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In physics, experiments ultimately inform us about what constitutes a good theoretical model of any physical concept: physical
space should be no exception. The best picture of physical space in Newtonian physics is given by the configuration space of a free
particle (or the center ofmass of a closed system of particles).This configuration space (as well as phase space) can be constructed as
a representation space for the relativity symmetry. From the corresponding quantum symmetry, we illustrate the construction of a
quantum configuration space, similar to that of quantumphase space, and recover the classical picture as an approximation through
a contraction of the (relativity) symmetry and its representations.ThequantumHilbert space reduces into a sumof one-dimensional
representations for the observable algebra, with the only admissible states given by coherent states and position eigenstates for the
phase and configuration space pictures, respectively. This analysis, founded firmly on known physics, provides a quantum picture
of physical space beyond that of a finite-dimensional manifold and provides a crucial first link for any theoretical model of quantum
space-time at levels beyond simple quantum mechanics. It also suggests looking at quantum physics from a different perspective.

1. Introduction

Preface for the Special Issue: “Planck-Scale Deformations of
Relativistic Symmetries.” Our group has been working on a
relativity deformation scheme within the Lie group/algebra
framework. This setting has the contraction process as the
reverse of the deformation procedure, and as such it can
be applied to the full physical picture through tracing the
contraction of the relevant representation(s). Both the “quan-
tum Galilean” and the classical Galilean symmetries arise
within the contraction limits of the full quantum relativity
symmetry. This article focuses on the simple quantum to
classical contraction and discusses a quantum model of the
physical space from this perspective.

Quantum mechanics came into physics after a few hun-
dred years of Newtonian mechanics, as the latter failed
to describe physics at the atomic scale and beyond. In
our opinion, however, that quantum revolution has not
been completed. It was easy to accept the mathematical
formulation of the theory but a lot more difficult to adopt

a fundamental change in our basic perspective. It is not a
surprise, then, that even the great physicists who created the
theory kept trying to think and talk about it in terms of
Newtonian concepts,many of which are really not compatible
with quantum mechanics. The famous Bohr-Einstein debate,
in a way, has never ended, such has been the pursuit of a “clas-
sical” theory behind quantum mechanics. Statements about
quantum physics being counterintuitive, for example, are
commonly seen and believed by many. We tell our students
that the quantum world is impossible to make sense of and
that quantummechanics gives only probabilistic predictions.
The thesis presented here is that some, if not all, of those
beliefs may simply be the result of our reluctance to take
the necessary quantum jump in our fundamental perspective,
as well as our indulgence in Newtonian concepts. The latter
is not really any more intuitive than the modified versions
suggested by quantum mechanics, only more familiar. A key
concept, and the main focus here, is that of space or position.
The perspective here is that quantum mechanics should be
looked at as a dynamical theory for physical entities in a
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space that is really quantum instead of classical. Position, as
a dynamical variable, is not real-valued because a quantum
space cannot be modeled on a continuum of points as it can
be in classical commutative geometry, at least not a finite-
dimensional one [1].

The idea of a quantum geometry is certainly not new;
however, here we are talking about a picture of that quantum
space completely at the level of simple, textbook, so-called
nonrelativistic quantummechanics. Moreover, we will justify
it and illustrate explicitly how the classical Newtonian picture
is retrieved in the classical approximation. The formulation
presented here is based on relativity symmetries and symme-
try contractions.

As said above, and as can hardly be emphasized enough,
every precise formulation of any physical concept is really
only a model, or part of a model, of nature. Hence, all
such concepts need to have their mathematical and physical
content reevaluated as theories develop. Quantummechanics
as it is to date inherits, with little critical revision, many
Newtonian conceptual notions, while we see that perhaps
a lot more fundamental changes are called for, even down
to the most basic one: that of physical space and position
within it. The key question then is how we are going to look
at the latter as a feature of the model instead of just as a
background assumption. Instead of thinking about a theory
of mechanics as to be constructed on a model of physical
space, we need to see how the mechanical theory informs us
as to what space is. Only then we can analyze what quantum
mechanics says about physical space and how that is related
to the more familiar Newtonian picture, which one must be
able to retrieve as a limit or an approximation. Here, relativity
symmetry, the Galilean symmetry for the case of Newtonian
mechanics, is the crucial link. It is as fundamental as the
assumption of the structure of the physical space itself. It is
the set of admissible reference frame transformations, hence
the symmetry of space itself. In fact, both physical space
taken as the configuration space and as the phase space, at
least for the most basic physical system of a free particle,
should be seen as representations of this symmetry. Recall
that within the Newtonian theory the center of mass for
any closed system (of particles) behaves exactly as a free
particle, which illustrates the unbiased structure of physical
space.The relativity symmetry is therefore central to a theory
of mechanics. Another good illustration of this point is
provided by the Poincaré symmetry for Einsteinian special
relativistic physics. The problem, though, is that quantum
mechanics has not been exactly described as having its
own relativity symmetry. We suggest it does, as illustrated
below.

