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A measurement of the top quark mass (Miop) in the all-hadronic decay channel is presented. It
uses 5.8 fb~! of pp data collected with the CDF II detector at the Fermilab Tevatron Collider. Events
with six to eight jets are selected by a neural network algorithm and by the requirement that at
least one of the jets is tagged as a b quark jet. The measurement is performed with a likelihood fit
technique, which simultaneously determines Miop and the jet energy scale (JES) calibration. The
fit yields a value of Myop = 172.5 + 1.4 (stat) £ 1.0 (JES) =+ 1.1 (syst) GeV/c?.
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The mass of the top quark (Miep) is a fundamen-
tal parameter of the standard model (SM), and its
large value makes the top quark contribution domi-
nant in loop corrections to many observables, like the
W boson mass My,. Precise measurements of My,
and M., allow one to set indirect constraints on the
mass of the, as yet unobserved, Higgs boson [1].

In this Letter we present a measurement of Mg
using proton-antiproton collision events at a center-
of-mass energy of 1.96 TeV. Top quarks are produced
at the largest rate in pairs (¢f), with each top quark
decaying immediately into a W boson and a b quark
nearly 100% of the time[2]. In this analysis events
where both the W’s decay to a quark-antiquark pair
are considered. This all-hadronic final state has
the largest branching ratio among the possible decay
channels (46%), but it is overwhelmed by the QCD
multijet background processes, which surpass tf pro-
duction by three orders of magnitude even after a
dedicated trigger requirement. Nevertheless, it will
be shown how this difficult background can be suc-
cessfully controlled and significantly suppressed with
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a properly optimized event selection. Comparing to2s
the previous result from CDF [3], that already rep-»«
resented the most precise measurement in this chan-»s
nel, the improvements in the analysis technique andazs
a larger dataset allow us to decrease the total un-»7
certainty on My, by 21%. The additional datasetzs
has been acquired at higher instantaneous luminos-2x
ity, which results in a higher number of backgroundas
events in the data sample. Despite this fact, the in-»n
troduction of significant improvements to the analysis»s.
resulted in the world best measurement of M;,, in
the all-hadronic channel so far, also entering with the
third largest weight in the M., world average calcu-"*
lation [4]. 2

233

236
The data correspond to an integrated luminosity of,;,

5.8fb~!. They have been collected between March,,
2002 and February 2010 by the CDF detector, a,,
general-purpose apparatus designed to study pp col-,,
lisions at the Tevatron and described in detail in[5].,,
Events used in this measurement are selected by a,,
multijet trigger [3], and retained only if they are well,,
contained in the detector acceptance, have no well,,
identified energetic electron or muon, and have no sig-,,;
nificant (< 3 GeV2) missing transverse energy B [6] 546
Candidate events are also required to have from six,,,
to eight “tight” (Ep > 15GeV and |n| < 2.0) jetS.,,
After this preselection, a total of about 5.6 M events
is observed in the data, with less than 9 thousand*’
expected from tf events. To improve the signal-to-*
background ratio (S/B) a multivariate algorithm is**
implemented. An artificial neural network, based on*?
a set of kinematic and jet shape variables [3], is used to*?
take advantage of the distinctive features of signal and®*
background events. The neural network was trained®®
using simulated ¢¢ events generated by PYTHIA [7] and®®
propagated through the CDF detector simulation. At*
this level of the selection the fraction of signal events™®
is still negligible and the data are used to represent®®
the background. The value of the output node Nyy,
is used as a discriminant between signal and back-
ground. In order to further increase the signal purity,

a b-tagging algorithm [8] is used to identify (“b-tag” or
simply “tag”) jets that most likely resulted from the
fragmentation of a b quark. Only events with one to
three tagged jets are then retained.

