
Quantum Sci. Technol. 8 (2023) 025003 https://doi.org/10.1088/2058-9565/acaf9d

OPEN ACCESS

RECEIVED

7 April 2022

REVISED

25 October 2022

ACCEPTED FOR PUBLICATION

3 January 2023

PUBLISHED

23 January 2023

Original Content from
this work may be used
under the terms of the
Creative Commons
Attribution 4.0 licence.

Any further distribution
of this work must
maintain attribution to
the author(s) and the title
of the work, journal
citation and DOI.

PAPER

Automatic generation of Grover quantum oracles for arbitrary
data structures
Raphael Seidel∗, Colin Kai-Uwe Becker, Sebastian Bock, Nikolay Tcholtchev, Ilie-Daniel Gheorghe-Pop
and Manfred Hauswirth
Fraunhofer Institute for Open Communication Systems (FOKUS), Berlin, Germany
∗ Author to whom any correspondence should be addressed.

E-mail: raphael.seidel@fokus.fraunhofer.de

Keywords: quantum computing, oracle generation, Grover’s algorithm, quantum logic synthesis

Abstract
The steadily growing research interest in quantum computing—together with the accompanying
technological advances in the realization of quantum hardware—fuels the development
of meaningful real-world applications, as well as implementations for well-known quantum
algorithms. One of the most prominent examples till today is Grover’s algorithm, which can be used
for efficient search in unstructured databases. Quantum oracles that are frequently masked as black
boxes play an important role in Grover’s algorithm. Hence, the automatic generation of oracles is
of paramount importance. Moreover, the automatic generation of the corresponding circuits for a
Grover quantum oracle is deeply linked to the synthesis of reversible quantum logic, which—despite
numerous advances in the field—still remains a challenge till today in terms of synthesizing efficient
and scalable circuits for complex Boolean functions. In this paper, we present a flexible method
for automatically encoding unstructured databases into oracles, which can then be efficiently
searched with Grover’s algorithm. Furthermore, we develop a tailor-made method for quantum
logic synthesis, which vastly improves circuit complexity over other current approaches. Finally, we
present another logic synthesis method that considers the requirements of scaling onto real world
backends. We compare our method with other approaches through evaluating the oracle generation
for random databases and analyzing the resulting circuit complexities using various metrics.

1. Introduction

1.1. General remarks
The field of quantum computing has seen a significant rise in interest over the past two years since the
quantum supremacy announcement from Google [1] and will continue to be of great interest, among other
things, due to the recent supremacy announcements regarding chinese quantum hardware designs [2–4]. Yet
some of the well-known algorithms that are representative for the potential of quantum computing are still
far from being implementable for meaningful applications on today’s quantum hardware. Especially
noteworthy are Shor’s algorithm that could play a significant role in cryptography and cybersecurity as well
as Grover’s algorithm. The latter was initially designed for searching through large unstructured databases
[5–7] but also has applications in cryptography [8] (e.g. for the search of encryption keys in the context of
symmetric cryptographic algorithms), optimization problems [9–11]—that can even be beneficial for
material discovery [12]—as well as applications for challenging problems in the domain of data structure
and hash function design [13].

The focus of the research presented in this paper relates to the scalable synthesis of quantum oracles used
in the context of Grover database search. The need for automatic oracle generation for Grover’s algorithm
was extensively discussed in one of our previous research works [14]. After a thorough analysis, [14] clearly
states that there is a paramount requirement for automatically generated oracles as inputs for Grover’s
algorithm, in order to be able to provide function/procedure APIs (application programming interfaces) to
developers and that way seamlessly integrate quantum computing into existing software development

© 2023 The Author(s). Published by IOP Publishing Ltd

https://doi.org/10.1088/2058-9565/acaf9d
https://crossmark.crossref.org/dialog/?doi=10.1088/2058-9565/acaf9d&domain=pdf&date_stamp=2023-1-23
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0003-3560-9556
mailto:raphael.seidel@fokus.fraunhofer.de

Quantum Sci. Technol. 8 (2023) 025003 R Seidel et al

projects (e.g. telecom supporting systems, web shops and other kinds of applications) and processes. In order
to address this urgent need, we present the design and implementation of a fully automated programming
framework for the complete Grover based search process, including the generation of the belonging quantum
oracles. This involves the conversion of arbitrary data into Boolean functions that are encoded in truth
tables, the synthesis of Grover oracles from these truth table expressions and the direct integration into the
initialization and diffusion steps of Grover’s algorithm.

1.2. Problem statement
The following constitutes a tangible list of aspects that summarize the targeted problem:

• The creation of oracles for Grover’s search algorithm is a challenging task.
• The creation of quantum oracles containing the input for a Grover search needs to be done on a case-by-case
basis depending on the database/list to search in and the object/value to search for.

• As of the current state-of-the art there is no accessible computer scientist’s alikeAPI for functions/procedures
(e.g. int grover(int [] list_to_search_in, int value_to_search_for)) that allows for effortless submission of a
database/list and an object/value to search for in this database/list.

• Hence, Grover’s algorithm is almost impossible to apply for the execution of standard tasks in the course of
programing IT components and products in different application domains.

In order to address the above issues, our current research paper presents a solution, such that efficient and
convenient I/O procedures to Grover’s algorithm are enabled. The following subsection outlines the specific
contributions of our paper which address the posed problem statement and belonging research challenge.

1.3. Contributions
The following key contributions are the result of our research work, which is presented in the current paper
toward progressing on the topic of automatic generation of Grover quantum oracles for arbitrary data
structures:

(a) The current paper presents an overall structure of a procedure for the automatic generation of Grover
oracles, which is based on truth tables and belonging quantum logic synthesis. This procedure enables
Grover quantum search of arbitrary databases.

(b) We present a high level complexity analysis of this general structure/procedure and clearly identify the
benefits and the need for improvements of the algorithms and the approach itself.

(c) Subsequently, we present a flexible method for implementing similarity searches over a database thereby
steering the oracle generation correspondingly. Within a similarity search it is possible to utilize Grover’s
algorithm to identify database items which have a certain degree of resemblance compared to a
particular item we are searching for.

(d) Moreover, we survey the topic of quantum logic synthesis and adapt different available
algorithms—such as the Reed–Muller Expansion and the Gray Synthesis in order to improve their
efficiency in the workflow of oracle generation.

(e) We present a new Phase Tolerant Synthesismethod, a streamlined version of the established Gray
Synthesis, which (asymptotically) halves the required resources.

(f) Another critical issue is constituted by the scaling of logic synthesis methods which quickly requires
extremely fine phase gates. In order to address this issue we introduce the method of CSE-synthesis.

(g) Finally, we present a number of benchmarking results which confirm the efficiency of our approaches
and algorithms for quantum logical synthesis and in general for automatic Grover oracle generation.

The above items constitute clear contributions, which to the author’s knowledge are the first attempt so
far to enable the efficient and convenient input of databases and objects to search for with Grover’s algorithm
with the goal to make it usable for different tasks in modern IT components and products (e.g. web portals,
search engines, network operation centers, etc).

1.4. Structure of the paper
The rest of this paper is organized as follows: In section 2 we present an overview of the state-of-the-art in
oracle synthesis work. In the subsequent section 3 our method for automatic oracles generation is presented.
In section 4, we give an introduction into different methods for reversible quantum logic synthesis and
elaborate on our improved version for Grover oracle generation that we denote as phase tolerant synthesis.
This is then further discussed in the context of scalable logic synthesis circuit design in section 5. Section 6
describes the tests and results we obtained by comparing existing oracle generation methods with the one we

2

Quantum Sci. Technol. 8 (2023) 025003 R Seidel et al

developed in terms of circuit complexity. Finally, section 7 contains a summary of the research presented in
this paper as well as some brief discussion about our future research plans.

2. Overview and background

To provide an initial overview, section 2 reviews Grover’s algorithm for efficient item search in unstructured
databases on a higher level without going into the mathematical details and proofs. Afterwards, some recent
research works from the domain of Reversible Quantum Logic Synthesis are presented. These activities and
related results are of particular importance for our approach to the automated generation of Grover
quantum oracles. Besides specific applications for Grover’s algorithm, proof of concepts for experimental
realizations [15] and low-scale prototype implementations on current quantum hardware [16], a really
important field of research lies in the scalable generation of Grover oracles and quantum oracles for black
box algorithms in general [14].

2.1. Grover’s algorithm
At the heart of Grover’s algorithm lies a quantum oracle, which phase-tags only the winner items. For now
we leave the specifics of generating said oracle from the database to the subsequent sections and simply
assume it has the following functionality:

O|i⟩= (−1)f(i)|i⟩ with f(i) =

{
0, if i ̸∈ {wj}
1, if i ∈ {wj}.

(1)

Note that for the oracle, we do not need to explicitly know wj but we only need a valid function f for the
search problem. Also for an explicit construction of such oracles, one generally needs an auxiliary qubit
register to store intermediate results into which has to be uncomputed later on1. The role of this auxiliary
qubit register and belonging operations is further discussed in section 3.

In order to evaluate Grover’s algorithm with this oracle, we initialize the system in the fiducial state
|Ψ⟩= |0⟩n. Grover’s algorithm starts by setting all qubits into an equal superposition state |s⟩

H⊗n|0⟩n = 1√
N

N−1∑
i=0

|i⟩= |s⟩. (2)

Here, the integer states |i⟩ directly relate to corresponding binary encoded states in the computational basis.
After phase-tagging the winner states—i.e. the states representing the values we search for in the

unstructured database—Grover’s algorithm implements a so-called diffusion operator Ud = 2|s⟩⟨s| − I that
amplifies the amplitudes for measuring the winner states. The phase-tagging and diffusion steps can
geometrically be considered as two successively performed reflections, and thus as a single rotation in a
2D-plane. Each such rotation corresponds to a single Grover iteration that gradually rotates |s⟩ closer to

∣∣wj

〉
.

