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Quantization in terms of symplectic groups:
The harmonic oscillator as a generic example
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Abstract. The conventional quantization of the harmonic oscillator in terms of operators @ and P can be
implemented with the help of irreducible unitary representations of the Heisenberg-Weyl group which acts
transitively and effectively on the simply connected classical phase space S;, = R?. In the description
of the harmonic oscillator in terms of angle and action variables ¢ and I the associated phase space Sy, 1
corresponds to the multiply connected punctured plane R? — {0}, on which the 3-dimensional symplectic
group Sp(2,R) acts transitively, leaving the origin invariant. As this group contains the compact subgroup
U(1) it has infinitely many covering groups. In the here relevant irreducible unitary representations
(positive discrete series) the self-adjoint generator Ko of U(1) represents the classical action variable I.
It has the possible spectran + k, n = 0,1,...; k > 0, where k depends on the covering group. This
implies different possible spectra for the action variable Hamiltonian Aw K of the harmonic oscillator. On
the other hand, expressing the operators ( and P (non-linearly) in terms of the three generators K etc. of
Sp(2,R) leads to the usual framework. Possible physical (experimental) implications and generalizations
to higher dimensions are discussed briefly.

1. Introduction: Angle and action variable for the HO
It may appear as a provocation or even a joke to present a contribution on the old-fashioned harmonic
oscillator (HO in the following) to an established international conference devoted to current and relevant
research in physics! But see for yourself! The basics for the present paper are described in my long article
[1] which contains a wealth of references to the work of others which will not be quoted here again. The
present contribution will sketch the main idea and emphasize some new important physical aspects.
The canonical Eqgs. of motion

p=-bg,p=MqG,b>0, €]

for the HO can be simplified by the canonical transformation

21
dp. D) =\ g7 cose, plp])=-V2Mwlsing, w=+b/M, 2)

which is locally symplectic:

dgNdp=dpANdl, orLzl. 3)

It is singular for (¢, p) = (0,0),I = 0 (equilibrium or critical point) corresponding to the branch point
I=00f VI.
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The Hamiltonian is now given by

1 1
H = P+ -Mu?P=Hp,l)=wl 4
(@:p) = 537 P + 5 Mwq (o, 1) =wl, )
implying the (¢, I)-Egs. of motion
OH OH
They have the solutions
p(t) =wt+ ¢y, I = const.>0. (6)

Here the angle ¢ is essentially the time variable ¢. Notice that the time ¢ does not stop after a period
wt =21+ pp!
We now have two globally different phase spaces for the HO:

Sep = {(g,p) eR*} =R? @)

and S,;7 = {(p, 1), € Rmod27,I>0} (8)
~ St x RT = R? - {0}.

The phase space S, 1 is topologically a simple cone with the tip deleted:

I singp

12

I cosp
{(0,0)} deleted

tip deleted

It may also be interpreted as the orbifold
Sor = Sqp/Z2- ©)

It is shown in Ref. [1] (the reasons will briefly be indicated in the next Sec.) that the proper global
coordinates on S, ; are the following ones:

ho(p, 1) =1>0, hi(p,I) =1Icosgp, ho(p,I)=—Isinyp, (10)
which obey the Pythagorean relation
R2=h2+h3=h3. (11)
The invariant measure on S, 1 is

du(p, I) = 20(hg) 6(h2 — h?) dhodhydhy = ddl = dqdp . (12)



GROUP 28: Physical and Mathematical Aspects of Symmetry IOP Publishing
Journal of Physics: Conference Series 284 (2011) 012036 doi:10.1088/1742-6596/284/1/012036

The h;(p, I) obey the Poisson Lie algebra

{ho,h1}or = —ha, {ho,ha}or = h1, {h1,ha}y 1 = ho, (13)
where
{hj, hk}%[ = Qah]’ a[hk - a[hj aphk:- (14)
Thus, the h; generate the isomorphic simple Lie algebras
s0(1,2) =sp(2,R) =sl(2,R) = su(1,1). (15)