The background for the ¢t multijet final state comes
mainly from QCD production of heavy-quark pairs (bb
and cc¢) and events with false b-tags of light-quark
and gluon jets. Given the large theoretical uncer-**
tainties on the QCD multijet production cross sec-z
tion, the background prediction is obtained from thezs
data themselves. A tag rate per jet is used, definedzss
as the probability of tagging a jet whose tracks aress
reconstructed in the tracking system (“fiducial” jet).zes
This rate is evaluated from events passing the pres-as
election with five tight jets (S/B =~ 1/2000), and itz
is parametrized in terms of the jet Ep, the numberass
of tracks associated to the jet, and the number of re-so
constructed primary vertices. The rate of a fiducialono

jet in a candidate event selected before the b-tagging
represents an estimate of the probability for that jet
to come from background and to be tagged. This al-
lows us to predict the number of background events
with a given number of tagged jets as well as their
distributions [3]. The background modeling is tested
in background-dominated control regions with six to
eight jets and small values of Ny, Small residual
discrepancies are accounted for as systematic uncer-
tainties.

This analysis employs the template method to mea-
sure Mo, with simultaneous calibration of the jet en-
ergy scale (JES). The latter is a multiplicative factor
representing a correction applied to the raw energy of
areconstructed jet (E¥"), so that its corrected energy
Er = JES- EZY, is a better estimate of the energy of
the underlying parton [9]. Discrepancies between data
and simulation lead to an uncertainty on the JES used
in Monte Carlo (MC) events, and, as a consequence,
on the measurements of M;,,. The MC distributions
of the reconstructed top quark mass, m;°¢, and W bo-
son mass, mjs’, are used as a reference (“template”)
in the measurement, with the latter providing the in-
formation necessary to calibrate “in situ” the JES, by
using the precisely measured value of the W boson
mass [2].

For each selected event, the six highest-Er jets are
assumed to come from the quarks of a tt all-hadronic
final state. Each of the different combinations where
the jets are arranged in two doublets (the W bosons)
and two triplets (the top quarks) is considered. To
reduce the number of permutations, b-tagged jets are
assumed to come from b quarks only, resulting in 30,
6 or 18 permutations for events with one, two or three
tagged jets, respectively [10]. For each permutation
m;°® is obtained through a constrained fit based on
the minimization of the following x2-like function:

(m? — Mw)® (2 M)’

X; =

2 2
Ty Ty
1) 2 (2) 2
n (mjjb _Qmiec) (mjjb _Qmiec)
I'; I';
6 meas) 2
(P2 — PES™)
+ Z g2
i=1 i
where mgé’Q) are the invariant masses of the two pairs

of jets assigned to light flavor quarks, mgf) are the

invariant masses of the triplets including one pair and
a b-tagged jet, My = 80.4GeV/c? and 'y = 2.1
GeV/c? are the measured mass and natural width of
the W boson [2], and I'; = 1.5 GeV/c? is the assumed
natural width of the top quark [11]. The jet transverse
momenta are constrained in the fit to the measured
values, pi?°, within their known resolutions, o;. The
fit is performed with respect to m!®¢ and the trans-

verse momenta of the jets p%i, and the permutation
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which gives the lowest value for the minimized x? issw
selected. The variable mj;F is reconstructed by the331
same procedure considered for mi°, but with a yZs»
function, x%,, where also the W mass is left free toss
vary in the fit. The selected values of mi®® and mjj s
enter the respective distributions, built separately forsss
events with exactly one or > 2 tags. 336

Signal templates are built using MC eventss?
with Mo, values from 160 to 185 GeV/c?, withss
steps of 2.5GeV/c2. For each Mo, the cor-so
rected jets’ Ep are changed to values E’. given bysw
Eé« = [1 + AJES - (O’JEs/JES)] - B, where ojgg is thess
absolute uncertainty on the JES and AJES is a di-s»
mensionless number. This equivalently means that
the applied JES differs by AJES x ojgg from the de-
fault value. It should be noted that ojrs/JES is a
function of the jet Er [9]. Values of AJES between
—2 and +2, in steps of 0.5, have been considered, and
in the following we refer to this parameter to denote
variations of the JES.

To construct the background templates we apply
the fitting technique to the data events passing the
neural network selection cut, omitting the b-tagging
requirement (“pretag” sample). All possible combi-
nations are considered where one to three fiducial jets
are treated as tagged. The weight of each combina-
tion is given by the probability, evaluated by the tag
rates, that those jets are tagged in the event by the
b-tagging algorithm, and it is used for the correspond-
ing values of m;*¢ and m};° to build the templates. As
the procedure is applied to data, signal contributions
must be properly subtracted.

