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Abstract. The conventional quantization of the harmonic oscillator in terms of operators Q and P can be
implemented with the help of irreducible unitary representations of the Heisenberg-Weyl group which acts
transitively and effectively on the simply connected classical phase space Sq,p

∼= R2 . In the description
of the harmonic oscillator in terms of angle and action variables ϕ and I the associated phase space Sϕ,I

corresponds to the multiply connected punctured plane R2 − {0} , on which the 3-dimensional symplectic
group Sp(2, R) acts transitively, leaving the origin invariant. As this group contains the compact subgroup
U(1) it has infinitely many covering groups. In the here relevant irreducible unitary representations
(positive discrete series) the self-adjoint generator K0 of U(1) represents the classical action variable I .
It has the possible spectra n + k, n = 0, 1, . . . ; k > 0 , where k depends on the covering group. This
implies different possible spectra for the action variable Hamiltonian ~ωK0 of the harmonic oscillator. On
the other hand, expressing the operators Q and P (non-linearly) in terms of the three generators K0 etc. of
Sp(2, R) leads to the usual framework. Possible physical (experimental) implications and generalizations
to higher dimensions are discussed briefly.

1. Introduction: Angle and action variable for the HO
It may appear as a provocation or even a joke to present a contribution on the old-fashioned harmonic
oscillator (HO in the following) to an established international conference devoted to current and relevant
research in physics! But see for yourself! The basics for the present paper are described in my long article
[1] which contains a wealth of references to the work of others which will not be quoted here again. The
present contribution will sketch the main idea and emphasize some new important physical aspects.
The canonical Eqs. of motion

ṗ = −b q , p = M q̇ , b > 0 , (1)

for the HO can be simplified by the canonical transformation

q(ϕ, I) =

√
2 I
M ω

cosϕ , p(ϕ, I) = −
√

2M ω I sinϕ , ω =
√
b/M , (2)

which is locally symplectic:

dq ∧ dp = dϕ ∧ dI , or
∂(q, p)
∂(ϕ, I)

= 1 . (3)

It is singular for (q, p) = (0, 0), I = 0 (equilibrium or critical point) corresponding to the branch point
I = 0 of

√
I .
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The Hamiltonian is now given by

H(q, p) =
1

2M
p2 +

1
2
M ω2 q2 = H(ϕ, I) = ω I , (4)

implying the (ϕ, I)-Eqs. of motion

ϕ̇ =
∂H

∂I
= ω , İ = −∂H

∂ϕ
= 0 . (5)

They have the solutions
ϕ(t) = ω t+ ϕ0 , I = const. > 0 . (6)

Here the angle ϕ is essentially the time variable t. Notice that the time t does not stop after a period
ω t̂ = 2π + ϕ0!

We now have two globally different phase spaces for the HO:

Sq,p = {(q, p) ∈ R2 } ∼= R2 (7)

and Sϕ,I = {(ϕ, I), ϕ ∈ R mod 2π , I > 0 } (8)
∼= S1 × R+ ∼= R2 − {0} .

The phase space Sϕ,I is topologically a simple cone with the tip deleted:
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It may also be interpreted as the orbifold

Sϕ,I = Sq,p/Z2 . (9)

It is shown in Ref. [1] (the reasons will briefly be indicated in the next Sec.) that the proper global
coordinates on Sϕ,I are the following ones:

h0(ϕ, I) = I > 0 , h1(ϕ, I) = I cosϕ , h2(ϕ, I) = −I sinϕ , (10)

which obey the Pythagorean relation

~h2 ≡ h2
1 + h2

2 = h2
0 . (11)

The invariant measure on Sϕ,I is

dµ(ϕ, I) = 2θ(h0) δ(h2
0 − ~h2) dh0dh1dh2 = dϕdI = dqdp . (12)
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The hj(ϕ, I) obey the Poisson Lie algebra

