̃ → ∞. Estamos consi-
derando casos con ω/µ = 0, 0.5, 1 y q̃ = 0, 0.3.

Entonces, insertando la expresión de la masa de Komar (4.24), obtenemos

M∗ = 8πN0Ψ
6
0 η

2
0∗

[
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4

∫ ∞

0

ϕ4
∗λ∞ dη +

(
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2
− (ω + qV0)

2

N2
0

)∫ ∞
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N2
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)1/2 [
µ2 − 4 (ω + qV0)

2

N2
0

]
. (4.46)

Aquí hemos utilizado que la expresión para el campo escalar de la Eq. (4.44), implica
que

∫∞
0
ϕ2
∗λ∞

dη = 2ϕ0√
2Ψ2

0

,
∫∞
0
ϕ4
∗λ∞

dη =
4ϕ3

0

3
√
2Ψ2

0

.
Como estábamos buscando, estas ecuaciones nos permiten ver la masa del sistema se

hará cero si y solo sí la condición ω = ωzm se satisface, con

ωzm =
µN0

2
− q V0 . (4.47)

Sustituyendo los valores en el cuadro 4.2 para las soluciones q = 0 y ω = 0.5µ vemos que
sí se satisface la condición, de la misma manera podemos comprobar con las configuración
con q > 0, λ≫ 1 y sus M son igual a zero. Más aún, puede mostrarse1 que en los casos

1Considerando la expansión completa de la función de lapso, después del término constante Nλ∞ , (el
cual es consistente con el sistema de ecuaciones (4.16-4.19)) (y considerando las posibles constri-
buciones de las expansiones de los otros campos) se debe tener N = Nλ∞ + λ−1N1(η) + O(λ−2),
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neutros, q = 0, el valor de N0 es exactamente igual a 1, entonces por esta razón en
ω = 0.5µ la masa de Komar es igual a cero, como ya habían reportado en [40, 97].
En general, tales valores se modifican en presencia de la carga q, como se muestra en
las figuras previas. Notamos a partir de los cuadros 4.2 y 4.3 que las cantidades N0 y
V0 tienen un incremento monótono respecto a la frecuencia y la carga, mientras que
las cantidades ϕ0 y Ψ0 decrecen monótonamente, igualmente respecto a la frecuencia
y la carga, por lo tanto, para cada valor de ω y q, corresponde un solo valor de estas
cantidades, en particular, N0, tales que la masa M∗ es igual a cero.

Finalmente, utilizando el mismo procedimiento es posible ver que el número de par-
tícular N dados por la Ec. (4.25) re-escalan como N∗ = N /λ en el régimen λ ≫ 1. Así
que podemos encontrar una expresión analítica para N∗ resultando en:

N∗ = 4π η20∗ (ω + qV0)
Ψ6

0

N0

∫ ∞

0

ϕ2
∗λ∞ dη ,

= 8π η20∗ (ω + qV0)
Ψ4

0

N0

(
µ2 − (ω + qV0)

2

N2
0

)1/2

, (4.49)

aquí hemos utilizado la expresión para la corriente j dada en la Ec. (4.8) y el ansatz de
la Ec. (4.10) para obtener j0 = − ϕ2

λ∞
N2

λ∞
(Vλ∞ q + ω).

4.4.5. Movimiento de partículas

Estudiar el movimiento de partículas en los espaciotiempos generados por agujeros
de gusano cargados tiene el propósito de comprender mejor las propiedades de dichas
geometrías y predecir posibles efectos sobre otras partículas.

