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Abstract
In order to improve the energy reconstruction accuracy of gamma-ray events observed
by ground-based array experiments, this work propose a new energy estimator based
on machine learning (ML) algorithm to determine the energies of gamma ray induced
air showers in the energy range between 1 TeV and 10 PeV. We carry out a full
Monte Carlo (MC) simulation using the Tibet air shower array and underground muon
detector array, located at an altitude of 4,300 m above sea level. The MC simulated
gamma-ray data are used to extract characteristic parameters depicting the air shower
information, which are then fed into the ML model for training on both high-energy
data sets (E >∼ 10 TeV) and low-energy data sets (E < 10 TeV). In our simulation
data tests, we found that theMLmethod showed significant advantages over traditional
energy estimators (S50, Ne, and

∑
ρ), with improved energy resolution for both low

and high energy datasets. Compared to the traditional estimator, the energy resolution
improves by approximately 30% for the inner array events and 55% for the outer
array events at E < 10 TeV. At around 100 TeV, the energy resolution for large
zenith angle events in the outer array improves by approximately 20%. This work
also found that while the energy resolution of events falling the inside array can only
be slightly improved, however, events outside array and at large zenith shower clear
improvements. Moreover, it is particularly noteworthy that the ML method has little
difference in the energy resolution of the inner and outer array events. The enhanced
energy resolution achieved through themachine learningmethod for outer array events
reduces the limitations imposed by the observation area, resulting in an approximately
30% improvement in statistical events. This method is suitable for ground-based array
experiments in gamma-ray astronomy, and provides some technical support for further
study of the primary gamma-ray energy reconstruction.
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1 Introduction

Experimental particle physics typically utilizes accelerators and detectors to study the
behavior of high-energy particles, with cosmic ray observations also serving as a cru-
cial means of investigating fundamental particles. Based on the observation methods
of cosmic rays, observations can be categorized into space-based direct observations
and ground-based indirect observations. Space-based experiments directly observe
the properties of primary cosmic rays, such as Fermi-LAT [1], but due to payload
constraints, the highest observable energy range is limited to a few hundred GeV [2,
3]. Cosmic ray flux at energies above the TeV level is low, necessitating observations
to rely on ground-based experiments.

Through large-area detector arrays, it is possible to record secondary particles gen-
erated by the interactions of high-energy particles with the Earth’s atmosphere. These
detectorsmay include scintillators, Cherenkov telescopes, andwater Cherenkov detec-
tors, among others. By analyzing the energy distribution of the secondary, researchers
can infer the energy of the primary cosmic rays and the direction of their arrival [4]. In
recent years, significant progress has beenmade in gamma ray observations in the TeV
to PeV energy range through ground-based experiments. For example, the Tibet ASγ

experiment, using an air shower (AS) array (∼ 65,700 m2) and an underground Muon
Detector (MD) array (∼3,400m2), observed gamma rays emitted in the direction of the
Crab Nebula in excess of 100 TeV [5]. This pioneering work opens a new high-energy
window for exploring the extreme universe. Subsequently, HAWC [6] and LHAASO
[7] have detected dozens of gamma-ray sources with E > 100 TeV. The detection
of gamma rays above 100 TeV is a key to understanding the origin of cosmic rays in
the “knee” energy region [8–11]. The origin of cosmic rays in the “knee” region has
remained a mystery since the discovery in 1958 [12]. With further observations using
this new window, we expect to find “PeV cosmic-ray sources” in the Milky Way that
accelerate cosmic rays to PeV energies, known as “Pevatron” [8]. Therefore, precisely
measuring the spectral shape of gamma rays and then distinguishing whether it is
electron origin or cosmic-ray origin is the key to solving the problem. Therefore, it is
important to accurately measure the energy of gamma rays.