This is an analogue of the nilpotent Poisson Lie algebra of the Heisenberg-Weyl group:

{e,p} =1, {¢,1} =0, {p,1} =0. (16)

On S, 1 the basic “observables” for the construction of Hamilton functions are now the h;, j = 0,1, 2.
Simple examples are:

(i) Time-dependent frequency w :

H=wt)I, o(t) £0, (17
with the Egs. of motion _
p=0H=w(t), I=-0,H=0, (18)
so that .
o(t) :/ drw(T) + o, I(t) =1y = const. . (19)
to
The energy
E(t) = w(t) Io (20)

is not conserved! Conserved is the action variable I = I .
(i1) If the Hamilton function

1
H(q,p) = mzﬁ +V(q) = E = const. (1)

has bounded periodic motions on S, ,, then the associated action variable is defined as
1B)= §  daplai ) i B) = £/ 2M(E Vi), @)
E

where C'(F) is the closed contour in phase space, determined by the relation H(q,p) = E. Here
I(E) is the area of the phase space region with boundary C'(E).
E.g. for the Morse potential

Wio(q) = Vp tanh(aq) (23)
one gets
1
H(I) = wo I(1 — ‘ZLV), wo = a\/2Vy/M . 24)
0
(iii) Example where H = H (¢, I) depends only on some h;:
H=w(ho+gh)=wl(l+gcosyp), |g| <1. (25
Here
H(p,I) = E = const. . (26)
Solutions of the associated Eqs. of motion are:
N i N
tanfp(?)/2) = /7= tanl(v/1 = ¢2) (i/2)] @7)

~ 1_t 2 2
If)=Iy[1+gcosp®)] ™ ; Iy=Fjw, t=wt, cosp = an”(¢/2)

1+ tan?(p/2) (28)
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2. Brief justification of the global coordinates h;,j =1,2,3 on S 1

I sketch briefly the justification for the choice (10) of the global basic coordinates h; on the phase space
S,,7. The main tool is “group theoretical quantization” as developed by Isham, Sternberg and others.
Details and references can be found in Ref. [1]. One has to look for an appropriate symplectic and
transitive transformation group on the phase space in question. In our case the 3-parametric symplectic

group

G = Sp(2,R) (29)
(being isomorphic to the groups SL(2,R) = SU(1,1)) is defined by
_( an a2 _ _
g—<a21 Qm),a]kGR, detg=1, (30)

f-(ﬂé>g=<flé). 31)

It acts on the real plane R? in an obvious way by matrix multiplication of (g, 5)” € R2. The action of G
leaves the origin (0, 0) invariant and therefore is the proper “canonical” group of the punctured plane

Sa0 = Sgp — {(4,5) = (0,0)} = R* — {(0,0)}, (32)

with g acting symplectically:
dlg(@)] A d[g(p)] = dg A dp. (33)

N.b.: quantities with “tilde” are made dimensionless by using the intrinsic length \g = \/%/(w M) and

h: q=q/ro;p=Xop/h.
In order to derive the coordinates (10) one needs the first three of the 1-dimensional subgroups

. [ cos(0/2) sin(0/2) o o
s ( —sin(0/2) cos(6/2) ) , 0 € (=2m, +2n] (34)
A ( o= T/2 70/2> TER, 5)

cosh( s sinh(s/2
o - ( sinh(s/ Cosh((s§2)) ) , SER, (36)
(1) een "

Given a smooth function f(z) each subgroup {g(u), g(u = 0) = 1} induces a global Hamiltonian vector
field

Af)(2) = lim ~[f(g(~u) - 2) — f(2)], (38)

u—0 U
where A is a vector field of the type
A= —[05)(x) 05 — 0 (x) 5], == (3.p)" - (39

For the above subgroups R, A and B the corresponding Hamiltonian functions j(z) are

o R e e N
1 I
A: g = —-gp= -—sin2 41
j2() 5 4D = 5 sin2p, (41)
. . . 1 ~2 ~2 . I
B: ji(z) = 4( @ +p°) = 57 C0s 29, (42)
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where the relations (2) have been used. Thus, by a very simple symplectic rescaling I/2 — I, 2¢ —
Y, j1 — —J1, j2 — —jo one obtains the basic coordinates (10). In other words: the global coordinate
functions h;(¢,I) on S, ; are determined by the action of the “canonical” symplectic group Sp(2,R)
on Sy 0 !