At the end of the algorithm, a measurement in the computational basis is performed and the searched and
potentially found items can be identified by distinct peaks in the distribution of the measured results. It is
important to remark that in literature [17] there is a derived optimal number of Grover iterations
(i.e. amplification and oracle application) that results in |s⟩ being rotated the closest to

∣∣wj

〉
. This optimal

number of iterations yields the best measurement results. Thus, performing more or less rotations is
expected to lead to increasingly worse search results. A more in-depth discussion about Grover iterations will
be given in section 3. To summarize briefly: searchingM items within an unstructured database needs at

mostO(
√

N
M) iterations by Grover’s algorithm. Hence there is a noticeable advantage over classical search

algorithms, which are known to perform inO(N) for a linear search.

2.2. Reversible quantum logic synthesis
Technically, there is a deep interconnection between generating quantum oracles and synthesizing reversible
quantum circuits from classical logic expressions. Therefore, in section 3 we describe the application of
state-of-the-art quantum logic synthesis procedures for our approach to Grover oracle synthesis. In the
following paragraph, we conduct a brief introduction to related research and development activities from the
area.

As Reversible Quantum Logic Synthesis is an active field of research for more than 20 years [18], more
efficient methods in terms of gate counts and the usage of ancilla qubits arise frequently [19]. While many of

1 Uncompation is the process of Garbage Collection with respect to qubits, i.e. during an uncomputation the corresponding qubits are
systematically reset to their initial states through the belonging reversible mathematical operations.

3

Quantum Sci. Technol. 8 (2023) 025003 R Seidel et al

them are available in the tweedledum [20] library, a fairly recent method of interest is denoted as
resource-efficient oracle synthesis (ROS) and was initially presented in [21]. It is built on the LUT2-based
hierarchical reversible logic synthesis framework (LHRS) [22] and improves the LUT-network approach by
adding a special quantum aware k-LUT mapper, involving specially truncated XAGs3 and a more efficient
SAT-based quantum garbage management technique4 [23], which offers control over the number of qubits
used in the synthesized circuits. This method can be considered as a reasonable competitor and thus
constitutes an interesting research work for comparison to our synthesis methods. Additionally, there are
some implementations for oracle generation in the established software frameworks like Qiskit [24] and Q#
[25]. The Qiskit implementation will be tested and compared to our approach in section 6. Apart from the
above mentioned activities, there are no further comparable methods to the best of our knowledge.

3. Method for automatic oracle generation

We will now present our method of turning arbitrary databases into oracles. The basic idea is to deploy a
computationally effective labeling function, which turns the data into bitstrings of suited length. For a
database D, this labeling will be denoted as5:

l : D→ Fk
2 (3)

e→ l(e).

Here, k ∈ N stands for the label size, which has to be chosen according to the specifics of the problem
(more to that in section 3.1). The method of obtaining these bitstrings is in principle also free to choose as
long as it only takes local information from the database, i.e. the bitstring of each element is independent
from the rest of the database. For example, in our Python implementation, the native hash function generates
an integer hash value for a wide class of objects, which we convert to the belonging binary representation and
clip the bitstring to a length of k.

As a result, the labels provide a sequence of bitstrings representing the database, which eventually can be
used to form a logical truth table (see figure 1(a) for an example). Subsequently, this truth table is turned
into a quantum circuit using a suited quantum logic synthesis algorithm. Given two registers (the index and
the label register) this yields a unitary mapping UD which acts as:

UD|i⟩|0⟩= |i⟩|l(e(i))⟩, (4)

where l(e(i)) is the label of the database entry e with index i. It is important to note that the synthesis process
only has to be done once per database. The resulting circuit can then be used for subsequent searches and
only needs to be updated at changes to the database entries. We leave the challenge of efficient updating for
database circuits as an open research question, which we are going to address in the near future.

Based on the above considerations, in order to query the index iq for a given database element eq, we
combine the synthesized truth table with a phase-tag of the bitstring l(eq), which can be calculated with very
small effort from eq. The phase- tag is realized using a multi-controlled Z gate which is enclosed by X gates at
the appropriate qubits. Finally, the label variable has to be uncomputed again. Denoting the tagging function
of label l(e) with T(l(e)), the mathematical description of the actions of the oracle O(eq) = U†

DT(l(e))UD of
the element eq is as follows:

O(eq)|i⟩|0⟩=U†
DT(l(eq))UD|i⟩|0⟩

=U†
DT(l(eq))|i⟩|l(e(i))⟩

=

{
−U†

D|i⟩|l(e(i))⟩ if l(eq) = l(e(i))

U†
D|i⟩|l(e(i))⟩ else

=

{
−|i⟩|0⟩ if l(eq) = l(e(i))

|i⟩|0⟩ else

, (5)

which is precisely the functionality we required O(eq) to have in equation (1).

2 LUT stands for lookup-table.
3 XAG stands for Xor-And-inverter Graphs, which constitute a particular form of representing intermediate results during the process of
quantum logic synthesis.
4 A management technique for the efficient uncomputation (i.e. garbage collection) of the corresponding circuits involving instances of
the SAT-problem (SAT= SATISFIABILITY).
5 F2 is the Galois field with two elements, i.e. the field of operation for traditional Boolean algebra. The arithmetic operations are all
carried out mod2, i.e. 1+ 1≡ 0 mod 2. We will use the⊕ notation for additions in the F2 space.

4

Quantum Sci. Technol. 8 (2023) 025003 R Seidel et al

Figure 1. (a) Truth table of an example database containing some names as entries. The values for l(e) are generated by truncating
the binary strings from the output of Python’s native hash function. (b) Example application of Grover’s algorithm to the oracle
created from the database in (a) querying for ‘Eve’. The simulation was performed with Qiskits OpenQASM simulator [26].
(c) Quantum circuit of a single Grover iteration querying for the database element eq ∈ D. (d) Histogram of the measurement
probabilities after applying Grover’s algorithm to an oracle which uses the tagging gate from equation (10). As query label we used
the label of the element at index 6 which is 110011. The label from index 10 is 010011 and the label at index 12 is 111011—both of
these have Hamming distance 1 from the query label.

3.1. Hash collisions
As can be seen in figure 1(a), it can happen that two elements have the same label (here: Grace & Bob). This
poses not that much of a problem, since after running Grover’s algorithm a classical search can be applied on
the (heavily reduced) result space. Another insight is constituted by the fact that the probability for a hash
collision is well controlled by increasing/decreasing the label size (i.e. the size of the binary string). A second
maybe more subtle problem is that in order to determine the optimal amount of Grover iterations R, the
amount of tagged states has to be known according to [27]:

R⩽
⌈
π

4

√
N

M

⌉
(6)

withM being the amount of elements sharing the labeling bitstring l(eq) and N the amount of elements
contained in the database D. This might seem only like a minor inconvenience, because on first sight this
could result in only a few extra-iterations. However, as described in the previous section, the results get worse
if continuing with iterations after the optimal prescribed number. A possible quantum algorithm, which can
determineM, is presented in [28]. Unfortunately, it requires exponentially many oracle calls, which is
untenable for an efficient database and fast system reaction times. In addition, all these oracle calls have to be
controlled, which implies that every CNOT gate is turned into a Toffoli gate6 leading to another factor of 6 in
the CNOT count. Due to these disadvantages, the approach is not feasible in practice, which is why we use a
heuristic approach to estimateM. In detail, we determine the expected value of another element ei colliding
with the particular bitstring of e0. For this we assume that the bitstrings are uniformly distributed over the
label space Fk

2. This is the setup for a Bernoulli-Process with n= N− 1 tries with a probability of p= 2−k.
The resulting model is constituted by the binomial distribution and the expected value therefore takes the
very simple form of:

E(#collisions) = np= (N− 1)2−k. (7)

6 A Toffoli gate is a controlled CNOT gate (or CCNOT). This gate can be synthesized using 6 CNOT gates.

5

Quantum Sci. Technol. 8 (2023) 025003 R Seidel et al

Algorithm 1. Database encoder

Input: Iterable database D, labeling function
Output: Encoding circuit UD

1: list bitstrings= []
2: for e in D do
3: bitstrings.append(Label(e))
4: end for
5: TruthTable tt= TruthTable(bitstrings)
6: return QuantumLogicSynthesis(tt)

Since there is at least one element sharing the bitstring of e0 (i.e. e0 itself) we add a 1 to acquire the
expected value forM:

E(M) = 1+(N− 1)2−k. (8)

This formula captures the intuitive relationship between the label size k and the number of estimated
hash collisionM. It shows that by decreasing the label size k, one can increaseM, while in parallel decreasing
the amount of Grover iterations (see equation (6)) to be executed and synthesis tasks to be performed. This
would be interesting in future hybrid use cases, where quantum resources are available at a similar cost as
classical resources but still not capable of solving complex problems on their own. In this hybrid scenario, the
search space would first be drastically lowered by a factor ofO(2−k) by the quantum computer and then
reduced to 1 with a classical search.

3.2. Algorithmic view on oracle generation
We want to continue by summarizing the overall procedure for the automated oracle generation from an
algorithmic point of view. Thereby, we provide an overall structure of the steps which are required to
generate an oracle for Grover’s algorithm from a random database. These are structured in two
sub-algorithms, namely the one responsible for database encoding (i.e. algorithm 1) and the second one,
which is responsible for automatic definition of the oracle based on the encoded database (i.e. algorithm 2).
Based on those two sub-algorithms, time complexity estimations are provided, in order to give a feeling
regarding the applicability and the open research issues relating to the topic of automatic oracle generation.

Algorithm 1 describes the steps required to encode an arbitrary database for the purposes of Grover’s
search algorithm. The only requirement here is, that it should be possible to iterate over the content of the
database. Thereby, no order of the content is presumed. Hence, the database can contain arbitrary objects.

The other ingredient, which is required as an input to algorithm 1, is the labeling function. This function
needs to have the capability to take an arbitrary object from the database and assign it a label, that does not
have to be unique. In fact, hash functions as known in computer science are natural choices as labeling
functions. Hash functions in general do not provide unique labels (i.e. hash collisions). However, even with
non-unique labels of the database objects, Grover search can be used to search for labels and that way reduce
the overall search complexity by collapsing the search space only to those objects/entries, which have been
assigned a particular label.

