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Implementing Grover’s 
on AES‑based AEAD schemes
Surajit Mandal 1, Ravi Anand 2,3*, Mostafizar Rahman 2*, Santanu Sarkar 1 & Takanori Isobe 3

Extensive research is currently underway to determine the security of existing ciphers in light of 
the advancements in quantum computing. Against symmetric key cryptography, Grover’s search 
algorithm is a prominent attack, capable of reducing search costs to the square root. For using 
Grover’s algorithm, it is imperative to embed the target cipher into a quantum circuit. Even so, this 
area of research is relatively new; it has garnered significant attention from the research community. 
In this study, we provide the first estimation of the cost of Grover’s key search attack against the 
AES-based AEAD schemes Rocca-S, AEGIS-128, and Tiaoxin-346. Our analysis considers circuit 
depth restrictions specified in NIST’s PQC standardization process. Considering NIST’s maximum 
depth constraints, We present the overall cost of these attacks using gate count and depth-times-
width metrics. We observed that for MAXDEPTH = 2

40 , Rocca-S, AEGIS-128, and Tiaoxin-346 
can be retrieved using Grover’s search algorithm with gate count of 1.09 × 2253, 1.14 × 2124, and 1.22 × 
2124 respectively. Concerning the current updated values by NIST, these ciphers are secure in terms of 
the cost of implementing Grover’s attack for key recovery. The quantum circuits of these ciphers are 
implemented using QISKIT, an open-source software development kit (SDK) designed for working 
with quantum computers running on the IBM Quantum Experience platform.
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The emergence of quantum computers poses a critical challenge for cryptographic security, necessitating a 
reevaluation of post-quantum defenses in cryptographic systems. Shor’s algorithm1,2 presents a direct threat to 
public-key encryption methods like RSA, ECDH, and ECDSA by efficiently solving factoring and discrete loga-
rithm problems. Consequently, researchers have focused on crafting public-key cryptographic systems resilient 
against quantum adversaries. Meanwhile, symmetric encryption schemes like block ciphers and hash functions 
were traditionally considered immune to quantum threats. However, Grover’s algorithm alters this perspective, 
offering a quadratic speedup in an exhaustive key search for symmetric ciphers and hash functions.

To counter this, a cautious security approach suggests doubling the security parameters by augmenting the 
key or output size of hash functions, mitigating potential impacts from Grover’s algorithm. Yet, assessing the 
cost implications of applying Grover’s algorithm on symmetric ciphers is imperative. Recent studies3–5 have 
endeavored to gauge the computational expenses associated with utilizing the Grover search algorithm across 
different versions of the Advanced Encryption Standard (AES). These investigations have illuminated potential 
vulnerabilities in symmetric ciphers against quantum attacks, challenging the notion that symmetric-key cryp-
tography is impervious to quantum advancements.

Advancements in quantum cryptanalysis have further demonstrated that symmetric-key cryptography can 
be efficiently compromised or significantly weakened using the capabilities of quantum computers6–12. However, 
the extent of compromise hinges on the expertise and capabilities of the potential attacker. Mere augmentation of 
key sizes may not suffice in the long run to ensure communication network security in the presence of quantum 
computers. This underscores the pressing need for a deeper comprehension of these potential threats and the 
development of more robust defense mechanisms.

To effectively gauge the security of a quantum encryption system, it becomes essential to construct a quantum 
circuit for encryption and evaluate the practical expenses associated with implementing a quantum attack. The 
complexity of such an attack can be quantified in terms of the quantum circuit’s width (number of qubits), gate 
count, and depth. Numerous scholarly articles have concentrated on adapting symmetric ciphers into a quantum 
framework and estimating the computational resources necessary for executing Grover’s key search algorithm on 
these ciphers. For deeper insights, interested individuals can refer to several key references: SIMON13, SPECK14,15, 
GIFT16, PRESENT17, ChaCha18, RECTANGLE19, DEFAULT20. Determining the precise cost of quantum gates 
presents challenges due to the early stage of quantum computing. Ongoing research has predominantly focused 
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on reducing circuit depth, particularly emphasizing T-depth (defined by the minimum count of steps where 
T-gates are simultaneously applied in a circuit, allowing for parallel application on distinct qubits). This emphasis 
holds dual significance as elaborated in references like5,21.

Firstly, various metrics suggest reduced overall costs by accepting a slightly larger number of qubits in 
exchange for diminished circuit depth. This trade-off potentially yields computational benefits concerning 
resource utilization. Secondly, as underscored in22, the runtime of quantum algorithms predominantly hinges 
on T-depth rather than gate count, circuit depth, or measurement depth. Therefore, optimizing T-depth emerges 
as critical for achieving efficient execution.

Certainly, Grover’s algorithm faces limitations in effective parallelization. Therefore, the emphasis on reduc-
ing depth rather than width (the number of qubits) becomes crucial for efficient resource utilization. NIST23 has 
recognized this and introduced the MAXDEPTH constraint, considering the challenges of running excessively 
prolonged serial computations. NIST recommended a minimum security level for a given cipher to ensure ample 
security in the post-quantum era. Drawing from available research, likely the sole work at that time by3, NIST 
estimated the complexities in23 as follows: Level 1: 2170 (applicable to 128-bit key ciphers), Level 3: 2233 (for 192-bit 
key ciphers), and Level 5: 2298 (for 256-bit key ciphers). These complexity bounds were computed by multiplying 
the total number of decomposed gates (G-cost) and the full depth (D) required for Grover’s key search circuit. 
Consequently, this research intends to minimize circuit depth and quantum gate usage. By investigating cipher 
security under NIST’s MAXDEPTH limitation, the focus rests on optimizing depth while allowing for a slight 
increase in qubit count, ultimately aiming for enhanced efficiency.

Inspired by the work of Jean and Nikolic24, which explores various constructions based on the AES (Advanced 
Encryption Standard) round function, this cipher’s design draws upon their structures as foundational elements. 
These structures have been instrumental in crafting message authentication codes (MAC) and authenticated 
encryption with associated data (AEAD) schemes. Notably, ciphers like AEGIS25 and Tiaoxin-34626 are 
influenced by Jean and Nikolic’s constructions. These ciphers were contenders in the CAESAR competition to 
identify secure and efficient authenticated ciphers. Among the submissions, AEGIS-128 was chosen as part of 
the final portfolio for high-performance applications. It’s worth noting that the round functions in both AEGIS 
and Tiaoxin-346 exhibit significant similarities, likely due to the influence of Jean and Nikolic’s work.

AEGIS, Tiaoxin-346, and Rocca-S represent encryption schemes rooted in the AES framework. Hence, 
their architectures are intricately tied to the structure of AES round operations. Notably, there’s been a surge 
in research endeavors focused on AES quantum circuit optimization, surpassing earlier achievements3,5,21,27–30.

