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Abstract

The ARGO-YBJ detector, located at high altitude in the Cosmic Ray Obser-
vatory of Yangbajing in Tibet (4300 m asl, about 600 g/cm2 of atmospheric
depth) provides the opportunity to study, with unprecedented resolution, the
cosmic ray physics in the primary energy region between 1012 and 1016 eV. The
preliminary results of the measurement of all-particle and light-component (i.e.
protons and helium) energy spectra between approximately 5 TeV and 5 PeV
are reported and discussed. The study of such energy region is particularly
interesting because not only it allows a better understanding of the so called
’knee’ of the energy spectrum and of its origin, but also provides a powerful
cross-check among very different experimental techniques. The comparison be-
tween direct measurements by balloons/satellites and the results by surface
detectors, implying the knowledge of shower development in the atmosphere,
also allows to test the hadronic interaction models currently used for under-
standing particle and cosmic ray physics up the highest energies.
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1 Introduction

There is a general consensus that Galactic cosmic rays (hereafter CRs) up to the

“knee” (∼3–4·1015 eV) originate in Supernova Remnants (SNRs) accelerated by

the first order Fermi mechanism in shock waves. The theoretical modelling of

this mechanism can reproduce the measured spectra and composition of CRs.

Recent measurements carried out by the balloon-borne CREAM experiment
1, 2) show that the proton and helium spectra from 2.5 to 250 TeV are both

flatter compared to the lower energy measurements. In particular, the proton

spectrum in this energy range is found harder than the value obtained by

fitting many previous direct measurements 3). The evolution of the proton

and helium spectra and their subtle differences can be an indication of the

contribution of different populations of CR sources operating in environments

with different chemical compositions 4).

In the knee region the measurements of the CR primary spectrum are

carried out only by EAS arrays and the current experimental results are con-

flicting. In the standard picture the ”mass of the knee” is light being due to

the steepening of the p and He spectra 5). However, different experiments at-

tribute the ”mass of the knee” to higher nuclei. A hybrid measurement carried

out exploiting the Cherenkov light yield detected by the EAS-TOP experiment

(located at 2000 m a.s.l.) at different core distances in EAS and the high en-

ergy underground muons sampled by the MACRO experiment, has been used

to infer the helium flux at 80 TeV, resulting twice larger than that obtained

by JACEE 6, 7). The EAS-TOP/MACRO analysis implies a decreasing pro-

ton contribution to the primary flux well below the observed knee in the pri-

mary spectrum. Such considerations can be described through the ratios of the

three components at 250 TeV, that can be expressed as: Jp : JHe : JCNO =

(0.20±0.08) : (0.58±0.19) : (0.22±0.17) 7). In addition, also the results of the

Tibet ASγ and the BASJE experiments, located at 4300 m a.s.l and at 5200 m

a.s.l. respectively, favour a heavier composition because the proton component

is no more dominant at the knee 8, 9). Indications for a substantial fraction of

nuclei heavier than helium at 1015 eV have been obtained in old measurements

of delayed hadrons 10), as well as by the CASA-MIA collaboration 11).

The knowledge of the primary proton spectrum is fundamental to under-

stand the cosmic rays acceleration mechanisms and the propagation processes

in the Galaxy. A careful measurement of the proton spectrum in the energy
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region from TeV to 10 PeV is the key component for understanding the origin

of the knee. In addition, precise knowledge of its flux may allow one to calcu-

late the yield of rare secondary CRs as antiprotons and positrons and establish

the expected fluxes of the atmospheric neutrinos.

A measurement of the CR primary energy spectrum (all-particle and light

component) in the energy range few TeV – 10 PeV is under way with the

ARGO-YBJ experiment (for a description of the detector and a report of the

latest physics results see 12)). To cover this wide energy range different ’eyes’

have been used:

• ’digital readout’, based on the strip multiplicity, in the few TeV – 200

TeV energy range 13);

• ’analog readout’, based on the particle density in the shower core region,

in the 100 TeV – 10 PeV range;

• ’hybrid measurement’, carried out by ARGO-YBJ and a wide field of view

Cherenkov telescope, in the 100 TeV - PeV region 14).