Sets of simulated experiments (“pseudo-
experiments”, PEs) have been performed to optimize
the requirements on the values of Nout, X7 and x5
in order to minimize the statistical uncertainty on
the Myop measurement. As an improvement with
respect to[3], two different sets of events, denoted by
Sjes and Syy,,,, are considered to build the myF and
m;®® templates, respectively. This choice contributes
in reducing the final total uncertainty on Mo, with
respect to [3] by about 12%. The set Sygs is selected
by using cuts on Nyt and x%,, while S Mo, 18 selected
by a further requirement on x7, so that Sy, € Syes.
The procedure glves {Nom > 0.97, XW <2, 2 < 3}
and {Nout > 0.94, XW <3, < 4} as the optlmlzed
selection requirements for 1-tag and > 2-tag events,,
respectively. Correlations between mj®¢ and m{,?,c
in events selected both in Sy, and in Sypg are™
taken into account during the calibration proceduress
described below. s

In order to measure My, simultaneously with JES, 29
a fit is performed in which an unbinned extended
likelihood function is maximized to find the values
of Miop, AJES, and the number of signal (n,) and
background (np) events for each tagging categorys®
which best reproduce the observed distributions of
m;°® and mj;°. The likelihood depends on the prob-,
ability den31ty functions (p.d.f.’s) expected for 31g—

nal (s) and background (b): Ps (m}*°| Miop, AJES),
Py (misf| Miop, AJES), P, (mj®), and B, (mj5°). The
p.d.f.’s are obtained by fitting normalized functions
to the templates, initially built as histograms. For
the signal the continuous dependence of the p.d.f.’s
on Mo, and AJES is obtained by fitting simultane-
ously the whole set of templates, corresponding to the
large set of values simulated for those two variables.
In the fit a linear dependence of the parameters of
the p.d.f’s on M, and AJES is assumed, so that
the resulting fitted functions have continuous vari-
able shapes [3]. Figure 1 shows examples of signal and
background templates for the > 2-tag sample, with
the corresponding p.d.f.’s superimposed.

o
o

tt m'* templates, > 2 tags events ( AJES = 0.0)

- M,, = 160.0
0.08 - Mg, = 1725
M,, = 185.0
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FIG. 1: Templates of mi*® for events with > 2 tags and

corresponding probability density functions superimposed.

Top plot: the signal p.d.f, P, for various values of Miop
and AJES = 0. Bottom plot: the background p.d.f., P;.

The likelihood function used for the measurement
can be divided into three parts:

L= El tag X £22tags X EAJES

constr

where LAJES . 1S & gaussian term constraining the
JES to the nominal value (i.e. AJES to 0) within its
uncertainty. Terms L1 tag and L>3tags are defined as:

»Cl ,>2tags — ['JES X ['Mtop X »Cevts X Ekag )

constr

where, omitting the dependences on Mtop and Ajgs,

NSIES rec
o L ngPYY (mw ) + an (mW i)
JES = H P,

i=1
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Here the probability of observing the IV, (i;'SES values

SMiq
of mjj* and the N_ " values of m}*® reconstructed

in the data Sygs and Spy,,, samples, respectively, is
evaluated from the expected distributions as a func-
tion of the fit parameters Mop, AJES, ng, and ny.
The factors A and A, represent the acceptance of
S, With respect to Syggs for signal and background,
respectively (i.e., the fraction of events selected by the
requirements on x7 only). For the signal this accep-
tance is parametrized as a function of the fit parame-
ters Miop and AJES. The other two factors included
in £, >2tags are: Levts, which gives the probability of
observing the number of events selected in the data,
evaluated by Poisson and binomial distributions, and

L vxe  which constrains the parameter n, to the a

pri;ﬁ ‘estimate of the expected background, obtained
by the tag rate.

The possible presence of biases in the values re-
turned by the likelihood fit has been investigated.
Pseudo-experiments are performed assuming specific
values for Mo, and AJES and “pseudo-data” are
therefore extracted from the corresponding signal and
background templates. The results of these PEs have
been compared to the input values, and calibration
functions to be applied to the output from the fit have
been defined in order to obtain, on average, a more re-
liable estimate of the true values and uncertainties.