Our contributions
Our main focus centers on estimating the cost of Grover’s key search concerning the Rocca-S, Tiaoxin-346, 
and AEGIS ciphers. Evaluating a cipher’s security against quantum adversaries necessitates the creation of a 
dedicated quantum circuit. There’s a common assumption that T-depth significantly impacts the runtime of 
fault-tolerant quantum computation. Thus, our efforts have been channeled into minimizing T-depth during 
the cipher construction. Through this construction approach, we gauge the implementation costs of Grover’s 
algorithm for key search and subsequently compare these expenses with those associated with AES. Our source 
code will be made available on a public repository soon.

It has been established that Grover’s search algorithm reduces the security of symmetric key cryptosystems 
in half. What we need to consider is the necessary cost. If a huge cost is required to apply the Grover search 
algorithm, it can be judged that it is resistant to attacks by quantum computers. We show an analysis of the circuit 
complexity required to mount Grover’s search for these ciphers.

Remark 1  Based on the updated NIST recommendations31, Page 45, denoted by NISTup in Table 1, our results 
show that these ciphers are secure in terms of the cost of implementing Grovers attack for key recovery. NIST31, 
Page 45 adjusted the threshold for quantum security to 2157 for AES-128 and 2285 for AES-256, based on Jaques 
et al.’s work32. However, readers should note that there was an error in the original estimation provided by32, 
which has recently been corrected in their revised paper. Despite this correction, the new NIST values have not 
yet been updated. Nonetheless, the complexities for quantum security mentioned in31 are still achievable as dis-
cussed in28. Furthermore, it can also be seen that the ciphers analyzed in this work failed to meet the threshold 
recommended in the initial draft of the Post-Quantum Cryptography (PQC) standardization organized by the 
US National Institute of Standards and Technology (NIST)23, Page 17-18.

Organization of the paper
We organize the paper as follows. 

Table 1.   Comparison of the gate-cost times circuit-depth, represented as G-cost × D, of the proposed attacks 
with the NIST’s security bound (shown under the column titled ’NIST’). NISTup : NIST adjusted the threshold 
for quantum security in31, Page 45, citing Jaques et al.’s work32.

key-size: k 128 256

Cipher AEGIS-128 TIAOXIN NIST 23 NISTup
31 Rocca-S NIST 23 NISTup

31

G-cost × D 2
164

2
164

2
170

2
157

2
294

2
298

2
285
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1.	 We commence by going through some prerequisites and conventions required for the readers, such as Quan-
tum basics, Grover’s search algorithm, MAXDEPTH concept, and depth constraints metric for cryptanalysis 
in Section 2.

2.	 In Section 3 the quantum resource estimations for AES-128 components are demonstrated. Since the quan-
tum circuit of Rocca-S, Tiaoxin-346, AEGIS depends totally on the quantum circuit of Subbytes, 
ShiftRows, and MixColumns operations within AES.

3.	 In Section 4, 5, and 6 we outline the creation of quantum circuits of Rocca-S, Tiaoxin-346, AEGIS-
128 respectively with a target to decrease the depth of the circuits at the cost of some qubits.

4.	 Finally, in Section 7, we estimate the cost of implementing Grover’s key search algorithm, then find resource 
estimation for key search under NISTs MAXDEPTH metric.

5.	 We conclude in Section 8.

Preliminaries
Quantum basics
In quantum computation, qubits, the quantum counterparts of classical binary bits, undergo manipulation by 
applying quantum gates. A qubit stands as the foundational unit of quantum information. Describing the state of a 
2-qubit quantum system involves expressing it as |ψ� = a|0� + b|1� , where a, b are complex numbers that meet the 
condition | a |2 + | b |2= 1 . More broadly, in using the orthonormal basis {|00 . . . 00�, |00 . . . 01�, . . . , |11 . . . 11�} , 
an n-qubit system’s state finds representation as unit vectors within C2n . Quantum algorithms are formulated 
by amalgamating quantum gates, visualized as quantum circuits. These circuits delineate the sequential appli-
cation of specific quantum operations (gates) aimed at processing input and generating the desired output. By 
scrutinizing the gate sequence within a quantum circuit, we gain insight into the system’s behavior and compute 
the likelihood of measuring a particular output state. Notably, all quantum computations maintain reversibility.

The circuits discussed in this paper utilize qubits and are built using a combination of Clifford and T gates. 
This gate ensemble comprises the phase gate ( S = T2 ), the Hadamard gate (H), the controlled-not gate (CNOT), 
and unit scalars, constituting a universally acknowledged fault-tolerant gate set. Within the standard notation, 
the Pauli operators (X, Y,  and Z).

In quantum computing, certain traditional gates from classical computing find their analogs. For instance, the 
X gate in quantum computing mirrors the classic NOT gate, recognized also as the flip gate. It switches |1� to |0� 
and |0� to |1� . Meanwhile, the CNOT gate, performing the XOR operation classical version, acts on two qubits 
(a and b), transforming |a, b� into |a, a⊕ b� . Within the CNOT gate, the control qubit (a) undergoes an XOR 
operation with the target qubit (b).

The Toffoli gate, akin to the AND operation of the classical version, operates on three qubits and maps |a, b, c� 
to |a, b, c ⊕ ab� . In the Toffoli gate, the control qubits (a and b) decide whether the target qubit (c) is XORed with 
the ANDed value of a and b (i.e., a · b).

To execute the Toffoli gate, Selinger’s method33 leverages the idea that a doubly-controlled Z-gate, acquired 
through a basis transformation, can be a substitute. This approach maps a computational basis state |abc� to 
(−1)abc|abc� using the doubly-controlled Z-gate.

The implementation of a Toffoli gate, illustrated in Fig. 1, achieves a T-depth of 1 and a combined depth of 7. It 
employs seven T gates, sixteen CNOT gates, two single-qubit Clifford gates, and four ancilla qubits to achieve this.

Grover’s search algorithm
Grover’s algorithm34, a cornerstone of quantum computing, stands as a robust quantum search algorithm. How-
ever, it doesn’t deliver a super-polynomial speedup like another famous quantum algorithm, Shor’s algorithm 
for factorization. Its strength lies in efficiently solving the unstructured search problem, explicitly pinpointing 
the unique input of a black box function that generates a specific output value. Remarkably, Grover’s algorithm 
achieves this with only O(

√
N) function evaluations, where N denotes the domain size of the function. This 
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Figure 1.   Toffoli gate expressed with T-depth 1 representation33.
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quantum algorithm excels at function inversion, enabling the calculation of x from y when presented with the 
function y = f (x) on a quantum computer. The Grover’s problem addressed by this algorithm can be defined 
as follows:

Problem 1  Suppose f : {0, 1}n → {0, 1} be a function, with oracle access to f, search an element x such that 
f (x) = 1

Solving this problem through classical means necessitates an exhaustive search across all potential x values, 
resulting in a time complexity of 2n . Yet, Grover’s algorithm, pioneered by Grover34, presents a remarkable 
quadratic speedup, significantly enhancing the process. In cases where there are M solutions to the problem, the 
functioning of Grover’s algorithm can be succinctly outlined as follows: 

1.	 The initial state is prepared as: 

 where H is the Hadamard transformation
2.	 Repeat the Grover iteration: 

j times to amplify the initial probability. Here Of  is defined as |x� �→ (−1)f (x)|x�
3.	 Measure the final quantum state to obtain an element x which satisfies f (x) = 1

Let’s establish α as M/2k , signifying the initial success probability, where θ = arcsin
√
α with 0 < θ ≤ π/2 . After 

conducting j iterations of Grover’s algorithm, the probability of achieving a favorable outcome is expressed as 
Pr(j) = sin2((2j + 1)θ) . Notably, when M << 2k , sin(θ) becomes exceedingly small, enabling us to approximate 
θ ≈ sin(θ) =

√

M/2k  . Consequently, if we opt for the iteration count j to be approximately π/(4θ)− 1/2 , the 
amplitude of favorable outcomes (2j + 1)θ converges close to π/2 , guaranteeing a success probability of at least 
1− α.

