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Abstract

The correspondence between four-dimensional N = 2 superconformal field theories and

vertex operator algebras, when applied to theories of class S, leads to a rich family of

vertex algebras that have been given the moniker chiral algebras of class S. These vertex

algebras are fascinating from both a physical and mathematical point of view since they

furnish novel representations of critical level affine Kac–Moody algebras. A remarkably

uniform construction of these vertex operator algebras has been put forward by Tomoyuki

Arakawa in [Ara18]. The construction takes as input a choice of simple Lie algebra g,

and applies equally well regardless of whether g is simply laced or not. In the non-simply

laced case, however, the resulting VOAs do not correspond in any clear way to known

four-dimensional theories. On the other hand, the standard realisation of class S theories

involving non-simply laced symmetry algebras requires the inclusion of punctures that have

been twisted by an outer automorphism of the Lie algebra.

In this thesis, we extend the construction of loc. cit. to theories of class S with twisted

punctures. The resulting family of vertex algebras are, simultaneously, modules over two

different critical level affine Kac–Moody algebras. We show that our proposal passes a

number of consistency checks and establish results on gluing isomorphisms, and the action

of generalised S-duality.
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Introduction

Supersymmetric quantum field theories have proven to be a fertile ground for producing

results in pure mathematics. The sector of BPS states, which enjoy enhanced supersymme-

try, often collect together into rich algebraic structures. This leads to a wonderful cross-

pollination of ideas from geometric representation theory and physics.

Some important examples in this regard include the quiver varieties of Nakajima [Nak94],

which appear, in physics, as a moduli space of vacua of certain three-dimensional N =

4 gauge theories. Or, indeed, the AGT correspondence of [AGT10] and its relations to

instanton moduli spaces.

In certain theories, these BPS states may collect together into a vertex algebra. Vertex

algebras, of course, already have a natural role in two-dimensional physics---where they

originated as the holomorphic sectors of two-dimensional conformal field theories. However,

there has been much work in recent years on how one may associate vertex algebras to

quantum field theories in higher (greater than two) dimensions.

Within the context of four-dimensional N = 2 superconformal field theories (hereafter

abbreviated as SCFT or N = 2 SCFT), an SCFT/VOA correspondence first appeared in

work of Beem–Lemos–Liendo–Peelaers–Rastelli–van Rees [BLL+15]. Given an N = 2

SCFT, the authors detail how to extract the data of a vertex algebra from the spectrum of

local operators of the SCFT. Moreover, the associated vertex algebra is invariant under the

action of (generalised) S-duality on its parent SCFT. This makes it a sort of invariant of an

SCFT---hinting at when two SCFTs are related by S-duality. The associated vertex algebra

captures much of the intricacy of four dimensional physics---a number of observables of the
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parent SCFT can be fully recovered from the vertex algebra.

For example, the character of the vertex algebra recovers the Schur limit of the supersym-

metric index of the SCFT. A conjecture of [BR18] (verified in infinitely many examples)

also identifies the Higgs branch of the parent SCFT with the associated variety of the ver-

tex algebra. The global symmetries of the SCFT have affine counterparts in the associated

vertex algebra.

Actually computing the associated VOA, usually requires some detailed knowledge about

the local operators of an SCFT. However, this requirement can be waived within the setting

of the theories of class S.

The theories of class S, introduced in [Gai09, GMN09], constitute a highly structured,

special family of four-dimensional N = 2 SCFTs. These theories are best understood as

the compactification of a six-dimensional N = (2, 0) SCFT, labelled by a simply laced Lie

algebra gu. This six-dimensional theory is compactified on a punctured algebraic curve, Σ,

over C---the UV curve.

A number of properties of the four-dimensional SCFT are characterised in terms of the

data of the UV curve, e.g., the marginal gauge couplings of the SCFT are identified with

the complex structure moduli of the curve. Generalised S-duality for these theories can be

identified with the mapping class group of the UV curve.

Each puncture on Σ gives rise to a gu global symmetry for the SCFT. Starting with two

surfaces Σ and Σ′, one can glue these along two punctures to produce a new surface Σ′′. On

the SCFT side, this procedure corresponds to gauging the diagonal action of the gu global

symmetry.

The vertex algebras associated to theories of class S were first systematically studied in

[BPRvR15] where they went under the name chiral algebras of class S. In that work, a num-

ber of key properties of this family of VOAs were identified and some explicit computations

performed in simple cases (with parent six dimensional theory of type gu = a1, a2).

Since generalised S-duality acts via diffeomorphisms, the vertex algebras are labelled only
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by the topological data of the curve. Restricting to genus zero, this is just the number

of punctures of Σ. This gives rise to a family of vertex algebras, Vgu,s, labelled by a

simply laced Lie algebra1 gu and P1 with s-punctures. The SCFT/VOA correspondence

of [BLL+15], states that these vertex algebras must satisfy certain gluing isomorphisms,

coming from the gluing of curves along punctures. Namely, we must have that

H
∞
2
+•(ĝu,−2h∨ , gu,Vgu,s ⊗Vgu,s′)

∼= Vg,s+s′−2 ,

where H
∞
2
+•(ĝu,−2h∨ , gu,−) is the functor of relative semi-infinite cohomology, with respect

to an action of the affine Kac–Moody algebra ĝu at level equal to twice the negative dual

Coxeter number, h∨.

A speculative vision was also put forward, wherein the general chiral algebras of class S

might be uniquely determined by their various duality properties. Indeed, invariance under

the action of generalised S-duality turns out to be strong enough to completely fix the

superconformal index of class S theories [GRR13].

Such speculation was answered in the affirmative by a remarkable construction of Arakawa

in [Ara18]. This gives a purely mathematical construction of the chiral algebras of class

S---at genus zero. Arakawa's construction produces a family of vertex algebras Vg,s, pa-

rameterised by the curve P1 with s-marked points and a simple Lie algebra g. Key to this

construction is a gluing operation, which we refer to as Feigin–Frenkel gluing, that seem-

ingly has no physical counterpart. Pictorially, this glues UV curves along interior points as

opposed to punctures.

Each maximal puncture on the UV curve gives rise to a critical level universal affine ver-

tex algebra, V κc(g) inside the associated VOA---all with a common Feigin–Frenkel centre.

Feigin–Frenkel gluing amounts to identifying the action of this Feigin–Frenkel centre across

the VOAs associated to each surface. The construction of Arakawa, using Feigin–Frenkel

gluing, is a chiral analogue of the construction of Ginzburg and Kazhdan [GK] for the

Moore–Tachikawa varieties [MT12]---the Higgs branches of class S theories.
1In [Ara18], this family is labelled as VG,s with G the simply connected Lie group with Lie algebra g.

We will adopt this convention in later sections.
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Curiously, Arakawa's construction makes sense for any simple Lie algebra g, whether simply

laced or not. This is in direct contrast to the physics of class S, where the Lie algebra

must be simply laced. In the usual lore of class S, non-simply laced global symmetries

may be introduced by adding twisted punctures to the UV curve [Vaf98, Tac09, Tac11].

This amounts to refining the compactification data to a UV curve with a local system of

Dynkin diagrams. The twisted punctures are labelled by a non-trivial element, σ ∈ Out gu,

of the outer-automorphism group of a simply laced Lie algebra gu. Each such twisted

puncture gives rise to a gt global symmetry for the SCFT, with gt the Langlands dual of

the σ-invariant subalgebra gu. The theories corresponding to UV curves with such twisted

punctures are called the theories of twisted class S.

In this thesis, we focus on the twisted setting---aiming to answer the following ques-

tion:

What are the associated vertex algebras for the theories of twisted class S?

We propose a novel construction for the associated vertex algebras of twisted class S,

following the techniques of Arakawa. Our proposal allows for the realisation of all vertex

algebras associated to genus zero curves. We are also able to establish a number of the

gluing isomorphism, though we shall see that there are homological obstructions preventing

us from establishing the full scope of expected results. This obstruction is analogous to one

that appears already in [Ara18] in the case of higher-genus chiral algebras.

It is natural to wonder how Arakawa's non-simply laced construction relates to the physics

of twisted class S. There seems to be no straightforward answer to this but we provide

some speculative characterisation of the non-simply laced construction in terms of three-

dimensional theories.

The organisation of the rest of this thesis is as follows.

Overview of Chapter 1

The first chapter will serve as a review of the physics of N=2 SCFTs and the SCFT/VOA

correspondence of [BLL+15].
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We start off in Section 1.1 with an idiosyncratically selective review of four-dimensional

N = 2 SCFTs. We focus, in particular, on the case of gauge theories where a number of

the prototypical features of an SCFT can be made more evident.

In Section 1.2, we review the SCFT/VOA correspondence of [BLL+15]. We discuss how

the characteristics of an SCFT, that we discussed in Section 1.1, have vertex algebraic

counterparts. We shall also recast the gauging construction of loc. cit. in the language of

semi-infinite cohomology.

Overview of Chapter 2

This chapter will be devoted to reviewing Arakawa's construction of the chiral algebras of

class S, as well as the physical context of this construction.

We introduce our preferred family of N = 2 SCFTs---the theories of class S---in Section

2.1. We review their construction in terms of the parent six-dimensional N = (2, 0) SCFT

and discuss how these theories are classified by a choice of simply laced Lie algebra, and

a curve with marked points. We discuss the classification of these marked punctures in

Section 2.1.2 and introduce the gluing construction in 2.1.3.

Section 2.2 is a review of Arakawa's construction of the chiral algebras of class S---the

vertex algebras associated to the theories of class S. We start of with an overview of the

properties one should expect from these vertex algebras in light of the correspondence of

[BLL+15]. We also introduce the key tool of Feigin–Frenkel gluing, a kind of semi-infinite

cohomology with respect to the action of the Feigin–Frenkel centre.

This leads to the construction of an inverse Hamiltonian-reduction functor in Theorem

2.2.8

KL Z −Mod

H0
DS(−)

WG∗−

.

which inverts principal Drinfel'd–Sokolov reduction. In particular, this gives an equivalence

between the Kazhdan–Lusztig category of an affine Kac–Moody algebra ĝ at the critical
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level, and a full subcategory H0
DS(KLκc) ≡ KL0 ⊂ Z − Mod of modules over the mode

algebra of the Feigin–Frenkel centre.

In Section 2.2.7, we move on to fully reviewing Arakawa's construction of the genus zero

chiral algebras of class S, VG,s. We shall also reproduce a number of the results appearing

in [Ara18], on the properties of the family, VG,s.

Most of the material in this section will not be original, but we include it to contextualise

our construction in the following chapter.

To end this chapter, we go over a few examples of VG,s in the case where G = SL2 and

for s < 4. We give explicit presentations, in terms of strong generators, relations and the

OPEs between them.

Overview of Chapter 3

In Chapter 3, we present our extension of Arakawa's construction to the setting of twisted

class S.

We introduce the eponymous theories of twisted class S in Section 3.1. Let gu be a simply

laced Lie algebra and σ ∈ Out(gu) be a non-trivial outer-automorphism of order two. The

twisted theories of class S are classified by a choice of simply laced Lie algebra gu and

a curve---now with two kinds of punctures. One type of puncture---the gu punctures---

are classified as before. Additionally, we have twisted punctures giving rise to gt flavour

symmetries. Once again, we restrict to genus zero and write Cm,n for P1 with m untwisted

punctures and 2n twisted punctures. The associated vertex algebras will be denoted by

Vm,n.

Incorporating twisted punctures gives rise to new moves in the web of S-duality and we

review this in Section 3.1.2. In Section 3.1.3, we give expressions for the Schur limit of the

superconformal index for twisted class S theories, following [LPR14].

Our construction begins in Section 3.2. First, we prove a number of technical results on how

the Feigin–Frenkel centres of ĝu and ĝt relate to each other. In Section 3.2.2 we prove our

first important theorem, Theorem 3.2.1, which leads to the construction of mixed modules
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in Section 3.2.3. These mixed modules look like Weyl modules for ĝu and ĝt, sewn together

by identifying the action of the untwisted Feigin–Frenkel centre.

We start our construction proper in Section 3.2.4, where we give a proposal for how to

construct the vertex algebra V1,1---corresponding to a P1 with one untwisted puncture and

a pair of twisted punctures. We also state our second main theorem

H0
DS(V1,1) ∼= Dch

Gt
≡ VGt,2 ,

i.e., the principal Drinfel'd Sokolov reduction of V1,1 is isomorphic to Arakawa's construc-

tion for the gt cylinder, VGt,2. In addition, we show that V1,1 satisfies the properties that

four-dimensional physics predicts.

Before extending this construction to the full family of Vm,n, we make a technical interlude

in Section 3.2.5. Here, we establish a number of lemmas on the interplay between the

various types of gluing we have available. Namely, we will be interested in when the order

of these gluings can be interchanged.

In Section 3.1.4 we extend our proposal to the full family of Vm,n. The FF-gluing proce-

dure of the previous Chapter can be straightforwardly extended to produce Vm,1, but our

definition of the Vm,n will be more involved. We finish by providing partial results on the

gluing isomorphisms for the Vm,n.

In Section 3.2.8, we construct an action of the S-duality group on the Vm,n and show that

they act by automorphisms. Finally, in Section 3.2.9, we discuss the order three twists for

Spin(4) and the obstructions to our construction.

To finish, we shall comment on possible physical interpretations of Arakawa's construc-

tion for the non-simply laced case in Section 3.3. In this section, we shall also provide a

conjectural description of the associated varieties of the subfamily Vm,1, in line with the

construction of [BFN17] for the Coulomb branches of Sicilian theories.

7



Overview of the Appendix

There is a large amount of ancillary machinery that we require in our construction of

the Vm,n. For the sake of cohesion, we have relegated much of this material to this ap-

pendix.

Appendix A.1 contains some basic material on nilpotent orbits in Lie algebras. This material

will primarily serve as context and to introduce the concept of Slodowy slices. Appendix

A.2 is an introduction to vertex algebras with some basic definitions and concepts.

This is followed by Appendix A.3, where we review affine Kac–Moody algebras and their

associated universal affine vertex algebras. We also have a brief discussion on their repre-

sentation theory and the Kazhdan–Lusztig category. This appendix also defines the Feigin-

-Frenkel centre---the centre of the universal affine vertex algebra, at critical level.

In Appendix A.4, we start our long technical digression into opers. We follow the pedagogy

of [Fre07], focusing primarily on opers on the formal disc and its punctured counterpart.

We will review the Feigin–Frenkel isomorphism, relating the Feigin–Frenkel centre to the

algebra of function on the moduli space of opers on the formal disc. Our main goal will be

review the Miura transform and its associated screening charges. These screening charges

will be crucial to the proof of Theorem 3.2.1.

Finally, in Appendix A.5 we review semi-infinite cohomology in the language of homo-

logical algebra. We shall largely follow the conventions of [Vor93, Vor97]---introducing the

Feigin standard complex and associated vanishing theorems. We shall also review Drinfel'd-

-Sokolov reduction and how it may be described in the language of semi-infinite cohomol-

ogy.
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Chapter 1

The SCFT/VOA correspondence

holy the clocks in space holy the

fourth dimension

Allen Ginsberg

Footnote to Howl

1.1 A primer on four-dimensional SCFTs

The following will be a very quick and non-comprehensive review of four-dimensional SCFTs.

We shall focus, in particular, on the ingredients appearing in the SCFT/VOA dictionary

and neglect most other features. We point the reader to [Tac13] for a more pedagogical

introduction to the subject.

As with most quantum field theories, a mathematically precise and general definition of

four-dimensional N = 2 SCFTs remains elusive. Instead, we shall try and paint a pic-

ture of the properties that N = 2 SCFTs possess. To do this, we focus on a family of

prototypical examples of N = 2 SCFTs---the gauge theories---where these properties are

transparent. Then we shall remark on how to extrapolate these properties to a general

N = 2 SCFT.
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1.1.1 The superconformal algebra and its representations

The conformal algebra in four (Euclidean) dimensions is so(2, 4), which we identify, after

complexification, with sl4 ∼= sl2 × sl2. The Poincaré subalgebra is generated by

Pαα̇ Translations

Mα
β ,M α̇

β̇ Rotations
(1.1.1)

where α, α̇ are sl2 × sl2 spinorial indices. The additional conformal generators are:

Kα̇α Special Conformal Transformation

D Dilatations
(1.1.2)

The eigenvalue of D, is the conformal weight, E.

A conformal field theory that enjoys supersymmetry actually enjoys an enhanced symmetry,

known as superconformal symmetry. For four dimensional N = 2 superconformal field

theories, the superconformal algebra is sl(4|2). The bosonic part is given by sl(4)×sl(2)R×

u(1)r, where sl(4) is the conformal algebra described above. The additional symmetries are

R-symmetries with generators

R+ , R− , R ∈ sl(2) , and r ∈ u(1) , (1.1.3)

where we have adopted the Chevalley basis for sl(2)R. The fermionic part of the algebra is

generated by the usual supercharges

QI
α , Q̃Iα̇ , (1.1.4)

where I is an sl(2)R index and each supercharge lives in the two-dimensional represen-

tation of sl(2)R. As previously stated, we have an enhanced symmetry with additional

supercharges

Sα
I , S̃

I
α̇ , (1.1.5)

called the special conformal supercharges, which also transform in the two-dimensional
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Multiplet ∆ (j1, j2) R r

B̂R 2R (0, 0) R 0
DR,(0,j2) 2R+ j2 + 1 (0, j2) R j2 + 1

DR,(j1,0) 2R+ j1 + 1 (j1, 0) R −j1 − 1

ĈR,(j1,j2) 2R+ j1 + j2 + 2 (j1, j2) R j1 − j2

Table 1.1: Table of some short representations of the superconformal algebra sl(4|2), in the
notation of [DO03]. The columns detail the eigenvalues under dilatation, rotation and the
R-symmetries of the highest weight state. These short representation appear as the Schur
operators in 1.2.

representation of sl(2)R. For the full set of relations between the generators of sl(4|2) we

refer the reader to [DO03], whose conventions we shall adhere to.

The representation theory of sl(4|2) can be quite intricate and we avoid a full review of it.

In Table 1.1.1, we introduce a few examples of the so-called short multiplets---a particular

class of highest weight representations. We use E to denote the eigenvalue of the highest

weight state. The generators Mα
β and M α̇

β̇ generate an sl(2)× sl(2) Lie subalgebra and

we denote by j1 and j2 the corresponding weights. We also use R and r to denote the

weights under sl(2)R and u(1)r respectively.

1.1.2 Four dimensional N = 2 gauge theories

Gauge theories are usually formulated in terms of a Lagrangian description. To do so we first

introduce two particular kinds of representations of the extended supersymmetry algebra:

vector and hyper multiplets.

Fix G =
∏

iGi to be a semisimple Lie group with simple summands Gi , and let g = LieG.

We choose P → R4 to be a principal G-bundle with connection A and let EN be some

associated vector bundle with fibre N , a quaternionic representation of G.

The connection A combines with two Weyl spinors, λL and λR, and a scalar Φ ∈ C∞(R4, g)

to form a representation of theN = 2 algebra called the vector multiplet. The highest weight
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state of this algebra is Φ, and we summarise the representation in the diagram below.

Φ

λL λR

A

(1.1.6)

The field-strength F = dA+A∧A appears in the multiplet DαV where Dα is the covariant

derivative in superspace and V represents the vector multiplet.

Similarly, sections of EN also live in a N = 2 multiplet---the hypermultiplet. Let Q ∈

Γ(R4, EN ) and Q† its conjugate. A quaternionic representation has a C-anti-linear involu-

tion I : N → N and let Q̃ = I ◦Q with Q̃† its conjugate. The hypermultiplet, Q, combines

the sections Q, Q̃† with Weyl spinors ψ and ψ̃† as below

Q

ψ ψ̃†

Q̃†

. (1.1.7)

There is a second hypermultiplet Q̃ combining Q̃ and Q† with the spinors ψ̃ and ψ†

The multiplets must satisfy the equations of motion coming from extremising an action

functional. Suppose G is simple and let τ ∈ C be the complexified gauge coupling, the

action functional in the superspace formalism is given by

S =

∫
R4

d4x

∫
d4θ〈Q†, eVQ〉+

∫
d2θ
(
〈Q̃,ΦQ〉+ 〈Q̃†,ΦQ†〉

)
+

Im τ

4π

∫
d4θ trNΦ†eV Φ− iτ

8π

∫
d2θ trN (WαWα +Wα̇W

α̇) .

(1.1.8)

where 〈·, ·〉 is a Hermitian bilinear form on N , compatible with the unitary action of G.

Here, we use eV to denote the exponential map g → G → GL(N) (acting in a suitable

representation). If G is not simple then we sum over the actions for each simple summand-

12



–introducing a gauge coupling τi, for each simple summand Gi.

The action above is for a gauge theory1 with gauge group G, matter content valued in N

and gauge coupling τ . This Lagrangian description, while useful, is somewhat cumbersome

for our purpose. Indeed, the theories of class S do not always have such a Lagrangian

description. To streamline our path toward class S we will provide a more abstract notation

for a gauge theory.

Definition 1.1.1. A four-dimensional N = 2 gauge theory is a triple (G,N, {τi}), where

• G =
∏

iGi is a semisimple Lie group, with simple summands Gi, called the gauge

group

• N is a quaternionic representation of G called the matter content

• For each Gi we have a τi ∈ C called the complexified gauge coupling

A gauge theory is superconformal if the following anomaly

DynGi
(N)− 2h∨i , (1.1.9)

vanishes for each simple summand. Here h∨i is the dual Coxeter number of Gi and DynGi(N)

is the Gi-Dynkin index of N , calculated as

DynGi
(N) =

dimN

dimGi
〈λ, λ+ ρ〉 , (1.1.10)

where λi are highest weights of Gi that appear in N , counted with multiplicity.

The data (G,N, {τi}), fixes the form of the action (1.1.8) and so we adopt this more compact

notation.

Remark 1.1.2. Two degenerate examples of a gauge theory are when either G or N are

trivial. If G is trivial, any vector space N satisfies the anomaly vanishing condition, and

these are known as a theory of free hypermultiplets. If N is trivial, this is called a pure
1The action permits a deformation by adding a mass term

∫
d2θ⟨Q̃,MQ⟩+ ⟨Q̃†,M†, Q†⟩, where M is the

mass matrix. However, such a theory can never by superconformal and so we set these mass terms to zero
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gauge theory. The anomaly vanishing condition for a pure gauge theory can only be met if

G is abelian.

A special class of superconformal gauge theories are the ones corresponding to N = 4 su-

persymmetric Yang–Mills (SYM) theories. In our notation these correspond to (G,T ∗g, τ),

where G is a simple Lie group with (complexified) Lie algebra g. The matter content is

valued in the product of the coadjoint and adjoint representation of g. These theories have

enhanced supersymmetry, endowing them with a number of nice properties.

1.1.3 Product of theories

We can define a product on the space of gauge theories by the following construction. Given

two gauge theories, (G1, N1, {τi}) and (G2, N2{τj}), the product gauge theory (G1, N1, {τi})⊠

(G2, N2, {τj}) is the gauge theory (G1 ×G2, N1 ⊕N2, {τi} t {τj}), where {τi} t {τj} is the

concatenated list of gauge couplings. At the level of actions, we have that

ST1⊠T2 = ST1 + ST2 . (1.1.11)

More generally, given two SCFTs T1 and T2, there is a notion of a product SCFT T1 ⊠ T2.

Physically, T1⊠T2 contains the field content of both T1 and T2 with no interactions between

fields in T1 and fields in T2.

1.1.4 Global symmetries and gauging

Suppose that the matter in a gauge theory, (G,N, {τi}), is a quaternionic representation

of another semisimple Lie group GF , i.e., N is a quaternionic representation of G × GF .

In this case, we say that the gauge theory possesses a flavour or global symmetry, with

symmetry group GF .

Given such a global symmetry, GF , on (G,N), we can gauge the action of GF at coupling

τ to produce the gauge theory (G×GF , N, {τi}t{τ}). Note that every gauge theory arises

by gauging free hypermultiplets (hence the naming).