{h0, h1}ϕ,I = −h2 , {h0, h2}ϕ,I = h1 , {h1, h2}ϕ,I = h0 , (13)

where
{hj , hk}ϕ,I ≡ ∂ϕhj ∂Ihk − ∂Ihj ∂ϕhk. (14)

Thus, the hj generate the isomorphic simple Lie algebras

so(1, 2) = sp(2,R) = sl(2,R) = su(1, 1) . (15)

This is an analogue of the nilpotent Poisson Lie algebra of the Heisenberg-Weyl group:

{q, p} = 1 , {q, 1} = 0 , {p, 1} = 0 . (16)

On Sϕ,I the basic ”observables” for the construction of Hamilton functions are now the hj , j = 0, 1, 2.
Simple examples are:

(i) Time-dependent frequency ω :
H = ω(t) I , ω̇(t) 6= 0 , (17)

with the Eqs. of motion
ϕ̇ = ∂IH = ω(t) , İ = −∂ϕH = 0 , (18)

so that

ϕ(t) =
∫ t

t0

dτω(τ) + ϕ0 , I(t) = I0 = const. . (19)

The energy
E(t) = ω(t) I0 (20)

is not conserved! Conserved is the action variable I = I0 .
(ii) If the Hamilton function

H(q, p) =
1

2M
p2 + V (q) = E = const. (21)

has bounded periodic motions on Sq,p then the associated action variable is defined as

I(E) =
∮

C(E)
dq p(q;E) , p(q;E) = ±

√
2M(E − V (q)) , (22)

where C(E) is the closed contour in phase space, determined by the relation H(q, p) = E. Here
I(E) is the area of the phase space region with boundary C(E).
E.g. for the Morse potential

VMo(q) = V0 tanh(aq) (23)

one gets

H(I) = ω0 I(1−
ω0 I

4V0
) , ω0 = a

√
2V0/M . (24)

(iii) Example where H = H(ϕ, I) depends only on some hj :

H = ω(h0 + g h1) = ωI (1 + g cosϕ) , |g| < 1 . (25)

Here
H(ϕ, I) = E = const. . (26)

Solutions of the associated Eqs. of motion are:

tan[ϕ(t̃)/2] =
√

1 + g

1− g
tan[(

√
1− g2) (t̃/2)] , (27)

I(t̃) = I0 [1 + g cosϕ(t̃) ]−1 ; I0 = E/ω , t̃ = ω t , cosϕ =
1− tan2(ϕ/2)
1 + tan2(ϕ/2)

. (28)
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2. Brief justification of the global coordinates hj, j = 1,2,3 on Sϕ,I

I sketch briefly the justification for the choice (10) of the global basic coordinates hj on the phase space
Sϕ,I . The main tool is “group theoretical quantization” as developed by Isham, Sternberg and others.
Details and references can be found in Ref. [1]. One has to look for an appropriate symplectic and
transitive transformation group on the phase space in question. In our case the 3-parametric symplectic
group

G ≡ Sp(2,R) (29)

(being isomorphic to the groups SL(2,R) ∼= SU(1, 1)) is defined by

g =
(
a11 a12

a21 a22

)
, ajk ∈ R , det g = 1 , (30)

gT ·
(

0 1
−1 0

)
· g =

(
0 1
−1 0

)
. (31)

It acts on the real plane R2 in an obvious way by matrix multiplication of (q̃, p̃)T ∈ R2. The action of G
leaves the origin (0, 0) invariant and therefore is the proper “canonical” group of the punctured plane

Sq̃,p̃; 0 ≡ Sq̃,p̃ − {(q̃, p̃) = (0, 0)} ∼= R2 − {(0, 0)} , (32)

with g acting symplectically:
d[g(q̃)] ∧ d[g(p̃)] = dq̃ ∧ dp̃ . (33)

N.b.: quantities with “tilde” are made dimensionless by using the intrinsic length λ0 =
√