Compare this to the analogous global coordinate functions g and p on S ;,, where the canonical group
consists of the translations

q—q+a, p—=p; ¢q—q p—=p=>b abeR, (43)
which generate on S ;, the vector fields
Ay =8, Ay =0, (44)
with the associated global Hamiltonian functions

Jg(x) =p, Jp(x) =4q. (45)

Let me add some structural relations on the classical level: The coordinates h;, 7 = 0,1, 2, transform as
vectors with respect to the group SO'(1,2) = Sp(2,R)/Zs, whereas the coordinates g, p transform as
vectors with respect to the group Sp(2, R) which is a twofold covering of SO'(1,2).

The phase spaces Sy, ; and S, ;, may be represented as homogeneous spaces as follows:

Spr = SO (1,2)/N, S, = Sp(2,R)/N, (46)
which again yield the orbifold
S = Sqp/ %2 47

3. Quantum mechanics for angle and action variables of the HO
The quantization of the global “coordinates” h; from Eq. (10) is implemented by promoting them to
self-adjoint operators,

hj — K; = h K (48)

which obey the associated Lie algebra (13):
(Ko, K1] =i K2, [Ko, Ko] = —i K1, [Ki, Ko] = —i Ky. (49)

The self-adjoint generators K. ; may be obtained from unitary irreducible representations of the corre-
sponding groups SO'(1,2), Sp(2,R) [ = SL(2,R), SU(1,1)] or one of their infinitely many covering
groups.

As K is the generator of a maximal compact abelian subgroup, its eigenstates may used as a Hilbert
space basis: )

where k is some real number (“Bargmann index”). With
Ky =K £iK, (51)
it follows from the relations (49) that
Kilk,n)=[2k+n)(n+ ]2k, n+1), K_|k,n)=[2k+n—1)n"?k,n-1). (52)
If there exists a |k, 0) such that

RO’k70>:k‘k70>7 R—’k70>:07 (53)
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then )
Kolk,n) = (n+k)|k,n),n=0,1,...; k>0. (54)

This is the so-called “positive discrete series” D,(CH among the different types of possible irreducible
unitary representations of Sp(2,R) (see Ref. [1] for details). The Bargmann index k characterizes an
irred. repr. D,(j).

The Group SO' (1, 2) has infinitely many covering groups because its compact subgroup SO(2) = S

is not simply connected! Let us denote the m-fold covering by

1

SO{M(LQ), m=12,.... (55)

)

Its irreducible unitary representations D,E:Jr have the indices

=t

)
m

peN={1,2..}. (56)

This shows that k,,;,, = 1/m can be arbitrarily small > 0 if m is large enough!
The 2-fold coverings

Sp(2,R) = SL(2,R) = SU(1,1) (57)
have k£ = 1/2. The related (¢, p)-Hamiltonian
H(g.p) — Houel@ P) = 55 P> 4 - M Q? (58)
9 osc 9 2M 2
R? d? 1
- 4 - MW 59
oM dgZ 2 (59)
has eigenvalues
1
En:hw(n+§), n=0,1,.... (60)
However, the (¢, I')-Hamiltonian
H(p,I) = Hpse(K) =w Ko, K =h(Ko, K, K>) 61)
can have spectra
Egn(p,l)=hw(n+k),n=0,1,...; keR"! (62)

How to reconcile the two results if k # 1/2?
Interesting enough there exists an operator version of the mapping (¢, I) — (g, p) from Eq. (2), namely

B, Ao = — ih =
= Q(K)= "% (AT+ A)(K), P=P(K) = AT — A)(K), 63
Q= Q(R) = T (A + A)(K) (B) = 5 (Al = A)(R) (©3)
Ao = Vh/(Mw), (64)
where the operators