2. Quantum Kinematics from
a Relativity Symmetry

Let us look at the mathematical formulation first, and
leave issues with the conceptual perspective to be discussed
below. With justification for the terminology being quite
self-evident as the formulation develops, we consider a
(partial) relativity symmetry for simple quantum mechanics

as being given by the Lie algebra with the following nonzero
commutators:[𝐽𝑖𝑗, 𝐽ℎ𝑘] = 𝑖 (𝛿𝑗𝑘𝐽𝑖ℎ − 𝛿𝑗ℎ𝐽𝑖𝑘 + 𝛿𝑖ℎ𝐽𝑗𝑘 − 𝛿𝑖𝑘𝐽𝑗ℎ) ,[𝑋𝑖, 𝑃𝑗] = 𝑖𝛿𝑖𝑗𝐼,[𝐽𝑖𝑗, 𝑃𝑘] = 𝑖 (𝛿𝑗𝑘𝑃𝑖 − 𝛿𝑖𝑘𝑃𝑗) ,[𝐽𝑖𝑗, 𝑋𝑘] = 𝑖 (𝛿𝑗𝑘𝑋𝑖 − 𝛿𝑖𝑘𝑋𝑗) ,

(1)

with indices going from 1 to 3. We could have included the
missing generator 𝐻 with only one nonzero commutator:[𝑋𝑖, 𝐻] = −𝑖𝑃𝑖. The full algebra would then just be the
nontrivial 𝑈(1) central extension of the algebra for the
Galilean group, for which 𝑋𝑖 are usually denoted by 𝐾𝑖
and interpreted as generators for the Galilean boosts. In
fact, that symmetry has been used as the starting point for
the quantization of Newtonian particle physics [2]. 𝐾𝑖, as
observables, indeed give the (mass times) position, while
the central extension is what allows for the Heisenberg
commutation relation. The Hamiltonian 𝐻 has no role to
play in the kinematical descriptions here, nor is including it
much of a problem. Note that without𝐻 we do have a closed
subalgebra. We denote by 𝐻𝑅(3) the symmetry generated
by this subalgebra, a three-dimensional Heisenberg(-Weyl)
symmetry with rotations included. Aswewill illustrate below,
representations of this symmetry describe quantum space,
that is, the quantum configuration space, as well as the phase
space, for a quantum “particle” with no spin.

We start with the coset space representation obtained
by factoring out the SO(3) subgroup. The explicit form of a
generic infinitesimal transformation is given by

(𝑑𝑝𝑖𝑑𝑥𝑖𝑑𝜃0 ) = (
(

𝜔𝑖𝑗 0 0 𝑝𝑖0 𝜔𝑖𝑗 0 𝑥𝑖−12𝑥𝑗 12𝑝𝑗 0 𝜃0 0 0 0))
(𝑝𝑗𝑥𝑗𝜃1)

= (
(

𝜔𝑖𝑗𝑝𝑗 + 𝑝𝑖𝜔𝑖𝑗𝑥𝑗 + 𝑥𝑖12 (𝑝𝑗𝑥𝑗 − 𝑥𝑗𝑝𝑗) + 𝜃0 )
)

,
(2)

where the real parameters𝜔𝑖𝑗,𝑝𝑖,𝑥𝑖, and 𝜃describe the algebra
element −𝑖((1/2)𝜔𝑖𝑗𝐽𝑖𝑗 + 𝑝𝑖𝑋𝑖 − 𝑥𝑖𝑃𝑖 + 𝜃𝐼). We will see that
the coset space with coordinates (𝑝𝑖, 𝑥𝑖, 𝜃) is, in a way, the
counterpart of the phase space for Newtonian mechanics,
written as a coset space. The fact that the representation
is not unitary, however, is not what we want for quantum
mechanics. Nonetheless, it is closely related to the quantum
phase space.

The Heisenberg subalgebra generated by {𝑋𝑖, 𝑃𝑖, 𝐼} is an
invariant one. Note that by taking out the central charge
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generator 𝐼one does not even have a subalgebra.We startwith
the familiar coherent state representation:𝑒𝑖𝜃 󵄨󵄨󵄨󵄨󵄨𝑝𝑖, 𝑥𝑖⟩ = 𝑈 (𝑝𝑖, 𝑥𝑖, 𝜃) |0⟩ , (3)

where𝑈(𝑝𝑖, 𝑥𝑖, 𝜃) ≡ 𝑒𝑖(𝑥𝑖𝑝𝑖/2)𝑒𝑖𝜃𝐼𝑒−𝑖𝑥𝑖𝑃̂𝑖𝑒𝑖𝑝𝑖𝑋̂𝑖 = 𝑒𝑖(𝑝𝑖𝑋̂𝑖−𝑥𝑖𝑃̂𝑖+𝜃𝐼), (4)

and |0⟩ ≡ |0, 0⟩ is a fiducial normalized vector, 𝑋𝑖 and𝑃̂𝑖 are representations of generators 𝑋𝑖 and 𝑃𝑖 as Hermitian
operators on the Hilbert space spanned by all of the six-
parameter set of vectors |𝑝𝑖, 𝑥𝑖⟩, and 𝐼 is the identity oper-
ator representing the central generator 𝐼. Here, (𝑝𝑖, 𝑥𝑖, 𝜃)
corresponds to a generic element of the (Heisenberg-Weyl)
subgroup as𝑊(𝑝𝑖, 𝑥𝑖, 𝜃) = exp 𝑖 (𝑝𝑖𝑋𝑖 − 𝑥𝑖𝑃𝑖 + 𝜃𝐼) , (5)

with𝑊(𝑝󸀠𝑖, 𝑥󸀠𝑖, 𝜃󸀠)𝑊(𝑝𝑖, 𝑥𝑖, 𝜃)= 𝑊(𝑝󸀠𝑖 + 𝑝𝑖, 𝑥󸀠𝑖 + 𝑥𝑖, 𝜃󸀠 + 𝜃 − 𝑥󸀠𝑖𝑝𝑖 − 𝑝󸀠𝑖𝑥𝑖2 ) , (6)

where 𝑥󸀠𝑖𝑝𝑖 −𝑝󸀠𝑖𝑥𝑖 is the classical mechanical symplectic form
[3, 4]. This is an infinite-dimensional unitary representation
[3, 4]. This Hilbert space, or rather its projective counterpart,
is the phase space for quantum mechanics. The projective
Hilbert space is, in fact, an infinite-dimensional symplectic
manifold. Note that 𝑝𝑖 and 𝑥𝑖, as labels of the coherent
states, correspond to expectation values, but not eigenvalues
of the 𝑃̂𝑖 and 𝑋𝑖 observables. The coherent states give an
overcomplete basis, with overlap given by⟨𝑝󸀠𝑖, 𝑥󸀠𝑖 | 𝑝𝑖, 𝑥𝑖⟩ = exp[𝑖𝑥󸀠𝑖𝑝𝑖 − 𝑝󸀠𝑖𝑥𝑖2 ]

⋅ exp[−(𝑥󸀠𝑖 − 𝑥𝑖) (𝑥󸀠𝑖 − 𝑥𝑖) + (𝑝󸀠𝑖 − 𝑝𝑖) (𝑝󸀠𝑖 − 𝑝𝑖)4 ]
𝑝󸀠→𝑝, 𝑥󸀠→𝑥󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀→ 1.

(7)

We also have⟨𝑝󸀠𝑖, 𝑥󸀠𝑖 | 𝑋𝑖 | 𝑝𝑖, 𝑥𝑖⟩= (𝑥󸀠𝑖 + 𝑥𝑖) − 𝑖 (𝑝󸀠𝑖 − 𝑝𝑖)2 ⟨𝑝󸀠𝑖, 𝑥󸀠𝑖 | 𝑝𝑖, 𝑥𝑖⟩ ,⟨𝑝󸀠𝑖, 𝑥󸀠𝑖 | 𝑃̂𝑖 | 𝑝𝑖, 𝑥𝑖⟩= (𝑝󸀠𝑖 + 𝑝𝑖) + 𝑖 (𝑥󸀠𝑖 − 𝑥𝑖)2 ⟨𝑝󸀠𝑖, 𝑥󸀠𝑖 | 𝑝𝑖, 𝑥𝑖⟩ ,
(8)

which are important results for our analysis below.

The above coset space ismodeled on theHeisenberg-Weyl
subgroup. Explicitly,

( 1 0 0 𝑝𝑖0 1 0 𝑥𝑖−12𝑥𝑖 12𝑝𝑖 1 𝜃0 0 0 1)(𝑅𝑖𝑗 0 0 00 𝑅𝑖𝑗 0 00 0 1 00 0 0 1)
= ( 𝑅𝑖𝑗 0 0 𝑝𝑖0 𝑅𝑖𝑗 0 𝑥𝑖−12𝑥𝑖𝑅𝑖𝑗 12𝑝𝑖𝑅𝑖𝑗 1 𝜃0 0 0 1).

(9)

For fixed (𝑝𝑖, 𝑥𝑖, 𝜃), the above gives a generic element of
the coset with 𝑅𝑖𝑗 taken as elements of the SO(3) subgroup.
The fiducial vector |0, 0⟩ corresponds to (0, 0, 0, 1)𝑡 which is
taken by any such coset onto (𝑝𝑖, 𝑥𝑖, 𝜃, 1)𝑡 corresponding to𝑒𝑖𝜃|𝑝𝑖, 𝑥𝑖⟩. This illustrates explicitly the 𝑈(𝑝𝑖, 𝑥𝑖, 𝜃) action of
the Heisenberg-Weyl subgroup, and in fact also its extension
to the full group on theHilbert space, as depicted on the coset
space. Each transformation of the unitary representation
sends a coherent state to another coherent state and hence
its action can be depicted in the coset space with elements of
the latter mapped to the coherent states.

As inspired by the Galilean/Newtonian case, we can take
a different coset space representation by factoring out an
ISO(3) subgroup generated by 𝑋𝑖 and 𝐽𝑖𝑗. The infinitesimal,
or algebra, representation is then given as

(𝑑𝑥𝑖𝑑𝜃0 ) = (𝜔𝑖𝑗 0 𝑥𝑖𝑝𝑗 0 𝜃0 0 0)(𝑥𝑗𝜃1) = (𝜔𝑖𝑗𝑥𝑗 + 𝑥𝑖𝑝𝑗𝑥𝑗 + 𝜃0 ) . (10)

The (𝑥𝑖, 𝜃) space is the quantum counterpart for the coset
space that describes Newtonian (configuration) space. We
can also construct a unitary representation whose relation
to the coset is the same as the above for the phase space.
The 𝑃𝑖 and 𝐼 generators give group elements matching to
the points in the coset space and also generate an invariant
subalgebra, which is, however, trivial.This can also be seen in
the corresponding group structure; that is, by defining𝑊󸀠 (𝑥𝑖, 𝜃) = exp 𝑖 (−𝑥𝑖𝑃𝑖 + 𝜃𝐼) , (11)

we obtain𝑊󸀠 (𝑥󸀠𝑖, 𝜃󸀠)𝑊󸀠 (𝑥𝑖, 𝜃) = 𝑊󸀠 (𝑥󸀠𝑖 + 𝑥𝑖, 𝜃󸀠 + 𝜃) . (12)

We have a picture here very similar to the coherent state
representation above with basis vectors labeled by the coset
coordinates 𝑥𝑖 such that𝑒𝑖𝜃 󵄨󵄨󵄨󵄨󵄨𝑥𝑖⟩ = 𝑈󸀠 (𝑥𝑖, 𝜃) |0⟩ , (13)

where 𝑈󸀠 (𝑥𝑖, 𝜃) ≡ 𝑒𝑖𝜃𝐼𝑒−𝑖𝑥𝑖𝑃̂𝑖 , (14)
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operators on the Hilbert space spanned by all of the three-
parameter set of |𝑥𝑖⟩ vectors. Much the same as before, 𝑃̂𝑖
generates translations in 𝑥𝑖, while 𝐼 is the identity operator
effectively generating only a phase rotation of a vector on the
Hilbert space spanned by all |𝑥𝑖⟩. Following the coset action,
we can see again the action of the unitary representation for
the full group of𝐻𝑅(3). In particular, we see that𝑒𝑖𝑝𝑖𝑋̂𝑖𝑒𝑖𝜃 󵄨󵄨󵄨󵄨󵄨𝑥𝑖⟩ = 𝑒𝑖(𝑝𝑖𝑥𝑖+𝜃) 󵄨󵄨󵄨󵄨󵄨𝑥𝑖⟩ , (15)

thus illustrating that the vectors |𝑥𝑖⟩ are really the usual
position eigenstates. The unitary representation constructed
here from the coset space describing the quantum analog
of the free particle configuration space, or physical space, is
the configuration analog along the lines of the phase space
construction. It is however equivalent to that of the latter as a
Hilbert space.