In recent years, machine learning has revolutionized particle physics, with machine
learning methods being widely applied to numerous issues in high-energy physics
[13, 14]. Its applications include particle identification, energy estimation, anomaly
detection, andmore [15, 16]. Machine learning techniques have been applied and have
made significant progress in ground-based gamma-ray and cosmic-ray experiments,
as evidenced by reports from experiments such as MAGIC [17], HAWC [18], and
Auger [19]. Firstly, machine learning algorithms can efficiently process and analyze
vast amounts of data, enhancing the speed and efficiency of data processing. Secondly,
automated data analysis and processing reduce human errors, improving the reliability
of results. Furthermore, machine learning excels at identifying patterns and features
within complex data, aiding in more accurate estimation of cosmic ray energy and
other properties [20]. Among these methods, LightGBM gained widespread attention
and application in the machine learning and data science community after its official
open-source release in 2017 [21]. LightGBM is a gradient boosting framework based
on decision trees, designed to provide fast and accurate model training capabilities.

123



Experimental Astronomy            (2025) 59:23 Page 3 of 17    23 

LightGBM excels in handling large-scale data and complex models, widely applied
across multiple domains to offer efficient and accurate solutions, making it a preferred
tool in many data analysis and machine learning tasks.

In this paper, we will study the energy determination of gamma-ray showers in the
1 TeV - 10 PeV energy region based on LightGBM by Monte Carlo (MC) simulation
assuming the present Tibet ASγ experiment. The MC simulation data sets are divided
into two sets, namely low-energy data set and high-energy data set, which are used
to reconstruct the low energy events and high energy events respectively when used
for ML training. Compared with the traditional energy reconstruction method of Tibet
ASγ experimental group [22], we found that the energy reconstruction of gamma
events by using this machine learning method can greatly improve its energy resolu-
tion. This method shows applicability to ground-based array experiments in gamma
astronomy, providing technical support for further study of the primary gamma-ray
energy reconstruction.

2 Experiment

The Tibet ASγ experiment is an international joint experiment between China and
Japan, which has been successfully operated at Yangbajing (90.522◦ E, 30.102◦ N;
4300 m above sea level) in Tibet, China since 1990 [23]. It has continuously made a
wide field-of-view (approximately 2 steradian) observation of cosmic rays and gamma
rays in the northern sky. After several upgrades, the current surface air shower array
(AS) [5] consists of 597 plastic scintillation detectors with an area of 0.5 m2, covering
an area of 65,700 m2 as shown in Fig. 1. The Tibet muon detector (MD) array (3,400
m2 in total area) consists of 64 water-Cherenkov-type detectors located at 2.4 m
underground of the AS array as shown in Fig. 1. Each MD detector is a waterproof
cell filled up with water of 1.5 m in depth, 7.5 m × 7.5 m in area, equipped with a 20-
inch-diameter downward-facing photomultiplier tube (PMT) on the ceiling (Fig. 1).
A gamma-ray induced air shower has much less muons compared with a cosmic-

Fig. 1 Schematic diagram of the Tibet ASγ experiment array, in which the black square and blue square
represent the AS and MD array respectively. In the middle figure above, the inside of the dashed octagon
frame is defined as the inner array. Octagon dashed line frame outside, defined as the outer array
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ray induced one. The MD array enables us to significantly discriminate a cosmic-ray
background event froma gamma-ray signal bymeans of counting the number ofmuons
in an air shower.

The surface air shower array (AS) is used for reconstructing the primary particle
energy and direction, while the underground muon detectors are used for discriminat-
ing gamma-ray induced muon-poor air showers from cosmic-ray (proton, helium, ...)
induced muon-rich air showers. For gamma rays, the Tibet ASγ experiment achieves
angular resolutions of approximately 0.5◦ and 0.2◦ at 10 and 100 TeV, respectively
[5].

In this work, under the detector configuration shown in Fig. 1, we analyze MC data
to estimate the energy of gamma events using the machine learning method.

