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Simply by nature of their scale and complexity, astrophysical systems are almost

always studied by simplifications and effective, parameterized models. Yet even

after this considerable simplification, the resulting systems can still host unusual

and exciting phenomena. In this dissertation, I study and characterize analyti-

cally and numerically many of these behaviors in few-body systems consisting of

planets, stars, and black holes (BHs). My work falls into three broad categories: (i)

I carry out a comprehensive theoretical analysis of the spin dynamics of planets by

studying the “Colombo’s Top” system (a rotating planet whose spin axis precesses

around its orbital axis, which itself varies in time). In the course of this analysis, I

examine: the dynamics of planetary obliquities when surrounded by a dissipating

protoplanetary disk, and the capture probabilities of planetary spins into high-

obliquity, stable equilibria due to tidal dissipation in two and many-planet sys-

tems. I apply these results to assess the spin dynamics and evolution of planets in

various, observationally-relevant architectures, such as super Earths with nearby

or distant companions. My work is the first to describe comprehensively the com-

plex resonance capture process responsible for the excitation of large obliquities in

both integrable, two-planet systems and chaotic, three-planet systems. My results

show that super Earths around solar-type stars have a significant chance of cap-

ture into various stable high obliquity states; this will have a large impact on their

surface/atmosphere conditions. (ii) I use detailed hydrodynamical simulations to

understand the nonlinear internal gravity wave breaking process that is responsi-



ble for tidal dissipation in white dwarf and early-type stellar binaries. I then use

my results to understand the circularization of highly eccentric, massive stellar bi-

naries and to calculate the observational effects of tidal heating in compact white

dwarf binaries. (iii) I study the observational signatures of the tertiary-induced

merger channel for merging BH binaries, in which a distant companion drives

the BH binary into a high-eccentricity orbit via the von Zeipel-Lidov-Kozai mech-

anism, and the binary then merges due to gravitational wave emission. I study

both the spin dynamics of the merging BHs when the tertiary is circular as well

as the mass ratio distribution when the tertiary is eccentric, with observational

comparisons to the BH mergers seen by the LIGO/VIRGO Collaboration.
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CHAPTER 1

INTRODUCTION

The diversity and intractability of phenomena in astrophysics owe their origin

to the breadth of scales over which astrophysical systems evolve. Despite these dif-

ficulties, the dynamical evolution of such systems is important to understand, as

they shape the universe as we observe it today. These systems, consisting of bodies

such as planets, stars, and black holes, evolve over characteristic time scales rang-

ing from minutes to years due to effects such as tidal evolution and gravitational

wave emission. In principle, these effects are sufficiently well understood that as-

trophysical dynamics can be solved via direct numerical simulation. In practice,

however, numerical integration over times as long as the age of the observable

universe and for the wide range of observed system parameters is far beyond the

capability of modern computers. As a result, many effective models are developed

to bridge the gap between the “microphysics” of these systems, their behavior over

these short time scales, and their long-term evolution.

The focus of this dissertation concerns the dynamics of various effective mod-

els that are derived under the so-called “secular” approximation. In systems con-

sisting of multiple bodies, their mutual gravitational interaction causes the con-

stituent bodies to orbit one another over a wide range of orbital periods. The

secular approximation concerns the dynamics when averaged over the system’s

orbital period(s), turning individual bodies into massive rings. The evolution of

these rings occurs over substantially longer time scales than the orbital periods

of the original bodies, and so long term study of the system becomes possible. In

this dissertation, I apply both analytical and numerical techniques to study the

secular dynamics of three classes of systems: (i) the evolution of a planet’s spin

in a planetary system with multiple planets, (ii) the formation of merging black
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hole binaries (detectable by LIGO/VIRGO) from systems consisting of three black

holes, and (iii) the evolution of stars in binaries due to their mutual tidal interac-

tion. Below, I motivate and describe my results for each of these three classes of

systems.

1.1 The Dynamics of Exoplanetary Spins

First, I introduce my work on the dynamics of an exoplanet’s spin. The spin state

of a planet is characterized by two attributes, its spin period and orientation. The

spin period of a planet determines the length of a day on the planet, while its obliq-

uity (the angle between a planet’s spin axis and orbital axes) gives rise to its sea-

sons. Both of these attributes are of general interest, as together they determine

the atmospheric and surface conditions of the planet. They are also of dynamical

interest as they reflect the evolutionary history of a planet. Within the solar sys-

tem, the planets’ obliquities take on a wide range of values, from nearly zero for

Mercury and 3.1◦ for Jupiter, to 23◦ for Earth and 26.7◦ for Saturn, to 30◦ for Nep-

tune and 98◦ for Uranus. The origin of these nonzero obliquities has motivated

many hypotheses for the formation of each of these planets: for instance, multiple

giant impacts are traditionally invoked to generate the large obliquities of the ice

giants [Safronov and Zvjagina, 1969, Benz et al., 1989, Korycansky et al., 1990,

Morbidelli et al., 2012]. In the case of the gas giants, obliquity excitation may be

achieved via certain spin-orbit resonances, where the spin and orbital precession

frequencies of the planet become commensurate as the system evolves [Ward and

Hamilton, 2004, Hamilton and Ward, 2004, Ward and Canup, 2006, Vokrouhlickỳ

and Nesvornỳ, 2015, Saillenfest et al., 2020, 2021]. These resonances were first

studied in the seminal work of Colombo [1966] and is sometimes referred to as

“Colombo’s Top”, while the equilibria of this system are often known as “Cassini
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States” (CSs). Subsequent works have uncovered the rich dynamics of this system

[Peale, 1969, 1974, Ward, 1975, Henrard and Murigande, 1987].

Shifting focus beyond the solar system, there are about 5000 confirmed exo-

planets as of May 20221. Which among these planets may be habitable has re-

cently become a question of great interest. A key factor in assessing a planet’s

habitability is its obliquity, and so it is important to understand the dynamical

processes that affect the obliquity. Observationally, these obliquities are chal-

lenging to measure, and to date only loose constraints have been obtained for the

obliquities of faraway planetary-mass companions [Bryan et al., 2020, 2021]. Nev-

ertheless, there are prospects for better constraints on exoplanetary obliquities in

the coming years [Snellen et al., 2014, Bryan et al., 2018, Seager and Hui, 2002].

Furthermore, there is ongoing work towards inferring exoplanetary obliquities via

thermal phase curve modeling [Adams et al., 2019, Ohno and Zhang, 2019] and

via indirect dynamical evidence [Millholland and Laughlin, 2018, 2019, Millhol-

land and Spalding, 2020]. From a theory perspective, substantial obliquities may

arise even during the earlest phase of planet formation if protoplanetary disks

are turbulent and twisted [Tremaine, 1991, Jennings and Chiang, 2021]. They

can also arise due to giant impacts or planet collisions as a result of dynamical

instabilities of planetary orbits [Safronov and Zvjagina, 1969, Benz et al., 1989,

Korycansky et al., 1990, Dones and Tremaine, 1993, Morbidelli et al., 2012, Li

and Lai, 2020, Li et al., 2021]. However, many processes can still change these

obliquities before they reach their present-day values.

In this dissertation, I consider three mechanisms by which this primordial

obliquity can be related to present-day obliquities. In Chapter 2, I consider the

obliquity evolution of an oblate planet due to gravitational interactions both with

1https://exoplanetarchive.ipac.caltech.edu/
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its host star and with an exterior, dissipating (mass-losing) protoplanetary disk.

Obliquity excitation occurs as the system passes through a resonance between

the planet’s secular spin and orbital precession frequencies as the disk dissipates.

This scenario was recently studied by Millholland and Batygin [2019], who focused

on the special case of small initial obliquities. However, the primordial obliquity is

not necessarily small, as argued above; the objective of Chapter 2 is to determine

the final obliquity of the planet as a function of an arbitrarily oriented initial spin.

When the disk dissipation is sufficiently gradual (adiabatic), I show that the prin-

ciple of conservation of phase space area combined with the theory of probabilistic

separatrix encounter [Henrard, 1982] is able to completely predict the final obliq-

uities and their associated probabilities for arbitrary initial conditions. On the

other hand, when the disk dissipates rapidly, I show that the obliquity is instead

excited impulsively. I provide analytical expressions for the obliquity excitation in

both of these regimes as well as for the boundary of the two regimes.

In Chapter 3, I consider a different mechanism for obliquity excitation, where

an inner planet with a single outer companion planet experiences tidal dissipa-

tion in addition to gravitational torques from its host star and companion. The

effect of tidal dissipation both acts to drive the planet’s obliquity towards zero

(spin-orbit alignment) and to drive the planet’s spin rate towards synchroniza-

tion (i.e. drive the spin frequency towards the planet’s orbital frequency). In the

absence of spin-orbit resonances, planets experiencing tidal dissipation are thus

expected to evolve towards low obliquities and become tidally locked. However,

in the presence of additional planets, the planet may remain in a high-obliquity,

asynchronously-rotating spin state if it is evolves into the so-called “Cassini State

2” (CS2) that is stable to tidal dissipation [Fabrycky et al., 2007, Levrard et al.,

2007, Peale, 2008]. For a general initial spin orientation, the planet evolves into

one of either CS2 or the low-obliquity CS1 via a probabilistic process. I show that
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the probabilities of reaching each of the two CSs outcomes can be analytically

calculated via a generalization of Henrard’s seminal work of resonance capture

[Henrard, 1982]. I derive a simple closed-form expression for the case where the

initial spin orientation is isotropically distributed. I apply my results to show that

the common super Earth-cold Jupiter systems (Zhu and Wu, 2018, Bryan et al.,

2019; but see Rosenthal et al., 2021) may often host an oblique super Earth. I also

show that the proposed formation scenarios for WASP-12b and ultra-short-period

planets via obliquity-enhanced tidal dissipation [Millholland and Laughlin, 2018,

Millholland and Spalding, 2020] are disfavored due to the low probability of being

captured into CS2.

In Chapter 4, I generalize the discussion in Chapter 3 to include an additional

planet, considering systems of either three super Earths or two super Earths and

one cold Jupiter. In systems consisting of three or more planets, it is well-known

that the planetary obliquities can evolve chaotically in the absence of dissipation

[e.g. that of Mars Touma and Wisdom, 1993, Laskar and Robutel, 1993]. However,

the obliquity dynamics in the presence of tidal dissipation are not well-understood.

Via numerical integration, I show that the occurence rate of oblique planets is

generally enhanced by the presence of additional planets. I find that this is due

to a novel class of resonances that are not CSs, and that I term “mixed-mode

resonances.” I derive an analytic relation for the obliquities of these resonances.

1.2 Tidal Evolution in Stellar Binaries

Second, I introduce my work on the tidal evolution of stellar binaries, including

those consisting of two white dwarfs (WDs). About half of stars detected today

have detectable binary companions [e.g. Gao et al., 2014, Yuan et al., 2015]. In a
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stellar binary, the changing tidal gravitational field between the two stars gener-

ates fluid motion within both component stars. As this fluid motion experiences

dissipation due to radiative and turbulent damping, energy is transferred between

the binary orbit and the individual stars. The first theoretical models for tidal

dissipation studied the equilibrium tide [Alexander, 1973, Hut, 1981]. Here, the

stars develop a hydrostatic bulge due to their mutual gravitational force, and the

motion of this bulge results in dissipation.

While simple and sufficient for weak tidal interactions, this model becomes

inaccurate for sufficiently close binaries [see Ogilvie, 2014 for a review]. In par-

ticular, internal gravity waves (IGWs), oscillations in the stellar fluid restored by

buoyancy, play an important role in several types of binary systems. In solar-type

stars with radiative cores and convective envelopes, IGWs are excited by tidal

forcing at the radiative-convective boundary and propagate inward; as the wave

amplitude grows due to geometric focusing, nonlinear effects can lead to efficient

damping of the wave [Goodman and Dickson, 1998, Barker and Ogilvie, 2010,

Essick and Weinberg, 2015]. In early-type main-sequence stars, with convec-

tive cores and radiative envelopes, IGWs are similarly excited at the convective-

radiative interface but travel toward the stellar surface; nonlinearity develops

as the wave amplitude grows, leading to efficient dissipation [Zahn, 1975, 1977].

WDs do not have convective regions, and IGWs are instead generated at changes

in the WD’s composition. For these outward-traveling IGWs, one important non-

linear effect arises when the fluid displacement becomes comparable to the wave-

length of the wave. When this threshold is reached, the waves break, like ocean

waves on the shore, and deposit their energy and angular momentum. This wave

breaking process is complex and turbulent, requiring numerical simulations to be

well characterized. However, despite its ubiquity and importance, wave breaking

has typically only been included in a parameterized fashion [e.g. Fuller and Lai,
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2012a, Burkart et al., 2013, Vick et al., 2017].

In Chapter 5, I use well-resolved numerical simulations to study the detailed

wave breaking process. While I primarily consider the case of binary WDs [fol-

lowing the work of Fuller and Lai, 2011, 2012a, 2013], the qualitative behavior is

likely to be similar for early-type stars. Specifically, I develop quantitative pre-

scriptions for both the location and the spatial extent of the energy deposited by

the breaking IGWs. In my simulations, I generate IGWs from the bottom of a 2D

isothermal atmosphere. As these IGW propagate upwards, they grow in ampli-

tude and eventually break. I find that this wave breaking naturally generates a

sharp critical layer (CL), a thin region of fluid separating the lower stationary re-

gion (with no mean flow) and the upper “synchronized” region (with the mean flow

velocity equal to the horizontal IGW phase speed). Waves incident on the CL are

absorbed efficiently, depositing their energy and momentum flux within the CL. I

show that the width of this CL is mediated by the onset of the Kelvin-Helmholtz

instability (carried by the IGW). Furthermore, the CL propagates downwards to

accommodate the absorbed momentum flux, and the fluid synchronizes from top-

to-bottom, as first hypothesized by Goldreich and Nicholson [1989]. However, the

IGW absorption at the CL is not absolute, and I compute reflection and transmis-

sion coefficients for the IGW at the CL from my simulations.

In Chapter 6, I then present analytical expressions for the tidal evolution of a

massive star in a compact, eccentric binary. Due to the compactness of the binary,

the IGWs excited from the convective core of the star are expected to propagate

outwards through the radiative envelope and break near the stellar surface. The

tidal torque in circular binaries has recently been revised into a simpler and more

accurate form [Kushnir et al., 2017]. However, the inclusion of eccentricity signif-

icantly complicates the evaluation of the tidal torque, generally requiring a sum
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over many Fourier harmonics [Vick et al., 2017]. I show that these two results

can be combined to yield an accurate closed-form approximation to the eccentric

tidal torque. I apply my results to the system PSR J0045-7319, which consists

of a pulsar and massive main-sequence star and exhibits detectable orbital decay

[Kaspi et al., 1994, Bell et al., 1995]. I conclude that the star must be rapidly

and differentially rotating in order for the tidal torque to be consistent with the

observed orbital decay rate.

1.3 Tertiary-Induced Formation of Black Hole Binaries

Third, I introduce my work on the formation of black hole (BH) binaries. Since

it first detected gravitational waves (GWs) in 2015, the LIGO/VIRGO Collabora-

tion (LVC) has since detected a total of 90 compact object coalescences to date, the

large majority of which are mergers of two BHs [The LIGO Scientific Collabora-

tion et al., 2021b]. As the catalog of events grows, it is increasingly fruitful to pose

the question of how these BH binaries are formed. The canonical scenario posits

that these BH binaries initially form as wider stellar binaries that undergo a com-

mon envelope phase and subsequently experience orbital decay to form compact

BH binaries that can then merge via GW emission [e.g. Belczynski et al., 2016].

However, such a process has numerous uncertainties, and many studies have ex-

plored alternatives that do not require an efficient common envelope phase. I

focus on the so-called “tertiary-induced” merger scenario, where a wide black hole

binary experiences von Zeipel-Lidov-Kozai [ZLK von Zeipel, 1910, Lidov, 1962,

Kozai, 1962] oscillations due to gravitational interactions with a distant tertiary

companion over very long, secular time scales. During these ZLK oscillations, the

eccentricity of the inner binary varies between small values to values very near
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unity. If the maximum eccentricity is sufficiently large, the enhanced GW emis-

sion near pericenter can dramatically shrink the binary orbit, and the binary can

then merge in isolation via GW radiation alone.

In this dissertation, I consider the distributions both of the spin orientations

and of the mass ratio of the component BHs for binaries formed via the tertiary-

induced merger channel. In Chapter 7, I study the spin evolution of BH binaries

undergoing ZLK oscillations. Previously, Liu and Lai [2018] used numerical inte-

grations to study the final spin orientations of BHs in binaries that form via the

tertiary-induced channel. They found that, when the spins are initially aligned

with the orbital angular momentum axis and the octupole-order corrections to the

ZLK effect are negligible (this is accurate when either the tertiary’s orbit is cir-

cular or the inner binary has equal masses), the spins of the BHs tend to lie in

the orbital plane (i.e. normal to the angular momentum axis) upon merger. I show

via analytical arguments that this behavior is due to conservation of an approxi-

mate adiabatic invariant, which is well-conserved as long as the system coalesces

over many ZLK cycles. If this condition is satisfied, I solve for the final spin ori-

entation for an arbitrary initial spin orientation. I also quantify the deviation

from this prediction for systems that merge non-adiabatically. While the spin dis-

tribution from the LVC significantly prefers spin-orbit alignment, there is still

ongoing study concerning whether there may be a sub-population of BH mergers

with perpendicular spin and orbit axes [Roulet et al., 2021, The LIGO Scientific

Collaboration et al., 2021a]. Such a sub-population is consistent with formation

via the tertiary-induced channel.

In Chapter 8, I study the mass-ratio distribution in the tertiary-induced merger

channel. This distribution is sensitive to the octupole-order corrections neglected

in Chapter 7. In systems where the octupole-order terms are more important,
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the inner binary can more readily attain extreme eccentricities. The strength of

these octupole-order terms scales inversely with the binary’s mass ratio (i.e. bina-

ries with more unequal masses experience stronger octupole-order effects). As a

result, it is evident that the tertiary-induced merger scenario is more efficient at

producing BH binaries with unequal component masses. This trend is opposite to

that seen by the LVC, which has observed more systems with equal masses than

systems with unequal masses. This may not entirely rule out tertiary-induced

mergers as a formation channel for BH binaries, however: the mass-ratio distri-

bution of wide BH binaries is unknown, so the enhanced formation rate may be

unable to overcome a natural paucity of small-mass-ratio BH binaries. I also show

that the formation rate enhancement for unequal-mass binaries is much weaker

when the inner binary is somewhat compact, which also can slightly ease the

tension with the observed mass-ratio distribution. Finally, note that the octupole-

order corrections are negligible when the tertiary is sufficiently distant, e.g. when

the binary is on a distant orbit around a supermassive BH.
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CHAPTER 2

DYNAMICS OF COLOMBO’S TOP: GENERATING EXOPLANET

OBLIQUITIES FROM PLANET-DISK INTERACTIONS

Originally published in:

Yubo Su and Dong Lai. Dynamics of Colombo’s Top: Generating exoplanet obliq-

uities from planet-disk interactions. ApJ, 903(1):7, Oct 2020. doi: 10.3847/

1538-4357/abb6f3

2.1 Introduction

2.1.1 Colombo’s Top

A rotating planet is subjected to gravitational torque from its host star, making

its spin axis precess around its orbital (angular momentum) axis. Now suppose

the orbital axis precesses around another fixed axis—such orbital precession could

arise from gravitational interactions with other masses in the system (e.g. planets,

external disks, or binary stellar companion). What is the dynamics of the plan-

etary spin axis? How does the spin axis evolve as the spin precession rate, the

orbital precession rate, or their ratio, gradually changes in time?

Colombo [1966] was the first to point out the importance of the above simple

model in the study of the obliquity (the angle between the spin and orbital axes) of

planets and satellites. Subsequent works [Peale, 1969, 1974, Ward, 1975, Henrard

and Murigande, 1987] have revealed rich dynamics of this model. With appropri-

ate modification, this model can be used as a basis for understanding the evolution

of rotation axes of celestial bodies. Indeed, many contemporary problems in plane-

tary/exoplanetary dynamics can be cast into a form analogous to this simple model

or its variants [e.g. Ward and Hamilton, 2004, Fabrycky et al., 2007, Batygin and
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Adams, 2013, Lai, 2014, Anderson and Lai, 2018, Zanazzi and Lai, 2018].

In this paper we present a systematic investigation on the secular evolution of

Colombo’s top, starting from general initial conditions. Our study includes several

new analytical results that go beyond previous works. While our results are gen-

eral, we frame our study in the context of generating exoplanet obliquities from

planet-disk interaction with a dissipating disk.

2.1.2 Planetary Obliquities from Planet-Disk Interaction

It is well recognized that the obliquity of a planet may provide important clues to

its dynamical history. In the the Solar System, a wide range of planetary obliq-

uities are observed, from nearly zero for Mercury and 3.1◦ for Jupiter, to 23◦ for

Earth and 26.7◦ for Saturn, to 98◦ for Uranus. Multiple giant impacts are tra-

ditionally invoked to generate the large obliquities of ice giants [Safronov and

Zvjagina, 1969, Benz et al., 1989, Korycansky et al., 1990, Morbidelli et al., 2012].

For gas giants, obliquity excitation may be achieved via spin-orbit resonances,

where the spin and orbital precession frequencies of the planet become commen-

surate as the system evolves [Ward and Hamilton, 2004, Hamilton and Ward,

2004, Vokrouhlickỳ and Nesvornỳ, 2015]. Such resonances may also play a role

in generating the obliquities of Uranus and Neptune [Rogoszinski and Hamilton,

2020]. For terrestrial planets, multiple spin-orbit resonances and their overlaps

can make the obliquity vary chaotically over a wide range [e.g. Laskar and Robu-

tel, 1993, Touma and Wisdom, 1993, Correia et al., 2003]

Obliquities of extrasolar planets are difficult to measure. So far only loose

constraints have been obtained for the obliquity of a faraway (≳ 50 au) planetary-

mass companion [Bryan et al., 2020]. But there are prospects for constraining
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exoplanetary obliquities in the coming years, such as using high-resolution spec-

troscopy to obtain vsin i of the planet [Snellen et al., 2014, Bryan et al., 2018] and

using high-precision photometry to measure asphericity of the planet [Seager and

Hui, 2002]. Finite planetary obliquities have been indirectly inferred to explain

the peculiar thermal phase curves [see e.g. Adams et al., 2019, Ohno and Zhang,

2019] and tidal dissipation in hot Jupiters [Millholland and Laughlin, 2018] and

in super Earths [Millholland and Laughlin, 2019].

It is natural to imagine some of the mechanisms that generate planetary obliq-

uities in the Solar System may also operate in exoplanetary systems. Recently,

Millholland and Batygin [2019] studied the production of planet obliquities via a

spin-orbit resonance, where a dissipating protoplanetary disk causes resonance

capture and advection. In their work, a planet is accompanied by an inclined

exterior disk; as the disk gradually dissipates, the planetary obliquity increases,

reaching 90◦ for what the authors characterize as adiabatic resonance crossings.

The Millholland & Batygin study assumes a negligible initial planetary obliq-

uity. This assumption is intuitive, since the planet attains its spin angular mo-

mentum from the disk. But it may not always be satisfied. In particular, the for-

mation of rocky planets through planetesimal accretion can lead to a wide range of

obliquities, especially if the final spin is imparted by a few large bodies [Dones and

Tremaine, 1993, Lissauer et al., 1997, Miguel and Brunini, 2010]. Such “stochas-

tic” accretion likely happened for terrestrial planets in the Solar System. Giant

impacts may have also played a role in the formation of the close-in multiple-

planet systems diskovered by the Kepler satellite [e.g. Inamdar and Schlichting,

2015, Izidoro et al., 2017].
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2.1.3 Goal of This Paper

In this paper, we consider a wide range of initial planetary obliquities in the

Millholland-Batygin dissipating disk scenario, and examine how the obliquity

evolves toward the “final” value as the exterior disk dissipates. We provide an

analytical framework for understanding the final planetary obliquity for arbi-

trary initial spin-disk misalignment angles. We also consider various dissipa-

tion timescales, and examine both “adiabatic” (slow disk dissipation) and “non-

adiabatic” evolution. We calibrate these analytical results with numerical calcula-

tions. On the technical side, our paper extends previous works [such as Henrard,

1982, Henrard and Murigande, 1987, Millholland and Batygin, 2019] in several

aspects. Two of our main results are: (i) a careful accounting of the phase space

area across sepratrix to analytically describe the rich dynamics of adiabatic evolu-

tion, and (ii) using the concept of “partial adiabatic resonance advection” to fully

capture the dynamics in the non-adiabatic limit.

It is important to note that while we focus on a specific scenario of gener-

ating/modifying planetary obliquities from planet-disk interactions, our analysis

and results have a wide range of applicability. For example, a dissipating disk is

dynamically equivalent to an outward-migrating external companion.

The paper is organized as follows. In Section 2.2, we review the relevant spin-

orbit dynamics and key concepts that are used in the remainder of the paper. In

Sections 2.3 and 2.4, we study the evolution of the system when the disk dissi-

pates on different timescales, from highly adiabatic to nonadiabatic. Analytical

results are presented to explain the numerical results in both limits. We discuss

the implications of our results in Section 2.5. Our primary physical results con-

sist of Fig. 2.5 in the adiabatic limit and Fig. 2.12 in the nonadiabatic limit. Some
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detailed calculations are relegated to the appendices, including a leading-order es-

timate of the final planetary obliquities given small initial spin-disk misalignment

angles in Appendix A.2.

2.2 Theory

2.2.1 Equations of Motion

We consider a star of mass M⋆ hosting an oblate planet (mass Mp, radius Rp and

spin angular frequency Ωp) at semimajor axis ap, and a protoplanetary disk of

mass Md. For simplicity, we treat the disk as a ring of radius rd, but it is simple to

generalize to a disk with finite extent [see Millholland and Batygin, 2019]. Denote

S the spin angular momentum and L the orbital angular momentum of the planet,

and Ld the angular momentum of the disk. The corresponding unit vectors are

ŝ≡S/S, l̂≡L/L, and l̂d ≡Ld/Ld.

The spin axis ŝ of the planet tends to precess around its orbital (angular mo-

mentum) axis l̂, driven by the gravitational torque from the host star acting on

the planet’s rotational bulge. On the other hand, l̂ and the disk axis l̂d precess

around each other due to gravitational interactions. We assume S ≪ L ≪ Ld, so

l̂d is nearly constant and l̂ experiences negligible backreaction torque from ŝ. The

equations of motion for ŝ and l̂ in this limit are [Anderson and Lai, 2018]

dŝ
dt

=ωsl
(
ŝ · l̂)(ŝ× l̂

)≡α(
ŝ · l̂)(ŝ× l̂

)
, (2.1)

dl̂
dt

=ωld
(
l̂ · l̂d

)(
l̂× l̂d

)≡−g
(
l̂× l̂d

)
, (2.2)

15



where

ωsl ≡
3GJ2MpR2

pM⋆

2a3
pIpΩp

= 3kqp

2kp

M⋆

mp

(Rp

ap

)3
Ωp, (2.3)

ωld ≡
3Md

4M⋆

(ap

rd

)3
n. (2.4)

In Eq. (4.4), Ip = kpMpR2
p (with kp a constant) is the moment of inertia and

J2 = kqpΩ
2
p(R3

p/GMp) (with kqp a constant) the rotation-induced (dimensionless)

quadrupole of the planet [for a body with uniform density, kp = 0.4,kqp = 0.5;

for giant planets, kp ≃ 0.25 and kqp ≃ 0.17 [e.g. Lainey, 2016]]. In other stud-

ies, 3kqp/2kp is often notated as k2/2C [e.g. Millholland and Batygin, 2019]. In

Eq. (2.4), n ≡
√

GM⋆/a3
p is the planet’s orbital mean motion, and we have assumed

rd ≫ ap and included only the leading-order (quadrupole) interaction between the

planet and disk. We define three relative inclination angles via

ŝ · l̂≡ cosθ, ŝ · l̂d ≡ cosθsd, l̂ · l̂d ≡ cos I. (2.5)

In our model, I is a constant. Following standard notation [e.g. Colombo, 1966,

Peale, 1969, Ward and Hamilton, 2004], we have defined α≡ωsl and g ≡−ωld cos I.

We can combine Eqs. (7.20) and (2.2) into a single equation by transforming

into a frame rotating about l̂d with frequency g. In this frame, l̂d and l̂ are fixed,

and ŝ evolves as: (
dŝ
dt

)
rot

=α(
ŝ · l̂)(ŝ× l̂

)+ g
(
ŝ× l̂d

)
. (2.6)

We define the dimensionless time τ as

τ≡αt, (2.7)
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and the frequency ratio η

η≡ − g
α

= 2.08
( kp

kqp

)(
ρp

g/cm3

)(
Md

0.01M⊙

)( ap

5 AU

)9/2

×
( rd

30 AU

)−3
(

M⋆

M⊙

)−3/2 ( Pp

10 hrs

)
cos I, (2.8)

where ρp = 3Mp/(4πR3
p) and Pp = 2π/Ωp is the planet’s rotation period. In Eq. (2.8),

we have introduced the fiducial values of variable parameters for the application

considered in this paper. Eq. (3.5) then becomes(
dŝ
dτ

)
rot

= (
ŝ · l̂)(ŝ× l̂

)−η(
ŝ× l̂d

)
. (2.9)

Throughout this paper, we consider α constant, but allow g to vary in time.

In the dispersing disk scenario of Millholland and Batygin [2019], |g| decreases

in time due to the decreasing disk mass. We consider a simple exponential decay

model

Md(t)= Md(0)e−t/td , (2.10)

with td constant. This implies

dη
dt

=−η/td, or
dη
dτ

=−ϵη, (2.11)

where

ϵ≡ 1
αtd

= 0.106
( kp

kqp

)(
ρp

g/cm3

)( ap

5 AU

)3 ( Pp

10 hrs

)(
td

Myr

)−1
. (2.12)

Eqs. (2.9) and (2.11) together constitute our system of study.

In the next two subsections, we summarize the theoretical background rele-

vant to our analysis of the evolution of the system.
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Figure 2.1: Definition of angles in the Cassini state configuration and the adopted
sign convention for θ. Traditionally, θ ∈ [−π,π].

2.2.2 Cassini States

Spin states satisfying (dŝ/dτ)rot = 0 are referred to as Cassini States (CSs) [Colombo,

1966, Peale, 1969]. They require that ŝ, l̂, and l̂d be coplanar. There are either two

or four CSs, depending on the value of η. They are specified by the obliquity θ

and the precessional phase of ŝ around l̂, denoted by φ. Following the standard

convention and nomenclature (see Figs. 2.1 and 3.1), CSs 1, 3, 4 have φ = 0 and

θ < 0, corresponding to ŝ and l̂d being on opposite sides of l̂, while CS2 has φ = π

and θ > 0, corresponding to ŝ and l̂d being on the same side of l̂. The CS obliquity

satisfies

sinθ cosθ−ηsin(θ− I)= 0. (2.13)

When η< ηc, where

ηc ≡
(
sin2/3I +cos2/3I

)−3/2
, (2.14)

all four CSs exist, and when η > ηc, only CSs 2, 3 exist. The CS obliquities as a

function of η are shown in Fig. 3.1.

Of the four CSs, 1, 2, 3 are stable while 4 is unstable. Appendix A.1 gives the

libration frequencies and growth rates, respectively, near these CSs.
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Figure 2.2: Cassini state obliquities as a function of η for I = 5◦. The thin verti-
cal dashed line indicates ηc (= 0.766 for I = 5◦), where CS1 and CS4 merge and
annihilate, and the thin horizontal dashed lines indicate θ = I and I −180◦, the
asymptotic values for CSs 2 and 3 for η≫ ηc.

2.2.3 Separatrix

The Hamiltonian (in the rotating frame) of the system is

H
(
φ,cosθ

)=−1
2

(
ŝ · l̂)2 +η(

ŝ · l̂d
)

=−1
2

cos2θ+η(
cosθ cos I −sin I sinθ cosφ

)
. (2.15)

Here, φ and cosθ are canonically conjugate variables. Trajectories in the phase

space
(
φ,cosθ

)
satisfy H = constant (see Fig. 2.3).

When η< ηc, CS4 exists and is a saddle point. The two trajectories originating

and ending at CS4 are the only two infinite-period orbits in the phase space. To-

gether, these two critical trajectories are referred to as the separatrix and divide

phase space into three zones. In Fig. 2.3, we show the separatrix, the three zones,

and their relations to the CSs. Trajectories in zone II librate about CS2 while
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those in zones I and III circulate.

Since
(
φ,cosθ

)
are canonically conjugate, the integral

∮
cosθ dφ along a trajec-

tory is an adiabatic invariant (see Section 2.3). The unsigned areas
(∣∣∫ cosθ dφ

∣∣) of

the three zones (as defined in Fig. 2.3) can be computed analytically. If we define

z0 = ηcos I, χ=
√
−tan3θ4

tan I
−1, (2.16a)

ρ = χ sin2θ4 cosθ4

χ2 cos2θ4 +1
, T = 2χ

cosθ4

χ2 cos2θ4 −1
, (2.16b)

then the areas for η< ηc are given by [Ward and Hamilton, 2004]

AI = 2π (1− z0)− AII

2
, (2.17a)

AII = 8ρ+4arctanT −8z0 arctan
1
χ

, (2.17b)

AIII = 2π (1+ z0)− AII

2
. (2.17c)

These are plotted as a function of η in Fig. 2.4. While the zones are not for-

mally defined for η > ηc since the separatrix disappears, a natural extension ex-

ists: evolve an initial phase space point p under adiabatic decrease of η until the

separatrix appears at η = ηc, then identify p with the zone it is in at ηc. Since

phase space area is conserved under adiabatic evolution, this extension implies

Aj
(
η> ηc

)=Aj(ηc). The boundary between these extended zones is denoted by the

dashed black line in panel (a) of Fig. 2.3, where no separatrix exists.

2.3 Adiabatic Evolution

In this section, we study the evolution of the planetary obliquity θ when the pa-

rameter η [or the disk mass Md; see Eqs. (2.8) and (2.11)] decreases sufficiently

slowly that the evolution is adiabatic. Intuitively, this requires the disk evolu-
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Figure 2.3: Level curves of H
(
φ,cosθ

)
[Eq. (3.8)] for I = 5◦, where warmer colors

denote more positive values. The black solid line is the separatrix, which only
exists for η < ηc = 0.766. The three zones (I, II, III), divided by the separatrix,
are labeled. The Cassini states are denoted by filled circles and have the same
colors as in Fig. 3.1. The interior of the separatrix, shaded in grey, is formally
only defined for η < ηc, but we may identify the points in phase space that flow
into zone II when evolved forward in time (decreasing η adiabatically); this is the
shaded region in panel (a), bounded by the black dotted line.
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Figure 2.4: Plot of fractional areas of each of the zones Aj(η)/4π as given by
Eqs. (2.17) for I = 5◦. The colored dotted lines correspond to small η approxima-
tions used in Appendix A.2. The colored dashed lines for η > ηc are the effective
values of AII,AIII for η > ηc, denoting the points that would flow into either area
under adiabatic decrease of η from η> ηc (see the text). The vertical black dashed
lines correspond to η = ηc [Eq.(2.14)] and the values of η for which AII is maxi-
mized (ηmax,II) and for which AIII is minimized (ηmin,III, Eq. (2.30)).
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tion time td [Eq. (2.10)] be much larger than the spin precession period, 2π/α, i.e.

ϵ= 1/(αtd)≪ 1/(2π).

More rigorously, adiabaticity requires td be much larger than all timescales of

the dynamical system governed by the Hamiltonian [Eq. (3.8)]. This is of course

not possible in all cases, as the motion along the separatrix has an infinite period.

In practice, as η evolves, the system only crosses the separatrix once or twice,

while it spends many orbits inside one of the three zones and far from the sepa-

ratrix. Thus, a weak adiabaticity criterion is that, for all equilibria/fixed points,

the local circulation/libration periods are much shorter than the timescale for the

motion of the equilibria due to changing η. If this criterion is satisfied, then the

system will evolve adiabatically for most of its evolution save one or two separatrix

crossings.

As shown in Appendix A.1.2, libration about CS2 is slower than that about

CS1 or CS3. As such, it has the smallest characteristic frequency in the system.

The weak adiabaticity criterion is equivalent to requiring that, at all times other

than separatrix crossing, the obliquity of CS2 (θ2) evolve over a longer timescale

than the local libration period about CS2, i.e.∣∣∣∣dθ2

dτ

∣∣∣∣≪ ωlib

2π
, (2.18)

where

ωlib =
√
ηsin I sinθ2

(
1+ηsin I csc3θ2

)
, (2.19)

is the libration frequency about CS2 for a given η (Appendix A.1.2). This formula

differs from that given in Millholland and Batygin [2019], where the csc3θ2 term

is neglected and the square root is missing1. Differentiating Eq. (2.13) gives

dθ2

dτ
=−ϵ ηsin(θ2 − I)

cos(2θ2)−ηcos(θ2 − I)
, (2.20)

1The missing csc3θ2 term can be traced to a θ≫ I approximation made in Eq. (3) of Hamilton
and Ward [2004]. Since θ2 ∼ I for η≫ 1 (Fig. 3.1), this approximation is not always valid.
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where ϵ = −d(lnη)/dτ [Eq. (2.12)]. Eq. (2.18) is most constraining at η ∼ 1, i.e. it

will be satisfied for all η if it is satisfied near η∼ 1, where |dθ2/dτ| ∼ ϵ. Thus, weak

adiabiticity requires

ϵ≪ ϵc ≡
(ωlib

2π

)
η=1

≃ 1

2π
p

2

√
sin I (1+8sin I), (2.21)

where in the last equality we have used sinθ2 ≃ 1/2 at η= 1 (e.g. when I = 5◦ and

η = 1, θ2 ≈ 31◦). For I = 5◦, we obtain ϵc ≈ 0.0433. Since our criterion is only a

weak condition for adiabaticity, we use ϵ= 3×10−4 in our “adiabatic” calculations

below. We explore the consequences of nonadiabatic evolution in Section 2.4.

2.3.1 Adiabatic Evolution Outcomes

We consider the evolution of a system with arbitrary initial spin-disk misalign-

ment angle θsd,i and initial ηi ≫ 1. We are interested in the final spin obliquities

θf after η gradually decreases to ηf ≪ 1 (i.e. after the disk has dissipated to a neg-

ligible mass). Note that when ηi ≫ 1, l̂ precesses around l̂d much faster than the

spin-orbit precession (|ωld| ≫ |ωsl|), and the spin obliquity θ varies rapidly. It is

thus more appropriate to use θsd,i rather than θ to specify the initial spin orienta-

tion. We explore the entire range θsd,i ∈ [0,π] and choose ϵ= 3×10−4 (see above).

To obtain the distribution of the final obliquities θf, we evenly sample 101

values of θsd,i, and for each θsd,i value, we pick 101 evenly spaced orientations of

ŝ approximately from the ring of initial conditions having angular distance θsd,i

to l̂d
2. To be concrete, we choose ηi = 10ηc where ηc is given by Eq. (2.14) and

2The actual procedure we adopt to choose the initial conditions is the natural extension of this
description to finite ηi. Note that the center of libration of ŝ is CS2, which, since ηi is finite, is
different from l̂d. Furthermore, the libration is not exactly circular. As a result, the libration
trajectories for initial conditions on the circular ring of points having angular distance θsd,i from
l̂d are not the same and will each enclose slightly different initial phase space areas Ai. Since
our analytical theory assumes exact conservation of the initially enclosed phase space area Ai
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evolve Eqs. (2.9) and (2.11) until η reaches its final value 10−5. At such a small

η, ŝ is strongly coupled to l̂ and the final obliquity θf is frozen. The mapping

between θsd,i and θf is our primary result, and is shown for I = 5◦, 10◦, and 20◦ in

Figs. 2.5 and 2.6 respectively. The blue dots represent the results of the numerical

calculation. The colored tracks are calculated semi-analytically using the method

discussed in the following subsection.

2.3.2 Analytical Theory for Adiabatic Evolution

The evolutionary tracks that govern the θf-θsd,i mapping correspond to various

sequences of separatrix crossings. They can be understood using the principle of

adiabatic invariance, combined with (i) how the enclosed phase space area by the

trajectory evolves across each separatrix crossing, and (ii) the associated probabil-

ities with each separatrix crossing.

Governing Principle: Evolution of Enclosed Phase Space Area

First, we consider how the enclosed phase space area by a trajectory evolves over

time. In the absence of separatrix encounters, the enclosed phase space area∮
cosθ dφ is an adiabatic invariant. We adopt convention where

A ≡
∮

(1−cosθ) dφ. (2.22)

Note that A can be negative when dφ/dt < 0, unlike the unsigned areas Ai [Eqs. (2.17)]

which are positive by definition. This definition of A has two advantages: (i) it is

for each θsd,i (see Section 2.3.2), this diskrepancy introduces an extra deviation from the analytical
prediction. To guarantee all points for a particular θsd,i have the same Ai, we instead choose initial
conditions on the libration cycle going through

(
θ2 +θsd,i,φ2

)
[where

(
θ2,φ2

)
are the coordinates of

CS2]. This ensures that all initial conditions for a given θsd,i enclose the same initial Ai. As
ηi →∞, this procedure generates initial conditions on the ring having angular distance θsd,i to l̂d,
recovering the procedure given in the text.
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Figure 2.5: Top: The final spin obliquity θf as a function of the initial spin-disk
misalignment angle θsd,i for systems evolving from initial ηi ≫ 1 to ηf ≪ 1, for
I = 5◦. The blue dots are results of numerical calculations (Section 2.3.1), and the
colored tracks are semi-analytical results (Section 2.3.2). Bottom: The probabili-
ties of different outcomes. Where a particular θsd,i corresponds to multiple tracks,
the system evolves probabilistically. The track that a particular system evolves
along in a numerical simulation can be measured by examining its final obliquity.
The dots represent the inferred probabilities from measured final obliquities in
our simulations, while the colored tracks denote the semi-analytic probability of
the system evolving along each track. There are five regimes of θsd,i values for
which different tracks are accessible. In both plots, the vertical dashed black lines
denote semi-analytical calculations of the boundaries of these regimes (see Sec-
tion 2.3.2), while the black dotted lines represent analytical approximations valid
in the small-θsd,i limit (see Appendix A.2).
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Figure 2.6: Same as the top panel of Fig. 2.5 but for I = 20◦ and with fewer anno-
tations.
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continuous across transitions from circulating to librating that cross the North

pole (cosθ = 1), and (ii) the areas of the three zones are equal in absolute value to

the expressions given in Eqs. (2.17). The path over which the integral is taken is

either a libration or circulation cycle. When ηi ≫ 1, trajectories librate about l̂d

with constant θsd, meaning they enclose initial phase space area

Ai = 2π
(
1−cosθsd,i

)
. (2.23)

Complications arise when considering finite ηi, as trajectories near CS2 or CS3

librate about these equilibria, rather than l̂d, and Eq. (2.23) is no longer exact. In

practice, Eq. (2.23) holds very well when defining θsd,i as the angular distance to

CS2; an exception is discussed in Section 2.3.2.

Beginning at the last separatrix crossing, the final enclosed phase space area

Af will be conserved for all time. As η→ 0, trajectories circulate about l̂ at constant

obliquity θf, related to Af by

2π (1−cosθf)= Af. (2.24)

The enclosed phase space area is not conserved when the trajectory encounters

the separatrix. However, the change is easily understood [Henrard, 1982]. In

essence, when the trajectory crosses the separatrix, it continues to evolve adjacent

to the separatrix. So if a separatrix crossing results in a zone I trajectory (see

Fig. 2.3), the new area can be approximated by integrating Eq. (2.22) along the

upper leg of the separatrix. Pictorially, this can be seen in the bottom panels of

Fig. 2.7.
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Governing Principle: Probabilistic Separatrix Crossing

When a trajectory experiences separatrix crossing, it transitions into nearby zones

probabilistically. This process is studied in the adiabatic limit by Henrard [1982]

and Henrard and Murigande [1987]. Their results may be summarized as follows:

if zone i is shrinking while adjacent zones j,k are expanding such that the sum of

their areas is constant, the probabilities of transition from zone i to zones j and k

are given by

Pr(i → j)=−∂Aj/∂η
∂Ai/∂η

, (2.25a)

Pr(i → k)=−∂Ak/∂η
∂Ai/∂η

. (2.25b)

Note that Pr(i → j)+Pr(i → k) = 1. Eqs. (2.25) can be used in conjunction with

Eqs. (2.17) to understand for what initial conditions each track can be observed

and with what probabilities.

As an example, consider a system in zone II in panel (d) of Fig. 2.3. As η de-

creases, zone II will shrink while zones I and III will expand until the trajectory

crosses the separatrix. Suppose the trajectory exits zone II at some η⋆, then the

probability of the II → I transition is Pr(II→ I)=−ȦI/ȦII, while the II → III tran-

sition occurs with probability Pr(II→ III)=−ȦIII/ȦII.

Evolutionary Trajectories

Returning to the evolution of ŝ, we can classify trajectories by the sequence of

separatrix encounters. Initially, in the η> ηc regime, only zones II and III exist; as

η→ 0, only zones I and III exist (see Fig. 2.3). There are five distinct evolutionary

tracks:
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1. II → I (see Fig. 2.7 for an example). The spin axis ŝ initially circulates in zone

II (snapshot a), and then starts librating about CS2 as η decreases (snap-

shot b), enclosing some initial phase space area Ai. This libration continues

until the separatrix expands (due to decreasing η) to “touch” the trajectory

(snapshot c), at which AII(η⋆) = Ai. As ŝ moves to a circulating trajectory

in zone I immediately bordering the separatrix, it will encompass −AI(η⋆)

phase space area. The final obliquity θf is then given by Eq. (2.24), with

Af =−AI
(
η⋆

)
. An analytical approximation to θf is derived in Appendix A.2

and is

(cosθf)II→I ≃
(
πθ2

sd,i

16

)2

cot I +
θ2

sd,i

4
. (2.26)

The transition probability is

Pr(II→ I)=−
(
∂AI/∂η
∂AII/∂η

)
η=η⋆

. (2.27)

This track can only occur when the initial condition begins in zone II, requir-

ing Ai < AII(ηc), where AII
(
ηc

)
is given by Eq. (2.17b) evaluated at η = ηc.

Since ∂AI/∂η< 0 everywhere, while ∂AII/∂η> 0 at all possible η⋆ for an ini-

tial condition starting in zone II, this track always has nonzero probability.

2. II → III (see Fig. 2.8). This track is similar to the II → I track; the only

difference is that, upon separatrix encounter, the trajectory follows the cir-

culating trajectory in zone III bordering the separatrix, upon which it will

encompass area AI(η⋆)+AII(η⋆) = Af. The final obliquity is still given by

Eq. (2.24), and the analytical approximation derived in Appendix A.2 is

(cosθf)II→III ≃
(
πθ2

sd,i

16

)2

cot I −
θ2

sd,i

4
. (2.28)

The transition probability is

Pr(II→ III)=−
(
∂AIII/∂η
∂AII/∂η

)
η=η⋆

. (2.29)
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Again, this track can only occur when Ai <AII(ηc), but a further constraint

arises when we consider the transition probability. Upon examination of

Fig. 2.4, it is clear that ∂AIII/∂η> 0 for a large range of η, which would give

a negative transition probability—implying a forbidden transition. Define

ηmin,I I I ≡ argminAIII(η), (2.30)

which is labeled in Fig. 2.4. Thus, the II → III track is permitted only if

η⋆ <,ηmin,III.

3. III → I (see Fig. 2.9). The trajectory encounters the separatrix when AI(η⋆)+
AII(η⋆) = Ai, upon which it transitions to a zone I trajectory enclosing Af =
−AI. The final obliquity is again given by Eq. (2.24).

This track can only occur if Ai > AII(ηc), but is also constrained by requir-

ing Ai be sufficiently small so that it will encounter the separatrix (if Ai

is too large, it will never encounter the separatrix, and we simply have a

III → III transition). This condition is Ai < max(AI +AII) = 4π−min(AIII).

Since ∂AI/∂η < 0 and ∂AIII/∂η > 0 for all accessible η⋆, this track is always

permitted.

4. III → II → I (see Fig. 2.10). That AII(η) is not a monotonic function of

η (see Fig. 2.4) is key to the existence of this track. Consider a trajec-

tory originating in zone III that first encounters the separatrix at η1, when

AI(η1)+AII(η1)= Ai, such that it transitions into zone II enclosing interme-

diate phase space area Am =AII(η1). Such a transition has probability

Pr(III→ II)=−
(
∂AII/∂η
∂AIII/∂η

)
η=η1

, (2.31)

which is nonnegative (i.e. the transition is permitted) if η1 ∈ [ηmax,II,ηc].

Equivalently, this requires Ai ∈
[
AII

(
ηc

)
,AII,max

]
. Then, as η continues to

decrease, a second η2 value exists for which Am = AII(η2), upon which the
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trajectory is ejected to zone I and Af =−AI(η2). Note that η2 < ηmax,II neces-

sarily, as zone II must be shrinking in order for the trajectory to be ejected.

The final obliquity is given by Eq. (2.24). Graphical inspection of Fig. 2.4

shows that ∂AII/∂η and ∂AIII/∂η have the same signs for η < ηmax,II, and

therefore the complementary II → I transition is guaranteed. Overall, the

III → II → I track is permitted so long as the first transition is permitted, or

Ai ∈
[
AII

(
ηc

)
,AII,max

]
.

5. III → III. This track is the trivial case where no separatrix encounter occurs,

and A is constant throughout the evolution (Af = Ai) except for a jump by 4π

when crossing the South pole (cosθ = −1) due to the coordinate singularity.

This requires Ai >max(AI +AII). In the limit of ηi →∞ and ηf → 0 we have

θf = θsd,i. For finite ηi, the initial enclosed phase space area for III → III tra-

jectories is not given exactly by using θ = θsd,i in Eq. (2.23). This is because

the initial orbits for such trajectories are better described as librating about

CS3 with angle of libration ∆θ−θsd,i rather than about CS2 with angle of

libration θsd,i. Here, ∆θ is the angular distance between CS2 and CS3 and

is not equal to 180◦ except when ηi →∞. This finite-ηi effect is responsible

for the small cusp at the very right (θsd,i → 180◦) of Figs. 2.5 and 2.6.

In summary, starting from an initial condition with phase space area Ai at

η= ηi ≫ 1, the five evolutionary tracks are:

1. Ai ∈
[
0,AII

(
ηmin,III

)]
: Both the II → III and the II → I tracks are possible.

2. Ai ∈
[
AII

(
ηmin,III

)
,AII(ηc)

]
: Only the II → I track.

3. Ai ∈
[
AII(ηc),AII,max

]
: Both the III → I and III → II → I are possible.

4. Ai ∈
[
AII,max,max(AI +AII)

]
: Only the III → I track.

5. Ai >max(AI +AII): Only the III → III track.
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In all cases, the corresponding ranges for θsd,i can be computed via Eq. (2.23). The

boundaries between these ranges are overplotted in Fig. 2.5, where they can be

seen to agree well with the numerical results.

2.4 Nonadiabatic Effects

In Section 2.3, we have examined the spin axis evolution in the limit where ϵ≪ ϵc

[see Eq. (7.37)] and the evolution is mostly adiabatic (except at separatrix cross-

ings). We now consider nonadiabatic effects.

2.4.1 Transition to Non-adiabaticity: Results for ϵ≲ ϵc

To illustrate the transition to nonadiabaticity, we carried out a suite of numerical

calculations for several values of ϵ. The results for two of these values are shown

in Figs. 2.11 and 2.12.

As ϵ increases (see Fig. 2.11), nonadiabaticity manifests as a larger scatter of

final obliquities near the tracks predicted from adiabatic evolution. This scatter

first sets in for trajectories starting in zone III, as these trajectories encounter the

separatrix at larger η compared to those originating in zone II. This means the

obliquity of CS2 θ2 is smaller for these trajectories, and the adiabaticity criterion

is stricter [see Eq. (7.37)]. Physically, approaching the adiabaticity criterion cor-

responds to the separatrix crossing process becoming sensitive to the phase of the

libration/circulation cycle at the crossing: if the trajectory crosses the separatrix

when the obliquity is at its maximum, the final obliquity will also be relatively

larger.
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Figure 2.7: An example of the II → I evolutionary track for I = 5◦ and θsd,i = 17.2◦.
Upper panel: The thin green line shows cosθ as a function of η, obtained by nu-
merical integration (with ϵ= 3×10−4). Overlaid are the location of Cassini State 2
(dashed red) and the upper and lower bounds on the separatrix (dotted black). The
trajectory tracks CS2 to a final obliquity of 88.57◦. The black vertical dashed lines
denote instants in the simulation portrayed in bottom panels. Middle panel: The
enclosed separatrix area obtained by integrating the simulated trajectory (green
dots) and adiabatic theory (red line). Lower plot: Snapshots in

(
cosθ,φ

)
phase

space of one circulation/libration cycle of the trajectory, shown in dark green with
an arrow indicating direction. The snapshots correspond to the start of the sim-
ulation (a), the appearance of the separatrix (b), two panels depicting the separa-
trix crossing process (c-d), and a final snapshot at η= 10−3.5 (e). The separatrices
at the beginning and end of the portrayed cycle in each snapshot are shown in
solid/dashed black lines respectively. Also labeled is CS2 at the start of each cycle
(filled red circle). Finally, the enclosed phase space area is shaded in grey (A > 0)
and red (A < 0).

34



Figure 2.8: Same as Fig. 2.7 but for the II → III track. θsd,i = 17.2◦ and ϵ= 3.01×
10−4.
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Figure 2.9: Same as Fig. 2.7 but for the III → I track. θsd,i = 89.1◦, and ϵ= 3×10−4.
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Figure 2.10: Same as Fig. 2.7 but for the III → II → I track. θsd,i = 60◦, and
ϵ= 3.14×10−4. Two separatrix crossings are shown, in panels (c-d) and (e-f).
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Figure 2.11: Same as Fig. 2.5 but for ϵ = 10−2.5 and restricting θsd,i < 90◦ (blue
dots). The colored solid lines are analytical adiabatic results (same as shown in
Fig. 2.5). A larger spread from the adiabatic tracks is observed in the numerical
results due to the non-adiabaticity effect.

As ϵ increases further (see Fig. 2.12) but still marginally satisfies the weak adi-

abaticity criterion [Eq. (7.37)], the scatter in θf continues to widen. The horizontal

banded structure of the final obliquities is a consequence of even stronger phase

sensitivity during separatrix crossing: trajectories cross the separatrix at similar

phases evolve to similar final obliquities that only depend weakly on on θsd,i. Fi-

nally, in Fig. 2.12, the bottom edge of the data and the III → I track deviate very

noticeably. This non-adiabatic effect is the result of the separatrix evolving signif-

icantly within the separatrix-crossing orbit, as the tracks computed in Section 2.3

assume that η is constant throughout the separatrix-crossing orbit.
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Figure 2.12: Same as Fig. 2.11 but for ϵ = 10−1.5 (i.e. larger non-adiabaticity ef-
fect). Some small resemblance to the adiabatic tracks remains, and the deviations
appear to have a banded structure.
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A sample trajectory following in the style of Fig. 2.7 but for ϵ = 0.3 (violating

even weak adiabaticity) is provided in Fig. 2.13. It is clear that the trajectory

does not track the level curves of the Hamiltonian during each individual snap-

shot. This results from CS2 migrating more quickly than the trajectory can librate

about CS2, violating the weak adiabaticity criterion.

2.4.2 Non-adiabatic Evolution: Result for ϵ≳ ϵc

In general, numerical calculations are needed to determine the non-adiabatic

obliquity evolution (ϵ≳ ϵc). However, some analytical results can still be obtained

when the obliquity change is small.