3. Newtonian Limit from
a Symmetry Contraction

A naive way of interpreting the coset representations given
above as quantum analogs of the classical (configuration)
space and phase space is suggested by simply replacing the
generator 𝐼 with zero and dropping the variable 𝜃 from
consideration. A symmetry contraction, however, gives a
solid mathematical way to formulate the classical theory
as an approximation to the quantum theory. Consider the
contraction [5] of the above Lie algebra, given by the 𝑘 → ∞
limit under the rescaled generators 𝑋𝑐𝑖 = (1/𝑘)𝑋𝑖 and 𝑃𝑐𝑖 =(1/𝑘)𝑃𝑖.The 𝐽-𝑃𝑐 and 𝐽-𝑋𝑐 commutators are the same as those
of 𝐽-𝑃 and 𝐽-𝑋; however, we have[𝑋𝑐𝑖 , 𝑃𝑐𝑗 ] = 𝑖𝑘2 𝛿𝑖𝑗𝐼 󳨀→ 0, (16)

giving the commuting classical position and momentum.
The contracted Lie algebra gives, with the 𝐻 generator
included, the Galilean relativity symmetry with a trivial
central extension, in which 𝐼 is decoupled. The symmetry
contraction applied to the above representations also gives
exactly the classical phase space, as well as Newtonian space,
as we will see.

The algebra element should first be written in terms of the
rescaled generators as −𝑖((1/2)𝜔𝑖𝑗𝐽𝑖𝑗 + 𝑝𝑖𝑐𝑋𝑐𝑖 − 𝑥𝑖𝑐𝑃𝑐𝑖 + 𝜃𝐼). It is
important to note that the parameters 𝑝𝑖𝑐 = 𝑘𝑝𝑖 and 𝑥𝑖𝑐 = 𝑘𝑥𝑖
are to be taken as finite even in the 𝑘 → ∞ limit. They are
then parameters of the contracted algebra. The coset space of(𝑝𝑖, 𝑥𝑖, 𝜃) should be described in terms of (𝑝𝑖𝑐, 𝑥𝑖𝑐, 𝜃) with the
representation rewritten as

(𝑑𝑝𝑖𝑐𝑑𝑥𝑖𝑐𝑑𝜃0 )

= (
(

𝜔𝑖𝑗 0 0 𝑝𝑖𝑐0 𝜔𝑖𝑗 0 𝑥𝑖𝑐− 12𝑘2 𝑥𝑐𝑗 12𝑘2𝑝𝑐𝑗 0 𝜃0 0 0 0))
(𝑝𝑗𝑐𝑥𝑗𝑐𝜃1)

= (
(

𝜔𝑖𝑗𝑝𝑗𝑐 + 𝑝𝑖𝑐𝜔𝑖𝑗𝑥𝑗𝑐 + 𝑥𝑖𝑐12𝑘2 (𝑝𝑐𝑗𝑥𝑗𝑐 − 𝑥𝑐𝑗𝑝𝑗𝑐) + 𝜃0 )
)

.
(17)

This gives only 𝑑𝜃 = 𝜃 in the limit; hence, 𝜃 becomes
an absolute parameter not affected by the transformations,
except its own translation generated by 𝐼. Note that 𝑑𝑝𝑖𝑐 and𝑑𝑥𝑖𝑐 are also 𝜃-independent. This reflects exactly what we
mean when saying that 𝐼 decouples. The 𝜃 parameter has
nothing to do with anything else any more. It may as well
simply be dropped from consideration. The (𝑝𝑖𝑐, 𝑥𝑖𝑐) space is
exactly the classical phase space. We have a parallel result for
the other coset; explicitly

(𝑑𝑥𝑖𝑐𝑑𝜃0 ) = ( 𝜔𝑖𝑗 0 𝑥𝑖𝑐1𝑘2𝑝𝑐𝑗 0 𝜃0 0 0)(𝑥𝑗𝑐𝜃1)
= ( 𝜔𝑖𝑗𝑥𝑗𝑐 + 𝑥𝑖𝑐1𝑘2𝑝𝑐𝑗𝑥𝑗𝑐 + 𝜃0 ) , (18)

giving only 𝑑𝑥𝑖𝑐 = 𝜔𝑖𝑗𝑥𝑗𝑐 + 𝑥𝑖𝑐 and 𝑑𝜃 = 𝜃.
We can also apply the symmetry contraction to the

