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SLED:

A Method for Doubling SLAC's Energy

This note gives the theory of a method for increasing SLAC's energy
using passive microwave components. The overall system will be called
SLED (SLAC Energy Doubler) for convenience. 1In SLED, microwaﬁe networks
are inserted in the output waveguide line of each klystron. These net-
works, which contain high Q resonant cavities, store energy in the klystron
power output pulse over a large fraction of the pulse length and then
deliver it to the accelerating sections during a much shorter period.
By this means, peak power is enhanced at the expense of pulse width.
Triggered phase shifters which can flip the input phase to the klystrons
by 180° during the drive pulse are also required. 1In addition, it will
be advantageous to lengthen the klystron modulator pulse in order to
increase the power enhancement factor that can be obtained from SLED.
Second-order effects, such as pulse jitter, ripple on the pulse amplitude,
finite pulse rise-time, and inperfections in the microwave components of
the power enhancement network are not taken into account in this note.
Engineering design problems such as the temperature stability requirements
on the high Q cavities, although important to the practical realization
of an operating system, also will not be discussed here. Initial considera-
tions indicate, however, that no unusual problems should be encountered in

the engineering design of SLED.
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Figure 1 shows a sketch of the microwave components in a typical
power enhancement network (PEN) inserted between a klystron and its
associated accelerating sections. We will first calculate the fields
at the output of the PEN as a function of time. Next, the electric
field E(z,t) in the accelerating sections will be computed as a function
of time t and length z along the structure, taking into account the
variation in group velocity with z. By integrating the field with re-
spect to z, the accelerating voltage is then obtained as a function of
time. Examples of the accelerating field along the structure, and the
energy gain as a function of time, will be given for a particular choice
of practical system parameters which leads to an increase in the maximum
SLAC energy by a factor of 1.84. Beam loading is investigated, assuming
that the accelerating voltage wa&eforms are identical for each klystron
and that they follow the theoretical variation. It is calculated that
an average current of 13 uA can be accelerated at a loaded energy of
43 MeV (unloaded energy = 48 MeV), within an energy spectrum width of

about one-half percent.

Field at the Qutput of the PEN

The variation as a function of time of the fields in the waveguide
at the output of the klystron is shown at the top of Fig. 2. This will
also be the input waveform to the PEN. At time t‘ an instantaneous
phase reversal of exactly 180° is assumed. At time t, the klystron out-

put pulse ends. The rise and fall times of the pulse are assumed to be

negligible. The two cavities are also assumed to be tuned exactly to
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resonance. If the phase reversal is not exactly 1800, or if the cavities
are not tuned precisely to resonance, the voltages must be treated by
means of a vector diagram and the analysis is then considerably more
complex. Assuming that the cavities in the PEN are identical, there will
be no power reflected back to the klystron. This will also be true even
if the cavities are off resonance, assuming that they are both detuned

by the same amount. It will prove convenient to consider the.field EL

at the output of the PEN to be the algebraic sum of an incident wave Eg
from the generator and an emitted wave Ee from the cavities. We will
calculate the fields at the output of the PEN during three time intervals,
denoted as A (0 <t <t,); B (t] <t < t2); and C (t > tz). During time

interval A, the PEN cavity fields and hence the emitted field vary as

-t/T

where a =28/(1 + B), B is the cavity coupling coefficient, and TC is

the cavity filling time, T, = ZQLAJ. At time t = t , the emitted field

]’
-t /T
E = —aé.- e ! é) .
e

The minus sign is used because the emitted wave has a phase which tends

is

to cancel the direct incident field from the generator, which has been
assumed positive (Eg = +1). For t] — o the cancellation is exact for

critical coupling (e =1, Ee-* ~1), and the load field would then be
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zero., The emitted field waveform during time interval A is sketched
in Fig. 2.
The load field during pulse interval A is EL(A) = Ee(A) + Eg(A) =

Ee(A) + 1, or

' -t/TC -t/TC
EL(A)=1-a1-e >=ae - (a-1) . )

At time t = t, - 4t, the load field is

At time t = t, + 4t, the load field is obtained as ELT = Ee]+ Eg(B) =

]

E -1, or
e]

-t /T
E+=-1+a<1-e‘c>. 2)

- +
Note that AELI = ELI EL]

waveform at time t] is shown in Fig. 2.