More generally, if we have a Lie group GF that acts on the field content of some SCFT T
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by automorphisms then we can gauge this action to produce a N = 2 theory TG. Such a

gauged theory might not always be superconformal, unless the anomaly condition of (1.1.9)

(suitably written for a more general SCFT) vanishes.

1.1.5 S-duality

The natural notion of isomorphism between QFTs is duality. One says that two QFTs are

dual if one can build a correspondence between the observables of both theories. For N = 2

theories, we will be particularly interested in a kind of duality called S-duality.

For a given theory, the action of S-duality is described by the action of a group (the S-

duality group) which traces out some orbit in the space of N = 2 theories by acting on the

complexified couplings. A homological definition of this S-duality group can be found in

[CC18]. For the theories of class S we shall find a more geometric description.

As an example let us consider a theory with gauge group G = SU(2), matter N = T ∗su(2)

valued in the adjoint and coadjoint representations of SU(2), and some fixed gauge coupling

τ . This is N = 4 SYM with gauge group SU(2). The S-duality group is SL(2,Z) acting via

Möbius transformations on τ . In particular, the S-generator that sends τ 7→ − 1
τ , induces a

duality

(SU(2), T ∗su(2), τ)
τ 7→−1/τ←−−−−→ (SO(3), T ∗so(3),

−1
τ

) , (1.1.12)

where so(3) ∼= su(2) since we are looking at the complexified Lie algebras. The fact that

this group is the mapping class group of the torus is not an accident and hints at a more

geometric description of this action.

1.1.6 Invariants of an SCFT---the index

While QFTs are hard to study in full detail, often one can extract observables which capture

some shadow of the intricate structure of a full QFT. It is desirable to compute observables

which are invariant under dualities. Computing these observables in various QFTs helps

provide evidence in establishing a duality between them.

One such observable is the superconformal index, which is invariant under S-duality. The
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index is defined as a graded trace over the radially quantised Hilbert space of the theory

[KMMR07, RR16],

I(p, q, t,x) = Tr (−1)F e−β(E−2j2−2R+r)p
E+2j1−2R−r

2 q
E−2j1−2R−r

2 tR+r
rkgF∏
i=1

xλi
i , (1.1.13)

where p, q, t are called superconformal fugacities and (E, j1, j2, R, r) are various eigenvalues

of diagonal operators in the superconformal algebra. Alternatively, the index can be thought

of as the partition function of the SCFT on S3 × S1.

If the SCFT possesses a flavour symmetry GF , one can refine the index by including a term

in the trace of the form
rkGF∏
i=1

xλi
i , (1.1.14)

where the xi are fugacities and λi are weights of GF . A standard argument implies that

the index can only receive a nonvanishing contribution from states obeying

E − 2j2 − 2R+ r = 0 , (1.1.15)

and so is actually independent of β. As written, the index counts minimally supersym-

metric states. There are a number of limits with enhanced supersymmetry, and we will be

specifically interested in the Schur limit [GRRY13],

q → t , p arbitrary . (1.1.16)

In this limit, the index is in fact independent of p and takes the schematic form (suppressing

flavour fugacities)

I(q) = Tr(−1)F qE−R . (1.1.17)

Moreover, only states which satisfy

E + j1 + j2 −R = 0 , (1.1.18)

contribute to this index. The short multiplets satisfying this constraint are precisely the
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ones in 1.1.1.

Let us compute the Schur index of a a gauge theory. First, we consider the case of free

hypermultiplets valued in N an irreducible representation of some semisimple Lie group

GF . Since N is irreducible, it is of the form N =
⊗

iNi where the Ni are irreducible

representations of the simple summands of GF . The superconformal index of this theory

is

I(1,N)(q,xi) = PExp

[ √
q

1− q
∏
i

χNi(xi)

]
, (1.1.19)

where PExp is the plethystic exponential2 and χNi is the character of the irreducible rep-

resentation Ni. Gauging a simple summand G ⊂ GF produces a gauge theory (G,N). The

index of the gauge theory is defined as an integral over a maximal torus in G,

I(G,N)(q,xi) =

∮
T
[dz]K(q, z)2I(1,N)(q,xi, z) (1.1.20)

where we have singled out z as the fugacity for the G-symmetry, [dz] is the Haar-measure

and where R are the roots of GC, the algebraic group. The K factors are defined by

K(z) = 1

(q; q)rk g
∞

∏
α∈R

1

(qeα(z); q)∞
, (1.1.21)

where (·; q)∞ are the q-Pochhammer symbols3 .

More generally, if we know the index of an SCFT T with some global symmetry G, we can

compute the index of TG via an analogous gauging prescription

Furthermore, the index is multiplicative, in the sense that the index of a product theory

T1 ⊠ T2 satisfies

IT1⊠T2(q, ai,bi) = IT1(q, ai)IT2(q,bi) , (1.1.22)

where ai are fugacities for T1 and bi are fugacities for T2.
2The Plethystic exponential of a power series f(x), without a constant term is Exp

(∑∞
k=1

f(xk)
k

)
, where

xk is the tuple (xk
1 , x

k
2 , . . . ).

3The q-Pochhammer symbols are defined as (x, q) =
∏∞

i=1(1− xqk)
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1.1.7 Invariants of an SCFT---the Higgs branch

The Higgs branch of an SCFT is a geometric observable that is invariant under S-duality.

Generally, the Higgs branch is a hyperkähler manifold.

Physically, the Higgs branch parameterises the space of supersymmetric vacua of an N = 2

theory. In fact the full space of supersymmetric vacua has two branches: the Higgs branch

and the Coulomb branch.

For a gauge theory (G,N, {τi}), the Higgs branch is defined as a hyperkähler quotient of

N , by the action of G. In fact, we are only interested in the Higgs branch as a holomorphic

symplectic space and so we equivalently define the Higgs branch as a holomorphic symplectic

reduction of N by the complexified algebraic group GC.

Since N is a quaternionic representation of G, it is a holomorphic symplectic space with

a Hamiltonian action of GC. This gives rise to a moment map µ : N → g∗, where g∗ is

the linear dual of g = LieGC. The Higgs branch of (G,N, τ), as a holomorphic symplectic

variety is,

M(G,N,τ) = µ−1(0)//GC (1.1.23)

where // is the GIT quotient (which ensures the Higgs branch is affine). Note thatM(G,N,τ)

is independent of the couplings and indeed is invariant under the action of S-duality.

The space M(G,N,τ) inherits a symplectic structure from the reduction but may have sin-

gularities. Indeed, M(G,N,τ) is expected to have symplectic singularities.

Often, the Higgs branch is a stratified space, with strata corresponding to qualitatively dif-

ferent vacua of the SCFT. The smallest strata, the origin, corresponds to the original SCFT,

moving out to a larger strata corresponds to choosing a different vacuum and triggering

the Higgs mechanism. The resulting renormalisation flow will land in a different N = 2

SCFT.

For a gauge theory (G,N, {τi}), the Coulomb branch is

MC
(G,N,{τi})

∼= g∗//G ∼= h∗//W ∼= Crk g , (1.1.24)
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as a variety. Physics endows this space with the structure of a special Kähler manifold,

with the Kähler potential capturing the low energy dynamics of the theory. The special

Kähler structure is described by Seiberg–Witten theory and has natural links to the study

of Hitchin systems. The detailed structure of the Coulomb branch will not play a large

role in the rest of this work and so we do not develop this subject further. We will note,

however, that the special Kähler structure of the Coulomb branch does depend on the gauge

couplings τ and S-duality does not act via automorphisms on the Coulomb branch.

While Seiberg–Witten theory is capable of computing the Coulomb branch of non-Lagrangian

theories, computing the Higgs branch is difficult. In this sense, the theories of class S

are particularly special as non-Lagrangian theories whose Higgs branches are precisely

known.

Remark 1.1.3. There is an interesting trichotomy in four-dimensional theories, arising from

the qualitatively different ways in which the full moduli space of vacua may branch. An

SCFT may have:

• A ``pure'' Higgs branch, where the Higgs and Coulomb branch intersect transversally

at the origin. This means that the generic stratum of the Higgs branch corresponds

to a theory of free hypermultiplets.

• An ``enhanced'' Higgs branch, where the generic strata of the Higgs branch describes

a pure abelian gauge theory. The Coulomb branch will intersect the Higgs branch in

codimension zero.

• An ``interacting Higgs branch'', where the generic stratum of the Higgs branch de-

scribes an interacting SCFT

From an algebraic perspective, we can think of the presence of an enhanced Higgs branch

as a shadow of an underlying derived structure. For gauge theories, this derived structure

appears as a consequence of the failure of the moment map, µ : N → g∗, to be flat. In

physics, the nonzero cohomological degrees are captured by the Hall–Littlewood chiral ring

which contains fermionic operators as well as the bosonic Higgs branch operators [BBS]. The

cohomology outside of degree zero corresponds to the auxiliary Coulomb branch directions
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one can move in starting at the generic stratum.

1.2 The SCFT/VOA correspondence

Having given a flavour of what SCFTs are and the properties they possess, let us proceed

to a review of the correspondence of [BLL+15]. We introduce the notation below for the

correpsondence.
SCFT VOA

T χ[T ]

χ

χ
(1.2.1)

A naive strategy for associating a vertex algebra to a four-dimensional superconformal field

theory would be to restrict ourselves to a two dimensional plane and consider the algebra of

operators restricted to this plane, which give rise to a two dimensional superconformal field

theory. This is almost the correct strategy however the resulting two dimensional theory

will not be chiral. To recover a vertex algebra we will have to pass to the cohomology of an

appropriate supercharge.

We detail this cohomological construction in Sections 1.2.1 and 1.2.2. In Section 1.2.3,

we describe a key element of the correspondence: global symmetries of the SCFT have

affine enhancements in the VOA. In Section 1.2.4 we provide examples for the associated

vertex algebras for theories of free hypermultiplets and vectormultiplets. Finally, in Section

1.2.5 we detail a gauging prescription for how to construct a gauge theory from a free

one. More generally, this gauging prescription gives a vertex algebraic counterpart to the

four-dimensional operation of gauging a global symmetry.

1.2.1 Twisted subalgebras

Let us fix the plane x1 = x2 = 0 in R4 and define complex coordinates z = x3 + ix4 and

z̄ = x3 − ix4 on this plane. This choice of plane is completely general due to conformal

invariance. Rotations within this plane are generated by

M :=M+
+ +M +̇

+̇ , (1.2.2)
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while orthogonal rotations are generated by

M⊥ :=M+
+ −M +̇

+̇ . (1.2.3)

There are two subalgebras of sl(4|2) that stabilise our chosen plane: sl(2|1) × sl(2|1) and

sl(2) × sl(2|2). We choose sl(2) × sl(2|2) since the other algebra is not chiral. The sl(2)

generates holomorphic translations while sl(2|2) is the anti-holomorphic part.

The generators of the bosonic part are given by

L−1 = P++̇ , L1 = K+̇+ , L0 =
1

2
(D +M)

L̄−1 = P−−̇ , L̄1 = K−̇− , L̄0 = D −M .

(1.2.4)

The sl(2)R symmetry is also preserved under this construction. The holomorphic part is

purely bosonic and so the supercharges will be antiholomorphic. In terms of the four-

dimensional supercharges, they are given by

QI = QI
− , Q̃I = Q̃I−̇ , SI = S−I , S̃I = S̃I−̇ , (1.2.5)

where the I is once again an sl(2)R index and the supercharges transform as a doublet.

Finally, the plane algebra has a central element

Z = r +M⊥ . (1.2.6)

A priori, one might look for vertex algebras by looking for operators transforming in trivial

representations of sl(2|2). However, any such operator will also transform trivially under

the full four dimensional algebra sl(4) --- thus it must be the identity operator and the

chiral algebra will be trivial. We shall evade this issue with the following strategy:

• Construct an s̃l(2) inside sl(2|2), commuting with the holomorphic sl(2), such that it

is exact with respect to a supercharge Q.

• Impose that anti-holomorphic Möbius transformations are generated by s̃l(2).
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• Pass to the cohomology of Q, where correlators will be meromorphic.

There is a family of choices for Q which give equivalent cohomologies [BLL+15] and so, for

concreteness, we choose

Q = Qi + S̃2 . (1.2.7)

The Q-exact s̃l(2) is generated by

L̃−1 := {Q ,Q1} = L̄−1 +R− ,

L̃1 := {Q ,S2} = L̄+ +R+ ,

L̃0 := {Q , Q†} = L̄0 +R .

(1.2.8)

Notice that a spatial translation along z̄ is a spatial translation along the plane as well as

an R-symmetry transformation. Thus, the spacetime and R-symmetries have been twisted

together to form the new conformal algebra sl(2)× s̃l(2).

1.2.2 Schur operators and S-duality

Let us compute the spectrum of local operators in the cohomology. It is important to note

that we restrict ourselves, exclusively, to local operators. The supercharge Q commutes with

L̂0 and the central charge Z, since both are exact, and so we can decompose the cohomology

into eigenspaces of the two operators. Suppose O is a representative of a cohomology class

and let A = [Q , B] be an exact operator, then

[A,O] = [[Q , B], O] = − [Q , [B,O]]︸ ︷︷ ︸
Q−exact

+[B, [Q , O]︸ ︷︷ ︸
[Q ,O]=0

] = 0 , (1.2.9)

where we have used the super-Jacobi identity in the second equality. From this argument,

we see that an operator O that is Q-closed but not exact must satisfy

L̂0 = E + j1 + j2 −R = 0 , Z = r + j1 − j2 = 0 , (1.2.10)

where E is the (four dimensional) conformal weight and j1, j2 are the Lorentz spins of and

R, r are the respective eigenvalues of the generators R and r. In fact, assuming our initial
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four dimensional SCFT is unitary, it is both necessary and sufficient to impose

E + j1 + j2 −R = 0 . (1.2.11)

Operators satisfying such a constraint are called Schur operators, since they are precisely

the operators that the Schur limit of the index in (1.1.17) counts. The short multiplets that

satisfy the Schur condition are precisely those found in Table 1.1.1. As a vector space,

χ[T ] = {Schur operators of T } . (1.2.12)

The translation of a Schur operator away from the origin is given by

O(z, z̄) = ezL−1+z̄L̂−1O(0)e−zL−1−z̄L−1 . (1.2.13)

Finally, we note that the OPE of two Schur operators O1(z, z̄)and O2(0) is also chiral

i.e.

O1(z, z̄)O2(0) =
∑

k Schur

λ12k
zh1+h2−hk

Ok(0) + Q− exact , (1.2.14)

where hi are the two dimensional conformal weights with respect to L0, and λijk are the

structure constants of the four-dimensional theory. Once we pass to cohomology, the OPE

becomes meromorphic. Thus, the subspace of Schur operators restricted to this plane has

the structure of a vertex algebra after passing to cohomology.

The short multiplets comprising Schur operators are BPS states, and so are protected from

quantum corrections. In other words, the spectrum of Schur operators is independent of the

choice of gauge couplings. As a result the associated vertex algebra, χ[T ], is independent

of any gauge couplings of T .

The S-duality group acts on the gauge couplings of T , tracing out an orbit in the space of

theories. However, since χ[T ] is independent of said gauge couplings, the S-duality group

must act on χ[T ] by automorphisms. In this sense, χ[T ] is an invariant of T , just like the

Higgs branch and the superconformal index.
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Furthermore, the product on SCFTs descends to the tensor product over C for the associated

vertex algebras. In other words, for SCFTs T1 and T2,

χ[T1 ⊠ T2] = χ[T1]⊗ χ[T2] . (1.2.15)

1.2.3 Affine enhancements

We have uncovered a vertex algebra structure within a four dimensional N = 2 supercon-

formal field theory. One would be inclined to ask if this is a conformal vertex algebra. To

find a conformal vector, we look at the four dimensional stress tensor multiplet. The Schur

operator in this multiplet is J11
++̇

, a component of the sl(2)R-symmetry current and not the

four dimensional stress energy tensor. Its image under the correspondence is

T ∝ χ[J11
++̇] (1.2.16)

is a good guess for the conformal vector. The TT OPE is completely fixed by the OPE of

the sl(2)R currents and the OPE, after normalization, is [BLL+15]

T (z)T (0) ∼ −6c4d
z4

+
2T (0)

z2
+
∂T (0)

z
, (1.2.17)

where c4d is the four dimensional central charge. The above has the correct form for a stress

energy tensor OPE. However, we are forced to conclude that the central charge,

c2d = −12c4d, (1.2.18)

of the two dimensional theory is negative for a unitary four-dimensional theory. Thus, for a

sensible physical theory, the associated two dimensional theory must be non-unitary, which

is problematic only if we wished to interpret the vertex algebras as arising from a physical

two dimensional CFT.
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The conformal weight of a Schur operator under this conformal vector satisfies,

∆ = E −R (1.2.19)

The character of the VOA is given by

chχ[T ] := trχ[T ](−1)F q∆ = trχ[T ](−1)F qE−R (1.2.20)

Comparing to the expression in (1.1.17), we see that since this trace runs over the Schur

operators the character of χ[T ] agrees with the Schur limit of the index.

The enhancement of the spacetime sl(2) to the Virasoro algebra is not the only infinite

enhancement. Suppose the four dimensional SCFT has some flavour symmetry GF , then

the associated conserved currents JF
αα̇ will be part of a multiplet. The Schur operator in

this multiplet is M11,A a component of the moment map operator, where A is an index

valued in the adjoint. We suggestively write

JA ∝ χ[M11,A] , (1.2.21)

for the image under the correspondence. The currents JA , after normalization, have the

OPEs

JA(z)JB(0) ∼ −k4d/2
z

+ i
∑
C

fABC J
C(0)

z2
, (1.2.22)

which we recognise to be the current algebra OPE of the universal affine vertex algebra,

V k2d, at level k2d = −k4d/2 and k4d is the flavour anomaly in four dimensions4 . For a

review of some basic definitions regarding affine vertex algebras, see Appendix A.3.

Therefore, when T has a g symmetry, χ[T ] possesses a chiral moment map µ : V k2d(g) →

χ[T ]. The conformal grading on χ[T ] is Z>0 graded and so this makes χ[T ] a vertex algebra

object in the Kazhdan–Lusztig category, KLk2d , at level k2d.
4This flavour anomaly appears as the coefficient of a mixed U(1)r-G anomaly. Alternatively, the flavour

anomaly appears in the most singular term of the four-dimensional OPE between two flavour currents, see
Section 2.6 of [AATM+22] for more details
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1.2.4 The Vertex algebras of hypermultiplets and vectormultiplets

Since hypermultiplets and vectormultiplets are the building blocks of gauge theories, we

shall discuss the vertex algebras associated to each before moving on to discussing gauge

theories.

The Schur operators in a hypermultiplet are the sections Q, Q̃ as well as their derivatives

(descendants) with respect to ∂++̇. Along with the SU(2)R symmetry, the theory enjoys

an SU(2)F symmetry under which Q and Q̃ transform into each other. Therefore, we shall

write

QI =

(
Q

Q̃

)
, (1.2.23)

for the doublet. The corresponding element of the chiral algebra is denoted by qI and its

OPE is given by

qI(z)qJ(0) ∼
εIJ
z
, . (1.2.24)

This is precisely the symplectic boson algebra, or Dch(C)---the chiral differential operators

on C. For hypermultiplets valued in a quaternionic (polarised) representation T ∗N of a

group G, the associated vertex algebra are symplectic bosons valued in T ∗N or, equivalently

Dch(N).

The Schur operators of a free vectormultiplet are the gauginos λ+, λ̃+̇ (suppressing the

adjoint index) as well as their derivatives with respect to ∂++̇. The corresponding elements

in cohomology are λ(z) = χ[λ+] and λ̃ = χ[λ̃+̇] with OPEs

λ̃(z)λ(0) ∼ 1

z2
. (1.2.25)

This corresponds to the vertex subalgebra of a (b, c) ghost system of weight (1,0) under the

identification

λ̃↔ b , λ↔ ∂c . (1.2.26)

For free vector multiplets in the adjoint representation of a group G, we have the analogous

subalgebra in the (b, c) ghosts system valued in the adjoint representation.
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Note that we have introduced an asymmetry between λ and λ̃ by our choice. Further-

more, we must restrict to the subalgebra of the (b, c) system that is annihilated by b0 to

account for the fact that c0 modes are not present. This will be important when we discuss

gauging.

1.2.5 Gauge theories

Having constructed the vertex algebras of free theories, let us move onto interacting ones.

We shall try to be as general as possible, so as to not exclude theories without Lagrangians.

Suppose T is a four dimensional N = 2 SCFT with some global symmetry G that we wish

to gauge. On the four dimensional side, this is done by introducing a vector multiplet V

valued in g = LieG and projecting to gauge invariant states via BRST cohomology.

Analogously, the vertex algebra χ[T ] is has a chiral moment map µ : V k2d(g) → χ[T ],

which gives it the structure of a module over V k2d(g). Notice that χ[V ] is very similar to∧ ∞
2
+∞(g), the space of semi-infinite forms for ĝ. It is natural to interpret χ[V ] as the bc

ghost system for BRST reduction.

The BRST current will be

JBRST =
∑
A

JAcA +
1

2

∑
ABC

[cA, cB]bC , (1.2.27)

where JA are the images of the generators of V k2d(g) under µ : V k2d(gF ) → χ[T ] and

normal ordering is assumed. The differential is given by

Q = JBRST,(0) . (1.2.28)

The cochain complex (χ[T ] ⊗ χ[V ], Q) is very similar to the Feigin standard complex for

semi-infinite cohomology (see Section A.5.2 for more details). Note that χ[V ] is not the

full ghost vertex algebra, but rather the subalgebra annihilated by b0. This means that

the BRST reduction should be interpreted as the relative semi-infinite cohomology of χ[T ]-

–relative to the g subalgebra. Therefore, the vertex algebra of the gauged theory must
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satisfy

χ[TG] ∼= H
∞
2
+•(ĝk2d , g, χ[T ]) . (1.2.29)

Note that there are constraints on the level for this BRST reduction to be non-trivial.

If k2d 6= −κg = −2h∨, the BRST differential does not square to zero. The semi-infinite

cohomology in this case is still well-defined but vanishes in all degrees. This level-matching

condition is precisely the anomaly vanishing condition that ensures that the resulting gauge

theory is superconformal.

In our definition of gauging, we have not restricted to zero cohomological degree. The

cohomology away from degree zero is, in many interesting cases, non-vanishing and of

physical interest. Recall the trichotomy (see Remark 1.1.3 of possible Higgs branches---

in particular the cases of an ``enhanced'' Higgs branch which should be thought of as a

derived symplectic space. Physically, these are tracked by fermionic operators in the Hall-

-Littlewood chiral ring. In particular, these fermionic operators are Schur operators and

so contribute to χ[TG] as fermionic states in the vertex algebra. Therefore, we expect the

cohomology of (1.2.29) to have support outside of degree zero.

More formally, the cohomology outside degree zero measures the failure of χ[T ] to be a

semijective module over ĝ---which should be understood as a chiral analogue of the failure

of a moment map to be flat in symplectic reduction.
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Chapter 2

The chiral algebras of class S

,has the naughty thumb

of science prodded

thy

beauty

E. E. Cummings

[O sweet spontaneous]

2.1 Theories of Class S

In this section, we provide a review on the physics background of theories of class S. This

is not meant to be a comprehensive overview; more background on these theories can be

found in, e.g., [Gai09, GMN09, Tac11].

We start with a review of their construction as a dimensional reduction of the six-dimensional

N = (2, 0) parent theory on a curve (the UV curve) in Section 2.1.1. The compactification

data includes boundary conditions at the marked points of the curve and we discuss their

classification in Section 2.1.2.

In the setting of class S, the action of S-duality is geometric in nature, arising from the

diffeomorphisms of the UV curve. We discuss this identification in Section 2.1.4, as well as

giving a description of the generators of this group in terms of elementary moves swapping
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between pants decompositions.