unitary representations given on the above Hilbert space(s).
We first look at the latter as a representation of the algebra of
observables, based on 𝑋𝑐𝑖 and 𝑃̂𝑐𝑖 (and 𝐼) at finite 𝑘. The set
of |𝑝𝑖, 𝑥𝑖⟩ states should be relabeled as |𝑝𝑐𝑖 , 𝑥𝑐𝑖 ⟩, with 𝑝𝑐𝑖 and𝑥𝑐𝑖 characterizing the expectation values of 𝑋𝑐𝑖 and 𝑃̂𝑐𝑖 . Note
that 𝑝𝑐𝑖 and 𝑥𝑐𝑖 do not directly correspond to 𝑝𝑖𝑐 and 𝑥𝑖𝑐 above.
From (7) and (8) then, we have⟨𝑝󸀠𝑐𝑖 , 𝑥󸀠𝑐𝑖 󵄨󵄨󵄨󵄨󵄨 𝑋𝑐𝑖 󵄨󵄨󵄨󵄨𝑝𝑐𝑖 , 𝑥𝑐𝑖 ⟩= (𝑥󸀠𝑐𝑖 + 𝑥𝑐𝑖 ) − 𝑖 (𝑝󸀠𝑐𝑖 − 𝑝𝑐𝑖 )2 ⟨𝑝󸀠𝑐𝑖 , 𝑥󸀠𝑐𝑖 󵄨󵄨󵄨󵄨𝑝𝑐𝑖 , 𝑥𝑐𝑖 ⟩ ,⟨𝑝󸀠𝑐𝑖 , 𝑥󸀠𝑐𝑖 󵄨󵄨󵄨󵄨󵄨 𝑃̂𝑐𝑖 󵄨󵄨󵄨󵄨𝑝𝑐𝑖 , 𝑥𝑐𝑖 ⟩= (𝑝󸀠𝑐𝑖 + 𝑝𝑐𝑖 ) + 𝑖 (𝑥󸀠𝑐𝑖 − 𝑥𝑐𝑖 )2 ⟨𝑝󸀠𝑐𝑖 , 𝑥󸀠𝑐𝑖 󵄨󵄨󵄨󵄨𝑝𝑐𝑖 , 𝑥𝑐𝑖 ⟩ ,

(19)

where the state overlap has the second, real, and negative
exponential factor, written in terms of 𝑝󸀠𝑐𝑖 , 𝑥󸀠𝑐𝑖 , 𝑝𝑐𝑖 , and 𝑥𝑐𝑖 ,
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proportional to 𝑘2. This therefore gives a vanishing result
in the contraction limit, so long as the coherent states are
not the same. Thus, we can see that 𝑃̂𝑐𝑖 and 𝑋𝑐𝑖 are diagonal
on |𝑝𝑐𝑖 , 𝑥𝑐𝑖 ⟩ with 𝑝𝑐𝑖 and 𝑥𝑐𝑖 as eigenvalues. The Hilbert space,
as a representation for the Heisenberg-Weyl symmetry and
that of the algebra of observables described as functions (or
polynomials) of 𝑃̂𝑐𝑖 and 𝑋𝑐𝑖 , is therefore reducible. It reduces
to a direct sum of one-dimensional representations of the ray
spaces of each |𝑝𝑐𝑖 , 𝑥𝑐𝑖 ⟩.That is to say, the only admissible states
are the exact coherent states, and not any linear combinations.
These are really the classical states, though we are not used to
describing classical mechanics in the Hilbert space language.
Actually, this kind of description has been available for a long
time [6]. The latter may be particularly useful in establishing
the more involved dynamical picture of what we discussed
here. Note that 𝐻̂𝑐 and 𝐽𝑐𝑖𝑗 as classical observables would also
be diagonal on |𝑝𝑐𝑖 , 𝑥𝑐𝑖 ⟩. However, in getting the contracted
symmetry algebra, the generators 𝐽𝑖𝑗 (and 𝐻) are not to be
rescaled by 𝑘 and maintain all their nonzero commutators.
The transformations they generate still take one state to
another, as they should in the classical picture. As they
always take a coherent state to a coherent state anyway,
they do not support linear combinations either. The set of
coherent states essentially gives just the classical coset/phase
space. Readers may find interest in an explicit expression of
the generator for dynamical/time evolution on the Hilbert
space of |𝑝𝑐𝑖 , 𝑥𝑐𝑖 ⟩ states in terms of the classical Hamiltonian
[6].

The story for the contraction of the Hilbert space as
the quantum configuration space is somewhat less obvious.
The basis vectors are eigenvectors of transformations in
the 𝑊󸀠 group. But we know that this space serves as a
representation for the Heisenberg algebra, and hence the
algebra of observables, onwhich the action of the 𝑃̂𝑖 operators
for the momentum observables have eigenstates being linear
combinations of the basis |𝑥𝑖⟩ states. It is exactly for such
considerations of momentum-dependent observables that
one needs to go beyond the coset to the full Hilbert space.
At the contraction limit, however, the Heisenberg algebra
is trivialized. 𝑃̂𝑐𝑖 commuting with 𝑋𝑐𝑖 means that they have
to share the same eigenvectors |𝑥𝑐𝑖 ⟩, now labeled by the 𝑋𝑐𝑖
eigenvalues. Again the Hilbert space as a representation for
the algebra of observables reduces and only the latter vectors
are relevant, not linear combinations or even the phases. The
result is the Newtonian three-dimensional space.

Readers should have realized that our rescaling parameter𝑘 for the implementation of the symmetry contraction corre-
sponds to 1/√ℏ, so that the contraction is really the ℏ → 0
limit. The latter of course corresponds to taking the classical
approximation. In fact, the quantum symmetry algebra is
quite commonly written with an ℏ within each commutator.
Our version first refers to the natural quantum units ofℏ = 1, in which the 𝐽𝑖𝑗 are dimensionless. The contraction
limit is obtained as described, which is the same as taking
only the ℏ in the 𝑋𝑐-𝑃̂𝑐 commutator to zero. Otherwise, all
commutators would be killed. If one is taking the algebra
as describing relations among the classical observables, this
is great; however, considering it as the relativity symmetry

algebra, this is a disaster. The algebra of observables is
really not the one for the relativity symmetry, but rather the
algebra of functions of 𝑋𝑐 and 𝑃̂𝑐, and as such a specific
representation of the relativity algebra. Nevertheless, we still
need to reintroduce the nonzero ℏ in the rest of the relativity
algebra to have 𝐽𝑖𝑗 (and 𝐻) being described in the classical
units, if we want to match them to the observables 𝐽𝑐𝑖𝑗 and𝐻̂𝑐. Generators of the relativity symmetry are not to be
identified with the operators representing the observables in
the Hilbert space picture of classical mechanics [6, 7]. The
contraction is not concerned with the units. In the classical
picture after the contraction, it is no longer unnatural to have
units for position and momentum chosen as independent,
hence their product having a nontrivial unit.That unit would
have fundamental significance in telling when the classical
theory is a good approximation to the better quantum theory.
The contraction is a mathematical procedure for getting the
approximate theory characterized by a small scale [5]. The
classical scale is the one which is small compared to the
contraction parameter 𝑘, hence with smallness described by
the ℏ value. ℏ serves as the fundamental unit with which we
reexpress physical quantities.