La acción completa de la partícula cargada con masa m y carga e interactúa con un
campo electromagnético relativista es [36],

A = −
∫
mdτ +

∫
eAµu

µdτ +

∫
d4x

√−g
[

1

16π
R− 1

4
FµνF

µν

]
. (4.50)

con N1 satisfaciendo la ecuación diferencial N ′′
1 = 4πNλ∞Ψ4

λ∞
ϕ2
∗(µ

2 − ϕ2
∗/2− 2ω2/N2

λ∞
) junto a la

condición de frontera N ′
1(η = 0) = 0. Bajo esta consideración, la solución es,

N1(η) = 4πNλ∞ϕ2
∗λ∞

[(
1

3
− κ

)
ln (cosh (bη)) +

1

6
sech2 (bη)

]
+ k1, (4.48)

con κ = 2ϕ−2
∗λ∞

ω2/Nλ∞ y b = Ψ2
λ∞

ϕ∗λ∞/
√
2. Estas soluciones son válidas en el dominio |η| < λη0∗,

la función de lapso completa N = Nλ∞ +λ−1N1(η)+O(λ−2) debe empatar con la solución exterior
Nη→∞ = 1 + κ1/η en un cierto punto 1 ≪ ηm < λ, pero este es precisamente en el caso de masa
cero que κ = 1/3, como se obtiene a partir de la Ec. (4.44), así que el término λ−1N1 contribuye
insignificantemente (no así cuando κ ̸= 1/3). Más aún, se puede argumentar que las contribuciones
O(λ−2) son igualmente insignificante en el punto de empate, de modo que Nλ∞ debe satisfacer la
condición de frontera en infinito, Nλ∞ = 1, para la familia de soluciones q = 0 sí y solo sí M∗ = 0.
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donde uµ es la cuatri-velocidad de la partícula. Variando A respecto a la trayectoría de
las partículas obtenemos las ecuaciones de movimiento de la partícula,

m uµ∇µu
ν = e F ν

αu
α , (4.51)

notemos que se trata de la Ley de Lorentz. Ahora, consideremos el campo vectorial
de Killing K del espaciotiempo, entonces se puede mosr que la ecuación de Killing
∇(µKν) = 0 no implica que uµ∇µ(Kνu

ν) = 0 como en el caso de las geodésicas, sino que
se satisface que uµ∇µ [Kν(mu

ν + eAν)] = 0 ahora cuando la Ec. (4.51) se utiliza y se
asume que el campo electromagnético es consistente con la simetría asociada a K [35]
(como en el caso de nuestra solución de agujero de gusano eléctrico) . Esto significa que
las cantidades

Kν(mu
ν + eAν) , (4.52)

son constantes a lo largo de la línea de mundo de las partículas cargadas. Regresando al
espaciotiempo de agujero de gusano, el campo de Killing tipo tiempo ξ y el campo de
Killing axial ψ = ∂φ implican la existencia de una energía conservada E := −ξν(muν +
eAν) y el momento angular conservado azimutalL := ψν(mu

ν + eAν), las cuales, en las
coordenadas descritas en la Ec. (4.13) obtenemos E = mN2ut − eV and L = mΨ4(η2 +
η20) sin2 θ uφ. Puesto que tanto el campo gravitacional como eléctrico son simetricamente
esférico, podemos estudiar el movimiento sobre el plano ecuatorial θ = π/2 sin pérdida de
generalidad. De este modo, la normalización de la cuatri-velocidad nos permite obtener
una ecuación simple para el movimiento radial:

m2N2Ψ4

(
∂η

∂τ

)2

+m2N2 − (E + eV )2 +
N2

Ψ4

L2

η2 + η02
= 0 , (4.53)

cuyas soluciones permiten entender mejor las propiedades de los agujeros de gusano y
sus parámetros. Ahora, podemos definir el potencial efectivo Ueff como el valor mínimo
permitido de E dado un η, es decir,

Ueff(η) = −eV (η) +

√
m2N(η)2 +

N(η)2

Ψ(η)4
L2

η2 + η02
. (4.54)

Dado E y L, entonces, las regiones permitidas para el movimiento de las partículas están
dadas por aquellos valores de η tales que Ueff(η) ≤ E .