In Section 2.1.5 we review the TQFT computation of the Schur limit of the superconformal

index, following [GRRY13]. We shall also recast the expression for the index of loc. cit. in

more representation theoretic terms---rewriting them in terms of characters over modules

of the critical level affine Kac–Moody algebra ĝκc .

2.1.1 A definition from six-dimensional origins

The theories of class S are four-dimensional N = 2 SCFTs with a six-dimensional origin.

Six dimensions is special, in that superconformal theories do not exist in higher dimensions.

The maximal superconformal algebra is that of N = (2, 0) theories in six dimensions, and

is isomorphic to osp(8, 4).

The representation theory of osp(8, 4), does not allow for any representation to satisfy the

equations of motion of super Yang–Mills1 and so there are no gauge theories of this type.

Nevertheless, these theories are classified by the choice of a simply laced, simple Lie algebra

gu. One way to see the appearance of this ADE classification is via the string theory

construction.

These theories can be geometrically engineered (see [BI97, HMV14]) as the low-energy

limit of Type IIB string theory on R6×C2/Γ with Γ a finite subgroup of SU(2). Such finite

subgroups have an ADE classification following the Mckay correpsondence. The theories

of AN -type admit an M -theory uplift and can be realised as the world-volume theory of a

stack of N + 1-M5 branes in R6.

Starting with such a theory, characterised by a choice of gu, we can compactify on a C-

curve, Σ, to produce a theory on R4×Σ, whose low energy limit will be a four dimensional

N = 2 SCFT2. The resulting four-dimensional SCFTs are the eponymous theories of class

S. The theory depends on our choice of Σ, only up to conformal transformations. In fact
1There is an exception to this statement for abelian gauge groups, however we will not be interested in

such theories
2To preserve eight supercharges one must actually perform a topological twist as part of the compact-

ification. This involves twisting the action of the spatial symmetries by the R-symmetry. We will largely
ignore this subtlety.
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the complex structures of Σ correspond precisely to gauge couplings in the theory.

Our choice of curve may have boundary components, i.e., punctures corresponding to the

insertion of codimension-2 defects of the six-dimensional theory, which are transversal to

Σ. The classification of such defects is quite involved and we shall delve into it momentar-

ily.

For now our working definition of class S is an SCFT that is specified by a triple (gu,Σg,s, {Λi}si=1)

where

• gu is a simply laced simple Lie algebra

• Σg,s is a connected Riemann surface (algebraic curve) of genus g with s many punc-

tures (marked points). We call this the UV curve of the theory.

• {Λi}si=1 are labels for each marked point

Strictly speaking, curves that are related by a conformal diffeomorphism define the ''same''

theory. As a result we should think of our gauge couplings τi as co-ordinates on the moduli

spaceMg,s of curves of genus g with s-marked points. In fact, we will also be interested in

singular curves and so work over the Deligne–Mumford compactification Mg,s.

Note that if we choose a disjoint union of curves Σg,s t Σg′,s′ , the resulting theory is the

product of theories defined by Σg,s and Σg′,s′ .

2.1.2 Untwisted punctures

The labels of punctures in class S fall under a dichotomy of either regular or irregular, and

in this work we shall restrict our attention entirely to the regular case. For a review of the

irregular case we point the reader to [Xie13, GMN09].

Regular, untwisted punctures in a theory of type gu are labelled by a nilpotent element of

gu, up to conjugacy. Therefore, such punctures are labelled by a nilpotent orbit in gu or,

equivalently by the Jacobson–Morozov theorem (Theorem A.1.4), by a conjugacy class of

a homomorphism Λ : sl2 → gu.

The defect operator corresponding to such a puncture enjoys some global symmetry that it

31



then contributes to the total global flavour symmetry of the four dimensional SCFT. The

contributed symmetry is of the form

fΛ = ker adΛ(sl2) (2.1.1)

i.e., the commutant of the image of sl2 in gu.

As discussed in Proposition A.1.5, any simple Lie algebra has at least two especially impor-

tant nilpotent orbits: the principal orbit (which is the unique, largest nilpotent orbit) and

the trivial orbit. Their respective commutants are f = 0 for the principal orbit and f = gu

for the trivial orbit. A puncture labelled by the trivial embedding is, therefore, called a

maximal puncture, while a puncture labelled by the principal embedding contributes no

flavour symmetry and is equivalent to having no puncture at all. With an eye towards

the twisted case, we will nevertheless adopt the convention of referring to a hypothetical

puncture labelled by the principal embedding as an empty puncture.

Given a theory where a particular puncture is maximal, the corresponding theory with

that puncture replaced by a sub-maximal puncture can be realised by partially Higgsing

the gu flavour symmetry associated to that puncture in the four dimensional theory. A

choice of nontrivial Λ is realised by assigning an expectation value to the ``moment map''

Higgs branch operator in the conserved current multiplet that lies in the corresponding

nilpotent orbit. Consequently, for many purposes it is sufficient to be able to construct

theories associated to surfaces with maximal punctures, with other punctures structures

being subsequently reached via partial Higgsing. Henceforth, we shall restrict ourselves to

the case where Σg,s has only maximal punctures.

We wish to point out that not all UV curves produce valid SCFTs. For example, the

theories associated to P1 with less than three punctures are not good four-dimensional

theories. This is true independent of the labelling of these punctures (so long as we only

have regular punctures). Nevertheless, these objects will play an important role in the

construction of the chiral algebras of class S.
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2.1.3 Trinions, gluing and residual gauge symmetry

The gauge couplings of the SCFT are precisely the complex structures τi of the UV curve.

Therefore, the weak coupling limit of the theory corresponds to the degeneration limits of

the UV curve. Consider driving the complex structures to the most singular stratum of the

(compactified) moduli space---this corresponds to a limit where the UV curve decomposes

into various pairs-of-pants or trinions, with thin tubes connecting maximal punctures.

The SCFTs associated to P1 with three maximal punctures can therefore be thought of as

the indecomposable atoms of this space of theories. These are often referred to as trinion

theories or fixtures. There are myriad possible (combinations of) labels that can appear on

a single trinion; these have been extensively detailed by (various subsets of) Chacaltana,

Distler, Tachikawa, and Trimm in [CDT13, CD10, CD13].

Given any two curves Σg,s and Σ′
g′,s′ , we can form the disjoint union Σg,s t Σ′

g′,s′ , corre-

sponding to the product on the associate SCFTs. Suppose each surface has at least one

maximal puncture3 and let us single out one such puncture on each surface. The chosen

punctures give rise to a gu × gu global symmetry on the product theory. We can choose to

gauge by the diagonal action of gu×gu, producing a gauge theory at coupling τ . On the UV

curves, this operation corresponds to gluing Σg,s and Σ′
g′,s′ along the singled out punctures

to produce a curve Σg+g′,s+s′−2, which has one additional complex structure specified by

the coupling τ .

Given a single curve Σg,s with at least two maximal punctures, one may also perform a

self-gluing by gauging the diagonal gu × gu corresponding to two maximal punctures. This

produces the curve Σg+1,s−2. The genus is not conserved under this gluing, and we shall

see that this has certain implications for the underlying SCFT.

Every curve can be produced by gluing (or self-gluing) various pairs of trinions and then

performing Higgsings to obtain the correct labels. Therefore the trinion theories associated

to Σ0,3 are the fundamental building blocks of class S.
3Note that one can only perform gluings along maximal punctures. If one were to try and gauge the

diagonal action of a non-maximal symmetry, the resulting theory would not be an SCFT.

33



Before we move on, we shall go through a brief digression on residual gauge symmetries.

Recall the Higgs and Coulomb branches of Section 1.1.7 and the trichotomy of pure, en-

hanced and interacting Higgs branches. To the best of our knowledge, in the presence of

regular punctures only pure and enhanced Higgs branches can arise, whereas interacting

Higgs branches are common in Argyres–Douglas type theories that can be engineered with

irregular punctures (once again see [Xie13, GMN09]).

In the untwisted class S setting, there is a simple characterisation of under what circum-

stances a theory will have an enhanced rather than a pure Higgs branch: theories of type

An, Dn, or En with genus g have generic residual gauge symmetry with rank equal n × g.

In other words, the genus zero theories of class S (in the untwisted setting) all have pure

Higgs branches.

2.1.4 Mapping class groups and S-duality

The parent six-dimensional theory is conformally invariant and so only sees the UV curve up

to conformal transformations. This conformal invariance implies that the SCFTs associated

to two UV curves, in the same conformal class, should be dual. Precisely stated, we can

identify the S-duality group of a class S theory with the mapping class group MCG(Σg,s)

of its UV curve.

More pictorially, the action of S-duality swaps between the various pair-of-pants decompo-

sitions of a theory. On the SCFT side this constitutes a highly nontrivial set of quantum

dualities, identifying various different inequivalent gaugings of trinion theories as being

S-dual.

In the untwisted case, all pants decompositions can be reached by iterating two types

of elementary move. Our presentation is similar to that of the Moore–Seiberg groupoid

[MS89].

For the first type of move, consider P1 with four maximal punctures Σ0,4 with some labelling

1, . . . , 4 of its punctures. We move to the singular point on the moduli space where the sphere

decomposes into two trinions connected by a long tube, one of which has punctures labelled
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by 1, 2 and the other by 3, 4. In Figure 2.1, this is represented by the duality frame on the

left. By moving to a different singular point, one can decompose Σ0,4 into two connected

trinions labelled by 1, 3 and 2, 4---shown on the right hand side of Figure 2.1. We call such

a move, moving between the various decompositions of Σ0,4, a 4-move. This can be lifted

to a 4-move acting on any collection of four punctures on a general Σg,s. First, one moves

to a singular locus on the moduli space where Σg,s decomposes into a Σ0,4 that contains the

punctures of interest and is connected by a long tube to Σg,s−4. Then one applies a 4-move

to swap between decompositions of Σ0,4, before moving back out of the singular loci.

For surfaces Σg,s with g > 0, one must consider another type of move. For example, consider

the one punctured torus Σ1,1. The S generator of the modular group acts by swapping the

a and b cycles of the torus. This is a homeomorphism of the torus to itself that is not

homotopic to any iterated 4-move and so must be a generator, which we call the ab-move.

For a surface, Σg,s, there is a natural generalisation of this move. The ab-move acts as

the S-duality τ 7→ −1/τ on the complex gauge coupling associated to the handle, cf., the

example of SU(2) N = 4 SYM in Section 1.1.5

1

2

3

4

1 3

2 4

Figure 2.1: The 4-move acting on four maximal untwisted punctures.

We are primarily interested in observables that do not depend on exactly marginal defor-

mations, such as gauge couplings. Such observables are locally constant over Mg,s. In the

untwisted case, the ab-move is trivial for such observables and the action of the 4-moves

can be phrased in terms of the action of permutations on punctures. The 4-moves, in the

untwisted case, act by permuting the flavour symmetries associated to the punctures, which

shows up as permutations on the flavour fugacities (see the next section) of the index or
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permuting the moment-maps of the Higgs branch and the associated vertex algebra. It

is, therefore, useful to phrase the action of S-duality on these observables in terms of the

action of a permutation group. Indeed, this corresponds to the subgroup of automorphisms

Ss ⊂ AutMg,s which permute the points in a singular stratum.

2.1.5 The superconformal index of theories of class S

For theories of class S, the form of the full superconformal index has been shown to follow

from duality properties [GRR13], though for our purposes here we will restrict attention

to the Schur limit. The index takes the form of a sum over highest weights in the set

of integrable dominant weight representations P+ (i.e., a sum over finite-dimensional g

representations), weighted by some ``structure constants'' Cλλλ, which are functions of q.

For a UV curve with all maximal punctures maximal, Σg,s, which can be realised by gluing

2g−2+s trinions, the index takes the form [AOSV05, GPRR10, GRRY13, ABFH13]

I(q;x1,x2, . . . ,xs) =
∑
λ∈P+

(Cλλλ(q))
2g−2+s

s∏
i=1

K(q;xi)χ
λ(xi) , (2.1.2)

where P+ are the set of positive integral dominant weights of the simply connected groupGu.

The xi are flavour fugacities valued in a maximal torus of Gu and the K factors are defined

as in (1.1.21). The χλ are Schur polynomials, i.e., characters of the finite-dimensional gu

representation with highest weight λ.

At the level of the index, Higgsing a maximal puncture to a non-maximal one amounts to a

fugacity replacement (with a subtraction of certain divergences) that is detailed in [GRRY13,

RR16, BPRvR15]. We will not use this technique but instead we wish to note the following.

Since reducing to an empty puncture amounts to removing the puncture all together, one

has the relation

Cλλλ(q) =
1

K(×)χλ(×)
, (2.1.3)

where × represents the regularised fugacity replacement for the empty puncture, which is

purely a function of q.
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For the empty puncture, we have

K(×) =
rk g∏
i=1

1

(qdi , q)∞
. (2.1.4)

Looking ahead, we can identify K(×) with the character of the Feigin–Frenkel centre z(g).

Similarly, we can identify the summand, K(q;x)χλ(x) can be identified with the character

of the critical level Weyl module of highest weight λ, Vλ as

K(q;x)χλ(x) = chVλ
≡ TrVλ

(qDxT ) , (2.1.5)

where D is the quasiconformal weight. For the sake of clarity, we shall often suppress the

flavour fugacities and use the notation chV = TrV (q
D).

At the critical level, the Weyl modules are not irreducible---instead they have a unique

simple quotient Lλ. The characters of the Weyl module and their simple quotients are

related by

ch Lλ =
ch Vλ

ch zλ
=
K(q;x)χλ(x)

K(×)χλ(×)
, (2.1.6)

where zλ is the Drinfel'd–Sokolov reduction of Vλ, as in Proposition A.3.6.

The index of Σg,s can then be completely rewritten in terms of characters of Weyl modules,

or their simple quotients, as

I(q;x1x2, . . . ,xs) =
∑
λ∈P+

(ch zλ)
2−2g

s∏
i=1

ch Lλ =
∑
λ∈P+

(ch zλ)
2−2g

s∏
i=1

ch Vλ

ch zλ
. (2.1.7)

2.2 Arakawa's construction of the chiral algebras of S

The theories of class S define a family of SCFTs for each simply laced gu, parameterised by a

choice of Σg,s. Applying the SCFT/VOA correspondence of [BLL+15] gives rise to a family

of vertex algebras also parameterised by a choice of Σg,s. However, the vertex algebras are

independent of exactly marginal deformation, i.e., they are independent of the complexified

gauge couplings of the theory. The gauge couplings of the SCFT are precisely the complex
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structures of Σg,s. Therefore, the resulting family of vertex algebras only depends on the

topological data of Σg,s.

From here on, we shall restrict our attention to the genus zero case, since these are the

focus of Arakawa's construction. We shall also restrict to the case where all punctures

are maximal. The vertex algebras corresponding to non-maximal punctures can then be

obtained through Drinfel'd–Sokolov reduction---the vertex algebraic counterpart of Higgsing

a puncture.

Following Arakawa's lead, we shall also relax the condition that g is simply laced. For the

rest of this chapter g will refer to a simple Lie algebra. While this is unphysical, we wish to

review the construction in its full generality. We will make a comment about the physical

interpretation of vertex algebras with non-simply laced g in Section 3.3.

We start this section with a summary of the properties that the genus zero chiral algebras

should possess in Section 2.2.1. We introduce glued modules in Section 2.2.2. These are,

roughly speaking, a product of Weyl modules of ĝ, where we identify the action of the

Feigin–Frenkel centre on each module. The chiral algebras of class S will be limits of these

glued modules.

In Section 2.2.3, we introduce the technology of Feigin–Frenkel gluing, a kind of semi-infinite

cohomology with respect to the action of the Feigin–Frenkel centre. With this technique

in hand, we can begin our review of Arakawa's construction. We start off with defining the

vertex algebras of the cylinder and the cap in Sections 2.2.4 and 2.2.5. These are strongly

constrained by their properties under gluing---gluing the cylinder is an identity operation

and gluing the cap closed the puncture.

Having defined the cap, allows us to introduce inverse Hamiltonian reduction in Section

2.2.6. At the level of pictures, inverse Hamiltonian reduction introduces a puncture to the

UV curve by gluing on a cap via the interior points. More formally, it defines a (partial)

inverse to the functor of Drinfel'd–Sokolov reduction.

The construction proper will be in Section 2.2.7. Here we review Arakawa's construction

as well as reproducing their results on gluing and the various other properties detailed in
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Section 2.2.1.

2.2.1 Chiral algebras of class S at genus zero

Before we begin with the construction, let us review the properties we expect from the

vertex algebras associated to the genus zero SCFTS in class S. The following will be a high

level overview of what we should expect from the construction of [Ara18], based on the

SCFT/VOA correspondence of Section 1.2---more details can be found in [BPRvR15]

Fix a simple Lie algebra g. Let Σs denote P1 with s maximal punctures. To such a curve we

associate a vertex algebra object4 VG,s internal to KL, the Kazhdan–Lusztig category for

ĝκc . Recall from Remark A.3.3 that a vertex algebra object, V , in KL is a vertex algebra

V equipped with a vertex algebra morphism V κc(g) → V , such that its structure as a

V κc(g)-module is a limit of positive energy representations.

The vertex algebra is independent of the complex structure of Σs, in other words it is

locally constant over M0,s. In other words the braid group action on VG,s, coming from

the mapping class group, factors through the action of the symmetric group that permutes

punctures.

Each puncture on Σs gives rise to a vertex algebra morphism

µi : V
κc(g)→ VG,s , for i = 1, . . . , s , (2.2.1)

From the universal affine vertex algebra of g at the critical level κc. We call these morphisms

the chiral moment maps and their images are commuting V κc(g) subalgebras inside VG,s.

The natural symmetric group automorphism of M0,s means that all punctures are on a

equivalent footing.

Pick such a moment map, we can perform principal Drinfel'd–Sokolov reduction with re-

spect to this moment map to close the corresponding puncture. Therefore, the vertex
4Following Arakawa, we elect to label these vertex algebras by the simply connected group G with Lie

algebra g.
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algebras VG,s and Vs−1 are related via principal Drinfel'd–Sokolov reduction,

Hi
DS(VG,s) ∼= δ0iVs−1 . (2.2.2)

Given two surfaces, Cs and Cs′ , we can glue them along two specified punctures to produce

Cs+s′−2. On the SCFT side this corresponds to gauging the diagonal g symmetry. In Section

1.2.5 we argued that such a gauging on the SCFT side corresponds to BRST reduction or

(relative) semi-infinite cohomology on the vertex algebra side. Therefore, the family VG,s

must satisfy the following gluing relations

H
∞
2
+•(ĝ−κg , g,VG,s ⊗VG,s′) ∼= VG,s+s′−2 . (2.2.3)

Moreover, we expect these gluings to be concentrated in degree zero, since the correspond-

ing genus zero SCFTs all have pure Higgs branches (see the discussion in Section 1.2.5).

Therefore, we should expect that

H
∞
2
+i(ĝ−κg , g,VG,s ⊗Vs′) ∼= δi,0Vs+s′−2 . (2.2.4)

For compactness, we introduce the notation ◦, where for any M,N ∈ KL,

M ◦N ≡ H
∞
2
+•(ĝ−κg , g,M ⊗N) . (2.2.5)

Finally, four-dimensional physics also imposes some constraints on the algebraic structure

of VG,s. We know that VG,s must be conformal, and from the expressions for the four-

dimensional central charge [CDT13], we see that

cVG,s
= (s− (s− 2)h∨)dim g− (s− 2)rk g . (2.2.6)

Unitarity demands that cVG,s
is negative and this is true as long as s > 2. Furthermore,

unitarity demands that VG,s is non-negatively 1
2Z-graded by conformal weight, with the

weight zero component being spanned by the vacuum vector. These constraints imply that
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VG,s is of CFT type for s > 2.

2.2.2 Glued modules of the Feigin–Frenkel centre

In this subsection, we shall define a certain class of modules in KL, which shall appear in

the decompositions of the chiral algebras of class S, as V κc(g) modules.

Let z(g) ⊂ V κc(g) be the Feigin–Frenkel centre of the universal affine vertex algebra. Recall

that the Feigin–Frenkel centre is a commutative vertex subalgebra of vκc(g) which has non-

singular OPEs with all fields, i.e., it is central. It is strongly generated, as a commutative

vertex algebra, by generators Pdi , where di are the exponents of g. We denote by Z the

algebra of Fourier modes of z(g). See Appendix A.3.3 for more details.

As a commutative algebra,

Z ∼= C[Pdi,(n), | di = 1, . . . , rk g n ∈ Z] . (2.2.7)

Furthermore, we denote Z<0 to be the subalgebra,

Z<0 := C[Pdi,n, | di = 1, . . . , rk g n ∈ Z<0] , (2.2.8)

where it should be noted that we have used the physicist's gradings on the mode number

with Pdi,n = Pdi,(n)−di−1.

First we recall the quotient, zλ of Z<0 from Definition A.3.5. Let Vλ be a Weyl module

over ĝκc with λ ∈ P+. Let Iλ be the annihilator ideal of Vλ inside Z<0, then

zλ = Z<0/Iλ (2.2.9)

From the definition, zλ acts on Vλ freely by the projection Z<0 ↠ zλ.

Suppose M,N ∈ Z-Mod, we endow M⊗N with the structure of a Z-module in the following

way. Let τ = −w0 be the Cartan involution, where w0 is the longest word in the Weyl group,

W (g). On g-modules, τ sends the highest weight representation Vλ to its contragredient
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dual Vλ∗ . This lifts to an automorphism, τ of the vertex algebra z(g), and so its mode

algebra Z, see the proof of [Ara18, Lemma 5.4] or [FG04, Theorem 5.4].

The product, M ⊗N , has a Z-Mod structure with P ∈ Z acting as

(P ⊗ 1− 1⊗ τ(P )) . (2.2.10)

The twist by τ is a matter of convention, but will prove convenient in later constructions

when we wish to glue together modules with respect to the Feigin–Frenkel centre.

Now consider Vλ ⊗Vλ∗ , which has two commuting actions of V κc(g), and so two actions of

Z. We can pass to the quotient

Vλ,2 := Vλ ⊗
Z
Vλ∗ ∼= Vλ ⊗

zλ
Vλ∗ , (2.2.11)

by identifying the action of the Feigin–Frenkel centre on each Weyl module. The resulting

``glued'' bimodule still retains the two commuting actions of V κc(g) coming from each

factor. In fact, Vλ,2 is naturally a module over

V0,2
∼= V κc(g) ⊗

z(g)
V κc(g) , (2.2.12)

the glued current algebra. Let us generalise this construction.

Definition 2.2.1. Let λ ∈ P+ and s ∈ N, we define the glued module Vλ,s as

Vλ,s := Vλ ⊗
Z
Vλ∗ ⊗

Z
. . .⊗

Z
Vλ̃︸ ︷︷ ︸

s many

∼= Vλ ⊗
zλ
Vλ∗ ⊗

zλ
. . .⊗

zλ
Vλ̃︸ ︷︷ ︸

s many

, (2.2.13)

where λ̃ is equal to λ∗ for even s, or λ for odd s. The resulting module is an object in KL

with respect to the action of V κc(g) on each factor. We denote their contragredient duals

by D(Vλ,s).

Note that V0,s are vertex algebra objects for all values of s. In particular, we have vertex

algebra morphisms µi : V κc(g) for i = 1, . . . , s, embedding V κc(g) into the ith factor of
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V0,s. Suppose M is a module over V0,s, then the embeddings µi give it the structure of a

V κc(g)-module, by restriction.

We denote by KLs
⊗z(g) be the category of V0,s modules such that the action of V κc(g) via

µi gives the module a structure of an object in KL. By construction, the Vλ,s are objects

of KLs
⊗z(g).

Proposition 2.2.2 ([Ara18, Prop 8.6]). We have the following isomorphisms

• H0
DS,1(Vλ,s) ∼= Vλ∗,s−1 and H0

DS,s(Vλ,s) ∼= Vλ,s−1 where the DS-reduction is performed

with respect to the action of V κc(g) on the first, and last factor respectively.