A(K) = (Ko + k) PK_, AY(K) = K\ (Ko +k)~'/2 (65)

act as usual:
Al lk,n)y =vn+1lk,n+1), Alk,n)=nlk, n—1). (66)

This means
A, AT =1 vD", (67)
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independent of the value of k!!
So again
HOSC(Q7P>‘k7n> :hw(n+1/2)‘k7n>7 (68)

where now
H,o(Q,P) = hw (ATA+1/2). (69)

Thus, the (¢, I)-variable QM of the HO is more subtle than its conventional (g, p)-variable one, due
to the topologically non-trivial classical phase space S, ;! As the transformation (65) “erases” the k-
dependence, the usual Stone-von Neumann uniqueness theorem for self-adjoint () and P still holds!
Egs. (65) are the operator version of the classical relations

_ 2 hl(QOaI) . h?((pvl)
Q(SO’I)_VMW\/W’ p(%l‘)—v?Mwim- (70)

The most important physical question is, of course, whether one can detect the k-dependence experi-
mentally. More about that below.

3.1. Simple consequences
The Casimir operator of a representation D,(:r) is

C=K}4+ K- K:=k(1—k). (71)
This means that the “classical Pythagoras” (11) is violated quantum mechanically for k # 1, e.g. for the

HO with & = 1/2!
The unitary time evolution is given by

U@)=e M, H=RKy=N+k, wi=i=0, (72)

i.e. time is an angle variable here!
The unitary operator (72) implies the usual Heisenberg Eqgs. of motion:

U(—f)f(lU(f) = cost K +sint Ko, U(—f)f(gU(f):—sinff(l—i—cosf.ffg; (73)
U1 QU®E) = costQ+sintP, U(—)PU() = —sint Q + cost P. (74)

3.1.1. Covering groups For t = 2 the operator (72) becomes

U(t = 2m) = e~ 2™k (75)
If
k=n/m,nméeN, (76)
this implies for SO[Tm] (1,2):
Ut=m2nr)=1. (77

The ground state |k, 0) has the time evolution

U(E) k,0) = e |k,0), (78)
with the associated time period
2
Tom = —, wy = kw, (79)
Wk

which can become arbitrarily large for k = 1/m, m — oo.
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3.1.2. Some matrix elements It follows from the relations (51)-(53) that

(k,n|K;|k,n) =0, j =1,2,

- 1
(AK))j, = 5(n2 +2nk+ k), j=1,2,

so that X
(AK1) i (AK2) g = 5(n2 +2kn + k),

- ~ k
(AKl)k,n:O (AKQ)k,nZO = 5 .

The last relation shows that k& — 0 is a kind of classical limit in the angle-action framework!
The composite () and P have the usual k-independent properties

(k,n|Qlk,n) =0, (k,n|Plk,n) =0,
(AQ)En = (AP, =n+1/2,

(AQ)kn (AP)y =n+1/2.

4. Possible applications

(80)

C29)

(82)

(83)

(84)

(85)
(86)

For applications of the angle-action framework it is important to use the variables h; and K as primary
observables, e.g. as building blocks for the construction of Hamiltonians! An additional experimental

problem is how to avoid the dominance of the ¢- and p-degrees of freedom!
For k = 1/2 a possible Hilbert space for the HO is the Hardy space characterized by

2m
(fa, f1)+ —/0 g'f;('ﬂ)'fl(ﬁ), basis : e, (9) ="’ n=0,1,...