As can be seen in the listing of algorithm 1, a for-cycle is required that iterates over the database objects
and assigns a label to each of them. This cycle has the time complexity ofO(N), with N being the number of
entries in the database. Each label is presumed to be a binary string and is stored in a corresponding list,
which is used to initially prepare a truth table for Grover oracle. This truth table consists of simply listing and
preparing the label bitstrings in such a way they can be used for quantum logic synthesis. Hence, the truth
table creation has again complexity ofO(N) and leaves the previous complexity estimation unchanged.

The quantum logic synthesis in the last step of algorithm 1 is the most critical part of the process. This
step can be conducted by various algorithms and procedures, which is further focused on in the following
sections of this paper, in which some fitting methods from literature are applied and evaluated and
subsequently own methods are presented. As we will see in the upcoming section 4 this step can be performed
quite efficiently using an algorithm called Fast Hadamard–Walsh Transform [29] which has classical time
complexityO(N× log(N)) per truth table column. In our case we synthesize about k≈O(log2(N)) in order
to prevent excessive hash collisions, yielding an classical time complexity ofO(N× log(N)2).

However, as algorithm 1 has to be executed only once per fixed database, Grover’s algorithm can be
executed for different values to search for on the prepared database quantum circuit. Thus, the time
complexity can be relieved this way with regard to the application of algorithm 1.

After the steps from algorithm 1 have been conducted, algorithm 2 must be executed every time before a
new object/value is being searched for in the database entries. Algorithm 2 contains the required instructions

6

Quantum Sci. Technol. 8 (2023) 025003 R Seidel et al

Algorithm 2. Query oracle generator

Input: Encoded database circuit UD, query element eq, labeling function
Output: Oracle circuit O

1: string qlabel= Label(eq)
2: QuantumCircuit O= QuantumCircuit(index register, label register)
3: O.apply(UD)
4: O.apply(PhaseTag(qlabel, label register))
5: O.apply(U†

D)
6: return O

towards preparing a specific quantum oracle encoding the database and the search value. This specific
quantum oracle is then embedded in Grover’s algorithm for the subsequent search on the quantum
computer side. We see the following components in algorithm 2: The creation of a QuantumCircuit object, in
which the quantum circuit encoding the database (result from algorithm 1) is immediately embedded (i.e.
O.apply(UD) and finally O.apply(U

†
D) followed by the application of a phase tag (i.e. O.apply(PhaseTag

(qlabel,labelregister))) for marking the value/object to search for. The steps in the first component are
dominated by the embedding of the quantum encoded database circuit (i.e. O.apply(UD) and finally
O.apply(U†

D) which can be considered linear with respect to the number of gates in the database quantum
circuit. As we will see in the upcoming sections, the Gray synthesis method has a quantum gate complexity of
O(N) per truth table column, implying a quantum gate complexity ofO(N× log(N)) for k≈O(log(N))
columns. The phase tag (i.e. O.apply(PhaseTag(qlabel, labelregister))) and the diffuser can also be
synthesized using Gray synthesis i.e.O(N). As we requireO(

√
N) Grover iterations, the overall quantum

gate complexity is:

O(N1.5× log(N)). (9)

On first sight this seems like a decrease in Grover’s efficiencyO(
√
N) however we have to keep in mind

that this is the complexity in oracle calls the oracle evaluation itself will have a non-constant complexity in
almost any other comparable scenario.

Even though currently not more efficient than classical database search, our results open many research
directions which could ultimately lead to an increase in database search efficiency.

Having briefly discussed this, the following sections continue with the presentation and deepen the
discussion on various methods for quantum logic synthesis and for establishing Grover oracles and the
search procedures in a flexible way.

3.3. Similarity search
The method presented so far can be generalized to a technique, which also allows for searching bitstrings
similar to the query, i.e. not the exact item but rather one that is very close according to some metric. In the
case, where the oracle has been generated from labeled data, this can obviously only work if the labeling
function preserves the similarities between the database elements. Another application scenario for a
similarity search could be the case where the labels themselves constitute the data.

The general idea of encoding the similarity of two bitstrings into the quantum oracle is to replace the
tagging function T sim(l(eq)) with a circuit that performs phase shifts based on the Hamming-Distance. One
such circuit is given by the application of RZ gates on the label register. In more detail:

T sim(l(eq)) =
k−1⊗
j=0

RZi

(
−(−1)l(eq)j2π

k

)
. (10)

For a single RZ gate acting on a qubit in a computational basis state we have:

RZ(−(−1)xϕ)|y⟩= exp

(
iϕ

2
(−1)x⊕y

)
|y⟩. (11)

Applying the similarity tag T sim(l(eq)) to the multi-qubit state |l(e)⟩ therefore yields:

T sim(l(eq))|l(e)⟩= exp

 iπ

k

k−1∑
j=0

(−1)lj(eq)⊕lj(e)

 |l(e)⟩. (12)

7

Quantum Sci. Technol. 8 (2023) 025003 R Seidel et al

To get an intuition of the effect of this, we now consider what happens when l(e) = l(eq). In this case we
have:

li(eq)⊕ li(e) = 0 ∀i< k, (13)

implying that the sum over j evaluates to k. Therefore the applied phase is simply π, i.e. exactly what we have
in the case of a regular phase-tag. If l(e) = l(eq) for all but one j-index, the sum evaluates to k− 2. Hence, the
applied phase is π(1− 2

k) which is ‘almost’ the full phase-tag. An example application of the similarity search
can be found in figure 1(d).

In the following, a more formal proof is presented regarding why the above considerations work when
applied within Grover’s algorithm. For this we assume that the oracle has tagged the uniform superposition

|s⟩= 1√
N

∑2n−1
x=0 |x⟩ in such a way that the index register is in the state:

|ψ⟩= 1√
N

2n−1∑
x=0

exp(iϕ(x))|x⟩. (14)

We now apply the diffusion operator Us = 2|s⟩⟨s| − I on the above state:

Us|ψ⟩=
1√
N
(2|s⟩⟨s| − I)

2n−1∑
x=0

exp(iϕ(x))|x⟩= 1√
N

2n−1∑
x=0

exp(iϕ(x))(2|s⟩⟨s | x⟩− |x⟩). (15)

Using ⟨s | x⟩= 1√
N
gives:

=
1√
N

(
2√
N

(
2n−1∑
x=0

exp(iϕ(x))

)
|s⟩−

2n−1∑
x=0

exp(iϕ(x))|x⟩

)
. (16)

Next, we set

rcmexp(iϕcm) :=
1

N

2n−1∑
x=0

exp(iϕ(x)), (17)

where cm stands for the center of mass. Inserting the definition of |s⟩ we get:

=
1√
N

2n−1∑
x=0

(2rcmexp(iϕcm)− exp(iϕ(x)))|x⟩

=
exp(iϕcm)√

N

2n−1∑
x=0

(2rcm+ exp(i(ϕ(x)−ϕcm+π)))|x⟩.

(18)

Finally, we use the rules of polar coordinate addition:

r3exp(iϕ3) = r1exp(iϕ1)+ r2exp(iϕ2), (19)

r3 =
√
r21+ r22+ 2r1r2cos(ϕ1−ϕ2) (20)

ϕ3 = arctan

(
r1sin(ϕ1)+ r2sin(ϕ2)

r1cos(ϕ1)+ r2cos(ϕ2)

)
, (21)

to determine the absolute values of the coefficients in order to find out about the amplification factor Ax:

Ax = |2rcm+ exp(i(ϕ(x)−ϕcm+π))|=
√
1+ 4r2cm− 4rcmcos(ϕ(x)−ϕcm). (22)

From this we see that Ax becomes maximal if ϕ(x)−ϕcm =±π, minimal if ϕ(x)−ϕcm = 0 and is
monotonically developing in between, which is precisely the behavior we expected.

Even though the similarity tag allows a considerable cut in the CNOT count compared to the
multi-controlled Z gate, it comes with some drawbacks. The biggest problem is that the results of this
method are very sensitive to the number of iterations. Applying the wrong amount of Grover iterations can
lead to the case, where labels which are less similar get a higher measurement probability. This might be

8

Quantum Sci. Technol. 8 (2023) 025003 R Seidel et al

improved through further analysis of the similarity phase-tags. Another drawback is that labels, where the
bitwise NOT is similar to the query, get the same amplification as their inverted counter-part (assuming
ϕcm = 0 in equation (22)—more to this assumption soon). For example if we query for the label 000000, the
label 011111 would receive the same amplification as 100000. This can be explained by looking at
equation (12). If l(eq) and l(e) differ on every single entry, we have:

l(eq)i ⊕ l(e)i = 1 ∀i< k. (23)

This results in the sum evaluating to−k and yielding a phase of−π, which is equivalent to a phase of π.
A similar effect can be observed, when only a single bit of the inverse is mismatching. In this case, we apply
the phase−π+ 1

k . Even though this phase is not equivalent to π−
1
k , its absolute value is, which is the feature

of relevance according to equation (22).