• H0
DS,1(D(Vλ,s)) ∼= D(Vλ∗,s−1) and H0

DS,s(D(Vλ,s)) ∼= D(Vλ,s−1) where the DS-reduction

is performed with respect to the action of V κc(g) on the first, and last factor respec-

tively.

The Weyl modules have the nice homological property of being projective as a U(t−1[g[t−1]])

module and their contragredient duals are injective over U(t[g[t]). The glued modules retain

this property, since zλ acts freely, with respect to each action of V κc(g) on their factors.

Let KLs,∆ be the subcategory of KLs
⊗z(g) objects, M , with an increasing filtration,

0 =M0 ⊂M1 ⊂M2 ⊂ · · · ⊂M , (2.2.14)

such that each successive quotient satisfies

Mi/Mi−1
∼= Vλ,s , (2.2.15)

for some λ ∈ P+. Analogously, we define KLs,∇ to be the subcategory of KLs
⊗z(g) objects,

N , equipped with a descending filtration

N = N0 ⊃ N1 ⊃ N2 ⊃ · · · ⊃ 0 , (2.2.16)

with successive quotients

Ni/Ni+1
∼= D(Vλ,s) , (2.2.17)
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for some λ ∈ P+.

Proposition 2.2.3. Let KLs,♦ denote the subcategory of objects of KLs
⊗z(g) that are simul-

taneously objects of KLs,∆ and KLs,∇. Any object M in KLs,♦ is semijective over ĝκc with

respect to each action, i.e., projective over U(t−1g[t−1]) and injective over U(tg[t]).

As a result, for any N ∈ KL,

H
∞
2
+i(ĝ−κg , g,M ⊗N) ∼= δi,0H

∞
2
+0(ĝ−κg , g,M ⊗N) , (2.2.18)

where we may use any of the s many, V κc(g) actions.

Proof. If M ∈ KLs,♦, then it is a colimit of U(t−1g[t−1])-projective objects and a limit of

U(tg[t])-injective objects. The second statement follows from Theorem A.5.5.

2.2.3 Feigin–Frenkel gluing

The current subalgebras of VG,s are all at the critical level, so there could theoretically be

several copies of the Feigin–Frenkel centre present. This turns out to not be the case; in

fact the current subalgebras all share a common Feigin–Frenkel centre. This can be seen

from writing the index in terms of Weyl modules as in (2.1.7)

This phenomenon of a shared FF centre is a chiral analogue of certain well-known Higgs

branch relations for theories of class S. We recall that for theory of type An associated

to a UV curve with s punctures, there are s moment map operators µs subject to the

relation

Trµk1 = Trµk2 = · · · = Trµks , k = 2, . . . , n+ 1 . (2.2.19)

More generally, for the Dn and En theories there are analogous relations corresponding to

the respective fundamental invariants of those algebras. These play a central role in the

construction of the Moore–Tachikawa varieties (Higgs branches of class S) by Ginzburg–

Kazhdan [GK].

It is not immediate that these Higgs branch relations lead to the identification of Feigin–

Frenkel centres. This is because the Feigin–Frenkel generators are related to, but not equal

44



to, the corresponding Higgs branch operators under the SCFT/VOA correspondence.5 To

illustrate, consider the case k = 2 of (2.2.19) The Higgs branch operators associated to the

quadratic fundamental invariant are related to the Segal–Sugawara operators, P1,i but also

receive a nonzero contribution from the VOA stress-energy tensor T [Bee19],

P1,i = Trµ2i + αT , (2.2.20)

where α is a fixed (nonzero) constant computed in [Bee19] and P1,i is the quadratic Feigin-

-Frenkel generator associated to the i'th puncture. The Higgs branch relations force the

Trµ2i to be equal and, importantly, there is a unique Ĉ0(0,0) multiplet (the four-dimensional

stress tensor multiplet)---so the operator T is the same for each i. As a result, the quadratic

generators of the Feigin–Frenkel centre are identified across different punctures, i.e., P1,1 =

P1,2 = . . . P1,s.

For higher order invariants, more information is required about the structure of the vertex

algebra. In the case of the cubic invariant of An there will be mixing between Higgs branch

operators (B̂3 multiplets) and C1(0,0) multiplets, but the uniqueness of the latter is not

apparent. Nevertheless, precisely for the class S theories, the known expression for the

Schur index indicates that the identification of the higher Feigin–Frenkel generators should

indeed hold.

As an abelian Lie algebra, Z has a semi-infinite structure and so can be used to define

semi-infinite cohomology with coefficients in some object of Z-Mod. Specifically, we will

have coefficients of the form M ⊗ N for M,N ∈ Z-Mod. The Feigin standard complex is

then given by

C•(Z,M ⊗N) :=M ⊗N ⊗
∧ ∞

2
+•z(g) , (2.2.21)

with BRST current

Q(z) =

rk g∑
i=1

(Pdic
di)(z) , (2.2.22)

whose zero mode Q(0) acts as a differential for the cochain complex.
5To be precise, the Feigin–Frenkel operators are identified with the corresponding Higgs branch operators

upon passing to the associated graded of the R filtration [BR18].
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Definition 2.2.4. Given two modules V1 and V2 in Z-Mod, we define Feigin–Frenkel (FF)

gluing as the semi-infinite cohomology

V1 ∗ V2 := H
∞
2
+0(Z, V1 ⊗ V2) . (2.2.23)

In the case when V1 and V2 are vertex algebras, V1 ∗V2 is also a vertex algebra (see Remark

A.2.12).

As was the case with the gauge theory BRST problem, we have a vanishing theorem

here.

Theorem 2.2.5 (Theorem 9.10 of [Ara18]). Let M ∈ Z-Mod be free as a Z(<0) module,

then

H
∞
2
+i(Z,M) = 0 for i < 0 .

This is a weaker conclusion than in the vanishing theorem A.5.5, as the cohomology is

not necessarily concentrated in degree zero. Nevertheless for many purposes it is suffi-

cient.6

We see that the BRST procedure enforces that the action of the Feigin–Frenkel centre on

V1 and V2 are identified; in some loose sense, this enforces the Higgs branch relations on

the Schur operators. This is very similar to a chiral version of the Hamiltonian reduction

procedure described in [GK].

2.2.4 Chiral differential operators and the cylinder

The starting point of the construction of [Ara18] is the cylinder VOA; from here one can

define the cap chiral algebra by Drinfel'd–Sokolov reduction and, as it turns out, construct

all genus zero VOAs by FF-gluing. The form of the cylinder algebra for An theories was

identified concretely in [BPRvR15], but it was subsequently recognised in [Ara15] that

this reproduced a more general, and purely algebraic, construction that makes no explicit

reference to four dimensional physics. The construction is universal and depends only on
6From a derived perspective, truncating the cohomology at degree zero is somewhat unnatural. We will

return to this point in a later section.
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a choice of algebraic group G with Lie G = g. Here we take G to be the simply connected

Lie group.

Starting from such a G, the arc space G(O) is a scheme whose C-points are

G(O) := HomSch/C(D, G) , (2.2.24)

where D is the formal disc D = Spf C[[t]]. More abstractly, G(O) represents the functor

Sch/C → Set

S 7→ HomSch/C(S × D, G)
(2.2.25)

For a nice discussion of arc spaces, we point the reader to [Ara17].

The Lie algebra g = Lie(G) acts on the co-ordinate ring, C[G], via derivations, and, by

functoriality, this action lifts to one of g(O) ∼= g[[t]] on C[G(O)]. Therefore, C[G(O)] has

the structure of a g[[t]] ⊕ CK module where K acts as the level κ ∈ C. One can further

produce a ĝκ module via induction, which defines the chiral differential operators (cdos) on

the simply connected, algebraic Lie group G [AG02] (see also [GMS99, GMS01, GMS04,

MSV99]),

Dch
G,κ = U(ĝκ)⊗U(g[[t]]⊕CK) C[G(O)] . (2.2.26)

We shall be interested in the chiral differential operators at the critical level, κ = κc, and

we write

Dch
G ≡ Dch

G,κc
. (2.2.27)

At any level, cdos on G has the structure of a conformal vertex algebra [GMS01] with

central charge

c2d = 2dimG , (2.2.28)

which matches with the central charge for a twice punctured sphere (see, e.g., [CDT13]).

Note that this central charge is positive, corresponding to a negative central charge for the

putative four-dimensional SCFT---which will be non-unitary. Again, this is expected since

the cylinder class S theory is not a good four-dimensional theory.
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By construction, Dch
G is a vertex algebra object in KL and there is an embedding of the

universal affine vertex algebra πL : V κc(g) ↪→ Dch
G . This vertex algebra homomorphism is

induced by the embedding of g as left invariant vector fields of G. The Lie algebra g is

also isomorphic to the right invariant vector fields of G and this embedding is also lifted to

a vertex algebra homomorphism πR : V κc(g) ↪→ Dch
G , such that the images of πL and πR

commute [AG02, Theorem 3.7].

The left and right embeddings of V κc(g) restrict to embeddings of the Feigin–Frenkel centre

z(g), and the two embeddings of the Feigin–Frenkel centre coincide [FG04],

πL(z(g)) ∼= πR(z(g)) ∼= (Dch
G )g[t]×g[t] . (2.2.29)

The vertex algebraDch
G is free as a module over U(t−1g[t−1]) and cofree over U(tg[t]) [Ara18];

thus the conditions of Theorem A.5.5 are met and for any M ∈ KL, the cohomology Dch
G ◦M

is concentrated in degree zero, and furthermore we have the following result.

Theorem 2.2.6 ([AG02, Theorem 5.5]). Let M ∈ KL, then we have that

H
∞
2
+i(ĝ−κg , g,Dch

G ⊗M) ∼= H
∞
2
+i(ĝ−κg , g,M ⊗Dch

G ) ∼= δi,0M . (2.2.30)

Pictorially, gluing the cylinder to any surface must be the identity operation. The above

theorem confirms that Dch
G satisfies this condition. By abstract nonsense, Dch

G must be the

unique object in KL that satisfies such a property.

2.2.5 Equivariant affine W-algebras and the cap

Starting from the cylinder VOA, the cap algebra is recovered by completely reducing one

maximal puncture. Arakawa has named the resulting VOA the (principal) equivariant affine

W-algebra WG (it is an affine analogue of the equivariant W-algebra of [Los07]),

WG := H0
DS(Dch

G ) . (2.2.31)
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In the usual way, this vertex algebra inherits a conformal structure from the cylinder, with

central charge

cWG
= dim g+ rk g+ 24κg(ρ, ρ

∨) , (2.2.32)

where ρ is half the sum of all positive roots and ρ∨ is the half sum of all positive co-

roots.

By Propositions 6.4 and 6.5 of [Ara18], WG is free over U(t−1g[t−1]) and cofree over U(tg[t]),

and so is the ĝ−κg module WG⊗M . The cohomology when gauging is therefore concentrated

in degree zero.

Theorem 2.2.7 ([Ara18, Theorem 6.8]). Let M ∈ KL,

H
∞
2
+•(ĝ−κg , g,WG ⊗M) = H0

DS(M) . (2.2.33)

When M is a chiral algebra of class S, this corresponds, pictorially, to the fact that gluing a

cap and a surface together along a maximal puncture has the effect of closing the puncture,

i.e., performing principal DS reduction.

2.2.6 Inverse Hamiltonian reduction

Feigin–Frenkel gluing a cap onto another vertex algebra provides a sort of inverse to the

principal DS reduction functor; by FF gluing a cap onto a vertex algebra V ∈ Z-Mod we

provide it with a V κc(g) action, and it becomes a vertex algebra object in KL. The cap

is free over Z(<0) [Ara18] and so WG ∗ − : Z-Mod → KL is a left-exact functor that acts,

almost, as an inverse to H0
DS.

Theorem 2.2.8 ([Ara18, Theorem 9.11]). Let M ∈ KL, then

M ∼= H
∞
2
+0(Z,WG ⊗H0

DS(M)) , (2.2.34)

i.e., the composition H
∞
2
+0(Z,WG ⊗ H0

DS(−)) is the identity functor on KL. Define the
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subcategory KL0 ⊂ Z-Mod as the image, H0
DS(KL), then we have an equivalence of categories

KL KL0

H0
DS(−)

WG∗−

. (2.2.35)

Remark 2.2.9. This almost-equivalence is reminiscent of a result of Riche [Ric17, Proposition

3.3.11]. Let g∗reg be the regular locus inside g∗, i.e., the locus whose G-stabiliser is of

dimension rk g. Then

κ : QCohG(g∗reg)
∼−→ Rep(ZG) . (2.2.36)

where ZG is the group scheme of G-stabilisers over the principal Slodowy slice Sprin. The

functor κ is Kostant–Whittaker reduction, the finite-dimensional Poisson counterpart of

Drinfel'd–Sokolov reduction. The inverse functor is provided by ZG symplectic reduction,((G×

Sprin) × −)///ZG, as made precise in [GK]. The equivariant Slodowy-slice G × Sprin is the

associated variety of WG.

Instead of reducing by the action of the group scheme, one can reduce by the action of the

Lie algebroid. Roughly speaking FF-gluing a cap, WG ∗ − is a chiralisation of this latter

construction.

As a ``corollary''7 of Theorem 2.2.8, the cylinder VOA can be recovered from the equivariant

affine W -algebra by FF gluing two caps together,

WG ∗WG ≡ H
∞
2
+0(Z,WG ⊗WG) ∼= Dch

G . (2.2.37)

Indeed, there is an obvious generalisation to produce all VG,s by repeatedly gluing caps.

2.2.7 Constructing genus zero VOAs and their properties

From here there is a conceptually straightforward construction of all genus zero chiral al-

gebras of class S: one starts with Dch
G and repeatedly applies W ∗ − to add more maximal

7This is not quite a corollary since Arakawa's proof of Theorem 2.2.8 requires establishing WG ∗WG
∼=

Dch
G , independently as Theorem 9.9 of [Ara18].
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punctures. The construction of [Ara18] takes a slightly different approach. Instead of per-

forming iterative FF-gluing of caps, one glues all caps together simultaneously---producing

VG,s in one step.

Definition 2.2.10. Take the chain complex

C•

(
s−1⊕
i=1

Z i,i+1,Ws

)
:= Ws ⊗

(∧ ∞
2
+•(z(g))

)s−1

, (2.2.38)

for s > 1, with differential equal to Q(0), for

Q(z) =

s−1∑
i=1

Qi,i+1(z) ,

Qi,i+1(z) =

rk g∑
j=1

(ρi(Pj)− ρi+1(τ(Pj)))ρgh,i(c
j)(z) ,

(2.2.39)

where ρi represents the action of z(g) on the i-th factor of W and ρgh,i(cj) acts on the i-th

factor of the ghost system
∧ ∞

2
+•(z(g)). The vertex algebra of a sphere of type g with s

maximal punctures is then defined to be

VG,1 := W ,

VG,s := H
∞
2
+0(

s−1⊕
i=1

Z i,i+1,Ws) .
(2.2.40)

Having reviewed their construction, let us continue on to establishing the various expected

properties of the VG,s.

Each cap WG has a morphism µi : V
κc(g), and VG,s inherits these actions making it a vertex

algebra object in KL for each action µi. These are the chiral moment maps coming from the

maximal punctures on the UV curve. By construction, the Feigin–Frenkel centres of each

µi(V
κc(g)) are identified and so VG,s is a module over V0,s and an object in KLs

⊗z(g).

Proposition 2.2.11 ([Ara18, Proposition 10.10]). The vertex algebras VG,s are objects in
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KLs,♦. As a result, the gluings,

VG,s ◦VG,s′
∼= H

∞
2
+0(ĝ−κg , g,VG,s ⊗Vs′) (2.2.41)

are concentrated in degree zero. Here, the cohomology can be taken with respect to any of

the actions, µi for i = 1, . . . s.

By way of a spectral sequence argument, one can then establish the following result.

Proposition 2.2.12 ([Ara18, Proposition 10.11]). We have the following isomorphism of

vertex algebra objects in KL,

VG,s ◦VG,s′
∼= VG,s+s′−2 , (2.2.42)

where the gluing can be done with respect to any of the actions µi on each vertex algebra.

Remark 2.2.13. Proposition 2.2.12 also implies that gauging is associative, i.e.,

VG,s1 ◦ (VG,s2 ◦VG,s3)
∼= (VG,s1 ◦VG,s2) ◦VG,s3

∼= VG,s1+s2+s3−4 . (2.2.43)

Furthermore, all cohomologies being concentrated in degree zero is compatible with the

expectation that in genus zero there is no residual gauge symmetry on the Higgs branch,

and so no Hall–Littlewood chiral ring beyond the Higgs chiral ring.

These genus zero vertex algebras also play nicely under FF-gluing.

Proposition 2.2.14 ([Ara18, Proposition 10.2]). For any s ≥ 1, VG,s is free over Z(<0).

Therefore, for any s, s′ ≥ 1,

VG,s ∗VG,s′ ≡ H
∞
2
+0(Z,VG,s ⊗Vs′) ∼= Vs+s′ . (2.2.44)

As a special case, the above proposition implies that the simultaneous construction of the
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VG,s agrees with the recursive definition, i.e.,

VG,s+1
∼= H

∞
2
+0(Z,WG ⊗VG,s) . (2.2.45)

Additionally, [Ara18, Proposition 10.3] grants the following isomorphism

H0
DS(VG,s) ∼= VG,s−1 . (2.2.46)

This establishes the various gluing properties that physics predicts. Next, let us look at

some of the structural results. We collect these into one proposition.

Proposition 2.2.15. The vertex algebras, VG,s, are simple and conformal with central

charge

cs =
(
b− 2(b− 2)h∨

)
dim g− (b− 2) rk g . (2.2.47)

Moreover, VG,s are of CFT type for s ≥ 2 with characters

chVG,s
= I(q,x1,x2, . . . ,xs) =

∑
λ∈ P+

(ch z2λ)
s∏

i=1

chVλ

ch zλ
, (2.2.48)

i.e., the characters agree with the Schur limit of the index.

An interesting feature of this construction is that it trivialises S-duality. The 4-move acts by

permuting the various chiral moment maps which amounts to permuting the caps involved

in the construction of VG,s. The caps involved in the construction are identical and so

permuting these caps is an automorphism of the vertex algebra.

2.3 Examples of chiral algebras of class S

The preceding construction has been quite abstract, in this section we give examples of

VG,s for the case G = SL2 and s = 0, 1, 2, 3.

A number of these vertex algebras have appeared earlier in [BPRvR15, Ara18]. The ex-

pression for VSL2,0 is based on the free-field realisation technique of [BN23a].
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2.3.1 The sphere

The vertex algebra VG,0 was named the chiral universal centraliser in [Ara18]. As a vertex

algebra, VSL2,0, is strongly generated by the fields S,X, Y , satisfying the null relation

SXX − Y Y − 3
2∂Y X + 3

2Y ∂X −
3
4∂X∂X −

1
8X∂

2X
!
= 1 . (2.3.1)

The OPEs between strong generators are given by

S(z)X(w) ∼
3
4X(w)

(z − w)2
+
Y (w)

z − w
,

S(z)Y (w) ∼
3
4Y (w)

(z − w)2
+

(SX)(w)

z − w
,

Y (z)X(w) ∼
1
2(XX)(w)

z − w
,

Y (z)Y (w) ∼
−1

4(XX)(w)

(z − w)2
−

1
4(X∂X)(w)

z − w
.

(2.3.2)

Here, S generates a commutative vertex subalgebra, which should be identified with z(sl2)-

–with S the degree two generator.

The conformal vector is

T0 = 2S(∂Y X − Y ∂X) + 3S∂X∂X + 1
2Y ∂

3X − ∂SY X + 5
2∂S∂XX − 2∂Y ∂Y

+3
2∂Y ∂

2X − 3
4∂

2X∂2X − 3
2∂

2Y ∂X − 7
12∂

3X∂X − 1
2∂

3Y X − 1
24∂

4XX .

(2.3.3)

with central charge c = 26, which agrees with (2.2.6). The conformal weights of S,X, Y

under this choice of conformal vector are

∆S = 2 , ∆X = −1 , ∆Y = 0 . (2.3.4)

Note that VSL2,0 is not positively graded by conformal weight, nor is it conical since the

∆ = 0 subspace is infinite dimensional.
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2.3.2 The cap

The cap VOA, VSL2,1 ≡WSL2 is strongly generated by S,Xa, Y a, for a = +,−, subject to

the relation

XaYa +
1
2∂X

aXa
!
= 1 . (2.3.5)

The OPEs between strong generators is given by

S(z)Xa(w) =
3
4X

a

(z − w)2
+

Y a

z − w
,

S(z)Y a(w) =
3
4Y

a

(z − w)2
+

SXa

z − w
,

Y a(z)Xb(w) =
1
2(X

aXb)

z − w
,

Y a(z)Y b(w) = −
1
4(X

aXb)

(z − w)2
+
εab 12

(
Y cXd − 1

2∂X
cXd

)
− 1

4∂X
aXb

z − w
.

(2.3.6)

The cap has a single chiral moment map µ1 : V −2(sl2) →WSL2 . The image of the strong

generators e, h, f of V −2(sl2) under this map is given by

e1 =SX
+X+ − Y +Y + − 3

2

(
X+∂Y + − ∂X+Y +)− 3

4
∂X+∂X+ − 1

8
X+∂2X+ ,

h1 =− 2SX−X+ + 2Y −Y + +
3

2
(X−∂Y + +X+∂Y − − ∂X−Y + − ∂X+Y −)

+
3

2
∂X+∂X− +

1

4
X+∂2X− ,

f1 =− SX−X− + Y −Y − +
3

2

(
X−∂Y − − ∂X−Y −)+ 3

4
∂X−∂X− +

1

8
X−∂2X− .

(2.3.7)

Here e1 ≡ µ1(e), h1 ≡ µ1(h), and f1 ≡ µ1(f). The Xa and Y a should be thought of as

highest weight states in the Vλ=1 Weyl module.

Similarly, the stress tensor T1 is composite and takes the form

T1 = −S
(
∂XaXa

)
+ ∂Y aYa +

3

2

(
∂Xa∂Ya

)
+

3

8
∂2Xa∂Xa +

1

6
∂3XaXa , (2.3.8)

with central charge c1 = 16. The conformal weights are

∆S = 2 , ∆Xa = −1
2 , ∆Y a = 1

2 . (2.3.9)
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Just like the sphere, WG is not conical, nor is it positively graded by weight---again con-

firming the expectation that the class S-theory on Σ1 is not a good SCFT.

2.3.3 The cylinder

The cylinder VOA, VSL2,2 already has a presentation in terms of strong generators and

relations since it is isomorphic to Dch
SL2

. Expressions for the strong generators of Dch
G for

any affine algebraic group can be found via results of [GMS01]. For SL2, the cylinder

vertex algebra is strongly generated by Xab, for a, b = +,−, and eL, hL, fL with the null

relation ∣∣∣∣∣X++ X+−

X−+ X−−

∣∣∣∣∣ = X++X−− −X+−X−+ !
= 1 . (2.3.10)

The eL, hL, fL are strong generators of a V −2(sl2) current subalgebra and the Xab are strong

generators of a commutative subalgebra, with the Xab being highest weight states of V2⊗V2

acted on by eL, hL, fL.

It is useful to collect the eL, hL, fL into a matrix Ja
L b with

JL :=

(
eL −1

2hL

−1
2hL −fL

)
, (2.3.11)

This vertex algebra has an obvious chiral moment map µL : V −2(sl2)→ Dch
SL2

whose image

is the V −2(sl2) subalgebra generated by the eL, hL, fL. Morally, one should think of this

moment map as arising from the embedding of sl2 as left invariant vector fields.