Now ]
f(o =-0y+1/2.
')

For k # 1/2 one can use the associated Hilbert space with the scalar product (see Ref. [1])

(fo, fi)4.k = (fo, Arfr)+, (Apen) (V) = (%‘) en (V).
It has the orthonormal basis
ek,n(ﬁ) - nl en(ﬁ)v (2]€)n = F(Qk‘)
Now one has ]
K() = ;819 + k,

- o1 - a1
K+ = €M9(f819 + Qk) 5 K_ = 6_“9 faﬁ .
(3 (3

Examples:

&7

(88)

(89)

(90)

oD

92)
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(i) For experimental tests a HO with a time-dependent frequency w(t) may be of considerable interest

(ii)

(iii)

(see examples (iii)). The associated Schrodinger equation (h = 1)
H = w(t)Ky, i0)(t,9) = Hap(t, )
may easily be solved by a separation of variables:

Y(t,9) = o(t) f(9), Kof(¥) = 1o f(9),

where o
O'(t) _ O'(to) e—zfo fto dr w(r) .

If f(19) is an eigenfunction (90), then
I 0o=n-+ k.

Here I is constant, not the energy £ = w(t) Iy!

The Hamiltonian ~ 3
H =uw(Ko+gK1), |g| <1,

is the quantized version of the classical one (25). It has the eigenvalues
E,=wn+k)v1—g?
and the eigenfunctions

. —
Jrem(P) = Ci (1 + g cos 9)~k o {(ntk)2arctany /137 tan(9/2)

First-order perturbation theory yields
(s mIH |k, ) = w[{k, ml Kolk, n) + g{k, m| Ky |k, m)]

so that
(k,m|H|k,m) =w(n + k);

notice that the exact eigenvalues (98) are of second order in g! Furthermore

(kyml H ey m = 1) = £ [m(2k +m = D]'V2, (s 1HE,0) = gw/F/2.

—kv
] }, C} = const..

93)

(94)

95)

(96)

o7

(98)

99)

(100)

(101)

(102)

Possible experiments should make use of the essential property that the action I or Ky is the basic
observable, not the Hamiltonian w Ky! This is an old idea which was already exploited in the
framework of the old quantum mechanics (e.g. by Mulliken in 1924) even before the “correct”
modern QM was found in 1925. The main idea is as follows: The frequency w = /b/M of a given

HO type may be changed, either by modifying the mass M or (and) the oscillator strength b!

Consider two different oscillator frequencies w; and wo and the transitions from some “exterior”

levels as indicated in the following figure:

E
E, b

]

E()(l) _ hwl k E0(2) = ﬁu}2 k
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The transitions are associated with the frequencies
Wa1 = [Eq — Eo(1)]/h, wp2 = [Ey — Eo(2)]/h, (103)
which lead to the k-dependent differences
Wa,1 —wh2 = (Eq — Ep) /b — k (w1 —w2), (104)

which - in principle - can serve to determine k!
Examples:

o The relation (104) has been used by Mulliken and others in order to determine the vibrational
levels (infrared bands) of diatomic molecules with isotopic atoms which lead to different
(reduced) masses M; ,7 = 1, 2, for the oscillator: the isotopes were B'°0 and B'0; AgCl35
and AgCI37.

The conclusion then was that & ~ 1/2. Nowadays it should be possible to make corresponding
experiments with much higher precision!

e Presently one can build sophisticated 1-dimensional harmonic traps for ultra-cold ions, atoms
and BE-condensates for which the trap-frequency w(t) can be tuned! Determining the ratio
E(t)/w(t) could - in principle - yield information about k.

5. Problems and generalizations
The previous discussion raises a large number of questions and suggests possible generalizations. Only
a few will be mentioned here:

e Most important above all are ideas for appropriate experiments!
e What about fermions?

o How are essential features of the usual quantum field theories affected: locality; Casimir effect; etc.
etc.?

e Generalizations: The symplectic group Sp(2n,R) of a 2n-dimensional symplectic space S?" has
dimension dimension of 2n% + n and rank 7.
Its maximal compact subgroup is U(n) = SU(n) x U(1), where SU(n) is simply connected;
the rank of U(n) is n; thus, rank [Sp(2n,R)] = rank [U(n)]; according to a famous theorem by
Harish-Chandra this implies the existence of a positive discrete series among the irreducible unitary
representations of Sp(2n, R).

Conclusion: HO has an interesting “hidden side” which appears worthwhile to be investigated further!
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