~/(ωM) and
~: q̃ = q/λ0; p̃ = λ0 p/~ .
In order to derive the coordinates (10) one needs the first three of the 1-dimensional subgroups

R : r =
(

cos(θ/2) sin(θ/2)
− sin(θ/2) cos(θ/2)

)
, θ ∈ (−2π,+2π] , (34)

A : a =

(
e−τ/2 0

0 eτ/2

)
, τ ∈ R , (35)

B : b =
(

cosh(s/2) sinh(s/2)
sinh(s/2) cosh(s/2)

)
, s ∈ R , (36)

N : n =
(

1 ξ
0 1

)
, ξ ∈ R . (37)

Given a smooth function f(x) each subgroup {g(u), g(u = 0) = 1} induces a global Hamiltonian vector
field

[Af ](x) = lim
u→0

1
u

[f(g(−u) · x)− f(x)], (38)

where A is a vector field of the type

A = −[∂p̃j(x) ∂q̃ − ∂q̃j(x) ∂p̃] , x = (q̃, p̃)T . (39)

For the above subgroups R, A and B the corresponding Hamiltonian functions j(x) are

R : j0(x) =
1
4
(q̃2 + p̃2) =

I

2~
, (40)

A : j2(x) = −1
2
q̃ p̃ =

I

2~
sin 2ϕ , (41)

B : j1(x) =
1
4
(−q̃2 + p̃2) = − I

2~
cos 2ϕ , (42)
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where the relations (2) have been used. Thus, by a very simple symplectic rescaling I/2 → I, 2ϕ →
ϕ, j1 → −j1, j2 → −j2 one obtains the basic coordinates (10). In other words: the global coordinate
functions hj(ϕ, I) on Sϕ,I are determined by the action of the “canonical” symplectic group Sp(2,R)
on Sq,p;0 !

Compare this to the analogous global coordinate functions q and p on Sq,p, where the canonical group
consists of the translations

q → q + a, p→ p ; q → q, p→ p− b, a, b ∈ R , (43)

which generate on Sq,p the vector fields

Aq = −∂q, Ap = ∂p, (44)

with the associated global Hamiltonian functions

jq(x) = p, jp(x) = q . (45)

Let me add some structural relations on the classical level: The coordinates hj , j = 0, 1, 2, transform as
vectors with respect to the group SO↑(1, 2) = Sp(2,R)/Z2, whereas the coordinates q, p transform as
vectors with respect to the group Sp(2,R) which is a twofold covering of SO↑(1, 2).
The phase spaces Sϕ,I and Sq,p may be represented as homogeneous spaces as follows:

Sϕ,I = SO↑(1, 2)/N , Sq,p = Sp(2,R)/N , (46)

which again yield the orbifold
Sϕ,I = Sq,p/Z2 . (47)

3. Quantum mechanics for angle and action variables of the HO
The quantization of the global “coordinates” hj from Eq. (10) is implemented by promoting them to
self-adjoint operators,

hj → Kj = ~ K̃j (48)

which obey the associated Lie algebra (13):

[K̃0, K̃1] = i K̃2 , [K̃0, K̃2] = −i K̃1 , [K̃1, K̃2] = −i K̃0 . (49)

The self-adjoint generators K̃j may be obtained from unitary irreducible representations of the corre-
sponding groups SO↑(1, 2), Sp(2,R) [ = SL(2,R), SU(1, 1)] or one of their infinitely many covering
groups.