Grover oracle In implementing Grover’s search algorithm, constructing an oracle is vital. This oracle encrypts a 
256-bit plaintext using a specific key and assesses a Boolean expression to verify if the resulting ciphertext aligns 
with the provided ciphertext. Termed Grover’s oracle, it flips the state of the target quantum bit if an identical 
match between ciphertexts is detected.

In the context of this paper, constructing the oracle involves devising a circuit denoted as ENC for the cipher. 
This circuit encrypts a specified plaintext P to produce a ciphertext. The generated ciphertext is subsequently 
compared against the provided ciphertext. The visualization of this oracle is illustrated in Fig. 2.

It’s important to note that DEC is crafted by reversing the operations performed by ENC . Essentially, DEC 
is formed by uncomputing ENC , where ENC represents the quantum circuit responsible for initialization and 
encryption functions.
Cost of Grover’s algorithm
This research delves into two cost metrics put forth by Jaques and Schanck35. These metrics include the G-cost, 
representing the total count of gates, and the DW-cost, denoting the circuit depth and width’s product. Leverag-
ing the insights from Jaques et al.’s work32, we offer a concise overview of the cost analysis concerning Grover’s 
algorithm. This summary encompasses scenarios both with and without depth restrictions. Before delving into 
this analysis, we provide an overview of the depth constraints and the approach taken to parallelize Grover’s 
algorithm.

Depth constraints metric for cryptanalysis
In our research, we operate under the assumption that any quantum adversary is confined by the total depth of 
its quantum circuit. This limitation is critical in quantum attacks, mainly due to the constraints imposed by the 

|φ� = H⊗|0n� =
1

2n/2

∑

x∈{0,1}n
|x�

G = (2|φ��φ| − I2n)Of

Figure 2.   The Grover oracle. The (=) operator assesses the correspondence between the ENC output and the 
provided ciphertexts, and flips the target qubit in case of equality.
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coherence decay in early quantum computers, restricting them to shallow circuits. To overcome this limitation, 
NIST introduced the parameter MAXDEPTH , fixing the running time (circuit depth) for quantum attacks. The 
recommended ranges for MAXDEPTH , accounting for available time and gate speed assumptions, typically span 
from 240 to 296 . These suggested values align with various considerations: 240 approximates the number of gates 
expected to be serially performed in a year by envisioned quantum computing architectures, 264 aligns with the 
estimated count of gates current classical computing architectures can carry out serially in a decade, and 296 
represents the estimated count of gates achievable by atomic-scale qubits with speed-of-light propagation over 
a millennium23.

Considering NIST’s guidelines, we propose that a cipher might be deemed vulnerable if it succumbs to an 
attack requiring a gate count of < 2130 for MAXDEPTH = 240 , especially concerning ciphers with a key size of 
128. This underscores the critical role of circuit depth in both algorithm implementations and quantum attack 
analysis, aligning with the broader emphasis within the cryptography community.

Furthermore, when the total depth of a quantum algorithm surpasses a certain threshold, the necessity for 
parallelization becomes apparent.

Strategy for parallelizing Grover’s algorithm
 Kim, Han, and Jeong36 put forward two parallelization techniques for Grover’s algorithm: outer parallelization 
and inner parallelization. The former involves running multiple algorithm instances concurrently, requiring suc-
cess in just one instance. On the other hand, inner parallelization partitions the search space into separate subsets, 
assigning every subset to a parallel machine. Both techniques aim to diminish the required number of iterations.

Zalka’s study37 showcases that employing M parallel Grover oracles can achieve a 
√
M  enhancement in 

the necessary Grover iterations, an asymptotically optimal outcome. However, this parallelization method is 
comparatively less efficient than classical algorithms, demanding an increase in width by M to reduce depth by √
M  . Both approaches eliminate the need for communication during Grover iterations, yet communication is 

necessary at the beginning and end for various tasks. In the discussed context, the preference leans toward inner 
parallelization, and the rationale for this preference is elaborated below.

Consider M parallel machines executing Grover’s algorithm for j iterations to recover the key. In the case of 
a single machine, the probability of success is defined as p(j) = sin2((2j + 1)θ) . Employing outer parallelization, 
the probability that at least one machine retrieves the right key is denoted as pM(j) = 1− (1− p(j))M . To achieve 
a 
√
M  improvement, each machine operates for jM = π

4θ
√
M

 iterations.
For M = 1 , p1(j1) ≈ 1 . With M = 2 , p2(j2) ≈ 0.961 . Moving to M = 3 , p3(j3) ≈ 0.945 . As M grows, especially 

towards infinity, pM(jM) ≈ 0.915 . Upon substituting the value of jM , we arrive at:

Expanding the sine function, the expression becomes:

Therefore, scaling up the number of parallel machines (M) doesn’t yield the expected 
√
M  improvement in 

required iterations to approach a success probability near 1. However, inner parallelization concentrates on 
exploring the search space of a single machine, elevating the probability of success. Precisely, one machine’s 
search space contains the correct key. Conducting jM iterations on this particular machine enables a near-certain 
identification of the correct key. Conversely, the remaining machines are assured to avoid identifying the correct 
key. Consequently, inner parallelization enhances the probability of success using the same number of parallel 
instances (M) and iterations.

Cost of Grover’s algorithm
Certainly, this part aligns with insights from32. Consider the search space size N = 2k . Assuming the utilization 
of a Grover oracle G , where one Grover iteration costs Gg gates, has a depth of Gd , and employs Gw qubits. In 
the inner parallelization approach, we partition the search space into M disjoint segments, where M represents 
the number of parallel machines utilized. To attain a specific success probability p, determining the necessary 

iterations involves considering p ≤ sin2((2j + 1)θ) , where jp = ⌈(sin−1(
√
p)/θ − 1)/2⌉ ≈ sin−1(

√
p)

2

√
N/M  . 

Let cp = sin−1(
√
p)/2 , then the overall depth of a jp-fold Grover iteration is:

Each of the M machines uses jpGg ≈ cp

√

N
M .Gg gates, so the total G-cost over all machines is

pM(jM) ≈ 1−

(

1−
(

sin

(

π

2
√
M

))2
)M

.

pM(jM) ≈1−
(

1−
(

π2

4M
+ O

(

1

M2

)))M

−−−−→
M→∞

1− e−
π2

4 ≈ 0.915.