We start from Eq. (2.9), which governs the evolution of the spin axis in the

rotating frame. We choose coordinate axes such that l̂ = ẑ and l̂d = ẑcos I + x̂sin I,

giving (
dŝ
dτ

)
rot

= [(
ηcos I −cosθ

)
ẑ+ηsin I x̂

]× ŝ. (2.32)

Defining S = ŝx + iŝy, we find

dS
dτ

= i
(
ηcos I −cosθ

)
S− iηsin I cosθ. (2.33)

To proceed, we assume the obliquity is roughly constant, cosθ ≈ cosθi. Eq. (2.33)

can then be solved explicitly, starting from the initial value S(τi):

S(τ)e−iΦ(τ) −S(τi)≃−isin I cosθi

∫ τ

τi

η(τ′)e−iΦ(τ′) dτ′, (2.34)

where

Φ(τ)≡
∫ τ

τi

(
η(τ′)cos I −cosθi

)
dτ′. (2.35)

We now invoke the stationary phase approximation, so thatΦ(τ)≃Φ(τ0)+(1/2)Φ̈(τ0)(τ−
τ0)2, where τ0 is determined by Φ̇ = 0, occurring when η0 = cosθi/cos I. We then
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Figure 2.13: Same as Fig. 2.7 but for a nonadiabatic case, with ϵ= 0.3. In the top
panel, it is evident that the libration cycle about CS2 is unable to keep up with the
swift migration of CS2 as η changes, decreasing the obliquity excitation compared
to the adiabatic simulation. In the middle panel, the trajectory only undergoes six
libration/circulation cycles before η < 10−5, and the enclosed phase space area is
clearly not conserved. In the bottom panel, we can see that individual trajectories
do not lie along level curves of the Hamiltonian, as the Hamiltonian phase space
changes quickly compared to the period of circulation cycles.
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find, for τ≫ τ0,

S(τ)e−iΦ(τ) −S(τi)≃−iη(τ0)sin I cosθi e−iΦ(τ0)

√
2π

iΦ̈(τ0)
. (2.36)

Using η̇=−ϵη [Eq. (2.11)] and Φ̈(τ0)= η̇(τ0)cos I =−ϵcosθi, we have

S(τ)e−iΦ(τ) −S(τi)≃−i3/2 tan I(cosθi)3/2e−iΦ(τ0)

√
2π
ϵ

. (2.37)

The final obliquity θf is then given by

sinθf ≃
∣∣∣∣∣∣sinθi + e−iϕ0 tan I(cosθi)3/2

√
2π
ϵ

∣∣∣∣∣∣ , (2.38)

where ϕ0 =Φ(τ0)+π/4 is a constant phase. If the initial obliquity is much smaller

than the final obliquity (sinθi ≪ sinθf), we obtain

sinθf ≃
√

2π
ϵ

tan I(cosθi)3/2. (2.39)

This expression is valid only if cosθ ≈ cosθi throughout the evolution. This corre-

sponds to the limit where θf is not much larger than θi, which requires ϵ not to be

too small. Numerically, this is consistent with the system being in the nonadia-

batic regime ϵ≳ ϵc (see Fig. 2.14).

The above calculation applies for a specific initial θi, but, as discussed at the

beginning of Section 2.3.1, the initial spin orientation is more appropriately de-

scribed by θsd,i since ηi ≫ 1. The correct way to predict the final obliquity for a

given θsd,i using Eq. (2.38) is somewhat subtle but yields good agreement with

numerical results.

First consider the case with θsd,i = 0. This corresponds to a well-defined initial

obliquity θi = I (more precisely, the initial condition is CS2). The final obliquity in

this case, denoted θ0f, is given by

sinθ0f ≃ sin I

∣∣∣∣∣∣1+ e−iϕ0

√
2πcos I

ϵ

∣∣∣∣∣∣ ,

≈ sin I

√
2πcos I

ϵ
, (2.40)
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where the second equality assumes
p

2π/ϵ≫ 1. Fig. 2.14 shows the final obliq-

uity as function of ϵ for θsd,i = 0 and I = 5◦. We see that the agreement between

the numerical results and Eq. (2.40) is excellent. For ϵ≪ ϵc, we find θf ≃ 90◦, in

agreement with the result of adiabatic evolution (see Fig. 2.5).

When θsd,i ̸= 0, we find that the final obliquity θf spans a range of values for a

given θsd,i, as can be seen in Fig. 2.15. The range can be described by

∣∣θ0f −θsd,i
∣∣≲ θf ≲ θ0f +θsd,i. (2.41)

Eq. (2.41) can be understood as follows (see Fig. 2.16). In the beginning (η= ηi ≫
1), the initial spin vector precesses around l̂d on a cone with opening half-angle

θsd,i (more precisely, the cone is centered on CS2, which coincides with l̂d as ηi →
∞). Note that for η≫ 1, the adiabaticity condition is easily satisfied: using θ2 ≃
I +η−1 sin I cos I (see Section A.1), Eq. (2.19) gives ωlib ≃ η while Eq. (2.20) gives

|dθ2/dτ| ≃ (
ϵ/η

)
sin I cos I ≪ ωlib. As η decreases, the system will transition from

being adiabatic to being nonadiabatic, since ϵ ≳ ϵc. The evolution of the system

can thus be decomposed into two phases: (i) when the evolution is adiabatic, the

spin vector will precess around the slowly-moving CS2; (ii) when the evolution

becomes nonadiabatic, the spin vector stops tracking the quickly-evolving CS2.

During the adiabatic evolution of phase (i), the angle between CS2 and the spin

vector is approximately unchanged due to conservation of phase space area3. Once

the evolution enters phase (ii), the precession axis quickly (on timescale ≪ 1/ωlib)

changes to l̂ (as η decreases to ηf ≪ 1). Precession about l̂ does not change the

obliquity, so the range of obliquities at the end of phase (i) is frozen in as the

range of final obliquities. We refer to this two-phase evolution as partial adiabatic
3This approximation assumes sufficiently small θsd,i such that libration about CS2 remains

approximately circular throughout phase (i) (initially, when η→∞, all librations are circular about
l̂d). This assumption breaks down when θsd,i is sufficiently large that librating orbits become non-
circular as η decreases before the end of phase (i) (Fig. 2.3 illustrates that the libration cycles
farther from CS2, corresponding to a larger θsd,i, are less circular for a given η). This causes the
deviation of the numerical results in Fig. 2.15 from Eq. (2.41) for θsd,i ≳ 45◦.
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Figure 2.14: Final obliquity θf as a function of ϵ for θsd,i = 0 and I = 5◦. The
shaded area, bordered by the black line, corresponds to the adiabatic regime esti-
mated by Eq. (7.37). The blue dots are numerical results, and the red dashed line
corresponds to Eq. (2.40), which is in good agreement with numerical results for
ϵ > ϵc ≈ 0.1 (the nonadiabatic regime). Note that θf ≃ 90◦ in the adiabatic regime
(ϵ≪ ϵc).

resonance advection.

Fig. 2.15 shows the numerical result of θf vs θsd,i for I = 5◦ and ϵ = 0.3. We

see that Eq. (2.41) provides good lower and upper bounds of the final obliquity for

θsd,i ≲ 45◦ (see footnote 3).

2.5 Summary

In this paper, we have studied the excitation of planetary obliquities due to grav-

itational interaction with an exterior, dissipating (mass-losing) protoplanetary

disk. Obliquity excitation occurs as the system passes through a secular reso-
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Figure 2.15: Final obliquity θf vs θsd,i for I = 5◦ and ϵ= 0.3 (firmly in the nonadi-
abatic regime). The blue dots represent numerical results, and the two red lines
show the analytical lower and upper bounds given by Eq. (2.41).

Figure 2.16: Schematic picture for understanding nonadiabatic obliquity evolution
when θsd,i > 0 assuming ηi ≫ 1. The figure shows a projection onto the plane
containing both l̂ and l̂d. When θsd,i = 0, the initial spin vector points along l̂d and
evolves into the final spin vector (grey), which has obliquity θ0f [Eq. (2.40)]. When
θsd,i ̸= 0, the set of initial conditions for the spin vector forms a cone (solid red
area) centered on l̂d with opening half-angle θsd,i. Under nonadiabatic evolution,
the set of final spin vectors forms a new cone, still with opening half-angle θsd,i,
centered on θ0f (light red area).
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nance between spin precession and orbital (nodal) precession. This scenario was

recently studied by Millholland and Batygin [2019], who focused on the special

case of small initial obliquities. In contrast, we consider arbitrary initial misalign-

ment angles in this paper, motivated by the fact that planet formation through

core accretion can lead to a wide range of initial spin orientations. We present our

result as a mapping from θsd,i to θf, where θsd,i is the initial misalignment angle

between the planet’s spin axis and the disk’s orbital angular momentum axis, and

θf is the final planetary obliquity. We have derived analytical results that capture

the behavior of this mapping in both the adiabatic and nonadiabatic limits:

1. In the adiabatic limit (i.e. the disk dissipates at a sufficiently slow rate),

we reproduce the known result θf ≃ 90◦ for θsd,i ≃ 0. We demonstrate (via

numerical calculation and analytical argument) the dual-valued behavior of

θf for nonzero θsd,i (see Fig. 2.5). We show for the first time that both the final

θf values and the probabilities of achieving each value can be understood

analytically via careful accounting of adiabatic invariance and separatrix

crossing dynamics.

2. As the disk dissipates more rapidly, the adiabatic condition [Eq. (7.37)] breaks

down, we find that a broad range of final obliquities can be reached for a

given θsd,i (see Fig. 2.15). We understand this result via the novel concept of

partial adiabatic resonance advection and provide an analytical expression

of the bounds on θf in Eq. (2.41).

As noted in Section 2.1, while in this paper we have examined a specific sce-

nario of generating/modifying planetary obliquities from planet-disk interactions,

the dynamical problem have studied is more general [Colombo, 1966, Peale, 1969,

1974, Ward, 1975, Henrard and Murigande, 1987]. Our work goes beyond these

previous works and provides the most general solution to the evolution of “Colombo’s
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top” as the system evolves from the “weak spin-orbit coupling” regime (η≫ 1) to

the “strong spin-orbit coupling” regime (η≪ 1). The new analytical results pre-

sented in this paper can be adapted to other applications.

Concerning the production of planetary obliquity with a dissipating disk, when

there are multiple planets in a system, the nodal precession rate g for the planet

of interest never decays below the Laplace-Lagrange rate driven by planet-planet

secular interactions [Millholland and Batygin, 2019]. Therefore, η has a minimum

value at late times. This does not affect the methodology of our analysis, but

can affect the detailed results. For example, the adiabaticity criterion must be

modified slightly as dlnη/dt is no longer constant but asymptotes to zero as η

decreases; the planet may never undergo separatrix crossing if their η⋆ (which

depends on θsd,i) in the absence of the companions is too small; the planetary

obliquity will oscillate even when the disk has fully evaporated (as l̂ is no longer

constant). The spin dynamics can be even more complex if the two planets are in

mean motion resonance [e.g. Millholland and Laughlin, 2019].
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CHAPTER 3

DYNAMICS OF COLOMBO’S TOP: TIDAL DISSIPATION AND

RESONANCE CAPTURE, WITH APPLICATIONS TO OBLIQUE

SUPER-EARTHS, ULTRA-SHORT-PERIOD PLANETS AND

INSPIRALING HOT JUPITERS

Originally published in:

Yubo Su and Dong Lai. Dynamics of Colombo’s Top: Tidal dissipation and reso-

nance capture, with applications to oblique super-Earths, ultra-short-period plan-

ets and inspiraling hot Jupiters. MNRAS, 509(3):3301–3320, November 2021.

ISSN 0035-8711. doi: 10.1093/mnras/stab3172

3.1 Introduction

It is well recognized that the obliquity of a planet, the angle between the spin and

orbital axes, likely reflects its dynamical history. In our Solar System, planetary

obliquities (hereafter just “obliquities”) range from 3.1◦ for Jupiter to 26.7◦ for Sat-

urn to 98◦ for Uranus. The obliquities of exoplanets are challenging to measure,

and so far only loose constraints have been obtained for the obliquity of a faraway

(≳ 50 AU) planetary-mass companion [Bryan et al., 2020]. Nevertheless, there are

prospects for better constraints on exoplanetary obliquities in the coming years,

such as using high-resolution spectroscopy to measure vsin i for planetary rota-

tion [Snellen et al., 2014, Bryan et al., 2018] and using high-precision photome-

try to measure the asphericity of a planet [Seager and Hui, 2002]. Substantial

obliquities are of increasing theoretical interest for their proposed role in explain-

ing peculiar thermal phase curves [see e.g. Adams et al., 2019, Ohno and Zhang,

2019], in enhancing tidal dissipation in hot Jupiters [Millholland and Laughlin,

2018] and super Earths [Millholland and Laughlin, 2019], and in the formation of

ultra-short-period planets [USPs; Millholland and Spalding, 2020].
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While nonzero obliquities are sometimes attributed to one or many giant im-

pacts/collisions [e.g. Safronov and Zvjagina, 1969, Benz et al., 1989, Korycansky

et al., 1990, Dones and Tremaine, 1993, Morbidelli et al., 2012, Li and Lai, 2020,

Li et al., 2021], some studies suggest that large planetary obliquities may be pro-

duced by spin-orbit resonances. In this scenario, a rotating planet is subjected to

a gravitational torque from its host star, making its spin axis precess around its

orbital (angular momentum) axis. At the same time, the orbital axis precesses

around another fixed axis under the gravitational influence of other masses in the

system, e.g. additional planets or a protoplanetary disk. When the two precession

frequencies become comparable, a resonance can occur that excites the obliquity

to large values. This model is known as “Colombo’s Top” after the seminal work of

Colombo [1966], and subsequent works have investigated the rich dynamics of this

system [Peale, 1969, 1974, Ward, 1975, Henrard and Murigande, 1987]. Such res-

onances have been invoked to explain the obliquities of both the Solar System gas

giants [Ward and Hamilton, 2004, Hamilton and Ward, 2004, Ward and Canup,

2006, Vokrouhlickỳ and Nesvornỳ, 2015, Saillenfest et al., 2020, 2021] and the ice

giants [Rogoszinski and Hamilton, 2020].

In a previous paper [Su and Lai, 2020, hereafter Paper I], we presented a

systematic and general investigation of the dynamics of Colombo’s Top when the

two precession frequencies of the system evolve through a commensurability. We

obtained a semi-analytic mapping between the (arbitrary) planetary spin orienta-

tion and the final obliquity after a resonance encounter. We applied our results to

investigate the generation of exoplanetary obliquities via a dissipating protoplan-

etary disk. However, our model did not consider the effect of additional torques

in the system. In particular, tidal dissipation in the planet can cause the planet’s

spin frequency to approach its orbital frequency and drive the planet’s spin axis

towards its orbital axis, complicating the evolution of Colombo’s Top [Fabrycky

49



et al., 2007, Levrard et al., 2007, Peale, 2008]. In this paper, we extend these pre-

vious works to present a comprehensive study on how tidal dissipation influences

the equilibria (called “Cassini States”) of the system and drive its long-term evo-

lution. Our new results (summarized in Section 3.6) include a stability analysis

of tide-modified Cassini States and a novel, analytic description/calculation of the

resonance encounter process. We apply our general theoretical results to assess

how obliquity tides may affect different types of exoplanetary systems.

Our paper is organized as follows. In Section 3.2, we briefly review the ba-

sic setup and non-dissipative dynamics of Colombo’s Top. In Section 3.3, we in-

vestigate the effect of adding a simple alignment torque to Colombo’s Top. The

resulting dynamics captures the essential behavior that emerges due to tidal dis-

sipation. In Section 3.4, we solve for the dynamics of the system including the full

effect of tidal dissipation. In Section 3.5, we apply our results to three exoplane-

tary systems/scenarios of interest: (i) a super Earth with an exterior companion,

(ii) the formation of USPs via obliquity tides, and (iii) the rapid orbital decay of

the hot Jupiter WASP-12b. We summarize and discuss in Section 3.6.

3.2 Spin Evolution Equations and Cassini States: Review

In this section, we briefly review the spin dynamics of a planet in the presence of

a distant perturber and introduce our notations; see Paper I for more details. We

consider a star of mass M⋆ hosting an inner oblate planet of mass m and radius

R on a circular orbit with semi-major axis a and an outer perturber of mass mp

on a circular orbit with semi-major axis ap. The two orbits are mutually inclined

by the angle I. Denote S the spin angular momentum and L the orbital angular

momentum of the planet, and Lp the angular momentum of the perturber. The
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corresponding unit vectors are ŝ ≡ S/S, l̂ ≡ L/L, and l̂p ≡ Lp/Lp. The spin axis ŝ of

the planet tends to precess around its orbital (angular momentum) axis l̂, driven

by the gravitational torque from the host star acting on the planet’s rotational

bulge. On the other hand, l̂ and l̂p precess around each other due to gravitational

interactions. Assuming S ≪ L, the equations of motion for ŝ and l̂ are

dŝ
dt

=ωsl
(
ŝ · l̂)(ŝ× l̂

)≡α(
ŝ · l̂)(ŝ× l̂

)
, (3.1)

dl̂
dt

=ωlp
(
l̂ · l̂p

)(
l̂× l̂p

)≡−g
(
l̂× l̂p

)
, (3.2)

where

ωsl ≡α= 3GJ2mR2M⋆

2a3IΩs
= 3kq

2k
M⋆

m

(
R
a

)3
Ωs, (3.3)

ωlp ≡− g
cos I

= 3mp

4M⋆

(
a
ap

)3
n. (3.4)

In Eq. (4.4), Ωs is the spin frequency of the inner planet, I = kmR2 (with k the

normalized moment of inertia, often notated as CN) is its moment of inertia and

J2 = kqΩ
2
s (R3/Gm) (with kq a constant, related to the hydrostatic Love number

k2 by kq = k2/3) is its rotation-induced (dimensionless) quadrupole moment [for

a fluid body with uniform density, k = 0.4,kq = 0.5; for the Earth, k ≃ 0.331 and

kq ≃ 0.31; for Jupiter, k ≃ 0.27 and kq ≃ 0.18 [e.g. Groten, 2004, Lainey, 2016]].

In other studies, 3kq/2k is often notated as k2/2CN [e.g. Millholland and Baty-

gin, 2019]. In Eq. (3.4), n ≡
√

GM⋆/a3 is the inner planet’s orbital mean motion,

and we have assumed ap ≫ a and included only the leading-order (quadrupole)

interaction between the inner planet and perturber (Section 3.5.2 discusses mod-

ifications to Eq. 3.4 when ap ≳ a). Eq. (3.2) neglects the back-reaction torque on l̂

from ŝ; this is justified since L ≫ S (see Anderson and Lai, 2018 for the case when

L ∼ S). In Eq. (4.4) (and throughout Sections 3.2–3.4), we assume Lp ≫ L so that

l̂p is a constant (Section 3.5.3 discusses the case of L ≃ Lp). Following the standard

notations, we have defined α=ωsl and g ≡−ω1p cos I [e.g. Colombo, 1966].
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As in Paper I, we combine Eqs. (4.2)–(3.2) into a single equation by transform-

ing into a frame rotating about l̂p with frequency g. In this frame, l̂p and l̂ are

both fixed, and ŝ evolves as(
dŝ
dt

)
rot

=α(
ŝ · l̂)(ŝ× l̂

)+ g
(
ŝ× l̂p

)
. (3.5)

We choose the coordinate system such that ẑ = l̂ and l̂p lies in the x̂-ẑ plane. We

describe ŝ in spherical coordinates using the polar angle θ, the planet’s obliquity,

and φ, the precessional phase of ŝ about l̂, defined so that when φ = 0◦, l̂p and ŝ

are on opposite sides of l̂.

The equilibria of Eq. (3.5) are referred to as Cassini States [CSs; Colombo,

1966, Peale, 1969]. We follow the notation of Paper I and introduce the parameter

η≡− g
α
= 1

2
k
kq

mpm
M2
⋆

(
a
ap

)3 ( a
R

)3 n
Ωs

cos I. (3.6)

For a given value of η, there can be either two or four CSs, all of which require ŝ lie

in the plane of l̂ and l̂p. In the standard nomenclature, CSs 1, 3, and 4 have θ < 0,

implying that ŝ and l̂p are on opposite sides of l̂, while CS2 has θ > 0, implying

that ŝ and l̂ are on the same side of l̂. We depart from the standard convention

and simply label the CSs using the polar angles θ and φ (with θ ∈ [0,π]): Figure 3.1

shows the CS obliquities as a function of η. CS1 and CS4 do not exist when η> ηc,

where

ηc ≡
(
sin2/3I +cos2/3I

)−3/2
. (3.7)

The Hamiltonian corresponding to Eq. (3.5) is

H =−α
2

(
ŝ · l̂)2 − g

(
ŝ · l̂p

)
=−α

2
cos2θ− g

(
cosθ cos I −sin I sinθ cosφ

)
. (3.8)
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Figure 3.1: Cassini State obliquities θ as a function of η ≡ −g/α (Eq. 8.5) for I =
20◦. The vertical dashed line denotes ηc, where the number of Cassini States
changes from four to two (Eq. 3.7). The y-axis labels on the right of the plot show
the asymptotic obliquities for CS2 and CS3, I and 180◦− I respectively. Note that
θ does not follow the standard convention (e.g. Colombo, 1966, Paper I) and is
simply the angle between ŝ and l̂, while φ = 0 corresponds to ŝ and l̂p being on
opposite sides of l̂. While CSs 1–3 are “dynamically” stable, only CS1 and CS2
are stable and attracting in the presence of the spin-orbit alignment torque (see
Section 3.3.2).
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Here, cosθ and φ form a canonically conjugate pair of variables. Figure 3.2 shows

the level curves of this Hamiltonian for I = 20◦, for which ηc ≈ 0.574 (Eq. 3.7).

When η < ηc, CS4 exists and is a saddle point. The infinite-period orbits origi-

nating and ending at CS4 form the separatrix and divide phase space into three

zones. The angle φ librates for trajectories in zone II and circulates for trajectories

in zones I and III. On the other hand, when η > ηc, the separatrix is absent and

all trajectories circulate. When the separatrix exists, we divide it into two curves:

C+, the boundary between zones I and II, and C−, the boundary between zones II

and III.

3.3 Spin Evolution with Alignment Torque

In this section, we consider a simplified dissipative torque that isolates the impor-

tant new phenomenon presented in this paper. We assume that the spin magni-

tude of the planet is constant, so α and g are both fixed, while the spin orientation

ŝ experiences an alignment torque towards l̂ on the alignment timescale tal:(
dŝ
dt

)
tide

= 1
tal

ŝ× (
l̂× ŝ

)
. (3.9)

The full equations of motion for ŝ in the coordinates θ and φ can be written as

dθ
dt

=−gsin I sinφ− 1
tal

sinθ, (3.10)

dφ
dt

=−αcosθ− g
(
cos I +sin I cotθ cosφ

)
. (3.11)

3.3.1 Modified Cassini States

If the alignment torque is weak (|g| tal ≫ 1), then the fixed points of Eqs. (3.10)–

(3.11) are slightly modified CSs. To leading order, all of the CS obliquities θcs are
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Figure 3.2: Level curves of the Hamiltonian (Eq. 3.8) for I = 20◦, for which ηc ≈
0.57 (Eq. 3.7). For η < ηc, there are four Cassini States (labeled), while for η >
ηc there are only two. In the former case, the existence of a separatrix (solid
black lines) separates phase space into three numbered zones (I/II/III, labeled).
We denote the upper and lower legs of the separatrix by C± respectively, as shown
in the upper two panels.
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unchanged while the azimuthal angle φcs for each CS now satisfies

sinφcs = sinθcs

sin I |g| tal
. (3.12)

We can see that if tal is longer than the critical alignment timescale tal,c, given for

a particular θcs by

tal,c ≡
sinθcs

|g|sin I
, (3.13)

then Eq. (3.12) will always have solutions for φcs, and the alignment torque does

not change the number of fixed points of the system. If tal is decreased below

tal,c ∼ |gsin I|−1, CS2 and CS4 cease to be fixed points when η ≲ 1 [as noted in

Levrard et al., 2007, Fabrycky et al., 2007], as θcs ∼ 90◦ for these (see Fig. 3.1). On

the other hand, the other CSs have small sinθcs and are only slightly modified.

Figure 3.3 shows the obliquity and azimuthal angle for each of the CSs when

η = 0.2, obtained via numerical root finding of Eqs. (3.10–3.11), where it can be

seen that CS2 and CS4 collide and annihilate when tal reaches tal,c. The phase

shifts φcs for CS2 and CS4 for tal > tal,c can be predicted to good accuracy using

Eq. (3.12) and θcs ≈ π/2−ηcos I ≈ 79◦ [Su and Lai, 2020]; these are shown as the

dashed lines in the bottom panel of Fig. 3.3. For the remainder of this section, we

will consider the case where tal ≫ tal,c and the CSs only differ slightly from their

unmodified locations.

3.3.2 Linear Stability Analysis

We next seek to characterize the stability of small perturbations about each of the

CSs in the presence of the weak alignment torque. We can linearize Eqs. (3.10–
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Figure 3.3: Modified CS obliquities (top) and azimuthal angles (bottom) for I = 20◦

and η= 0.2, where the CS1 and CS3 obliquities have been offset (as labeled) to im-
prove clarity of the plot. In both panels, the solid lines give the result when apply-
ing a numerical root finding algorithm to the full equations of motion, Eqs. (3.10–
3.11), while the dotted lines in the bottom panel give the CS2 and CS4 azimuthal
angles according to Eq. (3.12). At |gtal sin I| = 1, CS2 and CS4 collide and annihi-
late (see Eq. 3.13).
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3.11) about a shifted CS, yelding

d
dt

∆θ
∆φ

=

 − cosθ
tal

−gsin I cosφ

αsinθ+ g sin I cosφ
sin2 θ

0


cs

∆θ
∆φ

 , (3.14)

where the “cs” subscript indicates evaluating at a CS, ∆θ = θ−θcs, and ∆φ=φ−φcs.

The eigenvalues λ of Eq. (3.14) satisfy the equation

0=
(
λ+ cosθcs

tal

)
λ−λ2

0, (3.15)

where

λ2
0 ≡

(
αsinθcs + gsin I csc2θcs cosφcs

)(−gsin I cosφcs
)
. (3.16)

When tal is large, we can simplify Eq. (3.15) to

λ≈−cosθcs

tal
±

√
λ2

0. (3.17)

The stability of a CS depends on the real part of λ in Eq. (3.17). Equation (3.17)

λ2
0 is a generalization of Eq. (A4) in Paper I and generally has the same behavior:

it is negative for CSs 1–3 and positive for CS4, as shown in Fig. 3.4. Thus, CS4 is

always “dynamically” unstable (i.e. unstable even in the limit of tal →∞), as there

will always be at least one positive solution for λ. On the other hand, CSs 1–3 are

dynamically stable, and their overall stabilities in the presence of the alignment

torque are determined by the sign of cosθcs. Using Fig. 3.1, we conclude that CS1

and CS2 are stable and attracting while trajectories near CS3 are driven away

by the alignment torque. These calculations quantify the results long used in the

literature [e.g. Ward, 1975, Fabrycky et al., 2007].

3.3.3 Spin Obliquity Evolution Driven by Alignment Torque

With the above results, we are equipped to ask questions about the dynamics of

Eqs. (3.10–3.11): what is the long-term evolution of ŝ for a general initial ŝi?
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Figure 3.4: λ2
0 (Eq. 3.16) as a function of η for the four CSs, for three different

values of the shift in φcs (e.g. for ∆φcs = 60◦, the phase angles are φcs = 120◦ for
CS2 and φcs = 60◦ for CSs 1, 3, and 4). The values of ∆φcs are labeled (∆φcs = 0
corresponds to the unmodified CSs).
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For η > ηc, the only stable (and attracting) spin state is CS2, and all initial

conditions will evolve asymptotically towards it.

For η < ηc, both CS1 and CS2 are stable (assuming the alignment torque is

sufficiently weak that CS2 remains a fixed point; see Section 3.3.1), and spin evo-

lution may involve separatrix crossing. To explore the fate of various initial ŝ

orientations, we numerically integrate Eqs. (3.10–3.11) for many random initial

conditions uniformly distributed in
(
cosθi,φi

)
and determine the nearest CS for

each integration after 10tal. In Fig. 3.5, we show the results of this procedure for

η = 0.2, and I = 20◦ (we use tal = 103/ |g|, but the results are unchanged as long

as tal ≫ |g|−1). It is clear that initial conditions in zone I evolve into CS1, those

in zone II evolve into CS2, while those in zone III have a probabilistic outcome.

These can be understood as follows:

For initial conditions in zone I, the spin orientation circulates, and θ̇ is nega-

tive everywhere during the cycle. Thus θ decreases until the trajectory has con-

verged to CS1. This is intuitively reasonable, as CS1 is stable and attracting (see

Section 3.3.2).

For initial conditions in zone II, our stability analysis in Section 3.3.2 shows

that when ŝ is sufficiently near CS2, it will converge to CS2 since CS2 is stable

and attracting. In fact, this result can be extended to all initial conditions inside

the separatrix, as shown in Appendix B.1.

For initial conditions in zone III, since there are no stable CSs in zone III,

the system must evolve through the separatrix to reach either CS1 or CS2. The

outcome of the separatrix encounter is probabilistic and determines the final CS.

Intuitively, this can be understood as probabilistic resonance capture, as first stud-

ied in the seminal work of Henrard [1982]: for η≲ ηc ∼ 1, we have that α≳−g, but
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Figure 3.5: Asymptotic outcomes of spin evolution driven by an alignment torque
for different initial spin orientations (θi and φi) for a system with η = 0.2 and
I = 20◦. Each dot represents an initial spin orientation, and the coloring of the
dot indicates which stable Cassini State (legend) the system evolves into: initial
conditions in Zone I evolve into CS1, those in Zone II evolve into CS2, and those
in Zone III have a probabilistic outcome.
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αcosθ can become commensurate with −g if cosθ becomes small. This is achieved

as θ evolves from an initially retrograde obliquity through 90◦ towards 0◦ under

the influence of the alignment torque.

While similar in behavior to previous studies of probabilistic resonance capture

[Henrard, 1982, Su and Lai, 2020], the underlying mechanism is different: In

these previous studies, the phase space structure itself evolves and causes the

system to transition among different phase space zones; here in the problem at

hand, a non-Hamiltonian, dissipative perturbation causes the system to transition

among fixed phase space zones. In the following subsection, we present an analytic

calculation to determine the probability distribution of outcomes upon separatrix

encounter. Readers not interested in the technical details can simply examine the

resulting Fig. 3.7.

3.3.4 Analytical Calculation of Resonance Capture Proba-

bility

Before discussing our quantitative calculation, we first present a graphical under-

standing of the separatrix encounter process. Figure 3.6 shows how the perturba-

tive alignment torque generates the two outcomes upon separatrix encounter, i.e.

the zone III to zone II and the zone III to zone I transition. The critical trajecto-

ries in Fig. 3.6 are calculated numerically by integrating from a point infinitesi-

mally close to CS4 forward and backward in time. In the absence of the alignment

torque, these trajectories would evolve along the separatrix, but in the presence

of the alignment torque, they are perturbed slightly and cease to overlap. It can

be seen in Fig. 3.6 that this splitting opens a path from zone III into both zones I

and II: the coloring scheme indicates that the trajectories within the orange and
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green regions of phase space stay within their respective colored regions.

To understand this process more concretely, and to compute the associated

probabilities of the two possible outcomes, we consider the evolution of the value

of the unperturbed Hamiltonian (Eq. 3.8) as the spin evolves due to the alignment

torque. A point in zone III evolves such that H is increasing until H ≈ Hsep, where

Hsep is the value of H along the separatrix, given by

Hsep ≡ H
(
cosθ4,φ4

)
≈ gsin I + g2

2α
cos2 I +O

(
η2) , (3.18)

where

θ4 ≃π/2−ηcos I (3.19)

(see Section A.1 of Paper I) and φ4 = 0 are the coordinates of CS4. As the system

evolves closer to the separatrix, the change in H over each circulation cycle can

be approximated by ∆H−, the change in H along C− (see Fig. 3.2). In general, we

define the quantities ∆H±

∆H± ≡
∮

C±

dH
dt

dt. (3.20)

Using

dH
dt

= ∂H
∂(cosθ)

d(cosθ)
dt

+ ∂H
∂φ

dφ
dt

=
(
d(cosθ)

dt

)
tide

dφ
dt

(3.21)

and Eq. (3.10), we find

∆H± =∓ 1
tal

2π∫
0

sin2θ dφ, (3.22)

where θ = θ
(
φ

)
is evolved along C±. Thus, if we evaluate H every time that a

trajectory originating in zone III crosses φ= 0, we see that will initially be < Hsep

and increase for each circulation cycle until the system encounters the separatrix.
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At the beginning of the separatrix-crossing orbit, the initial value of H, denoted

by Hi, must be greater than Hsep−∆H− to encounter the separatrix on the current

orbit. We thus require

Hi ∈
[
Hsep −∆H−,Hsep

]
. (3.23)

The values of cosθ corresponding to the lower and upper bounds in this range are

shown as the black and purple dots on the left of Fig. 3.6 respectively.

During the separatrix-crossing orbit, the trajectory first evolves approximately

along C− and then along C+, after which the final value of H, denoted by Hf, is

approximately equal to

Hf = Hi +∆H++∆H−. (3.24)

There are two outcomes depending on the value of Hf:

• If Hf < Hsep, then, since H < Hsep corresponds to the exterior of the sepa-

ratrix, this implies that the trajectory has ended outside of the separatrix.

This outcome thus corresponds to a zone III to zone I transition. In Fig. 3.6,

the evolution within the orange shaded regions exhibits such an outcome.

• If Hf > Hsep, then the trajectory has instead ended inside of the separatrix

and has executed a zone III to zone II transition. This corresponds to evolu-

tion within the green shaded regions in Fig. 3.6.

These two possibilities can be re-expressed in terms of Hi: if Hi is in the interval

[Hsep −∆H−, Hsep −∆H−−∆H+], then the system executes a III → I transition,

and if it is in the interval [Hsep −∆H−−∆H+, Hsep], then the system executes a

III → II transition. We see that there is a critical value of Hi,

(Hi)crit = Hsep −∆H−−∆H+, (3.25)
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that separates the two possible outcomes of the separatrix encounter within the

interval given by Eq. (3.23). The value of cosθ for which H is equal to Hsep−∆H−−
∆H+ is shown as the blue dot on the left of Fig. 3.6. Finally, if the alignment

torque is weak, then |∆H±| ∝ t−1
al is small compared to any variation in the value

of H (e.g. when changing the initial φi or θi by a small amount), and Hi can be

effectively considered as randomly chosen from a uniform distribution over the

range
[
Hsep −∆H−,Hsep

]
. As a consequence we obtain the probability of the III →

II transition:

PIII→II =
∆H−+∆H+

∆H−
. (3.26)

To evaluate Eq. (3.26) analytically, we use the approximate expression for the

separatrix η≪ 1 (see Eq. B5 of Paper I)1:

(cosθ)C± ≈ ηcos I ±
√

2ηsin I
(
1−cosφ

)
. (3.27)

Using Eq. (3.22), we find

∆H− ≈ 2π
tal

(
1−2ηsin I

)+O (η3/2), (3.28)

∆H++∆H− ≈ 32η3/2 cos I
p

sin I
tal

+O
(
η5/2

)
, (3.29)

and thus

PIII→II ≈
16η3/2 cos I

p
sin I

π
(
1−2ηsin I

) . (3.30)

To compare Eq. (3.30) with numerical results, we perform numerical integra-

tions of Eqs. (3.10–3.11) while restricting the initial conditions to those in zone III.

In Fig. 3.7, we display Eq. (3.30) alongside the computed PIII→II using 1000 initial

conditions in zone III for each of 60 values of η. Excellent agreement is observed.
1A more exact expression valid for all η ≤ ηc can be obtained by using the exact analytical

solution to Colombo’s Top, see Ward and Hamilton [2004]. We forgo this approach due to the
significant complexity of the expression involved for a small extension in the regime of validity:
our expression is sufficiently accurate when η≲ 0.3, while ηc ≲ 1.
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Figure 3.6: Plot illustrating the probabilistic origin of separatrix (resonance) cap-
ture for a system with η = 0.2 and I = 20◦. The orange regions converge to CS1,
and the green to CS2. The purple dots denote CS4, a saddle point. The boundaries
separating the CS1 and CS2-approaching regions consist of four critical trajecto-
ries (labeled in the legend) that are evolved starting from infinitesimal displace-
ments from CS4 along its stable and unstable eigenvectors going forwards and
backwards in time: e.g. the trajectory labeled CS4+

φ=0 starts at φ = ϵ (for some
small, positive ϵ) and evolves forwards in time (with tal = 103 |g|−1), while the
trajectory labeled CS4−

φ=360 starts at φ = 360◦− ϵ and evolves backwards in time.
The blue and black dots denote the intersections of CS4−

φ=0 and CS4−
φ=360 critical

trajectories with the vertical line φ = 0. These critical trajectories can be used to
understand the probabilistic outcomes that trajectories originating in zone III ex-
perience upon separatrix encounter, illustrated by the tightly spaced orange and
green bands in zone III; see Section 3.3.4 for additional details.
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Figure 3.7: Zone III to Zone II transition probability PIII→II upon separatrix en-
counter as a function of η driven by an alignment torque. For each η, 1000 initial
random

(
θi,φi

)
values in zone III are evolved until just after separatrix encounter,

where the outcome of the encounter is recorded. The red line shows the analytical
result, Eq. (3.30).
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The rigorous connection between the above calculation, focusing on the evolu-

tion of H along the two legs of the separatrix C±, and the graphical picture illus-

trated in Fig. 3.6 is provided by Melnikov’s Method [Guckenheimer and Holmes,

1983]. Melnikov’s Method is a general calculation that gives the degree of split-

ting of a “homoclinic orbit” (here, the separatrix) of a Hamiltonian system induced

by a small, possibly time-dependent, perturbation. At a qualitative level, we can

state the connection succinctly (see Fig. 3.6):

• The trajectory labeled CS4−
φ=360 is evolved backwards in time from CS4

(where the Hamiltonian has the value Hsep) along C−, and thus the black

dot labels the start of a separatrix-crossing orbit with the initial value of the

Hamiltonian Hi = Hsep−H−. According to Eq. (3.23), this is exactly the min-

imum Hi such that a trajectory experiences a separatrix-crossing orbit. This

is consistent with Fig. 3.6, where it is clear that any trajectories below the

black dot at φ = 0 will not experience a separatrix encounter on its current

circulation cycle.

• The trajectory labeled CS4−
φ=0 is the one evolving backwards in time from

CS4 along first C+ then C−, and thus the blue dot labels the start of a

separatrix-crossing orbit with Hi = Hsep−∆H−−∆H+. According to Eq. (3.25),

this is exactly the critical value of Hi that separates trajectories executing

a III→II transition and a III→I transition. This is also consistent with

Fig. 3.6, where the region above CS4−
φ=0 is colored green while the region

below is colored orange.
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3.4 Spin Evolution with Weak Tidal Friction

3.4.1 Tidal Cassini Equilibria (tCE)

Having understood the effect of the alignment torque on the spin evolution (Sec-

tion 3.3), we now implement the full effect of tidal dissipation, including both tidal

alignment and spin synchronization. We use the weak friction theory of equilib-

rium tides [e.g. Alexander, 1973, Hut, 1981]. In this model, tides cause both the

spin orientation ŝ and frequency Ωs to evolve on the characteristic tidal timescale

ts following [see Lai, 2012]:(
dŝ
dt

)
tide

= 1
ts

[
2n
Ωs

− (
ŝ · l̂)] ŝ× (

l̂× ŝ
)
, (3.31)

1
Ωs

(
dΩs

dt

)
tide

= 1
ts

[
2n
Ωs

(
ŝ · l̂)−1− (

ŝ · l̂)2
]

, (3.32)

where ts is given by
1
ts

≡ 1
4k

3k2

Q

(
M⋆

m

)(
R
a

)3
n, (3.33)

with k2 and Q the tidal Love number2 and tidal quality factor, respectively. We

neglect orbital evolution (thus, ts is a constant) in this section since the time scale

is longer than ts by a factor of ∼ L/S ≫ 1 (we discuss the effect of orbital evolution

in Section 3.5.3). We will continue to consider the case where tidal dissipation is

slow, i.e. |g| ts ≫ 1. The full equations of motion including weak tidal friction can

2Note that for rocky planets, the tidal k2 and the hydrostatic k2 (which is equal to the 3kq)
need not be equal, e.g. for the Earth, ktidal

2 ≈ 0.29 [Lainey, 2016] while the hydrostatic krotational
2 =

0.94 [Fricke, 1977]. This is due to the Earth’s appreciable rigidity. For higher-mass, more “fluid”
planets, ktidal

2 ≃ krotational
2 .
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be written in component form as

dθ
dt

= gsin I sinφ− 1
ts

sinθ
(
2n
Ωs

−cosθ
)
, (3.34)

dφ
dt

=−αcosθ− g
(
cos I +sin I cotθ cosφ

)
, (3.35)

1
Ωs

dΩs

dt
= 1

ts

[
2n
Ωs

cosθ− (
1+cos2θ

)]
. (3.36)

Equation (3.36) shows that, at a given obliquity, tides tend to drive Ωs towards

the pseudo-synchronous equilibrium value, given by

Ωs

n
= 2cosθ

1+cos2θ

(
Ω̇s = 0

)
. (3.37)

On the other hand, Eq. (3.34) shows that the spin-orbit alignment timescale tal is

related to ts by

t−1
al = t−1

s

(
2n
Ωs

−cosθ
)
. (3.38)

Thus, θ̇tide < 0 for 2n/Ωs > cosθ and θ̇tide > 0 for 2n/Ωs < cosθ.

To understand the long-term evolution of the system, we first consider its be-

havior near a CS. Specifically, we wish to understand whether initial conditions

near a CS stay near the CS as the evolution of Ωs causes the CSs (and separatrix)

to evolve. We first note that the evolution of Ωs alone does not drive ŝ towards or

away from CSs: As long as it evolves sufficiently slowly (adiabatically; see Paper

I), conservation of phase space area ensures that trajectories will remain at fixed

distances to stable equilibria of the system. Thus, Eq. (4.16) or (3.34) alone deter-

mine whether the system evolves towards or away from a nearby CS asΩs evolves.

Then, from Eq. (3.38), we see that CS2 is still always stable (and attracting), while

CS1 is becomes unstable for Ωs > 2ncosθ1 ≈ 2n, where θ1 ≈ ηsin I (Paper I) is the

obliquity of CS1.

With this consideration, we can identify the long-term equilibria of the system

when tidal torques drive the evolution of both the obliquity and Ωs (and thus η):
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these equilibria must satisfy Ω̇s = 0 and be a CS that is stable in the presence of

the tidal torque (i.e. satisfying dŝ/dt = 0); we call such long-term equilibria tidal

Cassini Equilibria (tCE). Figure 3.8 depicts the evolution of the system following

Eqs. (4.16–4.17) in (Ωs,θ) space starting from several representative initial con-

ditions, along with the locations of CS1 and CS2. The circled points in Fig. 3.8

denote the two tCEs (tCE1 and tCE2, depending on whether it lies on CS1 or

CS2).

The obliquities of the tCE and the evolutionary track in the θ-Ωs plane depend

on the parameter

ηsync ≡
(
η
)
Ωs=n = ηΩs

n

= k
2kq

mpm
M2
⋆

(
a
ap

)3 ( a
R

)3
cos I. (3.39)

In Fig. 3.8, ηsync = 0.06; Figs. 3.9–3.10 illustrate the cases with ηsync = 0.5 and 0.7

respectively.

The tCE obliquities as a function of ηsync are shown in Fig. 3.11 for I = 20◦ and

I = 5◦. In fact, an analytical expression for the tCE2 obliquity and rotation rate

for ηsync ≪ 1 can be obtained using Eqs. (3.37)–(3.39) and cosθ2 ≃ ηcos I (valid for

η≪ 1; see Appendix of Paper I):

cosθtCE2 ≃
√
ηsync cos I

2
, (3.40)

Ωs,tCE2

n
≃

√
2ηsync cos I. (3.41)

This approximation for θtCE2 is shown as the blue dashed line in Fig. 3.11, in-

dicating good agreement with the numerical result obtained via root finding of

Eqs. (3.34)–(3.36) while assuming |g| ts ≫ 1.

There are two important conditions that can influence the existence and sta-

bility of the tCE. First, if ηsync > ηc (where ηc is given by Eq. 3.7), then tCE1 will
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Figure 3.8: Schematic depiction of the effect of tidal friction on the planet’s spin
evolution in the θ-Ωs plane for a system with I = 20◦ (corresponding to ηc = 0.574;
see Eq. 3.7) and ηsync = 0.06 (see Eq. 3.39). The black and blue lines denote where
the tidal Ω̇s and θ̇ change signs (see Eqs. 3.34 and 3.37). The orange and green
lines give the CS1 and CS2 obliquities respectively (these are the two CSs that
can be stable in the presence of tidal dissipation). Note that when θ̇tide > 0, CS1
becomes unstable, denoted by the dashed orange line. The points that lie on CSs
and satisfy Ω̇s = 0 are called tidal Cassini Equilibria (tCE), which are circled and
labeled. The various colored crosses and their associated colored lines represent
a few characteristic examples of the spin evolution under weak tidal friction (for
illustrative purposes, we have used |g| ts = 102 and evolved each example for 5ts).
The phase space evolution of the two thicker evolutionary trajectories (cyan and
pink; those beginning at θi = 120◦) are shown in Figs. 3.12–3.13.
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Figure 3.9: Same as Fig. 3.8 but for ηsync = 0.5. The crosses and lines correspond
to evolutionary trajectories using the same initial conditions as those shown in
Fig. 3.8.
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Figure 3.10: Same as Figs. 3.8 but for ηsync = 0.7. Note that ηsync = 0.7> ηc = 0.574
and tCE1 does not exist. The phase space evolution of the thick purple trajectory
(starting at θi = 10◦) is shown in Fig. 3.14.
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Figure 3.11: Obliquities of the two tCE as a function of ηsync (defined in Eq. 3.39)
for I = 20◦ (top) and I = 5◦ (bottom). The blue dashed lines denote the analytical
approximation given by Eq. (3.40) and is only valid for ηsync ≪ 1. The vertical
dashed lines denote where ηsync = ηc(I), above which tCE1 ceases to exist.
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Figure 3.12: Phase space evolution of the pink trajectory in Fig. 3.8, for which
ηsync = 0.06 and I = 20◦ (corresponding to ηc = 0.574). The initial conditions are
Ωs,i = 2.5n, θi = 120◦, and φi = 0◦, and we have used |g| ts = 102 and have evolved
the system for 5ts. In the left-most panel, the trajectory’s evolution in the θ-Ωs
plane along with the curves indicating CS1, CS2, and Ω̇s = 0 are re-displayed from
Fig. 3.8. The vertical dashed lines denote the values of Ωs/n for which a few phase
space snapshots of the system are displayed in the right four panels. In each of
these right four panels, the trajectory’s evolution for a single circulation/libration
cycle is displayed in the cosθ-φ plane for the labeled value of Ωs (and the corre-
sponding value of η). The system encounters the separatrix, undergoes a III → I
transition, and converges to tCE1.
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Figure 3.13: Same as Fig. 3.12 but for φi = 286◦, corresponding to the cyan tra-
jectory in Fig. 3.8. The system encounters the separatrix, undergoes a III → II
transition, and converges to tCE2. The small φ offset of tCE2 from 180◦ arises
from the alignment torque (see Fig. 3.3). Note that the initial condition of this
trajectory and that displayed in Fig. 3.12 have the same initial θi and Ωs,i but dif-
ferent precessional phases φi.
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Figure 3.14: Same as Fig. 3.12 but for ηsync = 0.7 and θi = 10◦, corresponding to the
purple trajectory shown in Fig. 3.10. Here, the system evolves along CS1 until the
separatrix disappears, upon which it experiences large obliquity variations that
damp due to tidal dissipation. The highly asymmetric shape in the third panel
arises due to the strong tidal dissipation used in this simulation (|g| ts = 102). The
system finally converges to tCE2, the only tCE that exists for this value of ηsync.
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not exist (Fig. 3.10 gives an example)3. Second, tCE2 may not be stable if the

phase shift due to the alignment torque (see Section 3.3.1) is too large. Applying

the results of Section 3.3.2 (see Eqs. 3.12–3.13), we find that tCE2 is stable as long

as ts ≥ ts,c where

ts,c ≡ sinθtCE2

|g|sin I

(
2n

Ωs,tCE2
−cosθtCE2

)
. (3.42)

When ηsync ≪ 1, we can use Eqs. (3.40–3.41) to further simplify ts,c to4

ts,c ≃ tanθtCE2

|g|sin I
≈ 1

|g|sin I

√
2

ηsync cos I
. (3.43)

3.4.2 Spin and Obliquity Evolution as a Function of Initial

Spin Orientation

We can now study the final fate of the planet’s spin as a function of the initial

condition. We begin by examining the example trajectories shown in Figs. 3.8, for

which we have integrated the equations of motion (combining Eqs. 3.5 and 4.16 to

give dŝ/dt, and Eq. 4.17) and set I = 20◦, ts = 100 |g|−1. We discuss each of the six

trajectories in turn:

• The trajectory with the initial condition Ωs,i = 2.5n and θi = 10◦ (purple) has

an initially prograde spin (i.e. in zone I, see Fig. 3.2) and directly evolves

to tCE1, with the final Ωs/n ≃ 1 and θ = θCS1 ≃ ηsync sin I (for ηsync ≪ 1; see

Appendix A of paper I).

• The trajectory with Ωs,i = 2.5n and θi = 90◦ (red) has an initial condition

inside the resonance / separatrix (zone II) and evolves to tCE2. Note that

3Strictly speaking, ηsync can be slightly smaller than ηc, as the planet’s spin is slightly subsyn-
chronous at tCE1 (see Eq. 3.37).

4Note that Eq. (3.43) for the critical ts agrees with Eq. (16) of Levrard et al. [2007].

79



the obliquity is trapped in a high value due to the stability of CS2 under the

alignment torque, as shown in Section 3.4.1.

• We have chosen two trajectories, both with the initial condition Ωs,i = 2.5n

and θi = 120◦, but with different initial precessional phases φi. Consider

first the pink trajectory, for which φi = 0◦. It originates in zone III, evolves

towards the separatrix as tidal friction damps the obliquity, and crosses

the resonance (separatrix) without being captured, upon which the obliquity

continues to damp until the system converges to tCE1. The detailed phase

space evolution of this trajectory is shown in Fig. 3.12, where the outcome of

the separatrix encounter is very visible.

• The light blue trajectory also has Ωs,i = 2.5n and θi = 120◦ (like the pink tra-

jectory) but with the initial precessional phase φi ≈ 286◦. It also originates in

zone III, encounters the separatrix but is captured into the resonance (zone

II), upon which tidal friction drives the system towards tCE2. The detailed

phase space evolution of this trajectory is shown in Fig. 3.13, where the res-

onance capture is displayed. Also visible in the final panel of Fig. 3.13 is the

slight phase offset of CS2, i.e. φcs < 180◦, in agreement with the result of

Section 3.3.1 (see Fig. 3.3).

• For completeness, we also examine some trajectories for initially subsyn-

chronous spin rates. The trajectory with Ωs,i = 0.1n and θi = 35◦ (blue)

has its obliquity rapidly damped to zero by tidal friction as it spins up to

spin-orbit synchronization, eventually converging to tCE1. A subtlety of ini-

tially subsynchronous spins can be seen here: since the initial ηi = 0.6 > ηc

(= 0.574), the separatrix and CS1 do not exist initially. As such, naively,

one expects initial convergence to CS2 and subsequent obliquity evolution

along CS2 as the spin increases. However, due to the strong tidal dissipa-

tion adapted in the calculation and the proximity of ηi to ηc, CS1 appears
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within a single circulation cycle, and the obliquity quickly damps to, and

continues to evolve along CS1.

• The trajectory with Ωs,i = 0.1n and θi = 100◦ (teal) also has its obliquity

damped toward tCE1 as it approaches spin-orbit synchronization. We note

that if we adopt ts = 103 |g|−1, the same initial condition will converge to

tCE2, agreeing with the intuitive analysis given in the previous paragraph.

In Figs. 3.9–3.10 we show, for each of the six initial conditions, the evolutionary

trajectories for the ηsync = 0.5 and ηsync = 0.7 cases. The qualitative behaviors of

these six examples change in several important ways, so we will discuss a few

points of interest:

• For both ηsync = 0.5 and ηsync = 0.7, we see that the initial conditions with

θi = 120◦ (φi = 0, pink; and φi = 286◦, blue) converge to tCE2. In fact, for

these values of ηsync, all initial conditions with θi = 120◦ will converge to

tCE2 regardless of φi.

• The two subsynchronous initial conditions evolve to tCE2 for both ηsync = 0.5

and ηsync = 0.7, as in both cases ηi ≫ ηc and CS2 is the only low-obliquity

spin equilibrium. The system then continues to evolve along CS2 toward

tCE2.

• Of particular interest is the trajectory starting from the initial condition

Ωs,i = 2.5n and θi = 10◦ (purple) in the case of ηsync = 0.7. Figure 3.14 shows

the detailed phase space evolution of this trajectory, where it can be seen

that the system initially evolves along the stable CS1, but is ejected when

Ωs becomes sufficiently small that CS1 ceases to exist, upon which large

obliquity variations eventually lead to convergence to tCE2, the only tCE

that exists.
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From the above examples, we see that the spin evolution driven by tides can be

complex and varies greatly depending on the various system parameters and ini-

tial conditions. In the case where the initial spin is subsynchronous, the detailed

outcome depends sensitively on the initial value of η and the tidal dissipation rate.

In the following, we restrict our discussion to the more astrophysically common

regime of Ωs,i ≫ n, and we adopt the fiducial value Ωs,i = 10n.

Having developed an intuition for a few different possible evolutionary tra-

jectories, we can attempt to draw general conclusions about the final fate of the

planet’s spin as a function of its initial conditions. We do this by again integrating

Eqs. (3.5, 4.16–4.17) for many initial θi and φi and examining the final outcomes.

In contrast to the examples shown in Figs. 3.8–3.14, we use a more gradual tidal

dissipation rate of |gts| = 103. In Fig. 3.15, we show the final outcome for many

randomly chosen θi and φi for ηsync = 0.06 and I = 20◦. We see that the behaviors

seen in the example trajectories of Fig. 3.8 are general: tCE1 is generally reached

for spins initially in zone I (like the purple trajectory in Fig. 3.8), tCE2 is gener-

ally reached for spins initially in zone II (like the red trajectory in Fig. 3.8), and

a probabilistic outcome is observed for spins initially in zone III (like the light

blue and pink trajectories in Fig. 3.8). Figures 3.16 and 3.17 show similar results

for ηsync = 0.2 and ηsync = 0.5. As ηsync is increased, more initial conditions reach

tCE2. This is both because there are more systems initially in zone II and be-

cause systems initially in zone III have a higher probability of executing a III → II

transition upon separatrix encounter. Note also that in Fig. 3.17, even initial con-

ditions in zone I are able to reach tCE2; we comment on the origin of this behavior

in the next section.
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Figure 3.15: Left: Asymptotic outcomes of spin evolution in the presence of weak
tidal friction for different initial spin orientations (θi and φi) for a system with
ηsync = 0.06 and I = 20◦. Each dot represents an initial spin orientation, and the
coloring of the dot indicates which tCE (legend) the system evolves into. Similarly
to Fig. 3.5 initial conditions in Zone I evolve into CS1, those in Zone II evolve into
CS2, and those in Zone III have a probabilistic outcome. Right: Histogram of the
final tCE that a given initial obliquity θi evolves into, averaged over φi.
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Figure 3.16: Same as Fig. 3.15 but for ηsync = 0.2.
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Figure 3.17: Same as Fig. 3.15 but for ηsync = 0.5. Note that even points above the
separatrix can evolve towards tCE2 here.
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3.4.3 Semi-analytical Calculation of Resonance Capture Prob-

ability

Even when including the evolution of Ωs, and therefore the parameter η (see

Eq. 8.5), the probabilities of the III → I and III → II transitions upon separa-

trix encounter can still be obtained semi-analytically. The calculation resembles

that presented in Section 3.3.4 but involves several new ingredients. We describe

the calculation below.