= ~2. This discontinuity in the load field

During time interval B, the fields in the PEN cavities and hence

the emitted field vary exponentially between Ee = E . and Ee = +a, which

el
is the level the field would eventually reach were the pulse Eg(B) = -1

to last indefinately. That is,

-(t - t,)/’rC

Ee(B) = (E.. -a) e + a .

el
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At time t2 the emitted field is

-(t, - tl)/TC

= (E  =-a) e + a.

EE? e

Since Eg(B) = -1, the load field is given by EL(B) = Ee(B) -1, or

-(t - £))/T,

EL(B) = (Ee] -a) e + (a=1) .

Expressing the field in terms of ELI = Eel -1,
+ =(t - t)/T,

EL(B) = (ELI -a+1) e + (a~ 1) o 3

At time t=1t, - ét, EL(B) = EL2 where
- -(t, = £ )/T
B = (ELT-a+1) e 2 VCi(a-1). (4)

During time interval G, the generator field is zero, the load field is

then equal to the emitted field, and both vary as

-(t - t2)/TC

EL(C) = Ee(C) = Ee2 e .
Since E = E + =E _+1
e? L2 L2 ’

-(t - t2)/TC

E (C) = (EL; +1) e . (5)

Note again that the discontinuity in the load field waveform at t = t, is
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equal to the discontinuity in the incident waveform, AEg. This is shown
in Fig. 2.
Equations (1), (3) and (5) show how the output field from the PEN

varies during time intervals A, B and C in terms of the basic cavity and

+ +
L1 L)

and EL; are given by Eq. (2) and (4). The field EiT is important be-

cause it is the highest field reached at any time, while the field EL;

pulse parameters and the fields E_ = and EL;' In turn, the fields E

is important because it is a measure of the droop in the output field ‘of
the PEN during the time interval t, - t], which will usually be set equal
to the accelerator filling time TA.

In Fig. 3 the PEN input and output waveforms are shown to scale for

the following system parameters:

t2 = 5.4 usec

TA = 0.83 usec

B =5

a = 1,67

Q = 1.15 x 10°

0

TC = 2Q0/w(1 +8) = 2.13 usec
w/2mw = 2856 MHz

where QO is the unloaded Q for the PEN cavities. This Qo can be obtained
using room~temperature cavities of reasonable dimensions operating in the
TE023 mode. The value shown for B has been chosen to optimize the en-

hancement in energy gain. Note also that the assumed pulse length is

is twice the present SLAC rf pulse length.
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The solid curves in Fig. 3 show waveforms for the case when the phase

reversal at t] takes place one accelerator filling time before the end of

the pulse; that is, t, = t, = TA. For this case,

-1.46. The dashed waveform shows the effect of flipping the phase two

+— -—
ELI = «2,47 and EL2

' +
filling times before the end of the pulse. For this case, EL? = -2.38

and E = -0,73.

L2

Field in the Accelerating Structure

We next calculate, as a function of time, the field along a SLAC
constant gradient disk-loaded structure. The group velocity in a struc-

v z = v l - V4 l I,

where, for the SLAC structure, vgo = 0.0204c and the constant g is equal to

0.681. The time for a wavefront to travel to position z along the structure is

1

z
L dz' L 1 1
At = “/P ——— = fn
- ' - 1
Vo / (1 - gz") Veo g (1 - gz")
where z' = z/L. The accelerator filling time is the value of At for z' =1,
or
L 1 1
TA = N, f{n . .
£0 g g
Therefore,
At Bn[l/(l - gz')] 1 1
= at' = = ¢n(———m—m—1} , (6)
T, en[l/(l - g)] b 1 - gz'
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where b= [n [1/(1 - g)} = 1,144 for the SLAC structure. Solving the