(1)D = jpGd ≈ cp

√

N

M
Gd = cp2

n−m
2 Gd
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And the total width is

So DW cost is

Based on the mentioned expressions, it is clear that reducing the number of parallel machines ( M = 2m ) results 
in a decrease in both the DW and G-cost. Therefore, when there are fixed constraints on depth, width, and 
the number of gates, the optimal approach for an adversary is to utilize the entire depth budget and minimize 
parallelization.

Optimizing under a depth limit
 As previously highlighted, Grover’s algorithm doesn’t naturally lend itself to efficient parallelization overall. 
Therefore, the recommended approach often involves specifically parallelizing within the oracle circuit. By reduc-
ing the depth of the oracle, it becomes feasible to execute a greater number of iterations within the designated 
depth limit, thereby minimizing the necessity for parallelization.

Let’s assume a fixed maximum depth constraint denoted as Dmax . Given the oracle’s depth Gd , we can conduct 
jmax = ⌊Dmax

Gd
⌋ Grover iterations using the oracle G. To achieve a desired success probability p, we determine the 

number M of parallel instances required for this probability within the instance whose keyspace partition encom-

passes the key. This is formulated as p = sin2
(

(2jmax + 1)
√

M
N

)

.

Applying this in equation (2) produces an overall gate count of

As a result, the full DW-cost considering the depth constraint is

Therefore our main goal is to optimize G2
dGw.

Quantum circuits of the AES components
The quantum circuit for the round functions of all these ciphers depends on that of A(X). The circuit for A(X) 
is shown in Fig. 3.

ShiftRows circuit resources
ShiftRows is a permutation that acts on the entire state. As a permutation, it can be represented entirely using 
rewiring. Previous studies on Quantum circuits for AES and other ciphers often consider rewiring a cost-free 
operation.

MixColumns circuit resources
The MixColumn operation can be represented by a 32 × 32 binary matrix over F2 . A commonly used approach 
to implement this matrix is through LUP-type decomposition38, enabling efficient execution of MixColumn 
under the s-Xor metric. In an s-Xor implementation, outputs are stored directly in input registers, eliminating 
the need for additional registers. Additionally, simulating an Xor operation under the s-Xor metric can be easily 
accomplished using a CNOT gate. Numerous quantum circuits for MixColumn have been introduced in recent 
years. Notably, Xiang et al.39 to construct our quantum circuit for MixColumn. In this circuit, 92 CNOT gates 

(2)G = M.jpGg ≈ cp
√
N .M.Gg = cp2

n+m
2 Gg gates.

(3)W = M.Gw = 2mGw qubits.

(4)DW ≈ cp
√
N .MGdGw qubit − cycles.

(5)M =
⌈

N .arcsin2(
√
p)

(2.⌊Dmax/Gd⌋ + 1)2

⌉

≈ c2p2
k G2

d

D2
max

(6)G = c2p2
k GdGg

Dmax
gates

(7)DW = c2p2
k G

2
dGw

D2
max

qubit − cycles

Figure 3.   Quantum Circuit for A(X).
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are utilized, and the depth is set at 30. As MixColumn can be applied to all four columns of the state simultane-
ously, the depth remains at 30, and the total requirement for CNOT gates is 92× 4 = 368 . The circuit39 is more 
convenient and cost-effective for our specific application. Notably, this identical circuit is also utilized in20.

The cost analysis of setting up a quantum circuit for MixColumn is provided in Table 2.

Cost of SubBytes
In our quest to incorporate the AES S-box into our framework, we require a fitting quantum circuit for it. Our pri-
mary goal is to opt for an in-place circuit, facilitating efficient utilization within our construction while upholding 
a low-depth characteristic. After a thorough evaluation, we’ve opted for the S-box circuit proposed in21. This 
circuit presents two enhanced versions of the S-box circuit highlighted in5. One version achieves a Toffoli-depth 
of 6, condensed to 4 while maintaining the same qubit count. The other version attains a Toffoli-depth of 3, albeit 
at the expense of certain Clifford gates and qubits. For our paper, focusing on depth reduction, particularly Toffoli 
depth, we solely utilize the circuit with a Toffoli-depth of 3. It’s important to note that in our setup, we employ 
a decomposition of the Toffoli gate into a circuit with T-depth 1. Thus, referencing a circuit with Toffoli-depth 
3 essentially implies a circuit with T-depth 3. The resource requisites for each circuit are detailed in Table 3.

The S-box is implemented using Toffoli gates, precisely Selinger’s implementation without measurements. 
This implementation necessitates 7 T gates, 16 CNOT gates, 2 single-qubit Clifford gates, and 4 ancilla qubits, 
featuring a T-depth of one and an overall depth of 7. It’s noteworthy that while this reduces the T-depth of the 
circuit, it comes at the cost of 80 ancilla qubits.

In our implementation, the SubBytes operation involves a set of 16 S-boxes. One approach entails sequen-
tially implementing these S-boxes using the same set of ancilla qubits. However, this results in a circuit with 
significant depth. An alternative approach involves a parallel implementation of the S-boxes, with each S-box 
allocated its own set of ancilla qubits. Although this parallel implementation increases the qubit requirement, it 
drastically reduces the circuit depth, making it the preferred choice for the SubBytes operation. As this parallel 
implementation method has been previously employed in works like28,40, we’ll exclusively present the resource 
requirements for this implementation in Table 4, without delving into a detailed circuit description. The qubit 
count aligns with information from21.

It is now possible to compute the cost of executing A(X) once. The results of these computations are show-
cased in Table 5.

Quantum circuit of Rocca‑S
The Rocca-S authenticated encryption scheme is characterized by its incorporation of four distinct phases: 
initialization, associated data processing, encryption, and finalization. It takes as inputs a 256-bit key, denoted 
as K0||K1 ∈ F

128
2 × F

128
2  , a 128-bit nonce N, associated data AD, and the message M. The key K0||K1 is formed 

by concatenating two components, X and Y. The resulting output consists of the corresponding ciphertext C and 
a 256-bit tag T. Specifically, if we define X  as X||0l , where 0l represents a zero string of length l bits, the value of 
l is the smallest non-negative integer that ensures the length of | X | is a multiple of 256. Breaking down X further, 

Table 2.   MixColumn Resources.

#CNOT #1qCliff #T T-Depth Full-Depth Width

368 0 0 0 30 128

Table 3.   AES S-box resources.

#CNOT #1qCliff #T T-Depth Full-Depth Width

1604 160 546 3 68 278

Table 4.   SubBytes resources.

#CNOT #1qCliff #T T-Depth Full-Depth Width

51072 5056 17472 6 139 4448

Table 5.   A(X) resources.