In Section 3.3.4, we found that the evolution of H, the value of the unperturbed

Hamiltonian, allowed us to calculate the probabilities of the various outcomes of

separatrix encounter. Specifically, the outcome upon separatrix encounter is de-

termined by the value of H at the start of the separatrix-crossing orbit relative

to Hsep, the value of H along the separatrix. However, when the spin Ωs is also

evolving, Hsep also changes during the separatrix-crossing orbit, and the calcula-

tion in Section 3.3.4 must be generalized to account for this. Instead of focusing

on the evolution of H along a trajectory, we instead follow the evolution of

K ≡ H−Hsep. (3.44)

Note that K > 0 inside the separatrix, and K < 0 outside. With this modification,

the outcome of the separatrix-crossing orbit can be determined in the same way

as in Section 3.3.4. First, we must compute the change in K along the legs of the

separatrix. We define ∆K± by generalizing Eq. (3.20) in the natural way:

∆K± =
∮
C±

[
dH
dt

− dHsep

dt

]
dt. (3.45)

Here, however, note that the contours C± depends on the value of Ωs at separatrix

encounter (or the corresponding value η = ηcross). Since there is no closed form

solution for Ωs(t), the probabilities of the various outcomes cannot be expressed
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as a simple function of the initial conditions.

Continuing the argument presented in Section 3.3.4, we consider the outcome

of the separatrix-crossing orbit as a function of K i, the value of K at the start

(φ= 0) of the separatrix-crossing orbit. We find that if −∆K+−∆K− < Ii < 0, then

the system undergoes a III → II transition and eventually evolves towards tCE2,

and if −∆K− < K i <−∆K−−∆K+, then the system undergoes a III → I transition

and ultimately evolves towards tCE1. Thus, we find that the probability of a III

→ II transition is given by

PIII→II =
∆K++∆K−

∆K−
. (3.46)

Again, since ∆K± are evaluated at resonance encounter, and Ωs is evolving, there

is no way to express ∆K± in a closed form of the initial conditions. In fact, since

many resonance encounters occur when η = ηcross is ≳ 0.2, even an approximate

calculation of ∆K± using Eq. (3.27) (which is valid only for η≪ 1) is inaccurate,

and we instead calculate ∆K± along the numerically-computed C± for arbitrary

η. Note that Eqs. (3.45, 3.46) are equivalent to the separatrix capture result of

Henrard [1982] when θ̇tide = 0 (see also Henrard and Murigande, 1987 and Paper

I). In other words, we argue that this classic calculation can be unified with the

calculation given in Section 3.3.4 to give an accurate prediction of separatrix en-

counter outcome probabilities in the presence of both dissipative perturbation and

parametric evolution of the Hamiltonian.

We note that Levrard et al. [2007] also presented an analytical expression for

the resonance capture probability (their Eq. 14) following the method of Goldreich

and Peale [1966]. However, their expression is incomplete, as it does not account

for the contribution of the tidal alignment torque to the change of the integral of

motion over a single orbit.
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To validate the accuracy of Eq. (3.46), we can compare with direct numerical

integration of Eqs. (3.5, 4.16–4.17) for many initial conditions while evaluating

PIII→II (and thus also obtaining PIII→I = 1− PIII→II) for each simulation at the

moment it encounters the separatrix, if it does so. If the theory is correct, the total

numbers of systems converging to each of tCE1 and tCE2 should be equal to those

predicted by the calculated probabilities. In Fig. 3.18, we show the agreement

of this semi-analytic procedure with the numerical result displayed in the right

panel of Fig. 3.15. Figure 3.19 depicts the same for the parameters of Figs. 3.16,

also showing satisfactory agreement. Thus, we conclude that the outcomes of

separatrix encounter are accurately predicted by Eq. (3.46).

With the above calculation, we can understand why even some initial condi-

tions in zone I may converge to tCE2 in certain situations (see Fig. 3.17). As

long as the initial spin is sufficiently large (≥ 2n), Eq. (3.34) shows that when

cosθ > 2n/Ωs, the obliquity can increase. In particular, when the critical obliq-

uity cosθ = 2n/Ωs is inside the separatrix, tidal alignment acts to drive initial

conditions in both zones I and III towards the critical obliquity and into the sepa-

ratrix, and also towards larger H. As such, when this effect is sufficiently strong,

Eq. (3.45) shows that both ∆K± > 0, and both III → II and I → II transitions are

guaranteed upon separatrix encounter (Eq. 3.46).

3.4.4 Spin Obliquity Evolution for Isotropic Initial Spin Ori-

entations

In Sections 3.4.2–3.4.3, we considered the outcome of the spin evolution driven

by tidal torque as a function of the initial spin orientation, specified by θi and φi.

Here, we calculate the probability of evolution into tCE2 when averaging over a
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Figure 3.18: Comparison of the fraction of systems converging to tCE2 obtained
via numerical simulation (red dots) and obtained via a semi-analytic calculation
(blue line) for ηsync = 0.06, I = 20◦, andΩs,i = 10n (see right panel of Fig. 3.15). The
semi-analytic calculation is performed by numerically integrating Eqs. (3.5, 4.16–
4.17) on a grid of initial conditions uniform in cosθi and φi until the system reaches
the separatrix, then calculating the probability of reaching tCE2 for each integra-
tion using Eq. (3.46). The green dashed line in the top panel shows the result of
using the analytical expression (Eq. B.7) for ∆K±, and the bottom panel shows
the distribution of values of ηcross, the value of η when a trajectory starting at θi
encounters the separatrix.
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Figure 3.19: Same as Fig. 3.18 but for ηsync = 0.2, corresponding to the right panel
of Fig. 3.16. Note that the analytical equation (Eq. B.7; green dashed line) exhibits
significantly poorer agreement than in Fig. 3.18 when ηcross ≳ 0.2.
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Figure 3.20: Top: Same as top panel of Fig. 3.11. Bottom: Total probability of
the system ending up in tCE2 (PtCE2; red dots) as a function of ηsync (Eq. 3.39),
averaged over an isotropic initial spin orientation and taking Ωs,i = 10n. The red
dashed line shows the analytical prediction Eq. (3.47). The three shaded regions
denote the contributions of initial conditions in zones I/II/III (labeled) to the total
tCE2 probability. For example, among systems that converge to tCE2 for ηsync =
0.06, more originate in zone III than zone II, and none originate in zone I.

distribution of initial spin orientations, which we denote by PtCE2. For simplicity,

we assume ŝ to be isotropically distributed (see Section 3.6 for discussions con-

cerning impact of more physically realistic distributions of ŝ). The bottom panel

of Fig. 3.20 shows PtCE2 for I = 20◦ as a function of ηsync. We see that, e.g., tCE2

with a large obliquity (∼ 70◦) can be reached with substantial probability (≳ 50%).

When ηsync ≪ 1 and Ωs,i ≳ n, an approximate analytical formula for PtCE2 can
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Figure 3.21: Same as Fig. 3.20 but for I = 5◦.

be obtained (see Appendix B.2):

PtCE2 ≃
4
√
ηsync sin I
π

[√
n/Ωs,i +

3
2

(
1+√

n/Ωs,i
)] . (3.47)

Eq. (3.47) is shown in Figs. 3.20–3.21 as the red dashed lines; it agrees well with

the numerical results (red dots) for ηsync ≲ 0.4. To illustrate the predicted values

of PtCE2 for small ηsync, we display PtCE2 for ηsync ∈
[
10−4,0.4

]
for both I = 20◦

and I = 5◦ in Fig. 3.22. Note that for ηsync ≤ 10−2, numerical results for PtCE2 are

difficult to obtain, as the integration of Eqs. (3.34)–(3.36) slows down dramatically

due to the rapid precession of ŝ about l̂.
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Figure 3.22: PtCE2 as a function of ηsync for I = 5◦ and I = 20◦ shown on a log-
log plot, to emphasize the scaling at small ηsync. The crosses are the results of
numerical integrations as shown in Figs. 3.20–3.21, the solid lines are Eq. (3.47)
for Ωs,i = 10n and the dashed lines are for Ωs,i = 3n.
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3.5 Applications

3.5.1 Obliquities of Super-Earths with Exterior Companions

Consider a system consisting of an inner Super-Earth (SE) with semi-major axis

a≲ 0.5 AU and an exterior companion. For concreteness, we assume the compan-

ion (with mass mp) to be a cold Jupiter (CJ) with ap ≳ 1 AU. Such systems are

quite abundant [Zhu and Wu, 2018, Bryan et al., 2019]. A phase of giant impacts

may occur in the formation of such SEs [Inamdar and Schlichting, 2015, Izidoro

et al., 2017], leading to a wide range of initial obliquities for the SEs. We are

interested in the “final” obliquities of the SEs driven by tidal dissipation.

For typical SE parameters, the spin evolution timescale due to tidal dissipation

is given by

1
ts

≃ 1
3×107 yr

(
1

4k

)(
2k2/Q
10−3

)(
M⋆

M⊙

)3/2 (
m

4M⊕

)−1

×
(

R
2R⊕

)3 ( a
0.4 AU

)−9/2
. (3.48)

This occurs well within the age of SE-CJ systems. On the other hand, the orbital

evolution of the SE occurs on the timescale [e.g. Lai, 2012]

− ȧ
a
= 3k2

Q
M⋆

m

(
R
a

)5
n

(
1−Ωs

n
cosθ

)
≃ 1

7×1014 yr

(
1−Ωs

n
cosθ

)(
2k2/Q
10−3

)(
M⋆

M⊙

)3/2

×
(

m
4M⊕

)−1 (
R

2R⊕

)5 ( a
0.4 AU

)−13/2
. (3.49)

Thus, a does not evolve within the age of the SE-CJ system (for a≳ 0.06 AU), and

we shall treat a as a constant in this subsection (but see Sections 3.5.2–3.5.3).
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With typical SE-CJ parameters, Eq. (3.39) can be evaluated:

ηsync = 0.303cos I
(

k
kq

)( mp

MJ

)(
m

4M⊕

)(
M⋆

M⊙

)−2 ( a
0.4 AU

)6

×
( ap

5 AU

)−3 (
R

2R⊕

)−3
. (3.50)

We see from Figs. 3.20 and 3.21 that this value of ηsync can lead to a high-obliquity

tCE2 with significant probability, assuming the SE has a wide range of initial

obliquities. In addition, Eq. (3.43) shows that tCE2 is stable if ts ≳ ts,c, where

1
ts,c

= sin I cos2 I
3×105 yr

(
k
kq

)( mp

MJ

)3/2 (
m

4M⊕

)1/2

×
(

M⋆

M⊙

)−3/2 ( a
0.4 AU

)6 ( ap

5 AU

)−9/2 (
R

2R⊕

)−3/2
. (3.51)

In Fig. 3.23, we show the value of ηsync in the regions of
(
a,ap

)
parameter space

that satisfy the stability condition for tCE2. We see that a generous portion of

parameter space is able to generate and sustain SEs in stable tCE2 with signifi-

cant obliquities. In summary, we predict that a large fraction of SEs with exterior

CJ companions can have long-lived, significant obliquities (≳ 60◦) due to being

trapped in tCE2.

3.5.2 Formation of Ultra-short-period Planet Formation via

Obliquity Tides

Ultra-short period planets (USPs), Earth-sized planets with sub-day periods, con-

stitute a statistically distinct subsample of Kepler planets [e.g. Winn et al., 2018,

Dai et al., 2018]. It is generally thought that USPs evolved from close-in SEs

through orbital decay, driven by tidal dissipation in their host stars [Lee and Chi-

ang, 2017] or in the planets [Petrovich et al., 2019, Pu and Lai, 2019]. In particu-

lar, Pu and Lai [2019] showed that a “low-eccentricity migration” mechanism can
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Figure 3.23: Depiction of the values of ηsync for the Super Earth + Cold Jupiter
systems as a function of a and ap for I = 20◦ (top) and I = 5◦ (bottom). The SE is
taken to have m = 4M⊕ and R = 2R⊕ while the CJ is taken to have mp = MJ, and
we have taken k ≈ kq for the SE. We only show the regions satisfying ts ≥ ts,c (the
stability condition for tCE2; Eqs. 3.48–3.51). The line satisfying ηsync = ηc (Eq. 3.7)
is shown as the black dashed line. Systems with ηsync ≳ 0.1 have appreciable
probabilities of being captured in permanent tCE2 with significant obliquities (see
Figs. 3.20–3.22).
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successfully produce USPs with the observed properties. In this scenario, USPs

evolve from a subset of SE systems: a low-mass planet with an initial period of

a few days maintains a small but finite eccentricity due to secular forcings from

exterior companion planets (SEs or sub-Neptunes) and evolve to become a USP

due to orbital decay driven by tidal dissipation.

Millholland and Spalding [2020] proposed an alternative formation mecha-

nism of USPs based on obliquity tides (instead of eccentricity tides as in Pu and

Lai, 2019). This mechanism consists of three stages:

• A proto-USP (with two external companions) is assumed to be rapidly cap-

tured into CS2 with appreciable obliquity and a pseudo-synchronous spin

rate.

• The inner planet undergoes runaway tidal migration as a result of the de-

creasing semi-major axis and increasing obliquity while following CS2.

• The inward migration stalls when the tidal torque becomes sufficiently strong

to destroy CS2.

Here, we evaluate the viability of the obliquity-driven migration scenario for

USPs using the general results presented earlier in this paper.

First, the spin evolution timescale for typical proto-USP parameters is

1
ts

= 1
1200 yr

(
1

4k

)(
2k2/Q
10−3

)(
M⋆

M⊙

)3/2 (
ρ

ρ⊕

)−1 ( a
0.035 AU

)−9/2
. (3.52)

where ρ is the density of the proto-USP, ρ⊕ is the density of the Earth, and we

have adopted the (approximately) largest possible value for a (the semi-major axis

of the proto-SE) to ensure that orbital decay can happen within the age of the

system (see Eq. 3.56). This is much shorter than the age of the system, and so the

proto-USP can quickly evolve into one of the stable tCE (either tCE1 or tCE2).
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Next, to determine which tCE the planet evolves into, we need to evaluate

ηsync (see Eq. 3.39). For simplicity, we consider the case where the proto-USP is

surrounded by a single external planetary companion with ap ≳ a (typical of Ke-

pler multi-planet systems) but with Lp ≫ L (this condition can easily be relaxed;

see Section 3.5.3). To account for such a close-by companion, Eq. (3.4) must be

modified to [see e.g. Lai and Pu, 2017]:

ωlp =
3mp

4M⋆

(
a
ap

)3
nf (α), (3.53)

where α= a/ap and

f (α)≡ b(1)
3/2(α)

3α
≈ 1+ 15

8
α2 + 175

64
α4 . . . (3.54)

with b(1)
3/2 the Laplace coefficient. With this modification, ηsync (Eq. 3.39) is given

by

ηsync = 0.011 f (α)
(

k
kq

)(
ρ

ρ⊕

)( a
0.035 AU

)3
cos I

×
( mp

10M⊕

)(
1.3a
ap

)3 (
M⋆

M⊙

)−2
, (3.55)

where we have normalized ap/a to 1.3 (corresponding to a period ratio Pp/P = 1.5),

for which f (α)≈ 5.5. As k/kq ∼ 1 (see footnote 1) for the close-in proto-USP, we have

ηsync ≲ 0.06, much less than ηc ∼ 1 under most conditions5. As such, if the initial

planetary obliquity is prograde, the planet is guaranteed to evolve into tCE1, and

not tCE2 (see Figs. 3.15, 3.18–3.19). If we assume instead a randomly oriented

initial planetary spin, Figs. 3.22–3.20 suggest that the probability of capture into

tCE2 is small (≲ 20%). A more sophisticated calculation including the effect of a

third planet does not greatly modify these results.

5One can make ηsync larger by choosing a larger initial value for a, e.g. a = 0.05 AU. However,
the planet would not be able to experience orbital decay for such a large value, see Eq. (3.56). Also
note that Kepler systems of SEs have adjacent period ratios in the range of 1.3–4 [Fabrycky et al.,
2014], corresponding to semi-major axis ratios of 1.2–2.5.
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The second stage of the proposed mechanism, runaway inward migration after

attaining tCE2, requires that the initial orbital decay timescale be sufficiently

fast. Evaluating Eq. (3.49) for the relevant physical parameters, we find

− ȧ
a
= 1

8×108 yr

(
1−Ωs

n
cosθ

)(
2k2/Q
10−3

)(
M⋆

M⊙

)3/2

×
(

m
M⊕

)−1 (
R

R⊕

)5 ( a
0.035 AU

)−13/2
. (3.56)

For ηsync ≪ ηc, Eqs. (3.41) imply that Ωs cosθ/n ≪ 1 in tCE2, so indeed the orbit

of the proto-USP is able to decay within the lifetime of the system. On the other

hand, in tCE1, ωs ≈ n and cosθ ≃ 1−η2
sync sin2 I/2, so ȧ/a is suppressed by a factor

of ∼ η2
sync sin2 I. This shows that a proto-USP in tCE1 is unable to initiate runaway

orbital decay within the age of the system. Note that this constraint also implies

ηsync (Eq. 3.55) cannot be increased by considering proto-USPs with larger values

of a, as the initial orbital decay will become too slow.

Finally, we compute the orbital separation at which tCE2 becomes unstable

when the tidal alignment torque is too strong. Evaluating Eq. (3.43), we find that

tCE2 breaks (ts ≲ ts,c) when the semi-major axis is smaller than abreak, where

abreak ≃
[ kq

k3 f 3(α)

]1/18 (
2k2

Q

)1/9 (
sin I cos2 I

)−1/9

×
(

M2
⋆

mpm

)1/6 (
Rap

)1/2

≃ 0.028 AU
(
2k2/Q
10−3

)1/9 (
sin I cos2 I

)−1/9
(

M⋆

M⊙

)1/3

×
( mp

10M⊕

)−1/6 (
ρ

ρ⊕

)−1/6 ( ap

0.05 AU

)1/2
, (3.57)

where we have used k ∼ kq ∼ 0.4 and α= 0.028/0.05. Once the system exits tCE2,

it rapidly evolves to tCE1, in which orbital decay is severely suppressed (Eq. 3.56).

This final orbital separation does not qualify as a USP (P ≲ day). To reduce abreak

to 0.0195 AU (corresponding to a 1 day orbital period for M⋆ = 1M⊙) would require

the value of ap/m1/3
p to be ∼ 2 times smaller than that adopted in Eq. (3.57) (e.g. for
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mp to be larger by a factor of 8 for the same ap). Note that observed USPs almost

always have ap/a≳ 3 [Steffen and Farr, 2013, Winn et al., 2018].

In summary, our results suggest that only proto-USPs with large primordial

obliquities have a nonzero probability of evolving into tCE2 initially6. More impor-

tantly, proto-USPs that successfully initiate runaway tidal migration after reach-

ing tCE2 will likely cease their inward migration before becoming a USP.

3.5.3 Orbital decay of WASP-12b Driven by Obliquity Tides

WASP-12b is a hot Jupiter (HJ) with mass m = 1.41MJ and radius R = 1.89RJ

orbiting a host star (with mass M⋆ = 1.36M⊙ and radius R⋆ = 1.63R⊙) on a P =
1.09 day (a = 0.023 AU) orbit [Hebb et al., 2009, Maciejewski et al., 2013]. Long-

term observations have revealed that its orbit is undergoing decay with P/Ṗ =
−3.2 Myr [Maciejewski et al., 2016, Patra et al., 2017, Patra et al., 2020, Turner

et al., 2021]. Such a rapid orbital decay puts useful constraints on the physics of

tidal dissipation in the host star [e.g. Weinberg et al., 2017, Barker, 2020].

Millholland and Laughlin [2019] considered the possibility that the measured

orbital decay of WASP-12b is caused by tidal dissipation in the HJ trapped in

a high-obliquity CS due to an undetected planetary companion. We now evalu-

ate the plausibility of this scenario. We begin with the planetary spin evolution

timescale, which is given by (see Eq. (4.16)):

1
ts

= 1
6000 yr

(
1

4k

)(
2k2/Q
10−6

)(
M⋆

1.36M⊙

)3/2

×
(

m
1.41MJ

)−1 (
R

1.89RJ

)3 ( a
0.023 AU

)−9/2
. (3.58)

6The probability is small even for isotropic primordial obliquities. This low probability may not
be an issue, as the occurence rate of USPs is only ∼ 0.5% around solar type stars [Sanchis-Ojeda
et al., 2014, Winn et al., 2018].
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Thus, the spin of WASP-12b has plenty of time to find a tCE. We also wish to

calculate ηsync, but there are two uncertainties: (i) the properties of the hypothet-

ical planet companion (mass mp) to WASP-12b are unknown, and it is likely that

Lp is smaller than L; and (ii) we should evaluate ηsync using the “primordial” /

initial value of a for WASP-12b at the start of its orbital migration, not neces-

sarily its present day value. Concerning (i), we express the precession of l̂ about

J= J ȷ̂ ≡L+Lp, the total angular momentum axis, as

dl̂
dt

=ωlp
J

Lp

(
l̂× ȷ̂

)
cos I, (3.59)

where ωlp is given by Eq. (3.53). Thus, we see that the precession frequency g in

Sections 3.2–3.4 is changed to (cf. Eq. 3.4)

g =−ωlp
J

Lp
cos I =− 3mp

4M⋆

(
a
ap

)3
nf (α)

J
Lp

cos I. (3.60)

Concerning (ii), we use the fiducial values for the initial semi-major axis ai =
0.038 AU and initial semi-major axis ratio ap/ai = 1.29, to be justified a posteriori.

Assuming J/Lp ≃ L/Lp (i.e. L ≫ Lp), we have

ηsync,i ≃
k

2kq

(
m

M⋆

)2 (
ai

ap

)7/2 (ai

R

)3
f (αi)cos I,

= 0.015 f (αi)
(

m
1.41MJ

)2 (
M⋆

1.36M⊙

)−2

×
( ai

0.038 AU

)3
( ap

1.29ai

)−7/2 (
R

1.89RJ

)−3
cos I, (3.61)

where we have used k/kq ≃ 1. For the adopted fiducial of ai and ap, αi = ai/ap and

f (αi)≃ 5.

We next work towards justifying these choices of fiducial parameters. There

are four physical and observational constraints on the “WASP-12b + companion”

system (see Fig. 3.24):

(i) The HJ must have had a sufficiently small initial semi-major axis such that

its orbital decay timescale is less than the age of the system. The orbital decay
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rate is given by

−
(

ȧ
a

)
i
= 1

Gyr

(
2k2/Q
10−6

)(
M⋆

1.36M⊙

)3/2 (
m

1.41MJ

)−1

×
(

R
1.89RJ

)5 ( ai

0.038 AU

)−13/2
(
1−Ωs

n
cosθ

)
. (3.62)

Thus, the initial semi-major axis for the HJ cannot exceed 0.038 AU even when

(1−Ωs cosθ/n)≈ 1.

(ii) The exterior planet must be sufficiently massive to keep the HJ in the

high-obliquity tCE2 today, i.e. the tCE2 must be stable under the influence of the

exterior planet. With the amended precession frequency |g| given by Eq. (3.60),

the stability of tCE2 requires (see Eq. 3.43)

1
ts
≲ωlp cos I

J
Lp

sin IJ

√
ηsync cos IJ

2
, (3.63)

where cos IJ ≡ l̂ · ȷ̂. Using sin IJ =
(
Lp/J

)
sin I ≪ 1 for L ≫ Lp, this yields

ap

a
≲

[
(kf (α))3/2

k1/2
q

sin I cos3/2 I
Q

2k2

mpm2

M3
⋆

( a
R

)9/2
]4/19

≃ 3.5
[

k3 f 3(α)
kq

]2/19 (
sin I cos3/2 I

)4/19
(

m
1.41MJ

)8/19

×
( mp

80M⊕

)4/19 (
M⋆

M⊙

)−12/19 (
2k2/Q
10−6

)−4/19

×
( a
0.023 AU

)18/19
(

R
1.89RJ

)−18/19
, (3.64)

where in the second equality, we have used the currently observed values for a,

m, R, and M⋆, and have set
(
k3 f 3/kq

)2/19 ≃ 1.

(iii) The RV signal of the exterior planet must be smaller than the residuals

of the published RVs, ∼ 16 m/s [Hebb et al., 2009, Husnoo et al., 2011, Knutson

et al., 2014, Bonomo et al., 2017]. This requires

( ap

0.076 AU

)−1/2 ( mp

80M⊕

)(
M⋆

1.36M⊙

)−1/2 (sin ip

1/
p

2

)
≲ 1, (3.65)
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where ip is the line-of-sight inclination angle of mp. Here, we have taken ap to be

the maximum value (3.3×0.023 AU) permitted by Eq. (3.64). For these extreme

values of ap and mp, we still have Lp/L ≃ 0.4, and so L ≫ Lp is satisfied for the

permitted parameter space.

(iv) Finally, we require that the initial orbital configuration of the two planets

be dynamically stable. We use the Hill stability criterion [e.g. Gladman, 1993,

Petit et al., 2020],

ap −ai > 2
p

3
(ap +ai

2

)(m+mp

3M⋆

)1/3
. (3.66)

Assuming mp ≪ m, this yields
ap

ai
> 1.29. (3.67)

The combination of the two constraints in Eqs. (3.62, 3.67) justify the fiducial

parameters used in Eq. (3.64).

We next address the implications of the rather small “initial” ηsync value found

in Eq. (3.61). When evaluating ηsync,i, it is possible that R is larger today than its

“primordial” value (at semi-major axis ai > a) due to inflation induced by increased

stellar irradiation. However, if a smaller value of R is used in Eq. (3.61), the value

of ai must also be decreased such that R5/a13/2
i is constant in order to maintain

the same (ȧ/a)i (see Eq. 3.62), which further decreases ηsync,i.

For ηsync,i ∼ 0.075 (corresponding to the fiducial parameters used in Eq. 3.61),

we can infer that prograde primordial obliquities will evolve towards tCE1 (see

Figs. 3.15, 3.20–3.21). On the other hand, if the primordial obliquity of the HJ

is assumed to be isotropically distributed, then Fig. 3.20 suggests that the proba-

bility of entry into tCE2 is ≲ 25% even if the perturbing planet is misaligned by

IJ ∼ I ∼ 20◦. In reality, sin IJ =
(
Lp/J

)
sin I ≪ sin I for Lp ≪ L, so the probability is

likely much smaller (see Eq. 3.47 with I replaced by IJ).
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Figure 3.24 illustrates the joint constraints on the possible companion to WASP-

12b and the resulting range of ηsync,i values. These small ηsync,i values suggest

that capture of WASP-12b into the high-obliquity tCE2 is unlikely from either an

isotropic or prograde-favoring initial obliquity distribution, and the observed or-

bital decay of WASP-12b is unlikely to be driven by obliquity tides in the planet.

For obliquity tides to be operating today, we would have to imagine a scenario

where dynamical effects when the WASP-12b system was young may have prefer-

entially generated tCE2-producing systems, i.e. systems with θi ≃ 90◦. While the

scenario considered by Millholland and Batygin [2019] and Su and Lai [2020] with

an exterior, dissipating protoplanetary disk does not directly apply here due to the

slow disk dispersal time scale, a similar effect (decreasing η) can be accomplished

by simultaneous disk-driven migration of an inner HJ and exterior companion.

The exploration of such a scenario in the context of HJ formation is beyond the

scope of this paper.

3.6 Summary and Discussion

We have presented a comprehensive study on the evolution of a planet’s spin

(both magnitude and direction) due to the combined effects of tidal dissipation

and gravitational interaction with an exterior companion/perturber. This paper

extends our previous study [Su and Lai, 2020] of Colombo’s Top (“spin + compan-

ion” system) to include dissipative tidal effects, for which we have adopted the

weak friction theory of the equilibrium tide. Our paper contains several new gen-

eral theoretical results that can be adapted to various situations, as well as three

applications to exoplanetary systems of current interest.

We summarize our general theoretical results and provide a guide to the key
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Figure 3.24: Constraints on the companion of WASP-12b and the values of ηsync,i
(Eq. 3.61) in the obliquity tidal decay scenario. The right dashed line is from
Eq. (3.64), required for the current system to be locked in a stable tCE2; the left
vertical line is from Eq. (3.67), required for the dynamical stability of the “primor-
dial” system; the red line is from Eq. (3.65). The probability of capture into tCE2
(starting from a isotropic distribution of spin orientation) is proportional to η1/2

sync,i
(see Eq. 3.47 with I replaced by IJ, and note that IJ ≪ 1 for the WASP-12b sys-
tem). The plot adopts the largest possible value of ai (= 0.038 AU> 0.023 AU= a);
using a smaller ai would significantly reduce ηsync,i, making capture into tCE2
even less likely.
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equations and figures as follows:

1. In the presence of a spin-orbit alignment torque (such as that arising from

tidal dissipation), our linear analysis (Section 3.3.2) shows explicitly that

only two of the equilibrium spin orientations (called “Cassini States”, CSs)

are stable and attracting (see Fig. 3.1): the “simple” CS1 (which typically has

a low obliquity) and the “resonant” CS2 (which can have a large obliquity).

The latter arises from the spin-orbit resonance, which occurs when the spin

precession frequency of the planet is comparable to the orbital precession

frequency driven by the companion. However, when the alignment torque

is too strong (or the alignment timescale tal too short), the CSs themselves

can be significantly modified. In particular, when tal is shorter than a criti-

cal value (of order the planet’s orbital precession period; see Eq. 3.13), CS2

becomes destabilized and ceases to exist.

2. We compute the long-term evolution of the planetary spin obliquity driven by

the alignment torque for an arbitrary initial spin orientation (Section 3.3.3).

When neglecting the evolution of the planet’s spin magnitude, which im-

plies that the spin and orbital precession frequencies α, g (see Eqs. 4.4–3.4)

and the ratio η = −g/α are held constant, the asymptotic outcomes of the

obliquity evolution (CS1 or CS2) can be analytically determined from the

initial spin orientation (see Fig. 3.5), and we have obtained a new analytical

expression for the probability of resonance capture into CS2 (Eq. 3.30 and

Fig. 3.7).

3. In general, tidal torques act on both the obliquity and magnitude of the

planetary spin, thus the ratio η = −g/α (which determines the phase-space

structure of the system) evolves in time. Still, there are at most two equi-

librium configurations (spin magnitude and obliquity) that are stable under
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the effect of tidal dissipation. We call these tidal Cassini Equilibria (tCE;

see Fig. 3.8). The locations of these equilibria are determined by the system

architecture and are parameterized by ηsync (Eq. 3.39), the ratio η evaluated

for Ωs = n (fully synchronized spin rate).

4. We show that if tCE1 exists (which requires ηsync < ηc, where ηc is given

by Eqs. 3.7; Section 3.4.1), which tCE a given initial planetary spin configu-

ration asymptotically evolves towards depends on which of the phase space

zones (see Fig. 3.2) the initial spin orientation belongs to (see Figs. 3.15–

3.17): (i) If the spin originates in zone I, then it generally evolves towards

tCE1 (unless ηsync very near ηc, e.g. see Fig. 3.17); (ii) if the spin originates in

zone II, then it evolves towards tCE2 (which has a nontrivial obliquity); and

(iii) if the spin originates in zone III, the outcome is generally probabilistic.

5. For initial conditions in zone III, the probability of approaching either tCE

can be determined by careful study of the dynamics upon separatrix en-

counter (Sections 3.3.4 and 3.4.3); Figs. 3.18 and 3.19 give two example re-

sults. Assuming that the initial spin orientation is isotropically distributed,

we have computed the overall probability of the system evolving into tCE2

as a function of ηsync: Figs. 3.20 and 3.21 give the results for two different

planet mutual inclinations, and Eq. (3.47) gives an approximate analytical

expression valid for ηsync ≪ 1.

Applying our general theoretical results to three types of exoplanetary sys-

tems, our key findings are (see Section 3.5):

1. We show that over a wide range of parameter space, a super Earth (SE)

with an exterior cold Jupiter companion (or other types of companions with a

similar mp/a3
p) has a substantial probability of being trapped in a permanent
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tCE2 with a significant obliquity, assuming that SEs have a wide range of

primordial obliquities (e.g. due to giant impacts or collisions).

2. We show that, in general, the formation of ultra-short-period planets (USPs)

via runaway orbital decay driven by obliquity tides is difficult due to the low

probability of capture into the high-obliquity tCE2. More importantly, proto-

USPs that happen to be captured into tCE2 and initiate runaway tidal mi-

gration will likely break away from tCE2 and cease their inward migration

before becoming a USP.

3. The hot Jupiter WASP-12b is unlikely to be undergoing enhanced orbital

decay due to obliquity tides, as the capture into tCE2 has a low probability

or requires rather special initial conditions.

Finally, we mention some possible caveats of our study. We have adopted dis-

sipative tidal torques according to the (parameterized) weak friction theory of the

equilibrium tide. Other mechanisms of tidal dissipation may be dominant, de-

pending on the internal property of the planet and the nature of tidal forcing [e.g.

Papaloizou and Ivanov, 2010, Ogilvie, 2014, Storch and Lai, 2013]. We expect that,

with proper parameterization and rescaling, our theoretical results presented in

Sections 3.3–3.4 are largely unaffected by the details of the tidal model. In any

case, a different tidal model is amenable to the same analysis as presented in this

paper: The tCEs can still be found by an analysis similar to that shown in Fig. 3.8,

and the probabilistic outcome of a separatrix encounter can still be solved using

the techniques developed in Sections 3.3.4 and 3.4.3.

Some of results presented in Section 3.4, such as Figs. 3.20–3.22, pertain to

the probabilistic outcomes of an initially isotropic distribution of spin orienta-

tions, assuming that giant impacts or planet collisions effectively randomize a

planet’s primordial spin. More physically accurate distributions can be used in
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the case of planetary mergers [Li and Lai, 2020] or many smaller impacts [Dones

and Tremaine, 1993]. Figures 3.20–3.21 can be updated accordingly by convolving

any initial obliquity distribution with the tCE2 capture probability distributions,

such as those shown in the right panels of Figs. 3.15–3.17 or the upper panels

of Figs. 3.18–3.19. The qualitative results are unlikely to change, though the de-

tailed probabilities for tCE2 capture can increase (decrease) if the initial obliquity

distribution favors (disfavors) θi ≈ 90◦ compared to the isotropic distribution.
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CHAPTER 4

DYNAMICS OF COLOMBO’S TOP: NON-TRIVIAL OBLIQUE SPIN

EQUILIBRIA OF SUPER-EARTHS IN MULTI-PLANETARY SYSTEMS

Originally published in:

Yubo Su and Dong Lai. Dynamics of Colombo’s Top: Non-trivial oblique spin equi-

libria of super-Earths in multi-planetary systems. MNRAS, 2022a

4.1 Introduction

The obliquity of a planet, the angle between the spin and orbital axes, plays an

important role in the atmospheric dynamics, climate, and potential habitability

of the planet. For instance, the atmospheric circulation of a planet changes dra-

matically as the obliquity increases beyond 54◦, as the averaged insolation at the

poles becomes greater than that at the equator [Ferreira et al., 2014, Lobo and

Bordoni, 2020]. Variations in insolation over long timescales can also affect the

habitability of an exoplanet [Spiegel et al., 2010, Armstrong et al., 2014]. In the

Solar System, planetary obliquities range from nearly zero for Mercury and 3.1◦

for Jupiter, to 23◦ for Earth and 26.7◦ for Saturn, to 98◦ for Uranus. The obliquities

of exoplanets are challenging to measure, and so far only loose constraints have

been obtained for the obliquities of faraway planetary-mass companions [Bryan

et al., 2020, 2021]. Nevertheless, there are prospects for better constraints on exo-

planetary obliquities in the coming years [Snellen et al., 2014, Bryan et al., 2018,

Seager and Hui, 2002]. Substantial obliquities are of great theoretical interest for

their proposed role in explaining peculiar thermal phase curves of transiting plan-

ets [Adams et al., 2019, Ohno and Zhang, 2019] and various other open dynamical

puzzles [Millholland and Laughlin, 2018, 2019, Millholland and Spalding, 2020,

Su and Lai, 2021].
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The obliquity of a planet reflects its dynamical history. Some obliquities could

be generated in the earlest phase of planet formation, when/if proto-planetary

disks are turbulent and twisted [Tremaine, 1991, Jennings and Chiang, 2021].

Large obliquities are commonly attributed to giant impacts or planet collisions

as a result of dynamical instabilities of planetary orbits [Safronov and Zvjagina,

1969, Benz et al., 1989, Korycansky et al., 1990, Dones and Tremaine, 1993, Mor-

bidelli et al., 2012, Li and Lai, 2020, Li et al., 2021]. Repeated planet-planet

scatterings could also lead to modest obliquities [Hong et al., 2021, Li, 2021]. Sub-

stantial obliquity excitation can be achieved over long (secular) timescales via

spin-orbit resonances, when the spin precession and orbital (nodal) precession fre-

quencies of the planet become comparable [Ward and Hamilton, 2004, Hamilton

and Ward, 2004, Ward and Canup, 2006, Vokrouhlickỳ and Nesvornỳ, 2015, Mill-

holland and Batygin, 2019, Saillenfest et al., 2020, Su and Lai, 2020, Saillenfest

et al., 2021]. Such resonances are likely responsible for the obliquities of the So-

lar System gas giants and may have also played a role in generating obliquities

of ice giants [Rogoszinski and Hamilton, 2020]. For terrestrial planets, multiple

spin-orbit resonances and their overlaps can make the obliquity vary chaotically

over a wide range [Laskar and Robutel, 1993, Touma and Wisdom, 1993, Correia

et al., 2003].

A large fraction (30−90%) of Sun-like stars host close-in super Earths (SEs),

with radii 1−4R⊕ and orbital distances ≲ 0.5 AU, mostly in multi-planetary (≥ 3)

systems [e.g. Lissauer et al., 2011, Howard et al., 2012, Zhu et al., 2018, Sandford

et al., 2019, Yang et al., 2020, He et al., 2021]. In these systems, the SE orbits are

mildly misaligned with mutual inclinations ∼ 2◦ [Lissauer et al., 2011, Tremaine

and Dong, 2012, Fabrycky et al., 2014], which increase as the number of planets

in the system decreases [Zhu et al., 2018, He et al., 2020]. In addition, ∼ 30–40%

of the SE systems are accompanied by cold Jupiters [CJs; masses ≳ 0.5MJ and
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semi-major axes ≳ 1 AU Zhu and Wu, 2018, Bryan et al., 2019] with significantly

inclined (≳ 10◦) orbits relative to the SEs [Masuda et al., 2020].

SEs are formed in gaseous protoplanetary disks, and likely have experienced

an earlier phase of giant impacts and collisions following the dispersal of disks

[e.g. Liu et al., 2015b, Inamdar and Schlichting, 2016, Izidoro et al., 2017]. As a

result, the SEs’ initial obliquities are expected to be broadly distributed [Li and

Lai, 2020, Li et al., 2021]. However, due to the proximity of these planets to their

host stars, tidal dissipation can change the planets’ spin rates and orientations

substantially within the age of the planetary system. Indeed, the tidal spin-orbit

alignment timescale is given by

tal ≃ (30 Myr)
(
Q/2k2
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)(
M⋆

M⊙

)−3/2

×
(

m
4m⊕

)(
R

2R⊕

)−3 ( a
0.4 AU

)9/2
, (4.1)

where m, R, k2, Q, and a are the planet’s mass, radius, tidal Love number, tidal

quality factor, and semi-major axis respectively, and M⋆ is the stellar mass. In a

previous paper [Su and Lai, 2021], we have studied the combined effects of spin-

orbit resonance and tidal dissipation in a two-planet system (i.e. a SE with a com-

panion), and showed that the planet’s spin can only evolve into to two possible

long-term equilibria (“Tidal Cassini Equilibria”), one of which can have a signif-

icant obliquity. In this paper, we extend our analysis to three-planet systems

consisting of either three SEs or two SEs and a CJ. In addition to the equilib-

ria analogous to those of the two-planet case, we discover a novel class of oblique

spin equilibria unique to multi-planet systems. Such equilibria can substantially

increase the occurrence rate of oblique SEs in these architectures.

This paper is organized as follows. In Section 4.2, we summarize the evolution

of a SE in a multi-planetary system. In Section 4.3, we introduce a tidal alignment
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torque that damps the SE’s obliquity and investigate the resulting steady-state be-

havior. In Section 4.4, we evolve both the SE spin rate and orientation according

to weak friction theory of the equilibrium tide. We show that the qualitative dy-

namics are similar to the simpler model studied in Section 4.3. We summarize

and discuss in Section 4.5.

4.2 Spin Equations of Motion

The unit spin vector Ŝ of an oblate planet orbiting a host star precesses around

the planet’s unit angular momentum L̂ following the equation

dŜ
dt

=α(
Ŝ · L̂)(

Ŝ× L̂
)
, (4.2)

where the characteristic spin-orbit precession frequency α is given by

α= 3GJ2mR2M⋆

2a3CΩs
= 3kq

2k
M⋆

m

(
R
a

)3
Ωs

= 1
150 yr

(kq

k

)(
M⋆

M⊙

)3/2
(4.3)

×
(

m
2M⊕

)−1 (
R

1.2R⊕

)3 ( a
0.1 AU

)−9/2 Ωs

n
. (4.4)

In Eq. (4.4),Ωs is the rotation rate of the planet, C = kmR2 is its moment of inertia

(with k the normalized moment of inertia), J2 = kqΩ
2
s (R3/Gm) (with kq a constant)

is its rotation-induced (dimensionless) quadrupole moment, and n ≡
√

GM⋆/a3 is

its mean motion. For a SE, we adopt k ∼ kq ∼ 0.3 [e.g. Groten, 2004, Lainey, 2016].

The orbital axis L̂ also evolves in time, precessing and nutating about the

total angular momentum axis of the exoplanetary system, which we denote by

Ĵ. When there are just two planets, this precession is uniform (with rate g and

constant inclination angle between L̂ and Ĵ), and the spin dynamics of the planet

is described by the well-studied “Colombo’s Top” system [Colombo, 1966, Peale,
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1969, 1974, Ward, 1975, Henrard and Murigande, 1987]. The spin equilibra of

this system are termed “Cassini States” (CSs), and the number of CSs and their

obliquities depend on the ratio η ≡ |g| /α. In the presence of a tidal spin-orbit

alignment torque, up to two equilibria are stable and attracting, as shown in [Su

and Lai, 2021; see also Fabrycky et al., 2007, Levrard et al., 2007, Peale, 2008]:

for η≫ 1, only CS2 is stable, with Ŝ nearly aligned with Ĵ; for η≲ 1, Ŝ can evolve

towards two possible states, the “trivial” CS1 with a small spin-orbit misalignment

angle θsl, or the “resonant” CS2 with significant θsl (which approaches 90◦ for

η≪ 1).

When the SE is surrounded by multiple companions, the precession of L̂ oc-

curs on multiple characteristic frequencies [see Murray and Dermott, 1999]. In

this case, the spin dynamics given by Eq. (4.2) is complex and can lead to chaotic

behavior [e.g. the chaotic obliquity evolution of Mars Laskar and Robutel, 1993,

Touma and Wisdom, 1993]. But what is the final equilibrium state of Ŝ in the

presence of tidal alignment? In this paper, we focus on the case where the SE has

two planetary companions. If the mutual inclinations among the three planets are

small, then the explicit solution for L̂(t) can be written as [Murray and Dermott,

1999]

I ≡ I exp(iΩ)

= I(I) exp
[
ig(I)t+ iφ(I)

]+ I(II) exp
[
ig(II)t+ iφ(II)

]
, (4.5)

L̂=ℜ (I )X̂+ℑ (I )Ŷ+
√

1−|I |2 Ẑ. (4.6)

Here, I is the inclination of L̂ relative to Ĵ, I is the complex inclination, the

quantities I(I,II), g(I,II) and φ(I,II) are the amplitudes, frequencies, and phase offsets

of the two inclination modes, indexed by (I) and (II), and the Cartesian coordinate

system XY Z is defined such that Ĵ = Ẑ. Without loss of generality, we denote

mode I as the dominant mode, with I(I) ≥ I(II). For simplicity, we fix φ(I) =φ(II) = 0.
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4.3 Steady States Under Tidal Alignment Torque.

Since SEs are close to their host stars, tidal torques tend to drive Ŝ towards align-

ment with L̂ and Ωs towards synchronization with the mean motion (see Eq. 4.1).

As the evolution of Ωs also changes α (Eq. 4.4) and the underlying phase-space

structure, we first consider the dynamics when ignoring the spin magnitude evo-

lution. In this case, the planet’s spin orientation experiences an alignment torque,

which we describe by (
dŜ
dt

)
al
= 1

tal
Ŝ× (

L̂× Ŝ
)
, (4.7)

where tal is given by Eq. (4.1). Note that tal is significantly longer than all preces-

sion timescales in the system.

With two precessional modes for L̂(t), we expect that the tidally stable spin

equilibria (steady states) correspond to the stable, attracting CSs for each mode,

when they exist. In other words, if we denote the CS2 corresponding to mode I by

CS2(I), then we expect that the tidally stable equilibria are among the four CSs:

CS1(I) (if it exists), CS2(I), CS1(II) (if it exists), and CS2(II). The corresponding

CS obliquities θsl ≡ cos−1(Ŝ · L̂) are given by

αcosθsl =−g(I,II)
(
cos I(I,II) +sin I(I,II) cotθsl cosφsl

)
, (4.8)

where the azimuthal angle φsl of Ŝ around L̂ is φsl = 0 (corresponding to Ŝ and Ĵ

being coplanar but on opposite sides of L̂) for CS1 and φsl = π for CS2 [note that

because of the tidal alignment torque, the actual φsl value is slightly shifted from

0 or π; see Su and Lai, 2021].

To confront this expectation, we integrate Eqs. (4.2), (4.6), and (4.7) numeri-

cally starting from various spin orientations. Figure 4.1 shows two evolutionary

trajectories for a system with I(I) = 10◦, I(II) = 1◦,
∣∣g(I)

∣∣ = 0.1α, and
∣∣g(II)

∣∣ = 0.01α.
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Such a system can be realized, for instance, by three SEs with masses M⊕, 3M⊕,

and 3M⊕ and semi-major axes 0.1 AU, 0.15 AU, and 0.4 AU (see the left panels of

Fig. C.1 in the Appendix1). We see that the initially retrograde spin is eventually

captured into a steady state centered around CS1 or CS2 of the dominant mode

(i.e. mode I), with φsl librating around 0 or π, respectively. The small oscillation of

the final θsl is the result of perturbations from mode II.

In addition to CS1(I) and CS2(I), we find that the spin can also settle down

into other equilibria (steady states) with different librating angles. In general, we

define the resonant phase angle

φres ≡φsl − grest. (4.9)

The examples shown in Fig. 4.1 correspond to gres = 0. In Fig. 4.2, we show three

evolutionary trajectories (with three different initial spin orientations) of a system

with the same parameters as in Fig. 4.1 but with g(II) = −α. Such a system can

be realized, for instance, by two warm SEs orbited by a cold Jupiter (see the right

panels of Fig. C.3 in the Appendix where a3 is small). Among these three exam-

ples, the first is captured into a resonance with gres = 0 [i.e. CS2(I)], the second

is captured into a resonance with gres =∆g ≡ g(II) − g(I), and the third is captured

into a resonance with gres =∆g/2.

To explore the regimes under which various resonances are important, we nu-

merically determine [by integrating Eqs. (4.2), (4.6), and (4.7)] the final spin equi-

libria (steady states) for systems with different mode parameters (I(I), I(II), g(I),

and g(II)), starting from all possible initial spin orientations. Fig. 4.3 shows some

examples of such a calculation for I(I) = 10◦, I(II) = 1◦, g(I) = −0.1α (the same as

1Note that the mode amplitudes I(I) and I(II) in Fig. C.1 are closer in magnitude than the case
we consider here. We exaggerate the inclination hierarchy for a more intuitive physical picture,
and explore the case where the modes are of comparable amplitudes later in the paper and in
Appendix C.2.
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Figure 4.1: Two evolutionary trajectories of Ŝ showing capture into mode I reso-
nances (CSs). In both cases, the mode parameters describing the evolution of L̂
(see Eq. 4.6) are I(I) = 10◦, I(II) = 1◦, g(I) =−0.1α, and g(II) = 0.1g(I), while the ini-
tial spin orientations differ. In the top group of plots showing capture into CS1(I)
[i.e. Cassini State 1 of mode I], the left four panels show the evolution of the spin
obliquity θsl and the resonant phase angle φres; in this case, φres equals φsl, the
azimuthal angle of Ŝ around L̂, defined so that φsl = 0 corresponds to Ŝ and Ĵ be-
ing coplanar with L̂ but on opposite sides of L̂. The horizontal black dashed line
shows the theoretically predicted obliquity of CS1(I), given by Eq. (4.8). The right
panel shows the final steady-state spin axis projected onto the orbital plane (per-
pendicular to L̂). In these coordinates, L̂ (black dot) is stationary, while Ĵ (green
line) librates with a fixed orientation, and Ŝ is shown in blue. The bottom group
of panels shows the same but for capture into the CS2(I) resonance.
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Figure 4.2: Three evolutionary trajectories for a system with the same parame-
ters as in Fig. 4.1, except for g(II) = −α = 10g(I). The three examples correspond
to capture into CS2(I) (with φres = φsl), a resonance with φres = φsl −∆gt [correp-
sonding to CS2(II)], and a “mixed mode” resonance with φres = φsl −∆gt/2, where
∆g = g(II)− g(I). In the bottom two groups of plots, φsl is not the resonant angle, so
the spin axis encircles L̂ in the top-right plots. For these two cases, we also display
in the bottom-right panels the projection of the steady-state spin axis onto the L̂
plane but with φres as the azimuthal angle. In these two panels, Ĵ encircles L̂ (as
shown by the green ring), but the spin can be seen not to encircle L̂, indicating that
φres is indeed librating. Finally, for the mixed-mode example (bottom group), the
vertical red lines in the bottom-middle panel are separated by 2π/ |gres| = 4π/ |∆g|,
denoting the period of oscillation in θsl.
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in Figs. 4.1–4.2), but with the four different values of g(II) = {0.1,2.5,3.5,10}× g(I).

We identify three qualitatively different regimes:

• When
∣∣g(II)

∣∣ ≪ ∣∣g(I)
∣∣ (top-left panel of Fig. 4.3), mode II serves as a slow,

small-amplitude perturbation to the dominant mode I, and the spin evo-

lution is very similar to that studied in Su and Lai [2021]: prograde ini-

tial conditions (ICs) outside of the mode-I resonance evolve towards CS2(I),

ICs inside the resonance evolve to CS2(I), and retrograde ICs outside of the

mode-I resonance reach one of the two probabilistically.

• When
∣∣g(II)

∣∣ ∼ ∣∣g(I)
∣∣ (see the top-right and bottom-left panels of Fig. 4.3),

the resonances corresponding to the two modes overlap, chaotic obliquity

evolution occurs [see Touma and Wisdom, 1993, Laskar and Robutel, 1993],

and we expect that CS2(I) becomes less stable2. Indeed we see that in this

regime, fewer ICs evolve into the high-obliquity CS2(I) equilibrium of the

dominant mode I, and most ICs lead to the low-obliquity CS1(I).

• When
∣∣g(II)

∣∣ ≫ ∣∣g(I)
∣∣ (see the bottom-right panel of Fig. 4.3), the separatrix

for mode II does not exist, we see that all ICs inside the separatrix of mode

I again converge successfully to CS2(I), and CS2(II) becomes the preferred

low-obliquity equilibrium. Additionally, a narrow band of ICs with cosθsl,0 ∼
0.6 and some other scattered ICs with cosθsl,0 ≲ 0.6 evolve to the mixed-

mode equilibrium with gres = ∆g/2, which has θeq ≈ 60◦. A second mixed-

mode resonance with gres =∆g/3 is also observed (with θeq ≈ 67◦) for a sparse

set of ICs.

Towards a better understanding of how systems are captured into these mixed-
2An more precise resonance overlap condition can be obtained by comparing the separatrix

widths, as the mode-II resonance is much narrower even when g(I) = g(II). Such a condition would
require g(I) sin I(I) ∼ g(II) sin I(II). Thus, the onset of chaos due to resonance overlap occurs some-
where in the range I(II)/I(I) ≲ g(II)/g(I) ≲ 1.
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Figure 4.3: Asymptotic outcomes of spin evolution driven by tidal alignment
torque for different initial spin orientations (described by θsl,0 and φsl,0) for a sys-
tem with I(I) = 10◦, I(II) = 1◦, α = 10

∣∣g(I)
∣∣, and g(II) = {0.1,2.5,3.5,10}× g(I) in the

top-left, top-right, bottom-left, and bottom-right panels respectively (as labeled).
Each dot represents an initial spin orientation, and the coloring of the dot indi-
cates which Cassini State (CS) and which mode (legend) the system evolves into.
The obliquity and φsl values of the mode-I CSs are labeled as the circled stars,
with the same colors as in the legend. The obliquities of the other equilibria are
labeled as the boxed stars at the left edges of the right-bottom panel, with the
same colors as in the legend; a small, arbitrary offset in φsl is added to reflect the
fact that these equilibria do not have fixed φsl values. The separatrices for the
mode I and mode II resonances are given in the black and blue lines respectively.
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Figure 4.4: Same as the bottom right panel of Fig. 4.3 but zoomed-in to a narrow
range of initial obliquities near θeq ≈ 57◦ (horizontal dashed line) for the gres =
∆g/2 mixed mode equilibrium as predicted by Eq. (4.15). The horizontal dash-
dotted lines indicate the amplitude of oscillation of the mode (see Fig. 4.2). It is
clear that there are two basins of attraction for this mixed-mode resonance near
φsl,0 = 0 and φsl,0 = 180◦.

mode equilibria, we numerically calculate the “basin of attraction” by repeating

the procedure for producing Fig. 4.3 but instead use a fine grid of ICs with θsl,0

near the average obliquity of the equilibrium. This results in a “zoomed-in” ver-

sion of the bottom-right panel of in Fig. 4.3 and doubles as a numerical stability

analysis of the equilibrium. Figure 4.4 shows the result of this procedure applied

to the gres =∆g/2 resonance, where we have zoomed in to θsl,0 near the θeq ≈ 60◦

associated with the resonance. We see that the resonance is reached consistently

from some well-defined regions in the
(
θsl,φsl

)
space.

Figure 4.5 summarizes the equilibrium obliquities θeq of various resonances

achieved for the system depicted in the bottom-right panel of Fig. 4.3. For a tra-

jectory that reaches a particular equilibrium, we compute θeq = 〈θsl〉 by averaging

over the last 100/max
(∣∣g(I)

∣∣ , |∆g|) of the integration. We obtain the corresponding

“resonance” frequency by gres ≃
〈
φ̇sl

〉
.
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In fact, the relation between θeq and gres can be described analytically. We

consider the equation of motion in the rotating frame where L̂= ẑ is constant and

Ĵ lies in the xz plane (i.e. Ĵ=−sin Ix̂+cos Iẑ):(
dŜ
dt

)
rot

=α(
Ŝ · L̂)(

Ŝ× L̂
)+ Ŝ× (

Ω̇Ĵ+ İŷ
)
. (4.10)

Let Ŝ= sinθsl
(
cosφslx̂+sinφslŷ

)+cosθslẑ. The evolution of φsl then follows

dφsl

dt
= −αcosθsl − Ω̇

(
cos I +sin I cotθsl cosφsl

)
− İ cotθsl sinφsl. (4.11)

Note that the single-mode CSs satisfy Eq. (4.11) where Ω̇ = g, İ = 0, and φsl is

either equal to 0◦ or 180◦ (Eq. 4.8). For the general, two-mode problem, if φres =
φsl − grest is a resonant angle, then it must satisfy〈

dφres

dt

〉
=

〈
dφsl

dt

〉
− gres = 0, (4.12)

where the angle brackets denote an average over a libration period. Since φsl

circulates when gres ̸= 0,
〈
cosφsl

〉 = 〈
sinφsl

〉 = 0. Furthermore, if I(II)/I(I) ≡ ϵ≪ 1,

we can expand Eq. (4.5) to obtain

Ω̇= g(I) +∆gϵcos(∆gt)+O
[
ϵ2] , (4.13)

I = I(I)
(
1+ϵcos(∆gt)+O

[
ϵ2]) , (4.14)

where ∆g ≡ g(II) − g(I). To leading order, we have Ω̇≃ g(I) and I ≃ I(I), so Eq. (4.11)

reduces to

αcosθeq ≃−g(I) cos I(I) − gres. (4.15)

This is Eq. (4.15) in the main text, and is shown in Fig. 4.5. Good agreement be-

tween the analytic expression and numerical results is observed. Note that setting

gres =∆g in Eq. (4.15) does not yield the mode II CSs, as the mode I inclination is

still being used, and the φsl terms are averaged out in the mixed mode calculation

while being nonzero in the CS obliquity calculation.
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Figure 4.5: “Equilibrium” obliquity as a function of the resonant frequency
(Eq. 4.9) for a system with I(I) = 10◦, I(II) = 1◦, α = 10

∣∣g(I)
∣∣, and g(II) = 10g(I) (cor-

responding to the bottom-right panel of Fig. 4.3). The green line is the analytical
result given by Eq. (4.15). The error bars denote the amplitude of oscillation of
θsl when the spin has reached a steady state (e.g. Figs. 4.1–4.2). The blue crosses
denote the CSs for the two inclination modes.