3 Simulation and analysis

We have carried out a full Monte Carlo simulation on the development of extensive air
showers (EAS) in the atmosphere and the response in the Tibet hybrid experiment (AS
+ MD) array, located at an altitude of 4,300 m. The simulation code CORSIKA (ver.
76400) [24], which includes EPOS-LHC [25] and FLUKA [26] interaction model are
used to generate air-shower events. All detector responses are simulated using Geant4
(version 10.06) [27]. In theCORSIKA simulations, we utilized the default atmospheric
model while taking into account the altitude of the ASγ experiment (4,300 m) along
with the local magnetic field conditions (34.55 μT directed north and 35.058 μT
directed toward the Earth’s center). Additionally, to ensure that the processing of MC
events alignswith the experimental data analysis,we utilizedGeant4 to input simulated
air shower events into the detectors configured identically to the AS and MD array.
We implemented selection criteria consistent with the experimental trigger conditions,
specifically requiring that any four scintillator detectors record 1.25 or more particles
to trigger an event. For gamma-ray events, the primary particle energy ranges from
300 GeV to 100 PeV with a spectral index of -2.0 and a zenith angle coverage range
of 0 to 60 degrees. A total of 109 events were generated to cover a wide energy range.

The MC simulated data were reconstructed in the same manner as in the procedure
for the experimental data analysis. Using these MC simulated data, the following
characteristic parameters can be reconstructed, they can describe the cosmic-ray air
shower, and subsequently used for machine learning to reconstruct the energy of the
gamma-ray events. The following describes the individual feature parameters that will
later be used for machine learning.

Nch - the number of detectors hit;∑
ρ - the sum of particle densities;

(corex , corey) - the reconstructed core location of an air shower on the AS array,
as shown in the following function:

(corex , corey) =
(∑

i ρ
2
i xi∑

i ρ
2
i

,

∑
i ρ

2
i yi∑

i ρ
2
i

)

, (1)
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where (xi , yi ) and ρi are the coordinates of the i th detector and the number density
(m−2) of detected particles;

θ - the zenith angle of the incoming air shower;
σ - the residual error in reconstructing the arrival direction of an event, which is

indicative of the quality of direction reconstruction.
< R > - the mean density weighted lateral spread, described as follows:

< R >=
∑

i ρi ri
n

, (2)

where ri and n are the distance from the i th detector and the number of detectors
involved in the calculation;

Ne, s - the air shower size and age [22, 28], estimated by fitting the lateral density
distribution using the Nishimura-Kamata-Greisen (NKG) function [29, 30]:

ρNKG(r) = Ne

r2m

�(4.5 − s)

2π�(s)�(4.5 − 2s)

(
r

rm

)s−2 (

1 + r

rm

)s−4.5

, (3)

where r represents the distance from air shower axis, rm denotes the Moliere radius,
set to be 130 m in this context, and Ne and s are the fitting parameters. The lateral
distribution of aMC gamma-ray event fitted with the NKG function is shown in Fig. 2.

S50 - the particle density at 50 m from the air shower axis [22], which corresponds
to the value r = 50 m in (3), thus S50 = ρNKG(50 m).

Fig. 2 The lateral distribution of a MC gamma-ray event, with an energy of 100 TeV and a zenith angle of
20◦, is depicted. Solid circles represent data points, while the curves depict the fitting of the NKG function
to the data, with Ne and s as the fitted parameters. S50 (ρ(50 m)) refers to the particle density at r = 50 m
derived from completing the lateral distribution for this event
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4 Method

4.1 Machine learningmethod

In this work, we explore the application of the machine learning method in the ASγ

experiment. The Gradient Boosting Decision Tree (GBDT) [31], renowned for its
effectiveness in the machine learning community, optimizes performance through
iterative training of weak decision tree classifiers. LightGBM [21], an optimized
implementation of GBDT, is particularly suited for large-scale data processing. It sig-
nificantly enhances model training and prediction efficiency through histogram-based
optimization and a leaf-wise split strategy. We incorporate this successful algorithm
into the data reconstruction of the ASγ experiment, where it is employed to learn
the characteristics of simulated gamma-ray events, thereby enabling the prediction of
gamma-ray’s energy.

To effectively implement and evaluate the ML model, we segment the dataset into
training, validation, and testing sets. The training and validation sets are used to con-
struct the model for predicting gamma-ray’s energy, while the testing set is utilized
to assess the model’s performance. Details regarding model training can be found in
Appendix A.