#CNOT #1qCliff #T T-Depth Full-Depth Width

51440 5056 17472 6 169 4448
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we express it as X = X0||X1|| . . . ||X |X|
256−1

 , where each Xi has a length of 256 bits. Additionally, Xi is decomposed 

into X0
i ||X1

i  , with both X0
i  and X1

i  having a length of 128 bits.
Within Rocca-S, the state S is composed of seven blocks structured as S = (S[0], S[1], . . . , S[6]) , where each 

S[i] (for 0 ≤ i ≤ 6 ) signifies an individual block. The initial block is denoted as S[0]. The function AES(X, Y) is 
defined as (MixColumns ◦ ShiftRows ◦ SubBytes(X))⊕ Y  . This function incorporates operations akin to those 
found in AES, where MixColumns, ShiftRows, and SubBytes emulate their respective AES counterparts. Addi-
tionally, there exists another operation, A(X), which involves the composition of MixColumns, ShiftRows, and 
SubBytes (X). The round function R(S,X0,X1) (Fig. 4) plays a crucial role in updating the state S within Rocca-S, 
similar to the mechanism employed in Tiaoxin-346. This round function takes the state S and two blocks, X0 
and X1 , as inputs and produces an updated state denoted as Snew (in short S′ ), symbolized by R(S,X0,X1) → S′ . 
Notably, this update involves the application of constants Z0 and Z1 in the process.

Initialization During this initialization phase, the state undergoes setup using the nonce N, the keys K0 and 
K1 , and two 128-bit constants Z0 and Z1 . Specifically, the values of N, K0 , K1 , Z0 , and Z1 are loaded into the cor-
responding substates: S[1], S[3], S[0], S[2], and S[4], respectively. The remaining substates, S[5] and S[6], are 
initialized with the values N ⊕ K1 and 0, respectively. Following the initial setup, the round update function 
R(S,Z0,Z1) is iteratively applied 16 times. Finally, the keys K0 and K1 are XOR-ed with specific substates. Pre-
cisely, K0 is XOR-ed with substates S[0], S[1], S[3], and S[4], while K1 is XOR-ed with S[2], S[5], and S[6]. This 
final step completes the initialization process, preparing the state for subsequent operations within the Rocca-S 
encryption scheme.

Processing the associated data In this phase, the process of updating the state is contingent on the length of the 
associated data AD. Initially, padding bits are appended to AD to ensure it is a multiple of 256, resulting in AD . 
This representation can be expressed as AD = AD0|| · · · ||ADd−1 , where each 256-bit block ADi is constituted 
of two 128-bit words, denoted as AD0

i ||AD1
i  . The state update function R(S,AD0

i ,AD
1
i ) is then iteratively applied 

for d times, considering each ADi . It is important to note that when AD is empty (and consequently d = 0 ), this 
phase is skipped, as there is no associated data to process.

Encryption In this stage, the message M undergoes a transformation to M by incorporating additional padding 
bits, ensuring its length is a multiple of 256. Let M = M0|| · · · ||Mm−1 , where each 256-bit block Mi comprises 
two 128-bit words, represented as M0

i ||M1
i  . Subsequently, depending on the length of the message, the ciphertext 

is produced, and the state undergoes an update as outlined below:

S′[0] = S[6] ⊕ S[1] S′[1] = AES(S[0],X0)

S′[2] = AES(S[1], S[0]) S′[3] = AES(S[2], S[6])
S′[4] = AES(S[3],X1) S′[5] = AES(S[4], S[3])
S′[6] = AES(S[5], S[4])

C0
i = AES(S[3] ⊕ S[5], S[0])⊕M

0
i ,

C1
i = AES(S[4] ⊕ S[6], S[2])⊕M

1
i ,

R(S,M
0
i ,M

1
i )

Figure 4.   The round function of Rocca-S (in image A denotes the AES operation).
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where i = 0 to m− 1 , and m = |M|
256 . If the length of the last block of the message is less than 256 bits and b bits 

are padded. Then the last b bits from the last block of the ciphertext are trimmed ensuring that the ciphertext 
length equals the message length. Note that, when |M| = 0 , this phase is skipped.

In‑place circuit of Rocca‑S round update function
Here, we propose an in-place circuit of Rocca-S, composed of six instances of the A(X) function and five bitwise 
XOR operations involving two 128-bit registers. Implementing a bitwise XOR between two 128-bit registers can 
be achieved by applying 128 CNOT gates in parallel along with 2 XOR operations using a constant. The circuit 
is depicted in Fig. 5.

Even though there are six occurrences of A(X) within a single round, only two of these instances are executed 
simultaneously, as illustrated in Fig. 5. Consequently, the allocation of the necessary ancilla qubits is essential for 
both of these concurrent implementations. As these ancillae reset to 0 after applying A(X), they can be repur-
posed for the remaining two A(X) implementations and later reused for the final pair. This approach effectively 
reduces the required ancilla count to accommodate only two A(X) implementations instead of the original six.

Regarding qubits, the requisite count encompasses those required for the state and the number essential for 
implementing two parallel A(X) operations. Thus we have,

and

#CNOTgates = 6× A(X)#CNOT gates + 5× 128

#1qCliff gates = 6× A(X)#1qCliffgates

#T gates = 6× A(X)# T gates

#ancillae = 2× ancillae required in A(X)

T depth = 3× T depth of A(X) Full depth = 3× full depth of A(X)+ 3

Figure 5.   Rocca-S Round Function Quantum Circuit.

Table 6.   Rocca-S round function resources.

#CNOT #1qCliff #T T-Depth Full-Depth Width

309280 30336 104832 18 510 9536
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Quantum resource estimates of Rocca‑S
Here, we provide detailed cost assessments for the quantum circuits implementing the Rocca-S encryption 
scheme. All subroutines are implemented using the Qiskit programming language. The specific breakdown of 
costs for a single round of Rocca-S is detailed in Table 6.

It is crucial to note that the count of single-qubit Clifford gates for the AddConstants subroutine may vary, 
depending on the number of ones present in the round constants. A comprehensive breakdown of costs for the 
entire Rocca-S encryption circuit can be found in Table 7.

Quantum circuit of AEGIS
AEGIS25 is constructed based on the AES encryption round function, excluding the last round. In the case of 
AEGIS-128L, eight AES round functions are employed to process a 256-bit message block in a single step. Five 
AES round functions are utilized for AEGIS-128, which handles a 128-bit message block, and AEGIS-256 
uses six AES round functions. The focus of this paper is specifically on AEGIS-128.

AEGIS-128 employs a 128-bit key and a 128-bit initialization vector for encrypting and authenticating a 
message. The lengths of associated data and plaintext are both less than 264 bits. Additionally, the length of the 
authentication tag is less than or equal to 128 bits.

The state update function of AEGIS-128: The state update function transforms the 640-bit state Si with a 
128-bit message block mi . The representation of state update function (Fig. 6) Si+1 = R(Si ,mi) is given below:

Initialization: While initializing, the state is set up using IV, and the key K in combination with the constants 
c1 and c0 , and the cipher is iterated ten times with K and IV used as the message. 

1.	 The substate S−10[0] is initialized by K128 ⊕ IV128 . The constants c0 and c1 is loaded into the substates S−10[1] 
and S−10[2] respectively. The remaining substates S−10[3] and S−10[4] are initialized by c0 ⊕ K128 and c1 ⊕ K128 
accordingly.

2.	 K and IV used as the message as follows: m2i = K128; m2i+1 = K128 ⊕ IV128   when i = −5 to −1.
3.	 Now the cipher is iterated 10 times, for i = −10 to −1 , Si+1 = R(Si ,mi).