The coset space pictures at least illustrate well that
quantum space is different from Newtonian space in much
the same way as the quantum phase space is different from
the classical one. The analysis of the (equivalent) infinite-
dimensional unitary representations and their reductions
upon the symmetry contraction gives the full, solid results.

4. Concluding Remarks

We physicists should not endow a vague common sense
concept like physical space with any particular mathematical
model as a given.We are supposed to learn from experiments
what constitutes a good/correct theoretical/mathematical
model of any physical concept, and physical space should
not be an exception. We have by now roughly a century
of experimental results saying that the classical/Newtonian
model of physical space does not serve this purpose so well,
especially not as the configuration space of quantum particle
motion. We should not be reluctant to modify it. What could
the notion of (classical/Newtonian) space, described in any
inertial frame, be other than the configuration space of (free)
particlemotion under arbitrary initial conditions?What kind
of coordinates would be more natural for space besides the𝑞𝑖 variables acting as the angle coordinates, with 𝑝𝑖 as action
coordinates, for free particle motion as described on the
phase space? Looking at physical space as it can possibly be
understood frompractical physics, the space of all 𝑞𝑖 values as
the configuration variables is essentially the only picture we
should have, so long as nonrelativistic “particle” mechanics,
classical or quantum, are concerned.

It is known that the projective Hilbert space, as the true
quantum phase space, is an infinite-dimensional symplectic
manifold. An expansion of a state in terms of an orthonormal
basis in the form |𝜙⟩ = ∑(𝑞𝑛 + 𝑖𝑝𝑛)|𝑛⟩ gives 𝑞𝑛 and 𝑝𝑛 as a
set of real homogeneous coordinates of the projective space
on which the Schrödinger equation is equivalent to the set
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of Hamilton equations of motion for 𝑞𝑛 and 𝑝𝑛 as pairs of
configuration and momentum variables with Hamiltonian
function 𝐻(𝑝𝑛, 𝑞𝑛) = (2/ℏ)⟨𝜙|𝐻̂|𝜙⟩. It suggests thinking
about a Lagrangian submanifold, like the space of 𝑞𝑛, as the
quantum configuration space. One can also take the real
and imaginary part of the values of a wavefunction at the
various points (of the classical space model) as a similar set
of symplectic coordinates. However, our perspective of the
quantum relativity symmetry has a complex phase rotation
of the state generated by the 𝑋-𝑃 commutator which mixes
the configuration andmomentum coordinates. Hence, unlike
the classical case, the position/configuration space and the
momentum space are no longer irreducible components
of the relativity symmetry. The quantum phase space is
an irreducible representation, though the classical one is
reducible. We get a quantum (position) space model that is
equivalent to the phase space model. The projective Hilbert
space is also to be a Kahlër manifold [8, 9] and hence has a
natural metric, though the latter notion may not be feasible
on a generic symplectic manifold.

The analysis in this article is simple and straightforward,
with results hardly totally new or unexpected for the phase
space picture. What is new and important is the way they are
pieced together consistently to illustrate the basic perspective
and that the application of the latter suggests looking at
familiar notions in quantum physics in a very different way.
In particular, it gives a picture of the not quite discussed
notion of the configuration space in quantum mechanics as
a model of physical space beyond the usual one, which is
nothing but the Newtonian model. This is the first step in
justifying a new perspective regarding (quantum) physical
space, the adoption of whichmay also help clarify some issues
in quantum physics and beyond.

Symmetry is the single most important organizing prin-
ciple in the theory of modern physics. What we performed in
the above analysis is an attempt to see how the fundamental
symmetry of something like free particle motion informs
us about the nature of the phase space, configuration space,
and hence our physical space. These types of symmetries
are relativity symmetries. Different fundamental theories
have different relativity symmetries, which correspond to
different pictures of physical space and time, just like the
fact that Einsteinian (special) relativity gives Minkowski
space-time. In fact, the mathematical relation of the latter
to the Newtonian one can be described exactly using the
corresponding coset space picture as representations of the
relativity symmetries through the symmetry contractionwith𝑐 as the parameter [10] (see also [11] for a detailed pedagogical
introduction). The above symmetry contraction is really the
necessary, proper, and quite subtle, mathematical way to
describe the Newtonian limit as an approximation to the
better Einsteinian or quantum theory. We give the analogous
mathematical description of the quantum to classical case
here and use it to illustrate a picture of quantum space. In
this case ℏ, or rather 1/√ℏ, takes the place of 𝑐. Neither ℏ
nor 1/𝑐 is really zero: nonzero values of both are key funda-
mental constants. The symmetry contraction limit provides
the necessary subtle approach to successfully describe the
Newtonian approximation.