The results concerning the all-particle and the light component (p+He) spectra

obtained with the analog readout are summarized in the following. The results

obtained with the ’hybrid measurement’ are described in 14, 15).

2 Measurement of the CR light component (p+He) spectrum

A measurement of the primary CR light (p+He) component energy spectrum

has been carried out in the energy range 5 – 200 TeV exploiting the digital

read-out of the ARGO-YBJ experiment, i.e. the picture of the EAS provided

by the strip/pad system. With this analysis for the first time a ground-based

measurement of the CR spectrum overlaps data obtained with direct methods

for more than one energy decade, thus providing a solid anchorage to calibrate

the energy scale of EAS arrays approaching the knee region.

The ARGO-YBJ spectrum, reconstructed with an unfolding technique

based on the Bayesian approach, agrees remarkably well with the values ob-

tained by adding up the p and He fluxes measured by CREAM both concerning

the total intensities and the spectral index. The value of the spectral index of

the power-law fit to the ARGO-YBJ data is -2.61±0.04, which should be com-

pared with γp = -2.66±0.02 and γHe = -2.58±0.02 obtained by CREAM 2).
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Figure 1: Light component (p+He) energy spectrum of primary CRs measured
by ARGO-YBJ compared with other experimental results. The ARGO-YBJ

2012 data refer to the results published in 13). The results obtained by ARGO-

YBJ/WFCTA hybrid measurement are shown by the filled red squares 14).

The present analysis does not allow the determination of the individual p and

He contribution to the measured flux, but the ARGO-YBJ data clearly exclude

the RUNJOB results 16, 17). Details can be found in 13).

This measurement has been extended to higher energies exploiting an hy-

brid measurement with a prototype of the future Wide Field of view Cherenkov

Telescope Array (WFCTA) of the LHAASO project 18). The idea is to com-

bine in a multiparametric analysis two mass-sensitive parameters: the particle

density in the shower core measured by the analog readout of ARGO-YBJ and

the shape of the Cherenkov footprint measured by WFCTA 14). For a detailed

description of the technique see 14, 15).

The light component energy spectra measured by ARGO-YBJ up to about

600 TeV with the digital and the hybrid systems are shown in the Fig. 1. The

hybrid spectrum can be described by a single power-law with a spectral index of

-2.63 ± 0.06 up to about 600 TeV. A systematic uncertainty in the absolute flux

of 15% is shown by the shaded area. The error bars show the statistical errors

only. The absolute flux at 400 TeV is (1.79±0.16)×10−11 GeV−1 m−2 sr−1 s−1.

This result is consistent for what concern spectral index and absolute flux with
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the measurements carried out by ARGO-YBJ below 200 TeV and by CREAM.

The flux difference is about 10% and can be explained with a difference in the

experiments energy scale of ±3.5% 14).

This result is very important to fix the energy scale of the experiment.

Below 10 TeV the absolute energy scale of ARGO-YBJ is calibrated at 10%

level exploting the westward displacement of the Moon shadow under the effect

of the GMF 19). Above this energy the overposition with CREAM allows to

compare both energy scales: the agreement is at a few percent level.

3 All-particle Energy Spectrum in the PeV energy region

The measurement of the CR energy spectrum up to 10 PeV is under way

exploiting the RPC charge readout of the ARGO-YBJ detector which allows

to study the structure of the particle density distribution in the shower core

region up to particle densities of about 104/m2 20, 21).

The study of the lateral density function (LDF) at ground is expected

to provide information on the longitudinal profile of the showers in the atmo-

sphere, that is to estimate their development stage, or age, which is related

to Xmax, the atmospheric depth at which the cascade reaches its maximum

size. This implies the possibility of selecting showers within given intervals of

Xmax or, equivalently, of Xdm, the distance of the shower maximum from the

detector.

The shower development stage in the atmosphere, as observed at a fixed

altitude (the detection one), depends on the energy of the interacting primary.

For fixed energy, it depends on the nature of the primary: heavy primaries

interact higher in the atmosphere, thus giving showers which, on average, reach

their maximum at a larger distance from the detector than a lighter primary of

the same energy. For this reason, the combined use of the shower energy and

age estimations can ensure a sensitivity to the primary mass, thus giving the

possibility of selecting a light (p+He) event sample with high efficiency.