As K̃0 is the generator of a maximal compact abelian subgroup, its eigenstates may used as a Hilbert
space basis:

K̃0|k, n〉 = (n+ k) |k, n〉 , (50)

where k is some real number (“Bargmann index”). With

K̃± = K̃1 ± i K̃2 (51)

it follows from the relations (49) that

K̃+|k, n〉 = [(2k + n)(n+ 1)]1/2 |k, n+ 1〉 , K̃−|k, n〉 = [(2k + n− 1)n]1/2 |k, n− 1〉 . (52)

If there exists a |k, 0〉 such that

K̃0|k, 0〉 = k |k, 0〉 , K̃−|k, 0〉 = 0 , (53)
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then
K̃0 |k, n〉 = (n+ k) |k, n〉 , n = 0, 1, . . . ; k > 0 . (54)

This is the so-called “positive discrete series” D(+)
k among the different types of possible irreducible

unitary representations of Sp(2,R) (see Ref. [1] for details). The Bargmann index k characterizes an
irred. repr. D(+)

k .
The Group SO↑(1, 2) has infinitely many covering groups because its compact subgroup SO(2) ∼= S1

is not simply connected! Let us denote the m-fold covering by

SO↑
[m](1, 2) , m = 1, 2, . . . . (55)

Its irreducible unitary representations D(+)
k have the indices

k =
µ

m
, µ ∈ N = {1, 2, . . .} . (56)

This shows that kmin = 1/m can be arbitrarily small > 0 if m is large enough!
The 2-fold coverings

Sp(2,R) = SL(2,R) ∼= SU(1, 1) (57)

have k = 1/2. The related (q, p)-Hamiltonian

H(q, p) → Hosc(Q,P ) =
1

2M
P 2 +

1
2
M ω2Q2 (58)

= − ~2

2M
d2

d q2
+

1
2
M ω2 q2 (59)

has eigenvalues

En = ~ω (n+
1
2
) , n = 0, 1, . . . . (60)

However, the (ϕ, I)-Hamiltonian

H(ϕ, I) → Hosc( ~K) = ωK0 , ~K = ~ (K̃0, K̃1, K̃2) (61)

can have spectra
Ek, n(ϕ, I) = ~ω (n+ k) , n = 0, 1, . . . ; k ∈ R+ ! (62)

How to reconcile the two results if k 6= 1/2 ?
Interesting enough there exists an operator version of the mapping (ϕ, I) → (q, p) from Eq. (2), namely

Q = Q( ~K) =
λ0√

2
(A† +A)( ~K) , P = P ( ~K) =

i ~√
2λ0

(A† −A)( ~K) , (63)

λ0 =
√

~/(M ω) , (64)

where the operators

A( ~K) = (K̃0 + k)−1/2K̃− , A
†( ~K) = K̃+(K̃0 + k)−1/2 (65)

act as usual:
A† |k, n〉 =

√
n+ 1 |k, n+ 1〉 , A |k, n〉 =

√
n |k, n− 1〉 . (66)

This means
[A, A†] = 1 ∀ D(+)

k , (67)
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independent of the value of k!!
So again

Hosc(Q,P )|k, n〉 = ~ω (n+ 1/2) |k, n〉 , (68)

where now
Hosc(Q,P ) = ~ω (A†A+ 1/2) . (69)

Thus, the (ϕ, I)-variable QM of the HO is more subtle than its conventional (q, p)-variable one, due
to the topologically non-trivial classical phase space Sϕ,I ! As the transformation (65) “erases” the k-
dependence, the usual Stone-von Neumann uniqueness theorem for self-adjoint Q and P still holds!
Eqs. (65) are the operator version of the classical relations

q(ϕ, I) =

√
2

M ω

h1(ϕ, I)√
h0(ϕ, I)

, p(ϕ, I) =
√

2M ω
h2(ϕ, I)√
h0(ϕ, I)

. (70)

The most important physical question is, of course, whether one can detect the k-dependence experi-
mentally. More about that below.