3.4. Advanced similarity tags
In this section we will present a method which lifts the restriction of the similarity tags being confined to the
Hamming distance. Instead, it will be possible to encode an extremely wide and flexible class of similarity
measures (without any overhead compared to the regular multi-controlled Z gate tags). If we denote the set
of possible query objects with Q, any function with the following signature can be encoded as a similarity
measure:

f : Q×Fk
2 → [0,1]. (24)

Here Fk
2 again denotes the set of bitstrings with length k and [0,1] the interval between 0 and 1 (endpoints

included). So this function compares a query object q ∈ Q with a bitstring and returns a real number
between 0 and 1, which indicates how similar the two objects are. 1 means equivalent and 0 means no
similarity. An example of such a similarity measure is the Dice coefficient. In this case we have:

f : Fk
2×Fk

2 → [0,1], (25)

((x0,x1, . . . ,xk),(y0,y1, . . . ,yk))→
2
∑k

i=0 xiyi∑k
i=0(xi + yi)

. (26)

Note that the additions here are not denoted by⊕ but the regular+ so they are not evaluated mod 2.
In order implement this advanced similarity tagging, we have to utilize the method of Gray synthesis

which will be laid out in more detail in the coming section 4.2. All we need to know about it here is that it can
synthesize arbitrary diagonal (in the computational basis) unitary matrices: For a given 2k tuple of real
numbers ϕ= (ϕ0,ϕ1, ..ϕ2k−1) a circuit Ugray(ϕ) can be synthesized such that for any computational basis
state |y⟩

Ugray(ϕ)|y⟩= exp(iϕy)|y⟩. (27)

Note that Gray synthesis requires only up to 2k CNOT gates, implying such a similarity tag is
computationally more efficient or of equivalent efficiency as tagging with a multi-controlled Z gate.

We next show how applying Gray synthesis on the label register can be used to implement a tag, which
acts as described in equation (14). Suppose we are given a similarity function f of the type in equation (24).
Then the similarity tag T sim

f (q) for the query object q ∈ Q is given as:

T sim
f (q) = Ugray(ϕ

sim
f (q)), (28)

where (ϕsimf (q))y = (−1)yπf(q,y). (29)

Next, we elucidate on the suitability of this operation as a similarity tag. For this we apply the similarity
oracle consisting of the database encoding circuit7 UD and the similarity tag to the index register in a
uniform superposition:

7 Note that this circuit does not necessarily has to encode a database but any other function calculating a binary value is also possible. One
such alternative use case are optimization problems, which is under active research by the authors. Because of this we write UD|x⟩|0⟩=
|x⟩|y(x)⟩ instead of the l(e(i)) language used in the previous sections.

9

Quantum Sci. Technol. 8 (2023) 025003 R Seidel et al

Osim(f,q,D)|s⟩|0⟩=
2n−1∑
x=0

U†
DT

sim
f (q)UD|x⟩|0⟩

=
2n−1∑
x=0

U†T sim
f (q)|x⟩|y(x)⟩

=
2n−1∑
x=0

U†exp(i(−1)y(x)πf(q,y(x))) |x⟩|y(x)⟩

=
2n−1∑
x=0

exp(i(−1)y(x)πf(q,y(x)))|x⟩|0⟩.

(30)

We see that this oracle has the effect we assumed in equation (14) with ϕ(x) = (−1)y(x)πf(q,y(x)). First
of all, we note that (under reasonable assumptions about f) the alternating signs of the phases help getting
ϕcm close to zero. To see why this is the case, we assume that for the majority of x< 2n, the statement
f(q,y(x))< 0.5 holds or in other words: Only in a few cases we actually do have similarity. Looking at the
definition of ϕcm equation (17), we observe the repeated addition of complex numbers mostly in the right
half of the complex plane, which implies that the center of mass is most likely going to be in the right half of
the complex plane. As the signs of the phases are alternating, we ‘balance’ out the complex part by adding
conjugates and non-conjugates which then implies ϕcm ≈ 0. If we now look at equation (22), we see that the
relation between the similarity measure f(q,y(x)) and the amplification factor Ax is monotonical, which
results in the desired behavior. Note that this does not imply that the amplification factor of x is proportional
to the value of f. Only the ordering is preserved, i.e.

if f(q,y(x1))< f(q,y(x2)) (31)

then Ax1 < Ax2 . (32)

An example application of Grover’s algorithm to a similarity oracle implementing the Dice coefficient
can be found in figure 2(a), where the above described aspects are clearly visible.

3.5. Contrast functions
Since we are only interested in the ordering of the values of the similarity measure, we can improve some
properties without changing information by applying a monotonically increasing function with signature

Λ : [0,1]→ [0,1]. (33)

We call this a contrast function. In other words: For a given similarity measure f and a contrast function
Λ, instead of f we use f̃= Λ ◦ f as similarity measure (the ◦ denotes the composition8). An example of a
contrast function which improved the results in many cases can be found in figure 2(d). Note that a large
portion of the domain gets mapped to a value close to 0. This not only ensures the assumption
f̃(q,y(x))< 0.5 for most x< 2n (required for ϕcm ≈ 0) but also yields rcm ≈ 1 as in most cases ϕ(x)≈ 0
(compare equation (17)). This in turn gives us a good amplification factor Ax for states that are supposed to
be amplified but Ax ≈ 0 for states that have only mediocre similarity (compare equation (22)).

4. Quantum logic synthesis

As pointed out in the previous sections, an integral part of generating oracles is the logic synthesis. There is a
multitude of approaches each having their benefits and drawbacks. In this section, we focus on the
Reed–Muller Expansion and Gray Synthesis. Subsequently, a new synthesis method developed by us is
introduced, which is significantly more efficient in terms of general gate count. Our approach is to relax the
constraint of all outputs having the same phase. This does not interfere with the outcome of Grover’s
algorithm as these phases cancel out during uncomputation. Finally, we derive and introduce another
synthesis method, which addresses the pitfalls and requirements for scalable implementations of the
belonging quantum circuits.

8 For two functions g,h of fitting signature, the composition g ◦ h is the function which executes a successive application, i.e. (g ◦ h)(x) =
g(h(x)).

10

Quantum Sci. Technol. 8 (2023) 025003 R Seidel et al

Figure 2. (a): Plot of the measurement probability of the index register after application of Grover’s algorithm to a similarity
oracle using the Dice coefficient as similarity measure of an example database of 64 entries. (b): The similarity measure (Dice
coefficient) used in the oracle from (a). (c): The same plot as (a) but the similarity function has been wrapped in a contrast
function. (d): The contrast function used in (c). The mathematical expression is Λ(x) = (exp(30(0.78− x))+ 1)−1.

4.1. Reed–Muller expansion
The very first and foremost approach to tackle the challenge of logic synthesis is the Reed–Muller Expansion.
Even though it is by far not the most efficient way to synthesize circuits for a quantum computer, it is basic
concepts will be helpful for further understanding of the proposed concepts. The belonging method is
denoted as positive polarity Reed–Muller expansion synthesis [30] and is abbreviated as PPRM accordingly
for the rest of the paper.

First, we note that due to their reversible architecture, quantum computers do not have direct access to
the full range of tools as in traditional logic synthesis. For example, we cannot infer the input constellation of
a classical AND gate by just looking at the output. However, reversibility is a fundamental requirement to any
quantum operation as there are only reversible building blocks available to construct said operation. But
there is a way to turn any non-reversible gate into a reversible one which is keeping the inputs in place and
saving the result into a new qubit. Using an n-controlled X gate we can therefore compute a multi-AND-gate
between n-qubits into a new qubit. Acting with another (multi)-controlled X gate on the same qubit, we can
realize an XOR gate. Expressions of the type:

(x0 AND x1 AND x2) XOR (x0 AND x1), (34)

are called XAG (XOR and AND Graphs) and can be described very conveniently by polynomials over the
Boolean algebra F2. The corresponding polynomial for equation (34) would be:

p(x) = x0x1x2⊕ x0x1. (35)

Using this, we can introduce a very basic approach to quantum logic synthesis: Given a single column
truth table T depending on n variables, its Reed–Muller expansion RMn

T(x) is the polynomial which is
recursively generated by the following equation:

RMn
T(x) = x0RM

n−1
T1

(x)⊕ (x0⊕ 1)RMn−1
T0

(x), (36)

11

Quantum Sci. Technol. 8 (2023) 025003 R Seidel et al

Table 1. Example decomposition into co-factors. Note that while T is depending on two Boolean q variables, T0 and T1 are only
depending on one variable.

x0 x1 T T0 T1

0 0 0 0 —
0 1 1 1 —
1 0 1 — 1
1 1 1 — 1

here T0, T1 denote the co-factors of T, i.e. the truth tables considering the entries of T where x0 = 0 or x0 = 1
(see table 1). This recursion cancels at n= 0 with RM0

T̃
(x) either equal to 0 or 1 depending on the value of T̃.

The resulting polynomial is unique for any given truth table [31]. Given such a polynomial, one can generate
the corresponding circuit implementation for a truth table by setting up a multi-controlled X gate for every
‘summand’ of the polynomial. While in principle sufficient, this method still has a lot of room for
improvement as multi-controlled gates are computationally very expensive—[32] an n-controlled NOT gate
requires (2n2− 2n+ 1) CNOT gates. For this reason, the following sections investigate further methods
towards a more resource efficient synthesis of Boolean functions.

4.2. Gray synthesis
A more efficient synthesis method can be achieved by taking advantage of the non-classical properties of a
quantum computer. This method is called Gray Synthesis and a detailed description is given in [33]. The
method works with three types of gates: CNOT, H and Tm. While [33] also considers the possibility of directly
synthesizing logic functions, these functions have to be F2-linear, which is an impermissible restriction in
our case of application. In this paper, the focus on the possibility to synthesize a user-determined phaseshift
for each computational basis state (now called ‘input state’). This in turn can then be used to efficiently
synthesize a truth table T(x) by applying the method to the input register combined with the output qubit
that is enclosed with H-gates. To illustrate how this works: consider that we synthesize a phase-shift of 0 for
every input state that has a 0 in the output qubit and a phase-shift of πT(x) for every state that has a 1 in the
output qubit. This leads to the following calculation towards the synthesis of the desired truth table:

HoutUgrayHout|x⟩|0⟩=
1√
2
HoutUgray|x⟩(|0⟩+ |1⟩)

=
1√
2
Hout|x⟩(|0⟩+ exp(iπT(x))|1⟩)

=
1√
2
Hout|x⟩(|0⟩+(−1)T(x)|1⟩)

= |x⟩|T(x)⟩.

(37)

Here, the first ket |x⟩ represents the input register, the second ket |0⟩ the output qubit, and Ugray is the circuit
which synthesizes the desired phases.