Given the basic perspective of looking for a picture of
quantum space as described by the symmetry structure of
the theory instead of the corresponding classical notion, the
considerations and analysis presented here are necessarily
simple and somewhat naive. As such, it is definitely not the
“final” answer in the general setting of quantum physics.
Invariance under Einsteinian special relativity, for example,
has not been incorporated. Our key point of interest here
is exactly in showing how this basic perspective provides
us with a notion of quantum space(time) beyond classical
space(time), yet giving rise to the latter when the proper limit
is taken, even for the simplest, ordinary and conventional
theory of quantummechanicswithout any extra assumptions.
Hence, we are not interested here in putting in extra notions
beyond the bare minimum, no matter how natural one may
argue for them to have a part in quantum physics. In fact,
the basic perspective, we believe, can take us much beyond
the simple results in this article. Our study on quantum
space-time, given by the work presented here, is therefore
necessarily incomplete. Moreover, our discussion has been
entirely restricted to kinematics; analysis of the full dynamical
picture will be given in a separate publication [12]. There are
two main reasons for separation of the two. Conceptually,
as seen in the Newtonian example, the constructions of
the notion of particle configuration space and phase space,
as well as that of physical space, require only kinematical
considerations. Besides this, as to be reported in [12], the
dynamical picture should firstly be considered as one on the
algebra of observables rather than the configuration space or
phase space. Otherwise, the Schrödinger equation applied to
the set of coherent states is known to be equivalent to the
classical dynamics on the states taken as classical ones. That
is all that is relevant so long as the dynamics of the pure states
of the quantum Hilbert space is concerned. A further source
of incompleteness lies in the fact that field theory issues are
not discussed here either. Note that practical field theories
are either quantum or at least (Einstein) relativistic. It goes
without saying that we have the big task at hand of extending
this framework to the fully deformed/stabilized fundamental
quantum relativity. We hope that the simple analysis here can
help make our basic perspective more accessible to general
readers, beyond those who have more experience with space-
time physics and the foundations of quantum mechanics, as
well as new developments in these areas.

Our group has worked on a notion of a quantum relativity
for deep microscopic quantum space-time [13], from much
the same theoretical perspective as that which lies behind
the current analysis. The basic starting point there is the old
idea of relativity deformations [14–18] to which contraction
of the relativity symmetries is the reverse process, so long as
one stays within the Lie group/algebra framework. While we
have presented some picture of the physics from a sequence of
contractions [10], we are currently working on the details of
the descriptions of an alternative contraction scheme, via an
approach that naturally incorporates symmetries like 𝐻𝑅(3)
and 𝐺(3). The results here are really part of that work. The
“final” symmetry is considered to have noncommuting 𝑋𝑖
and 𝑃𝑖 [13], to which no real number picture of space-time
is expected to work. Within the domain of simple quantum
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mechanics investigated here, the physical space picture still
looks like a real manifold, albeit of infinite dimension. The
results here may also serve as the crucial first link from the
bottom-up to any theoreticalmodel of space-time beyond the
level of simple quantum mechanics.

A fair question is if it is too conservative to stay within the
Lie group/algebra framework.While we sure encourage other
alternative bold approaches within the deformed relativity
picture, what we want to emphasize is that our chosen
framework is a very powerful one. The 𝐻𝑅(3), or 𝐺(3),
group obviously corresponds to an observable algebra which
is quantum/noncommutative. In fact, the latter is more or
less just the group 𝐶∗ algebra [12], which is a completion
of the group algebra [19]. The quantum Hilbert space is
naturally a cyclic irreducible representation of the algebra
corresponding to its space of pure states [12]. The theory of
noncommutative geometry [20] says any (noncommutative)
algebra has amatching topological/geometric spacewhichwe
see as essentially the projective Hilbert space in our case. It
is then indeed quite plausible that the picture of relativity
symmetries as Lie groups is a good enough starting point
to formulate the noncommutative geometries of quantum
space-time. Again, the representation contraction picture
gives the setting to build kinematic and dynamic models
which can be systematically traced back to those of well-
known physics.

To look at the dynamical picture at the quantum
level under a formulation completely in line with our
approach here is mathematically involved.TheWeyl-Wigner-
Groenewold-Moyal formalism has to first be rewritten with
the coherent state basis or wavefunctions ⟨𝑝𝑖, 𝑥𝑖 | 𝜙⟩ as the
starting point and fully matches to a representation picture of
the group 𝐶∗ algebra, though restriction of the latter to that
of the Heisenberg-Weyl subgroup is good enough. Thanks
to the semidirect product structure, a representation of the
subgroup and its𝐶∗ algebra serves as a representation the full
group (𝐶∗ algebra) in which elements beyond the subgroup
act as inner automorphisms [12].Theobservable algebra is the
representation of the group 𝐶∗ algebra. Naively summarized,
so long as the contraction to the classical limit is concerned,
it is just the reverse of the standard deformation quantization
in the ℏ → 0 limit. A generator of the full relativity
symmetry group 𝐺𝑠 is represented by a function 𝐺𝑠(𝑃̂𝑖, 𝑋𝑖)
with 𝐺𝑠(𝑃̂𝑖, 𝑋𝑖)⋆ = 𝐺𝑠(𝑝𝑖⋆, 𝑥𝑖⋆), as an operator acting on the
Hilbert space of wavefunctions and the observable algebra
itself, in which ⋆ is the standard Moyal star product. The
latter action is the left regular representation of the algebra
on itself, and there is a corresponding right action. However,
the corresponding automorphisms of the observable algebra
which match with the unitary transformations on the Hilbert
space are really generated by the difference of the left and
the right action. This can be written as {𝐺𝑠(𝑝𝑖, 𝑥𝑖), ⋅}⋆, that
is, in terms of the Moyal bracket. In the ℏ → 0 limit,
formulated here as the 𝑘 → ∞ limit as described above,
the 𝐺𝑠(𝑝𝑖⋆, 𝑥𝑖⋆) action reduces to the classical multiplicative
action of 𝐺𝑠(𝑝𝑖, 𝑥𝑖), as all classical observables commute.
The generators for the automorphisms as symmetry trans-
formations in the Heisenberg picture, however, reduce to the