4.2 Features evaluation

Evaluating the importance of input features is crucial for understanding the contribu-
tions of different features to the accuracy ofmodel predictions. To achieve this goal, we
employ the Permutation Importance method, a model-agnostic technique that clearly
reveals the impact of each feature within the dataset [32]. Permutation Importance
is achieved by randomly shuffling individual variables in the validation dataset and
observing changes in model accuracy. A significant decrease in model performance
after a feature is shuffled indicates its high importance in the prediction process. The
advantage of this method is that it does not rely onmodel-specificmetrics and provides
a direct, empirical measure of feature importance based on changes inmodel accuracy.

In Section 5, we will discuss in detail the effectiveness of machine learning in
estimating gamma-ray energy, comparing it with traditional estimators.

5 Results and discussions

For the traditional method of gamma-ray energy reconstruction in Tibet ASγ experi-
ment, if the energy of gamma ray is greater than 10 TeV, the energy of each air shower
is reconstructed using the lateral distribution of ρ. As an energy estimator, we use
S50 [22], which is defined as ρ at a distance of 50 m from the air shower axis in the
best-fit Nishimura-Kamata-Greisen (NKG) function. On the other hand, the energy
below 10 TeV was estimated directly from

∑
ρ corresponding to the sum of the par-

ticle density measured by each scintillation detector, as the number of hit detectors is
too low to fit S50, Ne and s. In this work, to enhance the accuracy of energy estima-
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tion, low-energy and high-energy data are trained separately. The selection criteria for
low-energy data sets (E < 10 TeV) are: (Nch ≥ 8 and Nch < 16) or

∑
ρ < 100;

while the selection criteria for high-energy data sets (E >∼ 10 TeV) are: Nch ≥ 16
and

∑
ρ ≥ 100. Subsequently, we present the specific performance of the trained

machine learning model on the testing sets of high-energy and low-energy data. The
model’s performance is quantified using energy resolution as the metric.

5.1 Energy reconstruction of high-energy data sets

This work utilizes features reconstructed from MC simulated data by the AS array
to train the machine learning model. For the high-energy data sets, all ten features
from Section 3 are employed. And the importance scores of these features, as shown
in Fig. 4a. The results indicate that S50, θ , and Ne are the most critical features for
accurately predicting gamma-ray energy, with S50 also being one of the traditional
energy estimators used in the ASγ experiment.

To demonstrate the performance of the model trained in this work for high-energy
data energy estimation, we compare it with traditional energy estimators (S50, Ne, and∑

ρ) used in the ASγ experiment. Figure 3 illustrates the comparison between the
energy estimates from the ML and traditional methods against simulated true primary
energies. It can be observed that the distributions obtained from theMLmethod are nar-
rower than those from the traditional methods, indicating that the energy reconstructed
using this method is closer to the true primary gamma-ray energy. This clearly demon-
strates the superiority of the machine learning approach in energy reconstruction. The
result shows that the ML method, by utilizing information from multiple parameters,
can predict primary gamma-ray energy more accurately. The input parameters for
the ML include not only characteristics sensitive to primary air-shower energy, such
as S50 and Ne, but also parameters that describe the direction and air-shower core
position of the air shower, such as θ , < R > and (corex , corey). In contrast, tradi-
tional energy reconstruction methods usually rely on a single characteristic parameter
[22], which puts traditional methods at a disadvantage, especially when reconstruct-
ing “far-core” location events that are relatively far from the center of the detector
array, resulting in inaccurate energy reconstruction. As depicted in Fig. 3d, “bulge”

data, where Fig. 4b shows the distribution of core (
√
core2x + core2y), illustrates that

“bulge”-data air-shower core predominantly lie far from the center of the AS array.
Unlike the blue points representing data without the “bulge”, these “bulge” events are
generally “far-core” events, whose energy estimates are frequently underestimated by
traditional estimators due to their inadequate consideration of the air-shower core’s
influence. Notably, this “bulge” is absent in Fig. 3a, which depicts results using the
ML estimator.