Since a good understanding of the phase synthesis method is a prerequisite to fully capture the power of
phase tolerant synthesis, we will now go on to give a summary on how the phases are synthesized. A key
concept in this context are parity operators, which basically are XOR expressions of different combinations of
input variables e.g. x0⊕ x2⊕ x3. Keep in mind, that we denote the XOR gates with the⊕ symbol, because
additions over real numbers will occur now too. The value of a parity operator on a given input state can be
‘loaded’ into a qubit by applying a sequence of CNOT gates (see figure 3(b) for an example). We can use the
notion of parity networks to assign the desired phase to the input state by applying RZ gates onto the parity
operators. Since RZ gates have the matrix representation diag(exp

(−iθ
2

)
,exp

(
iθ
2

)
), the change of phase∆ϕ

after applying the gate RZ(θp) to a qubit, which has the parity operator p loaded can be written as:

∆ϕ=

{
− θp

2 if p(x) = 0

+
θp
2 if p(x) = 1

=
1

2
(−1)p(x)θp, (38)

the phase applied on a given input state x= (x0,x1, ..xn) after traversing the set of parity operators P can thus
be summarized as:

ϕx =
1

2

∑
p∈P

(−1)p(x)θp. (39)

12

Quantum Sci. Technol. 8 (2023) 025003 R Seidel et al

Figure 3. (a): Example synthesis of the polynomial in equation (34). (b): The corresponding circuit of the parity matrix given in
equation (41). The sequence of parity operators traversed is x0 ⊕ x2,x0 ⊕ x1 ⊕ x2,x1 ⊕ x2,x2,x0 ⊕ x1,x1,x0,∅. (c): Example
synthesis of ϕ= π(1,0,1,1,0,1,1,1,0). The solution of equation (40) is θ = π

2
(−1,−1,0,0,0,1,0,2). The phenomenon of the

last 2 CNOTs canceling out is treated in section 4.3.

Note that this is not a sum of F2 elements but of real numbers. We can therefore control what kind of phase
each input state receives by carefully deciding on how to distribute the phase shifts θp. As each input state x
can be uniquely identified9 by just looking at the set of parity operators, which return 1 when applied to x,
we can give each state a unique constellation of phase shifts by iterating over every possible parity operator.
The next question is, how to determine the required θ = (θx0 ,θx1 ,θx0⊕x1 . . .) phase shifts for a given sequence
of desired overall phase shifts ϕ= (ϕ0,ϕ1, . . . ,ϕ2n)? In this regard, by successively writing down, which state
receives which phase shift one can set up a system of linear equations. The resulting matrix is denoted as the
parity matrix D. The corresponding system of equations therefore yields:

ϕ=
1

2
Dθ. (40)

This is achieved by ordering the rows according to the natural order of the input states (i.e.000,001,010.)
and the columns according to an algorithmic solution of the Hamming TSP10, which visits all parity
operators. The resulting matrix only depends on the number of input qubits. In the case of three input qubits
we get:

D3 =



1 1 1 1 1 1 1 1
−1 −1 1 1 −1 1 −1 1
1 −1 −1 1 −1 −1 1 1
−1 1 −1 1 1 −1 −1 1
−1 −1 −1 −1 1 1 1 1
1 1 −1 −1 −1 1 −1 1
−1 1 1 −1 −1 −1 1 1
1 −1 1 −1 1 −1 −1 1


(41)

Note that the last column corresponds to the ‘empty’ parity operator, which we define to be 0 on every input
state. As the corresponding coefficient θ∅ only induces an irrelevant global phase, it can be ignored during
synthesis. Solving systems of linear equations is possible inO(N3). Even though we only have to perform the
synthesis once per database, this would still scale very bad compared to classical searching. A much more
efficient solution is based on the following considerations: According to [21] the ith row of the
Hadamard-Matrix HN of degree N is the truth table of parity operator i. To be more precise the xth row of
the ith column is equal to:

(HN)xi = (−1)i(x), (42)

where i(x) =
n−1⊕
k=0

ikxk. (43)

Since HN is symmetric, this applies to the columns as well. Therefore our D is simply the
Hadamard-Matrix with permuted columns, because this is precisely how the columns of D are defined:

HN = DΣ, (44)

9 To see that this is true, consider two input states, where i is an index where the states differ. The parity operator xi thus has differing
values on the two states.
10 TheHamming TSP stands for a TSP (traveling salesman problem) instance, where theHamming distance is used as a distancemeasures
between the involved entities/objects.

13

Quantum Sci. Technol. 8 (2023) 025003 R Seidel et al

where Σ is some permutation matrix. We can now use a well-known property of HN :

HNH
t
N = NI

⇔H−1
N =

H t
N

N
=

HN

N
,

(45)

to find the inverse of D:

D−1 = (HNΣ
−1)−1

=ΣH−1
N

=
ΣHN

N
.

(46)

Applying this to equation (40), we get:

θ = 2D−1ϕ=
2ΣHnϕ

N
. (47)

This can be interpreted as follows: θ is the Hadamard–Walsh transform11 of ϕ up to some permutation
and factor. Fortunately, Hn does not need to be explicitly calculated, since there is an algorithm called Fast
Hadamard Walsh Transformation which performs the transformation inO(log(N)N) [29].

4.3. Parity operator traversal
As the space of parity operators is the dual space for the vector space Fn

2 , it can be indexed by the natural
numbers< 2n. Finding a parity operator traversal route therefore reduces to finding a solution to an integer
programming12 traveling salesman problem [35]. The restricting feature here is, that we need one CNOT
gate per bit that is changed in a traversal step. A possible solution for this is the Gray-Code [36]. The
Gray-Code is a sequence of integers which traverse every single natural number<2n by only changing a
single bit in every step. Even though it seems like this is precisely what is required, there is one drawback. As
the Gray-Code traverses every parity operator, there is a considerable overhead, since only parity operators,
which have a non-vanishing Hadamard-coefficient need to be traversed. This problem is addressed by a very
simple heuristic solution. In order to ensure our traversal route ends where it started, we introduce a second
salesman, which will meet the first after they both traversed the required integers. The resulting route will
then be the route of the first salesman concatenated with the reversed route of the second salesman.
Regarding the behavior of the individual salesmen, they always choose the closest parity operator, which has
not been visited by either of them. We tried penalizing them for moving very far apart in order to reduce the
reunification cost, which however did not lead to a significant reduction of the overall path length. Using this
technique yields a (scale dependent) cut of about 10% in traversed parity operators, however it is
significantly more expensive regarding the classical resources.

4.4. Phase tolerant synthesis
Even though Gray synthesis is already significantly cheaper in terms of CNOT gates than PPRM synthesis,
there is an even bigger possible optimization with regard to the required quantum resources. During oracle
application, we observe, that the label register always needs to be uncomputed after the winner state is
tagged. This implies that we can be tolerant regarding the phases of the label variable as the tagging gate is not
concerned with the involuntarily synthesized ‘garbage phases’. To be more explicit, the synthesis methods
discussed so far applied to an index register in uniform superposition would result in the state:

2n−1∑
x=0

|x⟩|T(x)⟩. (48)

However a state like,

2n−1∑
x=0

exp(iχx)|x⟩|T(x)⟩, (49)

11 TheHadamard–Walsh transform [34] is closely related to Fourier analysis. It transforms complex numbers to a spectrum of orthogonal
functions—these functions are called Walsh functions.
12 The Hamming TSP and the integer/binary programming TSP are closely related, given that within the Hamming TSP we have binary
strings as the entities and theHamming distance as the distance between those entities. In this regard, the integer programming constitutes
the problem formulation as a combinatorial problem with an optimization function over integers/bitstrings.

14

Quantum Sci. Technol. 8 (2023) 025003 R Seidel et al

will be tagged in the correct way too and the ‘garbage-phases’ χx will be uncomputed, when the label register
is uncomputed. In order to understand how to synthesize with garbage-phases, we note that in this method
of synthesis, the logical information is only captured in the phase differences of the 0 and 1 state of the output
qubit. Following the principles applied on equation (37), we arrive at:

H(exp(iϕ0)|0⟩+ exp(iϕ1)|1⟩) = exp(iϕ0)H(|0⟩+ exp(i(ϕ1−ϕ0))|1⟩)

=

{
exp(iϕ0)|0⟩ if ϕ1−ϕ0 = 0

exp(iϕ0)|1⟩ if ϕ1−ϕ0 = π.
(50)

This observation can now be used in combination with a profitable choice of sequence of parity
operators: Note how the parity network given in figure 3(b) visits every parity operator, which includes x2
first and after that only operators which do not contain x2. Furthermore directly after every parity operator
which includes x2 is visited, every circuit wire contains it is very own parity operator, i.e. wire 0 contains the
parity operator x0, wire 1 contains x1 and so on. Therefore, we can simply end the synthesis procedure at this
point, because every bit of phase that is synthesized after, does not differentiate between the |0⟩ and the |1⟩
state of the output qubit (which would be x2 here), and therefore does not contribute anything to the phase
difference of the |0⟩ and the |1⟩ state.

To make this notion accessible from a more formal point of view, consider the case that we are applying
Gray synthesis to the state of uniform superposition |s⟩:

|s⟩= 1√
2n

2n∑
x=0

|x⟩. (51)

We factor out the output qubit:

|s⟩= 1√
2n

2n−1∑
x=0

(|0⟩+ |1⟩)|x⟩. (52)

The ‘first step’ in this view of Gray synthesis is synthesizing phases ϕ(0,x) and ϕ(1,x) on the output qubit:

UStep 1
gray |s⟩= 1√

2n

2n−1∑
x=0

(
exp(iϕ(0,x))|0⟩+ exp(iϕ(1,x))|1⟩

)
|x⟩=: |ψ⟩. (53)

The second step would now be to synthesize a phase on the remaining qubits which could be seen as
‘correcting’ the garbage phase χx. This however does not change the relative phase of the |0⟩ and |1⟩ state of
the output qubit:

UStep 2
gray |ψ⟩= 1√

2n

2n−1∑
x=0

exp(−iχx)
(
exp(iϕ(0,x))|0⟩+ exp(iϕ(1,x))|1⟩

)
|x⟩. (54)

The important point of phase tolerant synthesis is that the difference ϕ(0,x) −ϕ(1,x) determines the result of
the logic output state:

ϕ(0,x) −ϕ(1,x) =

{
0 if T(x) = 0

π if T(x) = 1.
(55)

Note that while we in principle could determine the phases χx,ϕ(0,x),ϕ(1,x) from the user specified input
phases (ϕ0,ϕ1..ϕ2n), it is neither necessary nor relevant. Just breaking the routine after the first step
equation (53) was performed, is sufficient. For an example check figure 4.