The embedding of sl2 as right invariant vector fields gives rise to another, chiral moment

map, µR : V −2(sl2)→ Dch
SL2

with image generated by

Ja
R b = Jc

L dX
daXcb + 2Xac∂Xcb − δabXcd∂Xcd . (2.3.12)

The images of µL and µR commute and one can verify that the Feigin–Frenkel centres

agree.
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The conformal vector is again composite, now being given by

T2 = Jab∂Xa
cXcb + ∂2XabXab + 2∂Xab∂Xab . (2.3.13)

The conformal weights are

∆e1 = ∆f1 = ∆h1 = 1 , ∆Xab
= 0 . (2.3.14)

While Dch
SL2

is not conical it is Z≥0-graded by conformal weight.

2.3.4 The trinion

The class S theory corresponding to Σ3 is a theory of free-hypermultiplets valued in the

representation N = T ∗(V1 ⊗ V1) ∼= V1 ⊗ V1 ⊗ V1 of sl2. The corresponding vertex algebra

VSL2,3 should therefore be the βγ system on T ∗V1 ⊗ V1.

Instead, we give an equivalent presentation of VSL2,3 as a vertex algebra strongly generated

by Xabc with a, b, c = +,−, subject to no relations. The singular OPEs are

XabcXdef ∼
εadεbeεcf1

(z − w)
, (2.3.15)

where the εab are Levi-Civita symbols.

The three chiral moment maps µ1, µ2 and µ3 have images generated by

Ja
1 b = εcc

′
εdd

′
XacdXbc′d′ ,

Ja
2 b = εcc

′
εdd

′
XcadXc′bd′ ,

Ja
3 b = εcc

′
εdd

′
XcdaXc′d′b ,

(2.3.16)

and one can verify that these all commute and have a shared Feigin–Frenkel centre.

The conformal vector is

T3 = Xabc∂X
abc (2.3.17)

with ∆Xabc
= 1/2. Therefore, VSL2,3 is conical and positively graded and so is of CFT
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type---reflecting the fact that the class S theory on Σ3 is a good SCFT.
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Chapter 3

The chiral algebras of twisted class

S

It's the black wind through the maples,

and the difficulty of getting tenure...

Hera Lindsay Bird

Lost Scrolls

3.1 Theories of twisted class S

We extend our review of the theories of class S to incorporate twisted punctures with

non-simply laced flavour symmetries.

We start by introducing twisted punctures in Section 3.1.1. Including these punctures allows

for new moves in the web of generalised S-duality and we discuss these in Section 3.1.2.

In Section 3.1.3, we review the computation of the Schur indices of theories with twisted

punctures, following [LPR14].

In Section 3.1.4, we lay out our expectations for the associated vertex algebras of the SCFTs

that feature twisted punctures. This will also serve as a sort of overview of Section 3.2,

where set out to construct these vertex algebras.

Before, moving on to the construction, we divert our attention briefly, in Section 3.1.5 to
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Lie algebra (gu) Order of twist Twisted algebra (gt)
a2n Z/2Z cn
a2n−1 Z/2Z bn
dn Z/2Z cn−1
d4 Z/3Z g2
e6 Z/2Z f4

Table 3.1: Simply laced Lie algebras gu and their corresponding twisted algebras gt for
different choices of outer automorphism twist. The Lie algebras a2n and dn both give rise
to Lie algebras of type c after a twist. The corresponding theories nevertheless have subtle
differences---see, e.g., [CDT14, BP20]. The algebra d4 has a non-abelian outer automor-
phism group isomorphic to S3, the symmetric group on three elements.

comment on residual gauge symmetries. Unlike in the untwisted case, the genus of the curve

is no longer the sole indicator of whether the Higgs branch is enhanced or not. We shall see

that certain genus zero theories with twisted punctures have residual gauge symmetry at a

generic point of their Higgs branch.

Throughout this chapter, we shall use the subscripts u and t to distinguish between various

objects related to the untwisted simply laced Lie algebra gu and its non-simply laced, twisted

counterpart gt. For example, KLu will denote the Kazhdan–Lusztig category for ĝu,κc , while

KLt will be the Kazhdan–Lusztig category for ĝt,κc .

3.1.1 Twisted punctures

Definition 3.1.1. Let σ ∈ Out(gu), be a non-trivial element. Then we define

gt :=
L(gσu) , (3.1.1)

where L denotes the Langlands dual.

Note that σ is always a graph automorphism of the Dynkin diagram of gu. The associated

twisted algebra, gt will always be non-simply laced. The pairs of untwisted algebras and

their twisted counterparts can be found in Table 3.1.

The setting of twisted class S is an extension of the usual class S formalism to incorporate

non-simply laced flavour and gauge symmetries. We refine the compactification data to a

punctured Riemann surface with a local system of Dynkin diagrams. The resulting four-

dimensional theory is an N = 2 SCFT.
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Any such local system is specified by giving a homomorphism.

π1(Σ)→ Out(gu) , (3.1.2)

from the fundamental group of the UV curve, Σ, to the outer automorphisms of gu. Con-

cretely, this gives rise to two types of regular punctures: untwisted punctures labelled by

1 ∈ Out(gu) and twisted punctures labelled by some σ ∈ Out(gu). It will be helpful to think

of twisted punctures as appearing in pairs connected by twist-lines.

The untwisted punctures are precisely those described in Section 2.1.2. As with the un-

twisted case, there are a myriad of possible punctures but (in the terminology of [CDT15a])

we restrict our attention to the case of regular, typical, twisted punctures. Such twisted

punctures are labelled by nilpotent orbits in gt. There are, again, two special orbits in gt:

the maximal puncture labelled by 0, and the empty puncture labelled by the principal orbit

of gt.

The maximal twisted punctures carries gt flavour symmetry, while submaximal twisted

punctures proceed analogously to the untwisted case. Starting from a maximal twisted

puncture, one can reduce the flavour symmetry by performing nilpotent Higgsing by giving

a nilpotent vacuum expectation value to the moment map.

Importantly, unlike in the untwisted case, the empty twisted puncture (labelled by the

principal nilpotent orbit in gt) remains a nontrivial puncture (as it still carries monodromy

on the UV curve; in terms of twist lines there is still a point where the relevant twist line

ends, which distinguishes the point from a generic point on the UV curve).

We restrict to genus zero, so as not to worry about twist lines that can wrap cycles. We

denote a curve with m maximal punctures and n pairs of maximal twisted punctures by

Cm,n. Any such curve is uniquely fixed (up to choice of complex structures) by specifying

m and n.

In the presence of twist lines, curves can be glued together along either twisted or untwisted

maximal punctures. Surfaces with only maximal punctures---like Cm,n---can be built from
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gluing copies of C1,1, the mixed trinion, and Σ3 the untwisted trinion. A full classification

of trinions with (not necessarily maximal) twisted punctures1 have also been classified by

Chacaltana, Distler, Tachikawa and Trimm [CDT15a, CDT15b].

3.1.2 Dualities with twisted punctures

The complex structures of Cm,n once again correspond to gauge couplings---though this

time we have two types of gauge symmetries. However, there is some ambiguity as to which

gauge couplings correspond to which groups. To illustrate this, let us consider the curve

C2,1. This curve has only one complex structure: τ .

Looking at weak coupling limits gives two types of pants decompositions (see Figure 3.1).

In one frame, C2,1 is built by gluing C1,1 and a untwisted three punctured sphere Σ3, along

untwisted punctures. In the other frame, C2,1 decomposes into two copies of C1,1 glued along

a twisted puncture. The action of S-duality relates these two frames, i.e., it relates a weakly

coupled gt gauge theory to a strongly coupled gu gauge theory and vice versa. The complex

structure τ , therefore, can be thought of as a gt or gu gauge coupling depending on which

frame we are working in. Whether to think of τ as a gu or gt gauge coupling depends on

which open chart of M0,4 we work in.

Figure 3.1: Two degeneration limits of C2,1. Note that the gluing on the left is untwisted but
twisted on the right. We mark untwisted punctures by unfilled circles and twisted punctures
by filled circles. We connect the twisted punctures by dashed twist-lines for clarity.

The S-duality move that swaps between these two frames is a variant of the 4-move we

described in Section 2.1.4 . We call this variant the ut-move, since the gauge group changes

across the frames. The 4-move still acts on a curve Cm,n, permuting any four identical

punctures---all untwisted or twisted.

Though we shall not look at higher genus curves, the ab-move is particular interesting in
1The case of d4 trinions with non-abelian twists has recently been explored in [DES21], but we restrict

our attention to the abelian case
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the presence of twist lines. Take, for instance, the untwisted trinion Σ3. We can gauge the

diagonal action of Gu by self-gluing two punctures on the sphere together. However, we

may also gauge with respect to a diagonal action of Gu that has been twisted by an outer

automorphism, i.e., Gu acts as g⊗σ(g) for (a lift of) an outer automorphism σ. Pictorially,

we represent this by a cylinder, with a twist line around it, connecting the punctures. This

results in a genus one curve with a twist line running around the a-cycle of the torus.

Now, consider, the curve C1,1. Again, we can construct a gauge theory, by self-gluing the

two twisted punctures together. This time, we gauge with respect to the diagonal action of

Gt. This results in a genus one curve with a twist line running along the b-cycle. These two

theories are known to be S-dual, and the associated UV curves are related by the action of

the ab-move. The two degeneration limits are shown in Figure 3.2. Unlike the untwisted

case, the ab-move changes the rank of the gauge group, as well as moving from strong to

weak coupling.

Figure 3.2: The ab-move swapping between two decompositions of the once punctured torus
with a twist line.

3.1.3 The superconformal index for twisted class S

The Macdonald limit (and so Schur limit by further specialisation) of the superconformal

index in the twisted setting was studied for type DN theories in [LPR14]. According to

the analysis there, the presence of an single twisted puncture restricts the sum over P+

to representations that are invariant under the action of the outer automorphism twist,

which is equivalent to summing over the set of highest weight representations of the twisted

algebra gt (which we denote by P+
t ). The overall structure constants are also modified,

though they are expressed in terms of the same building blocks. For a surface of genus g

with m untwisted punctures and 2n, Z2-twisted punctures such that no twist lines wrap
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any cycles, the index then takes the form

I(q;x1, . . . ,xm,y1, . . . ,y2n) =
∑
λ∈P+

t

∏m
i=1Ku(q;xi)χ

λ
u(xi)

∏2n
j=1Kt(q;yj)χ

λ
t (yj)

(Ku(×)χλ
u(×))

2g−2+m+2n . (3.1.3)

Here xi are fugacities for untwisted punctures and yj are fugacities for the twisted ones. We

have adopted notation where λ denotes an integral dominant weight in P+
t and its image

ι(λ) ∈ P+
u under the embedding (3.2.5). The characters of Gu that appear are at weights

which are invariant under the action of σ.

For the non-abelian twist of D4, a TQFT form of the index was proposed in [DES21]. This

agrees with the heuristics we have so far observed---namely the sum is restricted to the

integral dominant weights of D4 that are invariant under the action of the twists that are

present.

One can also rewrite the twisted index in terms of Weyl modules as

I(q;x1, . . . ,xm,y1, . . . ,y2n) =
∑
λ∈P+

t

(ch zuλ)
2−2g−2n

( m∏
i=1

ch Lu
λ

)( 2n∏
j=1

ch Vt
λ

)
, (3.1.4)

where we use the superscripts u, t to distinguish between the (simple quotients of) Weyl

modules over each algebra.

It may be worth remarking that all structure constants are of ``untwisted type'' in spite

of the K factors and Schur functions of twisted type. This means that when closing a

twisted puncture, the specialised puncture factor in the numerator won't cancel against a

corresponding factor in the denominator. This is the index-level incarnation of the fact

that empty twisted punctures are nontrivial and cannot be completely erased from the UV

curve.

3.1.4 Chiral algebras of twisted class S at genus zero

Applying the dictionary of Section 1.2 to twisted class S, produces a new family of vertex

algebras, labelled by a simply laced Lie algebra gu and a punctured sphere with twisted

punctures. We shall call these vertex algebras, mixed vertex algebras as they mix together
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the action of ĝu and ĝt via the Feigin–Frenkel centre.

Given Cm,n, i.e., P1 with m maximal untwisted punctures and n pairs of maximal twisted

punctures, we wish to construct a vertex algebra Vm,n that is independent of the complex

structures of Cm,n. For each untwisted puncture, we expect a chiral moment map (vertex

algebra morphism) µu,i : V κc(gu) → Vm,n, making Vm,n a vertex algebra object in KLu,

with respect to µu,i for i = 1, . . . ,m. Similarly, for each twisted puncture, we have a chiral

moment map µt,j : V κc(gt) → Vm,n making Vm,n a vertex algebra object in KLt for each

j = 1, . . . , 2n. The images of all moment maps commute.

The action of the 4-move implies that all moment maps (of the same type) are on an equal

footing, i.e., there is an Sm × Sn permutation symmetry that acts on Vm,n. We may still

Higgs a maximal untwisted puncture to remove it from the UV curve, and so

Vm−1,n
∼= H0

DS(u,Vm,n) for m > 2 (3.1.5)

where the reduction is done with respect to any of the untwisted moment maps. The case

m = 1 will require some care, as we shall see in later sections.

Given two curves Cm,n and Cp,q, we can glue them together via untwisted or twisted punc-

tures. At the level of vertex algebras, this corresponds to semi-infinite cohomology and so

we expect the following isomorphisms

Vm,n ◦u Vp,q ≡ H
∞
2
+•(ĝu,−κg , gu,Vm,n ⊗Vp,q) ∼= Vm+p−2,q+n ,

Vm,n ◦t Vp,q ≡ H
∞
2
+•(ĝt,−κg , gt,Vm,n ⊗Vp,q) ∼= Vm+p,q+n−1 .

(3.1.6)

Since all punctures (of the same type) are on an equal footing, the gluing can be per-

formed with respect to any diagonal chiral moment map of ĝu,−κg or ĝt,−κg on the two

surfaces.

Furthermore, we expect that Vm,n are simple and conformal, with central charge [CDT13]

cm,n = 2n dim gt + (m− 2h∨u(m+ 2n− 2)) dim gu − (m+ 2n− 2)rk gu . (3.1.7)
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3.1.5 Residual gauge symmetry for twisted class S

In the case of untwisted class S, all genus zero theories had pure Higgs branches and so

the vertex algebra VG,s were purely bosonic and all gluings were concentrated in degree

zero.

For twisted theories, the situation is a bit more complicated. To illustrate, we consider

the D2 theory. Due to the accidental isomorphism d2 ∼= sl2 × sl2, we can recast theories

of type D2 into sl2 theories. An untwisted puncture in the D2 theory becomes a pair of

untwisted punctures in the A1 theory. The twisted subalgebra is just sl2, and a full twisted

puncture becomes a conventional (untwisted) puncture of the a1 theory. In particular, the

Spin(4) gauge theory with Nf = 4 flavours can be engineered via compactification of the D2

theory on a sphere two maximal and two minimal twisted punctures. Equivalently, it can be

described as the A1 theory compactified on a genus-one surface with two punctures. Thus,

the A1 surface is a double cover of the D2 surface, treating the twist lines as branch cuts.

The D2 theory has residual gauge symmetry at a generic point of the Higgs branch---despite

being superficially of genus zero. From the A1 perspective, this residual gauge symmetry

is straightforward---since this surface has genus one. We will see that this phenomenon is

characteristic of the twisted theories.

Somewhat more generally, for SO(2n) superconformal QCD---realised in type Dn using a

sphere with four twisted punctures (two minimal and two maximal)---a generic point of the

Higgs branch has precisely a residual U(1) gauge symmetry [APS97]. For n ⩾ 3, we have no

more accidental isomorphisms and so there is not an immediate relation to a higher genus

class S theory like the D2 case. We can, nevertheless, observe that the presence of outer

automorphism twist lines means that there is a natural covering space for the UV curve

(thought of as the space where the corresponding local system of Dynkin diagrams has no

monodromy), and in this example the covering space has genus one. We believe that in

the general case of twisted class S theories, it is precisely the value of the genus (zero or

nonzero) of this covering space that controls whether a theory in question has a pure or an

enhanced Higgs branch.
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More generally, we take away the lesson that in the presence of twisted punctures, genus

zero theories should perhaps nevertheless be thought of as more analogous to higher-genus

untwisted theories than genus-zero untwisted theories. The genus of this covering space, the

Riemann–Hurwitz genus, is zero only if the number of twisted punctures does not exceed

two.

The corresponding vertex algebras, Vm,n must therefore contain fermionic states for n > 1.

Therefore, any gluing of punctures that introduces additional twisted punctures must not

be concentrated in degree zero---so as to account for the fermionic states.

3.2 Constructing mixed vertex algebras

In this section we shall provide a construction of the Vm,n and provide partial results on

gluing isomorphisms. We shall restrict our construction to the case where σ has order two

though the results of Sections 3.2.1 and 3.2.2 hold for any non-trivial σ.

To establish properties regarding untwisted and twisted gluing, we need to examine the

decomposition of the mixed vertex algebras into semijective objects in both twisted and

untwisted KL categories. This will depend, in a crucial way, on the structure of critical-

level Weyl modules over ĝt,κc , as modules over the untwisted Feigin–Frenkel centre z(gu).

We discuss how these two centres are related in Section 3.2.1.

In Section 3.2.2 we will prove the following technical result, the proof of which will require a

technical digression involving opers. Let λ ∈ P+
t be an integral dominant weight of gt, and

let ι(λ) ∈ P+
u be defined as in (3.2.5). Let OpλLGt

denote the LGt opers on D of coweight λ

with regular singularity and trivial monodromy.

Theorem. The restriction of the closed immersion OpLGt
(D×) ↪→ OpLGu

(D×) to the sub-

scheme OpλLGt
factors as

OpλLGt
↪→ OpλLGu

↪→ OpLGu
(D×) ,

with each map a closed immersion. Equivalently, the natural surjection FunOpLGu
(D×) ↠
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(FunOpLGu
(D×))σ, restricts to a surjection

FunOpλLGu
↠ (FunOpλLGu

)σ ,

on the quotient algebras.

A review of opers on curves can be found in Appendix A.4.

In Section 3.2.3, we introduce a class of (ĝu, ĝt) bimodules, which look like Weyl modules of

each algebra sewn together by identifying the action of z(gu). We shall also establish some

homological properties of these modules under semi-infinite cohomology.

Our construction of the mixed trinion V1,1 can be found in Section 3.2.4. We also prove

a number of the expected properties from Section 3.1.4. In particular, we establish that

closing the untwisted puncture via DS-reduction recovers Dch
Gt

.

Theorem. We have the following isomorphism:

H0
DS(u,V1,1) ∼= Dch

t , (3.2.1)

so Dch
t ∈ KLu,0.

The proof of this theorem will be delayed to Section 3.2.10, since it requires some additional

machinery. This result will be key in establishing our uniqueness result of Proposition

3.2.12. A number of the results in this subsection shall serve as the base case for inductive

arguments establishing properties for the Vm,n.

Before extending our construction to the full family of Vm,n we shall find it useful to prove

a number of technical lemmas regarding the commutativity of the various homological

operations we have introduced. In Section 3.2.5 we establish the conditions, under which,

we can swap the orders of the various cohomologies.

With this result in hand we can extend our construction to the Vm,n in Section 3.2.6. There

is an obvious analogue of the construction of [Ara18] for the Vm,1, but such a construction

fails if we wish to introduce more punctures. For n > 1, we will be forced to define the
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Vm,n recursively, by picking a particular pants decomposition of the surface Cm,n. To finish

this section we shall provide partial results on the gluing isomorphisms.

In Section 3.2.8, we shall discuss the action of generalised S-duality on the Vm,n and show

that the 4-moves of Section 3.1.2 act as automorphisms. This justifies that our recursive

definition of the Vm,n, is well-defined.

To end, we shall consider the case when σ is not of order two in Section 3.2.9 and discuss

the obstructions that arise in this case.

3.2.1 The (un)twisted Feigin–Frenkel centre

The Vm,n should simultaneously be vertex algebra objects in KLu and in KLt, so they will

admit actions of both Feigin–Frenkel centres. The construction of VG,s suggests that the

action of these Feigin–Frenkel centres should be identified, but of course the twisted and

untwisted centres are not isomorphic. It will be useful, therefore, to first examine how the

actions of these two Feigin–Frenkel centres interact with each other.

Let σ ∈ Out(gu) be an outer automorphism (not necessarily of order two), gσu be the σ-

invariant subalgebra of gu, and gt = (gσu)
∨. There exists a projection [FSS96],

πσ : hu ↠ ht , (3.2.2)

from the Cartan subalgebra of gu to that of gt that projects to elements that are invari-

ant under σ. The outer automorphism lifts to an automorphism of U(gu) and we have a

surjection

Z(U(gu)) ↠ Z(U(gt)) , (3.2.3)

which is just the projection of the centre of U(gu) to its 〈σ〉-coinvariants, i.e., we set the

σ-non-invariant generators of Z(gu) to zero. The action of σ can be lifted to ĝu,κc according

to σ(xtn) = σ(x)tn. This gives a projection

Zu ↠ Zt
∼= (Zu)σ , (3.2.4)
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gu z(gu) gt z(gt)

a2n−1 P2, P3, . . . , P2n bn P2, P4, . . . , P2n

a2n P2, P3, . . . , P2n+1 cn P2, P4, . . . , P2n

dn P̃n;P2, P4, . . . , Pn, . . . , P2n−2 cn−1 P2, P4, . . . , P2n−2

e6 P2, P5, P6, P8, P9, P12 f4 P2, P6, P8, P12

d4 P̃4, P2, P4, P6 g2 P2, P6

Table 3.2: The monomial generators of the Feigin–Frenkel centres of the untwisted algebra
gu and its associated twisted algebra gt. Note that algebras of type dn have two generators
of degree n, only one of which is invariant under the outer automorphism. The last row
shows the Z/3Z twist for d4; neither generator of degree four is invariant under this outer
automorphism.

where (Zu)σ is the space of 〈σ〉-coinvariants of the untwisted Feigin–Frenkel centre. The

projection πσ also induces an embedding of weight spaces

ι : P+
t ↪→ P+

u , (3.2.5)

with image ι(P+
t ) equal to the subset of elements in P+

u that are invariant under the action

of σ. For example if gu = dn and gt = cn−1 (so σ is the Z/2Z outer automorphism), we

have

ι(λ1, λ2, . . . , λn−1) = (λ1, λ2, . . . , λn−1, λn−1) . (3.2.6)

In [LPR14], this was indicated with the notation λ′ = λ. We will abuse notation and use

λ for both the weight in P+
t and its image under ι : P+

t ↪→ P+
u . For example, V t

λ denotes

the finite dimensional irreducible representation of gt with highest weight λ, and V u
λ is the

finite dimensional irreducible representation of gu with highest weight ι(λ).

Given an object M ∈ Zt-Mod, we can lift it to a module in Zu-Mod via the restriction of

scalars associated to Zu ↠ Zt, giving a functor Zt-Mod→ Zu-Mod. Even in the case where

there are no untwisted punctures, the algebra must still have a Zu-Mod structure. This is

because any such algebra should be obtained via DS reduction of a vertex algebra object in

KLu, and the DS reduction functor lands in Zu-Mod.

Similarly to the FF glued modules of Section 2.2.2, we would like to define mixed modules

that are glued via the action of Zu on Vt
λt and Vu

λ′ for some λ ∈ P+
u and λ′ ∈ P+

t . Such a
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glued module should have the form

Vu
λ′ ⊗

zuλ

Vt
λ (3.2.7)

While it is obvious that Zt modules can be lifted to Zu modules by way of the projection

Zu ↠ Zt, it is not so obvious that this should hold for the quotient modules zuλ′ , which are

more complicated. There is also a question of which values of λ and λ′ result in non-trivial

modules.

Altogether, there is room for doubt over whether the suggested tensor product over zuλ′ is

non-trivial. To show that the restriction of scalars descends compatibly to the quotients,

we will have to use the machinery of opers.

3.2.2 Opers with monodromy

Much of the machinery below is introduced in a more pedagogical manner in Section A.4.2.

For the sake of brevity we shall refer to results and definitions in the appendix, rather than

reproducing them in full.