Para ilustrar el movimiento de las partículas alrededor del agujero de gusano cargado,
algunos potenciales efectivos se muestran en la Fig. 4.12. En el panel de la izquierda,
estamos considerando tres espaciotiempos distintos tales que su masa total de Komar es
M > 0, M < 0 y M = 0 , suponemos que una partícula neutra con momento angular
L/m = 0.1 cae dentro del agujero de gusano cuando su masa es positiva, es repelida
cuando la masa es negativa, y continúa con su movimiento en línea recta cuando M = 0,
todo esto, lejos de la garganta. En el panel de la derecho de la Fig. 4.12, consideramos
un agujero de gusano con M = 0 y damos algunos valores para la carga de la partícula;
podemos ver que tenemos casos tanto con interacción electromagnética atractiva como
repulsiva.
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Figura 4.12: Potencial efectivo Ueff para una partícula con momento angular L/m = 0.1.
Panel de la izquierda: Partícula neutral moviendose en un agujero de gusano
eléctrico con λ̃ = 30 y q̃ = 0.1 hay diferentes valores de ω/µ tales que la
masa total del espaciotiempo es positiva, cero y negativa (ω/µ = 0.475,
0.4875 y 0.5 respectivamente). Panel de la derecha: partículas cargadas con
e/m = 1, 0, −1 moviéndose en el espaciotiempo del agujero de gusano con
M = 0, igual que en el panel de la izquierda.

4.5. Conclusiones de este capítulo

La energía oscura y la Inflación son dos conceptos actualmente bien aceptados dentro
de la comunidad científica para describir, respectivamente, las propiedades del Universo
y su origen. Tanto la energía oscura como la Inflación estarían compuestas por materia
exótica en el sentido de que puede tener regiones del espaciotiempo con densidades de
energía negativa. El modelado de la materia exótica es, entonces, de gran interés para
mejorar la comprensión del Universo a gran escala y su origen. Dentro de los estudios de
la materia exótica, los agujeros de gusano representan una configuración de gran interés
desde que Einstein y Rose propusieron el concepto de puente entre espaciotiempos.
Posteriormente, se han propuesto otras soluciones de agujeros de gusano, siendo todas
ellas al parecer, inestables en el tiempo. Aún falta entender bastante como interacciona
la materia exótica con otros campos físicos, como el electromagnético. Estos podrían
jugar algún rol en la naturaleza y estabilidad de la materia exótica.

En el trabajo presentado en este capítulo [21], hemos derivado y resuelto el sistema de
ecuaciones Einstein-Maxwell-Klein-Gordon para el caso de un campo escalar complejo y
exótico, con término de auto-interacción, mínimamente acoplado al campo electromag-
nético. Imponiendo condiciones de frontera apropiadas, obtuvimos un espaciotiempo
asintóticamente plano que describe un agujero de gusano con carga eléctrica. Así, obte-
nemos soluciones con las ya conocidas regiones de densidad positiva cerca de la garganta
y regiones de densidad negativa, permitiendo esto obtener soluciones cuya masa total
es positiva, negativa e igual a cero, dependiendo de los valores de los parámetros del
sistema. Obtenemos que la carga eléctrica afecta la morfología de los agujeros de gusano
y juega un rol importante en la determinación de su masa total y número de partículas.
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Además, el movimiento de partículas en regiones lejanas a la garganta del agujero de
gusano es diferente dependiendo de la masa total del sistema y su carga.

Nuestro análisis sugiere que, para valores grandes de λ, la solución para el campo esca-
lar tiende a un mismo comportamiento. Nos detuvimos en este hecho y fuimos capaces de
obtener expresiones analíticas para el campo escalar que reproducen su comportamien-
to. Comprobamos comparando las soluciones numéricas con las expresiones analíticas,
obteniendo un excelente acuerdo. Esto no permitió entender mejor el rol de los paráme-
tros en la determinación de las propiedades globales de los espaciotiempos de agujero de
gusano cargado, tales como la masa total y el número de partículas, en función de los
parámetros µ, ω, q, η0∗, así como el potencial eléctrico y los coeficientes métricos eva-
luados en el caso donde λ es muy grande. Es interesante notar que la carga y el campo
eléctrico juegan un rol importante no solo en la determinación de la masa total sino que
también modifica las condiciones en las cuales la masa es igual a cero.