preceding relation for z',

The field at any point along the structure is now obtained from

ES(z,t) = ES(O, t ~ At) ,

where At is given by Eq. (6) and where ES(O,t) is obtained from Eqs. (1),

(3) and (5). Thus

-ut' -v
ES(A) = ae (1 -gz") -(a-1), (8a)
+ -u(t'-t;) -V
ES(B) = (EL ~a+ 1) e a1-gz'y + (a=-1), (8b)
i
. ~u(t'-t2) -v
ES(C) = (EL2 + 1) e a-gz"y , (8¢)

where the additional constants u = TA/TC and v = u/b have been introduced.
In using the preceding relations, the position that the waveform discon-

tinuities (which occur at t = 0, t and t,) have propagated to must be

i
taken into account. The location of a field discontinuity on the struc-
ture produced by a waveform discontinuity at time té is given, using Eq. (7),
by

1
z4 = ] - e . (9
g
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Using, for example, t'd

t, in Eqe (9), there will be a discontinuity

on the structure at z' z; for t' - t: < 1. The field is given by

d
Eq. (8b) for 0 < z'< z:, while for z; < z' < 1, the field on the struc-
ture is given by Eq. (8a). Figure 4 shows the development with time of
the field on the structure for the parameters listed previously on p. 6.
In addition, the following structure constants have been used: g = 0.681,
b=1,144, u = 0,390 and v = 0.341.

If the transient response of the disk-loaded structures to step
changes in field were to be taken into account, we would expect the field
profiles shown in Fig. 4 to develop ripples with an amplitude on the order
of £10% at the end of the 3-meter long structure.1 Ripples of this order
are, in fact, observed experimentally at the end of the structure for an
input waveform as shown at the bottom of Fig. 2. The effect on the energy
gain should be considerably less. In the case of SLAC sections for a step
input pulse, the ripples on the energy gain waveform have an applitude of

+0.5%, which is only 5% of the amplitude of the ripples on the field

profile.2

Calculation of the Energy Gain

The accelerating voltage is obtained by integrating Eqs. (8a), (8b)
and (8¢c) with respect to z'. A complicating factor is that the integration

must sometimes be carried out in two parts, using one relation for the

1For example, see R, B. Neal, ed,, The Stanford Two-Mile Accelerator,
W. A. Benjamin, Inc., New York, 1968), p. 123.

21bid, p. 125.
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field up to a wavefront discontinuity as given by Eq. (9), and another
relation for the field following the discontinuity. For example, in

pulse interval A the following partial energy gain expressions are

required:
-ut'!
e l-v
V. (0—z!) = —————— |1 - (1 - gz!) - (a-1)z', (10a)
A d d
g(l - v)
-ut?
ae l-v
V,(0—~L) = ——— (1 - (1 -¢8) - (e-1), (10b)
g(l - v)
-ut'
ae 1l-v ’ l-v .
1 = - ' - - - - -
v, (z}—~1) a - gz a-e J (@- 1 - z)
gl - v),
(10c)
where
1
Zd
t = '
VA(O—-zd) f ES(A)dz
0
and so forth. In these expressions, zé is given by Eq. (9) with té = 0.
By substituting for zé using Eq. (9), the three above voltage gain ex-
pressions can, if desired, be written as functions of t' only. The par-
tial emergy gain expressions for pulse intervals B and C can be written
in a similar manner:
+
Epy -+ 1 u(t' t) 1-v
1 = - - 1 - ]
VB(O->zd) e 1 (1 gzd) + (a l)zd ,
g(l - v)
(1l1la)
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+
(ELI metl) -u(t'-t;) 1-v
VB(0—>L) = e [1 -1 -8 + (e - 1)
g(l - v) (11b)
+
By ot D yeraeh [ L-v 1-v]
v, (z;—~L) = e (1 - gz} - (-8
Bd g(l - v) d
+ (a - 1)1 - z) (11c)
(EL; + D -u(t'-t;) [ 1-v
V. (0—z!) = e 1 - (1 - gzh) (12a)
(O = p ]
(EL; + 1) -u(t'-t;) 1l-v
V (0=1) = ———— 1-(L-g) (12b)
g(l - v)