Various observables were considered and analyzed in order to find a suit-

able estimator of the primary CR energy. Among them, according to MC

simulations, Np8, the number of particles detected within a distance of 8m

from the shower axis, resulted well correlated with energy, not biased by the

finite detector size and not much affected by shower to shower fluctuations
22). Therefore, the analysis is carried out in terms of different Np8 intervals to
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Figure 2: Truncated size Np8 as a
function of the primary energy for
shower induced by different nuclei.
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Figure 3: The age parameter s′ re-
sulting from the fits of the average
LDF of simulated p, He and Fe sam-
ples (in each Np8 bin) vs the corre-
sponding Xmax average values.

select event samples corresponding to different primary energies. Nevertheless,

as shown in Fig. 2, this truncated size is a mass-dependent energy estimator

parameter.

In order to have a mass-independent parameter we fitted the LDFs of

triggered showers (up to about 10m from the core) event-by-event, for different

Np8 intervals and different shower initiating primaries, with a suitable function

to get the shape parameter s′ (see 23) for details). From these studies we find

that, for a given primary, the s′ value decreases when Np8 (i.e. the energy)

increases, this being due to the observation of younger (deeper) showers at

larger energies. Moreover, for a given range of Np8, s
′ increases going from

proton to iron, as a consequence of a larger primary interaction cross section.

Both dependencies are in agreement with the expectations, the slope s′ being

correlated with the shower age, thus reflecting its development stage. This

outcome has two important implications, since the measurements of s′ and Np8

can both (i) help constraining the shower age and (ii) give information on the

primary particle nature.

Concerning the first point, we show in Fig. 3 the s′ values as obtained

from the fit of the average LDFs, for each simulated primary type and Np8 in-

terval, as a function of the corresponding Xmax average value. As can be seen,

the shape parameter s′ depends only on the development stage of the shower,

220



independently from the nature of the primary particle and energy. That plot ex-

presses an important universality of the LDF of detected EAS particles in terms

of the lateral shower age. The LDF slope s′ is a Xmax average value estimator

mass-independent. This implies the possibility to select most deeply pene-

trating showers (and quasi-constant Xdm intervals) at different zenith angles,

an important point for correlating the exponential angular rate distribution

with the interaction length of the initiating particle 24). Obviously shower-

to-shower fluctuations introduce unavoidable systematics, whose effects can be

anyway quantified and taken into account.

The second implication is that s′ from the LDF fit very close to the

shower axis, together with the measurement of the truncated size Np8, can give

information on the primary particle nature, thus making possible the study of

primary mass composition and the selection of a light component data sample.

Assuming an exponential absorption after the shower maximum, we get

the size at maximum (Nmax
p8 ) by using Np8 and s′ measurements for each event:

Nmax
p8 ≈ Np8 · exp[(h0secθ − Xmax(s

′))/λabs]. A suitable choice of the ab-

sorption lenght λabs (=120 g/cm2) allows to get Nmax
p8 a parameter correlated

with primary energy in an almost linear and mass independent way, providing

an energy estimator with a Log(E/TeV) resolution of 0.10–0.15 (getting better

with energy).

As described in 20, 21), with the RPC charge readout we took data

with 4 different gain scales to explore the particle density range ≈20 – 104

particles/m2. In this preliminary analysis the results obtained with the two

intermediate gain scales (so-called G1 and G4) are presented.

Selecting quasi-vertical events (θ < 15◦) in terms of the truncated size

Np8 with the described procedure we reconstructed the CR all-particle energy

spectrum shown in the Fig. 4 in the energy range 100 – 3000 TeV. In the plot

a ±15% systematic uncertainty, due to hadronic interaction models, selection

criteria, unfolding algorithms, aperture calculation and energy scale, is shown

by the shaded area. The statistical uncertainty is shown by the error bars. As

can be seen from the figure, the two gain scales overlap making us confident

about the event selection and the analysis procedure. The ARGO-YBJ all-

particle spectrum is in fair agreement with the parametrizations provided by

Horandel 3) and Gaisser-Stanev-Tilav 25), showing evidence of a spectral

index change at an energy consistent with the position of the knee.
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Figure 4: All-particle energy spectrum of primary CRs measured by ARGO-
YBJ. Quasi-vertical events (θ < 15◦) recorded with two different gain scales
(G1 and G4) are plotted. The systematic uncertainty is shown by the shaded
area and the statistical one by the error bars. The parametrizations provided

by Horandel 3) and Gaisser-Stanev-Tilav 25) are shown for comparison.