Processing the associated data The associated data is absorbed in the state updation process in this phase. Initially, 
padding bits are appended to the associated data AD to ensure it aligns as a multiple of 128, resulting in AD . Let 
adlen = |AD| . For i ranging from 0 to ⌈ adlen128 ⌉ , the state is updated as follows:

Si+1[0] = AES(Si[4], Si[0] ⊕mi) Si+1[1] = AES(Si[0], Si[1])
Si+1[2] = AES(Si[1], Si[2]) Si+1[3] = AES(Si[2], Si[3])
Si+1[4] = AES(Si[3], Si[4])

Table 7.   Rocca-S encryption resources.

#CNOT #1qCliff #T T-Depth Full-Depth Width

Initialization 4948480 485376 1677312 288 8160 9536

Encryption 103648 10112 34944 6 172 256

Figure 6.   AEGIS-128 round function(A denotes the AES operation).
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Here, AD = AD0|| · · · ||AD⌈ adlen128 ⌉ , where each ADi represents a 128-bit block.
Encryption: Following the processing of the associated data, during each encryption step, each 128-bit plain-

text blocks undergoes encryption to yield ciphertexts. Consider a plaintext P which is appended with padding 
bits (in order to ensure it aligns as a multiple of 128) to obtain P . Let P = P0|| · · · ||P⌈msglen

128 ⌉ where |P| = msglen

.
Let u = ⌈ adlen128 ⌉ and v = ⌈msglen

128 ⌉ . For i = 0 to v − 1 , encryption is performed, and the state is updated as 
follows:

Quantum circuit and resource estimation of AEGIS‑128 round update function
In the circuit illustrated in Fig. 7 for the round function, there are five occurrences of the A(X) function and 6 
bitwise XOR operations between two 128-bit registers. Implementing a bitwise XOR between two 128-bit registers 
can be done by applying 128 CNOT gates in parallel.

Each A(X) application is executed sequentially, allowing for the reuse of ancillae from the prior A(X) in 
the subsequent one. Consequently, the ancillae employed in the previous A(X) instances can be repurposed 
for subsequent applications. The required qubit count encompasses those needed for the state and the qubits 
necessary for implementing a single A(X) operation. Additionally, the circuit will necessitate 1280 ancillae for 
the |temp� register.

Henceforth we have,

and

Si+1 = R(Si ,ADi).

Ci = Pi ⊕ Su+i[1] ⊕ Su+i[4] ⊕ (Su+i[2]&Su+i[3]);
Su+i+1 = R(Su+i , Pi).

# CNOT gates = 5× #CNOT in A(X)+ 6× 128

#1qCliff gates = 5× #1qCliff in A(X)

#T gates = 5× #T in A(X)

#ancillae = ancillae in A(X)+ 1280

T depth = 5× T depth of A(X) Full depth = 5× full depth of A(X)+ 6

Figure 7.   AEGIS-128 Round Function Quantum Circuit.

Table 8.   AEGIS-128 round function resources.

#CNOT #1qCliff #T T-Depth Full-Depth Width

257968 25280 87360 30 851 6240
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Quantum resource estimates of AEGIS‑128
This section offers comprehensive cost assessments for the quantum circuits of AEGIS-128, meticulously 
crafted using the Qiskit programming language. Table 8 outlines the granular cost breakdown for a single round 
of AEGIS-128. Notably, these estimations take into account variations in the number of single-qubit Clifford 
gates for AddConstants, contingent upon the count of ones in the round constants.

Furthermore, Table 9 provides an overall view, encapsulating the total cost estimates for the entire encryption 
circuit of AEGIS-128. It’s important to emphasize that these calculations assume an empty associated data set 
and encryption for a 256-bit plaintext, a choice made to suit Grover’s key search requirements.

Quantum circuit of Tiaoxin‑346
Tiaoxin-346 functions as a nonce-based authenticated encryption scheme, employing a design reliant on 
stream ciphers. The input parameters encompass a 128-bit key, K, a 128-bit nonce, message M, and associated 
data, AD, which ranges in size from 0 to 2128 − 1 bits.

The output generated by Tiaoxin-346 is the ciphertext, C, aligned with the same byte count as M, along 
with an authentication tag, Tag, which spans a maximum of 128 bits. The scheme operates using three distinct 
states: T3 , T4 , and T6 , each constituted by a series of words denoted as Tm = (Tm[0],Tm[1], .....,Tm[m− 1]) , where 
Tm[i] represents individual words ( i = 0, 1, ....,m− 1 ), with Tm[0] signifying the initial word.

The round function Tiaoxin-346, described in Fig. 8, R(T3,T4,T6,M0,M1,M2) , incorporates the states 
T3 , T4 , and T6 , including three extra words, M0 , M1 , and M2.

Now, R(T3,T4,T6,M0,M1,M2) → (Tnew
3 ,Tnew

4 ,Tnew
6 ) is defined as

Table 9.   Cost of implementing AEGIS-128 encryption.

#CNOT #1qCliff #T T-Depth Full-Depth Width

Initialization 2579680 252800 873600 300 8510 6240

Encryption 2304 256 896 1 9 256

Figure 8.   The round function of Tiaoxin-346 (A denotes the AES operation).
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w h e r e ,  AES(X,Y) = (MixColumns ◦ ShiftRows ◦ SubBytes(X))⊕ Y ,  a n d 
Z0 = 428a2f 98d728ae227137449123ef 5cd

Initialization During the initialization phase, the state undergoes setup using the key K, nonce IV, along with 
two constants Z0 and Z1 , where Z1 is a constant word like Z0 is defined as Z1 = b5c0fbcfec4d3b2fe9b5d-
ba58189dbbc. Specifically, the value of K is loaded into substates T3[0],T3[1],T4[0],T4[1],T6[0] and T6[1] , 
the value of IV is loaded into substates T3[2],T4[2],T6[2] , the value of Z0 and Z1 is loaded into the substates T4[3] 
and T6[3] respectively. The remaining substates T6[4],T6[5]are initialized with 0. and the states go through 15 
rounds, i.e., iterate R(T3,T4,T6,M0,M1,M2) → (Tnew

3 ,Tnew
4 ,Tnew

6 ) for i = 0 to 15.
Processing the associated data The associated data AD is partitioned into blocks, each containing 256 bits. If 

the final block of AD is not complete, then that block is padded with zero bytes. Assume that padded AD has k 
blocks: AD = AD1, . . . ,ADk , where each block looks like ADi = AD0

i ||AD1
i  , i.e composed of two words. Process-

ing associated data is given below:

Encryption Suppose that the padded message is divided into d blocks: M = M1, . . . ,Md , each block is made up 
of two words i.e. Mi = M0

i ||M1
i  . In the encryption process, each block Mi undergoes a single round, producing 

a ciphertext block Ci = C0
i ||C1

i  . The encryption is carried out in the following manner:

Circuit of Tiaoxin‑346 round update function
The circuit shown in Fig. 9 illustrates the round function in Tiaoxin-346, involving six occurrences of the 
A(X) function, three bit-wise XOR operations on two 128-bit registers, and three XORs with a constant.