The total accelerating voltage is now obtained as

! = I e

0<t' <1 v VA(O zd),td 0

1< t' < t: vV = VA(0—>L)
1 1 ] = ! s . | -
t]< t' < (t] + 1) v VB(O zd) +VA(zd L) 3 t3 tI

[ t T . = —

(t1 +1)<t'< ty: Vv VB(O L)
! 1 ! = ! . . | S
t2 < t'< (t2 + 1) v VC(O zd) + VB(zd L) 5 ¢t t2

1 r . —
() +1) <t 2 V=V (0—~L)

Figure 3 gives the emergy gain V as a function of time for the PEN

output wavefore, EL’ as shown. The peak energy gain for the case
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t, -t = X which occurs at time t,, is 1.84 for the PEN parameters and

2 1
rf pulse length (5.4 usec) chosen for this example. Note that a direct

2’

integration of the EL waveform over one accelerator filling time would
give an energy oﬁ 1.95. The effect of the variation in group velocity
along the constant gradient structure causes, in this case, a 6% energy
loss as compared to the case for a constant impedance, lossless struc=-
ture. The reason for this energy decrease is that the early, high field,
output from the PEN is compressed at the low group velocity end of the
structure relative to the low field portion of the pulse in the high
group velocity region at the front of the structure. The high field
portion of the pulse therefore contributes relatively less, and the low
field portion relatively more, to the energy integral. A similar effect
would of course take place for a constant impedance structure, where the
early, high field, portion of the pulse is at the end of the structure
after one filling time and hence suffers the greatest attenuation.

The dashed waveform in Fig. 3 shows the incident generator field,
the PEN output waveform and the energy gain for the case t2 - t] = ZTA.
Although the total time that the energy gain is greater than unity is
substantially increased as compared to the case ty-t, = TA’ the maximum

absolute value of the energy gain at time t; + 1 is decreased somewhat

from 1.84 to 1.76.

Beam Loading and Energy Spectrum

It is obvious from the plot of energy vs. time in Fig. 3 that the

pulse length of a beam accelerated near peak energy will necessarily be
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short compared to the structure filling time. From Fig. 3 it is seen,

in addition, that the energy gain is rising as a function of time as peak

energy is approached. It seems reasonable, therefore, to expect that by

turning on the beam prior to reaching peak energy, the transient energy

droop due to beam loading might roughly compensate the rising unloaded

energy gain characteristic, resulting in a reasonably tight energy spectrum.
Table I gives the energy gain multiplication factor ME as a function

of time for the time interval immediately preceding maximum energy for

the case t; -t! = TA' Assuming that the unloaded energy of the present

1

SLAC accelerator would be 26.0 GeV with 30 MW klystrons, A in Table I

gives the unloaded energy to be expected from SLED as a function of the

time interval before maximum energy, 4t' = t; - t'. The next column
gives the difference between the energy at time t' = t; - At' and the

maximum energy Vm at time t;. The induced energy change due to beam

loading at time At' after turning on a beam of peak current iP is given

by

2
= 14 VoL At
vy klp(ZAt At )

where k = 35 MV/mA for the total SLAC length. Setting V, = V_ - V., we

b m 0

can solve for the peak current ip as a function of 4t' = (t; - t'). For

each peak current obtained in this way, the energy is the same at the
beginning and end of the pulse and is equal to VO. Values for the peak
current are given in Table I together with the beam pulse width Tb = TAAt',

with TA = 0.83 usec. The average current is then obtained as ia =T i_,

b'p
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where r is the pulse repetition rate. Values for average current are
given in the Table for r = 180 pps.

We consider, finally, the energy spectrum to be expected. Although
the loaded energy is equal to V0 and is the same at the beginning and
end of the beam pulse, it will deviate from V0 during the pulse. The
deviation is a maximum at a time roughly at the mid-point of the pulse.
The maximum relative values, AV/Vb, for this deviation are shown in the
final column in Table I.