Finally, the likelihood fit is applied to data. After
the event selection described above, we are left with
4368 and 1196 events with one and > 2 tags (147 have
3 tags), respectively, in the Sjgs sample. The corre-
sponding expected backgrounds amount to 36524181
and 718 414 events, respectively. The tighter require-
ments used for the Sy, samples select 2256 with one
tag and 600 with > 2 tags (76 have 3 tags), with aver-
age background estimates of 1712 + 77 and 305 + 22,
respectively.

For these events the variables mj;® and m;°® have
been reconstructed and used as the data inputs to the
likelihood fit. Once the calibration procedure has been
applied, the measurements of Mo, and AJES are

Mtop =
AJES =

172.5 4+ 1.4 (stat) £ 1.0 (JES) GeV/c?
—0.1 £ 0.3 (stat) £ 0.3 (Miop) -

Figure2 shows the measured values together with
the negative log-likelihood contours whose projections
correspond to one, two, and three ¢ uncertainties on
the values of Mo, and AJES.

Figure 3 shows the mj°® and mjj’ distributions foraes
the data compared to the expected background andaos
the signal for M;,, and AJES corresponding to thesor
measured values. The signal and background distribu-ss
tions are normalized to the respective yields as fittedao

0 15F
5 L —Ln(L/LmaX) Contours, > 1-tag events (5.8 fb %)
1
osf
oF
—0.55 K Fitted Values
[ — -Ln(LL, )=45
A — - )=20
[ — -Ln(LL_)=05
_1.57\1\\\‘\\\‘\\\‘\\\‘\\\‘\\\‘\\\l
166 168 170 172 174 176 178 180
M, [GeVvic?]

FIG. 2: Negative log-likelihood contours for the likelihood
fit performed for the Miop and AJES measurement. The
minimum is shown along with the contours whose projec-
tions correspond to one, two, and three o uncertainties on
the Miop and AJES measurements.
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FIG. 3: Distributions of m;® (top plot) and myy’ (bottom
plot) as obtained in the selected data (black points) with
> 1 tags, compared to the distributions from signal and
background corresponding to the measured values of Miop
and AJES. The expected distributions are normalized to
the best fit yields.

to the data, with the 1-tag and > 2-tag contributions
summed together.

Various sources of systematic uncertainties affect
the Miop and JES measurements, as described in [3].
They are evaluated by performing PEs using tem-
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TABLE I: Sources of systematic uncertainty affecting theiz
. . 4
Miop and AJES measurements. The total uncertainty is

obtained by the quadrature sum of each contribution.  **

422

423

Source O Miop OAJES o

(GeV/c?) .
Residual bias 0.2 0.03
Calibration 0.1 0.01r .
Generator 0.5 021 .,
Initial / final state radiation 0.1 0.04
b-jet energy scale 0.2 0.05 .,
b-tag 0.1 .01 .,
Residual JES 0.4 -
Parton distribution functions 0.2 0.04 .
Multiple pp interactions 0.1 0.04 .,
Color reconnection 0.3 012 .
Statistics of templates 0.3 0.05
Background 0.6 (U
Trigger 0.2 0.04 ..
Total 1.1 0.29 4

440

441

442
plates built by signal samples where effects due toas
systematic uncertainties have been included. The dif-aa
ferences in the average values of Mo, and JES withas
respect to the PEs performed with default templatess
are then considered. Possible residual biases existingss
after the calibration, and uncertainties on the param-us
eters of the calibration functions are also taken intoass
account. The largest contributions come from uncer-so
tainties on the modeling of the background, on thess:

simulation of ¢t events, and on the individual correc-
tions which the JES depends on[9]. Table I shows a
summary of all the systematic uncertainties.

In summary, we have presented a measurement of
the top quark mass in the all-hadronic channel, us-
ing pp collision data corresponding to an integrated
luminosity of 5.8 fb~!. The measured value is Miop =
172.5 £ 1.4 (stat) +1.0(JES) 4 1.1(syst) GeV/c?,
for a total uncertainty of 2.0 GeV/c?. This result com-
plements and is consistent with the most recent mea-
surements obtained in other channels by the CDF and
DO Collaborations, and also represents the only all-
hadronic measurement for the RunlIl of the Teva-
tron [4].
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