Furthermore,we analyze the energy resolution of the four estimators across different
energy ranges. The energy resolution is derived fromGaussian fits to the distribution of
ln(Erec/Etrue), where Erec represents the reconstructed gamma-ray energy, and Etrue
represents the true primary gamma-ray energy inMC simulation. Figure 4c-h illustrate
the energy resolution for both the inner and outer arrays, with the inner array delineated
by the dashed lines in Fig. 1 and the outer array corresponds to the region outside these
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Fig. 3 For high-energy data, a comparison of the results from different energy estimators across various
zenith angle intervals: (a)-(c) represent the results from this work, while (d)-(l) correspond to those from
traditional methods

dashed lines. The results indicate that the energy resolution achieved through the ML
method outperforms that of traditional methods. Among these traditional estimators,
S50 demonstrates superior performance compared to Ne and

∑
ρ. Consequently, S50

is selected as the representative estimator for comparisons with the ML method. At
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Fig. 4 For high-energy data: (a) Importance of input features. (b) Distribution of air-shower core

(
√
core2x + core2y ) in Fig. 3d, with red points denoting “bulge” data in Fig. 3d and blue points repre-

senting data excluding the “bulge”. (c)-(e) Energy resolution of different estimators for the inner array:
ML (blue lines), S50 (magenta lines), Ne (red lines), and

∑
ρ (green lines) across zenith angle ranges

of 1.0 < secθ < 1.1, 1.1 < secθ < 1.3, and 1.3 < secθ < 2.0. (f)-(h) Energy resolution of different
estimators for the outer array (solid lines for the inner array and dashed lines for the outer array) in the same
zenith angle ranges

E ∼ 40 TeV, the ML method improves the energy resolution by about 10% for inner
array events and 25% for outer array events, respectively, compared to S50. In contrast,
at E ∼ 100 TeV, the enhancement in energy resolutionwith theMLmethod isminimal
for small zenith angles and inner array events. However, for large zenith angle interval
(secθ > 1.3), there is a notable improvement of roughly 20% for outer array events.
In this work, it is found that ML method can achieve the best energy resolution for
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both inner and outer array events. It is particularly worth emphasizing that MLmethod
has little difference in energy resolution for inner and outer array events. Therefore,
in this work, the statistical events can be improved by about 30% through this ML
method (the events in the outer array account for about 30% of the total events). On
the other hand, S50 performs nearly as well as the ML method for energies exceeding
100 TeV in the small zenith angle interval, suggesting that S50 remains a strong
candidate for gamma energy estimation. Nevertheless, the ML method demonstrates
more consistent performance, exhibiting advantages across different zenith angle and
energy ranges. Additionally, aside from

∑
ρ, the ML method, S50, and Ne display

relatively small energy bias, generally within 0.05. A detailed discussion regarding
energy bias can be found in Appendix B. We also explored other machine learning
models for the energy reconstruction of gamma events, which achieved a consistent
energy resolution differing within 3% in most cases. Further details can be found in
Appendix C.

5.2 Energy reconstruction of low-energy data sets

For the Tibet ASγ experiment, due to the 7.5 m gap between detectors in the Tibet-III
air shower array, fewer detectors were hit by cases with energies lower than 10 TeV,
resulting in the inability to reconstruct the three characteristic parameters of Ne, s
and S50. Therefore, in the low-energy data sets, we cannot give three characteristic
parameters, Ne, s and S50, to participate in machine learning. Therefore, the energy
reconstruction of low-energy data sets is different from that of high-energy data sets.
In ML model training, when reconstructing low-energy cases, we exclude these three
feature parameters and only train the remaining seven features. Figure 5a shows the
importance scores of input feature parameters during machine learning. It can be seen
that Nch,< R > and θ are themost sensitive feature parameters for energy estimation
in low energy data sets.

Here, due to the absence of S50 and Ne, we retain
∑

ρ as the traditional energy
estimator for comparison with the ML estimator. Figure 5b-d present the energy res-
olution for gamma rays reconstructed by the ML method and

∑
ρ for both inner and

outer array events across three zenith angle ranges for low-energy data. The energy
resolution of low-energy gamma rays reconstructed by theMLmethod is significantly
superior to that achieved by

∑
ρ. Notably, at E < 10 TeV, the ML method enhances

the energy resolution for inner and outer array events by approximately 30% and
55%, respectively, compared to the traditional estimator. This improvement can be
attributed to the multi-input feature parameters learning utilized by the ML approach,
which captures more detailed information about the air shower. As a result, the ML
method is capable of predicting energy more accurately than