5. CSE synthesis

In this section, we present further progress beyond state-of-the-art from our research activities—the
implementation of quantum logic synthesis under the consideration of restrictions in a real world setup.
Phase tolerant Gray synthesis may be very resource friendly to both classical and quantum resources,
however scaling on real devices is still challenging: Taking a look at equation (47) we see that, because the
only values of the entries of ϕ that can appear in the scenario of logic synthesis are±π

2 . Therefore the values
of the entries of ϕ are integer multiples of±π

N . This implies that if we want to encode an array with N entries,

15

Quantum Sci. Technol. 8 (2023) 025003 R Seidel et al

Figure 4. (a) Logic synthesis of the two input-bit truth table 1001. (b) Phase tolerant logic synthesis of the two input-bit truth
table 1001. Note that we only need to use four instead of six CNOT gates. The savings converge to 50% for larger truth tables.

we will need reliant π
N RZ gates13 are. As this quantity will be central in the upcoming discussion, we will

refer to the T-order of a circuit by the minimal numberm ∈ N, such that every phase gate can be expressed as
an integer multiple of a π

2m phase gate14.
Another ineffectiveness we observe is the fact that there is no usage of redundancy for the synthesis of

multiple truth table columns even though we know that we will synthesize aboutO(log(N)) columns. In the
worst case we have the same column twice which means two syntheses procedures, although one synthesis+
1 CNOT gate would be sufficient. This handmade solution requires about half the resources, raising the
question for an automatization of this procedure.

Both of these problems can be tackled by an approach based on calculating intermediate results and
intelligently optimizing the next synthesis steps accordingly. Such an approach has already been proposed in
[21]. Even though the authors could effectively demonstrate a reduction in the T-order, their technique still
does not consider redundancies, since they focus on synthesizing truth tables with only a single column. Even
though very heavy on the classical resources side and moderate on the qubit count, our approach (presented
in this paper) has been shown to significantly reduce the T-order (see table 3). The basic idea lies in
automated algebraic simplifications. As we saw in section 4.1, a single column truth-table can be represented
by a F2-polynomial. Multi-column truth tables can be therefore be interpreted as tuples of F2 polynomials
f(x) = (f1(x), ..fn(x)). The key step is now to apply the common sub-expression elimination (CSE) algorithm
of the computer algebra system (CAS) library sympy15 to these polynomials. This will give a sequence of
intermediate values which reduce the overall resources required for the evaluation of f. For example, given
the truth table:

x0 x1 x2 f 0 f 1 f 2

0 0 0 0 1 0
0 0 1 1 0 0
0 1 0 1 0 0
0 1 1 0 1 0
1 0 0 1 1 0
1 0 1 1 0 0
1 1 0 0 0 0
1 1 1 0 1 1

by applying Reed–Muller Expansion we get:

f0(x) = x0x2⊕ x0⊕ x1⊕ x2 (56a)

f1(x) = x0x1⊕ x0x2⊕ x1⊕ x2⊕ 1 (56b)

f2(x) = x0x1x2. (56c)

13 According to [37] it is possible to implement RZ gates virtually without any error and duration, however this might not be the case for
every physical qubit realization.
14 According to [38] a logical qubit of a circuit of order m in fault tolerant implementation (using the punctured Reed–Muller Code)
requires (up to) 2m+2 − 1 physical qubits.
15 SymPy CAS: www.sympy.org, as of 3 August 2021.

16

www.sympy.org

Quantum Sci. Technol. 8 (2023) 025003 R Seidel et al

We now apply the CSE algorithm, which yields two intermediate values g0 and g1:

g0(x) = x0x2 (57a)

g1(x) = g0(x)⊕ x1⊕ x2. (57b)

The results utilizing the intermediate values are now:

f0(x) = g1(x)⊕ x0 (58a)

f1(x) = g1(x)⊕ x0x1⊕ 1 (58b)

f2(x) = g0(x)x1. (58c)

Note that a product of k variables will give a k-controlled X gate in PPRM synthesis16. Synthesizing such a
gate is equivalent to a truth table with 2m entries, which implies that the T-order for a circuit containing only
m-products or lower ism. Note that the synthesis of equation (56c) contains a product of three variables,
which implies that it is circuit has a T-order of 3, while the synthesis of equation (58a) only contains
products of order 2 implying a T-order of 2. We therefore successfully lowered the T-order by 1 at the cost of
2
3 qubit overhead per truth table column. Larger synthesis yield much higher gains in the T-order but also
much higher qubit overhead and additional CNOT gates when compared to ‘pure’ phase tolerant Gray
synthesis. However we reiterate that pure Gray synthesis is not scalable for arbitrary hardware architectures,
demanding these drawbacks for real world applications.

Another point we would like to highlight is that the resulting sub expressions do not have to be
synthesized with PPRM but an arbitrary synthesis method. In our implementation, we select the method of
lowest CNOT count from a pool of methods. This pool contained the Gray synthesis and PPRM synthesis
implemented in tweedledum, as well as phase tolerant synthesis and a custom version of the PPRM synthesis,
where multicontrolled X gates are being outsourced to a phase tolerant algorithm. For each step of the array
oracle synthesis, each method from the pool of synthesis options is tested individually and the optimal
method is selected by means of the lowest CNOT count. It showed, that either phase tolerant Gray synthesis
or the custom phase tolerant supported PPRM synthesis are optimal in many steps of the synthesis process.

While our implementation might not be directly feasible due to its high demand for classical resources,
the general idea seems to yield improvements. We therefore leave the search of an advanced common
subexpression elimination algorithm specifically tailored for F2-polynomials as an open research question.
Regarding the overhead in quantum resources we note that it is always possible to resubstitute equations
back into each other. As this increases the T-order for the expressions in question, it is not directly clear in
which cases doing this is viable. Another open question therefore arises for an automatic procedure, which
decides whether an intermediate value is worth calculating.

6. Benchmarking

6.1. Comparison of different synthesis methods
In order to provide meaningful data about synthesis performance, we first elaborate on our benchmarking
method. We compare our method for synthesizing Grover oracles to the Qiskit implementation and
algorithms from the synthesis library tweedledum [20].

The evaluation task is to synthesize a database circuit UD equation (4) corresponding to an array of data
which is randomly generated. The lengths of these arrays are discretely being increased in increments of
powers of two, resulting in a range from 4 to 1024 data entries. We choose the label size k equal to the bit
amount of the truth table i.e. k= log2(N).

The metrics of interest are the average CNOT count and the average amount of arbitrary unitary
rotations contained in the individual circuits. The latter will be denoted as U count from now on and is
obtained by decomposing all occurring single-qubit gate instructions into their elementary rotations, that is:

U(θ,ϕ,λ) =

(
cos θ

2 −eiλ sin θ
2

eiϕ sin θ
2 ei(ϕ+λ) cos θ

2

)
. (59)

16 Note that basic PPRM synthesis can also be supported by phase tolerant Gray synthesis by outsourcing the synthesis of the multi-
controlled gates to the phase tolerant algorithm.

17

Quantum Sci. Technol. 8 (2023) 025003 R Seidel et al

Table 2. Comparison of average gate counts between our phase tolerant (PT) synthesis and the Tweedledum implementation of Gray
synthesis.

Data
size

Average CNOT count Average U count Average Tm count (T-order) Qubits

PT
(Gray-code) PT (HTSP) Gray Difference PT Gray Difference PT Gray PT Gray

4 8 6 6 0.0% 9 12 33.3% 6 (4) 10 (4) 4 4
8 24 19 33 73.7% 23 40 73.9% 23 (5) 38 (5) 6 6
16 64 59 103 74.6% 60 110 83.3% 63 (6) 119 (5) 8 8
32 160 148 280 89.2% 149 279 87.3% 189 (7) 356 (6) 10 10
64 384 365 709 94.9% 363 693 90.9% 547 (8) 1015 (8) 12 12
128 896 861 1713 99.0% 848 1684 98.6% 1399 (9) 2804 (9) 14 14
256 2048 1979 3967 100.5% 1963 3908 99.1% 3636 (10) 7132 (10) 16 16
512 4608 4509 9022 100.1% 4466 8920 99.7% 9019 (11) 18225 (11) 18 18
1024 10240 10116 20126 99.0% 9985 19937 99.7% 22001 (12) 44835 (12) 20 20

Table 3. Average metrics for the CSE-synthesis. The comparisons are described by procentual increases/decreases with respect to the gate
counts obtained from the benchmark of our phase tolerant synthesis using HTSP solutions.

Data
size

Average metrics

CNOT count Comparison U count Comparison Qubits Comparison Tm count (T-order) Comparison

4 11 83.3% 8 −11% 9 125.0% 4 (2) −33.3%
8 31 63.2% 24 4% 14 133.3% 16 (2) −30.4%
16 69 16.9% 63 5% 21 162.5% 41 (2) −34.9%
32 151 2.0% 150 1% 34 240.0% 100 (2) −47.1%
64 316 −13.4% 344 −5% 56 366.7% 221 (2) −59.6%

The duration and amount of the experiments (30 per datasize) are selected as to provide a reasonable
understanding regarding the efficiency of the methods under test. Hence, we have kept the sample fairly
small and have not followed the path of statistical testing with the goal to show any statistical significance.
The measured gate counts are rounded correspondingly to obtain reasonable results. Furthermore, we
additionally show the savings in terms of CNOT counts by using the discussed solutions to the Hamming
TSP instead of Gray-code in the phase tolerant synthesis. Those savings are more apparent in the case of
smaller data sizes and smooth out when considering larger data sets. This does not have an impact on the U
counts and the decrease in quantum resources comes of course at the cost of an increase in classical
resources. When comparing our results to tweedledum’s Gray synthesis implementation, we consider the
CNOT counts obtained by the corresponding implementation of phase tolerant synthesis with the results
obtained through the Hamming TSP based approach.