4 Observation of the knee in the (p+He) energy spectrum

The measurement of the light component energy spectrum has been extended

up to PeVs exploiting three different approaches.

(1) A selection of events in the s′ – Np8 space allowing to get a light (p+He)

component sample of showers with a contamination of heavier nuclei of

about 15% (see Fig. 5).

(2) A Bayesian unfolding technique similar to that applied to reconstruct the

CR energy spectrum up to 200 TeV. A similar event selection based on

the particle density on the central carpet, slightly modified to take into

account larger showers recorded with the RPC charge readout, selects a

light component event sample with a contamination of heavier nuclei less

than 15%.

(3) The ARGO-YBJ/WFCTA hybrid measurement with a different selection

procedure which increases the aperture of a factor 2.4 (see 15) for a

detailed description of the method and a discussion of the results).
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Figure 5: Relation between the LDF shape parameter s′ and the truncated
size Np8 for different nuclei. Showers have been sampled with energy spectra

according to Horandel 3). The p+He selection cut is shown by the lines.

The energy spectrum of the p+He component measured by ARGO-YBJ

with the different methods is summarized in the Fig. 6. The systematic uncer-

tainty is shown by the shaded area and the statistical one by the error bars.

As can be seen, all three different analysis show evidence of a knee-like

structure starting from about 650 TeV. With respect to a single power-law with

a spectral index –2.62 the deviation is observed at a level of about 6 s.d. . The

results obtained with the analysis of RPC charge readout data are in fair agree-

ment. These results agree with the ARGO-YBJ/WFCTA hybrid measurement

within systematic uncertainty. For comparison, the parametrizations of the

light component provided by Horandel 3) and Gaisser-Stanev-Tilav 25) are

shown by the blue and red dashed lines, respectively. A Horandel-like spectrum

with a modified knee at Z×1 PeV is also shown.

The all particle and the light component energy spectra measured by

ARGO-YBJ are compared to a compilation of different experimental results in

the Fig. 7.
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Figure 6: Light (p+He) component energy spectrum of primary CRs measured
by ARGO-YBJ with three different analysis. Data recorded with two different
gain scales (G1 and G4) are plotted. The systematic uncertainty is shown by
the shaded area and the statistical one by the error bars. The parametriza-

tions provided by Horandel 3) and Gaisser-Stanev-Tilav 25) are shown for
comparison. A Horandel-like spectrum with a modified knee at Z×1 PeV is
also shown.
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Figure 7: All particle and light (p+He) component energy spectra of primary
CR measured by ARGO-YBJ and compared to different experimental results.

The parametrizations provided by Horandel 3) and Gaisser-Stanev-Tilav 25)

are shown for comparison. A Horandel-like spectrum with a modified knee at
Z×1 PeV is also shown.
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5 Conclusions

The CR energy spectrum has been studied by the ARGO-YBJ experiment

in a wide energy range (TeVs → PeVs) exploiting different approaches. The

Moon shadow technique and the overposition with the CREAM data allow to

fix the absolute energy scale of ARGO-YBJ up to 4% level. The all-particle

spectrum measured in the energy range 100 – 3000 TeV is in good agreement

with well-known parametrizations, making us confident about the selection

and reconstruction of the analog data. The light component (p+He) has been

reconstructed with high resolution up to about 5 PeV. The ARGO-YBJ results

show a clear indication of a knee-like structure starting at about 650 TeV.

Improvements of event selection with the full statistics is under way to extend

the measurement up to 10 PeV. Preliminary results obtained with the last

analog gain scale (able to extend the energy range of the charge readout by a

factor of 2 at least) are consistent with the results presented in this paper.
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