∑
ρ. It is also impor-

tant that the ML method exhibits slight variation in energy resolution between inner
and outer array events. Therefore, this approach can increase the statistical events by
around 30%, considering that outer array events account for roughly 30% of the total
events.
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Fig. 5 For low-energy data: (a) Importance of input features. (b)-(d)Energy resolution of different estimators
for the inner and outer arrays: ML (blue lines) and

∑
ρ (green lines) across zenith angle ranges of 1.0 <

secθ < 1.1, 1.1 < secθ < 1.3, and 1.3 < secθ < 2.0

6 Conclusion

This work employs the machine learning approach to predict the energy of gamma
rays for both high-energy and low-energy data sets. Various feature parameters recon-
structed from the AS array in the Tibet ASγ experiment are utilized as inputs for
training the ML model. The results show that for different zenith angles, compared
with traditional energy reconstruction methods such as S50, Ne and

∑
ρ, the machine

learning method consistently has better energy resolution than the traditional recon-
struction of gamma-ray events. This improvement is particularly pronounced in large
zenith angle ranges, the outer array region and low-energy data. For high-energy data,
at approximately 40 TeV, the energy resolution for events in the outer array using the
ML method exceeds that of the best-performing traditional estimator S50 by about
25%. At around 100 TeV, while the energy resolution obtained by the ML is nearly
identical to that of S50 at small zenith angles, it still achieves an improvement of about
20% at large zenith angles in the outer array. On the other hand, for low-energy data
(E < 10 TeV), the ML method enhances the energy resolution for inner and outer
array events by approximately 30% and 55%, respectively, compared to the traditional
method

∑
ρ. Therefore, we find that although the energy resolution of events falling
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inside the array is only slightly improved, however, events outside array and at large
zenith shower clear improvements. Moreover, it is particularly noteworthy that the
ML method has little difference in the energy resolution of the inner and outer array
events. Therefore, the improved energy resolution achieved by ML method for outer
array events allows for the retention of these events, resulting in an increase of approx-
imately 30% in the statistical sample. In addition, we also tested different machine
learning models and found that if the energy is reconstructed using different machine
learning models under the same conditions, the energy resolution remains consistent
within a 3% error range (see Appendix C). In the near future, this effective machine
learning-based data reconstruction method will be applied to reconstruct additional
features in the Tibet ASγ experiment, such as the direction and composition of pri-
mary particles, with the aim of further improving the overall accuracy and efficiency
of the experiment. Of course, this ML method is also suitable for other ground-based
array experimental groups to reconstruct the energy of air shower.

Appendix A: Machine learningmodel training

In this work, we utilized the LightGBM, a gradient boosting decision tree-based algo-
rithm, to reconstruct the energy of gamma-ray events using machine learning models.
Below, we list the main hyperparameter settings used in the trained models and their
respective roles:

1. objective : regression
The task is framed as a regression problem to minimize the difference between pre-

dicted and actual values, thereby enhancing the reconstruction of gamma-ray energy.
2. num_leaves : 50
This parameter defines the maximum number of leaves in one tree. More leaves

can capture more complex patterns but can also lead to overfitting.
3. min_data_in_leaf : 600
This parameter sets the minimum number of samples that must be present in a leaf

node. It is a important parameter for preventing overfitting in the leaf nodes of the tree.
4. learning_rate : 0.1
This parameter controls how much to update the model with each iteration.
5. bagging_fraction : 0.7
This parameter controls the fraction of data to be used for each iteration of training.

It helps to prevent overfitting by randomly selecting a subset of data for training.
6. feature_fraction : 0.7
This parameter determines the fraction of features to be randomly selected for each

iteration. Similar to bagging_fraction, it helps to reduce overfitting by using only a
subset of features.