Otro hecho que queremos resaltar es que nuestros experimentos numéricos nos per-
miten conjeturar que la carga no puede suplir el rol del parámetro de autointeracción,
implicando que aún con carga eléctrica, los agujeros de gusano deben tener un paráme-
tro de auto-interacción no nulo en aras de tener soluciones en equilibrio. Además, aún
cuando no se deduce de las ecuaciones la existencia de un valor crítico para la carga,
en nuestros experimentos numéricos, sí encontramos dificultades al incrementar q por
encima de 0.5, lo cual sugiere la existencia de algún valor crítico por encima del cual ya
no hay soluciones de equilibrio.

Finalmente, presentamos el movimiento de particulas tanto cargadas como neutras,
obteniendo un comportamiento en términos de la masa total de las soluciones de agujero
de gusano. En particular, en la región donde la masa total encerrada ya es constante, las
partícular siente una atracción hacia el agujero de gusano si éste tiene masa positiva, se
repele en el caso donde la masa es negativa y, no se afecta su movimiento cuando la masa
total es cero. Las soluciones donde Q ̸= 0 y M = 0 son importantes porque significan que
aunque el campo electromagnético contribuye como fuente a las ecuaciones de Einstein,
el sistema completo de ecuaciones (campo electromagnético + campo escalar) es tal que
una partícula cargada, lejos de la garganta, podría sentir la presencia del agujero de
gusano, mientras que una partícula neutra no.

Más aún, nos ha sido posible construir soluciones donde Q > M sin que esto implique
la existencia de alguna singularidad desnuda. Las futuras investigaciones sobre el mo-
vimiento geodésico alrededor de los agujeros de gusano eléctrico y su posible distinción
de otros posibles objetos compactos (como por ejemplo hicieron en [182, 183] )) pueden
trabajarse en un futuro trabajo.

Las ideas y procedimiento aqui descrito puede ser adaptado un campo electromagné-
tico más general incluyendo la construcción de un agujero de gusano magnético. Tales
ideas ya están en desarrollo por algunos autores de la investigación presentada en este
capítulo basado en el artículo [21] .
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A través de estos capítulos comprendimos y utilizamos distintas herramientas para
el estudio de los campos gravitacionales en condiciones extremas -y no tan extremas-
. Entre las herramientas que utilizamos incluimos a la Física Newtoniana, la teoría
electromagnética clásica, la Relatividad General, la teoría de perturbaciones a primer
orden (aproximación cuadrupolar), la Relatividad Numérica en su actual estado-de-
arte, así como el estudio de las ondas gravitacionales. Con estas herramientas, durante
mi doctorado investigué algunas configuraciones auto-gravitantes, comenzando por los
sistemas binarios de estrellas de neutrones. Además, exploré la teoría de los campos
escalares complejos para construir estrellas de bosones-ℓ y agujeros de gusano. En el
caso de las estrellas de neutrones y de las estrellas de bosones-ℓ, analicé sus ondas
gravitacionales. Al mismo tiempo, durante mis investigaciones exploré la interacción
entre los campos electromagnéticos y gravitacionales en configuraciones auto-gravitantes
con campos electromagnéticos (particularmente, trabajé con estrellas de neutrones con
campos magnéticos dipolares y agujeros de gusano con campos eléctricos).

En las últimas décadas, las observaciones astronómicas han explorado regiones cada
vez más amplias y con mejor resolución del Universo y han observado múltiples formas
de organización de la materia y la energía. Y, aunque la Astronomía ha aportado mu-
cho conocimiento a la humanidad (por ejemplo, sobre la naturaleza de las partículas
elementales, la evolución de las estrellas y la Cosmología), también ha abierto muchas
interrogantes y grandes retos para la comunidad de Física Teórica. Parece que en nues-
tro Universo no solo existe la materia ordinaria, también existe la materia oscura y muy
probablemente algún tipo de materia exótica (de acuerdo a la definición de la sección
1.1.3). En esta tesis, estudiamos el efecto gravitacional producido por objetos de los
tres tipos de materia: estrellas de neutrones, compuestas por materia ordinaria, estrellas
de bosones, interpretadas como objetos de materia oscura, y agujeros de gusano com-
puestos por un tipo de materia exótica. Es decir, los resultados obtenidos durante mi
doctorado aportan información sobre los campos gravitacionales y su interacción con los
campos electromagnéticos a través del estudio de objetos como las estrellas de neutrones
magnetizadas y los agujeros de gusano eléctricamente cargados.