The four systems shown in Fig. 4.3 demonstrate that the characteristic spin

evolution depends strongly on the ratio g(II)/g(I). To understand the transition

between these different regimes, we vary g(II) over a wide range of values (while

keeping the other parameters the same as in Fig. 4.3). For each g(II), we nu-

merically determine the steady-state (equilibrium) obliquities and compute the

probability of reaching each equilibrium by evolving 3000 initial spin orienta-

tions drawn randomly from an isotropic distribution. Figure 4.6 shows the result.

Two trends can be seen: the probability of long-lived capture into the CS2(I) res-

onance decreases as
∣∣g(II)

∣∣ is increased from
∣∣g(II)

∣∣ ≪ ∣∣g(I)
∣∣ to

∣∣g(II)
∣∣ ∼ ∣∣g(I)

∣∣, and

mixed-mode resonances become significant, though non-dominant, outcomes for∣∣g(II)
∣∣≫ ∣∣g(I)

∣∣.
Having discussed how the spin evolution changes when g(II) is varied, we now

explore the effect of different values of I(II). In Fig. 4.7, we display the final out-
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Figure 4.6: Final outcomes of spin evolution under tidal alignment torque for a
3-planet system with inclination mode parameters I(I) = 10◦, I(II) = 1◦, α= 10

∣∣g(I)
∣∣

(same as Figs. 4.1–4.5) and varying g(II)/g(I). The top panel shows the probability
of each of the possible steady-state outcomes for 3000 initial spin orientations
sampled from an isotropic distribution. The vertical dashed line shows the value
of

∣∣g(II)
∣∣ above which CS1(II) no longer exists. The bottom panel shows the final

equilibrium obliquities (open black circles) for each g(II)/g(I). For the mixed-mode
resonances (gres ̸= 0,∆g), the equilibrium obliquities are given by Eq. (4.15) and
are shown as the solid green and purple lines for the labeled values of gres. The
other lines are the equilibrium θeq for “pure” CSs (as labeled), whose equilibria
satisfy Eq. (4.8). Not all observed mixed-mode resonances are plotted (e.g. for
g(II) = 7.5g(I), there is an outcome with gres/∆g = 3/4).
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Figure 4.7: Same as Fig. 4.3 but for I(II) = 3◦.

comes as a function of the initial spin orientation for the same g(II) values as in

Fig. 4.3, but for I(II) = 3◦. Comparing the bottom-left panels of Figs. 4.3 and 4.7

(with g(II) = 3.5g(I)), we find that the favored low-obliquity CS changes from CS1(I)

to CS1(II) when using I(II) = 3◦. In both cases, CS2(I) is destabilized such that most

initial conditions converge to the low-obliquity CS, either CS1(I) or CS1(II). In the

bottom-right panel, we find that many initial conditions converge to other mixed

modes than the gres =∆g/2 mode. The values of gres observed for the system are

shown in Fig. 4.8, where we find that many low-order rational multiples of gres/∆g

are obtained. While the amplitude of oscillation in the final θsl is substantial (and

larger than in Fig. 4.5), we find that the predictions of Eq. (4.15) are consistent up

to the range of oscillation of θsl. In Fig. 4.9, we summarize the outcomes of spin

evolution as a function of g(II)/g(I) for I(II) = 3◦. We identify the same two qualita-

tive trends as seen in Fig. 4.6: the instability of CS2(I) when g(II) ∼ g(I) and the

appearance of mixed modes when
∣∣g(II)

∣∣≫ ∣∣g(I)
∣∣.
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Figure 4.8: Same as Fig. 4.5 but for I(II) = 3◦.

Figure 4.9: Same as Fig. 4.6 but for I(II) = 3◦. Note that the agreement of the black
open circles with the theoretical obliquities in the bottom panel is slightly worse
than in Fig. 4.6 but still well within the ranges of oscillation of the obliquities (see
Fig. 4.8 for the characteristic ranges).
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4.3.1 Summary of Various Outcomes

In summary, the spin evolution in a 3-planet system driven by a tidal alignment

torque depends largely on the frequency of the smaller-amplitude mode, g(II), com-

pared to that of the larger-amplitude mode, g(I). In the regime where
∣∣g(I)

∣∣ ≲ α,

we find that:

• When
∣∣g(II)

∣∣ ≪ ∣∣g(I)
∣∣, the low-amplitude and slow (II) mode does not signifi-

cantly affect the spin evolution, and the results of [Su and Lai, 2021] are re-

covered. The two possible outcomes are the tidally stable CS1(I) (generally

low obliquity) and CS2(I) (generally high obliquity). Prograde initial spins

converge to CS1(I), spins inside the mode I resonance converge to CS2(I),

and retrograde initial spins attain one of these two tidally stable CSs proba-

bilistically. For the fiducial parameters used for Fig. 4.6, approximately 20%

of systems are trapped in the high-obliquity CS2(I).

• When g(II) ∼ g(I), CS2(I) is increasingly difficult to attain due to the interact-

ing mode I and mode II resonances, and the probability of attaining CS2(I)

can be strongly suppressed (see Fig. 4.6, where the probability of a high-

obliquity outcome goes to zero for g(II)/g(I) = 3.5).

• When
∣∣g(II)

∣∣≳ ∣∣g(I)
∣∣, there are three classes of outcomes. The highest-obliquity

outcome is still CS2(I), and is attained for initial conditions inside the mode

I resonance (separatrix; see Fig. 4.5). The lowest-obliquity outcome is gener-

ally CS2(II)3 and is the most favored outcome (see Fig. 4.6). The third possi-

ble outcome are mixed modes with gres/∆g a low-order rational number (see

Eq. 4.9). These mixed modes only appear for
∣∣g(II)

∣∣ ≫ ∣∣g(I)
∣∣, and generally

have obliquities between those of CS2(I) and CS2(II) (see Fig. 4.3). For the

3This may not be the case when I(II) ≲ I(I) while g(II) ≫ g(I); see Fig. C.7 in the Appendix
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fiducial parameters used for Fig. 4.6, the mixed-mode resonances increase

the probability of obtaining a substantial (≳ 45◦) obliquity from ∼ 20% to

∼ 30%.

4.4 Weak Tidal Friction

We now briefly discuss the spin evolution of the system incorporating the full tidal

effects. In the weak friction theory of the equilibrium tide, the spin orientation and

frequency jointly evolve following [Alexander, 1973, Hut, 1981, Lai, 2012](
dŜ
dt

)
tide

= 1
ts

[
2n
Ωs

− (
Ŝ · L̂)]

Ŝ× (
L̂× Ŝ

)
, (4.16)

1
Ωs

(
dΩs

dt

)
tide

= 1
ts

[
2n
Ωs

(
Ŝ · L̂)−1− (

Ŝ · L̂)2
]

, (4.17)

where

1
ts

≡ 1
4k

3k2

Q

(
M⋆

m

)(
R
a

)3
n, (4.18)

(see Eq. 4.1, but with 4k = 1).

Since α∝ Ωs evolves in time, we describe the spin-orbit coupling by the pa-

rameter

αsync ≡ [α]Ωs=n . (4.19)

To facilitate comparison with the previous results, we use αsync = 10
∣∣g(I)

∣∣ and∣∣g(I)
∣∣ ts = 300. Note that for the physical parameters used in Eqs. (4.4) and (4.18),

g(I)ts ∼ 104; we choose a faster tidal timescale to accelerate our numerical inte-

grations. The initial spin is fixed Ωs,0 = 3n. We then integrate Eqs. (4.2), (4.6),

and (4.16–4.17) starting from various initial spin orientations and determine the

final outcomes. Figure 4.10 shows the results for a few select values of g(II) and

for I(II) = 3◦. Similar behaviors to Figs. 4.3 and 4.7 are observed. The probabilities
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Figure 4.10: Similar to Figs. 4.7 but including full tidal effects on the planet’s
spin, with αsync = 10

∣∣g(I)
∣∣ (Eq. 4.19), I(II)3◦, and initial spin Ωs,0 = 3n. In the three

panels, g(II) = {0.1,2,10}×g(I) respectively. Note that the plotted separatrices (blue
and black lines) use the initial value of α.

and obliquities of the various equilibria are shown in Fig. 4.11. Note that each

equilibrium obliquity has a corresponding equilibrium rotation rate, given by

Ωeq

n
= 2cosθeq

1+cos2θeq
. (4.20)

The probabilities shown in Fig. 4.11 exhibit qualitative trends that are quite sim-

ilar to those seen for the evolution driven by the tidal alignment torque alone:

when
∣∣g(II)

∣∣ ≪ ∣∣g(I)
∣∣, the results of [Su and Lai, 2021] are recovered; when g(II) ∼

g(I), the probability of attaining CS2(I) is significantly suppressed; and when∣∣g(II)
∣∣≫ ∣∣g(I)

∣∣, mixed modes appear.

4.5 Summary and Discussion

In this work, we have shown that the planetary spins in compact systems of mul-

tiple super Earths (SEs), possibly with an outer cold Jupiter companion, can be
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Figure 4.11: Similar to Fig. 4.9 but with weak tidal friction.

trapped into a number of spin-orbit resonances when evolving under tidal dissi-

pation, either via a tidal alignment torque (Section 4.3) or via weak tidal fric-

tion (Section 4.4). In addition to the well-understood tidally-stable Cassini States

associated with each of the orbital precession modes, we have also discovered a

new class of “mixed mode” spin-orbit resonances that yield substantial obliquities.

These additional resonances constitute a significant fraction of the final states

of tidal evolution if the planet’s initial spin orientation is broadly distributed, a

likely outcome for planets that have experienced an early phase of collisions or

giant impacts. For instance, for the fiducial system parameters shown in Fig. 4.6,

these mixed-mode equilibria increase the probability that a planet retains a sub-

stantial (≳ 45◦) obliquity from 20% to 30%. A large equilibrium obliquity has a

significant influence on the planet’s insolation and climate. For planetary systems

surrounding cooler stars (M dwarfs), the SEs (or Earth-mass planets) studied in

this work lie in the habitable zone [e.g. Dressing et al., 2017, Gillon et al., 2017],
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and the nontrivial obliquity can impact the habitability of such planets.

In a broader sense, the mixed-mode equilibria discovered in our study repre-

sent a novel astrophysical example of subharmonic responses in parametrically

driven nonlinear oscillators. In equilibrium, the planetary obliquity oscillates

with a period that is an integer multiple of the driving period 2π/ |∆g| (see Ap-

pendix C.2 for further discussion). Such subharmonic responses are often seen in

nonlinear oscillators [e.g. in the classic van der Pol and Duffing equations Leven-

son, 1949, Flaherty and Hoppensteadt, 1978, Hayashi, 2014].

Throughout this paper, we have adopted fiducial parameters where
∣∣g(I)

∣∣≲ α,

which is generally expected for the SE systems being studied. If instead
∣∣g(I)

∣∣≳α,

then there is no resonance for the dominant (larger-amplitude) mode I. There are

then a few possible cases: if
∣∣g(II)

∣∣≲α, mode II is both slower than mode I and has

a smaller amplitude, so it will not affect the mode I dynamics significantly. On

the other hand, if
∣∣g(II)

∣∣≳α, then mode II also has no resonance, and both CS2(I)

and CS2(II) have low obliquities, implying that the system will always settle into

a low-obliquity state.
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CHAPTER 5

PHYSICS OF TIDAL DISSIPATION IN EARLY-TYPE STARS AND WHITE

DWARFS: HYDRODYNAMICAL SIMULATIONS OF INTERNAL GRAVITY

WAVE BREAKING IN STELLAR ENVELOPES

Originally published in:

Yubo Su, Daniel Lecoanet, and Dong Lai. Physics of tidal dissipation in early-

type stars and white dwarfs: Hydrodynamical simulations of internal gravity wave

breaking in stellar envelopes. MNRAS, 495(1):1239–1251, May 2020. ISSN 0035-

8711. doi: 10.1093/mnras/staa1306

5.1 Introduction

The physical processes responsible for tidal evolution in close binaries often in-

volve the excitation and dissipation of internal waves, going beyond the “weak

friction” of equilibrium tides [see Ogilvie, 2014, for a review]. In particular, in-

ternal gravity waves (IGWs), arising from buoyancy of stratified stellar fluid, play

an important role in several types of binary systems. In solar-type stars with

radiative cores and convective envelopes, IGWs are excited by tidal forcing at

the radiative-convective boundary and propagate inward; as the wave amplitude

grows due to geometric focusing, nonlinear effects can lead to efficient damping

of the wave [Goodman and Dickson, 1998, Barker and Ogilvie, 2010, Essick and

Weinberg, 2015]. In early-type main-sequence stars, with convective cores and ra-

diative envelopes, IGWs are similarly excited at the convective-radiative interface

but travel toward the stellar surface; nonlinearity develops as the wave ampli-

tude grows, leading to efficient dissipation [Zahn, 1975, 1977]. As the outgoing

wave deposits its angular momentum to the stellar surface layer, a critical layer

may form and the star is expected to synchronize from outside-in [Goldreich and

Nicholson, 1989].
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Tidal dissipation can also play an important role in compact double white

dwarf (WD) binary systems (with orbital periods in the range of minutes to hours).

Such binaries may produce a variety of exotic astrophysical systems and phenom-

ena, ranging from isolated sdB/sdO stars, R CrB stars, AM CVn binaries, high-

mass neutron stars and magnetars (created by the accretion-induced collapse of

merging WDs), and various optical transients (underluminous supernovae, Ca-

rich fast transients, and type Ia supernovae) [e.g. Livio and Mazzali, 2018, Toloza

et al., 2019]. The outcomes of WD mergers depend on the WD masses and com-

position, but tidal dissipation can strongly affect the pre-merger conditions of the

WDs and therefore the merger outcomes. Tidal dissipation may also influence the

evolution of eccentric WD-massive black hole binaries prior to the eventual tidal

disruption of the WD [Vick et al., 2017].

Recent studies have identified nonlinear dissipation of IGWs as the key tidal

process in compact WD binaries [Fuller and Lai, 2012a, 2013, 2012b, Burkart

et al., 2013]: IGWs are tidally excited mainly at the composition transitions of the

WD envelope; as these waves propagate outwards towards the WD surface, they

grow in amplitude until they break, and transfer both energy and angular momen-

tum from the binary orbit to the outer envelope of the WD. However, these pre-

vious works parameterized the wave breaking process in an ad hoc manner. The

details of dissipation, namely the location and spatial extent of the wave break-

ing, affect the observable outcomes: dissipation near the surface of the WD can be

efficiently radiated away and simply brightens the WD, while dissipation deep in

the WD envelope causes an energy buildup that results in energetic flares [Fuller

and Lai, 2012b]. An important goal of this paper is to elucidate the details of the

nonlinear IGW breaking process; the result of this “microphysics” study will help

determine the thermal evolution and the observational manifestations of tidally

heated binary WDs.
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In this paper, we perform numerical simulations of IGW breaking in a plane-

parallel stratified atmosphere (a simple model for a stellar envelope). We use

the pseudo-spectral code Dedalus [Burns et al., 2016, Burns et al., 2020] and a

2D Cartesian geometry, and consider IGWs propagating into an isothermal fluid

initially at rest. We find that, after an initial transient phase, a critical layer nat-

urally develops, separating a lower zone that has no horizontal mean flow and an

upper zone with mean flow at the horizontal phase velocity of the IGW. The major

part of our paper is dedicated to characterizing the behavior of the critical layer

when interacting with a continuous train of IGW excited from the bottom of the

atmosphere. IGWs are generally anti-diffusive, in that they steepen shear flows

[Lindzen and Holton, 1968, Couston et al., 2018] and act to narrow the critical

layer. We find this steepening is counter-balanced by the Kelvin-Helmholtz insta-

bility and turbulence within the narrow critical layer. By careful accounting of the

momentum flux budget about the critical layer, we are able to model the reflection

and absorption of the incident IGW, and the slow downward propagation of the

critical layer.

While the motivation of our study is to understand tidal dissipation in WD

and early-type stellar binaries, the IGW breaking process studied in this paper is

also quite relevant to the circulation dynamics of planetary atmospheres [see e.g.

Lindzen, 1981, Holton, 1983, Baldwin et al., 2001].

This paper is organized as follows. In Section 5.2 we present the system of

equations used in our simulations. In Section 5.3, we review the existing un-

derstanding of wave breaking and present analytical results characterizing IGW

behavior near a critical layer. In Section 5.4 we describe our numerical setup and

in Section 5.5 we validate our method in the weak-forcing limit against linear the-

ory. In Section 5.6, we present the results of simulations of IGW breaking and our
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characterization of the critical layer. We summarize and conclude in Section 5.7.

5.2 Problem Setup and Equations

We consider a incompressible, isothermally stratified fluid representing a stellar

envelope or atmosphere. We study dynamics in 2D, so that fluid variables depend

only on the Cartesian coordinates x and z. While it is well known that waves break

differently in 2D versus 3D [Klostermeyer, 1991, Winters and D’Asaro, 1994], the

dynamical effect of the breaking process is likely to be similar in 2D [Barker and

Ogilvie, 2010]. We approximate the gravitational field as uniform, pointing in the

(−ẑ) direction. The plane-parallel approximation is justified since wave breaking

generally occurs near the stellar surface. The background density stratification is

given by

ρ = ρ0e−z/H , (5.1)

with ρ0 some reference density. We denote background quantities with overbars

and perturbation quantities with primes.

The Euler equations for an incompressible fluid in a uniform gravitational field

are

∇·u= 0, (5.2a)

Dρ
Dt

= 0, (5.2b)

Du
Dt

+ ∇P
ρ

+ gẑ= 0, (5.2c)

where D/Dt = ∂/∂t + (u ·∇) is the Lagrangian or material derivative, and u,ρ,P

denote the velocity field, density and pressure respectively. The constant gravita-

tional acceleration is (−gẑ). Note that these equations conserve the same wave en-

ergy as the commonly used anelastic equations [Ogura and Phillips, 1962, Brown
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et al., 2012] and thus give the same wave amplitude growth. Appendix D.1 pro-

vides a derivation of these equations and justification for using them.

For this isothermal background, hydrostatic equilibrium implies P(z)= ρ(z)gH.

We assume there is initially no background flow, so u = u′. Physically, this as-

sumption corresponds to a non-rotating star.

For convenience, we introduce the dimensionless density variable Υ and the

reduced pressure ϖ [e.g. Lecoanet et al., 2014] via

Υ≡ ln
ρ

ρ̄
, (5.3)

ϖ≡ P
ρ

. (5.4)

These variables automatically enforce ρ > 0 and eliminate the stiff term ∇P/ρ in

the Euler equation. In terms of Υ and ϖ, the second two equations in (5.2) become

DΥ
Dt

+uz
∂ lnρ
∂z

= 0, (5.5a)

Du
Dt

+∇ϖ+ϖ∇Υ− ϖ

H
ẑ+ gẑ= 0. (5.5b)

Hydrostatic equilibrium corresponds to Υ= 0,ϖ= gH.

5.3 Internal Gravity Waves: Theory

5.3.1 Linear Analysis

In the small perturbation limit, we may linearize Eq. (5.5). The resulting equa-

tions admit the canonical IGW solution [Drazin, 1977, Dosser and Sutherland,

2011b]

u′
z (x, z, t)= Aez/2H cos(kxx+kzz−ωt) , (5.6)
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where A is a constant amplitude, and the frequency ω and the wave number

(kx,kz) satisfy the dispersion relation

ω2 = N2k2
x

k2
x +k2

z + (2H)−2 . (5.7)

Our equations are valid in the limit of large sound speed (cs →∞), in which the

Brunt-Väisälä frequency, N, is given by

N2 ≡ g2
(

dρ
dP

− 1
c2

s

)
= g

H
, (5.8)

and is constant. Other dynamical quantities are simply related to u′
z.

In the short-wavelength/WKB limit (|kzH| ≫ 1), the solution exhibits the fol-

lowing characteristics:

1. The amplitude of the wave grows with z as ez/2H . Thus, the linear approxi-

mation always breaks down for sufficiently large z.

2. The phase and group velocities are given by:

cp = (kxx̂+kzẑ)
ω

k2
x +k2

z + (2H)−2 , (5.9)

cg = N

[
k2

z + (2H)−2] x̂− (kxkzẑ)[
k2

x +k2
z + (2H)−2]3/2 . (5.10)

The additional (2H)−2 term in the denominator accounts for the growing

amplitude of the IGW in the z direction (as the z wavenumber is effec-

tively kz − i/(2H)). We note cp · cg = O
[
(kzH)−2] ≈ 0. In the Boussinesq

approximation where terms of order O
(
H−2) are ignored, the phase and

group velocities are exactly orthogonal [Drazin, 1977, Dosser and Suther-

land, 2011a]. We use the convention where upward propagating IGW have

cg,z > 0, kz < 0,kx > 0.
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3. The averaged horizontal momentum flux F (in the +ẑ direction) carried by

the IGW is defined by

F(z, t)≡ 〈
ρu′

xu′
z
〉

x ≡
1

Lx

Lx∫
0

ρu′
xu′

z dx. (5.11)

The notation 〈. . .〉x denotes averaging over the x direction. For the linear

solution (Eq. 5.6), this evaluates to

F ≈−A2

2
ρ0

kz

kx
, (5.12)

Thus, indeed F > 0 for an upward propagating IGW (cg,z > 0).

5.3.2 Wave Generation

To model continuous excitation of IGWs deep in the stellar envelope propagat-

ing towards the surface, we use a volumetric forcing term to excite IGW near the

bottom of the simulation domain. Our forcing excites both IGWs propagating up-

wards, imitating a wave tidally excited deeper in the star, and downwards, which

are not physically relevant in binaries. In our simulations, these downward prop-

agating waves are dissipated by a damping zone described in Section 5.4.2.

As not to interfere with the incompressibility constraint, we force the system

on the density equation. We implement forcing with strength C localized around

height z0 with small width σ by replacing Eq. (5.5a) with

DΥ
Dt

+uz
∂ lnρ
∂z

= Ce−
(z−z0)2

2σ2 cos(kxx−ωt) . (5.13)

Using a narrow Gaussian profile excites a broad z power spectrum, but only the kz

satisfying the dispersion relation (Eq. 5.7) for the given kx and ω will propagate.

In the linearized system, the effect of this forcing can be solved exactly (see

Appendix D.2). In the limit |kzH| ≫ 1,σ≪ H, the solution can be approximated
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as two plane waves propagating away from the forcing zone

uz(x, z, t)≈ C
2kz

gk2
x

ω2 exp
(
−k2

zσ
2

2

)√
2πσ2

×


e

z−z0
2H sin

(
kxx+kz(z− z0)−ωt+ kzσ

2

2H

)
for z > z0,

e
z−z0
2H sin

(
kxx−kz(z− z0)−ωt+ kzσ

2

2H

)
for z < z0.

(5.14)

The z > z0 region contains an upward propagating IGW wavetrain. The x compo-

nent of the velocity can be obtained by the incompressibility constraint (Eq. 5.2a).

5.3.3 Wave Breaking Height

As the upward propagating IGW grows in amplitude (|u|∝ ez/2H), it is expected to

break due to nonlinear effects. We can estimate the height of wave breaking using

the condition |u| ∼ω/ |k|. This can be rewritten using the Lagrangian displacement

ξ=u/ (−iω):

|ξzkz| ∼ 1. (5.15)

Drazin [1977], Klostermeyer [1991], Winters and D’Asaro [1994] describe the

onset of wave breaking in some detail. At intermediate amplitudes, wave break-

ing occurs via triadic resonances, transferring energy from the “parent” IGW to

“daughter” waves on smaller length scales that efficiently damp. The horizontal

momentum flux decreases from F to 0 over this breaking region. The lost flux is

deposited into a horizontal mean flow

U(z, t)≡ 〈ux〉x . (5.16)

As the mean flow grows, a critical layer may form, as discussed below.
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5.3.4 Critical Layers

A horizontal shear flow U(z, t)x̂ enters the fluid equations via the Lagrangian

derivative, which can be decomposed as

D
Dt

= ∂

∂t
+U

∂

∂x
+ (

u′ ·∇)
, (5.17)

where u′ is the velocity field without the shear flow. Thus, U has the effect of

Doppler shifting the time derivative into the frame comoving with the mean flow.

If U is roughly constant, then the behavior of a linear plane-wave perturbation

satisfies the modified dispersion relation

(
ω−Ukx

)2 = N2k2
x

k2
x +k2

z + (2H)−2 . (5.18)

This is just Eq. (5.7) with ω→ω−Ukx. It is apparent that if U =U c, where

U c ≡ ω

kx
, (5.19)

then the dispersion relation is singular and the linear solution breaks down. Phys-

ically, this corresponds to the Doppler-shifted frequency of the IGW being zero.

Anywhere U =U c is called a critical layer.

The behavior of an IGW incident upon a critical layer was first studied in the

inviscid, linear regime in Booker and Bretherton [1967], which found nearly com-

plete absorption of the IGW. The amplitude reflection and transmission coeffi-

cients are given by

R = exp

(
−2π

√
Ri− 1

4

)
, T = exp

(
−π

√
Ri− 1

4

)
, (5.20)

where Ri is the local Richardson number evaluated at the critical layer height zc:

Ri≡ N2(
∂U /∂z

)2

∣∣∣∣∣∣∣
zc

. (5.21)
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In the Ri≫ 1 limit, R,T ≪ 1 and the incident wave is almost completely absorbed.

This result also applies to viscous fluids [Hazel, 1967]. However, weakly nonlinear

theory [Brown and Stewartson, 1982] and numerical simulations [Winters and

D’Asaro, 1994] suggest that nonlinear effects may significantly enhance reflection

and transmission.

Consider now the long-term evolution of the critical layer due to continuous

horizontal momentum transfer by IGWs. Any incident horizontal momentum flux

absorbed by the fluid, denoted Fa(t), must manifest as additional horizontal mo-

mentum of the shear flow. Additionally, as the mean flow U cannot grow efficiently

above U c (due to the breakdown of the linear solution), we assume U saturates at

U c, which holds to good accuracy (see Fig. 5.4). In this case, the critical layer must

propagate downward in response to the incident momentum flux. The horizontal

momentum of the shear flow satisfies

∂

∂t

∫
ρ(z)U(z, t) dz−Fa(t)= 0. (5.22)

Assuming U(z > zc)≈U c and U(z < zc)≈ 0, this condition becomes

−ρ(zc)U c
dzc

dt
= Fa(t). (5.23)

If Fa is constant in time, the height of the critical layer zc(t) has analytical solu-

tion:

zc(t)=−H ln

[
exp

(
− zc(t = 0)

H

)
+ tFa

U cHρ0

]
, (5.24)

where zc(t = 0) is the initial critical layer height.

5.4 Numerical Simulation Setup

We use the pseudo-spectral code Dedalus [Burns et al., 2016, Burns et al., 2020]

to simulate the excitation and propagation of IGWs (Section 5.5) as well as their
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nonlinear breaking and the formation of a critical layer (Section 5.6).

5.4.1 Parameter Choices

We solve Eqs. (5.2a), (5.5b), and (5.13) in a Cartesian box with size Lx,Lz. We

choose periodic boundary conditions in both the x and z direction. To mimic the

absence of physical boundaries at the top/bottom of the simulation domain, we

damp perturbations to zero near the top/bottom using damping zones (see Sec-

tion 5.4.2). We expand all variables as Fourier series with Nx and Nz modes, and

use the 3/2 dealiasing rule to avoid aliasing errors in the nonlinear terms [Boyd,

2001]. We choose Lz = 12.5H (z runs from −H to 11.5H), and the lower and upper

damping zones are active for z < 0.3H and z > 9.5H respectively. The forcing (see

Eq. (5.13)) is centered at z0 = 2H with width σ= 0.078H, sufficiently far from the

lower damping zone and permitting sufficient room for the upward propagating

wave to grow as ∝ ez/2H . Finally, we want similar grid spacing in the x and z

directions (i.e. Lx/Nx ∼ Lz/Nz), guided by the intuition that turbulence generated

by wave breaking is approximately isotropic, so we use Lx = 4H and Nz/Nx = 4.

The time integration uses a split implicit-explicit third-order scheme where

certain terms are treated implicitly and the remaining terms are treated explic-

itly. A third-order, four-stage DIRK-ERK scheme [Ascher et al., 1997] is used

with adaptive timesteps computed from the minimum of 0.1/N and the advective

Courant-Friedrichs-Lewy (CFL) time. The CFL time is given by∆t = 0.7min(∆x/ux,∆z/uz),

where the minimum is taken over every grid point in the domain, and ∆x ≡ Lx/Nx

and ∆z ≡ Lz/Nz are the grid spacings in the x and z directions respectively.

We non-dimensionalize the problem such that H = N = ρ0 = 1. The physics of

the simulation is then fixed by the four remaining parameters kx, ω, C, and the
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viscosity ν. We describe our choices for these parameters below:

1. kx: Tidally excited waves in stars generally have ℓ = 2, corresponding to a

horizontal wavenumber k⊥ ∼ 1/R, where R is the radius of the star. We use

the smallest wavenumber in our simulation, kx = 2π/Lx.

2. ω: We choose ω by evaluating the dispersion relation ω(kx,kz) for a desired

kz (see Eq. (5.7)). We pick |kzH| = 2π to ensure the waves are very well re-

solved in all of our simulations. Note however that tidally forced IGWs typi-

cally have ω≪ N, or equivalently kr/k⊥ ∼ krR ≫ 1. This requires |kzH|≳ 1,

which is only marginally satisfied in our simulations.

3. C: In our weak forcing simulations (Section 5.5), we first choose the forcing

strength C (see Eq. (5.13)) to be sufficiently weak such that |ξzkz|≪ 1 is sat-

isfied everywhere in the simulation domain. This constrains C by Eq. (5.14).

In our wave breaking simulations (Section 5.6), we choose larger C.

4. ν: Nonlinear effects transfer wave energy from the injection wavenumber k

to larger wavenumbers. Our spectral method does not have any numerical

viscosity, so diffusivity must be introduced into the equations to regularize

the systems at large wavenumbers. We add viscosity and diffusivity to the

system in a way that conserves horizontal momentum (see Appendix D.3 for

details). We define the dimensionless Reynolds number

Re≡ ω

νk2
z
= ω

ν

(
H
2π

)2
. (5.25)

We use Re≫ 1 in our simulations1.

Finally, we use initial conditions u(x, z,0) =Υ(x, z,0) = 0 and ϖ(x, z,0) = 1, cor-

responding to hydrostatic equilibrium and no initial fluid motion.
1This condition is always satisfied in stars. For example, in WDs, the dominant linear dissi-

pation mechanism of g-modes is radiative damping, with damping rate ranging from 10−11–10−4

of the mode frequency [Fuller and Lai, 2011]. This corresponds to a small effective viscosity or
Re≫ 1.
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5.4.2 Damping Layers

We aim to damp disturbances that reach the vertical boundaries of the simulation

domain without inducing nonphysical reflection. To do so, we replace material

derivatives in Eq. (5.5) with:

D
Dt

→ D
Dt

+Γ(z), (5.26)

Γ(z)= 1
2τ

[
2+ tanh

z− zT

∆z
+ tanh

zB − z
∆z

]
, (5.27)

where zB = 0.3H and zT = 9.5H are the boundaries of the lower and upper damp-

ing zones respectively. This damps perturbations below zB and above zT with

damping time τ and negligibly affects the dynamics between zB and zT . Most

importantly, horizontal momentum remains conserved between zB and zT , and

outgoing boundary conditions are imposed at zB, zT . We choose the transition

width ∆z = 0.25H and damping time τ = 1/(15N). This prescription is similar

to Lecoanet et al. [2016] and has the advantage of being smooth, important for

spectral methods. Further details of our implementation of the fluid equations in

Dedalus are described in Appendix D.3.

5.5 Weakly Forced Numerical Simulation

To test our numerical code and implementation, we carry out a simulation in

the weakly forced regime with C = 1.64×10−7. According to the linear solution

(Eq. (5.14)), this generates IGW with |ξzkz| ≈ 5×10−5 just above the forcing zone.

The IGW grows to |ξzkz| ≈ 7.4× 10−3 at the upper damping zone and satisfies

|ξzkz|≪ 1 in the entire simulation domain. We include a nonzero ν corresponding

to Re= 107.
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We expect the waves to follow the analytical solution given by Eq. (5.14) and

the corresponding ux(x, z, t); we denote this analytical solution uan(x, z, t). The

amplitude of the observed IGW in the simulation field u relative to uan over some

region z ∈ [zb, zt] can be estimated from

A i(t)=

zt∫
zb

Lx∫
0
ρ (u ·uan) dxdz

zt∫
zb

Lx∫
0
ρ |uan|2 dxdz

. (5.28)

The subscript i denotes the incident wave. If u = uan, then A i(t) = 1. The factor

of ρ̄ inside the integrands in Eq. (5.28) corrects for the ∝ ez/2H growth of uan;

without it, A i(t) would be dominated by the contribution near zt.

For the weakly forced simulation, we expect A i(t)= 1 when integrated between

the forcing and damping zones, i.e. zb ≳ z0 and zt ≲ zT (z0, zT are defined in

Eq. (5.13) and Eq. (5.27) respectively). For consistency with the nonlinear case

later, we choose zb = z0 +3σ and zt = zb +H. Note that using a larger integration

domain by choosing zt = zT −∆z just below the upper damping zone instead does

not change the measured A i. The resulting measurement of A i(t) is shown in

Fig. 5.1, and indeed A i ≈ 1 after the initial transient.

The analytical theory (Section 5.3.1) also predicts that the horizontal momen-

tum flux F(z, t) is independent of z between the forcing zone where the wave is

generated and the damping zone where it is dissipated. The expected horizontal

momentum flux carried by the excited IGW in the linear theory can be computed

by simply evaluating Eq. (5.11) for uan and is a constant:

Fan ≡ 〈
ρuan,xuan,z

〉
x . (5.29)

Denoting the momentum flux measured in the simulation by F(z, t) (use Eq. (5.11)

with velocities taken from the simulation), we expect F(z, t)= Fan between z0 and

zT . Fig. 5.2 shows agreement with this prediction.
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Figure 5.1: Amplitude of the excited IGW over time (in units of N−1) in the weakly
forced simulation, computed using Eq. (5.28). A i(t) = 1 corresponds to perfect
agreement with the analytical estimate. After an initial transient phase, we ob-
serve A i(t) asymptotes to ≈ 1, implying continuous excitation of identical IGW
with the expected amplitude. The small deviation of A i(t) from unity may be due
to truncation error in our implicit timestepping scheme, as a relatively large fixed
step size ∆t = 0.1/N was used for this simulation.
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Figure 5.2: F/Fan plotted at select times t (in units of N−1). As the initial transient
dies out, F/Fan ≈ 1 to a good approximation above the forcing zone z > z0 = 2H and
below the damping zone z ≲ zT = 9.5H. The horizontal momentum flux excited in
the forcing zone is transported without loss to the top of the domain, where it is
dissipated by the damping zone (see Section 5.4.2) without reflection.
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Resolution Re
1024×4096 2048
768×3072 1024
512×2048 512
256×1024 341
256×1024 205
256×1024 146

Table 5.1: Spectral resolutions and Reynolds numbers of simulations of wave
breaking.

5.6 Numerical Simulations of Wave Breaking

To perform simulations of wave breaking phenomena, we use the same setup as

described in Section 5.4 and Section 5.5 except for different values of C and ν.

In particular, we choose C such that |ξzkz| = 0.1 in the forcing zone (z = z0). The

linear solution predicts |ξzkz| ∼ 4.25 at the upper damping zone zT . We choose

the viscosity ν for each resolution to be as small as possible while still resolving

the shortest spatial scales of the wave breaking. A table of our simulations can be

found in Table 5.1.

5.6.1 Numerical Simulation Results

A full video of our simulation with Nx = 768, Nz = 3072, Re = 1024 is available

online2. We take this to be our fiducial simulation for the remainder of this paper,

though other simulations show qualitatively similar behavior.

In Fig. 5.3, we present snapshots of ux and Υ at various phases of the simula-

tion. Note that Υ≲ 0.1, so the density stratification does not deviate significantly

from equilibrium. The flow evolves through several distinct stages:

2https://bit.ly/3vuVKNN
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1. At early times (top left panel), the flow resembles a linear IGW lower in the

simulation domain but breaks down into smaller-scale features at higher z.

Some characteristic swirling motion can be seen in the advected scalar Υ,

indicating Kelvin-Helmholtz instabilities.

2. At a slightly later time (top right panel), the mean flow in ux becomes much

more prominent and the critical layer zc has become much more definite.

Small-scale fluctuations are still present in ux but at smaller amplitudes

due to being in a denser region of the fluid.

3. In the bottom left panel, the critical layer transition becomes very sharp, and

small swirls of limited vertical extent in Υ at the location of the critical layer

suggest that the Kelvin-Helmholtz instability is responsible for regulating

the width of this transition. More discussion can be found in Section 5.6.2.

4. At the end of the simulation (bottom right panel), the critical layer has ad-

vanced downwards, but otherwise the flow shows very few significant quali-

tative differences from the previous snapshot. This suggests that the latter

phase of the simulation has reached a steady state. Notably, the horizontal

banded structure of ux in the upper, synchronized fluid does not continue to

evolve (also visible in the top panel of Fig. 5.4), suggesting that momentum

redistribution and mixing within the synchronized fluid are negligible.

In Fig. 5.4, we plot the mean horizontal flow velocity U (Eq. (5.16)) and the

dimensionless momentum flux F/Fan (Eqs. (5.11) and (5.29)) as a function of z at

the times depicted in Fig. 5.3. At each time, U is close to zero below the critical

layer, but then sharply increases to U c at the critical layer (i.e. the flow is “spun-

up”). Above the critical layer, U varies slightly due to momentum transport within

the spun-up layer. This agrees with the expectation discussed in Section 5.3.4.
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Figure 5.3: Snapshots of ux and Υ≡ ln
(
ρ/ρ̄

)
in the fiducial simulation illustrating

distinct phases of the evolution of the flow. See the online PDF for a color version.
Damping layers at the top and bottom of the simulation domain are shaded in
light grey (see Section 5.4.2), while the forcing zone in the lower middle portion
of the simulation domain (see Section 5.3.2) is shaded in light green (boundaries
are at z0 ±3σ). The four panels illustrate (i) the initial transient wave breaking
phase, (ii) formation of a distinct critical layer, (iii) steepening of the critical layer,
and (iv) downward advance of the critical layer.
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Similarly, F ≲ Fan below the critical layer, and then decreases to about zero

above the critical layer. However, two notable deviations from the discussion in

Section 5.3.4 can be observed: (i) the incident flux on the critical layer fluctuates

somewhat temporally, and (ii) there is a small negative flux just above the critical

layer at later times. These are addressed in subsequent sections.

5.6.2 Kelvin-Helmholtz Instability and Critical Layer Width

The formation of the critical layer is associated with a strong shear flow. What is

the width of this layer? Inspection of Fig. 5.3 suggests the presence of the Kelvin-

Helmholtz Instability (KHI) in the critical layer. In a stratified medium, KHI

occurs when the Richardson number (Eq. (5.21)) satisfies Ri≲ 1/4 [e.g. Shu, 1991].

It is natural to suspect that the shear flow cannot steepen further than the onset

of KHI. To test this, we compute the local Ri for the shear flow around the critical

layer.

It is difficult to accurately measure the Richardson number, as it depends on

the derivative of the velocity. We measure Ri as follows: we first assign an Rix(x, t)

for every x in the critical layer, then take the median of Ri for the entire layer.

Rix is computed using the vertical distance over which the local ux increases from

0.3Ūc to Ūc (see Eq. (5.19)). The value 0.3 is necessary to exclude the small mean

flow generated in the weakly nonlinear regime far below the critical layer. This
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Figure 5.4: The mean horizontal flow velocity U(z, t) (Eq. (5.16)) and the dimen-
sionless momentum flux F(z, t)/Fan (Eqs. (5.11) and (5.29)) in our fiducial simula-
tion plotted at the same times as in Fig. 5.3. The two distinct zones of mean flow
are separated by a critical layer. The critical layer propagates toward lower z due
to momentum transport (∂F/∂z).
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procedure can be written:

zCL,min(x, t)≡min
{

z | ux(x, z, t)> 0.3U c

}
, (5.30)

zCL,max(x, t)≡max
{

z | ux(x, z, t)<U c

}
, (5.31)

Rix(x, t)≡
(

N2 (
zCL,max − zCL,min

)2

(0.7U c)2

)
, (5.32)

Ri(t)≡med
x

Ri(x, t) . (5.33)

We use the background buoyancy frequency to compute Ri, as fluctuations do not

change N2 significantly (∼ 1%). To understand the variation in Ri over x, we also

compute min
x

Rix(x, t) (the maximum is very noisy). Both are shown in Fig. 5.5.

Absorption of incident IGWs quickly decreases the Richardson number to between

0.25 and 0.5, characteristic of the onset of the KHI.

This result suggests that the critical layer width is regulated by the competi-

tion between steepening induced by IGW breaking and broadening due to shear

instability. This width does not vary significantly with resolution in our resolved

simulations (see Fig. 5.10). As such, Ri ∼ 0.5 can be used to calculate the critical

layer width in stars, where N2 and U c (corresponding to the tidal frequency) are

known.

5.6.3 Flux Budget

The downward propagation of the critical layer location zc(t) is driven by the ab-

sorption of horizontal momentum flux at zc, following Eq. (5.23). The flux budget

at the critical layer can be decomposed as

Fi(t)= Fa(t)+Fr(t)+Fs(t), (5.34)
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Figure 5.5: Local Richardson number (Eq. (5.33)) of the flow at the critical layer
over time (in units of N−1) in our fiducial simulation. The solid red and dotted
black lines denote respectively the minimum and median of Rix(x, t). These num-
bers measure the mean and spread in width of the critical layer over x. Note that
Ri∼ 1

4 corresponds to the KHI, so this plot suggests the shear at the critical layer
does not steepen past the onset of the KHI.
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where Fi is the incident flux, Fa is the absorbed flux, Fr is the reflected flux, and

Fs is some “redistribution” flux above the critical layer, responsible for momen-

tum redistribution within the synchronized upper layer. Careful accounting of Fs

turns out to be important to obtain the correct Fa and resulting critical layer prop-

agation. A more specific physical interpretation of Fs is unclear; it is somewhat

tempting but unfounded to identify Fs with the transmitted flux. In these simu-

lations, we find Fs < 0, corresponding to net momentum transport into the critical

layer from the synchronized layer above it.

After measuring zc (see Section 5.6.4) and F(z) (Eq. (5.11)) at each time step,

we determine each of Fi, Fa, Fr, Fs as follows:

Fi(t)= FanA2
i (t), (5.35)

Fr(t)= Fi(t)− 1
H

zc−∆z∫
zc−∆z−H

F(z, t) dz, (5.36)

Fs(t)= 1
∆z

zc+∆z∫
zc

min(F(z, t),0) dz, (5.37)

Fa(t)= Fi −Fr −Fs. (5.38)

Fig. 5.6 depicts the four components of this flux decomposition. Below the critical

layer, we average over an interval of length H, also the vertical wavelength. The

offset ∆z is necessary to make the measurement of the incident flux unaffected

by the turbulence within the critical layer itself. The width of the critical layer is

limited by Ri ≲ 1 (see Section 5.6.2), which bounds its vertical extent ∼ 1
|kz| . We

empirically found an offset of ∆z = 3
|kz| was necessary to be sufficiently far from

strong fluctuations near the critical layer.

Above the critical layer, we observe that the Fs feature has varying width (com-

pare e.g. the t = 1171.4/N and t = 3437.8/N lines in the bottom panel of Fig. 5.4)

but contributes significantly to the total flux budget. We average only where F < 0
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Figure 5.6: Momentum flux decomposition calculated from the simulation. Plot-
ted are the four components of the horizontal momentum flux budget over time
(see Eq. (5.34)), in units of the analytical estimate for the incident wave flux Fan
(Eq. (5.12)): Fi, the flux incident on the critical layer; Fa, the flux absorbed by the
critical layer; Fr, the flux reflected at the critical layer; and Fs, the flux inside the
synchronized layer.

so that Fs is robust to such width variations. We find that this is an accurate way

of measuring Fs and determining Fa.

5.6.4 Critical Layer Propagation

With a careful determination of Fa, we can make predictions for the propagation of

zc(t) and compare to the measured propagation in the simulation. In principle, zc

is the location where the incident flux significantly attenuates. In the simulation,

shear turbulence causes F to have significant spatial and temporal fluctuations

that translate to large temporal fluctuations in zc(t). To minimize these spurious
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fluctuations, we measure the location of the critical layer using a spatial average

of where flux deposition occurs:

zc,min(t)≡min
z

{z : F(z, t)> 0.3Fan} , (5.39)

zc,max(t)≡max
z

{z : F(z, t)< 0.3Fan} , (5.40)

zc(t)≡
zc,min(t)+ zc,max(t)

2
. (5.41)

Measuring zc in other ways does not significantly change the results of the analy-

sis.

In Fig. 5.7 we plot the numerically measured zc against numerical integration

of Eq. (5.23) using the measured Fa(t). Since the critical layer is still forming

at early times, we solve Eq. (5.23) by integrating backwards from the end of the

simulation (t = t f ), using zc(t f ) as the initial condition. From Fig. 5.7, we see that

the agreement between the measured zc(t) and its estimate via Fa(t) is excellent.

By time-averaging the numerically measured Fa, we find 〈Fa〉t ≈ 0.71Fan. Note

that Fa < Fan, so momentum flux absorption at the critical layer is incomplete.

This is due to reflection of waves off the critical layer, which carry momentum

downward.

5.6.5 Non-absorption at Critical Layer

To further understand the behavior at the critical layer, we compare two reflective

behaviors observed in the simulation: (i) the presence of a reflected wave with the

same frequency as the incident wave (i.e. with wave vector kr = kxx̂− kzẑ), and

(ii) the reflected flux Fr. The reflected wave amplitude and flux need not agree

exactly if some reflected flux is in higher-order modes, which is indeed the case in
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Figure 5.7: Propagation of the critical layer over time. Shown are: (solid black)
zc(t) from simulation data, and (dashed red) model for zc(t) using direct integra-
tion of Eq. (5.23) for Fa(t) measured from simulation data (described in Eq. (5.38)).
The model uses the end of the simulation as its initial condition and integrates
backwards, as the critical layer is still forming at earlier times. The agreement of
the model with the simulation shows Eq. (5.23) is a good description of the evolu-
tion of zc.

158



our simulations. Both are of physical interest, however: the reflected wave ampli-

tude is essential for setting up standing modes in a realistic star, while the flux

is important for accurately tracking angular momentum transfer during synchro-

nization.

To measure the reflected wave amplitude Ar(t), we use an approach similar to

the calculation of A i(t) (Eq. (5.28)):

Ar(t)=max
δx

zt∫
zb

Lx∫
0
ρ

(
u · uan,kr

∣∣
x=x+δx

)
dxdz

zt∫
zb

Lx∫
0
ρ |uan|2 dxdz

, (5.42)

where zb = z0+3σ and zt = zb+H as before. The primary difference from Eq. (5.28)

is the introduction of free parameter δx, the horizontal phase offset of the reflected

wave. Since δx is unknown a priori, we choose δx ∈ [0,2π] that maximizes Ar(t).

In our simulation, the phase offset φr(t) ≡ kxδx(t) is consistent with reflection off

a moving boundary at zc, i.e.
∣∣∂φr/∂t

∣∣≃ 2 |∂(kzzc)/∂t|.

Fig. 5.8 illustrates the behaviors of A i and Ar. Both vary significantly in time

but their mean values appear to converge towards the end of the simulation.

Since A i(t), Ar(t) vary somewhat over time, we perform time averaging over

interval of four wave periods, denoted by angle brackets. We can then define the

amplitude reflectivity

RA(t)≡ 〈Ar〉 (t)
〈A i〉 (t)

. (5.43)

We compare the square of the reflectivity to the ratios of Fr and −Fs to Fi, as

F ∝ A2 (Eq. (5.12)). We define

F̂r ≡
〈Fr〉 (t)
〈Fi〉 (t)

, (5.44)

F̂s ≡−〈Fs〉 (t)
〈Fi〉 (t)

. (5.45)
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Figure 5.8: The incident wave amplitude A i(t) (solid black) and the reflected wave
amplitude Ar(t) (dashed red) just above the forcing zone.

Fig. 5.9 shows R2
A, F̂r, and F̂s as functions of time. The three quantities appear

to be roughly stationary for t ≳ 2500/N. Modest fluctuations (∼ 20%) in A i do not

affect our reflectivity results thanks to the time averaging used in Eqs. (5.43)–

(5.45).We see that in general F̂r ≳ R2
A, conforming with the expectation that the

reflected flux consists of the simple reflected mode and higher order modes as well.

5.6.6 Resolution Study

Although throughout this paper we focused on our fiducial simulation with Re =
1024 and resolution Nx = 768, Nz = 3072, we also ran a suite of simulations vary-

ing the resolution and corresponding Reynolds number (Tab. 5.1). We find that
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Figure 5.9: R2
A, F̂r, and redistribution flux F̂s [Eqs. (5.43–5.45)] as a function of

time (in units of N−1). These quantities seem to become comparatively stable past
about t = 2500/N, indicating that an asymptotic value may have been reached.
That F̂r ≳ R2

A implies a substantial fraction of reflected flux is in higher-order
modes than the reflected IGW.
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our global, quantitative measurements in the simulations (R2
A, Fr, Fs, and Ri)

are very similar for our highest Reynolds numbers (1024 and 2048).

For each simulation in Tab. 5.1, we compute the median values of R2
A, F̂r, F̂s,

and Ri [Eqs. (5.43–5.45) and (5.21) respectively] over the last 1/4 of the simulation

time, when these quantities have reached their asymptotic values. These results

are shown in Fig. 5.10.

As the simulation resolution increases and the viscosity decreases, we find that

the Richardson number decreases, while the reflection and redistribution fluxes

increase. The Richardson number is roughly constant for Re > 200 with a value

of Ri ∼ 0.4. The behavior of the fluxes is more complicated. While the fraction of

reflected and redistributed flux is similar for our simulations with Re = 1024 and

2048, higher resolution simulations would be required to determine these flux

fractions in the limit Re→∞.

Nevertheless, the difference in behavior of Ri and the flux reflectivity as Re is

varied is in tension with Eq. (5.20). This tension is natural: Eq. (5.20) is derived

from a linear theory, while fluid motion within the critical layer is turbulent, so

reflection at the critical layer cannot be captured by the linear theory.

5.7 Summary and Discussion

5.7.1 Key Results

In this paper, we have performed numerical simulations of nonlinear breaking of

IGWs in a stratified isothermal atmosphere. Such a setup represents the plane-

parallel idealization of the outer stellar envelope. Our simulations use the spectral
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Figure 5.10: Convergence of the median F̂r, R2
A, F̂s, and Ri (Eqs. (5.43)–(5.45)

and (5.21) respectively) in simulations with varying resolution and viscosity as
given in Tab. 5.1. Vertical bars show the temporal variation of each measurement
between the 16% and 84% range. Small horizontal displacements are made for
data points at identical Re for readability. Note that simulations with larger Re
correspond to smaller viscosity and are more physically realistic. At the smallest
Re value, Ri≈ 50 is too large to fit on the plot.
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code Dedalus [Burns et al., 2016, Burns et al., 2020], and are carried out in 2D. We

observe spontaneous formation of a critical layer that separates a “synchronized”

upper layer of fluid and a lower layer with no mean horizontal flow. This critical

layer then propagates downwards as incident IGWs break and deposit horizontal

momentum to the fluid (see Fig. 5.3 for snapshots from our fiducial simulation).

Our primary conclusions regarding the evolution of the critical layer are as fol-

lows:

1. The width of the turbulent critical layer is determined by requiring the local

Richardson number (Eq. (5.21)) Ri∼ 0.5 (see Fig. 5.5).

2. The location of the critical layer zc(t) can be predicted by careful measure-

ment of the absorbed horizontal momentum flux at the critical layer (see

Eq. (5.23) and Fig. 5.7).

3. The absorption of IGW momentum flux at the critical layer is incomplete.

The critical layer only absorbs ∼ 70% of the incident flux in our highest res-

olution simulations (see Fig. 5.10). The reflected flux is carried away from

the critical layer as both lowest-order reflected waves and waves with larger

z wavenumbers.

5.7.2 Discussion

In this paper, we have studied the nonlinear behavior of IGWs with |kx/kz| ∼ 1/(2π)

in a plane-parallel geometry. Tidally excited IGWs in binary stars have horizontal

wavenumber k⊥ ∼ 1/R (where R is the stellar radius) much smaller than the radial

wavenumber kr. While our simulations do not satisfy |kx/kz| ≪ 1, the qualitative

behavior is likely to be similar, as the turbulence driving the critical layer dynam-

ics occurs at scales significantly smaller than either 1/kx or 1/ |kz|. Simulating

164



IGWs with kx ≪|kz| is more challenging numerically and we defer its exploration

to future work.

It is interesting to compare our work with that of Barker and Ogilvie [2010],

who studied inward-propagating IGWs in solar-type stars and their nonlinear

breaking due to geometric focusing. In their numerical simulations in a 2D po-

lar geometry, they found no evidence for reflected waves, contrary to our result.

Note that their simulations were run with substantially higher viscosity, or lower

resolution, than explored here, and their effective Reynolds number (equal to 1/λ

in their notation) is of order 10. We also find at low Reynolds numbers that there

is negligible wave reflection.

Regardless of the limitations inherent in our simulations (e.g. plane-parallel

geometry), our results shed light on the physical mechanism of tidal heating in

close binaries. In particular, our simulations indicate that energy dissipation oc-

curs in a narrow critical layer. The star heats up from outside-in as the criti-

cal layer propagates inwards. This tidal heating profile differs flom that used by

Fuller and Lai [2012b]. We plan to study this issue in a future work.
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CHAPTER 6

DYNAMICAL TIDES IN ECCENTRIC BINARIES CONTAINING

MASSIVE MAIN-SEQUENCE STARS: ANALYTICAL EXPRESSIONS

Originally published in:

Yubo Su and Dong Lai. Dynamical tides in eccentric binaries containing massive

main-sequence stars: Analytical expressions. MNRAS, 510(4):4943–4951, 2022b

6.1 Introduction

The physics of tidal dissipation in massive, main-sequence (MS) stars (i.e. having a

convective core and radiative envelope) under the gravitational influence of a com-

panion was first studied by Zahn [1975] [see also Savonije and Papaloizou, 1983,

Goldreich and Nicholson, 1989]. The dominant dissipation mechanism is through

the dynamical tide, in which the time-dependent tidal potential of the companion

excites internal gravity waves (IGWs) at the convective-radiative boundary (RCB).

As the wave propagates towards the surface, its amplitude grows, and the wave

dissipates efficiently [Zahn, 1975, Goldreich and Nicholson, 1989, Su et al., 2020].

The contribution due to viscous dissipation in the convective core is expected to be

subdominant.