As can be seen from table 2, the comparison of both synthesis methods shows that the phase tolerant
synthesis performs twice as good in terms of CNOT count when compared to the Gray synthesis
implemented in tweedledum. This is an impressive result that is confirmed after comparing the U counts for
both methods. For a database with 2n entries, our phase tolerant synthesis as well as the standard Gray
synthesis scale linear with the database size, which is an important property with regard to real world use
cases. In the context of such real world use cases, it is not enough to look only at the general U counts.
Another interesting metric that can be extracted from the elementary single qubit rotations is the number of
Tm gates together with the T-order mentioned above. For this, we search for the U1 rotations from the circuit
data and extract the belonging angular parameters. These parameters are then represented in the most
efficient sequence of Tm gates. Thus, we can count all Tm gates and compute the T-order corresponding to the
largest occurringm for each circuit. The corresponding data for both synthesis methods is shown in table 2.

In the previous section, we addressed the implementation of scalable logic synthesis with the assumption
that the number of qubits will likely increase more than gate precision and circuit depth for upcoming
quantum hardware. The data above shows a linear increase in the T-order with increasing data size together
with rapidly growing Tm counts. With this in mind, we test a last synthesis method using the common
sub-expression elimination technique (CSE) as described before in a similar test scenario. The obtained
results are depicted in table 3. As the qubit resources now depend on the modified truth tables, additionally
an average qubit count is given as well.

We can only see a noticeable decrease in CNOT counts and U counts at a datasize of 64, whereas the
qubit resources are several times larger. Since the qubit resources now depend on the modified truth tables

18

Quantum Sci. Technol. 8 (2023) 025003 R Seidel et al

Table 4. Average metrics for the TruthTableOracle with the ‘basic’ and ‘noancilla’ option. The comparisons are described by procentual
increases/decreases with respect to the gate counts obtained from the benchmark of our phase tolerant synthesis using HTSP solutions.

Data
size

Average CNOT count Average U count Qubits

‘basic’ Comparison ‘noancilla’ Comparison ‘basic’ Comparison ‘noancilla’ Comparison ‘basic’ ‘noancilla’

4 9 50.0% 12 100.0% 16 77.8% 24 166.7% 4 4
8 63 231.6% 84 342.1% 113 391.3% 124 439.1% 7 6
16 292 394.9% 420 611.9% 597 895.0% 786 1210.0% 10 8
32 960 548.6% 2722 1739.2% 1993 1237.6% 3551 2283.2% 13 10
64 2590 609.6% 13803 3681.6% 5354 1374.9% 15144 4071.9% 16 12

and hence underlie some degree of variation, we have given the average results. For smaller data sizes, the U
counts are roughly on the same level as in the non CSE-supported synthesis methods and the CNOT counts
have slightly increased in most of the analyzed cases. The main motivation for implementing the CSE
method was to decrease the T-order and Tm counts, which has proven to be highly successful as the T-order
was kept constantly at 2 and the Tm counts were reduced by up to 33%. Indeed, we traded a decrease in gate
complexity through fewer and considerably less fine phase gates at the cost of an increase in the qubit count
and classical resources17 for potential benefits in real-word applications.

6.2. Comparison with Qiskits TruthtableOracle
As a comparison of the complexity of arbitrary synthesized Grover oracles, we next check our phase tolerant
Gray synthesismethod against the TruthtableOracle class implemented in Qiskit Aqua18. A brief description
of this method can be seen in the official documentation and the source code is publicly available in the
corresponding GitHub repository [39].

The Qiskit-synthesized circuits can be further optimized by first minimizing the input truth table via the
Quine-McCluskey19 algorithm [40], in order to find all the essential prime implicants and then by finding
the exact cover via employing the DLX20 algorithm [41]. This is exponentially heavy on classical resources
and it turns out that even with those optimizations, there is a huge gap in terms of CNOT counts and U
counts. The qubit count can be additionally addressed through a given selection of options concerning the
implementation of multi-controlled Toffoli gates, which have a noticeable impact on the CNOT counts and
U counts as well. Hence, even when applying those optimizations for the Qiskit methods, we still get the
same benchmarking results for the comparison between the different approaches.

We used the same test scenario as for the comparison of the synthesis methods above, however due to
memory limitations21 during the synthesis and optimization process, we have limited the range in data size
to a maximum of 64 data entries. The mode for constructing multi-controlled Toffoli gates was first set to the
‘basic’ setting. The results for the CNOT counts and U counts can be seen in table 4.

The difference in circuit complexity between the TruthtableOracle and our method is in significant favour
of our method and even more so, when considering the necessary number of qubits for the oracle circuits.
The ‘basic’ option for multi-controlled Toffoli construction delivers the best scaling behavior in terms of gate
counts while using 3n− 2 qubits for the tested data with 2n entries, as opposed to our method using only 2 n
qubits. The option leading to the lowest number of qubits—which is also given by 2 n—is the ‘noancilla’ one.
This method leads to a much worse scaling behavior as can be seen in table 4 below.

We also want to mention, that there is another implementation in Qiskit’s PhaseOracle class, which takes
a Boolean expression or a SAT problem in DIMACS CNF format [42] and passes this to the PPRM synthesis
method implemented in tweedledum. Thus, we do not give a further comparison between our method and
the PhaseOracle class as we have tested the different synthesis methods implemented in tweedledum and
identified the Gray synthesis as the most suited method and competitor in the context of array oracle
generation for Grover’s algorithm.

17 This means that we are using more qubits and that the computations of the quantum logic synthesis takes longer on the classical
computer.
18 At the time of preparing the current paper, this class is implemented in Qiskit Aqua 0.9.1 but due to a migration mainly to Qiskit Terra
this is likely to change in the future.
19 The Quine-McCluskey procedure is a method for minimizing logical/Boolean formulas based on a standard representation and the
identification and elimination of redundant terms.
20 The DLX algorithm is an approach to solving the set cover problem through the methodology of dancing links [41] and was initially
developed by Donald Knuth.
21 We ran the benchmark with a system memory of 32GB.

19

Quantum Sci. Technol. 8 (2023) 025003 R Seidel et al

7. Summary

The current paper provides a first successful attempt for enabling the convenient utilization of Grover’s
search algorithm capabilities over traditional function/procedure APIs (e.g. int grover(int [] list_to_search_in,
int value_to_search_for)). The motivation for this research is based on observations in our previous work
[14], in which the issues of constructing oracles for Grover database searches was discussed from a user
perspective. Indeed, the only way to make quantum computing commercially viable is to provide accessible
interfaces for programmers and end users to integrate quantum algorithms in their services and applications.

With regard to Grover’s algorithm, such APIs require for the automatic generation of the black box
quantum oracles, which contain the database and the element to search for in this database. In this context,
our current paper provides a methodology for automatically generating such quantum oracles for arbitrary
databases. The generation consists of two main parts: (1) Mapping the database entries to a circuit UD

generated by logic synthesis and (2) tagging the query hash to create the query oracle. The first step is
realized through the utilization of beyond state-of-the-art synthesis functions, while the second step can be
realized either with the traditional multi-controlled Z gates or with our newly introduced similarity tags. In
this regard, one of the main contributions of this paper is given by the phase tolerant enhancement of
synthesis procedures, allowing for resource cuts up to 50% within the context of Grover quantum oracle
generation. Furthermore, we present a new synthesis method respecting the requirements of scaling the
synthesis procedure for real world physical backends.

To summarize: this paper outlines a clear procedure for making the potentials of the powerful quantum
algorithm by Grover available to programmers and end users for integration in everyday ICT-systems (e.g.
online shops, telecommunication management systems, database search engines, web analytic systems . . .).
The methodology proposed in this paper generates the belonging quantum oracles automatically, thereby
utilizing and leading to innovative methods for quantum logic synthesis. The computational complexity of
the methodology is in general higher than the one of classical search. However, our future research works
aims at optimizing this complexity through different heuristics, machine learning techniques and
optimizations on the proposed approach. By continuously achieving such gradual improvements, one can
see a clear path to a full-scale introduction and application of quantum algorithms based on oracles in
current development processes and system architectures.

Data availability statement

The data generated and/or analyzed during the current study are not publicly available for legal/ethical
reasons but are available from the corresponding author on reasonable request.

ORCID iD

Raphael Seidel https://orcid.org/0000-0003-3560-9556

References

[1] Arute F et al 2019 Quantum supremacy using a programmable superconducting processor Nature 574 505–10
[2] Zhong H-S et al 2020 Quantum computational advantage using photons Science 370 1460–3
[3] Wu Y et al 2021 Strong quantum computational advantage using a superconducting quantum processor (arXiv:2106.14734

[quant-ph])
[4] Zhu Q et al 2021 Quantum computational advantage via 60-Qubit 24-Cycle random circuit sampling (arXiv:2109.03494)
[5] Grover L K 1996 A fast quantum mechanical algorithm for database search Proc. 28th Annual ACM Symp. on Theory of Computing

(STOC’96) (New York: Association for Computing Machinery) pp 212–19
[6] Long G L 2001 Grover algorithm with zero theoretical failure rate Phys. Rev. A 64 022307
[7] Toyama F, van Dijk W and Nogami Y 2013 Quantum search with certainty based on modified Grover algorithms: optimum choice

of parameters Quantum Inf. Process. 12 05
[8] Sun G, Su S and Xu M 2014 Quantum algorithm for polynomial root finding problem 2014 10th Int. Conf. on Computational

Intelligence and Security pp 469–73
[9] Gilliam A, Woerner S and Gonciulea C 2021 Grover adaptive search for constrained polynomial binary optimization Quantum

5 428
[10] Chakrabarty I, Khan S and Singh V 2017 Dynamic Grover search: applications in recommendation systems and optimization

problems Quantum Inf. Process. 16 153
[11] Baritompa W P, Bulger D W and Wood G R 2005 Grover’s quantum algorithm applied to global optimization SIAM J. Optim.