classical Liouville operator, hence giving the Poisson algebra
structure. Time evolution is just the symmetry transforma-
tion generated by theHamiltonian operator/function. Hence,
one retrieves classical dynamics. The separate notion of a
function as a multiplicative operator and its corresponding
Liouville operator have been studied in the Koopman-von
Neumann formalism [7], which is really a Hilbert space
picture for the mixed states. All of this can be retrieved as the
contraction limit [12], except the naive Schrödinger picture
of dynamics. We have seen above that the quantum Hilbert
space of pure states reduces to essentially that of the classical
phase space. In the Hilbert space picture, the classical pure
states are essentially disconnected vectors/rays. It is then no
surprise at all that one does not have a Schrödinger dynamics
for the classical pure states as the contraction limit. Classical
dynamics is really one of the Heisenberg picture. For details,
readers are referred to [12].

Somewhat after the posting of the first version of this
paper, another study of the notion of model for the physical
space behind quantummechanics [21] cameup.Theapproach
there has nothing to do with the theme of relativity symmetry
contraction/deformation here. Nevertheless, it may be in the
interest of the readers for us to give a comparison between
their approach and ours in this paper and beyond. As stated
with emphasis in their introductory section, [21] is focused
on “quantum systems with a built-in length scale.” We sure
share the idea that some fundamental scale(s) being built
into the basic formulationwould indeed be an important part
of any theory of deep microscopic quantum space-time. We
have the relativity symmetries for simple quantummechanics
and classical Newtonian mechanics as retrieved from the
proper (contraction) limits of the such a quantum relativity
symmetry [13]. The limits provide the setting within which
the fundamental scales can be neglected. No matter how
natural the idea of having fundamental quantum scales may
sound to many of us, saying that it is a part of the ordinary
(formulation of) quantum mechanics may really be pushing
it too much. Our analysis here is particularly interested in
developing a notion of quantum space without putting such
kinds of extra theoretical structure into ordinary quantum
mechanics. Reference [21] illustrates how their notion of
modular space-time is arguably a natural part of quantum
mechanics with a fundamental (length) scale, which is cer-
tainly of great interest. It is, however, beyond the setting of
ordinary quantummechanics.There is however an important
difference between our perspectives on quantum space-time
in general. The “point of view that any choice of a maximally
commutative ∗-subalgebra of the Heisenberg algebra can be
thought of as defining our concept of quantumEuclidean space”
[21] is to be contrasted against our point of view that the
full quantum noncommutative algebra of observables can be
thought of as defining a concept of quantum space(time),
which is generally noncommutative [20]. As discussed in [13],
fundamental scales are supposed to characterize noncom-
mutativity of the classical notion of space-time coordinates
as well as momentum coordinates. This perspective is the
key that gives, even in the current (limited) setting without
fundamental scales, a notion of quantum space beyond the
classical one. The notion of “quantum Euclidean space” in
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[21] will likely be retrievable from proper limits of our idea of
noncommutative quantum space-time from the full relativity
symmetry with fundamental scales incorporated, which is
still to be constructed (It is interesting to note the following:
the fundamental quantum relativity symmetry of [13] can be
written as [𝑋𝜇, 𝑋]] = 𝑖𝑀𝜇],[𝑃𝜇, 𝑃]] = −𝑖𝑀𝜇],[𝑋𝜇, 𝑃]] = 𝑖𝜂𝜇]𝐹,[𝑋𝜇, 𝐹] = −𝑖𝑃𝜇,[𝑃𝜇, 𝐹] = −𝑖𝑋𝜇,

(20)

𝜂𝜇] = 𝑑𝑖𝑎𝑔 {−1, 1, 1, 1}, with all fundamental scales taken as
unity. On an eigenspace of𝑀𝜇] and 𝐹 of integral eigenvalues,
as a representation space, the set of 𝑒2𝜋𝑖𝑋𝜇 and 𝑒𝑖𝑃𝜇 behaves
like the commuting set of𝑈 and𝑉 of the “Heisenberg group”
discussed in the modular picture of [17].).

We have not touched on the measurement problem so
far. A couple of comments on this issue are in order. To
the extent that we do not have any dynamical theory to
describe a measurement process, leaving such issues on the
sideline is justified (the theory of decoherence should be
noted on the subject matter; see, for example, [22–25]). We
sure do not see the quantum space picture here as, in any
sense, “final,” andwe do not aim at describingmeasurements.
We want to note, however, that most if not all, discussions
aboutmeasurements are really about classical measurements,
as Bohr did a good job in elaborating. They are about
extracting pieces of classical information, as represented by
numbers, from a quantum system. It is not surprising that
the nature of the information/physical attributes of the system
being quantum does not fit in well with such measurements.
If the quantum position is to be described by infinitely
many real numbers, our decision to “get” one or three real
numbers reads to the so-called probabilistic results. Only
statistics from many such measurements can give a better
approximation of those infinite coordinate values. Actually,
we essentially only obtain values of any measurements by
comparison. For example, position or distance between two
positions is measured by comparing it to a length standard,
admitting some uncertainty. The nature of that “ratio” being
a piece of classical information, a real number, is never more
than a mathematical model or an assumption. With devel-
opment of quantum information theory, physicists in the
future may be proficient in handling quantum information
and true quantummeasurementsmay then be the rule, rather
than the exception. We would like to advance the notion
of measurements as possibly extracting quantum, non-real-
number, information from a system which describes some
of its properties. Even the idea of a “definite” position in
physical quantum space may plausibly be useful for that
kind of position information. However, we are certainly not
defending the classical notion of being able to extract full
information about a dynamical state without disturbing it at

all. It is not our intent either to take a stand in that kind
of philosophical debate about realism here, which we see as
beyond, and not at all necessary to, the study of physics.
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