The original expression describing the torque due to dynamical tides by Zahn

[1975] is very sensitive to the global properties of the star. Kushnir et al. [2017]

present an updated derivation of the tidal torque that depends only on the local

stellar properties near the RCB, eliminating many uncertainties from the Zahn’s

original expression. In Zaldarriaga et al. [2018], the authors use the new expres-

sion to study tidal synchronization in binaries consisting of a Wolf-Rayet star and

a black hole, the likely progenitors to merging black-hole binaries observed by

LIGO/VIRGO.
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These previous works all apply to nearly circular binaries. However, massive

stars can often be found in high-eccentricity (high-e) systems, such as binaries

consisting of one MS star and one neutron star (NS). The NS is formed with a

large kick velocity [e.g. Lai et al., 2001, Janka et al., 2021], giving rise to a high-e

binary. Several such high-e MS-NS systems have been discovered [e.g. Kaspi et al.,

1994, Johnston et al., 1994, Champion et al., 2008]. These are the progenitors of

double NS systems [e.g. Tauris et al., 2017]. An important issue is to understand

whether such high-e systems can circularize prior to mass transfer or a common

envelope phase [Vigna-Gómez et al., 2020, Vick et al., 2021].

The purpose of this paper is to derive easy-to-use, analytical expressions for

the effects of dynamical tides for high-e binaries with massive MS stellar com-

panions. In Section 6.2, we summarize the equations of dynamical tides involving

IGWs in circular binaries and existing techniques for studying high-e systems. In

Section 6.3, we evaluate the effect of dynamical tides in high-e systems containing

massive MS stellar companions, including the torque and orbital decay rate. In

Section 6.4, we apply our results to the pulsar-MS binary PSR J0045-7319, for

which a non-zero orbital decay rate has been measured. Finally, we summarize

our results and discuss the uncertainties in Section 6.5.

6.2 Dynamical Tides in Massive Stars

6.2.1 Circular Binaries

We first review the case where the binary is circular. Let M be the mass of the

MS star, M2 the mass of the companion, a the semimajor axis of the binary, and

Ω the angular frequency (mean motion) of the binary. The tidal torque exerted on
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the star by the companion due to tidal excitation of IGWs at the RCB is [Kushnir

et al., 2017]

Tcirc(ω)= T0 sgn(ω)
∣∣∣ ω
Ω

∣∣∣8/3
, (6.1)

where

T0 ≡β2
GM2

2r5
c

a6

 Ω√
GMc/r3

c


8/3

ρc

ρ̄c

(
1− ρc

ρ̄c

)2
, (6.2)

β2 ≡
[

rc

gc

(
dN2

dln r

)
r=rc

]−1/3 [
32Γ2(1/3)
40π122/3 α

2
]

. (6.3)

Here, ω≡ 2Ω−2Ωs is the tidal forcing frequency, Ωs is the spin of the MS star, N is

the Brunt-Väisälä frequency, r is the radial coordinate within the star, and rc, Mc,

gc, ρc, and ρ̄c are the radius of the RCB, the mass contained within the convective

core, the gravitational acceleration at the RCB, the stellar density at the RCB, and

the average density of the convective core respectively. Γ is the gamma function, α

is a numerical constant of order unity given by Eq. (A32) of Kushnir et al. [2017],

and β2 ≈ 1 for a large range of stellar models (Fig. 2 of Kushnir et al., 2017). In

Eq. (6.1), we have expressed the various factors such that T0 contains all the spin-

independent terms.

The above result (Eq. 6.1) assumes that tidally excited IGWs dissipate com-

pletely as they propagate outwards towards the stellar surface. Such dissipation

can happen either through radiative damping or nonlinear effects. Recent hydro-

dynamical simulations of the IGW breaking process in the stellar envelope [Su

et al., 2020] show that the nonlinear damping of the outward-propagating IGWs

is due to the development of a narrow critical layer. This critical layer divides

the star into a asynchronously-rotating interior and a synchronously-rotating ex-

terior [see Goldreich and Nicholson, 1989], and it efficiently absorbs the angular

momentum of the incident IGWs (∼ 70% of incident flux, Su et al., 2020). If the
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IGWs instead reflect before dissipating completely, then standing waves are set up

in the stellar interior. These internal oscillations then dissipate due to radiative

damping and nonlinear mode couplings (for the former, see e.g. Lai, 1996, 1997,

Kumar and Quataert, 1997, 1998, and for the latter, see e.g. O’Leary and Burkart,

2014). Except when a tidal forcing frequency is resonant with a stellar oscilla-

tion mode, the traveling-wave assumption represents an upper bound on the tidal

torque (see e.g. Yu et al., 2020b, 2021 concerning tidal dissipation in white dwarf

binaries).

Note additionally that we use Eq. (6.1) from Kushnir et al. [2017] instead of

the classic expression from Zahn [1975], which is given by:

T(Zahn)
circ (ω)= 3

2
GM2

2R5

a6 E2

(
ωp

GM/R3

)8/3
, (6.4)

where M and R are the mass and radius of the MS star and E2 is a numerical

parameter obtained by integrating over the entire star. The fitting formula E2 =
1.592×10−9 (M/M⊙)2.84 as given by Hurley et al. [2002] is commonly used, which

varies by many orders of magnitude for different stars. Moreover, T(Zahn)
circ depends

on M and R, properties of the entire star, whereas the tidal torque is entirely

generated at the RCB. For these reasons, the expression by Kushnir et al. [2017]

is preferred.

6.2.2 Eccentric Binaries

The gravitational potential of an eccentric companion at the quadrupole order can

be decomposed as a sum over circular orbits [e.g. Storch and Lai, 2013, Vick et al.,
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2017]:

U (r, t)=
2∑

m=−2
U2m (r, t) , (6.5)

U2m (r, t)=−GM2W2mr2

D(t)3 Y2m(θ,φ)e−imf(t),

=−GM2W2mr2

a3 Y2m
(
θ,φ

) ∞∑
N=−∞

FNme−iNΩt. (6.6)

Here, the coordinate system is centered on the MS star, (r,θ,φ) are the radial,

polar, and azimuthal coordinates of r respectively, W2±2 =
p

3π/10, W2±1 = 0, W20 =
−pπ/5, D(t) is the instantaneous distance to the companion, f is the true anomaly,

and Ylm denote the spherical harmonics. FNm denote the Hansen coefficients for

l = 2 [also denoted X N
2m in Murray and Dermott, 1999], which are the Fourier

coefficients of the perturbing function, i.e.

a3

D(t)3 e−imf(t) =
∞∑

N=−∞
FNme−iNΩt. (6.7)

The FNm can be written explicitly as an integral over the eccentric anomaly [Mur-

ray and Dermott, 1999, Storch and Lai, 2013]:

FNm = 1
π

π∫
0

cos[N (E− esinE)−mf (E)]
(1− ecosE)2 dE. (6.8)

By considering the effect of each summand in Eq. (6.5), the total torque on

the star, energy transfer in the inertial frame, and energy transfer in the star’s

corotating frame (which is also the tidal heating rate) can be obtained [Storch and

Lai, 2013, Vick et al., 2017]:

T =
∞∑

N=−∞
F2

N2Tcirc (NΩ−2Ωs) , (6.9)

Ėin = 1
2

∞∑
N=−∞

{(
W20

W22

)2
NΩF2

N0Tcirc (NΩ)

+NΩF2
N2Tcirc (NΩ−2Ωs)

}
, (6.10)

Ėrot = Ėin −ΩsT. (6.11)
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Here, dots indicate time derivatives.

Equations (6.9–6.10) can be used to express the binary orbital decay and cir-

cularization rates using

ȧ
a
=− 2aĖin

GMM2
, (6.12)

ėe
1− e2 =− aĖin

GMM2
+ T

Lorb
, (6.13)

where Lorb = MM2
[
Ga(1− e2)/(M+M2)

]1/2 is the orbital angular momentum. The

stellar spin synchronization rate can also be computed assuming that the star

rotates rigidly:

Ω̇s = T
kMR2 , (6.14)

where kMR2 is the moment of inertia of the MS star.

6.3 Analytic Evaluation of Tidal Torque and Energy Trans-

fer Rates

We can combine the expressions given in Sections 6.2.1 and 6.2.2 to compute the

torque and energy transfer rate due to dynamical tides in an eccentric binary.

The tidal torque is obtained by evaluating Eq. (6.9) with the circular torque set to

Eq. (6.1), giving:

T =
N=∞∑

N=−∞
F2

N2T0 sgn
(
N − 2Ωs

Ω

)∣∣∣∣N − 2Ωs

Ω

∣∣∣∣8/3
. (6.15)

The energy transfer rate in the inertial frame is obtained by evaluating Eq. (6.10)

in the same way, giving:

Ėin = T0

2

∞∑
N=−∞

[
NΩF2

N2sgn(N −2Ωs/Ω)
∣∣∣∣N − 2Ωs

Ω

∣∣∣∣8/3

+
(
W20

W22

)2
ΩF2

N0|N|11/3
]
. (6.16)
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These two expressions can be used to obtain the orbital decay, circularization, and

spin synchronization rates using Eqs. (6.12–6.14).

While exact, the two sums in Eqs. (6.15–6.16) are difficult to evaluate for larger

eccentricities, where one often must sum hundreds or thousands of terms, each of

which has a different FNm. In the following, we obtain closed-form approximations

to Eqs. (6.15–6.16) when the eccentricity is large.

6.3.1 Approximating Hansen Coefficients

To simplify Eqs. (6.15–6.16), we seek tractable approximations for both FN2 and

FN0. Note that while the Hansen coefficients can be evaluated using the integral

expression Eq. (6.8), this requires calculating a separate integral for each N. In-

stead, it is more convenient to use the discrete Fourier Transform of the left hand

side of Eq. (6.7) to calculate arbitrarily many N at once [as pointed out by Correia

et al., 2014]. Since F(−N)m = FN(−m), we will only study the Hansen coefficient

behavior for m ≥ 0.

m = 2 Hansen Coefficients

Figure 6.1 shows FN2 vs. N when e = 0.9. First, we note that FN2 is much larger

when N ≥ 0 than for N < 0, so we focus on the behavior for N ≥ 0. Here, FN2 has

only one substantial peak. There are only two characteristic frequency scales: Ω

and Ωp, the pericentre frequency, defined by

Ωp ≡Ω
p

1+ e
(1− e)3/2 . (6.17)

For convenience, we also define Np as the floor of Ωp/Ω, i.e.

Np ≡ ⌊Ωp/Ω⌋, (6.18)
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We find that the peak of the FN2 occurs at N ∼ Np, the only characteristic scale

in N over which FN2 can vary. When N ≫ Np, the Fourier coefficients must fall

off exponentially by the Paley-Wiener theorem, as the left hand side of Eq. (6.7) is

smooth [e.g. Stein and Shakarchi, 2009]. When instead N ≪ Np, there are no char-

acteristic frequencies between Ω and Ωp, so we expect the Hansen coefficients to

be scale-free between N = 1 and Np, i.e. a power law in N. The expected behaviors

in both of these regimes are in agreement with Fig. 6.1.

Motivated by these considerations, we approximate the Hansen coefficients by

FN2 ≈


C2N pe−N/η2 N ≥ 0,

0 N < 0,
(6.19)

for some fitting coefficients C2, p, and η2. By performing fits to FN2 for varying

eccentricities, we find that p ≈ 2 for modest-to-large eccentricities, and we take

p = 2 to be fixed for the remainder of this work. For e = 0.9, Fig. 6.1 shows that

p = 2 accurately captures the power-law behavior of the FN2 for N ≲ Nmax, where

Nmax is the value of N for which FN2 is maximized. While FN2 deviates apprecia-

bly from this power law for N ≪ Nmax, these terms are small in magnitude and

are sub-dominant in any sum over the FN2. Thus, our approximation for FN2 is

sufficiently accurate when evaluating expressions that involve sums over the FN2,

such as in Eqs. (6.15–6.16)1.

To constrain the remaining two free parameters η2 and C2, we use the well

1There is good reason to expect p = 2 for N ≲ Np as long as the eccentricity is sufficiently large.
In this regime, we first note that the left-hand side of Eq. (6.7) resembles the second derivative
of a Gaussian with width ∼Ω−1

p , as it is both sharply peaked about t = 0 and has zero derivative
three times every period (at t = ϵ, t = P/2, and t = P − ϵ for some small ϵ ∼ Ω−1

p ). Secondly, we
note that a Gaussian resembles a Dirac delta function over timescales longer than its width (here,
∼Ω−1

p ). Since the Dirac delta function has a flat Fourier spectrum (∝ N0), and time differentiation
multiplies by N in frequency space, the second derivative of a Gaussian has a Fourier spectrum
∝ N2 for N ≲ Np. As FN2 is the Nth Fourier coefficient for the left-hand side of Eq. (6.7), we do
indeed expect FN2 ∝ N2 for N ≲ Np.
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known Hansen coefficient moments [e.g. Eqs. 22, 23 of Storch and Lai, 2013]

∞∑
N=−∞

F2
N2 =

f5(
1− e2

)9/2 , (6.20)

f5 ≡ 1+3e2 + 3e4

8
, (6.21)

∞∑
N=−∞

F2
N2N = 2 f2(

1− e2
)6 , (6.22)

f2 ≡ 1+ 15e2

2
+ 45e4

8
+ 5e6

16
. (6.23)

Applying Eq. (6.19) to Eqs. (6.20, 6.22), we obtain the coefficients η2 and C2

η2 = 4 f2

5 f5
(
1− e2

)3/2 ∼ 1
2(1− e)3/2 , (6.24)

C2 =
[

4 f5

3
(
1− e2

)9/2
η5

2

]1/2

. (6.25)

Figure 6.1 illustrates the agreement of Eq. (6.19) using these two values of η2

and C2 with the numerical FN2. The good agreement for N ≳ Np/10 (which is

where FN2 is large) is especially impressive as there are no fitting parameters in

Eq. (6.19), as C2, η2, and p are all analytically constrained. Finally, note that the

maximum of the FN2 occurs at N = ⌊2η2⌋ ∼ (1− e)−3/2 ∼ Np.

m = 0 Hansen Coefficients

We now turn to the m = 0 Hansen coefficients, FN0, which are shown in Fig. 6.2.

We know that FN0 = F(−N)0, so we consider only N ≥ 0. From the figure, we see

that the FN0 decay exponentially. There is only one characteristic scale available

for this decay, namely Np. Therefore, we naturally assume the FN0 coefficients

can be approximated by a function of form:

FN0 = C0e−|N|/η0 . (6.26)
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Figure 6.1: Plot of Hansen coefficients FN2 for e = 0.9. The red circles denote
negative N, while the black circles and crosses denote positive and negative FN2.
The blue line is the formula given by Eq. (6.19) with p = 2 and with η2 and C2
given by Eqs. (6.24–6.25).

The two free parameters C0 and η0 are constrained by the identities

∞∑
N=−∞

F2
N0 =

f5(
1− e2

)9/2 , (6.27)

∞∑
N=−∞

F2
N0N2 = 9e2

2
(
1− e2

)15/2 f3, (6.28)

f3 = 1
2
+ 15e2

8
+ 15e4

16
+ 5e6

128
. (6.29)

Applying Eq. (6.26) to Eqs. (6.27–6.28), we obtain

η0 =
[

9e2 f3(
1− e2

)3 f5

]1/2

, (6.30)

C0 =
[

f5(
1− e2

)9/2
η0

]1/2

. (6.31)

Figure 6.2 illustrates the agreement of Eq. (6.26) using these two values of η0 and

C0with the numerically computed FN0.
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Figure 6.2: Plot of FN0 (black circles) for e = 0.9. Since FN0 = F(−N)0, we only show
positive N. The blue line is given by Eq. (6.26) with η0 and C0 given by Eqs. (6.30–
6.31).

6.3.2 Approximate Expressions for Torque and Energy Trans-

fer

Having found good approximations for the Hansen coefficients, we now apply

them to simplify the expressions for the torque and the energy transfer rate in

Eqs. (6.15–6.16).

Tidal Torque

To simplify Eq. (6.15), we replace FN2 with Eq. (6.19) and the sum with an inte-

gral, obtaining

T ≈ T0

∫ ∞

0
C2

2N4e−2N/η2 sgn(N −2Ωs/Ω) |N −2Ωs/Ω|8/3 dN. (6.32)
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This expression is already easier to evaluate than Eq. (6.15), but we can use

further approximations to obtain a closed form. We first analyze Eq. (6.32) in the

small-spin limit, where it can be integrated analytically2, giving

T
(|Ωs|≪Ωp

)≃ T0
f5(e)(η2/2)8/3

(1− e2)9/2
Γ(23/3)

4!
. (6.33)

Note that this has the scaling T ∼ T0 (1− e)−17/2 ∼ TpΩ/Ωp, where Tp is the torque

exerted by a circular orbit with separation equal to the pericentre separation ap ≡
a(1− e), i.e.

Tp =β2
GM2

2r5
c

a6
p

 Ωp√
GMc/r3

c


8/3

ρc

ρ̄c

(
1− ρc

ρ̄c

)2
∼ T0 (1− e)−10 . (6.34)

The top panel of Fig. 6.3 compares Eq. 6.33 to the integral of Eq. (6.32) and

to the direct sum of Eq. (6.15) as a function of the eccentricity. It can be see that

both the integral and the analytic closed form perform well for moderate-to-large

eccentricities, but both over-predict the torque at small e ≲ 0.2 (at e = 0.2, the

torque is over-predicted by ∼ 20%). This discrepancy is expected: there are only

a few non-negligible summands in Eq. (6.15) when e is small, so replacing the

sum over N with an integral is expected to introduce significant inaccuracy that

appears in both the integral and closed-form expressions.

Eq. (6.33) is valid so long as |Ωs/Ω|≪ Nmax (or equivalently,
∣∣Ωs ≪Ωp

∣∣), where

Nmax = 10η2/3 is where the integrand is in Eq. (6.32) maximized. If instead

|Ωs/Ω| ≫ Nmax, the torque can be evaluated directly using Eq. (6.15) and the

known Hansen coefficient moments, giving:

T
(|Ωs|≫Ωp

)≃−T0 sgn(Ωs) |2Ωs/Ω|8/3 f5(e)
(1− e2)9/2 . (6.35)

The bottom panel of Fig. 6.3 compares this formula to the integral of Eq. (6.32) and

to the direct sum of Eq. (6.15) as a function of the eccentricity, where Ωs/Ω= 400.
2The key to the success of our approach is that sums of form

∑∞
n=−∞ F2

N2N p can be approximated
for non-integer p in terms of the Γ function, since

∫ ∞
0 xp e−x dx =Γ(p−1).
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Here, Nmax ≪ 400 for all eccentricities shown. We see that direct summation, the

integral expression, and Eq. (6.35) agree very well for all eccentricities.

Having obtained closed-form expressions of Eq. (6.32) for small and large spins,

we can further derive a single expression joining these two limits. To do this, we

first assume that the spin is small but non-negligible. In this regime, we make the

approximation

N −2Ωs/Ω≃ N
Nmax

(
Nmax − 2γTΩs

Ω

)
, (6.36)

for some free parameter γT . With this, we can integrate Eq. (6.32) in closed form.

We can fix γT by requiring our expression reproduce the large spin limit (Eq. 6.35)

when taking |Ωs| → ∞. This procedure gives an expression for the torque that

agrees with both limiting forms (Eq. 6.33–6.35) and is given by

T ≃ T0
f5(e)(η2/2)8/3

(1− e2)9/2 sgn
(
1−γT

Ωs

η2Ω

)∣∣∣∣ 4
γT

(
1−γT

Ωs

η2Ω

)∣∣∣∣8/3
, (6.37)

where

γT = 4
(

4!
Γ(23/3)

)3/8
≈ 0.691. (6.38)

Figure 6.4 compares this expression to the integral of Eq. (6.32) and to the direct

sum of Eq. (6.15) at fixed e = 0.9 and varying Ωs. We see that Eq. (6.37) agrees

well with the integral and sum for both large and small spins, and is also reason-

ably accurate for intermediate spins. However, Eq. (6.32) is more accurate than

Eq. (6.37) when T changes signs and |T| is small. This is also expected: T changes

signs when the spin approaches pseudosynchronization (Section 6.3.2) because

large contributions to the sum in Eq. (6.15) have opposite signs and mostly cancel

out. Thus, small inaccuracies in the summand result in significant discrepancies

in the total torque. The integral approximation, Eq. (6.32), is expected to be in

good agreement with the direct sum, Eq. (6.15), as the accuracy of the Hansen co-

efficient approximation in Section 6.3.1 is good for large eccentricities, thus guar-

anteeing term-by-term accuracy. On the other hand, the closed-form expression,
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Eq. (6.37), is more approximate whenΩs/Ω∼ Nmax ∼ η2. In fact, Eq. (6.37) predicts

dT/dΩs ≈ 0 near pseudosynchronization. This is not accurate and is an artifact of

our factorization ansatz in Eq. (6.36).

In summary, the tidal torque must be evaluated with explicit summation (Eq. 6.15)

when e ≲ 0.2 (see discussion after Eq. 6.33), can be approximated by the integral

expression (Eq. 6.32) when e is large for all values of Ωs, and otherwise can be

approximated by the closed-form expression given by Eq. (6.37). Recall that when

e is small, the explicit summation of Eq. (6.15) is quite simple, as good accuracy

can be obtained with just the first few terms in the summation (e.g. for e = 0.2,

including just the three terms N ∈ [2,4] results in 98% accuracy).

Pseudosynchronization

In general, the exact torque as given by Eq. (6.15) vanishes for a single Ωs, which

we call the pseudo-synchronized spin frequency. An approximation for the pseudo-

synchronized spin can be directly read off from Eq. (6.37):

Ωps

Ω
= η2

γT
= 4 f2(e)

5γT f5(e)
(
1− e2

)3/2 . (6.39)

This has the expected scaling Ωps ∼ Ωp (the pericentre orbital frequency). Fig-

ure 6.5 compares this prediction for the pseudo-synchronized spin to the exact one

obtained by applying a root finding algorithm to Eq. (6.15). We see that Eq. (6.39)

is a reasonable approximation for the pseudo-synchronized spin frequency when

e ≳ 0.1.

In passing, we note that, in the standard weak friction theory of equilibrium

tides, the pseudo-synchronized spin is given by [Alexander, 1973, Hut, 1981]

Ω
(Eq)
ps

Ω
= f2(e)

f5(e)
(
1− e2

)3/2 . (6.40)
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Figure 6.3: The tidal torque on a non-rotating (top) and rapidly rotating (bottom)
star due to a companion with orbital eccentricity e. Black circles represent direct
summation of Eq. (6.15), green crosses are evaluated using the integral approx-
imation Eq. (6.32), and the blue line is Eq. (6.37). In the small and large spin
limits, Eq. (6.37) reduces to Eq. (6.33) and Eq. (6.35) respectively.
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Figure 6.4: The tidal torque as a function of the stellar spin for a highly eccentric
e = 0.9 companion. The black circles represent direct summation of Eq. (6.15),
green crosses the integral approximation (Eq. 6.32), and the solid line the analytic
closed-form expression Eq. (6.37). The spin is normalized by the pericentre orbital
frequency Ωp ≈ 43Ω (Eq. 6.17).
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Figure 6.5: The spin frequencies Ωps normalized by the pericentre frequency Ωp
(Eq. 6.17) as a function of eccentricity. The blue line is given by Eq. (6.39). The
black line shows the exact solution, obtained by using a root finding algorithm
to solve for the zero of Eq. (6.9). The red dashed line shows the spin frequency
predicted by the weak friction theory of equilibrium tides (Eq. 6.40).
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Though describing a different tidal phenomenon, this only differs from Eq. (6.39)

by a factor of 4/(5γT) ≈ 1.15. We show it for comparison as the red dotted line in

Fig. 6.5.

Energy Transfer

We now turn our attention to Eq. (6.10) and replace FN2 and FN0 with their re-

spective approximations (Eqs. 6.19 and 6.26) to obtain the energy transfer rate

Ėin = T0Ω

2

∞∫
0

[
C2

2N5e−2N/η2sgn(N −2Ωs/Ω) |N −2Ωs/Ω|8/3

+2
(
W20

W22

)2
C2

0e−2N/η0 N11/3
]

dN. (6.41)

We evaluate the m = 2 and m = 0 contributions to this expression separately.

We first examine the m = 2 contribution using the same procedure in Sec-

tion 6.3.2 for the torque. If the spin is moderate, i.e. |Ωs/Ω| ≲ Nmax where now

Nmax = 23η2/6, we make the approximation

N −2Ωs/Ω≃ N
Nmax

(
Nmax − 2γEΩs

Ω

)
, (6.42)

where γE is a free parameter. This lets us integrate the m = 2 contribution to

Eq. (6.41) analytically. We constrain γE by requiring agreement with the large-

spin limit: for |Ωs/Ω|≫ Nmax, we have

Ė(m=2)
in

(|Ωs|≫Ωp
)≃−T0Ω

2
sgn(Ωs)|2Ωs/Ω|8/3 2 f2(e)

(1− e2)6 . (6.43)

This fixes γE and we obtain the complete m = 2 contribution to Eq. (6.41):

Ė(m=2)
in ≃ T0Ω f5(e)(η2/2)11/3

2(1− e2)9/2

×sgn
(
1−γE

Ωs

η2Ω

)∣∣∣∣ 4
γE

(
1−γE

Ωs

η2Ω

)∣∣∣∣8/3
, (6.44)
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where

γE = 4
(

5!
Γ (26/3)

)3/8
≈ 0.5886. (6.45)

Note that, when Ωs ≈ 0, Eq. (6.44) gives the expected scaling of Ė(m=2)
in ∼ TpΩ

where Tp is the torque exerted by a circular companion at the pericentre separa-

tion, given by Eq. (6.34).

The m = 0 contribution to Eq. (6.41) can be straightforwardly integrated using

the parameterization Eq. (6.26). The sum of the two contributions then gives the

total energy transfer rate:

Ėin = T0Ω

2

[
f5(e)(η2/2)11/3

(1− e2)9/2

×sgn
(
1−γE

Ωs

η2Ω

)∣∣∣∣ 4
γE

(
1−γE

Ωs

η2Ω

)∣∣∣∣8/3

+ f5(e)Γ(14/3)
(1− e2)10

(
3
2

)8/3 (
e2 f3(e)
f5(e)

)11/6 ]
. (6.46)

The two panels of Fig. 6.6 compare this expression with the integral form

Eq. (6.41) and the direct sum Eq. (6.16) for small and large spins. The agree-

ments are excellent except that, when the spin and eccentricity are small, both

the integral and closed form expressions over-predict the energy transfer rate.

Figure 6.7 compares these three expressions as a function of spin for e = 0.9. The

performance of Eq. (6.46) degrades when the system is near pseudosynchroniza-

tion (Ωs ≃ Ωp), but generally captures the correct behavior of the exact result,

while Eq. (6.41) is accurate for all spins. As was the case with the tidal torque,

we see that the evaluation of the energy transfer rate when e ≲ 0.2 requires direct

summation (Eq. 6.16), and the evaluation when e is substantial but the spin is

near pseudosynchronization can be performed using the integral approximation

(Eq. 6.41), and otherwise the evaluation can be performed using the closed-form

expression (Eq. 6.46).
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Figure 6.6: The tidal energy transfer rate Ėin for a non-rotating (top) and a rapidly
rotating (bottom) star. The black circles represent direct summation of Eq. (6.16),
green crosses the integral form Eq. (6.41), and the blue line the closed-form ex-
pression Eq. (6.46).
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Figure 6.7: The tidal energy transfer rate Ėin as a function of spin [normalized
by Ωp; Eq. (6.17)] for a highly eccentric e = 0.9 companion. The black circles rep-
resent direct summation of Eq. (6.10), green crosses the integral approximation
Eq. (6.41), and the blue line the analytic closed form Eq. (6.46).

6.4 PSR J0045-7319/B-Star Binary

As an application of our analytical results above, we consider the PSR J0045-

7319/MS binary system [Kaspi et al., 1994] and attempt to explain its orbital decay

via dynamical tides. This system is one of the few pulsar binaries discovered so

far that have massive MS companions [the other known binaries are, PSR B1259-

63, PSR J1740-3052, PSR J1638-4725, J2032+4127; Johnston et al., 1992, Stairs

et al., 2001, Lorimer et al., 2006, Lyne et al., 2015]. These systems evolve from

MS-MS binaries when one of the stars explodes in a supernova to form a neutron

star (NS), and will eventually become double NS systems when the MS companion

also explodes to form a NS. Thus, characterizing the evolution of such systems

is important for understanding the formation of double NS binaries [e.g. Tauris

et al., 2017]. The PSR J0045-7319 system contains a radio pulsar (M2 ≃ 1.4M⊙)
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and a massive B star (M ≃ 8.8M⊙) companion in an eccentric (e = 0.808) orbit with

period P = 51.17 days, corresponding to a semi-major axis a = 126R⊙. Timing

observation shows that the orbit is decaying at the rate Ṗ =−3.03×10−7, or P/Ṗ ≃
−0.5 Myr [Kaspi et al., 1996]. The measured B-star luminosity L = 1.2×104L⊙ and

surface temperature Tsurf = (24000± 1000) K imply a radius of R = 6.4R⊙ [Bell

et al., 1995]. The B star has a projected surface rotation velocity vsin i = 113±
10 km/s [Bell et al., 1995], consistent with rapid rotation (the breakup velocity is
p

GM/R = 512 km/s). While there are uncertainties in some of these parameters

(e.g., the pulsar and companion masses could be larger by about 10%; see Thorsett

and Chakrabarty, 1999), we adopt the above values in our calculation below for

better comparison with previous works.

Lai [1996] and Lai [1997] explained the observed orbital decay of the PSR

J0045-7319 binary in terms of tidal excitations of discrete (rotation-modified) g-

modes followed by radiative damping. He showed that retrograde rotation of the

B-star [consistent with the observed nodal precession of the binary orbit; see Lai

et al., 1995, Kaspi et al., 1996] can significantly enhance the strength of mode ex-

citation, and potentially account for the observed orbital decay, although he did

not compute the mode damping rate quantitatively. Kumar and Quataert [1997,

1998] examined the damping of g-modes and showed that radiative damping in

rigidly rotating B-star is inadequate to explain the observed orbital decay rate,

suggesting that in addition to retrograde rotation, significant differential rota-

tion or nonlinear parametric mode decay may be required. Given the uncertain-

ties in their estimates, it was not clear to what extent the observed orbital decay

rate can be quantitatively explained. Moreover, both Lai et al. [1995] and Ku-

mar and Quataert [1997, 1998] considered discrete g-modes, whereas absorption

of tidally excited gravity waves near the stellar envelope, via either efficient radia-

tive damping or nonlinear breaking [see Su et al., 2020], implies outgoing waves
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(as adopted in the works of Zahn, 1975, Goldreich and Nicholson, 1989, Kushnir

et al., 2017) rather than discrete g-modes.

We now consider the evolution of stellar spin and binary orbit for the PSR

J0045-7319 system. For the adopted system parameters above, the pericentre dis-

tance is ap ≃ 3.78R, and pericentre frequency isΩp =
√

(1+ e)GMtot/a3
p ≃ 0.20

p
GM/R3.

First we note that the tidal torque T and the energy transfer rate Ėin (dominated

by the m = 2 term) are related by

Ėin ≃ TΩp
f2

5(1+ e)2 f5
, (6.47)

with f2 = 8.38, f5 = 3.12. Thus the spin evolution rate (for spin-orbit synchroniza-

tion and alignment) is given by∣∣∣∣ Ṡ
S

∣∣∣∣≃ L
S

5(1− e2) f5

2 f2

∣∣∣∣ Ėin

Eorb

∣∣∣∣ , (6.48)

where S = kMR2Ω̄s is the spin angular momentum of the star (with Ω̄s the mean

rotation rate, and k ≃ 0.1), L is the orbital angular momentum, and Eorb is the

orbital energy. Thus ∣∣∣∣ Ṡ
S

∣∣∣∣≃ 6.3
Ωp

Ω̄s

∣∣∣∣ ȧ
a

∣∣∣∣ . (6.49)

The observed nodal precession of the PSR J0045-7319 binary implies that the spin

of the B-star is far from spin-orbit alignment and synchronization driven by tides

[Lai et al., 1995]. Thus we require Ω̄s ≳ 6.3Ωp ∼
p

GM/R3, suggesting that the

internal rotation rate of the star is much larger that the surface rate.

Using Eq. (6.46) with e = 0.808 (and keeping only the m = 2 term), we find that

the orbital decay rate is given by∣∣∣∣ ȧ
a

∣∣∣∣≃ 1.6×105Ω
M2

M

(
Mtot

Mc

)4/3

×
( rc

a

)9 ρc

ρ̄c

(
1− ρc

ρ̄c

)2 ∣∣∣∣ 4
γE

(
1− γEΩs

η2Ω

)∣∣∣∣8/3
. (6.50)
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With η2 = 10.55, a ≃ 19.7R, and adopting ρc/ρ̄c ≃ 1/3, we find the orbital decay rate∣∣∣∣ Ṗ
P

∣∣∣∣≃ 1
0.5Myr

(
3M⊙
Mc

)4/3 ( rc

0.54R

)9
∣∣∣∣1− 0.89Ωs

Ωp

∣∣∣∣8/3
. (6.51)

NoteΩs in the above expression refers to the rotation rate at the radiative-convective

boundary (RCB) rc, and we expect Ωs ≳ Ω̄s ≳ 6Ωp.

To explain the observed orbital decay timescale |P/Ṗ| ≃ 0.5 Myr, the most crit-

ical parameter is the core radius rc. Kumar & Quataert (1998) adopted Mc ≃ 3M⊙

and rc ≃ 1.38R⊙ (or rc ≃ 0.22R) based on comparison with a Yale stellar evolution

model. This value of rc would require Ωs/Ωp ≃ −24, or Ωs ≃ −4.8
p

GM/R3, to ex-

plain the observed decay rate. If we use a slightly larger core radius, rc = 1.5R⊙ ≃
0.234R, the required Ωs would be Ωs ≃ −18Ωp ≃ −3.6

p
GM/R3. In either case,

extreme differential rotation (with |Ωs| at the RCB at least a factor of few larger

than the surface rotation) is required. In Fig. 6.8 we show Ṗ/P as a function of

Ωs, obtained using the exact expression Eq. (6.46) for four different values of rc.

In general, given that the surface rotation rate of the star is less than
p

GM/R3,

our calculation suggests that the B-star must have large, retrograde differential

rotation in order to explain the observed orbital decay.

We note that our own exploration of stellar models using the Modules for Ex-

periments in Stellar Astrophysics [MESA; Paxton et al., 2011, 2013, 2015, 2018,

2019] generally finds a small core radius (rc ≲ R⊙) for the B-star in the PSR J0045-

7319 system. Since the system is in the Small Magellanic Cloud, we use a typical

metallicity Z = 0.1Z⊙, where Z⊙ is the solar metallicity. For a range of initial stel-

lar masses, we begin with a non-rotating zero-age main sequence (ZAMS) stellar

model, and evolve it until its core hydrogen is depleted. Among these evolutionary

tracks, we select the model and stellar age that best matches the observed L and

Tsurf and record the core radius at that age. We then repeat this procedure with

different values for the convective overshoot parameter, initial rotation rate (up to
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nearly maximally rotating), and metallicity (up to Z = 0.2Z⊙). For all parameter

combinations, the predicted stellar masses lie in the range 8.8M⊙ ≤ M ≤ 10M⊙,

in agreement with the estimates in the literature. However, the core radius for

all stellar models is rc ≲ R⊙ ≈ 0.16R. This reflects the fact that our best-fitting

stellar models tend to be somewhat evolved from the ZAMS. For further details,

see AppendiX E.1.

We caution that applying standard isolated stellar evolution to the B-star in

the PSR J0045-7319 system can be fraught with uncertainties. The very rapid

rotation may induce instabilities and allow the star to transport material from the

hydrogen-rich envelope into the central burning region and vice versa, potentially

making the convective core larger [e.g. Maeder, 1987, Heger and Langer, 2000].

This effect may be enhanced by the large misaligned, differential rotation. Related

to the rotational effect is the mass transfer effect: The observed rapid orbital decay

rate and general orbital evolution modeling sets an upper limit of about 1.4 Myr

on the age of the binary system since the last supernova explosion [Lai, 1996],

much shorter than the canonical MS lifetime. Thus the B-star must have accreted

significant material from the pulsar progenitor in the recent past. Such accretion

can affect the structure and evolution of the B-star in a significant way. Given

these uncertainties, we think it is likely that the B-star has a larger core radius

than the canonical value, rendering a less extreme differential rotation3.

3We note that a recent study of intermediate and high-mass eclipsing binaries suggests that
convective core masses are underpredicted by stellar structure codes [Tkachenko et al., 2020a].
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Figure 6.8: The orbital decay ratio Ṗ/P as a function of Ωs for the canonical pa-
rameters of the PSR J0045-7319 binary system, as evaluated by Eq. (6.46), for four
different values of rc (legend, in units of R⊙). The measured Ṗ/P = − (0.5 Myr)−1

is shown by the horizontal dashed line. The vertical shaded region is the region
where |Ωs| is less than the breakup rotation rate of the star as a whole, given by
(GM/R3)1/2. Each rc is only shown for |Ωs| ≤Ωs,c ≡ (GMc/r3

c )1/2, the core breakup
rotation rate, and the colored crosses denote where Ωs =Ωs,c for each value of rc.
Note that for rc ≲ 1.3R⊙, even a maximally rotating core cannot generate enough
tidal torque to match the observed Ṗ/P.
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6.5 Summary and Discussion

6.5.1 Key Results

The main goal of this paper is to derive easy-to-use, analytical expressions for

the tidal torque T and tidal energy transfer rate Ėin due to internal gravity wave

(IGW) dissipation in a massive, main-sequence (MS) star under the gravitational

influence of an eccentric companion. Tidal evolution in such systems plays an

important role in the formation scenarios of merging neutron-star (NS) binaries.

For general eccentricities, these expressions are given by the sums, Eqs. (6.15)

and (6.16), respectively. However, when the eccentricity is large, these sums re-

quire the evaluation of many terms to be accurate. We have derived approximate

expressions in two regimes:

• For e ≳ 0.2, we show that the tidal torque and energy transfer rate can be

accurately approximated by the integral expressions, Eqs. (6.32) and (6.41).

• If furthermore the spin of the stellar core is not very close to its pseudo-

synchronized value (i.e. where the torque vanishes; see Section 6.3.2), we

show that these two integral expressions can be well approximated by the

closed-form expressions, Eqs. (6.37) and (6.46).

These analytical expressions for T and Ėin (particularly the closed-form expres-

sions) can be easily applied to study the spin and orbital evolution of eccentric

binaries consisting of massive MS stars, such as those found in the evolution sce-

narios leading to the formation of merging neutron star binaries.

We then apply our analytical expressions to the PSR J0045-7319 binary sys-

tem, which has a massive B-star companion and a measured orbital decay rate.
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This system provides a rare example to test/calibrate our theoretical understand-

ing of IGW-mediated dynamical tides in massive stars. We show that for the “stan-

dard” radius of the convective core based on isolated non-rotating stellar modeling,

the B-star must have a significant retrograde and differential rotation (with the

rotation rate at the convective-radiative boundary at least a few times larger than

the surface rotation rate of the star). Alternatively, we suggest that the convec-

tive core radius may be larger than the standard value as a result of rapid stellar

rotation and/or mass transfer to the B-star in the recent past during the post-MS

evolution of the pulsar progenitor. Overall, our attempt to explain the rapid orbital

decay of the PSR J0045-7319 binary highlights the critical importance of internal

stellar structure, particularly the size of the convective core, in determining the

tidal evolution of eccentric binaries containing massive MS stars.

6.5.2 Caveats

Concerning our analytical expressions for the tidal torque and energy transfer

rate, we note a few potential caveats:

(i) For simplicity, we have assumed that the stellar spin and orbit axes are

aligned or anti-aligned. For general stellar obliquities (as in the case of the PSR

J0045-7319 binary system), it is possible to decompose the tidal force into different

Fourier components (see Appendix A of Lai, 1997), and this would be unlikely to

yield qualitatively different result in terms of the orbital decay rate [cf. Lai, 2012].

(ii) More importantly, in our work we have assumed that all Fourier harmonics

(with different forcing frequencies NΩ in the inertial frame, where Ω is the mean

orbital frequency) of the tidal potential excite IGWs at the radiative-convective

boundary that damp completely as they propagate towards the stellar surface.

193



This is known to be the case when the normalized tidal forcing frequency ω (equal

to NΩ− 2Ωs for m = 2 and NΩ for m = 0) satisfies |ω| ≪
p

GM/R3 due to effi-

cient radiative damping (Zahn, 1975, Kushnir et al., 2017; see also the review

paper Ogilvie, 2014). Note that the dominant Fourier harmonics of the tidal po-

tential have NΩ ∼ Ωp (the orbital frequency at the pericentre). Thus, as long

as Ωp, |Ωs| ≪
p

GM/R3, the assumption of outgoing IGWs inherent in our the-

ory is valid. When |ω| is comparable to
p

GM/R3, it is traditionally thought that

IGWs set up standing modes in the stellar interior. This is because IGWs are

evanescent sufficiently near stellar surface, where the pressure scale height be-

comes smaller than the radial wavelength of the wave [Goldreich and Nicholson,

1989]. Moreover, Su et al. [2020] found that sufficiently large-amplitude IGWs

can spontaneously cause a critical layer to form due to nonlinear wave breaking,

causing incident IGWs to be efficiently absorbed. After such a critical layer forms,

it can propagate to deep within the stellar interior and efficiently absorb IGWs

even before they reach breaking amplitudes. Wave breaking and other nonlinear

effects (such as nonlinear mode couplings) may be enhanced in an eccentric bi-

nary such as PSR J0045-7319, where IGWs with a wide range of frequencies are

excited. Burkart et al. [2012] found that the frequency cutoff for g-modes in the

eccentric heartbeat star system KOI-54 (with eccentricity e = 0.83, orbital period

P = 41.8 days, and stellar mass M ≈ 2.3M⊙) is in agreement with the frequency at

which IGWs become efficiently damped by thermal diffusion. However, in higher-

mass MS stars such as that in PSR J0045-7319, nonlinear wave breaking may be

an important source of IGW damping due to the larger tidal torque. More work is

needed to address whether our assumption of traveling IGWs in massive stars is

accurate.
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CHAPTER 7

SPIN-ORBIT MISALIGNMENTS IN TERTIARY-INDUCED BLACK-HOLE

BINARY MERGERS: THEORETICAL ANALYSIS

Originally published in:

Yubo Su, Dong Lai, and Bin Liu. Spin-orbit misalignments in tertiary-induced bi-

nary black-hole mergers: Theoretical analysis. Phys. Rev. D, 103(6):063040, 2021a

7.1 Introduction

As LIGO/VIRGO continues to detect mergers of black hole (BH) binaries [e.g. Ab-

bott et al., 2016, 2019], it is increasingly important to systematically study various

formation channels of BH binaries and their observable signatures. The canonical

channel consists of isolated binary evolution, in which mass transfer and friction

in the common envelope phase cause the binary orbit to decay sufficiently that

it subsequently merges via emission of gravitational waves (GW) within a Hub-

ble time [e.g. Lipunov et al., 1997, 2017, Podsiadlowski et al., 2003, Belczynski

et al., 2010, 2016, Dominik et al., 2012, 2013, 2015]. BH binaries formed via iso-

lated binary evolution are generally expected to have small misalignment between

the BH spin axis and the orbital angular momentum axis [Postnov and Kuranov,

2019, Belczynski et al., 2020]. On the other hand, various flavors of dynamical

formation channels of BH binaries have also been studied. These involve either

strong gravitational scatterings in dense clusters [e.g. Zwart and McMillan, 1999,

O’leary et al., 2006, Miller and Lauburg, 2009, Banerjee et al., 2010, Downing

et al., 2010, Ziosi et al., 2014, Rodriguez et al., 2015, Samsing and Ramirez-Ruiz,

2017, Samsing and D’Orazio, 2018, Rodriguez et al., 2018, Gondán et al., 2018] or

more gentle “tertiary-induced mergers” [e.g. Liu and Lai, 2021, Liu and Lai, 2020,

Liu et al., 2019b,a, Liu and Lai, 2019, Blaes et al., 2002, Miller and Hamilton,

2002, Wen, 2003, Antonini and Perets, 2012, Antonini et al., 2017, Silsbee and
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Tremaine, 2017a, Liu and Lai, 2017, 2018, Randall and Xianyu, 2018b, Hoang

et al., 2018]. The dynamical formation channels generally produce BH binaries

with misaligned spins with respect to the orbital axes.

GW observations of binary inspirals can put constraints on BH masses and

spins. Typically, the spin constraints come in the form of two dimensionless mass-

weighted combinations of the component BH spins: (i) the aligned spin parameter

χeff ≡
m1χ1 cosθs1l +m2χ2 cosθs2l

m1 +m2
, (7.1)

where m1,2 are the masses of the BHs, θsil is the angle between the i-th spin

and the binary orbital angular momentum axis, and χi ≡ cSi/(Gm2
i ) is the dimen-

sionless Kerr spin parameter; and (ii) the perpendicular spin parameter [Schmidt

et al., 2015]

χp ≡max
{
χ1 sinθs1l,

q (4q+3)
4+3q

χ2 sinθs2l

}
, (7.2)

where q ≡ m2/m1 and m1 ≥ m2. The systems detected in the first and second ob-

serving runs (O1 and O2) of LIGO/VIRGO have χeff ∼ 0 (but see [Zackay et al.,

2019, Venumadhav et al., 2020] for exceptions). In the third observing run (O3) of

LIGO/VIRGO, two events exhibit substantial spin-orbit misalignment. In GW190412

[Abbott et al., 2020a], the two BH component masses are 29+5.0
−5.3M⊙ and 8.4+1.7

−1.0M⊙.

The primary (more massive) BH is inferred to have χ1 = 0.43+0.16
−0.26, and the effec-

tive spin parameter of the binary is constrained to be χeff = 0.25+0.09
−0.11, indicat-

ing a non-negligible spin-orbit misalignment angle. In GW190521 [Abbott et al.,

2020b], the two component BHs have masses of 85+21
−14M⊙ and 66+17

−18M⊙ and spins

of χ1 = 0.69+0.27
−0.62 and χ2 = 0.72+0.24

−0.64. The binary’s aligned spin is χeff = 0.08+0.27
−0.36

while the perpendicular spin is χp = 0.68+0.25
−0.37, again suggesting significant spin-

orbit misalignments.

Liu and Lai [2017, 2018, hereafter LL17, LL18], and Liu et al. [2019a] carried
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out a systematic study of binary BH mergers in the presence of a tertiary com-

panion. LL17 pointed out the important effect of spin-orbit coupling (de-Sitter

precession) in determining the final spin-orbit misalignment angles of BH bina-

ries in triple systems. They considered binaries with sufficiently compact orbits

(so that mergers are possible even without a tertiary) and showed that the combi-

nation of LK oscillations (induced by a modestly inclined tertiary) and spin-orbit

coupling gives rise to a broad range of final spin-orbit misalignments in the merg-

ing binary BHs. We call these mergers LK-enhanced mergers. On the other hand,

LL18 considered the more interesting case of LK-induced mergers, in which an

initially wide BH binary (too wide to merge in isolation) is pushed to extreme ec-

centricities (close to unity) by a highly inclined tertiary and merges within a few

Gyrs. LL18 examined a wide range of orbital and spin evolution behaviors and

found that LK-induced mergers can sometimes exhibit a “90◦ attractor” in the

spin evolution: when the BH spin is initially aligned with the inner binary angu-

lar momentum axis (θsl,0 = 0), it evolves towards a perpendicular state (θsl,f ≃ 90◦)

near merger (when the inner binary becomes gravitationally decoupled from the

tertiary, and θsl freezes). Qualitatively, they found that the attractor exists when

the LK-induced orbital decay is sufficiently “gentle” and the octupole LK effects

are unimportant. Figure 7.1 gives an example of a system evolving towards this

attractor, where θsl converges to ≈ 90◦ at late times in the bottom right panel. Fig-

ure 7.2 shows how θsl,f varies when the initial inclination of the tertiary orbit I0

(relative to the inner orbit) is varied. Note that for rapid mergers (when I0 is close

to 90◦), the attractor does not exist; as I0 deviates more from 90◦, the merger time

increases and θsl,f becomes close to 90◦. This “90◦ attractor” gives rise to a peak

around χeff = 0 in the final χeff distribution in tertiary-induced mergers [LL18; Liu

et al., 2019a]. This peak was also found in the population studies of Antonini et al.

[2018].
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The physical origin of this “90◦ attractor” and under what conditions it can be

achieved are not well understood. LL18 proposed an explanation based on analogy

with an adiabatic invariant in systems where the inner binary remains circular

throughout the inspiral (LL17; see also [Yu et al., 2020a]). However, the validity of

this analogy is hard to justify, as significant eccentricity excitation is a necessary

ingredient in LK-induced mergers. In addition, the LK-enhanced mergers consid-

ered in LL17 show no 90◦ attractor even though the orbital evolution is slow and

regular.

In this paper, we present an analytic theory to explain the 90◦ attractor and

to characterize its regime of validity. More generally, we develop a theoretical

framework to help understand the BH spin evolution in LK-induced mergers. In

Sections 7.2 and 7.3, we set up the relevant equations of motion for the orbital and

spin evolution of the system. To simplify the theoretical analysis, we initially con-

sider the cases where the tertiary mass is much larger than the binary mass. In

Sections 7.4 and 7.5, we develop an analytic understanding of the spin evolution.

In Section 7.6, we generalize our results to stellar-mass tertiary companions. We

discuss and conclude in Section 7.7.

7.2 LK-Induced Mergers: Orbital Evolution

In this section we summarize the key features and relevant equations for LK-

induced mergers to be used for our analysis in later sections. Consider a black

hole (BH) binary with masses m1 and m2 having total mass m12, reduced mass µ=
m1m2/m12, semimajor axis a and eccentricity e. This inner binary orbits around a

tertiary with mass m3, semimajor axis aout and eccentricity eout in a hierarchical

configuration (aout ≫ a). Unless explicitly stated, we assume m3 ≫ m1,m2 (e.g.
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Figure 7.1: An example of the “90◦ spin attractor” in LK-induced BH binary merg-
ers. The four panes show the time evolution of the binary semi-major axis a, ec-
centricity e, inclination I [the red line denotes the averaged Ī given by Eq. (7.29)],
and spin-orbit misalignment angle θsl. The unit of time tLK,0 is the LK timescale
[Eq. (7.9)] evaluated for the initial conditions. The inner binary has m1 = 30M⊙,
m2 = 20M⊙, and initial a0 = 100 AU, e0 = 0.001, I0 = 90.35◦ (with respect to
the outer binary), and θsl,0 = 0. The tertiary has aout = 2.2 pc, eout = 0, and
m3 = 3× 107M⊙ (The result depends only on m3/ã3

out, provided that Lout ≫ L).
It can be seen that θsl evolves to ∼ 90◦ as a decays to smaller values, and we stop
the simulation when a = 0.5 AU as the LK oscillation “freezes” and θsl has con-
verged to a constant value.
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Figure 7.2: The merger time and the final spin-orbit misalignment angle θsl,f as
a function of the initial inclination I0 for LK-induced mergers. The other param-
eters are the same as those in Fig. 7.1. For I0 somewhat far away from 90◦, the
resulting θsl,f are all quite near 90◦. In the lower panel, the horizontal black solid
line shows the predicted θsl,f if θ̄e is conserved, i.e. Eq. (7.57), and the black dashed
line shows Eq. (7.61), which provides an estimate for the deviation from the 90◦

attractor.
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the tertiary can be a supermassive black hole, or SMBH), although our analysis

can be easily generalized to comparable masses (see Section 7.6). We denote the

orbital angular momentum of the inner binary by L ≡ LL̂ and the angular mo-

mentum of the outer binary by Lout ≡ LoutL̂out. Since Lout ≫ L, we take Lout to be

fixed.

The equations of motion governing the orbital elements a, e, �, I, ω (where

�, I, ω are the longitude of the ascending node, inclination, and argument of

periapsis respectively) of the inner binary are

da
dt

=
(
da
dt

)
GW

, (7.3)

de
dt

= 15
8tLK

e j(e)sin2ωsin2 I +
(
de
dt

)
GW

, (7.4)

d�
dt

= 3
4tLK

cos I
(
5e2 cos2ω−4e2 −1

)
j(e)

, (7.5)

dI
dt

=− 15
16tLK

e2 sin2ωsin2I
j(e)

, (7.6)

dω
dt

= 3
4tLK

2 j2(e)+5sin2ω(e2 −sin2 I)
j(e)

+ΩGR, (7.7)

where we have defined

j(e)=
√

1− e2, (7.8)

t−1
LK ≡ n

(
m3

m12

)(
a

ãout

)3
, (7.9)

with n ≡
√

Gm12/a3 the mean motion of the inner binary, and ãout = aout

√
1− e2

out.

The general relativity (GR) induced apsidal precession of the inner binary is given

by

ΩGR(e)= 3Gnm12

c2a j2(e)
. (7.10)

The dissipative terms due to gravitational radiation are(
da
dt

)
GW

=− a
tGW(e)

, (7.11)(
de
dt

)
GW

=−304
15

G3µm2
12

c5a4
1

j5(e)

(
1+ 121

304
e2

)
e, (7.12)
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where

t−1
GW(e)≡ 64

5
G3µm2

12

c5a4
1

j7(e)

(
1+ 73

24
e2 + 37

96
e4

)
. (7.13)

Equations (7.4–7.7) include only the effects of quadrupole perturbations from

m3 on the binary. The octupole effects depend on the parameter

ϵoct = m1 −m2

m12

aeout

aout(1− e2
out)

, (7.14)

[see Liu et al., 2015a]. Throughout this paper, we consider systems where ϵoct ≪ 1

so that the octupole effects are neglected.

In Fig. 7.1, we provide an example of an LK-induced merger for our fiducial pa-

rameters (described in the figure caption). The inner binary initially decays slowly

as its eccentricity undergoes LK oscillations, with a nearly constant maximum

eccentricity close to unity. Then, as a decreases and the minimum eccentricity

within each LK cycle increases, the orbital decay of the inner binary accelerates.

As apsidal precession further suppresses eccentricity oscillations, the eccentric-

ity rapidly decays. We terminate the simulation at a = 0.5 AU as the spin-orbit

misalignment angle θsl has reached its final value, even though the binary still

has non-negligible eccentricity. We refer to the example depicted in Fig. 7.1 as the

fiducial example, and much of our analysis in later sections will be based on this

example unless otherwise noted. Also note that the parameters of Fig. 7.1 give the

same tLK as Fig. 4 of LL18.

We next discuss the key analytical properties of the orbital evolution.
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7.2.1 Analytical Results Without GW Radiation

First, neglecting the GW radiation terms, the system admits two conservation

laws, the “Kozai constant” and energy conservation,

j(e)cos I = const, (7.15)

3
8

[
2e2 + j2(e)cos2 I −5e2 sin2 I sin2ω

]+ ϵGR

j(e)
= const, (7.16)

(see [Anderson et al., 2016] and LL18 for more general expressions when Lout is

comparable to L), where

ϵGR ≡ (ΩGRtLK)e=0 =
3Gm2

12ã3
out

c2m3a4 . (7.17)

The conservation laws can be combined to obtain the maximum eccentricity emax

as a function of the initial I0 (and initial e0 ≪ 1). The largest value of emax occurs

at I0 = 90◦ and is given by

j(emax)I0=90◦ = (8/9)ϵGR. (7.18)

Eccentricity excitation then requires ϵGR < 9/8. Our fiducial examples in Figs. 7.1

and 7.2 satisfy ϵGR ≪ 1 at a = a0, leading to emax ∼ 1 within a narrow inclination

window around I0 = 90◦.