Implementing the bit-wise XOR operation between two 128-bit registers involves applying 128 CNOT gates 
in parallel, while XORing with a constant can be achieved by employing an adequate number of NOT gates based 
on the positions where the bit value of the constant is 1. Presently, the count of NOT gates is excluded from the 
calculation of the round function’s implementation cost for simplicity.

Although a round comprises six A(X) functions, only three of them are executed in parallel, as indicated 
in Fig. 9. Therefore, the requisite number of ancillae is allocated for these three implementations. Since these 
ancillae reset to 0 after the execution of A(X) , they can be repurposed for the remaining three instances of A(X) . 
Consequently, the necessary number of ancillae is equivalent to that required for three implementations of A(X) 
, rather than six. Additionally, the number of qubits needed corresponds to those required for the state and for 
implementing three parallel A(X) operations.

Thus we have,

and

Tnew
3 [0] = AES(T3[2],T3[0])⊕M0 Tnew

4 [0] = AES(T4[3],T4[0])⊕M1

Tnew
3 [1] = AES(T3[0],Z0) Tnew

4 [1] = AES(T4[0],Z0)
Tnew
3 [2] = T3[1] Tnew

4 [2] = T4[1]; Tnew
4 [3] = T4[2]

Tnew
6 [0] = AES(T6[5],T6[0])⊕M2

Tnew
6 [1] = AES(T6[0],Z0)

Tnew
6 [2] = T6[1]

Tnew
6 [3] = T6[2]

Tnew
6 [4] = T6[3]

Tnew
6 [5] = T6[4]

for i = 1 to k

R(T3,T4,T6,AD
0
i ,AD

1
i ,AD

0
i ⊕ AD1

i )

end for

for i = 1 to d

R(T3,T4,T6,M
0
i ,M

1
i ,M

0
i ⊕M1

i );
C0
i = T3[0] ⊕ T3[2] ⊕ T4[1] ⊕ (T6[3]&T4[3]);

C1
i = T6[0] ⊕ T4[2] ⊕ T3[1] ⊕ (T6[5]&T3[2]);

end for

#CNOT gates = 6× #CNOT in A(X)+ 3× 128

#1qCliff gates = 6× #1qCliff in A(X)

# T gates = 6× # T in AES

# ancillae = 3× ancillae in A(X)

T depth = 2× T depth of A(X) Full depth = 2× full depth of A(X)+ 1
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Quantum resource estimates of Tiaoxin‑346
The cost estimates for one round of Tiaoxin-346 can be found in Table 10.

The total cost estimates for the full Tiaoxin-346 encryption circuit are provided in Table 11.

Grover’s search algorithm resource estimates
In this section, we delve into the implementations of complete Grover oracles for three specific ciphers: Rocca-
S, AEGIS-128, and Tiaoxin-346. Our tool of choice is Qiskit, which conveniently offers cost estimates for 
these Grover oracles. Our primary focus here is to estimate the quantum resources required for conducting full 
key search attacks via Grover’s algorithm. This estimation process considers NIST’s MAXDEPTH limit, follow-
ing the approach previously utilized by Jaques et al. It involves evaluating the algorithmic costs through inner 
parallelization, achieved by partitioning the search space.

Resource estimates of implementing Grover’s oracle
To determine the total count of required CNOT, 1qCliff, and T gates within the oracle, we analyze the cipher 
instances and the encryption function. Specifically, the sum of CNOT and 1qCliff gates is derived from those 
necessary for the cipher instances. This computation can be formulated as:

The Grover oracle, responsible for comparing the cipher instances with the provided ciphertexts, relies on (k · r)
-controlled CNOT gates, where k represents the key size. Our estimation for the required T gates to implement 

2 · #CNOT(E NC ) and 2 · #1qCliff(E NC )

Figure 9.   Circuit for Tiaoxin-346 round update function.

Table 10.   Cost of implementing Tiaoxin-346 round function.

#CNOT #1qCliff #T T-Depth Full-Depth Width

309024 30336 104832 12 339 14624

Table 11.   Cost of implementing Tiaoxin-346 encryption function.

#CNOT #1qCliff #T T-Depth Full-Depth Width

Initialization 4635360 455040 1572480 180 5085 14624

Encryption 2816 256 896 1 10 256
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these controlled CNOT gates aligns with the expression (32 · t − 84)41. The total count of T gates is then approxi-
mated as

In determining the full depth and T-depth, our focus is on the depths of the cipher instances. Assuming paral-
lelism, both cipher instances can be executed simultaneously using separate qubit sets. Hence, the oracle’s depth 
equals

For a comprehensive overview of the resources required for constructing complete Grover oracles across all 
ciphers, please refer to Table 12. The oracle’s construction is illustrated in Fig. 2.

Resource estimates for key search
Utilizing the cost estimates outlined in Table 12 for the Grover oracles, we can offer a comprehensive assessment 
of the expenses for full key search attacks. These estimations are independent of any depth limit or parallelization 
prerequisites. In Table 13, we present cost approximations for the exhaustive execution of Grover’s algorithm 
when ⌊π4 2

k/2⌋ iterations of the Grover oracle are executed without parallelization, with k denoting the key size. 
The G-cost denotes the cumulative count of gates, aggregating the first three columns in the table, representing 
the numbers of 1-qubit Clifford and CNOT gates, T gates, and measurements. Conversely, the DW-cost symbol-
izes the product of the entire circuit depth and width, as illustrated in columns 6 and 7 of the table.

Resource estimates for key search under NISTs MAXDEPTH metric
NIST has established security requirements for AES based on computational resources, listed in order of increas-
ing security strength23.

NIST conservatively estimated the G-cost × D (total gates × depth) as 2170 , 2233 , and 2298 for AES-128, AES-
192, and AES-256, respectively. NIST has since then adjusted the threshold for quantum security in31, Page 45 
by referring to Jaques et al.’s work32 as: 2157 and 2285 for AES-128 and AES-256, respectively.

Given that AEGIS-128 and Tiaoxin-346 have a key size of 128 bits, they fall under security category 
1, while Rocca-S, with a key size of 256 bits, falls under security category 3.

Now we compare the security of the ciphers with the security strength of NIST, as shown in Table 14 and we 
present the gate counts for Grover search under the constraint of MAXDEPTH

Table 15 outlines the cost projections for executing Grover’s algorithm against the ciphers within a specified 
depth limit. The table showcases outcomes achieved by imposing this depth threshold, requiring the paralleliza-
tion of Grover’s algorithm through inner parallelization, aligning with our analysis assumptions. For the Grover 
oracle, a single 256-bit plaintext-ciphertext pair suffices for key recovery. Following the Grover search, each 
measured potential key undergoes classical verification against one plaintext-ciphertext pair.