3.1. Simple consequences
The Casimir operator of a representation D(+)

k is

C = K̃2
1 + K̃2

2 − K̃2
0 = k(1− k) . (71)

This means that the “classical Pythagoras” (11) is violated quantum mechanically for k 6= 1, e.g. for the
HO with k = 1/2!
The unitary time evolution is given by

U(t̃) = e−i H̃ t̃ , H̃ = K̃0 = N + k , ω t = t̃ = θ , (72)

i.e. time is an angle variable here!
The unitary operator (72) implies the usual Heisenberg Eqs. of motion:

U(−t̃) K̃1 U(t̃) = cos t̃ K̃1 + sin t̃ K̃2 , U(−t̃) K̃2 U(t̃) = − sin t̃ K̃1 + cos t̃ K̃2 ; (73)
U(−t̃) Q̃ U(t̃) = cos t̃ Q̃+ sin t̃ P̃ , U(−t̃) P̃ U(t̃) = − sin t̃ Q̃+ cos t̃ P̃ . (74)

3.1.1. Covering groups For t̃ = 2π the operator (72) becomes

U(t̃ = 2π) = e−2πik1 . (75)

If
k = n/m , n,m ∈ N , (76)

this implies for SO↑
[m](1, 2):

U(t̃ = m 2π) = 1 . (77)

The ground state |k, 0〉 has the time evolution

U(t̃) |k, 0〉 = e−i k t̃ |k, 0〉 , (78)

with the associated time period

T2π, k =
2π
ωk

, ωk ≡ k ω , (79)

which can become arbitrarily large for k = 1/m, m→∞.

GROUP 28: Physical and Mathematical Aspects of Symmetry IOP Publishing
Journal of Physics: Conference Series 284 (2011) 012036 doi:10.1088/1742-6596/284/1/012036

7



3.1.2. Some matrix elements It follows from the relations (51)-(53) that

〈k, n|K̃j |k, n〉 = 0 , j = 1, 2, (80)

(∆K̃j)2k,n =
1
2
(n2 + 2nk + k) , j = 1, 2, (81)

so that
(∆K̃1)k,n (∆K̃2)k,n =

1
2
(n2 + 2kn+ k) , (82)

(∆K̃1)k,n=0 (∆K̃2)k,n=0 =
k

2
. (83)

The last relation shows that k → 0 is a kind of classical limit in the angle-action framework!
The composite Q̃ and P̃ have the usual k-independent properties

〈k, n|Q̃|k, n〉 = 0 , 〈k, n|P̃ |k, n〉 = 0 , (84)

(∆Q̃)2k,n = (∆P̃ )2k,n = n+ 1/2 , (85)

(∆Q̃)k,n (∆P̃ )k,n = n+ 1/2 . (86)

4. Possible applications
For applications of the angle-action framework it is important to use the variables hj and Kj as primary
observables, e.g. as building blocks for the construction of Hamiltonians! An additional experimental
problem is how to avoid the dominance of the q- and p-degrees of freedom!
For k = 1/2 a possible Hilbert space for the HO is the Hardy space characterized by

(f2, f1)+ =
∫ 2π

0

dϑ

2π
f∗2 (ϑ)f1(ϑ) , basis : en(ϑ) = ei n ϑ , n = 0, 1, . . . (87)

Now
K̃0 =

1
i
∂ϑ + 1/2 . (88)

For k 6= 1/2 one can use the associated Hilbert space with the scalar product (see Ref. [1])

(f2, f1)+,k = (f2, Akf1)+ , (Ak en)(ϑ) =
n!

(2k)n
en(ϑ) . (89)

It has the orthonormal basis

êk,n(ϑ) =

√
(2k)n

n!
en(ϑ) , (2k)n =

Γ(2k + n)
Γ(2k)

. (90)

Now one has
K̃0 =

1
i
∂ϑ + k , (91)

K̃+ = eiϑ(
1
i
∂ϑ + 2k) , K̃− = e−iϑ 1

i
∂ϑ . (92)

Examples:
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(i) For experimental tests a HO with a time-dependent frequency ω(t) may be of considerable interest
(see examples (iii)). The associated Schrödinger equation (~ = 1)

H = ω(t)K̃0 , i∂tψ(t, ϑ) = Hψ(t, ϑ) (93)

may easily be solved by a separation of variables:

ψ(t, ϑ) = σ(t) f(ϑ) , K̃0f(ϑ) = I0 f(ϑ) , (94)

where
σ(t) = σ(t0) e

−iI0
R t

t0
dτ ω(τ)

. (95)

If f(ϑ) is an eigenfunction (90), then
I0 = n+ k . (96)

Here I0 is constant, not the energy E = ω(t) I0!
(ii) The Hamiltonian

H = ω(K̃0 + gK̃1) , |g| < 1 , (97)

is the quantized version of the classical one (25). It has the eigenvalues

En = ω(n+ k)
√

1− g2 (98)

and the eigenfunctions

fk,n(ϑ) = Ck (1 + g cosϑ)−k e
i {(n+k)2 arctan[

q
1−g
1+g

tan(ϑ/2)]−kϑ}
, Ck = const.. (99)

First-order perturbation theory yields

〈k,m|H|k, n〉 = ω[〈k,m|K̃0|k, n〉+ g〈k,m|K̃1|k, n〉] ; (100)

so that
〈k,m|H|k,m〉 = ω(n+ k); (101)

notice that the exact eigenvalues (98) are of second order in g! Furthermore

〈k,m|H|k,m− 1〉 =
gω

2
[m(2k +m− 1)]1/2 , 〈k, 1|H|k, 0〉 = g ω

√
k/2 . (102)

(iii) Possible experiments should make use of the essential property that the action I or K0 is the basic
observable, not the Hamiltonian ωK0! This is an old idea which was already exploited in the
framework of the old quantum mechanics (e.g. by Mulliken in 1924) even before the “correct”
modern QM was found in 1925. The main idea is as follows: The frequency ω =

√
b/M of a given

HO type may be changed, either by modifying the mass M or (and) the oscillator strength b!
Consider two different oscillator frequencies ω1 and ω2 and the transitions from some “exterior”
levels as indicated in the following figure:

?
?

Ea

Eb

E0(1) = ~ω1 k
E0(2) = ~ω2 k
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The transitions are associated with the frequencies

ωa,1 = [Ea − E0(1)]/~ , ωb,2 = [Eb − E0(2)]/~ , (103)

which lead to the k-dependent differences

ωa,1 − ωb,2 = (Ea − Eb)/~− k (ω1 − ω2) , (104)

which - in principle - can serve to determine k!
Examples:
• The relation (104) has been used by Mulliken and others in order to determine the vibrational

levels (infrared bands) of diatomic molecules with isotopic atoms which lead to different
(reduced) masses Mi , i = 1, 2, for the oscillator: the isotopes were B10O and B11O; AgCl35

and AgCl37.
The conclusion then was that k ≈ 1/2 . Nowadays it should be possible to make corresponding
experiments with much higher precision!

• Presently one can build sophisticated 1-dimensional harmonic traps for ultra-cold ions, atoms
and BE-condensates for which the trap-frequency ω(t) can be tuned! Determining the ratio
E(t)/ω(t) could - in principle - yield information about k.

5. Problems and generalizations
The previous discussion raises a large number of questions and suggests possible generalizations. Only
a few will be mentioned here:

• Most important above all are ideas for appropriate experiments!
• What about fermions?
• How are essential features of the usual quantum field theories affected: locality; Casimir effect; etc.

etc.?
• Generalizations: The symplectic group Sp(2n,R) of a 2n-dimensional symplectic space S2n has

dimension dimension of 2n2 + n and rank n .
Its maximal compact subgroup is U(n) = SU(n) × U(1), where SU(n) is simply connected;
the rank of U(n) is n; thus, rank [Sp(2n,R)] = rank [U(n)]; according to a famous theorem by
Harish-Chandra this implies the existence of a positive discrete series among the irreducible unitary
representations of Sp(2n,R) .

Conclusion: HO has an interesting ”hidden side” which appears worthwhile to be investigated further!
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