Eqs. (7.15) and (7.16) imply that e is a function of sin2ω alone [see Kinoshita

and Nakai, 1999, Storch and Lai, 2015, for the exact form], so an eccentricity

maximum occurs every half period of ω. We define the LK period of eccentricity

oscillation PLK and its corresponding angular frequency ΩLK via

π=
PLK∫
0

dω
dt

dt, ΩLK ≡ 2π
PLK

. (7.19)

In LK cycles, the inner binary oscillates between the eccentricity minimum

emin and maximum emax. The oscillation is “uneven”: when emin ≪ emax, the bi-
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nary spends a fraction ∼ j(emax) of the LK cycle, or time ∆t ∼ tLK j (emax), near

e ≃ emax [see Eq. (7.7)].

7.2.2 Behavior with GW Radiation

Including the effect of GW radiation, orbital decay predominantly occurs at e ≃
emax with the timescale of tGW (emax) [see Eq. (7.13)]. On the other hand, Eq. (7.7)

implies that, when ϵGR ≪ 1, the binary spends only a small fraction (∼ j(emax))

of the time near e ≃ emax. Thus, we expect two qualitatively different merger

behaviors:

• “Rapid mergers”: When tGW (emax)≲ tLK j(emax), the binary is “pushed” into

high eccentricity and exhibits a “one shot merger” without any e-oscillations.

• “Smooth mergers”: When tGW (emax) ≳ tLK j(emax), the binary goes through

a phase of eccentricity oscillations while the orbit gradually decays. In this

case, the LK-averaged orbital decay rate is ∼ j(emax)t−1
GW(emax). As a de-

creases, emax decreases slightly while the minimum eccentricity increases,

approaching emax (see Fig. 7.1). This eccentricity oscillation “freeze” (emin ∼
emax) is due to GR-induced apsidal precession (ϵGR increases as a decreases),

and occurs when ϵGR(a)≫ j(emax). After the eccentricity is frozen, the binary

circularizes and decays on the timescale tGW (emax).

7.3 Spin Dynamics: Equations

We are interested in the spin orientations of the inner BHs at merger as a function

of initial conditions. Since they evolve independently to leading post-Newtonian
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order, we focus on the dynamics of Ŝ1 = Ŝ, the unit spin vector of m1. Since the spin

magnitude does not enter into the dynamics, we write S≡ Ŝ for brevity (i.e. S is a

unit vector). Neglecting spin-spin interactions, S undergoes de Sitter precession

about L as

dS
dt

=ΩSLL̂×S, (7.20)

with

ΩSL = 3Gn
(
m2 +µ/3

)
2c2a j2(e)

. (7.21)

In the presence of a tertiary companion, the orbital axis L̂ of the inner binary

precesses around L̂out with rate d�/dt and nutates with varying I [see Eqs. (7.5)

and (7.6)]. To analyze the dynamics of the spin vector, we go to the co-rotating

frame with L̂ about L̂out, in which Eq. (7.20) becomes(
dS
dt

)
rot

=Ωe ×S, (7.22)

where we have defined an effective rotation vector

Ωe ≡ΩLL̂out +ΩSLL̂, (7.23)

with [see Eq. (7.5)]

ΩL ≡−d�
dt

. (7.24)

In this rotating frame, the plane spanned by L̂out and L̂ is constant in time, only

the inclination angle I can vary.

7.3.1 Nondissipative Spin Dynamics

We first consider the limit where dissipation via GW radiation is completely ne-

glected (tGW(e)→∞). Then Ωe is exactly periodic with period PLK [see Eq. (7.19)]
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We can rewrite Eq. (7.22) in Fourier components(
dS
dt

)
rot

=
[
Ωe +

∞∑
N=1
ΩeN cos(NΩLKt)

]
×S. (7.25)

Note that Ωe is the zeroth Fourier component, where the bar denotes an average

over a LK cycle. We have adopted the convention where t = 0 is the time of max-

imum eccentricity of the LK cycle, so that Eq. (7.25) does not have sin(NΩLKt)

terms.

This system superficially resembles that considered in Storch and Lai [2015]

(SL15), who studied the dynamics of the spin axis of a star when driven by a

giant planet undergoing LK oscillations [see also Storch et al., 2014, 2017]. In

their system, the spin-orbit coupling arises from Newtonian interaction between

the planet (Mp) and the rotation-induced stellar quadrupole (I3− I1), and the spin

precession frequency is

Ω(Newtonian)
SL =−3GMp (I3 − I1)

2a3 j3(e)
cosθsl

I3Ωs
, (7.26)

where I3Ωs is the spin angular momentum of the star. SL15 showed that under

some conditions that depend on a dimensionless adiabaticity parameter (roughly

the ratio between the magnitudes of Ω(Newtonian)
SL and ΩL when factoring out the

eccentricity and obliquity dependence), the stellar spin axis can vary chaotically.

One strong indicator of chaos in their study is the presence of irregular, fine struc-

ture in a bifurcation diagram [Fig. 1 of Storch and Lai [2015]] that shows the

values of the spin-orbit misalignment angle θsl when varying system parameters

in the “transadiabatic” regime, where the adiabaticity parameter crosses unity.

To generate an analogous bifurcation diagram for our problem, we consider

a sample system with m12 = 60M⊙, m3 = 3×107M⊙, a = 0.1 AU, e0 = 10−3, I0 =
70◦, aout = 300 AU, eout = 0, and initial θsl = 0 (note that these parameters are

different from those in Fig. 7.1). We then evolve Eq. (7.20) together with the orbital
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evolution equations [Eqs. (7.3–7.7) without the GW terms] while sampling both θsl

and θe at eccentricity maxima, where θe is the angle between Ωe and S, i.e.

cosθe = Ωe

Ωe
·S, (7.27)

where Ωe ≡
∣∣∣Ωe

∣∣∣. We repeat this procedure with different mass ratios m1/m12 of

the inner binary, which only changes ΩSL without changing the orbital evolution

(note that the LK oscillation depends only on m12 and not on individual masses

of the inner binary). Analogous to SL15, we consider systems with a range of the

adibaticity parameter A [to be defined later in Eq. (7.31)] that crosses order unity.

Note that the fiducial system of Fig. 7.1 does not serve this purpose because the

initial ΩSL is too small. Our result is depicted in Fig. 7.3.

While our bifurcation diagram has interesting structure, the features are all

regular. This is in contrast to the star-planet system studied by SL15 (see their

Fig. 1). A key difference is that in our system, ΩSL does not depend on θsl, while

for the planet-star system, Ω(Newtonian)
SL does, and this latter feature introduces

nonlinearity to the dynamics.

A more formal understanding of the dynamical behavior of our spin-orbit sys-

tem comes from Floquet theory[Floquet, 1883, Chicone, 2006], as Eq. (7.22) is a

linear system with periodic coefficients (the system studied in SL15 is nonlinear).

By Floquet’s theorem, when a linear system with periodic coefficients is integrated

over a period, the evolution can be described by the linear transformation

S (t+PLK)= M̃S(t), (7.28)

where M̃ is called the monodromy matrix and is independent of S.

For our system, while M̃ can be easily defined, it cannot be evaluated in closed

form. Instead, we can reason directly about the general properties of M̃: it must
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Figure 7.3: Bifurcation diagram for the BH spin orientation during LK oscilla-
tions. The physical parameters are m12 = 60M⊙, m3 = 3× 107M⊙, a = 0.1 AU,
e0 = 10−3, I0 = 70◦, aout = 300 AU, eout = 0, and initial condition θsl,0 = 0. For each
mass ratio m1/m12, the orbit-spin system is solved over 500 LK cycles, and both
θsl (the angle between S and L̂) and θe [defined by Eq. (7.27)] are sampled at ev-
ery eccentricity maximum and are plotted. The top axis shows the adiabaticity
parameter A as defined by Eq. (7.31). Note that for a given m12, changing the
mass ratio m1/m12 only changes the spin evolution and not the orbital evolution.
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be a proper orthogonal matrix, or a rotation matrix, as it represents the effect of

many infinitesimal rotations, each about the instantaneous Ωe
1. Therefore, over

each period PLK, the dynamics of S are equivalent to a rotation about a fixed axis,

prohibiting chaotic behavior.

Another traditional indicator of chaos is a positive Lyapunov exponent, ob-

tained when the separation between nearby trajectories diverges exponentially in

time. In Floquet theory, the Lyapunov exponent is the logarithm of the largest

eigenvalue of the monodromy matrix. Since M̃ is a rotation matrix in our prob-

lem, the Lyapunov exponent must be 0, indicating no chaos. We have verified this

numerically.

7.3.2 Spin Dynamics With GW Dissipation

When tGW is finite, the coefficientsΩeN, includingΩe [see Eq. (7.25)], are no longer

constant, but change over time. For “smooth” mergers (satisfying tGW (emax) ≫
tLK j(emax); see Section 7.2), the binary goes through a sequence of LK cycles, and

the coefficients vary on the LK-averaged orbital decay time tGW (emax) / j (emax).

After the LK oscillation freezes, we have Ωe ≃Ωe (and ΩeN ≃ 0 for N ≥ 1), which

evolves on timesale tGW(e) as the orbit decays and circularizes.

Once a is sufficiently small that ΩSL ≫ ΩL, it can be seen from Eqs. (7.22–

7.23) that θe = θsl is constant, i.e. the spin-orbit misalignment angle is frozen

(see bottom right panel of Fig. 7.1). This is the “final” spin-orbit misalignment,

although the binary may still be far from the final merger. Note that at such

1More formally, M̃ = Φ̃(PLK) where Φ̃(t) is the principal fundamental matrix solution: the
columns of Φ̃ are solutions to Eq. (7.22) and Φ̃(0) is the identity. By linearity, the columns of
Φ̃(t) remain orthonormal, while its determinant does not change, so M̃ is a proper orthogonal
matrix, or a rotation matrix.
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Figure 7.4: Definition of angles in the problem, shown in plane of the two angular
momenta Lout and L. Here, Ωe is the LK-averaged Ωe, and Ωe1 is the first har-
monic component (see Eqs. (7.23) and (7.25)). Note that for I0 > 90◦, we choose
Īe ∈ (90◦,180◦) so that Ωe > 0 (since ΩL < 0). The bottom right shows our choice of
coordinate axes with ẑ∝Ωe.

separations, ϵGR ≫ 1 as well since ΩSL ∼ ΩGR, and so LK eccentricity excitation

is suppressed. For the fiducial examples depicted in Figs. 7.1–7.2, we stop the

simulation at a = 0.5 AU, as θsl has converged to its final value.

7.3.3 Spin Dynamics Equation in Component Form

For later analysis, it is useful to write Eq. (7.25) in component form. To do so,

we define the inclination angle Īe as the angle between Ωe and Lout as shown in

Fig. 7.4. To express Īe algebraically, we define the LK-averaged quantities

ΩSL sin I ≡ΩSL sin Ī, ΩSL cos I ≡ΩSL cos Ī. (7.29)

It then follows from Eq. (7.23) that

tan Īe = A sin Ī
1+A cos Ī

, (7.30)
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where A is the adiabaticity parameter, given by

A ≡ ΩSL

ΩL
. (7.31)

Note that in Eq. (7.30), Īe is defined in the domain [0◦,180◦], i.e. Īe ∈ (0,90) when

tan Īe > 0 and Īe ∈ (90,180) when tan Īe < 0.

We now choose a non-inertial coordinate system where ẑ∝Ωe and x̂ lies in the

plane of Lout and L (see Fig. 7.4). In this reference frame, the spin orientation is

specified by the polar angle θe as defined above in Eq. (7.27), and the spin evolution

equation becomes(
dS
dt

)
xyz

=
[
Ωeẑ+

∞∑
N=1
ΩeN cos(NΩLKt)

]
×S− ˙̄Ieŷ×S. (7.32)

One further simplification lets us cast this vector equation of motion into a scalar

form. Break S into components S= Sxx̂+Syŷ+cosθeẑ and define complex variable

S⊥ ≡ Sx + iSy. (7.33)

Then, we can rewrite Eq. (7.32) as

dS⊥
dt

= iΩeS⊥− ˙̄Ie cosθe +
∞∑

N=1

[
cos(∆IeN)S⊥

− i cosθe sin(∆IeN)
]
ΩeN cos(NΩLKt) , (7.34)

where ˙̄Ie = dĪe/dt and ΩeN is the magnitude of the vector ΩeN [see Eq. (7.25)] and

∆IeN = IeN − Īe, with IeN the angle between ΩeN and Lout (see Fig. 7.4). Since

cosθe =±
√

1−|S⊥|2, Eq. (7.34) is generally nonlinear in S⊥, but becomes approx-

imately linear when |θe|≪ 1.

7.4 Analysis: Approximate Adiabatic Invariant

In general, Eqs. (7.25) and (7.34) are difficult to study analytically. In this section,

we neglect the harmonic terms and focus on how the varyingΩe affects the evolu-
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tion of the BH spin axis. The effect of the harmonic terms is studied in Section 7.5.

7.4.1 The Adiabatic Invariant

When neglecting the N ≥ 1 harmonic terms, Eq. (7.25) reduces to(
dS
dt

)
rot

=Ωe ×S. (7.35)

It is not obvious to what extent the analysis of Eq. (7.35) is applicable to Eq. (7.25).

From our numerical calculations, we find that the LK-average of S often evolves

following Eq. (7.35), motivating our notation S. Over timescales shorter than the

LK period PLK, Eq. (7.35) loses accuracy as the evolution of S itself is dominated

by the N ≥ 1 harmonics we have neglected. An intuitive interpretation of this

result is that the N ≥ 1 harmonics vanish when integrating Eq. (7.25) over a LK

cycle.

Eq. (7.35) has one desirable property: θ̄e, defined by

cos θ̄e ≡ Ωe

Ωe
·S, (7.36)

is an adiabatic invariant. This follows from the fact that Sz, the projection of

S on the Ωe axis, and ϕ, the precessional angle of S around Ωe, form a pair of

action-angle variables. The adiabaticity condition requires that the precession

axis ẑ =Ωe/Ωe evolve slowly compared to the precession frequency at all times,

i.e. ∣∣∣∣dĪe

dt

∣∣∣∣≪Ωe. (7.37)

For our fiducial example depicted in Fig. 7.1, the values of ˙̄Ie and Ωe are shown

in the top panel of Fig. 7.5, and the evolution of θ̄e in the bottom panel. The net

change in θ̄e in this simulation is 0.01◦, small as expected since | ˙̄Ie| ≪ Ωe at all

times.
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7.4.2 Deviation from Adiabaticity

The extent to which θ̄e is conserved depends on how well Eq. (7.37) is satisfied.

In this subsection, we derive a bound on the total non-conservation of θ̄e, then

in the next subsection we show how this bound can be estimated from the initial

conditions.

When neglecting harmonic terms, the scalar evolution equation Eq. (7.34) be-

comes

dS⊥
dt

= iΩeS⊥− ˙̄Ie cos θ̄e. (7.38)

This can be solved in closed form. Defining

Φ(t)≡
t∫
Ωe dt, (7.39)

we obtain the solution at time t:

e−iΦS⊥
∣∣∣t

0
=−

t∫
0

e−iΦ(τ) ˙̄Ie cos θ̄e dτ. (7.40)

Recalling |S⊥| = sin θ̄e and analyzing Eq. (7.40), we see that θ̄e oscillates about its

initial value with semi-amplitude

∣∣∆θ̄e
∣∣∼ ∣∣∣∣∣ ˙̄Ie

Ωe

∣∣∣∣∣ . (7.41)

In the adiabatic limit [Eq. (7.37)], θ̄e is indeed conserved, as the right-hand side

of Eq. (7.41) goes to zero. The bottom panel of Fig. 7.5 shows ∆θ̄e for the fiducial

example. Note that θ̄e is indeed mostly constant where Eq. (7.41) predicts small

oscillations.

If we denote
∣∣∆θ̄e

∣∣
f to be the net change in θ̄e over t ∈ [0, tf], we can give a loose

bound ∣∣∆θ̄e
∣∣
f ≲

∣∣∣∣∣ ˙̄Ie

Ωe

∣∣∣∣∣
max

. (7.42)
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Inspection of Fig. 7.5 indicates that the spin dynamics are mostly uninter-

esting except near the peak of | ˙̄Ie|, which occurs where Ω̄SL ≃ |ΩL|. We present

a zoomed-in view of dynamical quantities near the peak of | ˙̄Ie| in Fig. 7.6. In

particular, in the bottom-rightmost panel, we see that the fluctuations in θ̄e are

dominated by a second contribution, the subject of the discussion in Section 7.5.

For comparison, we show in Fig. 7.7 a more rapid binary merger starting with

I0 = 90.2◦, for which |∆θe|f ≈ 2◦. If we again examine the bottom-rightmost panel,

we see that the net
∣∣∆θ̄e

∣∣
f obeys Eq. (7.42).

7.4.3 Estimate of Deviation from Adiabaticity from Initial

Conditions

To estimate Eq. (7.42) as a function of initial conditions, we first differentiate

Eq. (7.30),

˙̄Ie =
( ˙A

A

)
A sin Ī

1+2A cos Ī +A 2
. (7.43)

It also follows from Eq. (7.23) that

Ωe =
∣∣∣ΩL

∣∣∣(1+2A cos Ī +A 2)1/2
, (7.44)

from which we obtain ∣∣∣ ˙̄Ie

∣∣∣
Ωe

=
( ˙A

A

)
1∣∣∣ΩL

∣∣∣ A sin Ī(
1+2A cos Ī +A 2

)3/2 . (7.45)

214



Figure 7.5: The same simulation as depicted in Fig. 7.1 but showing several calcu-
lated quantities relevant to the theory of the spin evolution. Top: the four charac-
teristic frequencies of the system and dĪe/dt. Middle: the frequency ratios between
the zeroth and first Fourier components of Ωe to the LK frequency ΩLK. Bottom:
Time evolution of θe [grey line; Eq. (7.27)], θ̄e [red dots; Eq. (7.36)], as well as
estimates of the deviations from perfect conservation of θ̄e due to nonadiabaticity
[green, Eq. (7.41)] and due to the resonance Ωe ≈ΩLK [blue, Eq. (7.81)].
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Figure 7.6: The same simulation as Fig. 7.1 but zoomed in on the region around
A ≡ΩSL/ΩL ≃ 1 and showing a wide range of relevant quantities. The first three
panels in the upper row depict a, e, I and Ī as in Fig. 7.1, while the fourth shows
Īe [Eq. (7.30)] and Ie1. The bottom four panels depict θsl, the four characteristic
frequencies of the system and dĪe/dt [Eqs. 7.23 and (7.24)] (as in the top panel of
Fig. 7.5), the relevant frequency ratios (as in the middle panel of Fig. 7.5), and
the deviation of θ̄e from its initial value compared to the predictions of Eqs. (7.41)
and (7.81).
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Figure 7.7: Same as Fig. 7.6 except for I0 = 90.2◦ (and all other parameters are
the same as in Fig. 7.1), corresponding to a faster coalescence. The total change in
θ̄e for this simulation is ≈ 2◦.

Moreover, if we assume the eccentricity is frozen around e ≃ 1 and use cos2ω≃ 1/2

in |ΩL| = |d�/dt|, we obtain the estimate

A = ΩSL

ΩL
≃ 3Gn

(
m2 +µ/3

)
2c2a j2(e)

[
15cos Ī
8tLK j(e)

]−1

≃ 4
5

G(m2 +µ/3)m12ã3
out

c2m3a4 j(e)cos Ī
, (7.46)

˙A

A
=−4

(
ȧ
a

)
GW

+ e
j2(e)

(
de
dt

)
GW

. (7.47)

With these, we see that Eq. (7.45) is largest around A ≃ 1, and so we find that the

maximum | ˙̄Ie|/Ωe is given by∣∣∣∣∣ ˙̄Ie

Ωe

∣∣∣∣∣
max

≃
∣∣∣∣ ˙A

A

∣∣∣∣ 1∣∣∣ΩL

∣∣∣ sin Ī(
2+2cos Ī

)3/2 . (7.48)

To evaluate this, we make two assumptions: (i) Ī is approximately constant

(see the third panels of Figs. 7.6 and 7.7), and (ii) j(e) evaluated at A ≃ 1 can be
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approximated as a constant multiple of the initial j(emax), i.e.

j⋆ ≡ j(e⋆)= f

√
5
3

cos2 I0, (7.49)

where the star subscript denotes evaluation at A ≃ 1 and f > 1 is a constant.

Eq. (7.49) assumes that I0 far enough from 90◦ that the GR effect is unimportant

in determining emax. The value of f turns out to be relatively insensitive to I0.

Using Eq. (7.47) and approximating e⋆ ≈ 1 in Eqs. (7.11) and (8.15) give[ ˙A

A

]
⋆
≃ G3µm2

12

c5a4
⋆ j7

⋆

595
3

. (7.50)

To determine a⋆, we require Eq. (7.46) to give A = 1 for a⋆ and j⋆. Taking this

and Eq. (7.50), we rewrite Eq. (7.45) as∣∣∣∣∣ ˙̄Ie

Ωe

∣∣∣∣∣
max

≈ 595sin Ī
∣∣cos Ī

∣∣3/8

36
(
cos Ī +1

) 3
2

[
8000G9m9

12m3
3µ

8

ã9
out j37

⋆ c18(m2 +µ/3)11

]1/8

. (7.51)

We can also calculate | ˙̄Ie|/Ωe from numerical simulations. Taking characteristic

Ī ≈ 120◦ (Figs. 7.6 and 7.7 show that this holds across a range of I0), we fit the last

remaining free parameter f [Eq. (7.49)] to the data from numerical simulations.

This yields f ≈ 2.72, leading to∣∣∣∣∣ ˙̄Ie

Ωe

∣∣∣∣∣
max

≃ 0.98◦
(

cos I0

cos(90.3◦)

)−37/8 (
ãout

2.2 pc

)−9/8

×
(

m3

3×107 M⊙

)3/8
(

m9
12µ

8/(m2 +µ/3)11

(28.64M⊙)6

)1/8

. (7.52)

Figure 7.8 shows that when the merger time Tm is much larger than the initial LK

timescale, Eq. (7.52) provides an accurate estimate for | ˙̄Ie/Ω̄e|max when compared

with numerical results.

In the above, we have assumed that the system evolves through A ≃ 1 when

the eccentricity is mostly frozen (see Fig. 7.1 for an indication of how accurate this

is for the parameter space explored in Fig. 7.8). It is also possible that A ≃ 1 occurs
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Figure 7.8: Comparison of
∣∣∣ ˙̄Ie/Ωe

∣∣∣
max

obtained from simulations and from the an-
alytical expression Eq. (7.52), where we take f = 2.72 in Eq. (7.49). The merger
time Tm is shown along the top axis of the plot in units of the initial LK timescale
tLK,0. The agreement between the analytical and numerical results is excellent
for Tm ≫ tLK,0.
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when the eccentricity is still undergoing substantial oscillations. In fact, Eq. (7.52)

remains accurate in this case when replacing e with emax, due to the following

analysis. Recall that when emin ≪ emax, the binary spends a fraction ∼ j(emax)

of the LK cycle near e ≃ emax. This fraction of the LK cycle dominates both GW

dissipation and Ωe precession. Thus, both ˙̄Ie and Ωe in the eccentricity-oscillating

regime can be evaluated by setting e ≈ emax and multiplying by a prefactor of

j(emax). This factor cancels when computing the quotient | ˙̄Ie|/Ωe.

The accuracy of Eq. (7.52) in bounding
∣∣∆θ̄e

∣∣
f is shown in Fig. 7.9, where we

carry out simulations for a range of I0, and for each I0 we consider 100 different,

isotropically distributed initial orientations for S (thus sampling a wide range

of initial initial θ̄e). Note that conservation of θ̄e is generally much better than

Eq. (7.52) predicts. This is because cancellation of phases in Eq. (7.40) is gener-

ally more efficient than Eq. (7.52) assumes (recall that Eq. (7.41) only provides an

estimate for the amplitude of “local” oscillations of θ̄e). Nevertheless, it is clear

that Eq. (7.52) provides a robust upper bound of
∣∣∆θ̄e

∣∣
f, and serves as a good indi-

cator for the breakdown of adiabatic invariance.

7.4.4 Origin of the θsl,f = 90◦ Attractor

Using the approximate adiabatic invariant, we can now understand the origin of

the θsl,f = 90◦ attractor as shown in Fig. 7.2.

Recall from Eq. (7.23)

Ωe =ΩLL̂out +ΩSLL̂,

=
(
ΩL +ΩSL cos Ī

)
Ẑ+ΩSL sin ĪX̂, (7.53)
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Figure 7.9: Net change in θ̄e over the binary inspiral as a function of initial in-
clination I0. For each I0, 100 simulations are run for S on a uniform, isotropic
grid. Plotted for comparison is the bound

∣∣∆θ̄e
∣∣
f ≲

∣∣∣ ˙̄Ie/Ωe

∣∣∣
max

, using the analytical
expression given by Eq. (7.52). It is clear that the expression provides a robust
upper bound for the non-conservation of θ̄e due to nonadiabatic effects. Note that
at the right of the plot, the numerical

∣∣∆θ̄e
∣∣
f saturates; this is because we compute

the initial Ω̄e (in order to evaluate the initial θ̄e) without GW dissipation, and such
a procedure inevitably introduces fuzziness in θ̄e.
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where Ẑ= L̂out and X̂ is perpendicular to Ẑ in the L̂out–L̂ plane. Note that

ΩL ∝ cos Ī
tLK

∝ a3/2 cos Ī, (7.54)

ΩSL ∝ 1
a5/2 . (7.55)

Adiabatic invariance implies that θ̄e, the angle between S and Ωe is conserved

between t = 0 and t = tf, i.e.

θ̄e,f ≃ θ̄e,0. (7.56)

At t = tf, ΩSL ≫
∣∣∣ΩL

∣∣∣ and the spin-orbit misalignment angle θsl is “frozen”, imply-

ing Ωe is parallel to L, and so θ̄e,f = θsl,f. Eq. (7.56) then gives

θsl,f ≃ θ̄e,0, (7.57)

i.e. the final θsl is determined by the initial angle between S and Ωe.

Now, first consider the case where the initial spin S0 is aligned with the initial

L0. This initial spin is inclined with respect to Ωe by θ̄e,0 =
∣∣I0 − Īe,0

∣∣, where I0 is

the initial inclination angle between L and Lout and Īe,0 is the initial value of Īe.

Thus, adiabatic invariance implies

θsl,f ≃
∣∣I0 − Īe,0

∣∣ . (7.58)

In the special case where the binary initially satisfies ΩSL ≪
∣∣∣ΩL

∣∣∣ or |A0| ≪ 1,

we find that Ωe is nearly parallel to Lout (for I0 < 90◦) or antiparallel to Lout (for

I0 > 90◦). Thus,

θsl,f =


I0 I0 < 90◦,

180◦− I0 I0 > 90◦.
(7.59)

Since LK-induced mergers necessarily require I0 close to 90◦, we find that θsl,f is

“attracted” to 90◦.

Eq. (7.57) can be applied to more general initial spin orientations. For initial

|A0| ≪ 1 (as required for LK-induced mergers), Ωe,0 is parallel to ±Lout. Suppose

222



the initial inclination between S and Lout is θs,out,0, then θ̄e,0 = θs,out,0 or 180◦−
θs,out,0 (depending on whether I0 < 90◦ or I0 > 90◦). Thus,

θsl,f ≃


θs,out,0 I0 < 90◦,

180◦−θs,out,0 I0 > 90◦,
(7.60)

[see also Yu et al., 2020a].

So far, we have analyzed the θsl,f distribution for smooth mergers. Next, we

can consider rapid mergers, for which θ̄e conservation is imperfect. We expect

∣∣θsl,f − θ̄e,0
∣∣≲ ∣∣∆θ̄e

∣∣
f . (7.61)

where
∣∣∆θ̄e

∣∣
f is given by Eq. (7.52). This is shown as the black dotted line in

Fig. 7.2, and we see it predicts the maximum deviation of θsl,f from ∼ 90◦ except

very near I0 = 90◦. This is expected, as Eq. (7.52) is not very accurate very near

I0 = 90◦, where it diverges (see Fig. 7.9).

When I0 = 90◦ exactly, Fig. 7.2 shows that θsl,f = 0◦. This can be understood:

I0 = 90◦ gives dI/dt = 0 by Eq. (7.6), so I = 90◦ for all time. This then yields

d�/dt = 0 [Eq. (7.5)], implying that L is constant. Thus, L is fixed as S precesses

around it, and θsl can never change. In Fig. 7.2, we take θsl,0 = 0, so θsl,f = 0.

Finally, Fig. 7.2 shows that the actual θsl,f are oscillatory within the envelope

bounded by Eq. (7.61) above. This can also be understood: Eq. (7.42) only bounds

the maximum of the absolute value of the change in θ̄e, while the actual change

depends on the initial and final complex phases of S⊥ in Eq. (7.40), denoted Φ(0)

and Φ(tf). When θsl,0 = 0, we have Φ(0) = 0, as S starts in the x̂-ẑ plane. Then,

as I0 is smoothly varied, the final phase Φ (tf) must also vary smoothly [since Ωe

in Eq. (7.39) is a continuous function, Φ (t) must be as well], so the total phase

difference between the initial and final values of S⊥ varies smoothly. This means
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the total change in θ̄e will fluctuate smoothly between ± ∣∣∆θ̄e
∣∣
f as I0 is changed,

giving rise to the sinusoidal shape seen in Fig. 7.2.

7.5 Analysis: Effect of Resonances

In the previous section, we have shown that the θsl,f distribution in Fig. 7.2 and the

“90◦ attractor” can be understood when neglecting the N ≥ 1 Fourier harmonics in

Eq. (7.25). In this section, we study the effects of these neglected terms and show

that they have a negligible effect in LK-induced mergers. Separately, we will also

consider the LK-enhanced regime and show that these Fourier harmonics play a

dominant role in shaping the θsl,f distribution.

For simplicity, we ignore the effects of GW dissipation in this section and as-

sume the system is exactly periodic (so ˙̄Ie = 0). The scalar spin evolution equation

Eq. (7.34) is then

dS⊥
dt

= iΩeS⊥+
∞∑

N=1

[
cos(∆IeN)S⊥

− i cosθe sin(∆IeN)
]
ΩeN cos(NΩLKt). (7.62)

7.5.1 Intuitive Analysis

We first restrict our attention to the effect of just the N-th Fourier harmonic, and

Eq. (7.62) further simplifies to

dS⊥
dt

=
[
iΩe +ΩeN cos(∆IeN)cos(NΩLKt)

]
S⊥

− iΩeN cos θ̄e sin(∆IeN)cos(NΩLKt). (7.63)
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There are two time-dependent perturbations, a modulation of the oscillation fre-

quency (the term proportional to S⊥ on the right-hand side) and a driving term.

We can begin to understand the dynamics of S⊥ by considering the effect of each

of these two terms separately.

First, we consider the effect of frequency modulation alone. The equation of

motion is
dS⊥
dt

≈
[
iΩe +ΩeN cos(∆IeN)cos(NΩLKt)

]
S⊥. (7.64)

The exact solution is

S⊥(t)= S⊥(0)exp
[

iΩet+ΩeN cos(∆IeN)
NΩLK

sin(NΩLKt)
]

. (7.65)

There is no combination of parameters for which the magnitude of S⊥ diverges, so

the modulation of the oscillation frequency does not cause any resonant behavior.

When considering only the time-dependent driving term instead, the equation

of motion is

dS⊥
dt

≈ iΩeS⊥− iΩeN cosθe sin(∆IeN)cos(NΩLKt) . (7.66)

We can approximate cos(NΩLKt)≈ eiNΩLKt/2, as the e−iNΩLKt component is always

farther from resonance (as ΩLK,Ωe > 0). Then the equation of motion has the

solution

e−iΩetS⊥
∣∣∣∣t

0
=−

t∫
0

iΩeN sin(∆IeN)
2

e−iΩet+iNΩLKt cosθe dt. (7.67)

Since |S⊥| = sinθe, the instantaneous oscillation amplitude |∆θe| can be bound by

|∆θe| ∼ 1
2

∣∣∣∣ΩeN sin(∆IeN)

Ωe −NΩLK

∣∣∣∣ . (7.68)

Thus, we see that large oscillation amplitudes in θ̄e occur when Ωe ≈ NΩLK, the

frequency of the N-th Fourier harmonic.
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7.5.2 General Solution

Single Fourier Harmonic

Above, we began the analysis of Eq. (7.63) by considering the two time-dependent

perturbations separately. However, this is not necessary. Eq. (7.63) can be solved

exactly:

e−iΦS⊥
∣∣∣∣t

0
=−iΩeN cos θ̄e sin∆IeN

t∫
0

cos(NΩτ) e−iΦ(τ) dτ,

= iA

e−iΦ
∣∣∣∣t

0
+ iΩe

t∫
0

e−iΦ(τ) dτ

 . (7.69)

where A =−tan∆IeN cos θ̄e, and

iΦ(t)≡
t∫
iΩe +ΩeN cos(NΩLKτ)cos(∆IeN) dτ,

≡ iΩet+ηsin(NΩLKt) , (7.70)

where η ≡ (ΩeN cos∆IeN) / (NΩLK). Eq. (7.69) shows that |S⊥| is bounded for all t

unless the integral I (x), given by

I (x)=
x∫

0

e−iξ−ηsin(βξ) dξ, (7.71)

grows without bound as x →∞, where x =Ωet and β= NΩLK/Ωe.

To see where I (x) grows without bound, we rewrite

I (x)=
∞∑

k=0

x∫
0

(cosξ+ isinξ)

(−ηsin
(
βξ

))k

k!
dξ. (7.72)

These sink (
βξ

)
terms can be expanded using the general trigonometric power-

reduction identities [Zwillinger, 2003]:

sin2n y= 1
22n

(
2n
n

)
+ (−1)n

22n−1

n−1∑
l=0

(−1)l

(
2n
l

)
cos[2(n− l) y] , (7.73)

sin2n+1 y= (−1)n

4n

n∑
l=0

(−1)l

(
2n+1

l

)
sin[(2n+1−2l) y] . (7.74)
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Due to the orthogonality relations among the trigonometric functions, I (x) only

grows without bound if sink(βξ) contains a cosξ or sinξ term. Eqs. (7.73) and (7.74)

show that sink (
βξ

)
only contains a term with unit frequency if β= 1/q for some in-

teger q ≥ 1. When this is the case, all terms with k ≥ q in Eq. (7.72) contain a term

with unit frequency. Among these terms, the sinq (
βξ

)
term has the largest pref-

actor. Neglecting the other terms with k > q, we can evaluate I for any integer

multiple m of its period 2πq to be

|I (2πmq)| ≈ 2πmq
(
ηq

2qq!

)
. (7.75)

Within each period, I (x) has additional oscillatory behavior due to the other, off-

resonance terms in Eq. (7.72). However, these oscillations are periodic and van-

ish at every x = 2πmq, so they are bounded and do not affect the divergence in

Eq. (7.75). We conclude that I (x) grows without bound when β= 1/q, or

Ωe = NqΩLK. (7.76)

We see that this differs from the result of the intuitive analysis [Eq. (7.68)], as the

N-th Fourier harmonic generates infinitely many resonances indexed by q ≥ 1.

Instead, if β is near but not on a resonance, i.e. 0< ∣∣1− qβ
∣∣≪ 1, the amplitude

of oscillation of I (x) is large but bounded. If we take q to be even, then the

maximum value of |I (x)| is dominated by the near-resonance term in Eq. (7.72),

|I (x)| ≃
∣∣∣∣∣∣

x∫
0

cosξ
ηq

q!
1

2q−1 cos
(
qβξ

)
dξ

∣∣∣∣∣∣
≤

∣∣η∣∣q

2qq!
1∣∣1− qβ

∣∣ . (7.77)

If q is instead odd, we use Eq. (7.74) instead of Eq. (7.73) and integrate against

isinξ instead of cosξ in Eq. (7.72), which results in the same bound on the os-

cillation amplitude. Returning to Eq. (7.69), we neglect the first, bounded term

227



(≲ eη ≃ 1) on the right-hand side and obtain the total oscillation amplitude due to

a q-th order resonance with the N-th Fourier harmonic

∣∣∆θ̄e
∣∣
Nq ∼

1
2qq!

∣∣∣∣∣tan∆IeN

[
ΩeN cos(∆IeN)

NΩLK

]q
(

Ωe

Ωe − qNΩLK

)∣∣∣∣∣ . (7.78)

Since Ωe/NΩLK ≈ q, this reduces to Eq. (7.68) when q = 1, as expected.

Generalization to Multiple Fourier Harmonics

After having understood the effect of a single Fourier harmonic, we now return to

the spin evolution equation containing all of the Fourier harmonics [Eq. (7.62)]. If

Ωe/ΩLK ≈ M, there can now be multiple N and q satisfying Nq = M. By linearity,

the total
∣∣∆θ̄e

∣∣ is given by the sum over all of the resonances, so that

∣∣∆θ̄e
∣∣≈ ∑

N,q|Nq=M

∣∣∆θ̄e
∣∣
Nq , (7.79)

where
∣∣∆θ̄e

∣∣
Nq is given by Eq. (7.78).

We next attempt to understand whether particular combinations of N and q

dominate this sum. We make a few simplifying assumptions: (i) all N harmonics

are approximately equal2, (ii) ΩeN ∼ Ωe and cos∆IeN ≃ 1 (e.g. Figs. 7.5 and 7.6).

Under these assumptions,
∣∣∆θ̄e

∣∣
Nq with fixed Nq = M scales with respect to q as

∣∣∆θ̄e
∣∣
Nq ∝

cosq (∆IeN) qq

2qq!
. (7.80)

Stirling’s formula then suggests that
∣∣∆θ̄e

∣∣
Nq ∝ (cos(∆IeN) e/2)q /

pq ∼ 1. Thus, we

conclude that all combinations of N and q satisfying Nq = M result in comparable

oscillation amplitudes. For simplicity, we evaluate this amplitude for q = 1 and

N = M. If we denote the number of pairs of N and q satisfying Nq = M by d(M)

2This approximation is suitable for the problem studied in the main text because the only char-
acteristic frequency scale is j−1

min ≫ 1, so all Fourier harmonics ΩeN for N ≲ j−1
min are similar.
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(the number of positive divisors of M), we can approximate Eq. (7.79) by:∣∣∆θ̄e
∣∣≈ d(M)

∣∣∆θ̄e
∣∣
M1

∼ d(M)
2

∣∣∣∣ΩeM sin(∆IeM)

Ωe −MΩLK

∣∣∣∣ , (7.81)

Note that this agrees with Eq. (7.68) except for the factor of d(M). Appendix F.1.3

demonstrates that Eq. (7.81) is in good agreement with detailed numerical simu-

lations when M = 1 or M = 2, the two most relevant cases for our study.

7.5.3 Effect of Resonances in LK-Induced Mergers

We first consider the effect of these resonances (Ω̄e = MΩLK) on the LK-induced

regime, using the fiducial parameters (as in Figs. 7.1 and 7.2). Numerically, we

find thatΩe <ΩLK for the region of parameter space relevant to LK-induced merg-

ers (see Fig. 7.10), so we focus on the effect of the M = 1 resonance. If, for the entire

inspiral, Ωe <ΩLK by a sufficient margin that Eq. (7.81) remains small, then the

conservation of θ̄e cannot be significantly affected by this resonance. For the fidu-

cial simulation, Fig. 7.5 shows the ratio Ωe/ΩLK in the middle panel (black) and

the amplitude of oscillation of θ̄e due to the M = 1 resonance [Eq. (7.81)] in the

bottom panel (blue). We see that the system is never close to the resonant condi-

tion Ωe/ΩLK = 1, and as a result the net effect of the resonance never exceeds a

few degrees.

For a more precise comparison, the bottom-rightmost panel of Fig. 7.6 com-

pares
∣∣∆θ̄e

∣∣ in the fiducial simulation to the expected contributions from nonadi-

abatic [Eq. (7.41)] and resonant [Eq. (7.81) for M = 1] effects in the regime where

A ≃ 1. We see that Eq. (7.81) for M = 1 describes the oscillations in θ̄e very well.

The agreement is poorer in the bottom-rightmost panel of Fig. 7.7, as the nonadi-

abatic effect is comparatively stronger.
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It is somewhat surprising that the contribution of the resonances to the instan-

taneous
∣∣∆θ̄e

∣∣ when A ≃ 1 is dominant over that of the nonadiabatic contribution.

In Section 7.4, we have shown that neglecting resonant terms still allows for an

accurate prediction of the final θ̄e deviation [Eq. (7.52)]. This implies that, while

the resonances have a larger contribution to
∣∣∆θ̄e

∣∣, the nonadiabatic effect is more

important in determining
∣∣∆θ̄e

∣∣
f. This also requires that a

∣∣∆θ̄e
∣∣ of up to a few

degrees due to resonant effects not affect
∣∣∆θ̄e

∣∣
f by more than ∼ 0.01◦. This differs

from the nonadiabatic case, where we find
∣∣∆θ̄e

∣∣
f ∼ max

∣∣∆θ̄e
∣∣. The origin of these

differences in behaviors may be due to the complex phases cancelling differently

in Eqs. (7.40) and (7.69) as the BH binary coalesces.

7.5.4 Effect of Resonances in LK-Enhanced Mergers

We turn now to the case of LK-enhanced mergers, as was studied in LL17, where

the inner binary is sufficiently compact (∼ 0.1 AU) that it can merge in isolation

via GW radiation. We consider a set of parameters that has the same tLK,0 as

the system studied in LL17 but has a tertiary SMBH: m1 = m2 = 30M⊙, a0 =
0.1 AU, e0 = 10−3, m3 = 3×107M⊙, ãout = 300 AU, and eout = 0. We show that the

resonances studied above play an important role in shaping the θsl,f distribution

for this regime.

First, we illustrate the θsl,f distribution obtained via numerical simulation,

shown as the blue dots in Fig. 7.11. The prediction assuming adiabatic invariance

(i.e. the conservation of θ̄e) is shown in the red solid line. Good agreement is

observed both when no eccentricity excitation occurs (I0 ≲ 50◦ and I0 ≳ 130◦) and

when |A |≫ 1 (80◦ ≲ I0 ≲ 100◦). However, we see in Fig. 7.11 that for intermediate

inclinations, I0 ∈ [50,80] and I0 ∈ [100,130], θsl,f varies over a large range and
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Figure 7.10: emax and Ωe/ΩLK as a function of I(emin), the inclination of the inner
binary at eccentricity minimum, for varying values of emin (different colors as
labeled) for a LK-induced merger (with the parameters the same as in Figs. 7.1
and 7.2). In this case, only systems with I0 close to 90◦ will merge within a Hubble
time, I(emin)∼ 90◦ for most of the evolution (see Fig. 7.1) until emin ≈ 1 is satisfied.
This plot shows that Ωe ≲ 0.5ΩLK is a general feature of LK-induced mergers, as
is the case for the fiducial simulation (see Fig. 7.5).
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Figure 7.11: The merger time (top), the magnitude of the initial adiabaticity
parameter |A | ≡ ΩSL/|ΩL| (middle), and the final spin-orbit misalignment angle
θsl,f (bottom) for LK-enhanced mergers, with m1 = m2 = 30M⊙, m3 = 3×107M⊙,
a0 = 0.1 AU, e0 = 10−3, ãout = 300 AU, and eout = 0. In the middle panel, the
horizontal dashed line indicates |A | = 1. In the bottom panel, the blue dots de-
note results from numerical simulations with θsl,0 = 0 [these are symmetric about
I0 = 90◦, as the equations of motion (7.3–7.7) are as well]. The prediction for θsl,f
assuming conservation of θ̄e is shown as the red line, which agrees well with the
data both when there is no eccentricity excitation (I0 ≲ 50◦ and I0 ≳ 130◦) and
when |A |≫ 1. For a substantial range of intermediate inclinations (I0 ∈ [50◦,80◦]
and I0 ∈ [100◦,130◦]), θsl,f is significantly affected by the resonances as they evolve
(see Fig. 7.12). As such, these initial inclinations are expected to give rise to a wide
range of θsl,f, and we denote this with broad red shaded regions.
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does not agree with the prediction of θ̄e conservation. Note that these inclinations

correspond to neither the fastest nor slowest merging systems.

We attribute the origin of this wide scatter to resonance interactions. Fig-

ure 7.12 illustrates that for these intermediate inclinations, the condition Ωe ∼
ΩLK is satisfied. In addition, as the inner binary coalesces under GW radiation,

emin becomes larger (e.g. see Fig. 7.1). This causes the locations of the resonances

at inclinations less than (greater than) I = 90◦ to evolve to smaller (larger) incli-

nations. As the location of the resonances is a sensitive function of emin, resonance

passage is nonadiabatic. Thus, we expect that all systems that encounter the res-

onance, i.e. all systems with intermediate initial inclinations, will experience an

impulsive kick to θ̄e, resulting in poor θ̄e conservation. This result is denoted by

the two red shaded regions in Fig. 7.11.

While the outer edges of the red shaded regions described above are located

at the critical I0 required for nonzero eccentricity excitation, the inner edges are

harder to characterize. Systems with initial inclinations close to 90◦ start at the

edge of the M = 1 resonance and quickly evolve away from it (as emin increases

and a decreases). As such, they only interact briefly and weakly with the reso-

nances, and the cumulative effect of the resonance interaction can be estimated

by evaluating Eq. (7.81) for M = 1 at the initial conditions. We empirically choose

the transition between such “weakly” and “strongly” resonant systems, i.e. the

inner edge of the broad red shaded region in Fig. 7.11, when the oscillation semi-

amplitude
∣∣∆θ̄e

∣∣ predicted by Eq. (7.81) exceeds 3◦.

To understand the general characteristics of systems that interact strongly

with resonances, we examine the quantities in Eq. (7.81):

• sin(∆IeN) is small unless A ≃ 1. Otherwise, Ωe does not nutate substan-
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Figure 7.12: Same as Fig. 7.10, but for a LK-enhanced merger (with the parame-
ters of Fig. 7.11). In the LK-enhanced regime, all initial inclinations merge within
a Hubble time, and it is clear that Ωe ≈ΩLK can be satisfied for a wide range of
initial inclinations when the initial eccentricity is sufficiently small.
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Figure 7.13: Definition of angles in the case where L/Lout is nonzero. Similar to
before, we choose the convention where Itot,e ∈ [0◦,90◦] when ΩL > 0 and Itot,e ∈
[90◦,180◦] when ΩL < 0. Here, Lout is not fixed, but Ltot ≡ L+Lout is. Note that
the coordinate system is now oriented with Ẑ∝Ltot.

tially within a LK cycle, and all the ΩeN are aligned with Ωe which implies

that the ∆IeN ≈ 0 for all N ≥ 1.

• Smaller values of emin increase Ωe/ΩLK, as shown in Fig. 7.12.

However, the timescales over which A increases and emin decreases are compa-

rable (see Fig. 7.1). This implies that, if A ≪ 1 initially, which is the case for

LK-induced mergers, then emin will be very close to unity when A grows to be

≃ 1, and the contribution predicted by Eq. (7.81) will remain small throughout the

entire evolution. On the other hand, only if A ≃ 1 and emin ≪ 1 initially, as is the

case for the intermediate inclinations in the LK-enhanced regime, are resonant

interactions likely to be significant.

7.6 Stellar Mass Black Hole Triples

In this section, we extend our predictions for the final spin-orbit misalignment

angle θsl,f to systems where all three masses are comparable and the ratio of the
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angular momenta of the two binaries, given by

η≡ L
Lout

∣∣∣∣
e=eout=0

= µ

µout

[
m12a

m123aout

]1/2
, (7.82)

where m123 = m12+m3 and µout = m12m3/m123, is not negligible. When η ̸= 0, Lout

is no longer fixed, but the total angular momentum Ltot ≡ L+Lout is fixed. We

choose the coordinate system with Ẑ= L̂tot, shown in Fig. 7.13.

To analyze this system, we still assume eout ≪ 1 so that the octupole-order

effects are negligible. To calculate the evolution of L, it is only necessary to evolve

the orbital elements of the inner binary [a, e, �, Itot (its inclination relative to

L̂tot), and ω] and a single orbital element for the outer binary, its inclination Itot,out

relative to L̂tot. The equations of motion are given by [Liu et al., 2015a]:

da
dt

=
(
da
dt

)
GW

, (7.83)

de
dt

= 15
8tLK

e j(e)sin2ωsin2 I +
(
de
dt

)
GW

, (7.84)

d�
dt

= Ltot

Lout

3
4tLK

cos I
(
5e2 cos2ω−4e2 −1

)
j(e)

, (7.85)

dItot

dt
= − 15

16tLK

e2 sin2ωsin2I
j(e)

, (7.86)

dItot,out

dt
= −η 15

8tLK

(
e2 sin2ωsin I

)
, (7.87)

dω
dt

= 3
tLK

{
4cos2 I + (5cos(2ω)−1)(1− e2 −cos2 I)

8 j(e)

+ ηcos I
8

[
2+ e2(3−5cos(2ω))

]}+ΩGR, (7.88)

where I = Itot + Itot,out is the relative inclination between the two angular mo-

menta. The spin evolution of one of the inner BHs is then described in the frame

corotating with L about Ltot by the equation of motion(
dS
dt

)
rot

=Ωe ×S, (7.89)

where

Ωe ≡ΩSLL̂+ΩLL̂tot. (7.90)
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where ΩL = −d�/dt [Eq. (7.85)] is the rate of precession of L about Ltot. As in

Section 7.4, we consider the LK-averaged Ωe and neglect the harmonic terms:(
dS
dt

)
rot

=Ωe ×S, (7.91)

where

Ωe =ΩSL sin ItotX̂+
(
ΩL +ΩSL cos Itot

)
Ẑ

≡ΩSL sin ĪtotX̂+
(
ΩL +ΩSL cos Ītot

)
Ẑ. (7.92)

The results of Section 7.4 suggest that the angle θ̄e is an adiabatic invariant,

where θ̄e is given by

cos θ̄e ≡ Ωe

Ωe
·S, (7.93)

where S is the spin vector averaged over a LK cycle. The orientation of Ωe is

described by the inclination angle Ītot,e (Fig. 7.13), which can be expressed using

Eq. (7.92)

tan Ītot,e = A sin Ītot

1+A cos Ītot
, (7.94)

where A ≡ΩSL/ΩL is the adiabaticity parameter.

At t = tf, the inner binary is sufficiently compact that θsl is frozen (see bottom

right panel of Fig. 7.1), and the system satisfies A ≫ 1 (ΩSL ∝ a−5/2 while ΩL ∝
a3/2). When this is the case, Ωe ∥ L, and so θ̄e,f = θsl,f. Then, since adiabatic

invariance implies θ̄e,f = θ̄e,0,

θsl,f = θ̄e,0. (7.95)

We first consider the case where S0 ∝ L0. Then θ̄e,0 = ∣∣Itot,0 − Ītot,e,0
∣∣ (see

Fig. 7.13), and so

θsl,f =
∣∣Itot,0 − Īe,0

∣∣ . (7.96)
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Suppose additionally that the binary initially satisfies |ΩL| ≫ ΩSL, then Ωe is

either parallel or anti-parallel to Ltot depending on whether ΩL is positive or neg-

ative. We denote the starting mutual inclination for which ΩL changes sign by

Ic. Note that Ic > 90◦: even though ΩL changes sign at I0 = 90◦, the inclination

decreases over a LK cycle for I < Ilim (where Ilim > 90◦ is the starting mutual in-

clination that maximizes emax [Liu and Lai, 2018]), so the sign of ΩL changes over

a LK cycle for some Ic ∈ (90◦, Ilim). We then obtain that

θsl,f =


Itot,0, I0 < Ic,

180◦− Itot,0, I0 > Ic.
(7.97)

More generally, so long as A ≪ 1 initially, we can specify the initial spin orien-

tation by θs,tot,0, the initial angle between S and Ltot, giving

θsl,f =


θs,tot,0, I < Ic,

180◦−θs,tot,0, I > Ic.
(7.98)

We first compare these results to numerical simulations by considering a stellar-

mass BH triple that is in the LK-induced regime: we use the same inner binary pa-

rameters as the example of Fig. 7.1, but for a tertiary companion with m3 = 30M⊙,

aout = 4500 AU, and eout = 0. Figure 7.14 shows that Eq. (7.96) accurately predicts

θsl,f when θsl,0 = 0◦ for this parameter regime when conservation of θ̄e is good. Fur-

thermore, deviations from exact θ̄e conservation are well described by Eq. (7.61),

the prediction of the theory in Section 7.4. Unlike the η = 0 case (Fig. 7.2), θsl,f

is not symmetric about Ic ≈ 92.14◦. This is because |ΩL| is not exactly equal on

either side of Ic. Additionally, unlike in the η = 0 case, the minimum θsl,f is not

exactly zero. We showed in Section 7.4.4 that when η= 0, L is fixed when I0 = 90◦,

as d�/dt = dI/dt = 0. For nonzero η, neither d�/dt nor dItot/dt is zero at I0 = Ic.

Eq. (7.96) also gives good agreement in the LK-enhanced merger regime. We
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Figure 7.14: Similar to Fig. 7.2 but for stellar-mass tertiary m3 = 30M⊙ and
ã3 = 4500 AU. The vertical black line denotes Ic ≈ 92.14◦, the initial inclination
for which ΩL changes signs, and the two horizontal lines denote the predictions of
Eq. (7.96). The dotted black lines bound the deviation due to non-adiabatic evolu-
tion, given by Eq. (7.61).

consider the same inner binary parameters as in Fig. 7.11 but use a tertiary com-

panion with m3 = 30M⊙, aout = 3 AU, and eout = 0. The results are shown in

Fig. 7.15.

7.7 Conclusion and Discussion

In this paper, we have carried out a theoretical study on the evolution of spin-orbit

misalignments in tertiary-induced black-hole (BH) binary mergers. Recent nu-
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Figure 7.15: Similar to Fig. 7.11 except for a stellar mass tertiary m3 = 30M⊙ and
ãout = 3 AU.
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merical works [Liu and Lai, 2017, 2018, Liu et al., 2019a, Antonini et al., 2018, Yu

et al., 2020a] have revealed that when binary BHs undergo mergers due to Lidov-

Kozai (LK) oscillations driven by a tertiary companion, the BH spin may evolve

toward a perpendicular state where the final spin-orbit misalignment angle θsl is

close to 90◦. Our theoretical analysis in this paper provides an understanding of

this “90◦ attractor” and characterizes its regime of validity and various spin evo-

lution behaviors during such LK-induced mergers. We focus on hierachical triple

systems where the inner BH binary experiences the “standard” quadupole LK os-

cillations and eventually merges, with the octuple effects playing a negigible role

[ϵoct ≪ 1; see Eq. (7.14)]. For such systems, the spin vectors of the inner BHs obey a

simple evolution equation, Eq. (7.22) or Eq. (7.91), where the “effective” precssion

rateΩe varies quasi-periodically due to the combined effects of LK oscillations and

gravitational radiation. Analysis of this equation yields the following conclusions:

• For BH binaries that have too large initial separations to merge in iso-

lation, LK-induced mergers require large/extreme eccentricity excitations

in the binary driven by a highly inclined tertiary companion. For such

systems, the BH spin evolution behavior can be generally captured by re-

placing Ωe with its LK-average Ωe [thus neglecting the Fourier harmonic

terms in Eq. (7.25)]. If the orbital decay is sufficiently gradual, the angle

θ̄e [Eq. (7.36)] between the spin axis and Ωe is an adiabatic invariant. This

naturally explains the “90◦ attractor” for the final spin-orbit misalignment

angle when the initial tertiary inclination I0 is not too close to 90◦ and the

initial BH spin axis is aligned with the orbital angular momentum axis (see

Fig. 7.2). We show that the deviation from perfect adiabaticity can be pre-

dicted from initial conditions [see Eq. 7.52 and Fig. 7.9].

• When the resonant condition Ωe ≈ MΩLK for integer M is satisfied, sig-
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nificant variations in θ̄e can arise. We derive an analytic estimate of this

variation amplitude [Eq. (7.81)]. This estimate demonstrates that the reso-

nances are unimportant for “LK-induced” mergers (as depicted in Figs. 7.1–

7.2 and 7.14), but become important for “LK-enhanced” mergers, where the

BH binaries exhibit only modest eccentricity excitations. Our analysis of

the resonance effects qualitatively explain the behavior in θsl,f as seen in

LK-enhanced mergers (see Figs. 7.11 and 7.15).