Conclusion
In this study, we conducted a thorough analysis of the security of three AES-based AEAD ciphers, namely 
Rocca-S, AEGIS-128, and Tiaoxin-346, against quantum adversaries. Quantum computing introduces 
new attack possibilities that were not feasible in the classical era. Among these attacks, Grover’s search algo-
rithm stands out as a powerful technique to reduce the search complexity to the square root. To apply Grover’s 
algorithm, it is necessary to implement the target cipher as a quantum circuit. Therefore, we developed quantum 
circuit constructions for these ciphers, specifically focusing on optimizing the circuit’s T-depth. Using these 
constructions, we estimated the costs associated with implementing Grover’s exhaustive key search algorithm 
for the studied ciphers, we have shown that estimation of the G-cost × D (total gates × depth) of Rocca-S, 

(32 · k − 84)+ 2 · #T gates for{(E NC )}

2 · (Depth of E NC )

Table 12.   Cost of Grover’s oracle.

Cipher #CNOT #1qCliff #T T-Depth Full-Depth Width

AEGIS-128 5163968 506112 1753004 602 17038 6496

Rocca-S 10104256 990976 3432620 588 16664 9793

Tiaoxin-346 9276352 910592 3150764 362 10190 14880

Table 13.   Cost estimates for Grover’s algorithm with ⌊π
4
2
k/2⌋ Grover oracle iterations for attacks with high 

success probability, without a depth restriction.

cipher #CNOT #1qCliff #T T-Depth Full-Depth Width G-cost DW-cost

AEGIS-128 1.93 · 285 1.52 · 282 1.31 · 284 1.85 · 272 1.63 · 277 6496 1.39 · 286 1.30 · 290

Rocca-S 1.89 · 2150 1.48 · 2147 1.29 · 2149 1.80 · 2136 1.60 · 2141 9793 1.36 · 2151 1.91 · 2154

Tiaoxin-346 1.74 · 286 1.36 · 283 1.18 · 285 1.11 · 272 1.95 · 276 14880 1.25 · 287 1.77 · 290
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AEGIS-128, and Tiaoxin-346 are 1.08 × 2294, 1.14 × 2164, and 1.22 × 2164 respectively, which were higher 
than those required for implementing Grover’s algorithm on AES. Based on the reported results, we conclude 
that these ciphers are secure against quantum adversaries when considering Grover’s attack.

As an immediate follow-up, similar analyses can be conducted on various other AEAD schemes to address 
security concerns in the quantum adversarial model. Another interesting direction would be to analyze these 
schemes when the underlying AES is replaced with different block ciphers. Additionally, developing a tool 
to automatically analyze these schemes against Grover’s attack, with the underlying block cipher as an input 
parameter, would be highly beneficial. The proposed model can be extended for other such AES-based AEAD 
ciphers. Furthermore, future research on different quantum error correcting schemes might yield substantially 
optimized outcomes in practice. Identifying improvements in the cipher building blocks may be regarded as a 
key focus for upcoming research efforts.

Table 14.   Cost of Grover search on the ciphers under MAXDEPTH . Note that ∗ denotes a special case as the 
attack does not require any parallelization.

k MAXDEPTH= 240 MAXDEPTH= 264 MAXDEPTH= 296 G-cost × D

128

AEGIS-128 1.14 · 2124 1.14 · 2100 1.39 · 286∗ 1.14 · 2164

TIAOXIN 1.22 · 2124 1.22 · 2100 1.25 · 287∗ 1.22 · 2164

NIST23
2
130

2
106

2
74

2
170

NISTup
31

2
117

2
93

2
84

2
157

256

Rocca-S 1.09 · 2253 1.09 · 2229 1.09 · 2197 1.08 · 2294

Rocca40
1.56 · 2251 1.56 · 2227 1.56 · 2195 1.56 · 2291

NIST23
2
258

2
234

2
202

2
298

NISTup
31

2
245

2
221

2
189

2
285

Table 15.   Sizes of circuits for parallel Grover key search against Aegis are detailed, employing inner 
parallelization as discussed in Section 2.3. Here, r represents the number of plaintext-ciphertext pairs used 
in the Grover oracle, MKP indicates the probability of spurious keys in the subset containing the target key, 
MD denotes MAXDEPTH, M is the number of subsets into which the key-space is divided, and D and W 
are the depth and qubit width of the full circuit, respectively. DW represents the full circuit cost in terms of 
depth × width, while T-DW signifies the T-depth × width circuit cost.

Scheme MD r M log2 (MKP) D W G-cost DW-cost

(a) The depth cost metric is the full depth D only.

Aegis-128 2
40 1 1.33 · 275 −75.42 1.00 · 240 1.06 · 288 1.14 · 2124 1.06 · 2128

Aegis-128 2
64 1 1.33 · 227 −27.42 1.00 · 264 1.06 · 240 1.14 · 2100 1.06 · 2104

Aegis-128 2
96 1 1.00 · 20 −0.66 1.63 · 277 1.59 · 212 1.39 · 286 1.30 · 290

Rocca-S-256 2
40 1 1.28 · 2203 −203.35 1.00 · 240 1.53 · 2216 1.09 · 2253 1.53 · 2256

Rocca-S-256 2
64 1 1.28 · 2155 −155.35 1.00 · 264 1.53 · 2168 1.09 · 2229 1.53 · 2232

Rocca-S-256 2
96 1 1.28 · 291 −91.35 1.00 · 296 1.53 · 2104 1.09 · 2197 1.53 · 2200

Tiaoxin-128 2
40 1 1.91 · 273 −73.93 1.00 · 240 1.73 · 287 1.22 · 2124 1.73 · 2127

Tiaoxin-128 2
64 1 1.91 · 225 −25.93 1.00 · 264 1.73 · 239 1.22 · 2100 1.73 · 2103

Tiaoxin-128 2
96 1 1.00 · 20 −0.66 1.95 · 276 1.82 · 213 1.25 · 287 1.77 · 290

Scheme MD r M log2 (MKP) D W G-cost T-DW-cost

(b) The depth cost metric is the T depth T-D only.

Aegis-128 2
40 1 1.71 · 265 −65.77 1.00 · 240 1.35 · 278 1.28 · 2119 1.35 · 2118

Aegis-128 2
64 1 1.71 · 217 −17.77 1.00 · 264 1.35 · 230 1.28 · 295 1.35 · 294

Aegis-128 2
96 1 1.00 · 20 −0.66 1.85 · 272 1.59 · 212 1.39 · 286 1.46 · 285

Rocca-S-256 2
40 1 1.63 · 2193 −193.70 1.00 · 240 1.95 · 2206 1.23 · 2248 1.95 · 2246

Rocca-S-256 2
64 1 1.63 · 2145 −145.70 1.00 · 264 1.95 · 2158 1.23 · 2224 1.95 · 2222

Rocca-S-256 2
96 1 1.63 · 281 −81.70 1.00 · 296 1.95 · 294 1.23 · 2192 1.95 · 2190

Tiaoxin-128 2
40 1 1.23 · 264 −64.30 1.00 · 240 1.12 · 278 1.39 · 2119 1.12 · 2118

Tiaoxin-128 2
64 1 1.23 · 216 −16.30 1.00 · 264 1.12 · 230 1.39 · 295 1.12 · 294

Tiaoxin-128 2
96 1 1.00 · 20 −0.66 1.11 · 272 1.82 · 213 1.25 · 287 1.01 · 286
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