By the Feigin–Frenkel isomorphism, the Feigin–Frenkel centre and its mode algebra are

related to LGu-opers on the disc and punctured disc:

z(gu) ∼= OpLGu
(D) , Zu

∼= OpLGu
(D×) , (3.2.8)

and analogously for z(gt) and Zt. An LGu-oper has a representative,

∇ = ∂t + p−1 +

rk gu∑
i=1

vdj (t)pdj , (3.2.9)

where vdj ∈ C[[t]] for D and vdj ∈ C((t)) for D×. Here pdi are the basis from Remark A.1.13.

The outer automorphism acts naturally on the pdj , leaving pd1 invariant. We can identify

the fixed points of this action with

(OpLGu
)σ ∼= OpLGt

, (3.2.10)
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for D and D×. The closed immersion OpLGt
(D×) ∼= (OpLGu

)σ ↪→ OpLGu
is precisely the

projection to coinvariants in (3.2.4).

To proceed, we want to show that we can lift ztλ modules, for λ ∈ P+
t t zuλ′ modules for

some λ′ ∈ P+
u . Recall, from Appendix A.4.4 the subspace, OpλLG of opers on D with regular

singularity and no monodromy---specified by a choice of coweight. The main theorem of

[FG10], reproduced in the appendix as Theorem A.4.9, tells us that

ztλ
∼= FunOpλLGt

, and zuλ′ ∼= FunOpλ
′

LGu
. (3.2.11)

Setting all weights to zero recovers the usual spaces OpLGu
(D) and OpLGt

(D) in the Feigin-

-Frenkel isomorphism.

We would like to construct a morphism FunOpλ
′

LGu
→ FunOpλLGt

along which we can

restrict scalars. Equivalently, we would like to find a morphism, OpλLGt
→ Opλ

′
LGu

, on the

spaces.

We also have natural closed immersions OpλLGt
↪→ OpLGt

(D×) and Opλ
′

LGu
↪→ OpLGu

(D×),

along with the inclusion of fixed points, OpLGt
(D×) ↪→ OpLGu

(D×). We would like to show

that these morphisms are all compatible, i.e., the composition OpλLGt
↪→ OpLGt

(D×) ↪→

OpLGu
(D×) factors via Opλ

′
LG.

Theorem 3.2.1. Let λ ∈ P+
t and also denote its image under the inclusion ι : P+

t ↪→ P+
u

by λ ∈ P+
u .

The restriction of the inclusion of fixed points, OpLGt
(D×) ↪→ OpLGu

(D×) to the subscheme

OpλLGt
factors as

OpλLGt
↪→ OpλLGu

↪→ OpLGu
(D×) ,

with each map a closed immersion. Equivalently, the natural surjection FunOpLGu
(D×) ↠

(FunOpLGu
(D×))σ, restricts to a surjection

FunOpλLGu
↠ (FunOpλLGu

)σ ,
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on the quotient algebras.

Note that the theorem requires λ′ = ι(λ), i.e., this restriction of scalars is only non-trivial

when the untwisted weight λ′ ∈ P+
u is outer-automorphism invariant.

Corollary 3.2.2. The restriction of scalars ztλ −mod→ zuλ −mod is fully faithful.

The rest of this subsection will be devoted to the proof of this theorem.

To start with, we recall the Miura transforms (A.4.26)

µu,Miura : Conn(Ω
ρu)LHu,D× ↠ OpLGu

(D×) ,

µt,Miura : Conn(Ω
ρt)LHt,D× ↠ OpLGt

(D×) ,

(3.2.12)

where Conn(Ωρu)LHt,D× is the space of Cartan connections. Fixing dominant integral

weights λ ∈ P+
t and λ′ ∈ P+

u , we denote by, Conn(Ωρt)λ
′

LHt
and Conn(Ωρu)λLHu

, the space

of Cartan connections with residue at zero equal to λ and λ′, respectively. The Miura

transform, restricted to these subspaces, gives a surjection (see Proposition A.4.14)

µλ
′

u,Miura : Conn(Ω
ρu)LHu

↠ Opλ
′

LGu

∼= Spec zuλ′ ,

µλt,Miura : Conn(Ω
ρt)λLHt

↠ OpλLGt

∼= Spec ztλ .

(3.2.13)

The functions on these spaces are easy to describe:

FunConn(Ωρu)λ
′

LHu

∼= C[ui,m | i = 1, . . . , rk gu , m ∈ Z<0] ,

FunConn(Ωρt)λLHt

∼= C[ui,m | i = 1, . . . , rk gt , m ∈ Z<0] .

(3.2.14)

The C-points of Conn(Ωρu)λ
′

LHu
are connections of the form

∇u = ∂t +
λ′

t
+
∑
m<0

umt
−m−1 , (3.2.15)

with um ∈ Lhu and ui,m = (α∨
i , um) for simple coroots α∨

i . There is a natural action of σ
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on this subspace, given by

σ · ∇u := ∂t +
σ(λ′)

t
+
∑
m<0

σ(um)t−m−1 . (3.2.16)

From the above expression, it is clear to see that this action is free unless λ′ is σ-invariant.

Suppose λ′ is σ-invariant, then it is equal to ι(λ) for some λ ∈ P+
t . We continue to abuse

notation and use λ to denote ι(λ) ∈ P+
u . Now, a connection in Conn(Ωρu)λ

′
LHu

is σ-invariant

if the um ∈ (Lhu)
σ ∼= (hu)

σ ∼= Lht. Therefore, we have an isomorphism

Conn(Ωρt)λLHt

∼−→
(
Conn(Ωρu)λLHu

)σ
, (3.2.17)

and an inclusion Conn(Ωρt)λLHt
↪→ Conn(Ωρu)λLHu

. On functions, we can realise the space

of coinvariants as

(
FunConn(Ωρu)λLHu

)
σ

∼= C [ũi,n|i = 1, . . . , rk gt; n ∈ Z] , (3.2.18)

where

ũi,n =
1

|〈σ〉|
∑

σ′∈〈σ〉

σ′(ui,n) . (3.2.19)

These are precisely the linear combinations of the generators of FunConn(Ωρ)λLGu
that are

invariant under 〈σ〉.

The fibres of the Miura transforms from (3.2.13), µλu,Miura and µλt,Miura, are principal LNu

and LNt torsors over OpλLGu
and OpλLGt

respectively. Therefore, we can identify OpλLGu
and

OpλLGt
with the LNu orbit space of ∼= Conn(Ωρ)λLGu

and the LNt orbit space of Conn(Ωρ)λLGt
.

On functions, the infinitesimal action of the unipotent groups is given by the action of the

vector fields (A.4.39).

Assembling, we have the diagram,

FunOpλGu
FunConn(Ωρ)λ

FunOpλLGt
(FunConn(Ωρ)λ)σ

ι

π πσ

ι

(3.2.20)
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where the horizontal morphisms are the natural inclusions of Lnu ∼= nu and Lnt = (nu)
σ

invariants and the vertical arrow is the natural projection to the σ-coinvariants. We can

define a map π that, we claim, makes the diagram commute via π = πσ ◦ ι. The map π is

precisely the projection of FunOpλGu
to its 〈σ〉 coinvariants.

Our Theorem 3.2.1, is therefore equivalent to the claim that π is surjective. Indeed, surjec-

tivity of π is precisely the statement that zuλ ↠ ztλ is a surjection.

Proof of Theorem 3.2.1. Recall that in Section A.4.6, we described the action of Lnu ∼= nu

on FunConn(Ωρu)λLHu
in terms of the vector fields, or screening charges:

Vi[λi + 1] = −
rk g∑
j=1

aji
∑
n≥λi

xi,n−λi

∂

∂uj,−n−1
, (3.2.21)

for i = 1, . . . , rk gu, aji the Cartan matrix of gu, and xi,n determined by

∑
n≤0

xi,nt
−n = Exp

(
−
∑
m>0

ui,−m

m
tm

)
. (3.2.22)

The action of Lnt = (nu)
σ on the space of coinvariants can be realised through the sym-

metrised screening charges

Ṽi[λi + 1] =
1

|〈σ〉|
∑

σ′∈〈σ〉

σ′(Vi[σ
′(λ)i + 1]) , (3.2.23)

for i = 1, . . . , rk gt.

A polynomial P ∈ FunConn(Ωρ)λLHu
is in the space of invariants, (FunConn(Ωρ)λ)nu , if

and only if it is in the intersection of the kernels of the screening charges, i.e.

Vi[λi + 1]P
!
= 0 , for i = 1, . . . , rk gu . (3.2.24)

Similarly, a polynomial P ∈ (FunConn(Ωρ)λLHu
)σ in the space of coinvariants is an nσu = Lnt

invariant, if and only if it lies in the intersection of the kernels of the symmetrised screening

charges Ṽi[λi + 1].
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It is, therefore, sufficient to show that if P is a representative of a σ-coinvariant and lies in

the intersection of the kernels of the symmetrised screening charges, then it must lie in the

intersection of the kernels of the nu screening charges. We make the following observations.

Suppose P lies in the space of coinvariants, then we can realise it as P ∈ C[ũi,n|i =

1, . . . , rk gt; n < 0]. Therefore,

∂P

∂uj,n
= σ′

(
∂P

∂uj,n

)
, (3.2.25)

for any σ′ ∈ 〈σ〉. As a result, we must have that

σ′(Vi[λi + 1]P ) = σ′(Vi[λi + 1])P . (3.2.26)

Suppose P lies in the intersection of kernels of the symmetrised screening charges. First,

we consider the case where σ has order two. Now, we have that

Ṽi[λ1 + 1]P = 1
2

(
Vi[λi + 1] + σ(Vi[λi + 1])

)
P = 0 , (3.2.27)

but from (3.2.26), this means that

σ (Vi[λi + 1]P ) = −Vi[λi + 1]P . (3.2.28)

We shall now show that for any P in the space of coinvariants, the polynomial Vi[λi + 1]P ,

cannot have eigenvalue −1 under σ.

The image of P under the ith screening charge is

Vi[λi + 1]P =
∑
n≥λi

xi,n−λi
·
(
aji

∂P

∂uj,−n−1

)
, (3.2.29)

and we have

σ (Vi[λi + 1]P ) =
∑
n≥λi

σ(xi),n−λi
·
(
aji

∂P

∂uj,−n−1

)
, (3.2.30)

where we have made use of the fact that the derivatives of P and the highest weight, λ, are
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invariant under σ. The outer automorphism does not act with eigenvalue −1 on any simple

root and so we must have that.

σ(Vi[λi + 1]P ) 6= −Vi[λi + 1]P , (3.2.31)

unless both are identically zero, as desired.

Now we address the Z/3Z case of gu = d4 and gt = g2. A nσu invariant P must satisfy the

following:

(V1[λ1 + 1] + V3[λ1 + 1] + V4[λ1 + 1])P = 0 , V2[λ2 + 1]P = 0 . (3.2.32)

We have, once more, made use of the fact that the derivatives of P and the weight λ are

invariant under the action of Z3. Expanding the first requirement, we have that

∑
n≥λ1

(x1,n−λ1 + x3,n−λ1 + x4,n−λi
)

(
− ∂P

∂u2,−n−1
+ 2

∂P

∂ui,−n−1

)
= 0 . (3.2.33)

Once again, this can only hold if each screening charge individually acts as zero.

3.2.3 Mixed modules over the (un)twisted Feigin–Frenkel centre

Having proven our main technical result, let us move to defining and establishing various

properties of the putative mixed modules.

In what follows we will make use of the following technical proposition.

Proposition 3.2.3. Let N be a ztλ-module. Then N is an object of KLu,0, i.e., there exists

some M ∈ KLu such that

N = H0
DS(u,M) . (3.2.34)

Proof. We prove this by explicitly constructing an object in KLu whose DS reduction is

isomorphic to N as an object of ztλ-mod. From Theorem 3.2.1, the ztλ action can be lifted

to an action of zuλ.
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Let Vu
λ be the Weyl module of ĝu,κc with highest weight ι(λ). The tensor product,

Vu
λ ⊗zuλ

N , (3.2.35)

is well-defined, where the zuλ action on N is from the lift. By construction, this is an object

in KLu with respect to the ĝu,κc action on the untwisted Weyl module. Let us consider its

DS reduction,

H0
DS(u,Vu

λ ⊗zuλ
N) .

Note that by Proposition A.3.6 ([FG10, Theorem 2]) H0
DS(Vλ) ∼= zλ is manifestly free over

zλ. Combining this with the Künneth theorem, we have that

H0
DS(u,Vu

λ ⊗zuλ
N) ∼= zuλ ⊗zuλ

N ∼= N , (3.2.36)

as desired.

Definition 3.2.4. Let λ ∈ P+
t be an integral dominant weight and let Vt

λ be the associated

Weyl module of ĝt,κc . We also use λ ∈ P+
u to denote the image of the embedding ι : P+

t ↪→

P+
u ---let Vu

λ be the associated Weyl module of ĝu,κc . For m ∈ N, we define,

Vut
λ,m := Vu

λ,m ⊗
zuλ

Vt
λ,2 ≡

(
Vu
λ ⊗

zuλ

Vu
λ∗ ⊗

zuλ

. . .⊗
zuλ

Vu
λ

)
︸ ︷︷ ︸

m copies

⊗
zuλ

(
Vt
λ ⊗

ztλ

Vt
λ∗
)

(3.2.37)

where λ is equal to λ for odd m and λ∗ otherwise. We denote their contragredient duals by

D(Vut
λ,m).

The mixed modules Vut
λ,m are projective over U(t−1gt[t

−1] and their contragredient duals

are injective over U(tgt[t]). The analogous statement for gu does not hold. To see this,

note that the modes Pi,−n, which are not invariant under σ, must act as zero on the lowest

degree subspace. Hence, Vut
λ,m are not torsion-free---and so cannot be projective---over

U(t−1gu[t
−1]).
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An immediate application of Proposition 3.2.3 gives the following isomorphisms

H0
DS(u,Vut

λ,m) ∼= Vut
λ,m−1 , for m ≥ 1 ,

H0
DS(u,D(Vut

λ,m)) ∼= D(Vut
λ,m−1) , for m ≥ 1 ,

(3.2.38)

Proposition 3.2.5. Suppose N ∈ Zu−Mod has an increasing filtration 0 = N0 ⊂ N1 ⊂

· · · ⊂ N with successive quotients

Ni/Ni−1
∼= Vut

λ,m (3.2.39)

for some λ ∈ P+
t and a fixed m for all quotients. Then M = H

∞
2
+0(Zu,Wu ⊗N) ∈ KLu

has an increasing filtration, 0 ⊂M0 ⊂M1 ⊂ · · · ⊂M whose successive quotients satisfy

Mi/Mi−1
∼= Vut

λ,m+1 . (3.2.40)

Proof. Note that since Vut
λ,m ∈ KLu,0 by (3.2.38), and so each quotient Ni/Ni−1 is an object

of KLu,0. Applying [Ara18, Theorem 9.14], we have that M has an increasing filtration

with successive quotients,

Mi/Mi−1
∼= H

∞
2
+0(Zu,Wu ⊗Ni/Ni−1) ∼= H

∞
2
+0(Zu,Wu ⊗ Vut

λ,m) , (3.2.41)

for some λ ∈ P+
t . Now by Theorem 2.2.8, H∞

2
+0(Zu,Wu ⊗ Vut

λ,m) ∼= Vut
λ,m+1 and we have

the desired result.

Remark 3.2.6. Dualising the statement and proof of Proposition 3.2.5 implies the following.

Suppose that, N ∈ Zu−Mod has a decreasing filtration N = N0 ⊃ N1 ⊃ · · · ⊃ 0 with

successive quotients, Ni/Ni+1
∼= D(Vut

λ,m). Then M = H
∞
2
+0(Zu,Wu ⊗ N) ∈ KLu has a

decreasing filtration, with successive quotients,

Mi/Mi+1
∼= D(Vut

λ,m) . (3.2.42)
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3.2.4 The mixed trinion

In this subsection, we construct the first member of the Vm,n family, V1,1. We shall prove

that our candidate for V1,1 possesses a number of desirable properties and also establish a

uniqueness result.

The vertex algebra V1,1 corresponds to P1 with two gt punctures and one gu puncture.

The Schur index of V0,1, computed via [LPR14] matches the character of Dch
t , the chiral

differential operators on Gt
2. Thinking back to our cartoon where FF-gluing Wu adds an

untwisted puncture, there is a reasonably natural guess for V1,1: FF-glue an untwisted cap

(Wu) to a twisted cylinder (Dch
t ). As such, we propose

V1,1 := Wu ∗u Dch
t ≡ H

∞
2
+0(Zu,Wu ⊗Dch

t ) . (3.2.43)

Theorem 3.2.7. We have the following isomorphism:

H0
DS(u,V1,1) ∼= Dch

t , (3.2.44)

so Dch
t ∈ KLu,0.

This is the statement that the mixed vertex algebra we have constructed can indeed be

identified with the UV curve C0,1,1 insofar as closing the maximal untwisted puncture results

in the cylinder of type gt. The proof of the above theorem is not entirely straightforward

because H0
DS(u,H

∞
2
+0(Zu,Wu ⊗ −)) is not necessarily the identity on a generic object in

Zu-Mod. The full proof of the the theorem is relegated to Subsection 3.2.10; here we provide

a sketch.

The proof proceeds by first establishing that at the level of formal characters,

ch H0
DS(u,V1,1)λ ⩽ ch Dch

t,[λ] . (3.2.45)
2Strictly speaking, the characters of the cylinder and cap VOAs don't exist due to infinite-dimensional

weight spaces. However, one can proceed formally by working term-by-term in the sum over integral dom-
inant weights; this can be understood from a vertex algebra perspective as considering the decomposition
into blocks belonging to KLλ for each λ ∈ P+.
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In words, each weight space (with fixed generalised eigenvalue under the action of the

Feigin–Frenkel zero modes) of H0
DS(u,V1,1) is of dimension less than or equal to that of

the corresponding weight space of Dch
t . This is argued by leveraging the fact that Dch

t has

an increasing filtration with subquotients Vt
λ,2, which are in KLu,0 by Proposition 3.2.3. We

show that passing (in a careful sense) to the associated graded of this filtration can only

increase the dimensions of the weight spaces, and on the associated graded the composition

of FF gluing and DS reduction acts as the identity; this leads to (3.2.45). Since Dch
t is

simple, we need only construct a non-zero homomorphism Dch
t → H0

DS(u,V1,1) to establish

the isomorphism. The construction of such a homomorphism follows an adaptation of the

proof of Theorem 9.9 of [Ara18] to this twisted setting.

Theorem 3.2.7 will serve as the foundation which lets us build up a number of other impor-

tant properties of the genus zero mixed vertex algebras.

Proposition 3.2.8. The mixed trinion V1,1 has an ascending filtration 0 ⊂ N0 ⊂ N1 ⊂

· · · ⊂ V1,1 with successive quotients

Ni/Ni−1
∼= Vut

λ,1 . (3.2.46)

Similarly, V1,1 has a descending filtration V1,1 ⊃ M0 ⊃ M1 ⊃ · · · ⊃ 0 with successive

quotients,

Mi/Mi+1
∼= D(Vut

λ,1) . (3.2.47)

Therefore, V1,1 is semijective in KLt, with respect to the ĝκc actions of either twisted

puncture.

Proof. The cylinder Dch
t has an increasing filtration [FG04],

0 = N0 ⊂ N1 ⊂ N2 ⊂ . . . , N =
⋃
Ni
∼= Dch

t , (3.2.48)
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whose successive quotients take the form

Ni/Ni−1
∼= Vt

λ ⊗ztλ
Vt
λ∗ ≡ Vut

λ,0 , (3.2.49)

for some λ ∈ P+
t and λ∗ the dual representation. Therefore Proposition 3.2.5 applies and

V1,1 has an increasing filtration

0 =M0 ⊂M1 ⊂M2 ⊂ . . . , M =
⋃
Mi
∼= V1,1 , (3.2.50)

with successive quotients Mi/Mi−1
∼= Vut

λ,1, for some λ ∈ P+
t . We have already argued that

the mixed modules are projective over U(t−1gt[t
−1]), so V1,1 is projective over U(t−1gt[t

−1]).

To establish that V1,1 has an ascending filtration and so is injective over U(tgt[t]), we can

repeat the same argument after taking (Dch
t )op and using the identification

(Dch
t )op ∼= Dch

t .

We observe that V1,1 is not semijective in KLu. Intuitively, this is because the extra

generators of the Feigin–Frenkel centre must be set to zero when glued to the twisted

cylinder, and these relations spoil projectivity. More precisely, we consider the vacuum

vector |0〉. Any state element Pi,−n|0〉 can be written as φ|0〉 for some φ ∈ U(t−1gu[t
−1])

a regular element. However, the modes Pi,−n, which are not invariant under σ, must act

as zero. As there are regular elements in U(t−1gu[t
−1]) which act as zero, V1,1 cannot be

torsion free---so cannot be projective---over U(t−1gu[t
−1]).

The semijectivity of V1,1 in KLt is in accordance with our expectations regarding enhanced

Higgs branches/residual gauge symmetries. The twisted class S theories for surfaces Cm,1

formed by gluing C1,1 along twisted punctures have no residual gauge symmetry, so the

gauge theory gluing V1,1 ◦t − should be concentrated in cohomological degree zero. We

have just established this for our V1,1 algebra by showing semijectivity in KLt. On the

other hand, gluing along the untwisted puncture may lead to a higher-genus local system
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covering space (cf. Section 3.1.5), which falls in line with our observation that V1,1 is not

semijective in KLu.

Having shown that V1,1 has the expected properties under gluing, we move on to some more

intrinsic properties of V1,1. Though our construction ensures that V1,1 is a vertex algebra,

it is not at all clear that it has the properties expected from four-dimensional unitarity.

Namely, V1,1 must be a conical, conformal vertex algebra with negative central charge. Let

us first address the issue of the character.

Proposition 3.2.9. The character of the vertex algebra V1,1 is given by

chV1,1 =
∑
λ∈P+

t

Ku(a)χ
λ
u(a)Kt(b1)χ

λ
t (b1)Kt(b2)χ

λ
t (b2)

Ku(×)χλ
u(×)

,

where a is a Gu fugacity and the bi are Gt fugacities. Furthermore, V1,1 is conical.

Proof. By Theorem 3.2.7, we have that

H0
DS(u,V1,1) ∼= Dch

t .

As a graded vector space V1,1
∼=
⊕

λ∈P+
t
V1,1,λ, since it is a colimit of objects in KLt. By

Proposition 8.4 of [Ara18].

chV1,1,λ = qλ(ρ
∨)chLλchH

0
DS(u,V1,1,λ) .

From the structure of the cylinder, we know that H0
DS(u,V1,1,λ) is zero unless it is in the

image of ι : P+
t ↪→ P+

u . Therefore, we have

chV1,1,λ = qλ(ρ
∨)chLu

λchVt
λ ⊗ztλ

Vt
λ∗ .

Recalling Section 3.1.3 and using the appendix of [LP15], we can rewrite this in the notation

of K-factors, giving the desired result.

To show that V1,1 is conical, note that the cylinder, Dch
t , is non-negatively graded and
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λ(ρ∨) ⩾ 0 since it is integral dominant, with equality only for λ = 0. This establishes that

V1,1 is non-negatively graded by weight. The character ch V1,1,0 = 1 + . . . since Lu
λ=0 and

Dch
t,λ=0 are both conical. Thus the mixed trinion is conical.

Proposition 3.2.10. The vertex algebra V1,1 is conformal with central charge

cV1,1 = 2dim gt + dimgu − rkgu − 24ρu · ρ∨u .

Proof. This proof relies on ideas from the proof of Proposition 10.7 of [Ara18], but with

modifications. The vertex algebras Wu, Dch
t , and the ghost system

∧ ∞
2
+•(z(gu)) are all

conformal, and we denote their respective conformal vectors by ωW, ωDch and ωgh. Clearly,

ω = ωW + ωDch + ωgh is a conformal vector for the complex, Wu ⊗ Dch
t ⊗

∧ ∞
2
+•(z(gu)).