• For LK-induced mergers of BH binaries with general tertiary companions,

we provide an analytic prescription for calculating the final spin-orbit mis-

alignment angle for arbitrary initial spin orientations (Section 7.6). This

prescirption is based on the approximate adiabatic invariance of θ̄e, and

produces results that are in agreement with numerical simulations (see

Fig. 7.14) in the appropriate regime.

There are several simplificatons in our theoretical analysis that are worth

mentioning. (i) We have neglected the octupole effects in the LK oscillations. This

is appropriate for systems where the tertiary orbit is circular and/or the semi-

major axis aout is much larger than the inner binary (as in the case when the

tertiary is a SMBH) and/or the inner binary BHs have nearly equal masses [see

Eq. (7.14)]. The octupole effects are known to significantly broaden the inclination

window for extreme eccentricity excitations, and therefore enhance the efficiency

of LK-induced mergers [Liu and Lai, 2018]. When the octupole effects are signifi-

cant, the LK orbital evolution is not integrable, and the eccentricity excitations are

no longer regular. As a result, Ωe has neither consistent direction nor magnitude,

and our theory cannot be applied. In fact, the resulting θsl,f distribution is largely

unrelated to the initial θ̄e,0 and the “90◦ attractor” is significantly “erased” [Liu

and Lai, 2018]. (ii) If the system is not sufficiently hierarchical (aout is too small),
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the double averaging approximation for the dynamics of the triple breaks down

[Liu and Lai, 2018]. In this case, there is little reason to expect any relation be-

tween θsl,f and θ̄e,0. However, Liu and Lai [2018] found that the double averaged

orbital equations predict the correct merger window and merger fractions even

beyond their regime of validity if the octupole effect is weak, so it is possible that

our results concerning θsl,f are also somewhat robust even when the double aver-

aged equations formally break down. (iii) In this work, we only consider spin-orbit

coupling, and follow the evolution of θsl until the orbital separation is sufficiently

small such that the inner binary is gravitationally decoupled from the tertiary

and the spin-orbit misalignment angle is frozen. To leading post-Newtonian (PN)

order, θsl is constant for small separations until the spin-spin interaction (2 PN)

becomes important. This interaction is non-negligible only when binary enters the

LIGO band and when the spin magnitude of each BH is appreciable [Liu et al.,

2019a, Yu et al., 2020a].

As noted in Section 7.1, the merging BH binaries detected by LIGO/VIRGO

in O1 and O2 have χeff ∼ 0 [Abbott et al., 2016, 2019]. One possible explanation

for this is that BHs are born slowly rotating [e.g. Fuller and Ma, 2019]. But our

“90◦ attractor” provides an alternative explanation with no assumptions on the

BH spin magnitudes if the mergers are “LK-induced” and θsl,0 ≈ 0◦. In the O3

event GW190521, each BH has a significant spin magnitude and a large spin-

orbit misalignment angle [Abbott et al., 2020b]. If the evolution history of the

system resembled our LK-induced scenario [see Liu and Lai, 2021], a primordial

θsl,0 ≈ 0◦ would be consistent with the observed outcome of θsl,f ∼ 90◦.
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CHAPTER 8

THE MASS RATIO DISTRIBUTION OF TERTIARY INDUCED BINARY

BLACK HOLE MERGERS

Originally published in:

Yubo Su, Bin Liu, and Dong Lai. The mass-ratio distribution of tertiary-induced

binary black hole mergers. MNRAS, 505(3):3681–3697, 2021b

8.1 Introduction

The 50 or so black hole (BH) binary mergers detected by the LIGO/VIRGO col-

laboration to date [Abbott et al., 2021] continue to motivate theoretical studies of

their formation channels. These range from the traditional isolated binary evolu-

tion, in which mass transfer and friction in the common envelope phase cause the

binary orbit to decay sufficiently that it subsequently merges via emission of grav-

itational waves (GWs) [e.g., Lipunov et al., 1997, 2017, Podsiadlowski et al., 2003,

Belczynski et al., 2010, 2016, Dominik et al., 2012, 2013, 2015], to various flavors

of dynamical formation channels that involve either strong gravitational scatter-

ings in dense clusters [e.g., Zwart and McMillan, 1999, O’leary et al., 2006, Miller

and Lauburg, 2009, Banerjee et al., 2010, Downing et al., 2010, Ziosi et al., 2014,

Rodriguez et al., 2015, Samsing and Ramirez-Ruiz, 2017, Samsing and D’Orazio,

2018, Rodriguez et al., 2018, Gondán et al., 2018] or mergers in isolated triple

and quadruple systems induced by distant companions [e.g., Miller and Hamilton,

2002, Wen, 2003, Antonini and Perets, 2012, Antonini et al., 2017, Silsbee and

Tremaine, 2017b, Liu and Lai, 2017, 2018, Randall and Xianyu, 2018b,a, Hoang

et al., 2018, Fragione and Kocsis, 2019, Fragione and Loeb, 2019, Liu and Lai,

2019, Liu et al., 2019a,b, Liu and Lai, 2020, Liu and Lai, 2021].

Given the large number of merger events to be detected in the coming years,
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it is important to search for observational signatures to distinguish various BH

binary formation channels. The masses of merging BHs obviously carry impor-

tant information. The recent detection of BH binary systems with component

masses in the mass gap (such in GW190521) suggests that some kinds of “hierar-

chical mergers” may be needed to explain these exceptional events (Abbott et al.,

2020b; see Liu and Lai, 2021 for examples of such “hierarchical mergers” in stel-

lar multiples). Another possible indicator is merger eccentricity: previous studies

find that dynamical binary-single interactions in dense clusters [e.g., Samsing and

Ramirez-Ruiz, 2017, Rodriguez et al., 2018, Samsing and D’Orazio, 2018, Fragione

and Bromberg, 2019] or in galactic triples [Silsbee and Tremaine, 2017b, Antonini

et al., 2017, Fragione and Loeb, 2019, Liu et al., 2019a] may lead to BH binaries

that enter the LIGO band with modest eccentricities. The third possible indica-

tor is the spin-orbit misalignment of the binary. In particular, the mass-weighted

projection of the BH spins,

χeff =
m1χ1 +m2χ2

m1 +m2
· L̂, (8.1)

can be measured through the binary inspiral waveform [here, m1,2 is the BH mass,

χ1,2 = cS1,2/(Gm2
1,2) is the dimensionless BH spin, and L̂ is the unit orbital angu-

lar momentum vector of the binary]. Different formation histories yield different

distributions of χeff [Liu and Lai, 2017, 2018, Antonini et al., 2018, Rodriguez

et al., 2018, Gerosa et al., 2018, Liu et al., 2019a, Su et al., 2021a].

The fourth possible indicator of BH binary formation mechanisms is the dis-

tribution of masses and mass ratios of merging BHs. In Fig. 8.1, we show the

distribution of the mass ratio q ≡ m2/m1, where m1 ≥ m2, for all LIGO/VIRGO bi-

naries detected as of the O3a data release [Abbott et al., 2021]1. The distribution
1Note that Fig. 8.1 should not be interpreted as directly reflecting the distribution of merging

BH binaries, as there are many selection effects and observational biases, e.g. systems with smaller
q are harder to detect for the same Mchirp or m12. For a detailed statistical analysis, see Abbott
et al. [2021].
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Figure 8.1: Histogram of the mass ratios q ≡ m2/m1 of binary BH mergers in the
O3a data release, excluding the two NS-NS mergers but including GW190814,
whose 2.5M⊙ secondary may be a BH [Abbott et al., 2021].

distinctly peaks around q ∼ 0.7. BH binaries formed via isolated binary evolution

are generally expected to have q ≳ 0.5 [Belczynski et al., 2016, Olejak et al., 2020].

On the other hand, dynamical formation channels may produce a larger variety

of distributions for the binary mass ratio [e.g., Rodriguez et al., 2016, Silsbee and

Tremaine, 2017b, Fragione and Kocsis, 2019].

In this paper, we study in detail the mass ratio distribution for BH mergers

induced by tertiary companions in isolated triple systems. In this scenario, a ter-

tiary BH on a sufficiently inclined (outer) orbit induces phases of extreme eccen-

tricity in the inner binary via the von Zeipel-Lidov-Kozai (ZLK;von Zeipel, 1910,

Lidov, 1962, Kozai, 1962) effect, leading to efficient gravitational radiation and or-

bital decay. While the original ZLK effect relies on the leading-order, quadrupolar

gravitational perturbation from the tertiary on the inner binary, the octupole or-

der terms can become important [sometimes known as the eccentric Kozai mech-
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anism, e.g. Naoz, 2016] when the triple system is mildly hierarchical, the outer

orbit is eccentric (eout ̸= 0) and the inner binary BHs have unequal masses [e.g.,

Ford et al., 2000, Blaes et al., 2002, Lithwick and Naoz, 2011, Liu et al., 2015a].

The strength of the octupole effect depends on the dimensionless parameter

ϵoct = m1 −m2

m1 +m2

a
aout

eout

1− e2
out

. (8.2)

where a,aout are the semi-major axes of the inner and outer binaries, respectively.

Previous studies have shown that the octupole terms generally increase the incli-

nation window for extreme eccentricity excitation, and thus enhance the rate of

successful binary mergers [Liu and Lai, 2018]. As ϵoct ∝ (1− q)/(1+ q) increases

with decreasing q, we expect that ZLK-induced BH mergers favor binaries with

smaller mass ratios. The main goal of this paper is to quantify the dependence

of the merger fraction/probability on q, using a combination of analytical and nu-

merical calculations. We focus on the cases where the tertiary mass is compara-

ble to the binary BH masses. When the tertiary mass m3 is much larger than

m12 = m1+m2 (as in the case of a supermassive BH tertiary), dynamical stability

of the triple requires aout(1− eout)/[a(1+ e)] ≳ 3.7(m3/m12)1/3 ≫ 1 [Kiseleva et al.,

1996], which implies that the octupole effect is negligible.

This paper is organized as follows. In Section 8.2, we review some analytical

results of ZLK oscillations and examine how the octupole terms affect the incli-

nation window and probability for extreme eccentricity excitation. In Section 8.3,

we study tertiary-induced BH mergers using a combination of numerical and an-

alytical approaches. We propose new semi-analytical criteria (Section 8.3.2) that

allow us to determine, without full numerical integration, whether an initial BH

binary can undergo a “one-shot merger” or a more gradual merger induced by the

octupole effect of an tertiary. In Section 8.4, we calculate the merger fraction as a

function of mass ratio for some representative triple systems. In Section 8.5, we
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study the mass ratio distribution of the initial BH binaries based on the properties

of main-sequence (MS) stellar binaries and the MS mass to BH mass mapping. Us-

ing the result of Section 8.4, we illustrate how the final merging BH binary mass

distribution may be influenced by the octupole effect for tertiary-induced mergers.

We summarize our results and their implications in Section 8.6.

8.2 Von Zeipel-Lidov-Kozai (ZLK) Oscillations: Analytical Re-

sults

Consider two BHs orbiting each other with masses m1 and m2 on a orbit with

semi-major axis a, eccentricity e, and angular momentum L. An external, tertiary

BH of mass m3 orbits this inner binary with semi-major axis aout, eccentricity

eout, and angular momentum Lout. The reduced masses of the inner and outer

binaries are µ≡ m1m2/m12 and µout ≡ m12m3/m123 respectively, where m12 = m1+
m2 and m123 = m12 +m3. These two binary orbits are further described by three

angles: the inclinations i and iout, the arguments of pericenters ω and ωout, and

the longitudes of the ascending nodes Ω and Ωout. These angles are defined in a

coordinate system where the z axis is aligned with the total angular momentum

J=L+Lout (i.e., the invariant plane is perpendicular to J). The mutual inclination

between the two orbits is denoted I ≡ i+ iout. Note that Ωout =Ω+180◦.

To study the evolution of the inner binary under the influence of the tertiary

BH, we use the double-averaged secular equations of motion, including the inter-

actions between the inner binary and the tertiary up to the octupole level of ap-

proximation as given by Liu et al. [2015a]. Throughout this paper, we restrict to

hierarchical triple systems where the double-averaged secular equations are valid
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– systems with relatively small aout/a may require solving the single-averaged

equations of motion or direct N-body integration [see Antonini and Perets, 2012,

Antonini et al., 2014, Luo et al., 2016, Lei et al., 2018, Liu and Lai, 2019, Liu et al.,

2019a, Hamers, 2020a]2. For the remainder of this section, we include general rel-

ativistic apsidal precession of the inner binary, a first order post-Newtonian (1PN)

effect, but omit the emission of GWs, a 2.5PN effect – this will be considered in

Section 8.3. We group the results by increasing order of approximation, starting

by ignoring the octupole-order effects entirely.

8.2.1 Quadrupole Order

At the quadrupole order, the tertiary induces eccentricity oscillations in the inner

binary on the characteristic timescale

tZLK = 1
n

m12

m3

(aout,eff

a

)3
, (8.3)

where n ≡
√

Gm12/a3 is the mean motion of the inner binary, and aout,eff ≡ aout

√
1− e2

out.

During these oscillations, there are two conserved quantities, the total energy and

the total orbital angular momentum. Through some manipulation, the total an-

gular momentum can be written in terms of the conserved quantity K given by

K ≡ j(e)cos I − η

2
e2. (8.4)

Here, j(e) ≡
p

1− e2 and η is the ratio of the magnitudes of the angular momenta

at zero inner binary eccentricity:

η≡
(

L
Lout

)
e=0

= µ

µout

[
m12a

m123aout(1− e2
out)

]1/2

. (8.5)

2Although we do not study such systems in this paper, we expect that a qualitatively similar
dependence of the merger probability on the mass ratio remains, since the strength of the octupole
effect in the single-averaged secular equations is also proportional to (1− q)/(1+ q) [see Eq. 25 of
Liu and Lai, 2019].
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Note that when η= 0, K reduces to the classical “Kozai constant”, K = j(e)cos I.

The maximum eccentricity emax attained in these ZLK oscillations can be com-

puted analytically at the quadrupolar order. It depends on the “competition” be-

tween the 1PN apsidal precession rate ω̇GR and the ZLK rate t−1
ZLK. The relevant

dimensionless parameter is

ϵGR ≡ (ω̇GRtZLK)e=0 =
3Gm12

c2
m12

m3

a3
out,eff

a4 . (8.6)

It can then be shown that, for an initially circular inner binary, emax is related to

the initial mutual inclination I0 by [Liu et al., 2015a, Anderson et al., 2016]:

3
8

j2(emax)−1
j2(emax)

[
5

(
cos I0 + η

2

)2 −
(
3+4ηcos I0 + 9

4
η2

)
j2(emax)

+η2 j4(emax)
]
+ϵGR

[
1− 1

j(emax)

]
= 0. (8.7)

In the limit η→ 0 and ϵGR → 0, we recover the well-known result

emax =
√

1− (5/3)cos2 I0. (8.8)

For general η, emax attains its limiting value elim when I0 = I0,lim, where [see also

Hamers, 2020b]

cos I0,lim = η

2

[
4
5

j2(elim)−1
]

. (8.9)

Note that I0,lim ≥ 90◦ with equality only when η = 0. Substituting Eq. (8.9) into

Eq. (8.7), we find that elim satisfies

3
8

[
j2(elim)−1

][
−3+ η2

4

(
4
5

j2(elim)−1
)]

+ϵGR

[
1− 1

j(elim)

]
= 0. (8.10)

On the other hand, eccentricity excitation (emax ≥ 0) is only possible when (cos I0)− ≤
cos I0 ≤ (cos I0)+ where

(cos I0)± = 1
10

−η±
√
η2 +60− 80

3
ϵGR

 . (8.11)
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Figure 8.2: The maximum eccentricity achieved for an inner binary in the test-
particle limit as a function of the initial inclination angle I0. The triple system
parameters are: a = 100 AU, aout,eff = 3600 AU, m12 = 50M⊙, m3 = 30M⊙, and
eout = 0.6; the corresponding octupole strength parameter is ϵoct = 0.02 and η≃ 0.
The octupole-level secular equations of motion are integrated for 2000tZLK (see
Eq. 8.3), and the maximum eccentricity attained during this time is recorded and
shown as a blue dot for each initial condition. We consider 1000 initial inclinations
in the range 50◦ ≤ I0 ≤ 130◦, and each I0 is simulated five times, with the initial
orbital elements ω, ωout, and Ω = Ωout −π chosen randomly ∈ [0,2π) shows the
quadrupole-level result (Eq. 8.7 with η = 0), and elim (Eq. 8.10) is shown as the
horizontal red line. The vertical purple lines denote the boundary of the octupole-
active inclination window, based on the fitting formula from Muñoz et al. [2016]
(Eq. 8.13).

For I0 outside of this range, no eccentricity excitation is possible. This condition

reduces to the well-known cos2 I0 ≤ 3/5 when η= ϵGR = 0.

8.2.2 Octupole Order: Test-particle Limit

The relative strength of the octupole-order potential to the quadrupole-order po-

tential is determined by the dimensionless parameter ϵoct (Eq. 8.2). When ϵoct is
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non-negligible, K is no longer conserved, and the system evolution becomes chaotic

[Ford et al., 2000, Katz et al., 2011, Lithwick and Naoz, 2011, Li et al., 2014, Liu

et al., 2015a]. As a result, analytical (and semi-analytical) results have only been

given for the test-particle limit, where m2 = η= 0. We briefly review these results

below.

Due to the non-conservation of K , emax evolves irregularly ZLK cycles, and

the orbit may even flip between prograde (I < 90◦) and retrograde (I > 90◦) if K

changes sign (in the test-particle limit, K = j(e)cos I). During these orbit flips, the

eccentricity maxima reach their largest values but do not exceed elim [Lithwick

and Naoz, 2011, Liu et al., 2015a, Anderson et al., 2016]. These orbit flips occur

on characteristic timescale tZLK,oct, given by [Antognini, 2015]

tZLK,oct = tZLK
128

p
10

15π
p
ϵoct

. (8.12)

The octupole potential tends to widen the inclination range for which the eccen-

tricity can reach elim; we refer to this widened range as the octupole-active win-

dow. Figure 8.2 shows the maximum eccentricity attained by an inner binary

orbited by a tertiary companion with inclination I0. The octupole-active window

is visible as a range of inclinations centered on I0 = 90◦ that attain elim (the red

horizontal dashed line in Fig. 8.2). Katz et al. [2011] show that this window can be

approximated using analytical arguments when ϵoct ≪ 1. Muñoz et al. [2016] give

a more general numerical fitting formula describing the octupole-active window

for arbitrary ϵoct. They find that orbit flips and extreme eccentricity excitation

occur for Iflip,− ≲ I0 ≲ Iflip,+ where

cos2 Iflip,± =



0.26
( ϵoct

0.1

)−0.536
( ϵoct

0.1

)2

+12.05
( ϵoct

0.1

)3 −16.78
( ϵoct

0.1

)4
ϵoct ≲ 0.05,

0.45 ϵoct ≳ 0.05.

(8.13)
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Figure 8.3: An example of the triple evolution for a system with significant oc-
tupole effects and finite η (see Eq. 8.5). We use the same system parameters as
in Fig. 8.2 except for q = 0.2, corresponding to η ≈ 0.087 and ϵoct ≈ 0.007, and
I0 = 93.5◦. The three panels show the inner orbit eccentricity, the mutual inclina-
tion, and the generalized “Kozai constant” K (Eq. 8.4). In the first panel, elim is
denoted by the black dashed line. By comparing the second and third panels, we
see that orbit flips occur when K crosses the dotted line, given by K = Kc ≡−η/2.

In Fig. 8.2, we see that with the octupole effect included, emax indeed attains elim

when I0 is within the broad octupole-active window given by Eq. (8.13) (denoted

by the vertical purple lines in Fig. 8.2).
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8.2.3 Octupole Order: General Masses

For general inner binary masses, when the angular momentum ratio η is non-

negligible, the octupole-level ZLK behavior is less well-studied [see Liu et al.,

2015a]. Figure 8.3 shows an example of the evolution of a triple system with

significant η and ϵoct. Many aspects of the evolution discussed in Section 8.2.2 are

still observed: the ZLK eccentricity maxima and K evolve over timescales ≫ tZLK;

the eccentricity never exceeds elim; when K crosses Kc ≡−η/2, an orbit flip occurs

(this follows by inspection of Eq. 8.4).

However, Eq. (8.13) no longer describes the octupole-active window as η is non-

negligible [see also Rodet et al., 2021]. In the top panel of Fig. 8.4, the blue dots

show the maximum achieved eccentricity of a system with the same parameters

as Fig. 8.2 except with q = 0.5 (so ϵoct = 0.007 and η= 0.087). Here, it can be seen

that no prograde systems can attain elim, and only a small range of retrograde

inclinations ≥ I0,lim (see Eq. 8.9) are able to reach elim. In fact, there is even a

clear double valued feature around I ≈ 75◦ in the top panel of Fig. 8.4 that is not

present in Fig. 8.2. If q is decreased to 0.3 (Fig. 8.5) or further to 0.2 (Fig. 8.6), ϵoct

increases while η decreases. This permits a larger number of prograde systems

to reach elim, though a small range of inclinations near I0 = 90◦ still do not reach

elim; we call this range of inclinations the “octupole-inactive gap”. On the other

hand, if q is held at 0.5 as in Fig. 8.4 and eout is increased to 0.9 while holding

aout,eff = 3600 AU constant, both ϵoct and η increase; the top panel of Fig. 8.7 shows

that prograde systems still fail to reach elim for these parameters, despite the

increase in ϵoct. The top panel of Fig. 8.8 illustrates the behavior when the inner

binary is substantially more compact (a = 10 AU): even though ϵoct is larger than

it is in any of Figs. 8.4–8.7, we see that prograde perturbers fail to attain elim.

All of these examples (top panels of Figs. 8.4–8.8) illustrate importance of η in

254



determining the range of inclinations for the system to be able to reach elim.

In general, we find that a symmetric octupole-active window (as in Eq. 8.13)

can be realized for sufficiently small η. Rodet et al. [2021] considered some ex-

amples of triple systems (consisting of MS stars with planetary companions and

tertiaries, for which the short-range forces is dominated by tidal interaction) and

found that η ≲ 0.1 is sufficient for a symmetric octupole-active window. In the

cases considered in this paper, a smaller η is necessary (e.g., η≃ 0.054 in Fig. 8.6).

Thus, the critical η above which the symmetry of the octupole-active window is sig-

nificantly broken likely depends on the dominant short-range forces and elim [in

Rodet et al. [2021], 1− elim ∼ 10−3, while in Figs. 8.2 and 8.4–8.8, 1− elim ≲ 10−5].

In general, when η is non-negligible, there are up to two octupole-active windows:

a prograde window whose existence depends on the specific values of η and ϵoct,

and a retrograde window that always exists.

8.3 Tertiary-Induced Black Hole Mergers

Emission of gravitational waves (GWs) affects the evolution of the inner binary,

which can be incorporated into the secular equations of motion for the triple [e.g.,

Peters, 1964, Liu and Lai, 2018]. The associated orbital and eccentricity decay

rates are [Peters, 1964]:

1
a

da
dt

∣∣∣∣
GW

≡− 1
tGW

=−64
5

G3µm2
12

c5a4 j7(e)

(
1+ 73

24
e2 + 37

96
e4

)
, (8.14)

de
dt

∣∣∣∣
GW

=−304
15

G3µm2
12

c5a4
1

j5(e)

(
1+ 121

304
e2

)
. (8.15)

GW emission can cause the orbit to decay significantly when extreme eccentric-

ities are reached during the ZLK cycles described in the previous section. This
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Figure 8.4: Eccentricity excitation and merger windows for the fiducial BH triple
system (a = 100 AU, aout,eff = 3600 AU, m12 = 50M⊙, m3 = 30M⊙) with q = 0.5 and
eout = 0.6, corresponding to η ≈ 0.087 and ϵoct ≈ 0.007. In the top panel, for each
of 1000 initial inclinations, we choose 5 different random ω, ωout, and Ω as initial
conditions and evolve the system for 2000tZLK without GW radiation. The effec-
tive eccentricity eeff (Eq. 8.22; green dots) as well as the maximum eccentricity
emax (blue dots) over this period are displayed. For comparison, eeff,c (Eq. 8.23) is
given by the horizontal green dashed line, eos (Eq. 8.19) is shown as the horizontal
blue line, and elim (Eq. 8.10) is shown as the horizontal red dashed line. The ver-
tical purple lines denote the test-mass octupole-active window and are given by
the fitting formula of Muñoz et al. [2016]; they do not longer accurately describe
the elim-attaining inclination window because η is finite. The black dashed line is
is the quadrupole-level result as given by Eq. (8.7). In the middle panel, we show
the binary merger times when including GW radiation and using the same range
of initial conditions. Numerical integrations are terminated when Tm > 10 Gyr
and marked as unsuccessful mergers. The horizontal dashed line denotes tZLK
(Eq. 8.3) while the horizontal dash-dotted line indicates tZLK,oct (Eq. 8.12). Here,
each I0 is run 20 times with uniform distributions of ω, ωout, and Ω, so we can
estimate the merger probability Pmerger (Eq. 8.17) for each I0 – Pmerger is shown
as the black line in the bottom panel. As described in Section 8.3.2, the merger
probability can be predicted semi-analytically using the results of the top panel
and Eq. (8.25), and is denoted by Pan

merger. In the bottom panel, the thick green
line shows Pan

merger when using an integration time of 2000tZLK ≈ 3 Gyr for the
non-dissipative simulations, and thin green line shows the prediction using an
integration time of 500tZLK. The agreement of Pan

merger with Pmerger is good and
improves when using the longer integration time.
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Figure 8.5: Same as Fig. 8.4 but for q = 0.3, corresponding to η ≈ 0.07 and ϵoct ≈
0.011.
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Figure 8.6: Same as Fig. 8.4 but for q = 0.2, corresponding to η≈ 0.054 and ϵoct ≈
0.014.
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Figure 8.7: Same as Fig. 8.4 but for eout = 0.9 while holding aout,eff the same,
corresponding to η= 0.118 and ϵoct = 0.019.
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Figure 8.8: Same as Fig. 8.4 but for a more compact inner binary; the parameters
are a0 = 10 AU, aout,eff = 700 AU, m12 = 50M⊙, m3 = 30M⊙, eout = 0.9, and q = 0.4,
corresponding to η= 0.118 and ϵoct = 0.029. Here, Pmerger is computed with only 5
integrations (for random ω, ωout, and Ω) for each I0.
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allows even wide binaries (∼ 100 AU) to merge efficiently within a Hubble time.

While various numerical examples of such tertiary-induced mergers have been

given before (e.g., Liu and Lai [2018]; see also Liu et al. [2019a] for “population

synthesis”), in this section we examine the dynamical process in detail in order

to develop an analytical understanding. Our fiducial system parameters are as in

Fig. 8.3: aout,eff = 4500 AU, eout = 0.6, m12 = 50M⊙ (with varying q), m3 = 30M⊙,

and the inner binary has initial a0 = 100 AU and e0 = 10−3.

8.3.1 Merger Windows and Probability: Numerical Results

To understand what initial conditions lead to successful mergers within a Hubble

time, we integrate the double-averaged octupole-order ZLK equations including

GW radiation. We terminate each integration if either a = 0.005a0 (a successful

merger) or the system age reaches 10 Gyr. We can verify that the inner binary

is effectively decoupled from the tertiary for this orbital separation by evaluating

ϵGR (Eq. 8.6):

ϵGR = 1.8×106
(

m12

50M⊙

)2 ( aout,eff

3600 AU

)3 (
m3

30M⊙

)−1 ( a
0.5 AU

)−4
. (8.16)

The middle panel of Fig. 8.4 shows the merger time Tm as a function of I0 for our

fiducial parameters with q = 0.5. We note that only retrograde inclinations lead

to successful mergers, and almost all successful mergers are rapid, with Tm ∼
tZLK,oct. These are the result of a system merging by emitting a single large burst

of GW radiation during an extreme-eccentricity ZLK cycle, which we term a “one-

shot merger”3. In Fig. 8.5, q is decreased to 0.3, and some prograde systems are

3It is important to note that these “one-shot mergers” are distinct from the “fast” mergers pre-
viously discussed in the literature [e.g. Wen, 2003, Randall and Xianyu, 2018a, Su et al., 2021a]:
The one-shot mergers discussed here occur when the maximum eccentricity attained by the inner
binary over an octupole cycle (i.e. within the first ∼ tZLK,oct) is sufficiently large to produce a prompt
merger, while the references cited above neglect octupole-order effects and study the scenario when
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also able to merge successfully. However, these prograde systems exhibit a broad

range of merger times, with Tm ≳ tZLK,oct. These occur when a system gradually

emits a small amount of GW radiation at every eccentricity maximum – we term

this a “smooth merger”. Additionally, the octupole-inactive gap near I0 = 90◦ is

visible in the merger time plot (middle panel of Fig. 8.5). The middle panels of

Figs. 8.6–8.8 show the behavior of Tm for the other parameter regimes and also

exhibit these two categories of mergers and the octupole-inactive gap.

Due to the chaotic nature of the octupole-order ZLK effect, the initial inclina-

tion I0 alone is not sufficient to determine with certainty whether a system can

merge within a Hubble time. Instead, for a given I0, we can use numerical in-

tegrations with various ω, ωout, and Ω to compute a merger probability, denoted

by

Pmerger (I0; q, eout)= P (Tm < 10 Gyr) , (8.17)

where the notation Pmerger (I0; q, eout) highlights the dependence of Pmerger on q

and eout, two of the key factors that determine the strength of the octupole effect

(of course Pmerger depends on other system parameters such as m12, a0, aout, etc.).

The bottom panels of Figs. 8.4–8.8 show our numerical results. In all of these plots,

there is a retrograde inclination window for which successful merger is guaran-

teed. In Fig. 8.5, it can be seen that a large range of prograde inclinations have

a probabilistic outcome. In Fig. 8.6, while the enhanced octupole strength allows

for most of the prograde inclinations to merge with certainty, there is still a region

around I0 ≈ 80◦ where Pmerger < 1.

the maximum eccentricity attained in a quadrupole ZLK cycle (i.e. within the first ∼ tZLK) is suffi-
ciently large to produce a prompt merger. When the octupole effect is non-negligible, it can drive
systems to much more extreme eccentricities than can the quadrupole-order effects alone (compare
the blue dots and black dashed line in Fig. 8.4), and thus our “one-shot mergers” occur for a larger
range of I0 than do quadrupole-order “fast” mergers.
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8.3.2 Merger Probability: Semi-analytic Criteria

By comparing the top and bottom panels of Figs. 8.4–8.8, it is clear that their

features are correlated: in all five cases, the retrograde merger window occupies

the same inclination range as the retrograde octupole-active window, while Pmerger

is only nonzero for prograde inclinations where emax nearly attains elim. Here, we

further develop this connection and show that the non-dissipative simulations can

be used to predict the outcomes of simulations with GW dissipation rather reliably.

In Section 8.3.1, we identified both one-shot and smooth mergers in our simu-

lations. Towards understanding the one-shot mergers, we first define eos to be the

emax required to dissipate an order-unity fraction of the binary’s orbital energy via

GW emission in a single ZLK cycle. Since a binary spends a fraction ∼ j(emax) of

each ZLK cycle near emax [e.g., Anderson et al., 2016], we set

j (eos)
dlna

dt

∣∣∣∣
e=eos

=− 1
tZLK

, (8.18)

where d(lna)/dt is given by Eq. (8.14). This yields

j6(eos)≡ 425tZLK

96tGW,0
= 170

3
G3µm3

12

m3c5a4n

(aout,eff

a

)3
, (8.19)

where tGW,0 = (tGW)e=0 (see Eq. 8.14) is given by

t−1
GW,0 =

64
5

G3µm2
12

c5a4 , (8.20)

we have approximated eos ≈ 1. Eq. (8.19) is equivalent to

1− eos ≈ 3×10−6
(

m12

50M⊙

)7/6 (
q/(1+ q)2

1/4

)1/3 (
m3

30M⊙

)−1/3

×
( aout,eff

3600 AU

)( a
100 AU

)−11/6
. (8.21)

Then, if a system satisfies emax > eos with emax based on non-dissipative integra-

tion, it is expected attain a sufficiently large eccentricity to undergo a one-shot

merger.
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Towards understanding smooth mergers, we seek a characteristic eccentricity

that captures GW emission over many ZLK cycles. We define eeff as an effective

ZLK maximum eccentricity, i.e.〈
dlna

dt

〉
=− 1

tGW,0

〈
1+73e2/24+37e4/96

j7(e)

〉
≡−425/96

tGW,0

1
j6(eeff)

, (8.22)

where the angle brackets denote averaging over many tZLK,oct in order to capture

the characteristic eccentricity behavior over many octupole cycles. In the second

line of Eq. (8.22), we have essentially replaced the ZLK-averaged orbital decay

rate by d(lna)/dt evaluated at eeff multiplied by j(eeff). In practice (see Figs. 8.4–

8.8), we typically average over 2000tZLK of the non-dissipative simulations to com-

pute eeff.

With eeff computed using Eq. (8.22), we can define the critical effective ec-

centricity eeff,c such that the ZLK-averaged inspiral time is a Hubble time, i.e.

〈d(lna)/dt〉 ≡− (10 Gyr)−1. This gives

j6 (
eeff,c

)≡ 425
96

10 Gyr
tGW,0

, (8.23)

or equivalently

1− eeff,c ≈ 10−4
(

m12

50M⊙

)(
q/(1+ q)2

1/4

)1/3 ( a
100 AU

)−4/3
. (8.24)

Thus, if a system is evolved using the non-dissipative equations of motion and

satisfies eeff > eeff,c, then it is expected to successfully undergo a smooth merger

within a Hubble time.

Therefore, a system can be predicted to merge successfully if it satisfies either

the one-shot or smooth merger criteria. The semi-analytical merger probability

(as a function of I0 and other parameters) is:

Pan
merger (I0; q, eout)= P

(
eeff > eeff,c or emax > eos

)
. (8.25)
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Although not fully analytical (since numerical integrations of non-dissipative sys-

tems are needed to obtain eeff and emax in general), Eq. (8.25) provides efficient

computation of the merger probability without full numerical integrations includ-

ing GW radiation.

The top panels of Figs. 8.4–8.8 show eeff and emax, and their critical values,

eeff,c and eos. Using these, we compute the semi-analytical merger probability,

shown as the thick green lines in the bottom panels of Figs. 8.4–8.8. We gener-

ally observe good agreement with the numerical Pmerger. However, Pan
merger slightly

but systematically underpredicts Pmerger for some configurations, such as the pro-

grade inclinations in Figs. 8.5 and 8.8. These regions coincide with the inclina-

tions for which the merger outcome is uncertain. This underprediction is due to

the restricted integration time of 2000tZLK ≈ 3 Gyr used for the non-dissipative

simulations. To illustrate this, we also calculate Pan
merger using a shorter integra-

tion time of 500tZLK for our non-dissipative simulations. The results are shown

as the light green lines in the bottom panels of Figs. 8.4–8.8, performing visibly

worse. A more detailed discussion of this issue can be found in Section 8.4.4.

A few observations about Eq. (8.25) can be made. First, it explains why some

prograde systems merge probabilistically (0 < Pmerger < 1): for the prograde incli-

nations in Fig. 8.5, the eeff values scatter widely around eeff,c [or more precisely,

j(eeff) scatters around j(eeff,c)], even for a given I0, so the detailed merger outcome

depends on the initial conditions. For the prograde inclinations in Fig. 8.6, the

double-valued feature in the emax plot (the top panel) pointed out in Section 8.2.3

represents a sub-population of systems that do not satisfy Eq. (8.25). Second,

emax > eos often ensures eeff > eeff,c in practice, as the averaging in Eq. (8.22) is

heavily weighted towards extreme eccentricities. As such, eeff > eeff,c alone is of-

ten a sufficient condition in Eq. (8.25).
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The one-shot merger criterion (emax > eos) can also be used to distinguish two

different types of system architectures: if elim ≳ eos for a particular architecture,

then all initial conditions leading to orbit flips (i.e., in an octupole-active window)

also execute one-shot mergers. For elim ≈ 1, Eq. (8.10) reduces to

j(elim)≈ 8ϵGR

9

(
1+ η2

12

)−1

. (8.26)

which lets us rewrite the constraint elim ≳ eos as(
a

aout,eff

)
≳ 0.0186

( aout,eff

3600 AU

)−7/37 (
m12

50M⊙

)17/37

×
(
30M⊙

m3

)10/37 (
q/(1+ q)2

1/4

)−2/37

. (8.27)

For the system architecture considered in Figs. 8.4–8.7, this condition is satisfied,

and we see indeed that wherever the top panel suggests orbit flipping (emax = elim),

the bottom panel shows Pmerger ≈ 1. When the condition (Eq. 8.27) is not satisfied,

one-shot mergers are not possible, and Pmerger is generally only nonzero for a small

range about I0,lim.

8.4 Merger Fraction as a Function of Mass Ratio

Having developed an semi-analytical understanding of the binary merger window

and probability in the last section (particularly Section 8.3.2), we now study the

fraction of BH binaries in triples that successfully merge under various conditions

– we call this the merger fraction.

8.4.1 Merger Fraction for Fixed Tertiary Eccentricity

We first consider the simple case where eout is fixed at a few specific values and

compute the merger fraction as a function of the mass ratio q. We consider
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isotropic mutual orientations between the inner and outer binaries, i.e. we draw

cos I0 from a uniform grid over the range [−1,1] (recall that ω, ωout, and Ω are

drawn uniformly from the range [0,2π) when computing the merger probability

Pmerger at a given I0). The merger fraction is then given by:

fmerger (q, eout)≡ 1
2

1∫
−1

dcos I0 Pmerger (I0; q, eout) . (8.28)

This is proportional to the integral of the black lines (weighted by sin I0) in the bot-

tom panels of Figs. 8.4–8.7. We can also use semi-analytical criteria introduced in

Section 8.3.2 to predict the outcome and merger fraction. This is computed by us-

ing Pan
merger as the integrand in Eq. (8.28), or by evaluating the integral of the thick

green lines (weighted by sin I0) in the bottom panels of Figs. 8.4–8.7. Figure 8.9

shows the resulting fmerger and the analytical estimates for all combinations of

q ∈ {0.2,0.3,0.4,0.5,0.7,1.0} and eout ∈ {0.6,0.8,0.9}. It is clear that the numeri-

cal fmerger and the analytical estimate agree well, and that the merger fraction

increases steeply for smaller q.

To explore the impact of our choice of isotropic mutual orientations between the

two binaries, we also consider a wedge-shaped distribution of cos I0 as was found

in the population synthesis studies of Antonini et al. [2017]. We still use the same

uniform grid of cos I0 as before, but weight each eccentricity by its probability

probability density following the distribution:

P (cos I0)= 1
4
+ |cos I0|

2
. (8.29)

The resulting fmerger for a tertiary with cos I0 distributed like Eq. (8.29) is shown

as the dashed lines in Fig. 8.9. While the total merger fractions decrease, the

strong enhancement of the merger fraction at smaller q is unaffected.

In the right panel of Fig. 8.9, we see that the merger fractions for the three

eout values overlap for small ϵoct. This implies that fmerger depends only on ϵoct
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in this regime, and not on the values of q and eout independently. From Fig. 8.4

(which has ϵoct = 0.007), we see that this suggests that the size of the retrograde

merger window only depends on ϵoct, much like what Eq. (8.13) shows for the test-

particle limit. However, once ϵoct is increased sufficiently, the three curves in the

right panel of Fig. 8.9 cease to overlap. This can be attributed to their different

η values: for sufficiently small ϵoct, no prograde initial inclinations successfully

merge (e.g., Fig. 8.4), and the merger fraction is solely determined by the size of

the retrograde octupole-active window. But once ϵoct is sufficiently large, prograde

mergers become possible, and the merger fraction is also affected by the size of the

octupole-inactive gap, which depends on η. This again illustrates the importance

of the octupole-inactive gap, which we comment on in Appendix G.1.

Figure 8.10 depicts the merger fractions for systems with a0 = 50 AU (the other

parameters are the same as in Fig. 8.9). According to Eq. (8.27), these systems no

longer satisfy elim ≳ eos, so the merger fraction is expected to diminish strongly

and vary much more weakly with q, as one-shot mergers are no longer possible.

This is indeed observed, particularly for the eout = 0.6 curve in Fig. 8.10. We

also remark that the semi-analytical prediction accuracy is poorer in this case

than in Fig. 8.9. This is because the only mergers in this regime are smooth

mergers. As can be seen for the prograde I0 in Figs. 8.5 and 8.8, smooth mergers

occur over a wide range of merger times Tm, and the specific Tm that a system

experiences depends sensitively on its chaotic evolution. Thus, Eq. (8.22) is a

rather approximate estimate of the amount of GW emission that a real system

emits during a smooth merger; indeed, the prograde regions of Figs. 8.5 and 8.8

show that the merger times for smooth mergers are systematically underpredicted

by the semi-analytic merger criterion (see discussion in Section 8.4.4). The non-

monotonicity of the semi-analytic merger fraction for eout = 0.6 from q = 0.2 to

q = 0.3 is due to small sample sizes and finite grid spacing in cos I0.
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Figure 8.9: Merger fraction (Eq. 8.17) of BH binaries in triples as a function of
mass ratio q (left panel) for several values of outer binary eccentricities. The
other system parameters are the same as in Figs. 8.4–8.7. The right panel shows
the same merger fraction, but plotted against the octupole parameter ϵoct. The
filled circles joined by the solid lines are numerical results (based on integrations
for full triple system evolution including GW emission; see the black solid lines in
the bottom panels of Figs. 8.4–8.7) assuming random mutual inclinations between
the inner and outer binaries (uniform in cos I0), and the dashed lines denote the
merger fractions if the mutual inclinations are distributed according to Eq. (8.29).
The crosses are semi-analytical results using an integration time of 2000tZLK (see
the thick green lines in the bottom panels of Figs. 8.4–8.7).

Figure 8.10: Same as Fig. 8.9 but for a0 = 50 AU.
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8.4.2 Merger Fraction for a Distribution of Tertiary Eccen-

tricities

For a distribution of tertiary eccentricities, denoted P (eout), the merger fraction is

given by

ηmerger(q)=
∫

deout P (eout) fmerger (q, eout) ,

=
∫

deout
P (eout)

2

1∫
−1

dcos I0 Pmerger (I0; q, eout) . (8.30)

We consider two possible P(eout) with eout ∈ [0,0.9]: (i) a uniform distribution,

P (eout)= constant, and (ii) a thermal distribution, P (eout)∝ eout.

The top panel of Fig. 8.11 shows ηmerger (black dots) for the fiducial triple sys-

tems (with the same parameters as in Figs. 8.4–8.7). For each q, the integral in

Eq. (8.30) is computed using 1000 realizations of random eout, cos I0, ω, ωout, and

Ω. Not surprisingly, we see ηmerger increases with decreasing q. When q is small,

a thermal distribution of eout tends to yield higher ηmerger than does a uniform dis-

tribution. We also compute the merger fraction using the semi-analytical merger

probability of Eq. (8.25) on a dense grid of initial conditions uniformly sampled in

eout and cos I0; the result is shown as the blue dotted line in Fig. 8.11, which is in

good agreement with the uniform-eout simulation result (black).

To characterize the properties of merging binaries, the middle and bottom pan-

els of Fig. 8.11 show the distributions of merger times and merger eccentricities

(at both the LISA and LIGO bands) for different mass ratios. To obtain the LISA

and LIGO band eccentricities (with GW frequency equal to 0.1 Hz and 10 Hz re-

spectively), the inner binaries are evolved from when they reach 0.005a0 (at which

point we terminate the integration of the triple system evolution as the inner bi-

nary’s evolution is decoupled from the tertiary; see Eq. 8.16) to physical merger
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using Eqs. (8.14–8.15). While the LIGO band eccentricities are all quite small

(≲ 10−3), the LISA band eccentricities (at 0.1 Hz) are significant, with median

≳ 0.2 for q ≲ 0.5. We note that these eccentricities are generally smaller than

those found in the population studies of Liu et al. [2019a]. This is because in

this paper we consider only sufficiently hierarchical systems for which double-

averaged evolution equations are valid, whereas Liu et al. [2019a] included a

wider range of triple hierarchies and had to use N-body integrations to evolve

some of the systems.

For comparison, Figure 8.12 shows the results when aout,eff = 5500 AU (instead

of aout,eff = 3600 AU for Fig. 8.11) with all other parameters unchanged. While

ηmerger is lower than it is for aout,eff = 3600 AU, there is still a large increase of

ηmerger with decreasing q. Since Eq. (8.27) is still satisfied, this is expected.

8.4.3 q ≪ 1 Limit

For fixed m12 (and other parameters), even though the octupole strength ϵoct in-

creases as q decreases, the efficiency of GW radiation also decreases. It is there-

fore natural to ask at what q these competing effects become comparable and the

merger fraction is maximized. We show that this does not happen until q is ex-

tremely small.

We see from Figs. 8.4–8.7 that elim > eos for our fiducial triple systems. Indeed,

from Eq. (8.27), we see that even for q as small as 10−5, the condition elim >
eos is satisfied. This implies that most binaties execute one-shot mergers when

undergoing an orbit flip. In addition, recall that the characteristic time for the

binary to approach elim can be estimated by Eq. (8.12), which, for our fiducial
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Figure 8.11: Upper panel: Binary BH merger fraction as a function of mass ratio q
for the fiducial triple systems (with parameters the same as in Figs. 8.4–8.7), as-
suming random mutual inclinations (uniform in cos I0), and either uniform (black
dots) or thermal distribution (red dots) for the tertiary eccentricity distribution
[with eout ∈ [0,0.9]]. These are obtained numerically using Eq. (8.30) by sampling
1000 combinations of eout, cos I0, ω, ωout, and Ω. The blue dotted line is the semi-
analytical result obtained by applying Eq. (8.25) in Eq. (8.30) (evaluated using a
dense uniform grid of cos I0 and eout). The thick green line is a power-law fit to the
analytical ηmerger with a power law index of −2.5. Middle panel: Merger times of
successful mergers for a uniform eout distribution (the median is denoted with the
large black dot). Bottom panel: Merging binary eccentricities (again, for a uniform
eout distribution) in the LISA band (0.1 Hz; green) and in the LIGO band (10 Hz;
black), with medians marked with large dots.
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Figure 8.12: Same as Fig. 8.11 but for aout,eff = 5500 AU. The power law index of
the fit to the analytical ηmerger is −1.15.
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triple systems, is given by

tZLK,oct ≃ 108
(

m12

50M⊙

)1/2 ( aout,eff

3600 AU

)7/2 ( a
100 AU

)−2

×
(

m3

30M⊙

)−1 [
1− q
1+ q

eout√
1− e2

out

]−1/2

yr. (8.31)

Since tZLK,oct ≪ 10 Gyr, this implies that the octupole-ZLK-induced binary merger

fractions are primarily determined by what initial conditions would lead to ex-

treme eccentricity excitation and only weakly depend on the GW radiation rate.

Indeed, Eq. (8.27) shows that, while elim > eos is indeed violated if q is decreased

sufficiently, the dependence is extremely weak. Thus, ηmerger is expected to be very

nearly constant for all physically relevant values of q, as can be seen in Fig. 8.13.

8.4.4 Limitations of semi-analytic Calculation

It can be seen in Fig. 8.9 that the semi-analytical merger fractions are system-

atically lower than the values obtained from the direct simulations. One reason

that this discrepancy arises is because the non-dissipative simulations used to

compute eeff and emax are only run for 2000tLK ≈ 3 Gyr, while the full simula-

tions including GW dissipation are run for 10 Gyr. Owing to the chaotic nature of

the octupole-order ZLK effect, this means that, if an initial condition leads to ex-

treme eccentricities only after many Gyrs, then eeff and emax are underpredicted

by the non-dissipative simulations. Additionally, there are times when eccentric-

ity vector of the inner binary is librating, during which orbit flips are strongly

suppressed [Katz et al., 2011]. Since the librating phase can last an unpredictable

amount of time, this suggests that the semi-analytical merger criteria can become

more complete as the integration time is increased.

We quantify the “completeness” of the semi-analytical merger fraction via the
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Figure 8.13: Same as blue dashed line of the top panel of Fig. 8.11 but extended to
very small q. Due to the very weak q dependence in Eq. (8.27), fmerger is expected
to depend very weakly on q when q ≪ 1 (such that ϵoct is approximately constant),
which agrees with the simulation results.
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Figure 8.14: Completeness of the semi-analytical merger fraction, defined as
f an
merger/ fmerger, as a function of the integration time used for the non-dissipative

simulations, in the fiducial parameter regime while eout is fixed at a few val-
ues. The thin grey lines indicate the completeness for particular combinations
of (q, eout), and the thick black line denotes their average. We see that complete-
ness is still increasing as the integration time approaches 2000tZLK ≈ 3 Gyr.

ratio f an
merger/ fmerger as a function of non-dissipative integration time. We focus on

the fiducial triple systems for demonstrative purposes and compute the complete-

ness for each of the q and eout combinations shown in Fig. 8.9. Figure 8.14 shows

the completeness for each of these simulations in light grey lines and their mean

in the thick black line. We see that the completeness is still increasing even as the

non-dissipative simulation time is increased to 2000tZLK, so we expect that even

longer integration times would give even better agreement with the dissipative

simulations.
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8.5 Mass Ratio Distribution of Merging BH Binaries

In Section 4, we have calculated the binary BH merger fractions fmerger and ηmerger

as a function of the mass ratio q for some representative triple systems. To de-

termine the distribution in q and m12 (total mass) of the merging binaries, we

would need to know both the initial distribution in q, m12 and a0 of the inner BH

binaries and the distribution in m3, aout and eout of the outer binaries, denoted

by:

dF
dqdm12da0

,
dFout

dm3daoutdeout
. (8.32)

The distribution in q and m12 of the merging binaries is then

dFmerger

dqdm12
=

∫
da0dmoutdaoutdeout

dF
dqdm12da0

× dFout

dm3daoutdeout
fmerger(q, eout;m12,a0,m3,aout, eout), (8.33)

where fmerger is given by Eq. (8.28) (assuming random mutual inclinations be-

tween the inner and outer binaries), and we have spelled out its dependence on

various system parameters. Some examples of fmerger are shown in Figs. 8.9–8.10.

If we further specify the eccentricity distribution of the outer binaries, we have

dFmerger

dqdm12
=

∫
da0dm3daout

dF
dqdm12da0

× dFout

dm3daout,eff
ηmerger(q;m12,a0,m3,aout,eff), (8.34)

where ηmerger is given by Eq. (8.30). Some examples of ηmerger are shown in the

top panels of Figs. 8.11–8.12.

Clearly, to properly evaluate Eq. (8.33) or (8.34) would require large population

synthesis calculations and in any case would involve significant uncertainties, a

task beyond the scope of this paper. For illustrative purposes, we consider the
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fiducial triple systems as studied in Section 8.4, and estimate the mass-ratio dis-

tribution of BH mergers as

dFmerger

dq
∼ dF

dq
ηmerger(q). (8.35)

8.5.1 Initial q-distribution of BH Binaries

The initial mass-ratio distribution of BH binaries, dF/dq, is uncertain. It can

be derived from the the mass distributions of of main-sequence (MS) binaries,

together with the MS mass (mms) to BH mass (m) relation.

For the distribution of MS binary masses, we assume that each MS component

mass is drawn from a Salpeter-like initial mass function (IMF) independently,

with

dFms

dmms
∝ m−α

ms, (8.36)

in the range mmin ≤ mms ≤ mmax. Note in this case the MS binary mass-ratio

distribution is (for q ≤ 1)

dFms

dq
∝ qα−2

[
1−

(
q

qmin

)2−2α]
, (8.37)

where qmin = mmin/mmax is the minimum possible binary mass ratio [this is a

generalization of the result of Tout, 1991]. We consider two representative values

of α: (i) α = 2.35, the canonical Salpeter IMF [Salpeter, 1955], and (ii) α = 2,

resulting in a uniform q distribution (for q ≳ 2qmin). The latter case is consistent

with observational studies of the mass ratio of high-mass MS binaries [Sana et al.,

2012, Duchêne and Kraus, 2013, Kobulnicky et al., 2014, Moe and Di Stefano,

2017].

To obtain dF/dq, we compute the BH binary mass ratio when each main se-

quence mass mms is mapped to its corresponding BH mass m. This mapping is
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taken from Spera and Mapelli [2017] for the mass range 25M⊙ ≤ mms ≤ 117M⊙.

We consider both the case where Z = 0.02 (“high Z”) and where Z = 2.0×10−4 (“low

Z”), the two limiting metallicities used in Spera and Mapelli [2017]. We can then

numerically compute dF/dq by sampling masses for stellar binaries from the IMF,

translating these into BH masses, then calculating the resulting BH mass ratios

for each binary. The upper panel of Fig. 8.15 shows the dF/dq obtained via this

procedure for a Salpeter IMF (α= 2.35) when sampling 105 MS binaries for each

metallicity. In the lower four panels, we also show dF/dq restricted to particu-

lar ranges of m12. Note that the distributions differ significantly among the m12

ranges and also between the two metallicities. Figure 8.16 shows the case when

α= 2, which mostly resembles Fig. 8.15.

8.5.2 q-distribution of Merging BH Binaries

Using the results of Section 8.5.1, we can also estimate the mass ratio distribution

of merging BHs using Eq. (8.35). We consider representative triple systems con-

sidered in Section 8.4: for ηmerger, we use a simple approximation that lies roughly

between the two cases shown in Figs. 8.11–8.12:

ηmerger(q)≈ 0.2× [max(q,0.2)]−2 . (8.38)

The results for dFmerger/dq are displayed as the dotted curves in Figs. 8.15–8.16 in

each panel. Broadly speaking, dFmerger/dq peaks around q ∼ 0.3 for low-Z systems,

and around q ∼ 0.4 for high-Z systems, the latter reflecting the peak in the initial

BH binary q-distribution. Also note that dFmerger/dq can be quite different for

different m12 ranges. For example, merging BH binaries with m12 > 42M⊙ are

only produced in low-Z systems, and dFmerger/dq peaks around q ∼ 0.3 for m12 ∈
[42,67]M⊙, and is roughly uniform between q ∼ 0.2 to 1 for m12 ≳ 67M⊙.
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We emphasize that these results for dFmerger/dq refer to the representative

triple systems studied in Sections 8.2–8.4, and thus should be considered for il-

lustrative purposes only. As noted above, the merger fraction ηmerger depends on

various parameters of the triple systems. While we have not attempted to quan-

tify ηmerger for all possible triple system parameters, it is clear that the principal

finding of Section 8.4 (i.e., ηmerger increases with decreasing q) applies only for

systems with sufficiently strong octupole effects. In fact, from Figs. 8.9 and 8.10

we can estimate that the octupole-induced feature in ηmerger becomes prominent

only when ϵoct ≳ 0.005, or equivalently

a
aout,eff

≳ 0.005
(
1+ q
1− q

) √
1− e2

out

eout
≃ 0.01

eout
, (8.39)

where in the second step we have used q ∼ 0.5 and eout ∼ 0.6. When this condi-

tion is satisfied, the inner binary can usually also undergo a one-shot merger (see

Eq. 8.27), leading to strong dependence of the merger fraction on q. For triple sys-

tems with a/aout,eff ≲ 0.01 (such as the case when the tertiary is a supermassive

BH with m3 ≳ 106m12), the octupole effect is unimportant (see the discussion fol-

lowing Eq. 8.2), and we expect the merger fraction to be almost independent of q.

Indeed, an analytical fitting formula for BH mergers induced by pure quadrupole-

ZLK effect shows ηmerger ∝µ0.16 ∝ q0.16/(1+q)0.32 (see Eq. 53 of Liu and Lai, 2018,

or Eq. 26 of Liu and Lai, 2021). For such systems, we expect dFmerger/dq to be

mainly determined by the initial q-distribution of BH binaries at their formation.