7. bagging_freq : 7
This parameter controls how often to perform bagging. It can also prevent overfit-

ting.
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Appendix B: The bias of gamma-ray energy reconstruction

The performance evaluation of energy estimators relies not only on energy resolu-
tion but also on bias. Bias is defined as the average difference between the reconstructed
energy and the true energy in the logarithmic space. Figure 6 illustrates the bias in
gamma-ray energy reconstruction between the machine learning (ML) method and
traditional energy estimators. The results indicate that, apart from the

∑
ρ estimator,

which exhibits a large bias across all energy and zenith angle ranges, other estima-
tors maintain a bias within 0.05 (with a bias of within 0.15 for energies near 10 TeV
when secθ > 1.3). Furthermore, as shown in Fig. 6, the ML method consistently
demonstrates minimal bias across all energy and zenith angle ranges in gamma-ray
energy reconstruction. This further highlights the advantages of the ML approach in
gamma-ray energy estimation.

Fig. 6 The energy bias of different energy estimatorswithin the zenith angle ranges of (b) 1.0 < secθ < 1.1,
(c) 1.1 < secθ < 1.3, and (d) 1.3 < secθ < 2.0, respectively
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Appendix C: Test the dependence of reconstruction energy
on different machine learningmodels

In our investigation of gamma-ray energy reconstruction, we explored other alter-
native machine learning techniques beyond the primary model discussed in the main
text. Notably, we evaluated the performance of Multi-Layer Perceptrons (MLP) neu-
ral networks, and tree-based XGBoost. We examined the energy resolutions achieved
by these different models across various zenith angle intervals and energy ranges. As
illustrated in Fig. 7, all three methods exhibit a high degree of consistency, with energy
resolutions differing within 3% error range. However, in the case of the large zenith
angle range (1.3 < secθ < 2.0) and an energy of approximately 10 TeV, the observed
difference increases to 9%. This variation is deemed acceptable given the large zenith
angle involved.

Fig. 7 The energy resolution of different machine learning models within the zenith angle ranges of (b)
1.0 < secθ < 1.1, (c) 1.1 < secθ < 1.3, and (d) 1.3 < secθ < 2.0, respectively
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Given thesefindings,weopted to streamline our discussion in themain text by focus-
ing on the LightGBMmethod. We selected LightGBM as a representative example of
machine learning applications in the context of gamma-ray energy reconstruction, as
it demonstrated stable performance.
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32. Altmann, A., Toloşi, L., Sander, O., Lengauer, T.: Permutation importance: a corrected feature impor-
tance measure. Bioinformatics 26(10), 1340–1347 (2010). https://doi.org/10.1093/bioinformatics/
btq134

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Authors and Affiliations

Y. Meng1,2 · J. Huang1 · D. Chen3 · K Y. Hu1,2 · Y. Zhang1 · L M. Zhai3 ·
Y H. Zou1,2 · Y L. Yu1,2 · Y Y. Li1,2

B Y. Meng
mengyu@ihep.ac.cn

1 Key Laboratory of Particle Astrophysics, Institute of High Energy Physics, Chinese Academy
of Sciences, Beijing 100049, People’s Republic of China

2 University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100049,
People’s Republic of China

3 National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012,
People’s Republic of China

123

https://doi.org/10.1103/PhysRevC.92.034906
https://doi.org/10.1103/PhysRevC.92.034906
https://doi.org/10.1016/j.anucene.2014.11.007
https://doi.org/10.1016/j.anucene.2014.11.007
https://doi.org/10.1016/S0168-9002(03)01368-8
https://doi.org/10.1103/physrevd.79.063001
https://doi.org/10.1143/PTPS.6.93
https://doi.org/10.1146/annurev.ns.10.120160.000431
https://doi.org/10.1146/annurev.ns.10.120160.000431
https://doi.org/10.1093/bioinformatics/btq134
https://doi.org/10.1093/bioinformatics/btq134

	Machine learning applications to energy reconstruction  of gamma-ray showers for the Tibet ASγ experiment
	Abstract
	1 Introduction
	2 Experiment
	3 Simulation and analysis
	4 Method
	4.1 Machine learning method
	4.2 Features evaluation

	5 Results and discussions
	5.1 Energy reconstruction of high-energy data sets
	5.2 Energy reconstruction of low-energy data sets

	6 Conclusion
	Appendix A: Machine learning model training
	Appendix B: The bias of gamma-ray energy reconstruction
	Appendix C: Test the dependence of reconstruction energy  on different machine learning models
	Acknowledgements
	References