Reafirmamos que la Gravedad, aún siendo la interacción fundamental más débil, a
escalas astrofísicas, galácticas y cosmológicas, rige la dinámica de la materia y energía.
Las ondas gravitacionales contienen información sobre las propiedades de la materia y
la energía.

Concretamente, durante mi doctorado colaboré en tres investigaciones, dos de las
cuales ya se encuentran publicadas en revistas internacionales. La primera investigación
trató sobre el efecto de los campos magnéticos en las ondas gravitacionales emitidas
durante la coalescencia de dos estrellas de neutrones magnetizadas, en esta investigación
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soy primera autora y se encuentra publicada en la Revista General Relativity and Gra-
vitation [20] y está descrita en el capítulo dos. En la segunda investigación construimos
un agujero de gusano con carga eléctrica, en este trabajo soy segunda autora y puede
consultarse en Physical Review D [21] y en el capítulo cuatro de la presente tesis. La
tercera investigación, en la que soy primera autora, está por ser enviada para su publica-
ción, en ella exploramos la detección de ondas gravitacionales de estrellas de bosones-ℓ
en colisión frontal (capítulo tres).

Es así que en el primer capítulo de la presente tesis, es una introducción a las inves-
tigaciones, colocando en primer lugar el contexto observacional y en segundo lugar, la
Relatividad General como marco teórico común. En el segundo capítulo, examinamos el
campo gravitacional y electromagnético producido por dos estrellas de neutrones en la
etapa de espiraleo rumbo a su fusión. Demostramos que la interacción magnética entre
las estrellas de neutrones afecta tanto la luminosidad gravitacional como la forma de
las ondas gravitacionales durante el espiraleo, esto porque la dinámica de la binaria (su
periodo orbital y radio) depende de la magnitud de los campos magnéticos. Restringimos
nuestro estudio al caso de órbitas circulares, argumentando que es bien sabido el proceso
de circularización de las órbitas en este tipo de sistemas. Así, encontramos que cuando
los dipolos magnéticos se atraen entre sí, el tiempo de fusión es más corto en compara-
ción con el caso sin interacción magnético. En cambio, cuando los dipolos magnéticos se
repelen, este tiempo se alarga. En el primer caso, el potencial magnético tiene el mismo
signo que el potencial gravitacional, por lo que se suman sus efectos haciendo más rápida
la fusión de las estrellas. Sin embargo, también encontramos que el efecto magnético,
aún en los casos extremos de magnetares con B ∼ 1016 G, genera una corrección muy
pequeña, del orden de 10−4 en variables como la frecuencia y la amplitud de las ondas
gravitacionales y del orden de 10−2 en la luminosidad gravitacional. Concluimos que la
cantidad de energía que transportan las ondas gravitacionales depende de la naturaleza
de la fuente y que detectores más sensibles serán capaces de ver la huella de los campos
magnéticos en la forma de las ondas gravitacionales. Hicimos predicciones sobre el efecto
de los campos magnéticos de las estrellas de neutrones binarias en la emisión de ondas
gravitacionales y comprobamos que conforme la sensitividad de los detectores incremen-
te, será posible poner cotas más precisas sobre la natureleza magnética de las estrellas
de neutrones.

En el capítulo tres, analizamos las ondas gravitacionales generadas en la colisión fron-
tal de estrellas de bosones-ℓ. Este tipo de estrellas de bosones están descritas por campos
escalares complejos, y, aunque su existencia no ha sido confirmada, son interesantes can-
didatas a ser configuraciones autogravitantes de materia oscura formada por partículas
bosónicas de masa intrínseca mϕ y parámetro angular ℓ. En nuestro trabajo, estudiamos
qué valores de masa intrínseca debería tener el campo escalar para conformar estrellas
de bosones-ℓ de escalas astrofísicas y emitir ondas gravitacionales con frecuencias y am-
plitudes dentro del rango de detección de las actuales y próximas observaciones de la
colaboración LIGO-Virgo-Kagra. Encontramos que mientras más ligero es el campo es-
calar, más energía transportan las ondas gravitacionales y mayor es su amplitud, aunque
menos es su frecuencia pico. A compacidad constante, no encontramos relaciones genera-
les entre las propiedades de las señales producidas por estrellas de bosones ℓ ̸= 0 respecto
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a colisiones de estrellas de bosones con ℓ = 0. Concluimos que si la energía intrínseca del
campo escalar que conforma a las estrellas de bosones-ℓ fuese entre 10−14 − 10−10 eV y
estuviesen localizadas a 100 Mpc, al chocar frontalmente podrían ser detectectadas por
los interferómetros actualmente en funcionamiento.