8.6 Summary and Discussion

We have studied the dynamical formation of merging BH binaries induced by a

tertiary companion via the von Zeipel-Lidov-Kozai (ZLK) effect, focusing on the

expected mass ratio distribution of merging binaries. The octupole potential of the
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Figure 8.15: Mass ratio distributions of the initial BH binaries (solid lines) and
merging BH binaries (dotted lines) when using α= 2.35 for the MS stellar initial
mass function (see Sections 8.5.1 and 8.5.2). Top panel: Distribution of binary
mass ratio at formation and merger for all possible total binary BH masses. Each
BH mass is obtained from the MS mass using the fitting formula of Spera and
Mapelli [2017] for metallicities of 2×10−4 (Low Z) and 0.02 (High Z), while the
merger fraction of BH binaries is given by Eq. (8.38). To produce these distri-
butions, 105 initial MS binaries are used for each metallicity, and the number of
merging BH binaries has been scaled up by a factor of 10 for visibility. The counts
refer to the number per ∆q = 0.05 bin. Bottom four panels: Same as the top panel
but with specific ranges of m12, the total BH mass of the binary (as labeled). Note
that low-m12 systems are mainly produced from high-Z MS binaries, while high-
m12 systems are mainly produced in low-Z MS binaries.

Figure 8.16: Same as Fig. 8.15 but for α = 2, i.e. a nearly uniform distribution of
the main sequence binary mass ratio. The results are very similar to Fig. 8.15.
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tertiary, when sufficiently strong, can increase the inclination window and prob-

ability of extreme eccentricity excitation, and thus enhance the rate of successful

binary mergers. Since the octupole strength ϵoct ∝ (1− q)/(1+ q) (see Eq. 8.2) in-

creases with decreasing binary mass ratio q, it is expected that ZLK-induced BH

mergers favor binaries with smaller mass ratios. We quantify the dependence

of the merger fraction/probability on q using a combination of numerical inte-

grations and analytical calculations, based on the secular evolution equations for

hierarchical triples. We develop new analytical criteria (Section 8.3.2) that al-

low us to determine, without full numerical integrations, whether an initial BH

binary can undergo a “one-shot merger” or a more gradual merger under the in-

fluence of a tertiary companion. These allow us to compute the merger probability

semi-analytically by only studying non-dissipative (i.e. no GWs) triple systems

(see Eq. 8.25). We show that for hierarchical triples with semi-major axis ra-

tio a/aout ≳ 0.01−0.02 (see Eq. 8.39), the BH binary merger fraction ( fmerger or

ηmerger) can increase by a larger factor (up to ∼ 20) as q decreases from unity to

0.2 (see Figs. 8.9–8.13). When combined with a reasonable estimate of the mass

ratio distribution of the initial BH binaries (Section 8.5.1), our results for the

merger fraction suggest that the final merging BH binaries have an overall mass

ratio distribution that peaks around q = 0.3 or 0.4, although very different distri-

butions can be produced when restricting to specific ranges of total binary masses

(see Figs. 8.15 and 8.16).

Taking our final results (Figs. 8.15 and 8.16) at face value, we tentatively con-

clude that the mass-ratio distribution dFmerger/dq of BH binary mergers induced

by a comparable-mass companion is inconsistent with the current LIGO/VIRGO

result (see Fig. 8.1), suggesting that such tertiary-induced mergers may not be the

dominant formation channel for the majority of the detected LIGO/VIRGO events.

However, there are at least two important issues/caveats to keep in mind:
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(i) dFmerger/dq depends strongly on the initial mass-ratio distribution of BH bi-

naries at their formation (dF/dq), which is uncertain and depends sensitively on

the metalicity of the binary formation environment (see Section 8.5.1). It is also

possible that the initial BH binary mass ratio distribution is much more skewed

towards equal masses than what we found in Section 8.5.1 (e.g. if stellar binaries

with significantly asymmetric masses become unbound due to mass loss and su-

pernova kicks as their components become BHs). Such a distribution was found by

population synthesis studies that include octupole-order ZLK effects and models of

stellar evolution [e.g. Hamers et al., 2013, Toonen et al., 2018]. These studies find

that ZLK oscillations in stellar binaries with small q can experience mass trans-

fer and merge without forming a compact object binary; as a result, most compact

object binaries form with large mass ratios. The prevalence of this phenomenon

likely depends on the initial semimajor axes of the inner binaries. Further study

would be required to understand the competition between this primordial large-q

enhancement and the elevated merger fractions for small q found in the present

study in an astrophysically realistic population.

(ii) When the tertiary mass m3 is much larger than the BH binary mass m12, as

in the case of a supermassive BH tertiary, dynamical stability of the triple requires

aout ≫ a, which implies that the octupole effect is negligible (ϵoct ≪ 1). For such

triple systems, we expect the merger fraction to depend very weakly on the mass

ratio, and the final dFmerger/dq to depend entirely on the initial dF/dq. Although

the merger fraction of such “pure quadrupole” triples is small (≲ 6%; see Eq. 53 of

Liu and Lai, 2018), additional “external” effects can enhance the merger efficiency

significantly [e.g., when the outer orbit experiences quasi-periodic torques from

the galactic potential (Petrovich and Antonini, 2017; see also Hamers and Lai,

2017), or from the spin of a supermassive BH [Liu et al., 2019b]].
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Near the completion of this paper, we became aware of the simultaneous work

by Martinez et al. [2021], who study a similar topic using a population synthesis

approach.
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APPENDIX A

APPENDICIES TO DYNAMICS OF COLOMBO’S TOP: DISSIPATING

DISK

A.1 Cassini State Local Dynamics

In this appendix, we linearize the equations of motion near each CS and determine

its stability. We derive the local libration frequency or growth rate for perturba-

tions around each CS.

A.1.1 Canonical Equations of Motion and Solutions

We adopt spherical coordinate system where l̂ = ẑ and θ,φ are the polar and az-

imuthal angle of ŝ. We choose l̂d at coordinates θ = I,φ= π (see Figs. 2.1 and 3.1).

We use the convention 0≤ θ <π and 0≤φ< 2π.

The equations of motion in
(
φ,cosθ

)
follow by applying Hamilton’s equations

to the Hamiltonian [Eq. (3.8)]:

dφ
dt

= ∂H

∂(cosθ)
=−cosθ+η(

cos I +sin I cotθ cosφ
)
, (A.1a)

d(cosθ)
dt

=−∂H
∂φ

=−ηsin I sinθsinφ. (A.1b)

These agree with Eq. (2.9).

The CSs satisfy φ̇= θ̇ = 0. For convenience, we give approximate solutions for

the CSs in the limits η≪ 1 and η≫ 1. For η≪ 1:

• CS1: φ1 = 0, θ1 ≃ ηsin I.
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• CS2: φ2 =π, θ2 ≃π/2−ηcos I.

• CS3: φ3 = 0, θ3 ≃π−ηsin I.

• CS4: φ4 = 0, θ4 ≃π/2−ηcos I.

For η≫ 1, only CS2 and CS3 exist and are given by:

• CS2: φ2 =π, θ2 ≃ I +η−1 sin I cos I.

• CS3: φ3 = 0, θ3 ≃π− I +η−1 sin I cos I.

Note that in the convention of Fig. 3.1, CS1, CS3 and CS4 have negative θ values

since φ= 0.

A.1.2 Stability and Frequency of Local Oscillations

To examine stability of each CS, we linearize Eqs. (A.1) about an equilibrium lo-

cated at φcs = 0 (CS 1, 3, 4) or π (CS2) but arbitrary θcs. Setting φ = φcs +δφ,θ =
θcs +δθ yields

dδφ
dt

= sinθcsδθ∓η sin I
sin2θcs

δθ, (A.2a)

dδθ
dt

=±ηsin Iδφ, (A.2b)

where the upper sign corresponds to φcs = 0. Eliminating δθ gives

d2δφ

dt2 ≡λ2δφ, (A.3)

where

λ2 ≡ (
sinθcs ∓ηsin I csc2θ

)(±ηsin I
)
. (A.4)

A plot of λ2 for each of the CSs is given in Fig. A.1. It is clear that CS4 is unstable

while the other three are stable. The local libration frequency for these stable CSs

is simply ωlib =
p
−λ2.
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Figure A.1: λ2, given by Eq. (A.3), evaluated at each of the Cassini States. The ver-
tical axis is rescaled for clarity. Note that CS4 is unstable (λ2 > 0) when it exists
while all others are stable (λ2 < 0). The thin horizontal dashed line is the instabil-
ity boundary λ2 = 0 while the thin vertical dashed line labels η= ηc [Eq. (2.14)].

A.2 Approximate Adiabatic Evolution

In this appendix, we will use approximations valid for small η to derive the ex-

plicit analytic expressions for the final obliquities at small θsd,i and the associated

probabilities for the II → I and II → III tracks. These are the only possible tracks

for small η.

We first seek a simple parameterization for the separatrix, the level curve

of the Hamiltonian intersecting the unstable equilibrium CS4. Points along the

separatrix, parameterized by
(
φ,θsep(φ)

)
, satisfy H

(
φ,θsep(φ)

)=H
(
φ4,θ4

)
where

φ4 and θ4 are given in Appendix A.1.1. We obtain two solutions for θsep, given to

leading order in η by:

cosθsep(φ)≈ cosθ4 ±
√

2ηsin I
(
1−cosφ

)
. (A.5)
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These two solutions parameterize the two legs of the separatrix. Integration of

the phase area enclosed by the separatrix yields then

AII(η)≈ 16
√
ηsin I. (A.6)

We can now compute the final obliquities and their associated probabilities for

each track as follows:

1. For a given θsd,i, we know that if η→∞ then the trajectory executes simple

libration about l̂d, and so A = 2π
(
1−cosθsd,i

) ≈ πθ2
sd,i. This then implies η⋆

must be the solution to AII(η⋆)= A, or

η⋆ ≈
(2π

(
1−cosθsd,i

)
16

)2 1
sin I

≈
(
πθ2

sd,i

16

)2
1

sin I
. (A.7)

2. Upon separatrix encounter, a transition to either zone I or zone III occurs.

These can be calculated to have the associated probabilities [using the ap-

proximate area Eq. (A.6) and Eqs. (2.25)]

Pr(II→ I)≈ 2πη⋆ cos I +4
√
η⋆ sin I

8
√
η⋆ sin I

, (A.8a)

Pr(II→ III)≈ −2πη⋆ cos I +4
√
η⋆ sin I

8
√
η⋆ sin I

. (A.8b)

3. Upon a transition to zone I or zone III, the final obliquity can be predicted

by observing the final adiabatic invariant Af = −AI(η⋆) in the zone I case

and Af =AI(η⋆)+AII(η⋆) in the zone III case. As η→ 0, these correspond to

obliquities

(cosθf)II→I ≈
(
πθ2

sd,i

16

)2

cot I +
θ2

sd,i

4
, (A.9a)

(cosθf)II→III ≈
(
πθ2

sd,i

16

)2

cot I −
θ2

sd,i

4
. (A.9b)

These are the black dotted lines overplotted in Fig. 2.5.
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APPENDIX B

APPENDICIES TO COLOMBO’S TOP: WEAK TIDAL FRICTION

B.1 Convergence of Initial Conditions Inside the Separatrix

to CS2

In Section ??, we studied the stability of the CSs under of tidal alignment torque

given by Eq. (4.7), finding that CS2 is locally stable. Later, in Section 3.3.3, we

found that all initial conditions within the separatrix converge to CS2, which is not

guaranteed by local stability of CS2. In this section, we give an analytic demon-

stration that all points inside the separatrix indeed converge to CS2, focusing on

the case where η≪ 1.

Similarly to the analytic calculation in Section 3.3.4, we seek to compute the

change in the unperturbed Hamiltonian over a single libration cycle. To calculate

the evolution of H, we first parameterize the unperturbed trajectory (similarly

to Eq. 3.27). For initial conditions inside the separatrix, the value of H can be

written H = Hsep +∆H where ∆H > 0, and the two legs of the libration trajectory

can be written:

cosθ± ≈ ηcos I ±
√

2η
[
sin I

(
1−cosφ

)−∆H
]
. (B.1)

We have taken sinθ ≈ 1, a good approximation in zone II when η≪ 1. Note that

there are some values of φ for which no solutions of θ exist, reflecting the fact

that the libration cycle does not extend over the full interval φ ∈ [0,2π]. During a

libration cycle, θ− [θ+] is traversed while φ′ > 0 [φ′ < 0], i.e. the trajectory librates

counterclockwise in (cosθ,φ) phase space (see Fig. 3.2).

The leading order change to H over a single libration cycle can then computed
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by integrating dH/dt along this trajectory, yielding:∮
dH
dt

dt =
∮ (

d(cosθ)
dt

)
tide

dφ,

=
φmax∫
φmin

1
ts

(
sin2θ−−sin2θ+

)
dφ

≈ 1
ts

φmax∫
φmin

4ηcos I
√

2η
[
sin I

(
1−cosφ

)−∆H
]

dφ> 0. (B.2)

Here, φmin > 0 and φmax < 2π are defined such that the trajectory librates over

φ ∈ [
φmin,φmax

]
. Thus, H is strictly increasing for all initial conditions inside the

separatrix, and they all converge to CS2.

B.2 Approximate TCE2 Probability for Small ηsync

In this appendix, we seek a tentative analytic understanding for the probability

of convergence to tCE2 when ηsync is small, i.e. the left extremes of Figs. 3.20

and 3.21. In this regime, following the discussions in Sections 3.3.4 and 3.4.3, we

understand that initial conditions (ICs) in zone I always converge to tCE1, ICs

in zone II always converge to tCE2, and ICs in zone III experience separatrix en-

counter and probabilistically converge to either one of the tCE. To further proceed,

we will assume an isotropic distribution of initial spin orientations; different dis-

tributions again will only change the quantitative but not qualitative character

of the discussion. Then the tCE2 probability, which we denote by PtCE2, can be

expressed as the sum of: (i) the probability that an IC is in zone II, and (ii) the

probability that an IC is both in zone III and undergoes a III → II transition. To

simplify the discussion, we will approximate that PtCE2 can be calculated as

PtCE2 ∼
AII

4π
+ AIII

4π
〈PIII→II〉 , (B.3)
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where AII and AIII are the phase space areas of zones II and III respectively, and

〈PIII→II〉 is the average III → II transition probability for a random IC in zone III.

Next, we evaluate each of the expressions in Eq. (B.3).

We first consider AII and AIII. Exact analytic forms for both AII and AIII is

known (Ward and Hamilton, 2004, Paper I), but an accurate approximation can

be obtained using Eq. (3.27) since ηi ≪ 1. We obtain that:

AII

4π
= 4
π

√
ηi sin I, (B.4)

AIII

4π
= 1+ηi cos I

2
− 2
π

√
ηi sin I. (B.5)

Next, we need to evaluate 〈PIII→II〉, for which we must understand the out-

comes of the separatrix encounters that ICs in zone III experience. We proceed by

analytically calculating ∆K± (Eq. 3.45) for use in Eq. (3.46) to obtain the probabil-

ities of the outcomes of separatrix encounter. We first rewrite Eq. (3.45) as:

∆K± =
∮
C±

dH
dt

− dHsep

dt
dt

=
∮
C±

(
d(cosθ)

dt

)
tide

+ Ω̇s

φ̇

(
∂H
∂Ωs

− ∂Hsep

∂Ωs

)
dφ. (B.6)

Then, using the full equations of motion for the planet’s spin including weak tidal

friction in component form, given by Eqs. (3.34–3.36), we can evaluate ∆K± by

integrating along the two legs of the separatrix C± (see Fig. 3.2). Note that we

must use the value of η at the moment of separatrix encounter, which we denote

ηcross, as the evolution of Ωs changes the spin-orbit precession frequency α and
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thus η itself:

ts∆K± ≈ η2
cross

ηsync

[
−2cos I

(
±2πηcross cos I +8

√
ηcross sin I

)
∓4πsin I

−8cos I
√
ηcross sin I + 4ηsync

ηcross

√
sin I/ηcross

]
+ 2ηcross

ηsync

(
∓2π

(
1−2ηcross sin I

)+16cos Iη3/2
cross

p
sin I

)
+8

√
ηcross sin I

±2πηcross cos I − 64
3

(
ηcross sin I

)3/2 . (B.7)

The resulting PIII→II obtained using this analytic ∆K± in Eq. (3.46) is shown as

the green dashed line in the top panel of Fig. 3.18, where it can be seen that

agreement is reasonable for ηcross ≲ 0.05. For the purposes of this section, we

drop all but the leading order terms in both the numerator and denominator of

Eq. (3.46) and obtain:

PIII→II ≃
6ηsync

π

√
sin I
ηcross

. (B.8)

However, ηcross cannot be expressed in closed form as a function of the ICs.

Based on the bottom panel of Fig. 3.18, we make the crude approximation that

ηcross is uniformly distributed between ηi and ηsync. Note that if Ωs ≃ n, then this

approximation is invalid: since nearly anti-aligned spins (θi ≈ 180◦) will undergo

significant spin-down before tidal friction can realign the spin orientation, Ωs,i

being too close to n results in ηcross ≪ ηsync. We thus obtain:

〈PIII→II〉 ∼
1

ηsync −ηi

ηsync∫
ηi

PIII→II dηcross

= 12
√
ηsync sin I

π
(
1+√

n/Ωs,i
) . (B.9)

With this result, we can finally express Eq. (B.3) as:

PtCE2 ≃
4
√
ηsync sin I
π

[√
n/Ωs,i +

3
2

(
1+√

n/Ωs,i
)]+O

(
ηsync

)
. (B.10)

This is exactly Eq. (3.47). We remark again that this is valid in the regime where

ηsync ≪ 1 and Ωs ≳ n.
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APPENDIX C

APPENDICIES TO COLOMBO’S TOP: MULTIPLANETARY SYSTEMS

C.1 Inclination Modes of 3-Planet Systems

In the linear regime, the evolution of the orbital inclinations in a multi-planet

system is described by the Laplace-Lagrange theory [Murray and Dermott, 1999,

Pu and Lai, 2018]. In this section, we consider 3-planet systems. We denote the

magnitude of the angular momentum of each planet by L j and the inclination

relative to the total angular momentum axis Ĵ by I j, and we define the complex

inclination I j = I j exp[iΩi]. The evolution equations for I1, I2, and I3 are

d
dt


I1

I2

I3

= i


−ω12 −ω13 ω12 ω13

ω21 −ω21 −ω23 ω23

ω31 ω32 −ω31 −ω32,




I1

I2

I3

 , (C.1)

where ω jk is the precession rate of the j-th planet induced by the k-th planet, and

is given by

ω jk =
mk

4M⋆

a ja<
a2>

n jb(1)
3/2(α), (C.2)

where a< =min
(
a j,ak

)
, a> =max

(
a j,ak

)
, n j = (GM⋆/a3

j)
1/2, α= a</a>, and

b(1)
3/2(α)= 3α

(
1+ 15

8
α2 + 175

64
α4 + . . .

)
(C.3)

is the Laplace coefficient. Eq. (C.1) can be solved in general, giving two non-trivial

eigenmodes. In the limit L1 ≪ L2,L3, the two eigenmodes have simple solutions

and interpretations:

• Mode I has frequency

g(I) =− (ω12 +ω13) . (C.4)
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It corresponds to free precession of L̂1 around the total angular momentum

J=L2 +L3. The amplitude of oscillation of L̂1, I(I), is simply the inclination

of L̂1 with respect to Ĵ.

• Mode II has frequency

g(II) =− (ω23 +ω32)=− J
L3

ω23, (C.5)

which is simply the precession frequency of L̂2 (or L̂3) about Ĵ. The forced

oscillation of L̂1 has an amplitude

I(II) =
ω12L3 −ω13L2(

g(II) − g(I)
)
J

I23, (C.6)

where I23 is the mutual inclination between the two outer planets and is

constant.

We consider two archetypal 3-planet configurations, systems with three super

Earths (SEs) and systems with two inner SEs and an exterior cold Jupiter (CJ).

In both cases, we take the inner two planets to have m1 = M⊕, m2 = 3M⊕, a1 =
0.1 AU, and we consider three values of a2 = {0.15,0.2,0.25} AU. For the 3SE case,

we take m3 = 3M⊕ and the characteristic inclinations I1 ≃ I23 ≃ 2◦ [corresponding

to three nearly-coplanar SEs; see Fabrycky et al., 2014, Dai et al., 2018]. For

the 2SE + CJ case, we take m3 = 0.5MJ and the characteristic inclinations I1 ≃
I23 ≃ 10◦ [corresponding to a mildly inclined CJ; see Masuda et al., 2020]. In both

cases, we compute the mode precession frequencies g(I,II) and characteristic mode

amplitudes I(I,II) for a range of a3. Figures C.1–C.3 show examples of our results.
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Figure C.1: Inclination mode frequencies and amplitudes for the 3SE (left) and
2SE + CJ (right) systems. In both systems, the inner planets’ parameters are
m1 = M⊕, m2 = 3M⊕, a1 = 0.1 AU, a2 = 0.15 AU. In the 3SE case, m3 = 3M⊕ and
I1 = I23 = 2◦, while in the 2SE + CJ case, m3 = 0.5MJ and I1 = I23 = 10◦, In the top
panels, the black dashed lines show the mode frequencies from the exact solution
of Eq. (C.1), while the solid, colored lines are given by Eqs. (C.4, C.5).
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Figure C.2: Same as Fig. C.1 but for a2 = 0.2 AU.

Figure C.3: Same as Fig. C.1 but for a2 = 0.25 AU.
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C.2 Additional Comments and Results on Mixed Mode Equi-

libria

In the main text, we provided an example of the spin evolution into a mixed-mode

equilibrium in Fig. 4.2 for the parameters I(I) = 10◦, I(II) = 1◦, α = 10
∣∣g(I)

∣∣, and

g(II) = 10g(I). In Fig. C.4, we provide several further examples of the evolution into

other mixed-mode equilibria with different values of gres when I(II) = 3◦ is used.

We find that their average equilibrium obliquities θeq are still well-described by

Eq. (4.15). Furthermore, we find that, if gres/∆g = p/q for integers p and q, then

the steady-state oscillations of θsl are periodic with period 2πq/ |∆g| (see bottom

example in Fig. 4.2 for the case of gres =∆g/2).

Figure C.5 shows the equilibrium obliquity θeq as a function of gres for a system

with I(II) = 3◦ and g(II) = 8.5g(I). We can see for gres = ∆g that there are three

distinct equilibrium values of θsl. The largest-obliquity equilibrium is CS2(II),

and the equilibrium with an intermediate obliquity is a mixed-mode equilibrium

with gres = ∆g, as it directly intersects the green line (Eq. 4.15). The existence

and stability of this equilibrium is responsible for the extra dot a few degrees

below the CS2(II) curve in the bottom panels of Figs. 4.6, 4.9, and 4.11 (e.g. most

visible for g(II)/g(I) = 6.5, 7.5, and 8.5 in Fig. 4.9). The origin of the lowest-obliquity

equilibrium at gres = ∆g in Fig. C.5 is distinct, though it is within the range of

oscillation of θsl of the mixed-mode steady state.

In Fig. 4.4, we presented the numerical stability analysis of initial conditions

in the neighborhood of the mixed-mode equilibrium for the I(II) = 1◦ case. When

I(II) is increased to 3◦, the amplitudes of oscillations of the mixed-mode equilibria

begin to overlap (see Fig. 4.8), and so we might expect that the basins of attraction

for the resonances overlap in θsl,0 space. Figure C.6 shows that this is indeed the
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Figure C.4: Same as Fig. 4.2 but for g(II) = 10g(I) and I(II) = 3◦. The three exam-
ples correspond to capture into mixed-mode equilibria with resonant angles cor-
responding to gres = ∆g/3, gres = 3∆g/5, and gres = 3∆g/4 respectively. The three
pairs of vertical red lines are separated by 6π/ |∆g|, 10π/ |∆g|, and 8π/∆g in the
three examples respectively.
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Figure C.5: Same as Figs. 4.5 and 4.8 but for I(II) = 3◦ and g(II) = 8.5g(I), where
ranges of oscillation in θsl have been suppressed for clarity.

case, and that the basins of attraction of the mixed modes are very distorted (likely

due to interactions among the resonances) compared to those seen in the I(II) = 1◦

case.

Finally, in the main text, we have focused on the regime where I(II) ≪ I(I).

In Fig. C.7, we show the effect of choosing I(II) = 9◦ (with the same that I(I) =
10◦). It can be seen that the gres =∆g/2 mixed mode is the most common outcome

when
∣∣g(II)

∣∣≫ ∣∣g(I)
∣∣, as it is the preferred low-obliquity equilibrium (θeq ≲ 20◦) for

g(II) = 15g(I). The degraded agreement of the θeq values with Eq. (4.15) is because

our theoretical results assume I(II) ≪ I(I). A broad range of final obliquities is

observed when g(II) = 6.5g(I), very close to the critical value of g(II) (denoted by the

vertical dashed line) where the number of mode II CSs changes from 4 to 2 [Su

and Lai, 2021]. This is likely due to the unusual phase space structure near this

bifurcation.
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Figure C.6: Same as Fig. 4.4 but for I(II) = 3◦. The range of the vertical axis is
chosen to include the ranges of oscillation of the 1/2, 3/5, 2/3, and 3/4 mixed mode
resonances (see Fig. 4.8). The decreasing density of points as θsl,0 decreases is
because the grid of initial conditions is uniform in cosθsl,0 rather than θsl,0 itself.

Figure C.7: Same as Fig. 4.6 but for I(II) = 9◦.
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APPENDIX D

APPENDICIES TO PHYSICS OF TIDAL DISSIPATION

D.1 Derivation of Fluid Equations

We aim to model wave dynamics over multiple density and pressure scaleheights.

Start with the compressible Euler equations.

∂tρ+ (u ·∇)ρ+ρ∇·u=0, (D.1)

∂ts+ (u ·∇) s =0, (D.2)

∂tu+ (u ·∇)u+ 1
ρ
∇p =g, (D.3)

where s is the entropy. The pressure is calculated from the entropy and density

using the equation of state
s

cp
= log

p1/γ

ρ
, (D.4)

where cp is the specific heat at constant pressure, and γ is the ratio of specific

heats. For computational ease, it is convenient to filter out the fast sound waves

from these equations. One approach is to assume pressure perturbations are

small [yielding the “pseudo-incompressible” equations, Vasil et al., 2013], or that

all thermodynamic perturbations are small [yielding the “anelastic” equations,

Brown et al., 2012]. In these approximations, one of the thermodynamic equations

is replaced by a constraint equation: ∇ ·
(
p1/γ

0 u
)
= 0 for pseudo-incompressible;

∇ · (ρ0u
) = 0 for anelastic. Here p0 and ρ0 are the background density and pres-

sure profiles. The pressure in the momentum equation can be interpreted as a

Lagrange multiplier which enforces the constraint [Vasil et al., 2013]. Upon lin-

earization, both approximations conserve a wave energy

Ew = 1
2
ρ0 |u|2 + 1

2
g2

N2
(ρ′)2

ρ0
= 1

2
ρ0 |u|2 + 1

2
ρ0N2 (s′)2

|∇s0|2
, (D.5)
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where ρ′ and s′ represent the density and entropy perturbations.

Rather than assume thermodynamic perturbations are small, we instead filter

out sound waves by taking the limit γ→∞. Then the entropy and log density are

proportional to each other, and the entropy equation becomes

∂t logρ+ (u ·∇) logρ = 0. (D.6)

Together with mass conservation, this implies

∇·u= 0. (D.7)

We solve these equations together with the normal momentum equation.

Although these equations are non-standard, they have various desirable prop-

erties. They conserve mass and momentum, and the linearized equations conserve

the wave energy Ew [Eq. (D.5) above] similar to the pseudo-incompressible equa-

tions and anelastic equations. Our equations also satisfy the same linear disper-

sion relation as the fully compressible equations in the limit of large sound speed

[this is also true for the anelastic equations, but not pseudo-incompressible, Brown

et al., 2012, Vasil et al., 2013]. Thus, the vertical propagation of internal gravity

waves is similar to the pseudo-incompressible equations and anelastic equations.

In this work we are interested in waves which reach large amplitudes and

break. For breaking waves, Achatz et al. [2010] suggests that the anelastic equa-

tions may miss important effects. Although the pseudo-incompressible equations

may capture wave-breaking more accurately, they are more complicated, and do

not satisfy the correct dispersion relation to order (kzH)−2 [Vasil et al., 2013]. In

the absence of a clear choice to study this wave breaking problem, we have elected

to use these simple equations derived in the γ→∞ limit.
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D.2 Forcing Solution

To solve for the linear excited IGW amplitude due to bulk forcing (see Eq. (5.13)),

we consider the linearized system of equations, with all dynamical variables hav-

ing dependence uz(x, z, t) = ũz(z)eikxx−iωt. Thus, ∂/∂t → −iωt, ∂
∂x → ikx, and the

dynamical fluid equations become (see Eqs. (5.2) and (5.5)):

duz

dz
+ ikxux = 0,

−iωux + ikxϖ+ gHikxΥ= 0,

−iωuz + dϖ
dz

+ gH
dΥ
dz

− ϖ

H
= 0,

−iωΥ− uz

H
= C exp

[
− (z− z0)2

2σ2

]
≡C (z).

These can be recast solely in terms of uz as

d2uz

dz2 −k2
xuz − 1

H
duz

dz
+uz

N2k2
x

ω2 =− gk2
x

ω2 C (z)..

The homogeneous solutions are of form uz,±(z) = exp
[( 1

2H ± ikz
)
(z− z0)

]
where kz

satisfies the dispersion relation (Eq. (5.7)). We compute the solution to the inho-

mogeneous ODE by the method of variation of parameters. The Wronskian is

W ≡ det

∣∣∣∣∣∣∣∣
uz,+ uz,−

duz,+/dz duz,−/dz

∣∣∣∣∣∣∣∣=−2ikzez/H . (D.8)

The general solution is then

uz =−uz,+
∫

1
W

uz,−
(
− gk2

x

ω2 C (z)
)

dz+uz,−
∫

1
W

uz,+
(
− gk2

x

ω2 C (z)
)

dz. (D.9)
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Taking these integrals and applying the boundary conditions uz (z →∞) = uz,+,

uz (z →−∞)= uz,− give the exact solution:

u(z)=
p
πCσ

23/2ikz

gk2
x

ω2 exp


(
σ2

2H ± ikzσ
2
)2

2σ2

[−uz,+ (1+erf(ξ+))+uz,− (erf(ξ−)−1)
]
,

(D.10)

ξ± ≡
[

z− z0p
2σ2

+ σ

23/2H
± ikzσp

2

]
(D.11)

Here, the error function is defined erf(z) ≡ (
2/
p
π
) z∫

0
exp

(−t2) dt. If we are con-

cerned with only z scales significantly larger than σ, then we may take erf(ξ±) ≈
Θ(z−z0) (the Heaviside step function). If we further assume |kzH|≫ 1 and restore

the eikxx−iωt factor, we recover Eq. (5.14) in the main text

uz(x, z, t)=− C
2ikz

gk2
x

ω2 e−k2
zσ

2/2
√

2πσ2eikxx−iωt×


exp

[( 1
2H + ikz

)
(z− z0)+ i kzσ

2

2H

]
for z > z0,

exp
[( 1

2H − ikz
)
(z− z0)− i kzσ

2

2H

]
for z > z0.

(D.12)

Note that in the main text, this approximate form is used to compute uan, as it

is easier to work with and sufficiently accurate in the regions of interest (many σ

away from z0).

D.3 Equation Implementation

The system of equations we wish to simulate consists of Eqs. (5.2a), (5.5b), and (5.13).

The nonlinear terms in the these equations will transfer energy from lower wavenum-

bers to higher wavenumbers. Since spectral codes have no numerical diffusion, ex-

plicit diffusion must be added. To ensure the non-ideal system conserves horizon-

tal momentum exactly, we begin by adding diffusion terms to the flux-conservative
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form of the Euler fluid equations (equivalent to Eqs. 5.2):

∇·u= 0, (D.13a)

∂tρ+∇· (ρu−ν∇(ρ−ρ))= 0, (D.13b)

∂t(ρu)+∇· (ρuu+diag(ρϖ)−νρ∇u)+ρgẑ= 0. (D.13c)

For simplicity, we use the same diffusivity ν for both the momentum and mass

diffusivities. Although mass diffusivity is not physical, we include it for numerical

stability. We choose the mass diffusion term to conserve mass, and not to affect

the background density profile.

It is necessary to mask out nonlinear terms in the forcing zone using a form

similar to Eq. (5.27). In the absence of this mask, a nonphysical mean flow local-

ized to the forcing zone develops. We use the mask

ΓNL(z)= 1
2

[
2+ tanh

z− (z0 +8σ)
σ

− tanh
z− zB

σ

]
. (D.14)

Including the damping zones and forcing terms as described in Section 5.4,

and again making change of variables to Υ,ϖ, we finally obtain the full system of
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equations as simulated in Dedalus:

∇·u= 0, (D.15a)

∂tΥ− uz

H
= −Γ(z)Υ+ F

ρ(z)
e−

(z−z0)2

2σ2 cos(kxx−ωt)

+ΓNL

[
− (u ·∇)Υ+ν

(
∇2Υ+ (∇Υ) · (∇Υ)− 2

H
∂zΥ+ 1− e−Υ

H2

)]
,

(D.15b)

∂ux

∂t
+ ∂ϖ′

∂x
+ gH

∂Υ

∂x
= −Γ(z)ux +ΓNL

[
ν∇2ux −uxν

(
∇2Υ+ (∇Υ) · (∇Υ)− 2

H
∂zΥ+ 1− e−Υ

H2

)
+2ν

(
((∇Υ) ·∇)ux − 1

H
∂zux

)
− (u ·∇)ux −ϖ′∂Υ

∂x

]
,

(D.15c)

∂uz

∂t
+ ∂ϖ′

∂z
+ gH

∂Υ

∂z
− ϖ′

H
= −Γ(z)uz +ΓNL

[
ν∇2uz −uzν

(
∇2Υ+ (∇Υ) · (∇Υ)− 2

H
∂zΥ+ 1− e−Υ

H2

)
+2ν

(
((∇Υ) ·∇)uz − 1

H
∂zuz

)
− (u ·∇)uz −ϖ′∂Υ

∂z

]
.

(D.15d)
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APPENDIX E

APPENDICIES TO DYNAMICAL TIDES IN ECCENTRIC BINARIES

E.1 Stellar Structure calculations with MESA

We attempt to reproduce the stellar structure parameters for the main-sequence

star in PSR J0045-7319 as reported from the so-called “Yale model” of [Kumar

and Quataert, 1998] using the stellar evolution code Modules for Experiments in

Stellar Astrophysics [MESA; Paxton et al., 2011, 2013, 2015, 2018, 2019]. In par-

ticular, the most relevant parameter to our results is the radius of the convective

core. To calculate this quantity, we perform a multi-step procedure, described be-

low:

• First, we pick a set of parameters for the stellar evolution (we explored dif-

ferent values of stellar rotation, metallicity, and convective overshoot param-

eter α). For the stellar rotation, we tried both non-rotating and critically-

rotating models. The non-rotating models are expected to be inaccurate

since B stars are typically rapidly rotating. The measured vsin i ≈ 110 km/s

at the surface [Kaspi et al., 1994], so we assume that vsurf ∼ 160 km/s,

which is a substantial fraction of the critical vc ≡ GM/R ∼ 500 km/s. Since

PSR J0045-7319 is in the SMC, its metallicity can be taken from measure-

ments of the typical SMC metallicity. We find that this value is in the range

Z = 0.1Z⊙–0.2Z⊙ [Piatti, 2012, Bolatto et al., 2011]. For the solar metallic-

ity, this value ranges from 0.012–0.02 [Vagnozzi, 2019]. Finally for convec-

tive overshoot, we used a value of αov = 0.6, satisfying the value required

to match the larger convective core masses reported in recent literature

[Tkachenko et al., 2020b].
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• For each set of parameters, we initialize stellar models with a range of ZAMS

masses. We then evolve each of these models until core hydrogen depletion.

• For each model, we can find the age at which its luminosity and effective

temperature best match the observed values of Teff = 2.4× 104 K and L =
1.2×104L⊙. This gives us a single stellar model, described by its hyperpa-

rameters, mass, and age, that best matches the observed properties of the

MS star in PSR J0045-7319.

• For this best-fit stellar model, we calculate its core radius as the innermost

radius at which its Brunt-Väisälä frequency N2 > 0, i.e. the innermost ra-

dius at which it is convectively stable.

This procedure is illustrated for a few of these models in Figs. E.1–??. We see

that the core radii do not exceed ∼ R⊙, though larger convective overshoot and

metallicity improve agreement. The values of the convective core radius are in

disagreement with the conclusions shown in Fig. 6.8, which require a core radius

rc ≳ 1.3R⊙.
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Figure E.1: Plots illustrating the procedure used to find the best-fitting stellar
model to the properties of PSR J0045-7319 using a near-critically rotating stellar
model with no convective overshoot, and metallicity Z = 0.1Z⊙ = 0.0012. In the
top-left panel, the plots show the fit to the observed stellar luminosity and surface
temperature (red dot) as a function of the ZAMS stellar mass (each line is an
evolutionary track for a star with mass denoted in the legend). In the top-right
column, the plots show the evolution of the best-fitting star as a function of stellar
age: the orange line shows the overall stellar radius, the blue line the radius of
the convective core, and the green line the central hydrogen fraction (right axis).
The vertical black line denotes the age at which the stellar model best matches
the observed luminosity and surface temperature (i.e. the age used for the third
column). In the bottom panel, the plots show the signed Brunt-Väisälä frequency
N2 as a function of the stellar radius for the best-fitting stellar mass and age
combination.
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Figure E.2: Same as Fig. E.1 but with a convective overshoot parameter of 0.04
(see MESA documentation).

Figure E.3: Same as Fig. E.1 but with a convective overshoot parameter of 0.04
(see MESA documentation) and with Z = 0.2Z⊙ = 0.004
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APPENDIX F

APPENDICIES TO SPIN DYNAMICS OF TERTIARY-INDUCED BLACK

HOLE MERGERS

F.1 Floquet Theory Analysis

In this appendix, we provide an alternative approach to analyzing the BH spin

dynamics based on Floquet theory [Chicone, 2006] that provides results comple-

mentary to those in the main text. Although the resulting equations cannot be

analytically solved, they place strong constraints on the allowed behavior of the

system. Additionally, Eq. (7.81) has a natural interpretation in this formulation,

and its accuracy is numerically tested in Appendix F.1.3. We again work in the

corotating frame and neglect GW dissipation, so the equation of motion is given

by Eq. (7.22). If we define the matrix operator Ã satisfying ÃS =Ωe ×S, then the

equation of motion is (
dS
dt

)
rot

= ÃS. (F.1)

Here, Ã is periodic with period PLK [see Eq. (7.19)].

F.1.1 Without Nutation

First, for simplicity, let us assume that Ωe does not nutate, so its orientation is

fixed. In this case, Eq. (F.1) admits an exact conserved quantity:

d
dt

[
e−ΦS

]= 0, (F.2)

where

Φ(t)≡
t∫
Ã dt. (F.3)
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Separately, since Eq. (F.1) is linear and has periodic coefficients, Floquet theory

tells us that S (t+PLK) is related to S(t) by the monodromy matrix M̃:

S (t+PLK)= M̃S(t). (F.4)

Comparing Eqs. (F.2) and (F.4), we immediately find that

M̃= exp

 PLK∫
0

Ã dt

 ,

= exp
[
PLKÃ

]
, (F.5)

where again the overbar denotes time averaging. Note that M̃ is a rotation matrix,

so it must have exactly one eigenvector with eigenvalue 1; call this eigenvector R.

But R= Ω̂e, so S ·Ω̂e must be constant for every t = NPLK.

This example is somewhat trivial: since Ωe does not nutate, S just precesses

around fixed R= Ω̂e at a variable rate, and S·Ω̂e is conserved. However, the equa-

tion of motion studied in Section 7.4 [Eq. (7.35)] neglects nutation yet provides a

good description of the evolution of θ̄e. For the fiducial LK-induced merger, Fig. 7.6

shows that Ωe nutates substantially within a LK period when A ≃ 1 (nutation is

equivalent to Ωe1 ̸= 0 and ∆Ie1 ̸= 0◦). We infer that, even when Ωe does nutate

appreciably, the nutation can sometimes be neglected to good approximation.

In Section 7.5, we showed that being close to a resonanceΩe ≈ MΩLK results in

non-conservation of θ̄e. However, the converse is not obviously true: our approx-

imate analysis does not prove that being far from these resonances guarantees

good conservation of θ̄e. In the next section, we argue that, for the dynamics stud-

ied in this paper, this converse is likely true as well.
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F.1.2 With Nutation

When Ωe is allowed to nutate within PLK, the quantity given by Eq. (F.2) is no

longer conserved, as

d
dt

[
e−ΦS

]= e−Φ
dS
dt

− Ãe−ΦS ̸= e−Φ
[

dS
dt

− ÃS
]
= 0. (F.6)

Instead, we define two new quantities Φ′ and B̃ via

Φ′(t)≡
t∫ (

Ã+ B̃
)

dt, (F.7)

d
dt

[
e−Φ

′
S

]
= 0. (F.8)

This requires

B̃=
[
e−Φ

′
,Ã

]
eΦ

′
, (F.9)

where the square brackets denote the commutator. The monodromy matrix is then

M̃= exp

 PLK∫
0

(
Ã+ B̃

)
dt

 . (F.10)

We next want to understand when Eq. (F.10) can be well approximated by

Eq. (F.5). We first expand the matrix exponential using the Zassenhaus formula

[the inverse of the well-known Baker-Campbell-Hausdorff formula, see e.g. Mag-

nus, 1954]

M̃= ePLKÃePLKB̃ exp
[
−

P2
LK

[
Ã,B̃

]
2

+ . . .
]
. (F.11)

Note that since M̃ is a rotation matrix (see Section 7.3.1), and exp
[
PLKÃ

]
is also a

rotation matrix (Ã is skew-symmetric), the remainder of the right-hand side above

must also be a rotation matrix (as the rotation matrices are closed under matrix

multiplication). For convenience, define

R̃A ≡ ePLKÃ R̃B ≡ ePLKB̃ exp
[
−

P2
LK

[
Ã,B̃

]
2

+ . . .
]
, (F.12)
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where R̃A and R̃B are rotation matrices that effect rotations by angles θA and θB

about their respective axes.

When can R̃B be neglected? From Eq. (F.9), we see that B̃= 0 vanishes (θB = 0)

when
[
Ã,Φ

]= 0, which occurs when Ωe does not nutate, and we recover Eq. (F.5).

In fact, we will argue later that θB is generally small for the spin dynamics studied

in the main text. However, a small θB alone is not sufficient to guarantee M̃≈ R̃A.

To see this, note if θB is small, then R̃B ≈ 1 where 1 is the 3×3 identity matrix. On

the other hand, θA =ΩeTLK. Then, if θA is not too near an integer multiple of 2π,

M̃ ≈ R̃A and M̃ ≈ R̃A as before. However, if ΩeTLK ≈ 2πM for integer M, then R̃A

itself is near the identity as well, and R̃B cannot be neglected when calculating M̃.

The criterion for neglecting R̃B is then clear: θB must be much closer to an integer

multiple of 2πM than θA.

To complete this picture, we argue that, for the spin dynamics studied in the

main text, θB is small, so generally R̃B ≈ 1, and Ωe ≈ MΩLK is a necessary condi-

tion for R to differ significantly from Ω̂e. To do this, we recall that ΩePLK ≲ 2π

(Figs. 7.10 and 7.12), and we seek to show that θB must generally be small com-

pared to θA, which would imply θB ≪ 2π. We first approximate that eΦ
′ ≈ eΦ in

Eq. (F.9) (requiring θB ≪ θA, which we will verify retroactively, and being far from

resonance, θA ̸= 2π), which gives

B̃≈ [
e−Φ,Ã

]
eΦ. (F.13)

Next, recall that Φ is the integral of −Ã, and so the magnitude of B̃ [B̃ primarily

affects M̃ via its average, see Eq. (F.10)] depends on the average misalignment

between the vectors Ωe and
∫ t
Ωe dt ≃Ωe. There are a few possible regimes to

consider: (i) if A ≫ 1, then LK oscillations are frozen, and Ωe does not nutate;

(ii) if A ≪ 1, then Ω̂e ≈ L̂tot ≈ Ω̂e for almost all of TLk; and (iii) if A ≃ 1, then

emax cannot be too large [Eq. (7.18)], and so ΩL and ΩSL cannot vary too much
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within an LK cycle and the nutation of Ωe is limited. This analysis suggests that,

at least far from resonance, the nutation of Ωe is limited, and the commutator in

Eq. (F.13) is small in the sense that θB ≪ θA, justifying our earlier claim. While

this analysis is not rigorous, it suggests that the only resonances present in the

system are near Ωe = MΩLK and that otherwise R ∥Ωe, in agreement with the

results of the main text.

F.1.3 Quantitative Effect

Above, we have given a qualitative analysis of the exact solution for the mon-

odromy matrix M̃. In this section, we aim to reconcile this with the quantitative,

approximate results in the text and suggest that the results in the text constitute

a complete characterization of the spin dynamics.

In Section 7.5, we found that one effect of the Fourier harmonics in Eq. (7.25)

are fluctuations in θ̄e when Ωe ≈ MΩLK for some integer M with amplitude given

by Eq. (7.81). On the other hand, in Appendix F.1.2, we found that R is aligned

with Ωe except when Ωe is sufficiently close to MΩLK that the nutation of Ωe

becomes important, but we were not able to determine a closed-form expression

for the misalignment. In this section, we show numerically that the formulas

given in the main text give good predictions for the orientation of R.

To validate the analytic prediction given by Eq. (7.81), we numerically compute

M̃. We study the η ̸= 0, LK-enhanced regime (m1 = m2 = m3 = 30M⊙, a0 = 0.1 AU,

e0 = 10−3,ãout = 3 AU). We still neglect GW dissipation in order for Floquet anal-

ysis to be applicable. For 2000 different I0 of the inner binary, we construct M̃

by evolving the spin equation of motion Eq. (7.22) starting with the three initial

conditions S0 = x̂, S0 = ŷ, and S0 = z (see Fig. F.1) over a single LK period, then
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Figure F.1: Definition of angles for numerical study of the monodromy matrix
rotation axis. R is the eigenvector of the monodromy matrix M̃ with eigenvalue 1.

using

M̃=Φ (PLK)Φ−1(0)=Φ (PLK) , (F.14)

where Φ(t) is the principal fundamental matrix solution whose columns are so-

lutions to Eq. (7.22) and Φ(0) is the identity. R is then the eigenvector that has

eigenvalue 1. Note that if v is an eigenvector, so too is −v; we choose convention

that R points in the same direction as Ωe, i.e. ∆Im ≡ ∣∣Im − Īe
∣∣< 90◦.

The orientation of R is related to the
∣∣∆θ̄e

∣∣ predicted by Eq. (7.81): if R andΩe

are misaligned by angle ∆Im, then θ̄e oscillates with semi-amplitude ∆Im. Thus,

we can infer ∆Im in the vicinity of eachΩe = MΩLK resonance from Eq. (7.81), and

we obtain by linearity that

∆Im ∼
∞∑

M=1

d(M)
2

∣∣∣∣ΩeM sin∆IeM

Ωe −MΩLK

∣∣∣∣ . (F.15)

Figure F.2 shows that this calculation predicts the numeric ∆Im well. In par-

ticular, the amplitude of both resonances are well predicted, suggesting that the

approximate factor d(M) introduced in Eq. (7.81) is accurate. This supports our
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assertion that R deviates from Ω̂e at resonances Ωe ≈ MΩLK, and the misalign-

ment is captured by Eq. (7.81).
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Figure F.2: Comparison of the orientation R obtained from numerical simulations
of Eq. (7.22) in the η ̸= 0, LK-enhanced parameter regime (m1 = m2 = m3 = 30M⊙,
a0 = 0.1 AU, e0 = 10−3,ãout = 3 AU) with the analytic resonance formula given
by Eq. (F.15) as a function of initial inclination, in the absence of GW dissipa-
tion. The top panel shows the ratio Ωe/ΩLK is shown as the solid black line, while
the horizontal dashed lines denote Ωe = ΩLK and Ωe = 2ΩLK. The bottom panel
shows the misalignment angle between the numerically-computed R and Ωe as
the black line. Separately, the predicted misalignment ∆Im due to interaction
with the Fourier harmonics is given by Eq. (F.15). We see that the scaling of the
misalignment angle near resonances is well captured by our analytic formula, but
the numerical misalignment angle crosses 0 within the M = 1 resonance, which is
not predicted by our simple theory.
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APPENDIX G

APPENDICIES TO MASS RATIO DISTRIBUTION OF

TERTIARY-INDUCED BLACK HOLE MERGERS

G.1 Origin of Octupole-Inactive Gap

We investigate the origin of the “octupole-inactive gap”, an inclination range near

I0 ≈ 90◦ for which emax does not attain elim despite being in between two octupole-

active windows. This gap was first identified in Section 8.2.3, and is seen in both

the non-dissipative and full simulations with GW dissipation (see Figs. 8.4–8.8).

To better understand this gap, we first review the mechanism by which ex-

treme eccentricity excitation occurs. In the test-particle limit, Katz et al. [2011]

showed that K (Eq. 8.4) oscillates over long timescales when ω, the argument of

pericenter of the inner orbit, is circulating. This then leads to orbit flips (and ex-

treme eccentricity excitation) between prograde and retrograde inclinations when

K changes signs: since j(e) is nonnegative, the sign of K determines the sign of

cos I. Katz et al. [2011] obtained coupled oscillation equations in K andΩe, the az-

imuthal angle of the inner eccentricity vector in the inertial reference frame. The

amplitude of oscillation of K can then be analytically computed, and the octupole-

active window (the range of I0 over which orbit flips occur) is the region for which

the range of these oscillations encompasses K = 0 [Katz et al., 2011]. When ω is

librating instead, Ωe jumps by ∼ 180◦ every ZLK cycle, and the oscillations in K

are suppressed.

In the finite-η case, we commented in Section 8.2.3 that the relation between

K oscillations and extreme eccentricity excitation (and orbit flipping) can be gen-

eralized even when η is nonzero. K still oscillates over timescales ≫ tZLK when
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Figure G.1: Octupole-active windows and amplitude of oscillation of K (Eq. 8.4).
Top panel: Maximum eccentricity emax attained by the inner binary with initial
tertiary inclination I0 when integrated for 2000tZLK (blue dots), reproduced from
the top panel of Fig. 8.6. Also shown are elim (Eq. 8.10, horizontal red dashed line),
the quadrupole-level result for emax (Eq. 8.7, dashed black line), the empirically-
determined center of the gap, located at I0 ≈ 88.32◦ (vertical black line), and the
inclinations that can lead to extreme eccentricities (shaded purple regions). Bot-
tom panel: Minimum and maximum values of K , denoted Kmin and Kmax, attained
by the systems. Also shown are the initial K for a given I0 (black dashed line) and
the critical Kc =−η/2 for orbit flipping (horizontal red dashed line). The center of
the octupole-inactive gap and the octupole-active windows are labeled as in the
top panel.
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ω is circulating, and if its range of oscillation contains Kc ≡ −η/2, then the in-

ner orbit flips, in the process attaining extreme eccentricities. To be precise,

orbit flips are defined to be when the range of inclination oscillations changes

from (cos I0)− < cos I < cos I0,lim to cos I0,lim < cos I < (cos I0)+ or vice versa, where

(cos I0)± are given by Eq. (8.11) and I0,lim satisfies Eq. (8.9).

However, the range of oscillation of K is more complex than it is in the test-

particle limit. Figure G.1 compares the behavior of emax in the non-dissipative

simulations (top panel; reproduced from the top panel of Fig. 8.6) to the range of

oscillations in K (bottom panel). Denote the center of the gap I0,gap (shown as

the vertical black line in both panels of Fig. G.1). Near I0,gap, K oscillates about

K(I0,gap), which is positive, and the oscillation amplitude goes to zero at I0,gap.

On the other hand, orbit flips (and extreme eccentricity excitation) are possible

when the range of oscillation of K encloses Kc (i.e., Kmin < Kc < Kmax). The purple

shaded regions in both panels of Fig. G.1 illustrate this equivalence, as they show

both the elim-attaining inclinations in the top panel and the inclinations where

Kmin < Kc < Kmax in the bottom panel. But since K
(
I0,gap

)> 0 while Kc < 0, there

will always be a range of I0 about I0,gap for which the oscillation amplitude is

smaller than K
(
I0,gap

)− Kc, and orbit flips are impossible in this range. This

range then corresponds to the octupole-inactive gap.

This analysis has simply pushed our lack of understanding onto a new quan-

tity: why are K oscillations suppressed in the neighborhood of I0,gap? A quantita-

tive answer to this question is beyond the scope of this paper, but for a qualitative

understanding, we can examine the evolution of a system in the octupole-inactive

gap. The left panel of Fig. G.2 shows the same simulation as Fig. 8.3 but with an

additional panel showing Ωe, while the right panel shows a simulation with the

same parameters except I0 = 88◦, which is near I0,gap (see Fig. G.1). The oscilla-
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Figure G.2: The left panel is the same as Fig. 8.3 but includes the evolution of
the azimuthal angle of the eccentricity vector, Ωe. The right panel is the same as
the left but for I0 = 88◦. For both of these examples, we have used ω0 = 0, but the
evolution is similar for all ω0.

tions in K (third panels) are much smaller for I0 = 88◦ than for I0 = 93.5◦, and no

orbit flips occur. Most interestingly, the fourth panel shows that the evolution of

Ωe is much less smooth than in Fig. 8.3, jumping at almost every other eccentric-

ity maximum. Katz et al. [2011] have already pointed out that jumps in Ωe occur

when ω is librating, rather than circulating.

When the octupole-order terms are neglected, the circulation-libration bound-

ary is a boundary in e-ω space: as long as the ZLK separatrix exists in the e-ω

plane and e0 > 0, then an initial ω0 = 0 causes ω to circulate, while an initial

ω0 = π/2 causes ω to librate [e.g., Kinoshita and Nakai, 1999, Shevchenko, 2016].

However, when including octupole-order terms, this picture breaks down. To il-

lustrate this, for a range of I0 and both ω0 = 0 and ω0 = π, we evolve the fiducial

system parameters for a single ZLK cycle, using q = 0.2 as is used for Figs. G.1

and G.2, and consider both the dynamics with and without the octupole-order

terms. Figure G.3 gives the resulting changes in Ωe over a single ZLK period
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when the octupole-order effects are neglected (top) and when they are not (bot-

tom). Two observations can be made: (i) I0,gap is approximately where ∆Ωe = 0 for

circulating initial conditions when neglecting octupole-order terms, and (ii) the

inclusion of the octupole-order terms seem to cause Ωe to exclusively vary slowly

(|∆Ωe| ≪ 180◦) except for I0,gap < I0 < I0,lim. The former is plausible: if K(I0,gap)

is the location of an equilibrium in K-Ωe space, then it must satisfy ∆Ωe = 0. The

latter suggests that the assumption of circulation of ω in Katz et al. [2011] may

be satisfied for many more initial conditions than the quadrupole-level analysis

suggests, as long as they are not in octupole-inactive gap.

Finally, examination of the bottom panel of Fig. G.1 suggests that the oscil-

lation amplitude in K grows roughly linearly with
∣∣I0 − I0,gap

∣∣ in the vicinity of

I0,gap [this may be because, in the test-particle limit, librating ω give oscillation

amplitudes in K that are higher-order in K and Ωe, as pointed out by Katz et al.,

2011]. Assuming this, the gap width can then be given by

Gap Width= 2
(
I0,lim − I0,gap

)
. (G.1)

This explains why the gap does not exist in the test-particle regime, as I0,lim =
I0,gap = 90◦ by symmetry of the equations of motion.

It is clear from the preceding discussion and Fig. G.3 that the octupole-order,

finite-η dynamics are complex, and our discussion can only be considered heuristic.

Nevertheless, in the absence of a closed form solution to the octupole-order ZLK

equations of motion or a full generalization of the work of Katz et al. [2011], they

provide a preliminary understanding of the octupole-inactive gap.
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Figure G.3: Plot of ∆Ωe, the change in Ωe over a single ZLK cycle, for q = 0.2
and the fiducial parameters using different initial conditions. In the top panel,
octupole-order terms are neglected, while in the lower panel, they are not. The
solid and dashed vertical black lines denote I0,gap and I0,lim respectively.
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