15 1170–84
[12] Borujeni S E, Harikrishnakumar R and Nannapaneni S 2019 Quantum Grover search-based optimization for innovative material

discovery 2019 IEEE Int. Conf. on Big Data (Big Data) pp 4486–9
[13] Brassard G, HØyer P and Tapp A 1998 Quantum cryptanalysis of hash and claw-free functions Lecture Notes in Computer Science

(Germany: Springer) pp 163–9

20

https://orcid.org/0000-0003-3560-9556
https://orcid.org/0000-0003-3560-9556
https://doi.org/10.1038/s41586-019-1666-5
https://doi.org/10.1038/s41586-019-1666-5
https://doi.org/10.1126/science.abe8770
https://doi.org/10.1126/science.abe8770
https://arxiv.org/abs/2106.14734
https://arxiv.org/abs/2109.03494
https://doi.org/10.1103/PhysRevA.64.022307
https://doi.org/10.1103/PhysRevA.64.022307
https://doi.org/10.1007/s11128-012-0498-0
https://doi.org/10.1007/s11128-012-0498-0
https://doi.org/10.22331/q-2021-04-08-428
https://doi.org/10.22331/q-2021-04-08-428
https://doi.org/10.1007/s11128-017-1600-4
https://doi.org/10.1007/s11128-017-1600-4
https://doi.org/10.1137/040605072
https://doi.org/10.1137/040605072

Quantum Sci. Technol. 8 (2023) 025003 R Seidel et al

[14] Gheorghe-Pop I-D, Tcholtchev N, Ritter T and Hauswirth M 2022 Computer scientist’s and programmer’s view on quantum
algorithms: mapping functions’ APIs and inputs to oracles Intelligent Computing ed K Arai (Cham: Springer) pp 188–203

[15] Samsonov E, Kiselev F, Shmelev Y, Egorov V, Goncharov R, Santev A, Pervushin B and Gleim A 2020 Modeling two-qubit Grover’s
algorithm implementation in a linear optical chip Phys. Scr. 95 045102

[16] Mandviwalla A, Ohshiro K and Ji B 2018 Implementing Grover’s algorithm on the IBM quantum computers 2018 IEEE Int. Conf.
on Big Data (Big Data) pp 2531–7

[17] Bennett C H, Bernstein E, Brassard G and Vazirani U 1997 Strengths and weaknesses of quantum computing SIAM J. Comput.
26 1510–23

[18] Al-Rabadi A N 2004 Reversible Logic Synthesis—From Fundamentals to Quantum Computing vol 1 1st edn (Berlin: Springer)
[19] Criger B, Moussa O and Laflamme R 2012 Quantum error correction with mixed ancilla qubits Phys. Rev. A 85 044302
[20] Schmitt Bruno 2021 tweedledum (available at: https://github.com/boschmitt/tweedledum) (Accessed 27 July 2021)
[21] Meuli G, Soeken M, Roetteler M and De Micheli G 2020 ROS: resource-constrained oracle synthesis for quantum computers

Electronic Proc. Theor. Comput. Sci. 318 119–30
[22] Soeken M, Roetteler M, Wiebe N and Micheli G D 2017 Logic synthesis for quantum computing (arXiv:1706.02721 [quant-ph])
[23] Meuli G, Soeken M, Roetteler M, Bjorner N and Micheli G D 2019 Reversible pebbling game for quantum memory management

(arXiv:1904.02121 [quant-ph])
[24] 2021 Qiskit TruthTableOracle (available at: https://qiskit.org/documentation/stubs/qiskit.aqua.components.oracles.

TruthTableOracle.html) (Accessed 27 July 2021)
[25] 2021 Q# OracleSynthesis (available at: https://github.com/microsoft/Quantum/blob/main/samples/algorithms/oracle-synthesis/

OracleSynthesis.qs) (Accessed 27 July 2021)
[26] Anis M S et al 2021 Qiskit: an open-source framework for quantum computing (https://doi.org/10.5281/zenodo.2573505)
[27] Chen G, Fulling S A and Scully M O 1999 Grover’s algorithm for multiobject search in quantum computing (arXiv:quant-ph/

9909040)
[28] Brassard G, HØyer P and Tapp A 1998 Quantum counting Lecture Notes in Computer Science (Germany: Springer) pp 820–31
[29] Fino B J and Algazi V R 1976 Unified matrix treatment of the fast Walsh–Hadamard transform IEEE Trans. Comput. C-25 1142–6
[30] Porwik P 2002 Efficient calculation of the Reed–Muller form by means of the Walsh transform Int. J. Appl. Math. Comput. Sci.

12 571–9
[31] Kebschull U, Schubert E and Rosenstiel W 1992 Multilevel logic synthesis based on functional decision diagrams [1992] Proc.

European Conf. on Design Automation pp 43–47
[32] Abdollahi A, Saeedi M and Pedram M 2013 Reversible logic synthesis by quantum rotation gates (arXiv:1302.5382 [cs.ET])
[33] Amy M, Azimzadeh P and Mosca M 2018 On the controlled-NOT complexity of controlled-NOT–phase circuits Quantum Sci.

Technol. 4 015002
[34] Kunz H O 1979 On the equivalence between one-dimensional discrete Walsh-Hadamard and multidimensional discrete Fourier

transforms IEEE Trans. Comput. C-28 267–8
[35] Miller C E, Tucker A W and Zemlin R A 1960 Integer programming formulation of traveling salesman problems J. ACM 7 326–9
[36] Bhat G and Savage C 1996 Balanced gray codes Electron. J. Comb. 3 R25
[37] McKay D C, Wood C J, Sheldon S, Chow J M and Gambetta J M 2017 Efficient Z gates for quantum computing Phys. Rev. A

96 022330
[38] Zeng B, Cross A and Chuang I L 2007 Transversality versus universality for additive quantum codes (arXiv:0706.1382 [quant-ph])
[39] 2021 Qiskit Aqua (available at: https://github.com/Qiskit/qiskit-aqua) (Accessed 19 August 2021)
[40] Jain T K, Kushwaha D S and Misra A K 2008 Optimization of the Quine-McCluskey method for the minimization of the Boolean

expressions 4th Int. Conf. on Autonomic and Autonomous Systems (ICAS’08) pp 165–8
[41] Knuth D E 2000 Dancing links (arXiv:cs/0011047 [cs.DS])
[42] 2021 DIMACS CNF format (available at: https://jix.github.io/varisat/manual/0.2.0/formats/dimacs.html) (Accessed 19 August

2021)

21

https://doi.org/10.1088/1402-4896/ab6523
https://doi.org/10.1088/1402-4896/ab6523
https://doi.org/10.1137/S0097539796300933
https://doi.org/10.1137/S0097539796300933
https://doi.org/10.1103/PhysRevA.85.044302
https://doi.org/10.1103/PhysRevA.85.044302
https://github.com/boschmitt/tweedledum
https://doi.org/10.4204/EPTCS.318.8
https://doi.org/10.4204/EPTCS.318.8
https://arxiv.org/abs/1706.02721
https://arxiv.org/abs/1904.02121
https://qiskit.org/documentation/stubs/qiskit.aqua.components.oracles.TruthTableOracle.html
https://qiskit.org/documentation/stubs/qiskit.aqua.components.oracles.TruthTableOracle.html
https://github.com/microsoft/Quantum/blob/main/samples/algorithms/oracle-synthesis/OracleSynthesis.qs
https://github.com/microsoft/Quantum/blob/main/samples/algorithms/oracle-synthesis/OracleSynthesis.qs
https://doi.org/10.5281/zenodo.2573505
https://arxiv.org/abs/quant-ph/9909040
https://arxiv.org/abs/quant-ph/9909040
https://doi.org/10.1109/TC.1976.1674569
https://doi.org/10.1109/TC.1976.1674569
https://arxiv.org/abs/1302.5382
https://doi.org/10.1088/2058-9565/aad8ca
https://doi.org/10.1088/2058-9565/aad8ca
https://doi.org/10.1109/TC.1979.1675334
https://doi.org/10.1109/TC.1979.1675334
https://doi.org/10.1145/321043.321046
https://doi.org/10.1145/321043.321046
https://doi.org/10.37236/1249
https://doi.org/10.37236/1249
https://doi.org/10.1103/PhysRevA.96.022330
https://doi.org/10.1103/PhysRevA.96.022330
https://arxiv.org/abs/0706.1382
https://github.com/Qiskit/qiskit-aqua
https://arxiv.org/abs/cs/0011047
https://jix.github.io/varisat/manual/0.2.0/formats/dimacs.html

	Automatic generation of Grover quantum oracles for arbitrary data structures
	1. Introduction
	1.1. General remarks
	1.2. Problem statement
	1.3. Contributions
	1.4. Structure of the paper

	2. Overview and background
	2.1. Grover's algorithm
	2.2. Reversible quantum logic synthesis

	3. Method for automatic oracle generation
	3.1. Hash collisions
	3.2. Algorithmic view on oracle generation
	3.3. Similarity search
	3.4. Advanced similarity tags
	3.5. Contrast functions

	4. Quantum logic synthesis
	4.1. Reed–Muller expansion
	4.2. Gray synthesis
	4.3. Parity operator traversal
	4.4. Phase tolerant synthesis

	5. CSE synthesis
	6. Benchmarking
	6.1. Comparison of different synthesis methods
	6.2. Comparison with Qiskits TruthtableOracle

	7. Summary
	References