En el capítulo cuatro, demostramos que la carga eléctrica puede acoplarse a la ma-
teria exótica para conformar un agujero de gusano cargado descrito por el sistema de
ecuaciones Einstein-Maxwell-Klein-Gordon. En esta interpretación, la materia exótica
está representada por un campo escalar complejo con parámetro de auto-interacción.
Encontramos que las relaciones entre las cantidades globales que describen a los agu-
jeros de gusano sin carga son cualitativamente similares a los agujeros de gusano con
carga. Sin embargo, también encontramos que la carga juega un rol determinante en el
valor de la masa total, el radio de garganta y el número de partículas. La carga eléctrica
afecta el tamaño de la garganta del agujero de gusano haciéndola más grande confor-
me se incrementa la carga. Lo mismo ocurre con el número de partículas. Otro aporte
de esta investigación fue que encontramos una solución analítica para el campo escalar
complejo en el régimen de grandes valores del parámetro de auto-interacción, que aplica
tanto para el agujero de gusano sin carga eléctrica como el caso con carga eléctrica. La
solución analítica coincide bastante bien con las soluciones numéricas con λ, probando
así la validez del método de integración utilizado para resolver el sistema de ecuaciones.
Por otro lado, al estudiar el movimiento geodésico de partículas prueba cargadas y/o
neutras en la vecindad de dicho agujero de gusano, nos encontramos que el hoyo de gu-
sano, aún sin carga eléctrica, puede tener una masa asintótica tal que éste sea positiva,
cero o inclusive negativa; la carga tiene el efecto de modificar la frecuencia a la cual la
masa asintótica del hoyo de gusano sea cero. Estudiamos con detalle el movimiento geo-
désico mencionado y, efectivamente, hay partículas que lejos no sentirían ningún efecto
gravitacional y otras que sentirían sólo un efecto electromagnético. Esto podría tener
consecuencias observacionales.

Durante décadas se ha planteado la posibilidad de extender el paradigma actual de
la cosmología y la física y se han buscado en experimentos de colisiones más partículas
elementales, sin embargo, siguen sin detectarse. Esto ha dado pie a que otros modelos
se planteen para explicar la naturaleza del sector oscuro del universo. Las capacidades
computacionales están permitiendo explorar otras posibles configuraciones de la materia
y la energía.

En estos tiempos, podría pensarse que la Astronomía y Física están en crisis al saber
muy poco sobre la mayoría del Universo, no obstante, son tiempos muy interesantes
porque hay muchas herramientas y colaboraciones científicas que están trabajando y
avanzando rápidamente en todas las posibilidades teóricas y sus implicaciones observa-
cionales, para así ir descartando soluciones a las ecuaciones de la dinámica de la materia
y la energía, y quedarnos con aquellas configuraciones auto-gravitantes de distintos ti-
pos de materia, sea ésta ordinaria, oscura o exótica, que sí existen en nuestro Universo.
A través del análisis de ondas gravitacionales es posible descartar, acotar o reafirmar
modelos sobre las fuentes. A casi una década de la primera detección de ondas gravi-
tacionales, ya no podemos decir que las ondas gravitacionales son una nueva ventana
para comprender el Universo, más bien, son una herramienta en completo desarrollo
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5 Conclusiones generales

y auge que seguirá aportando información sorprendente sobre los objetos y fenómenos
del Universo. El actual esquema teórico de la Física Contemporánea es un compendio
de teorías y modelos con preguntas abiertas pero que en lo general es una muy buena
aproximación a la realidad.
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