By shaping the pulse current as a function of time, the energy
spectrum width can be reduced below the values shown in Table I. Consider
the case for t! - t' = 0.4 (or T

2 b
%
width of 1.8% at a constant peak pulse current of 219 mA. By pulsing the

= O.4TA), which gives an energy spectrum

current to 280 mA for the first 0.2 TA and then to 170 mA for the final
0.2 TA, we calculate that the maximum total energy deviation at any time
during the pulse is less than 0.57%. By more complex pulse shaping, the
spectrum width could in principle be reduced even further. In a real
machine, the effects of trigger timing errors and jitter will at some
point limit the energy resolution that can be achieved.

Figure 5 shows the peak and average beam current as a function of

loaded energy. At 107 beam loading (a 10% reduction in energy below the

7’:’J.‘he SLED pulse current will in practice be limited by beam break-up.
For the present SLAC accelerator, the beam break-up limit on pulse
current is 160 mA for a beam pulse width of 0.3 usec and a final en-~
ergy of 20 GeV. For a final energy of 40 GeV, a pulse current on the
order of 250 mA could in principle be accelerated at this pulse width,
although the focusing along the accelerator would have to be increased.
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unloaded energy), the loaded energy is 43 GeV, the average current is

13 A and the beam power is 560 kW. For the present SLAC machine (again
assuming 30 MW klystrons), the average beam current at 107 beam loading
is 40 wA and the beam power is 950 kW. Thus, from the standpoint of

the conversion of average rf power into average beam power, SLED is not
substantially less efficient than the present machine.

It is worth noting that conversion to SLED can take place with only
a minimum amount of interference with accelerator operation during the
changeover period. After a PEN is installed, operation of that station
can be restored to the normal, pre-SLED mode of operation simply by
detuning the two high Q cavities and deactivating the trigger that pro-
duces the 180° phase reversal. Under these conditions the rf pulse
length will be 5.4 wsec at a maximum repetition rate of 180 pps, and the
beam pulse length can be increased to about 4.3 wsec. Since the beam
pulse is 2.7 times as long as the present 1.6 usec, the post-SLED
duty cycle in this mode of operation will be higher by 35% than at present.
The energy spectrum can also be expected to be somewhat tighter, since
the ratio of the steady-state portion of the beam pulse to the transient
portion is increased by more than a factor of four.

A summary of parameters for SLED and for the present SLAC accelerator
is given in Table II. Because the modulator high-voltage pulse length
has been doubled and the maximum repetition rate has been cut in half,
the energy increase provided by SLED is achieved without an increase in

the average input power to the accelerator.
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"TABLE 1

SLED Beam Loading Characteristics

e - M v, v -V i Ty i E AV/V

? (GeV) (GeV) (mA) | (usec) | @A) ! (%)
0.5 | 1.545 | 40.17 7.72 | 294 } 0.42 220 | 2.9
0.4 .653 | 42.98 4.91 | 219 | 0.3 . 13.1 T 1.8
0.3 732 | 45.03 2.86 | 160 0.25 7.2 0.9
0.2 789 | 46.51 . 1.38 | 109 i 0.17 3.3 0.4
0.1 | 1.824 | 47.42 1 0.47 71 } 0.08 | 1.0 Aé 0.2

0 E 842 | 47.89 0 o' o ' o 0




Comparison of SLED and Present SLAC Parameters

TABLE II

Unloaded Energy
Loaded Energy
Repetition Rate
Rf Pulse Width
Beam Pulse Width
Average Current
Peak Current
Duty Cycle

Energy Spread

(Computed assuming 30 MW klystrons)

(GeV)
(GeV)
(pps)
(usec)
(Usec)
(ua)

(mA)

(%)

Average Beam Power (kW)

Present SLAC

26
23.5
360
2.7
1.6
40
70
6 x 10~
1.0

940

5

SLED

48

43

180
5.4
0.3

13

220

6 x 10~

0.5

560

3

*

“Assumes 280 mA pulse for the first 0.16 psec, then
For constant 220 mA peak current, estimated energy

next 0.16 usec,
spread is 1.8%.

170 mA for the
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