We write

ω(z) =
∑
m∈Z

Lmz
−m−1 ,

for the associated field.

By Lemma 9.4 of [Ara18], the Feigin–Frenkel centre of Wu is preserved by the action of

Lm for m ⩾ −1. For a generator Pi ∈ z(gu),

ω(z)Pi(w) ∼
∂Pi

z − w
+

(di + 1)Pi

(z − w)2
+

di+2∑
j=2

(−1)jj!
(z − w)j+1

q
(i)
j (w) ,

where q(i)j is some homogeneous state in z(gu) with weight di − j + 2. Let us denote by P̃i

the image of Pi under the projection z(gu) ↠ z(gt). One then has

ω(z)P̃i(w) ∼
∂P̃i

z − w
+

(di + 1)P̃i

(z − w)2
+

di+2∑
j=2

(−1)jj!
(z − w)j+1

q̃j
(i)(w) ,

where we think of P̃i as a state in z(gt) ⊂ Dch
t . Let Q(z) be the BRST differential for

Feigin–Frenkel gluing. We have that

Q(0)(z)ω(w) =

rk g∑
i=1

di+1∑
j=2

∂j
(
ρW(q

(i)
j )− ρDch

t
(τ(q

(i)
j ))

)
ci ,
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where ρW : z(gu) ↪→ Wu and ρDch
t

: z(gu) ↪→ Dch
t denote the action of the untwisted

Feigin-Frenkel centres on Wu and on Dch
t via the projection to z(gt). Unfortunately, ω does

not descend directly to cohomology, so correction terms must be introduced to construct a

putative conformal vector in cohomology.

If the right hand side of the above equation equals Q(0)χ for some state χ, then ω̃ = ω + χ

is Q-closed and defines a vector in V1,1. to show that such a χ exists, it is sufficient to show

that q̃j(i) = π(q
(i)
j ).

The action of Lm for m ⩾ −1 on z(gu) is given by the action of Der(O) on OpLGu
(D), which

correspond to infinitesimal coordinate changes on the formal disc [Fre07]. The action of the

group Aut(O) on opers is given in (A.4.13) and we note that it intertwines the action the

action of σ. Therefore, q̃j(i) = π(q
(i)
j ). Thus ω̃ ∈ V1,1.

Now, we wish to show that ω̃ is a conformal vector. The vector χ can be written as

χ =

rk gu∑
i=1

di+2∑
j=2

∂j(ρW ⊗ ρDch
t
⊗ ρgh)(zij) ,

for some zij ∈ z(gu)⊗ z(gu)⊗
∧ ∞

2
+0(z(gu)). Therefore, ω̃(i) = ω(i) for i = 0, 1, so the OPEs

agree up to the quadratic pole. Since V1,1 is non-negatively graded by Proposition 3.2.9,

Lemma 3.1.2 of [Fre07] says that all we need to check is that ω̃(3)ω̃ = c/2|0〉 for some

c ∈ C., i.e., the quartic pole in the V ir × V ir OPE is a multiple of the identity. However,

as V1,1 is conical, the only operator of dimension zero that can appear in the OPE is the

identity. Thus, ω̃ is a conformal vector of V1,1.

Finally, we wish to show that ω̃ and ω have the same central charge in cohomology. Note

that V1,1 =
∑

∆∈NV∆
1,1 with dimV∆

1,1 < ∞ and is conical---so V1,1 is of CFT type. As a

result, Lemma 4.1 of [Mor20] applies. Namely, for any x ∈ V1,1, if ∆(x) ⩾ 2 and x(0)ω̃ = 0

then x ∈ imω̃(−1)
(V1,1).

Now suppose ω′ was some other conformal vector in V1,1, such that ω′
(1) agrees with ω̃(1).

Then, we have that (ω′ − ω̃)(0)ω̃ = 0, so ω′ − ω̃ = ∂x for some x ∈ V1,1 with ∆ = 1. Since

ω̃(i) = ω′
(i) for i = 0, 1, we must have that ∂x(i=0,1) = 0 so x is central in V∆=1

1,1 . Repeating
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the argument with (ω − ω̃)(1) and using the Borcherds identities, leads us to conclude that

∂x = 0, so ω̃ is unique.

Under DS reduction, H0
DS(u,V1,1) ∼= Dch

t and the image of ω̃ gives rise to a conformal

vector in Dch
t . By a similar argument as the preceding, one can show that this is the unique

conformal vector which agrees with the grading on Dch
t (see the proof of Proposition 10.7

in [Ara18]). The central charge of Dch
t is cDch

t
= 2dim gt and the central charge of the image

of ω̃ is related to cV1,1 by

cDch
t

= cV1,1 + rk gu − dimgu + 24ρu · ρ∨u ,

under DS reduction, see Remark A.5.9.

Proposition 3.2.11. The vertex algebra V1,1 is simple.

Proof. We proceed by contradiction. Suppose V1,1 contained some proper V1,1-submodule

V ⊈ V1,1. From Theorem 3.2.7, we have that the DS reduction 0DS(u, V ) ⊈ H0
DS(u,V1,1) ∼=

Dch
t must also be a submodule by functoriality.

However, Dch
t is simple [AM21, Corollary 9.3] and so H0

DS(u, V ) = 0 or H0
DS(u, V ) = Dch

t .

Now from Theorem 2.2.8, we can invert this DS reduction by FF-gluing a cap. Therefore, we

should have that V ∼= H
∞
2
+0(Zu,Wu⊗ 0) ∼= 0 or V ∼= H

∞
2
+0(Zu,Wu⊗Dch

t ) ∼= V1,1---which

is a contradiction.

With these propositions established, we know that V1,1 obeys many of the desirable prop-

erties one would expect from the chiral algebra associated to C1,1. However, we have not

explicitly tied this object to the construction of [BLL+15]. One might reasonably wonder

whether the object we have constructed is necessarily the mixed trinion of class S. We have

the following uniqueness result.

Proposition 3.2.12. The mixed trinion V1,1 is the unique vertex algebra object in KLu

such that

H0
DS(u,V1,1) ∼= Dch

t .
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Proof. This follows easily from the fact that Dch
t is an object in KLu,0. Suppose V ∈ KLu

is a vertex algebra object such that H0
DS(u, V ) ∼= Dch

t . Then it must be the case that

V ∼= Wu∗uDch
t , since Wu∗u(H0

DS(u,−)) is the identity in KLu. However, V1,1 := Wu∗uDch
t ,

so indeed V ∼= V1,1.

Suppose now that Ṽ1,1 is the vertex algebra canonically associated to C1,1 via the four-

dimensional construction of [BLL+15]. This must be a vertex algebra object in KLu, since it

has an action of V κc(gu) coming from the untwisted puncture and inherits a suitable grading

from the physical grading of superconformal quantum numbers. Performing untwisted DS

reduction on Ṽ1,1 must produce the cylinder C0,1, which has corresponding vertex algebra

Dch
t .3 Proposition 3.2.12 then applies, so we have

Ṽ1,1
∼= Wu ∗u Dch

t
∼= V1,1 . (3.2.51)

Thus far, this has been fairly abstract. Let us provide some concrete observations and

predictions. We have argued that the mixed trinion V1,1, as we have constructed it, is the

unique vertex algebra that could be associated to C1,1. Let us consider the vertex algebra

associated to Cf , which is a genus zero surface with one maximal untwisted puncture,

one maximal twisted puncture and an empty twisted puncture. The corresponding vertex

algebra is Vf = H0
DS(t,V1,1).

The surface Cf does correspond to a physical SCFT, and in particular, when gu = dn and

gt = cn−1 the corresponding SCFT is a free hypermultiplet theory (hence the subscript f).

In this case, Vf should be a symplectic boson vertex algebra with a commuting ĝu,κc ×

ĝt,κc subalgebra. Unfortunately, this does not hold for the other choices of gu (at generic

rank).

There is, however, another example that has appeared in recent literature. The even rank

A-type Lie algebras gu = a2n have, as their twisted algebras, gt = cn---unlike the dn theories,
3To see that one must recover the cylinder upon DS reduction, even though this doesn't correspond to a

physical four-dimensional theory, one may proceed as follows. The physical vertex algebra Ṽ1,1 must satisfy
Ṽ1,1 ◦t Ṽ1,1. Performing DS reduction, we must have H0

DS(u, Ṽ1,1 ◦t Ṽ1,1) ∼= Ṽ1,1. By means of a spectral
sequence argument (we delay this until the next subsection) one can rearrange the order of cohomologies to
show H0

DS(u, Ṽ1,1) ◦t Ṽ1,1
∼= Ṽ1,1, which implies that H0

DS(u, Ṽ1,1) = Dch
t .
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these SCFTs have global Witten anomalies. For gu = a2 and gt = c1 = a1, the SCFT is the

TX theory of [BLN17]. This was identified as the rank-two H2 F -theory SCFT [BMPR20],

and the class S realisation was given in [BP20]. In the E6 and A2n+1 cases, these vertex

algebras remain unstudied to the best of our knowledge.

It is perhaps of technical interest to note that Vf should be conical, despite the fact that

it is obtained from the Feigin–Frenkel gluing of just two caps. In the cases where the

two caps are of the same type, one obtains the cylinder Dch
u or Dch

t ---neither of which are

conical.

The identification of Vf with a symplectic boson system for gu = dn leads to a curious

observation.

Conjecture 3.2.13. Let SB(dn) be the symplectic boson system associated to the ``bifun-

damental'' representation of dn × cn−1. In other words, SB(dn) = Dch(Vdn × Vcn−1), where

Vdn and Vcn−1 are defining representations of dn and cn−1. Then,

WSp(2n−2)
∼= H0

DS(u, SB(dn)) . (3.2.52)

Indeed, this presents an alternate hypothetical construction for the equivariant affine W-

algebra of Cn type.

3.2.5 Rearrangement lemmas

Having established many key properties of the mixed trinion, which is the building block of

the twisted chiral algebras of class S, we would like to extend our results to other genus zero,

mixed vertex algebras. As we increase the number of twisted and untwisted punctures, we

are naturally required to consider how the various types of gluing interact with each other. It

will be useful in this endeavour to have a collection of rearrangement lemmas that establish

the extent to which the various gluings associate.

In this subsection we establish a series of technical rearrangement lemmas concerning the

interplay between the various cohomological operations we have defined thus far. The proofs
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of these lemmas, which are modifications of proofs of [Ara18], rely heavily on the machinery

of spectral sequences. The reader who is uninterested in highly technical details may wish

to skip this section and pick up in the following, where we extend our construction to the

vertex algebras associated to Cm,n.

Since we are interested in the interplay of gluings, we will need to consider objects that have

multiple, commuting ĝκc actions. To be completely precise, one should decorate each ◦ in

this section with subscripts to indicate the diagonal action that is being gauged. This would

be somewhat cumbersome, so we will overload the ◦ notation and rely on context to make

the relevant actions clear. Our lemmas only ever concern two such actions, for the sake of

argument we call them the left and right actions. Suppose U, V,W are in KL, such that V

has two actions of ĝκc and V is in KL with respect to both actions. One should then interpret

the symbol U◦(V ◦W ) as the semi-infinite cohomology H
∞
2
+•(ĝ−κg , g, U⊗H

∞
2
+•(ĝ−κg , g, V ⊗

W )), where the diagonal action of ĝ−κg is with respect to the right ĝκc action on V and the

sole ĝκc action on W . Similarly, the diagonal action on U ⊗H
∞
2
+•(ĝ−κg , g, V ⊗W ) is with

respect to the sole ĝκc action on U and the ĝκc action on V ◦W induced by the left action

on V .

Similarly, for objects U, V,W ∈ Z-Mod, we will denote the iterated Feigin–Frenkel gluing,

H
∞
2
+0(Z, U ⊗ H

∞
2
+0(Z, V ⊗ W )) by U ∗ (V ∗ W ). Here one should take the action on

V ⊗W for the first cohomology and on U ⊗ V for the second---recall that the Z-action on

V descends to the cohomology V ∗W .

Hereafter, it should be understood that when there are many KLu or KLt actions present,

we choose two such actions for the purposes of the rearrangement lemmas. For the chiral

algebras of class S (both untwisted and twisted), all the moment maps (from the same

algebra) are related by discrete automorphisms, and one can make such a choice without

loss of generality.

First, we recast some of the results of [Ara18] as rearrangement lemmas. The following

results hold for any simple Lie algebra g.

Lemma 3.2.14. Let U, V,W be vertex algebra objects in KL such that U is semijective in
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KL and V has two KL actions, then

U ◦ (V ◦W ) ∼= (U ◦ V ) ◦W .

Proof. This proof is similar to the proof of Theorem 10.11 of [Ara18]. Consider the bicom-

plex

C•• = U ⊗ V ⊗W ⊗
∧ ∞

2
+•(g)⊗

∧ ∞
2
+•(g) ,

with the differential d1 acting on U ⊗ V and the first
∧ ∞

2
+•(g) and d2 acting on V ⊗W

and the second
∧ ∞

2
+•(g). It is easy to see that d1d2 + d2d1 = 0, so the total complex

Cp
tot =

⊕
m+n=pC

m,n is a cochain complex with the differential d = d1 + (−1)md2 [Wei94].

There are two spectral sequences converging to the total cohomology of (Ctot, d)

IE
p,q
2 = H

∞
2
+p(ĝ−κg , g, U ⊗H

∞
2
+q(ĝ−κg , g, V ⊗W )) ,

IIE
p,q
2 = H

∞
2
+p(ĝ−κg , g,W ⊗H

∞
2
+q(ĝ−κg , g, U ⊗ V )) .

By Theorem A.5.5, the cohomologies H∞
2
+p(ĝ−κg , g, U⊗−) are concentrated in degree zero,

so both spectral sequences collapse at the second page. The only nonzero entries are IE
0,q
2

and IIE
p,0
2 . Thus, we have

IE
0,p
2
∼= IIE

p,0
2
∼= Hp

tot(Ctot, d) ,

which gives the desired isomorphism.

The vertex algebra objects VG,s are semijective in KL so the composition of vertex algebras

is associative---in the untwisted setting. Furthermore, gauging at genus zero is always

concentrated in degree zero. In the twisted setting, we will have to work harder.

We have a similar result for Feigin–Frenkel gluing.

Lemma 3.2.15. Suppose M1,M2,M3 ∈ Z-Mod and suppose that M1 and M3 are free over

Z(<0). Then

M1 ∗ (M2 ∗M3) ∼= (M1 ∗M2) ∗M3 .
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Proof. This proof is similar to the proof of Proposition 10.2 of [Ara18]. Consider the

bicomplex

C•• =M1 ⊗M2 ⊗M3 ⊗
∧ ∞

2
+•(z(g))⊗

∧ ∞
2
+•(z(g)) ,

with differentials d12 acting on M1 ⊗ M2 ⊗
∧ ∞

2
+•(z(g)) and d23 acting on M2 ⊗ M3 ⊗∧ ∞

2
+•(z(g)). The two differentials anticommute, so we can form the total complex Cn

tot =⊕
p+q=nC

p,q with total differential dtot = d12+(−1)qd23. There are two spectral sequences

converging to the total cohomology Htot of Ctot, whose second pages are given by

IE
p,q
2 := H

∞
2
+p(Z,M1 ⊗H

∞
2
+q(Z,M2 ⊗M3)) ,

IIE
p,q
2 := H

∞
2
+p(Z,H

∞
2
+q(Z,M1 ⊗M2)⊗M3) .

By Theorem 2.2.5, the entries Ep,q
2 in either spectral sequence vanish if p < 0 or q < 0.

Thus, we have E00
2 = E00

∞ , which gives the isomorphism

H0
tot(Ctot, dtot) ∼= H

∞
2
+0(Z,M1⊗H

∞
2
+0(Z,M2⊗M3)) ∼= H

∞
2
+0(Z,H

∞
2
+0(Z,M1⊗M2)⊗M3) ,

as desired.

Since the algebras VG,s are free over Z<0 (Proposition 10.2 of [Ara18]), the above lemma

applies, and Feigin–Frenkel gluing ∗u is associative. We hold off on analysing associativity

of ∗ for the twisted algebras, since it is a challenge to understand the twisted FF gluing

between two mixed vertex algebras.

We next consider the combination of the two gluing operations, ∗ and ◦.

Lemma 3.2.16. Suppose U ∈ Z-Mod, V ∈ KL and W ∈ KL. Additionally, suppose U is

free over Z(<0) and W is semijective in KL. Then we have the isomorphism

U ∗ (V ◦W ) ∼= (U ∗ V ) ◦W .

Proof. Consider the bicomplex

C•• = U ⊗ V ⊗W
∧ ∞

2
+•(z(g))⊗

∧ ∞
2
+•(g) ,
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with differentials dg acting on V ⊗W ⊗⊗
∧ ∞

2
+•(g) and dz acting on U ⊗ V ⊗

∧ ∞
2
+•(z(g)).

The differentials anticommute, so we can form the total complex Cp
tot =

⊕
m+n=pC

p,q with

differential dtot = dg + (−1)qdz. There are two spectral sequences converging to the total

cohomology:

IE
p,q
2 = H

∞
2
+p(Z, U ⊗H

∞
2
+q(ĝ−κg , g, V ⊗W )) ,

IIE
p,q
2 = H

∞
2
+p(ĝ−κg , g,H

∞
2
+q(Z, U ⊗ V )⊗W ) .

(3.2.53)

The cohomology H
∞
2
+p(Z, U⊗−) vanishes for p < 0 and the cohomology H

∞
2
+p(ĝ−κg , g,−⊗

W ) is concentrated in degree zero. Thus both spectral sequences will collapse at the second

page and we have

IE
0,0
2
∼= IIE

0,0
2
∼= H0

tot(Ctot, dtot) , (3.2.54)

as desired.

Now we come to the rearrangement of twisted and untwisted gluing. We again adopt our

conventions of using subscripts u and t to denote objects associated to gu or gt.

The results here are more limited; the obvious generalisations of the above spectral se-

quence arguments often fail in the twisted setting, since the mixed vertex algebras are not

semijective in KLu. Nevertheless, we will manage to demonstrate that some properties of

the gluing of twisted algebras are as we expect. To start with, we have a result for the

interchange of twisted and untwisted gauging.

Lemma 3.2.17. Suppose V1 is in KLu, V2 is in KLu and in KLt, and V3 is in KLt.

Furthermore, suppose that V3 is semijective for gt. Then, we have the isomorphism

V1 ◦u (V2 ◦t V3) ∼= (V1 ◦u V2) ◦t V3 .

Proof. As usual, the proof is via a spectral sequence, but with the new feature that coho-

mology is not necessarily concentrated in degree zero. We define the bicomplex

Cp,q = V1 ⊗ V2 ⊗ V3 ⊗
∧ ∞

2
+p(ĝu)⊗

∧ ∞
2
+q(ĝt) ,
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with the differential du and dt acting on V1 ⊗ V2 ⊗
∧ ∞

2
+•(ĝu) and V2 ⊗ V2 ⊗

∧ ∞
2
+•(ĝt)

respectively. The differentials anticommute, so we can form the total complex Cm
tot =⊕

p+q=mC
p,q with the differential dtot = du + (−1)pdt. There are two spectral sequences

converging to the total cohomology, given by

IE
p,q
2 = H

∞
2
+p(ĝu,−κg , gu, V1 ⊗H

∞
2
+p(ĝt,−κg , gt, V2 ⊗ V3)) ,

IIE
p,q
2 = H

∞
2
+p(ĝt,−κg , gt,H

∞
2
+q(ĝu,−κg , gu, V1 ⊗ V2)⊗ V3) .

Since V3 satisfies the conditions of Theorem A.5.5, the spectral sequences will collapse on

the second page and IE
p,q
2 = 0 for q 6= 0 and IIE

p,q
2 = 0 for p 6= 0. Thus we have the

isomorphism

Hm
tot = IE

m,0
2 = IIE

0,m
2 .

We can also show that the twisted gauging and untwisted Feigin–Frenkel gluing are nicely

compatible,

Lemma 3.2.18. Let M be an object of Zu-Mod such that it is free over Zu,<0 and let W be

semijective in KLt. Suppose, V is a vertex algebra object in KLt, then we have the following

isomorphism.

M ∗u (V ◦t W ) ∼= (M ∗u V ) ◦t W .

Proof. Let Cp,q be the bicomplex

Cp,q =M ⊗ V ⊗W ⊗
∧ ∞

2
+p(z(gu))⊗

∧ ∞
2
+q(ĝt) ,

with the differentials dz acting on M⊗V ⊗
∧ ∞

2
+•(z(gu)) and dg acting on V ⊗W

∧ ∞
2
+•(ĝt).

The differentials dz and dg anticommute, so we can form the total complex Cm
tot =

⊕
p+q=mC

p,q

with the total differential dtot = dz + (−1)pdg. There are two spectral sequences converging
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to the total cohomology, given by

IE
p,q
2 = H

∞
2
+p(Zu,M ⊗H

∞
2
+q(ĝt,−κg , gt, V ⊗W )) ,

IIE
p,q
2 = H

∞
2
+p(ĝt,−κg , gt,H

∞
2
+q(Zu,M ⊗ V )⊗W ) .

The cohomology H
∞
2
+q(ĝt,−κg , gt,− ⊗W ) is concentrated in degree zero, so both spectral

sequence will collapse in the second page. Thus, we have the isomorphism

H0
tot(Ctot, dtot) ∼= IE

0,0
2
∼= IIE

0,0
2 .

3.2.6 Mixed vertex algebras at genus zero

We first give a construction of the vertex algebras associated to spheres with only one pair

of twisted punctures: Cm,1 before considering the more general case. As in the untwisted

case, one could provide a recursive definition of Vm,1 by repeatedly gluing untwisted caps.

We elect, instead, to perform a simultaneous gluing and will show the equivalence between

the two definitions later on.

Definition 3.2.19. We define the family of mixed vertex algebras, Vm,1, by

V0,1 := Dch
t ,

Vm,1 := H0(Cm,1, Q
m) ,

(3.2.55)

where Cm,1 is the chain complex

C•
m,1 = W⊗m

u ⊗Dch
t ⊗

(∧ ∞
2
+•(z(gu))

)m

, (3.2.56)
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with differential

Qm(z) =

m∑
i=1

Qi,i+1 ,

Qi,i+1(z) =

rk gu∑
j=1

: (ρi(Pj)− ρi+1(τ(Pj)))ρghi
(cj) : (z) .

(3.2.57)

Here ρi, for i ⩽ m denotes the action of z(gu) on the ith factor of Wu and ρm+1 denotes

the action of z(gu) on Dch
t along the projection Zu ↠ Zt.

Pictorially, this is the simultaneous FF-gluing of m caps to the twisted cylinder. The vertex

algebras Vm,1 live entirely in cohomological degree zero (no fermions) since we manually

restrict to the zeroth cohomology---this is compatible with our expectation on the basis of

residual gauge symmetries (see Section 3.1.5. We will later reinforce this by showing that

the cohomology of Vm,1 ◦t Vn,1 is concentrated in degree zero.

The naive generalisation of our previous construction to the full family Vm,n would be to

take the zeroth cohomology of

C•
m,n = Wm

u ⊗VGt,2n ⊗
(∧ ∞

2
+•(z(gu))

)m

. (3.2.58)

However, this cannot be quite right. Indeed, the vertex algebras associated to Cm,n for

n > 1 should be supported outside of cohomological degree zero in order to express the

presence of enhanced Higgs branches for the corresponding SCFTs. On the other hand, the

vertex algebras, Wu and VGt,2n, lie in degree zero, and the truncation to zeroth cohomology

means this will persist. One should also expect to see a Z/2Z symmetry exchanging positive

and negative cohomological degree (a shadow of CPT in four dimensions). However, the

untwisted caps Wu are projective over Zu,(<0) and as a consequence the cohomology vanishes

in negative degree. Therefore, even if we do not truncate to degree zero, the resulting vertex

algebra would not have the right form.

Instead, we will define the vertex algebras Vm,n, by going to some (non-canonically chosen)

duality frame, i.e., pants decomposition. We will choose to recursively consider the decom-

position of Cm+1,n−1 as Cm+1,n−1 and C1,1 connected by an untwisted cylinder. This gives
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us our definition:

Vm,n := V1,1 ◦u Vm+1,n−1 . (3.2.59)

As defined, it is not clear whether the Vm,n are independent of our choice of duality frame

in which to define them. For example, we could have also obtained this from a twisted

gluing of V1,1 to Vm−1,n. This is just the vertex algebra version of generalised S-duality,

which is now not made manifest by our definition (3.2.59). In the following sections, we

shall work to establish how our definitions fit in with the duality web of class S.

3.2.7 Properties of the genus zero mixed vertex algebras

First, we will check that our definition of the mixed vertex algebras with n = 1 agrees with

the recursive definition, Vm,1

?∼= Wu ∗u Vm−1,1. We have an extension of Lemma 10.1 of

Arakawa to the twisted case.

Lemma 3.2.20. For m ⩾ 1, we have that

(i) Hn(Cm,1, Q
m−1
(0) ) ∼= 0 for n < 0 ,

(ii) Wu ∗u Vm−1,1
∼= Vm,1 .

Proof. This proof is largely adapted from the proof of Lemma 10.1 in [Ara18]. We proceed

by induction on m. For the base case, m = 1, (i) is true, since Wu is projective over Zu,(<0).

The second statement is true by definition, since V1,1 := Wu ∗u Dch
t . Next, suppose m > 1

and consider the bicomplex

C•• = Wu ⊗ C•
m−1,1 ⊗

∧ ∞
2
+•(z(gu)) , (3.2.60)

with differentials Qm−1
(0) acting on Cm−1,1 and d acting on Wu ⊗ Cm−1,1 ⊗

∧ ∞
2
+•(z(gu)).

The two differentials anticommute and the corresponding total complex is just Cm,1 with

differential Qm
(0). There is a spectral sequence, with second page

Ep,q
2 = H

∞
2
+p(Zu,Wu ⊗Hq(Cm−1,1, Q

m−1
(0) )) , (3.2.61)
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which converges to the total cohomology. By the inductive assumption, Hq(Cm,1, Q
m−1
(0) )

vanishes for q < 0 and Wu ∗u − is left exact. Therefore, Ep,q
2 = 0 for p, q < 0, so

Hn(Cm,1, Q
m
(0)) vanishes for n < 0. Moreover, the entry E0,0

2 is stable and we have

E0,0
2 = Wu ∗u Vm−1,1

∼= H0(Cm,1, Q
m
(0))
∼= Vm,1 , (3.2.62)

as desired.

Next, we examine the case of untwisted DS reduction.

Proposition 3.2.21. The mixed vertex algebras Vm,n are objects in KLu,0. In particular,

for m ⩾ 0 and n ⩾ 1,

H0
DS(u,Vm+1,n) ∼= Vm,n . (3.2.63)

Proof. We proceed by double induction on m and n, first examining the base case of n = 1

and arbitrary m. Note that for m = 0, H0
DS(u,V1,1) = Dch

t from Theorem 3.2.7. Next,

suppose m > 0; for any object in KLu, H0
DS(u,−) and Wu ◦u− are isomorphic. Therefore,

H0
DS(u,Vm+1,1) ∼= Wu ◦u Vm+1,1

∼= Wu ◦u (Wu ∗u Vm,1) , (3.2.64)

where we have used Lemma 3.2.20. Consider the bicomplex

C•• = Wu ⊗Vm,1 ⊗Wu ⊗
∧ ∞

2
+•(z(gu))⊗

∧ ∞
2
+•(ĝu,−κg) , (3.2.65)

with differential dg acting on Wu ⊗Vm,1 ⊗
∧ ∞

2
+•(ĝu,−κg) and dz acting on Vm,1 ⊗Wu ⊗∧ ∞

2
+•(z(gu)). The two differentials anticommute, so we form the total complex Cn

tot =⊕
p+q=nC

pq, with total differential dtot = dg + (−1)qdz. There are two spectral sequences

converging to the total cohomology, given by

IE
pq
2 = H

∞
2
+p(Zu,Wu ⊗H

∞
2
+q(ĝu,−κg , gu,Vm,1 ⊗Wu)) ,

IIE
pq
2 = H

∞
2
+p(ĝu,−κg , gu,H

∞
2
+q(Zu,Wu ⊗Vm,1)⊗Wu) .

The cohomology, H∞
2
+•(ĝu,−κg , gu,−⊗Wu) is concentrated in degree zero, and H

∞
2
+i(ZuWu⊗
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−) vanishes for i < 0. Therefore, both spectral sequences collapse at the second page and

we have

Wu ∗u (Wu ◦u Vm,1) = IE
00
2
∼= IIE

00
2 = Wu ◦u (Wu ∗u Vm,1) .

Therefore,

H0
DS(u,Vm+1,1) ∼= Wu ∗u (Wu ◦u Vm,1) ∼= Wu ∗u (H0

DS(u,Vm,1) , (3.2.66)

but Wu ∗u (H0
DS(u,Vm,1)) ∼= Vm,1 by Theorem 9.11 of [Ara18].

Now suppose n > 1. Then, we have that

H0
DS(u,Vm+1,n) ∼= Wu ◦u (V1,1 ◦u Vm+2,n−1) . (3.2.67)

Since, Wu is semijective in KLu, Lemma 3.2.14 applies and we have that

H0
DS(u,Vm+1,n) ∼= V1,1 ◦u (Wu ◦u Vm+2,n−1) ,

∼= V1,1 ◦u (H0
DS(u,Vm+2,n−1)) ,

∼= V1,1 ◦u Vm+1,n−1 ,

where we have used the inductive assumption. Of course, V1,1 ◦u Vm+1,n−1 is Vm,n by

definition and we are done.

Remark 3.2.22. The uniqueness result for V1,1 can be readily extended to the Vm,n. To

reiterate, Vm,n is the unique vertex algebra object in KL⊗m
u such that

H0
DS(u,Vm,n) ∼= Vm−1,n . (3.2.68)

Using Proposition 3.2.5, we can present our version of Proposition 10.10 of [Ara18].

Proposition 3.2.23. The vertex algebras Vm,1 have an ascending filtration whose successive

quotients are isomorphic to Vut
λ,m for some λ ∈ P+

t .

Additionally, the vertex algebras Vm,1 have a descending filtration whose successive quotients
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are isomorphic to D(Vut
λ,m) for some λ ∈ P+

t .

Therefore, the vertex algebras Vm,1 are semijective in KLt, i.e.we have:

Vm,1 ◦t V ∼= H
∞
2
+0(ĝt,κg , g,Vm,1 ⊗ V ) , (3.2.69)

for any V ∈ KLt, and where we perform the reduction with respect to the moment maps

coming from either twisted puncture on Vm,1.

Proof. We proceed by induction, noting that the base case for V1,1 has been established in

Proposition 3.2.8. Now assume, Vm,1 has such filtrations for some m, then from Proposition

3.2.5 the vertex algebra Vm+1,1 does too since, by Lemma, 3.2.20 Vm+1,1
∼=Wu∗uVm,1.

One could hope to strengthen this to the statement that all Vm,n are semijective in KLt

but such a result is beyond what is easily realised by our technologies. With the current

arguments, we would have to independently establish that the vertex algebras V0,n are

semijective in KLt. Given that our definition of V0,n involves an unbounded cohomology,

it seems difficult to verify such a property.

From a similar argument as with V1,1, the mixed vertex algebra, Vm,1 cannot be semijective

in KLu, so the derived functor V1,1 ◦u −, which increases the number of pairs of twisted

punctures by one, is not exact. By construction, the Vm,n cannot be concentrated in

cohomological degree zero for n > 1. This is, in one sense, a good thing---going back to our

discussion of residual gauge symmetry, these vertex algebras should have fermionic states

lying in non-zero cohomological degree. On the other hand, this is a rather large roadblock

to our spectral sequence powered proofs of associativity. We will only be able to provide

partial results for how Vm,n fit in the duality web.

Similar to the mixed trinion, we can derive the characters and central charges of the mixed

vertex algebras.
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Proposition 3.2.24. The character of the vertex algebra Vm,1 is given by

TrVm,1

(
qD

m∏
i=1

ai b1b2

)
=
∑
λ∈P+

t

∏m
i=1Ku(ai)χ

λ
u(ai)Kt(b1)χ

λ
t (b1)Kt(b2)χ

λ
t (b2)(

Ku(×)χλ
u(×)

)m .

so the vertex algebra, Vm,1 is conical for all m ∈ N.

Proof. For m = 1 this is just Proposition 3.2.9, so we take m > 1. We have that

H0
DS(u,Vm,1) ∼= Vm−1,1. As graded vector spaces, we have the decomposition

Vm−1,1
∼=
∑
λ∈P+

t

Vu
λ,m−1 ⊗zuλ

(Vt
λ ⊗ztλ

Vt
λ∗) .

Applying Proposition 8.4 of [Ara18] gives us the desired result. The fact that Vm,1 are

conical follows from the same argument as Proposition 3.2.9.

Remark 3.2.25. The vertex algebra Vm,n is constructed by repeatedly gauging Vm+n−1,1

with copies of V1,1. We know how the character behaves under gauging, so this result can

be extended to

TrVm,n

(
qD

m∏
i=1

ai

2n∏
j=1

bj

)
=

∏m
i=1Ku(ai)χ

λ
u(ai)

∏2n
j=1Kt(bj)χ

λ
t (bj)(

Ku(×)χλ
u(×)

)m+2n−2 , (3.2.70)

which agrees with the expression in [LPR14].

Proposition 3.2.26. The vertex algebras Vm,1 are simple for all m ∈ N.

Proof. We proceed by induction on m, noting that V1,1 is simple by Proposition 3.2.11.

Now suppose Vm,1 is simple for some m ≥ 1, and consider Vm+1,1. If V ⊂ Vm+1,1 is a

submodule then H0
DS(u, V ) is a submodule of Vm,1 by Proposition 3.2.21. However, by the

inductive assumption Vm,1 is simple and so H0
DS(V ) must be 0 or Vm,1. From Theorem

2.2.8, we see that V ∼= Wu ∗u H0
DS(V ) and so V ∼= 0 or V ∼= Vm+1,1. Therefore Vm+1,1 is

simple.
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Proposition 3.2.27. The vertex algebras Vm,n are conformal with central charge

cVm,n = 2n dim gt +m dim gu − (m+ 2n− 2)rk gu − 24(m+ 2n− 2) ρu · ρ∨u .

Proof. First, we prove this statement for the family Vm,1 before moving on to the full family

of Vm,n.

From Proposition 3.2.10, we know that Vm,1 is conformal with central charge cV1,1 =

2dim gt + dim gu − rk gu − 24ρu · ρ∨u so the statement is true of m = 1.

We shall first show that Vm,1 has a conformal vector, then show that it is the unique

conformal vector whose grading agrees with the character and finally show that this results

in the correct central charge.

Consider the vector ωm ∈ Cm,1, defined by

ωm = ωDch
t

+
m∑
i=1

ωWi +
m∑
i=1

ωgh,i ,

where ωDch
t

is the conformal vector of Dch
t , ωWi is the conformal vector of the ith factor of

Wu and ωgh,i is the conformal vector of the ith ghost system,
∧ ∞

2
+•(z(gu)). Clearly, ωm

defines a conformal vector on the complex, Cm,1. Like we did for V1,1 we shall argue that

this descends to a conformal vector in cohomology.

For an element Pi ∈ z(gu), where we think of z(gu) as a subalgebra of one of the Wu factors,

ωm acts as

ωm(z)Pi(w) ∼
∂Pi

z − w
+

(di + 1)Pi

(z − w)2
+

di+2∑
j=2

(−1)jj!
(z − w)j+1

q
(i)
j (w) ,

where qj(i) is some homogeneous state in z(gu) with weight di − j +2. Let us denote by P̃i

the image of Pi under the projection z(gu) ↠ z(gt). One then has

ω(z)P̃i(w) ∼
∂P̃i

z − w
+

(di + 1)P̃i

(z − w)2
+

di+2∑
j=2

(−1)jj!
(z − w)j+1

q̃j
(i)(w) ,
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where we think of P̃i as a state in z(gt) ⊂ Dch
t . Let Qm be the differential of Cm,1; the

action of Qm on the vector ωm is

Qm
(0)(z)ω(w) =

m∑
l=1

rk gu∑
i=1

di+1∑
j=2

∂j
(
ρl(q

(i)
j )− ρl+1(τ(q

(i)))
)
ci ,

where ρi for i ⩽ m denotes the action of the Feigin-Frenkel centre on the ith Wu factor

and ρm+1 once again denotes the action of z(gu) on Dch
t along the projection to z(gt).

If the right hand side of the above equation equals Qm
(0)χ for some state χ, then ω̃m = ωm+χ

is Q-closed and defines a vector in Vm,1. For l 6= m it is clear that ρl(q(i)j ) − ρl+1(q
(i)
j ) is

a coboundary, and we have addressed the l = m case in the proof of Proposition 3.2.10.

Therefore, such a χ exists and may be written as

χ =
m∑
l=1

rk gu∑
i=1

di+2∑
j=2

∂j(ρl ⊗ ρl+1 ⊗ ρgh,l)(zij)

for some zij ∈ z(gu) ⊗ z(gu) ⊗
∧ ∞

2
+0(z(gu)). Therefore, ω̃m,(i) = ωm,(i) for i = 0, 1, so the

OPEs agree up to the quadratic pole. Since Vm,1 is conical by Proposition 3.2.24, Lemma

3.1.2 of [Fre07] applies once more and we can conclude that ω̃m is a conformal vector in

Vm,1.

Now we wish to show that ω̃m is the unique conformal vector whose L0-grading agrees with

ωm. The argument from Proposition 3.2.10 using Lemma 4.1 of [Mor20] still works, with

minor alteration, since Vm,1 are conical.

The DS reduction of ω̃m gives a conformal vector in Vm−1,1 with central charge

cVm−1,1 = cV1,1 + rk gu − dimgu + 24ρu · ρ∨u ,

and which agrees with the grading by ωm−1. But, by the inductive assumption, such a

conformal vector on Vm−1,1 is unique.
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Unwrapping the induction from the base case of V0,1 = Dch
t , we get that

cVm,1 = m dimgu + 2dimgt − 24mρu · ρ∨u −m rk gu .

To extend this to Vm,n, we shall once more make use of the fact the Vm,n are constructed

by repeated twisted gaugings of the Vm,1 with copies of V1,1. It is well known that the

conformal vector

T = ω̃Vk,l
+ ω̃V1,1 + ωgh ,

where ωgh is the conformal vector of the b, c ghost system, descends to a conformal vector

in the BRST cohomology with central charge equal to the central charge of T . Therefore

the vertex algebras Vm,n are conformal, with central charge

cVm,n = 2n dim gt +m dim gu − (m+ 2n− 2)rk gu − 24(m+ 2n− 2) ρu · ρ∨u ,

as desired.

Having established a number of intrinsic properties of the genus zero, mixed vertex algebras,

let us examine how they interact with each other under gluing. This will shed some light

on how the Vm,n fit into the class S duality web.

Given our rearrangement lemmas, we can show that the mixed vertex algebras of the pre-

vious section have the expected behaviour under ◦u and ◦t. First, we establish the partial

result

Lemma 3.2.28. We have the isomorphism

V1,1 ◦t Vm,n
∼= Vm+1,n .

Proof. First, let us treat the base case of n = 1. We have that

V1,1 ◦t Vm,1
∼= (Wu ∗u Dch

t ) ◦t Vm,1 ,
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so V1,1 ◦t Vm,1
∼= Wu ∗u Vm,1

∼= Vm+1,1. By Lemma 3.2.18, we have that

(Wu ∗u Dch
t ) ◦t Vm,1

∼= Wu ∗u (Dch
t ◦t Vm,1) ∼= Wu ∗u Vm,1

∼= Vm+1,1 ,

where we have used Lemma 3.2.20. Now, we proceed by induction on n. We have just

established the base case for n = 1, so suppose n > 1. Then,

V1,1 ◦t Vm,n
∼= V1,1 ◦t (Vm+1,n−1 ◦u V1,1) ,

∼= (V1,1 ◦t Vm+1,n−1) ◦u V1,1 ,

∼= Vm+2,n−1 ◦u V1,1 ,

∼= Vm+1,n ,

where in the second line we have used Lemma 3.2.17.

Proposition 3.2.29. Under gauging, the vertex algebras Vm,1 behave as expected, namely,

Vm,1 ◦t Vp,q
∼= Vm+p,q ,

Vm,1 ◦u Vp,q
∼= Vp+m−2,q+1 .

Proof. We proceed via induction for each type of gluing, noting that the base case m = 1

is true, either by Lemma 3.2.28 or by definition.

Suppose m > 1. Then,

Vm,1 ◦t Vp,q
∼= (V1,1 ◦t Vm−1,1) ◦t Vp,q ,

∼= V1,1 ◦t (Vm−1,1 ◦t Vp,q) ,

∼= Vp+m,q ,

where in the second line, we have used Lemma 3.2.14 to arrive at the desired result.
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Next we treat the ◦u case. Again, suppose m > 1. Then,

Vm,1 ◦u Vp,q
∼= (V1,1 ◦t Vm−1,1) ◦u Vp,q ,

∼= V1,1 ◦t (Vm−1,1 ◦u Vp,q) ,

∼= Vp+m−2,q+1 ,

where, in the second line we have used a slight modification of Lemma 3.2.17---which applies,

since the cohomology V1,1 ◦t− is concentrated in degree zero, so the spectral sequences will

collapse at the second page.

Of course, we expect that these results should extend to the general case,

Vm,n ◦t Vp,q
∼= Vm+p,n+q−1 , Vm,n ◦u Vp,q

∼= Vm+p−2,q+n . (3.2.71)

The obstructions to proving this are as follows. In the case of ◦t, the inductive step is

Vm,n ◦t (Vp+1,q−1 ◦u V1,1) and the corresponding spectral sequence is unbounded and does

not collapse at the second page. Similarly, for the untwisted gluing we have not been able

to establish the putative isomorphism

(V1,1 ◦u Vm+1,n−1) ◦u Vp,q
∼= V1,1 ◦u (Vm+1,n−1) ◦u Vp,q , (3.2.72)

for the inductive step. Neither cohomology is concentrated in degree zero, so the second

page of the spectral sequence is unbounded. To make progress we require more sophisticated

machinery or a different strategy.

Proposition 3.2.30. We have the isomorphism

VGu,s ∗u Vm,n
∼= Vm+s,n .

Proof. We proceed by induction on s, noting that, for s = 1, the statement is true since

Vm,n are in KLu,0. Now suppose s > 1, and consider H0
DS(u,VGu,s ∗u Vm,n). Of course,
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H0
DS(u,−) and Wu ◦u − are isomorphic. We form the bicomplex

C•,• = Wu ⊗VGu,s ⊗Vm,n ⊗
∧ ∞

2
+•(z(gu)))⊗

∧ ∞
2
+•(gu) ,

with differentials dz acting on VGu,s⊗Vm,n⊗
∧ ∞

2
+•(z(gu)) and dg acting on Wu⊗VGu,s⊗∧ ∞

2
+•(gu). The differentials anticommute and we can form the total complex as usual.

The two relevant spectral sequences are

IE
p,q
2 = H

∞
2
+p(ĝu,−κg , gu,Wu ⊗H

∞
2
+q(Zu,VGu,s ⊗Vm,n)) ,

IIE
p,q
2 = H

∞
2
+p(Zu,H

∞
2
+q(ĝu,−κg , gu,Wu ⊗VGu,s)⊗Vm,n) .

The functor of DS-reduction is exact, so both sequences collapse at page two with IE
0,q
2

and IIE
p,0
2 being the only non-zero entries. This gives the isomorphism,

H0
DS(u,VGu,s ∗u Vm,n) ∼= VGu,s−1 ∗u Vm,n

∼= Vm+s−1,n ,

where we used the inductive hypothesis. Acting by Wu ∗u −, we have that

VGu,s ∗u Vm,n
∼= Vm+s,n , (3.2.73)

as desired.

Finally, let us consider gauging the untwisted and mixed vertex algebras together.

Proposition 3.2.31. Under untwisted gauging of untwisted vertex algebras, the mixed vertex

algebras behave as expected, i.e.,

VGu,s ◦u Vm,n
∼= Vm+s−2,n
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Proof. We have the following chain of isomorphisms,

VGu,s ◦u Vm,n
∼= (VGu,s−1 ∗u Wu) ◦u Vm,n ,

∼= VGu,s−1 ∗u (Wu ◦u Vm,n) ,

∼= VGu,s−1 ∗u Vm−1,n ,

∼= Vm+s−2,n ,

where in the second line we have used Lemma 3.2.16 and in the third we have used Propo-

sition 3.2.30.

To conclude this subsection, we should comment on the general issue of associativity.

In [Ara18], the cohomology VG,s ◦ VG,s′ was concentrated in degree zero, so ``gauging

is associative'' as a consequence of a by-now-standard spectral sequence argument. In our

case, the argument is not so simple---we have repeatedly remarked that zero genus is no

longer sufficient for a gluing to be concentrated in degree zero. The obvious spectral se-

quence no longer collapses on the second page, so the proofs of rearrangement lemmas no

longer hold. Nevertheless, it is our belief that associativity must still hold in general.

Yanagida [Yan20] has defined a derived version of the construction of [Ara18] in a suitably

defined category of dgVOAs. In addition, that work also imported the Moore–Tachikawa

TQFT to the derived setting. In the derived analysis, associativity of gauging follows

from general properties of the derived pushforward---even for nonzero genus. However, the

notion of associativity in the derived setting is a slightly weaker result than the notion of

associativity in this work.

In short, our prescription is normally to pass cohomology before the second gauging---unlike

the derived case, where one does not pass to cohomology but instead holds on to the full

data of the chain complex (as an object in an appropriate derived category). A sufficient

condition for the derived associativity to imply our version of associativity is to show that

the relevant chain complexes are formal, i.e., are isomorphic to their cohomology (thought of

as a complex with zero differential) in that derived category. This is an interesting problem

in its own right but is far beyond the scope of this current work.
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3.2.8 Generalised S-duality and 4-moves

Recall that in our construction of the Vm,n, we were forced to non-canonically pick a

particular pants decomposition. In the following, we wish to justify that our construction

is in fact independent of such a choice, by establishing the invariance of our construction

under the various moves of S-duality. To do so, we shall construct an action of the various

4-moves of Sections 1.1.5 and 3.1.2.

Let V be some mixed vertex algebra, for now we assume genus zero with only maximal

punctures. There are three different types of 4-move that can act on V.

--- The first acts on a collection of four untwisted punctures.

--- The second acts on two pairs of twisted punctures.

--- The third kind (the ut-move) acts on a pair of twisted punctures and two untwisted

punctures.

We examine each case in turn to establish invariance.

In the purely untwisted case, invariance under the 4-move is baked into Arakawa's construction-

–it permutes the s-many chiral moment maps of VG,s. Each moment map is inherited from

the s-many caps that are FF-glued together to build VG,s. These caps are all identical and

the gluing happens simultaneously---hence the permutation group symmetry is manifest.

Let us present an alternate description of this action, which is generalisable to the twisted

case.

We may endow VG,s with the action4 of a permutation group as follows. Fix a labelling

of the punctures, equivalently, a labelling of the chiral moment maps. We shall describe

the action of the transposition (23). First, we close off the punctures labelled 2 and 3 in

sequence, i.e., we perform DS reduction with respect to the moment maps ι2, associated to

puncture 2, and then with respect to ι3, associated to puncture 3. From Theorem 2.2.7, we
4As written, the action of the 4-move is not an automorphism but an isomorphism to some vertex algebra

object in KL. To correct this to an automorphism, we appeal to the uniqueness property of VG,s (see
Remark 10.13 of [Ara18]) and fix an isomorphism from this vertex algebra back to VG,s. One can perform
a similar trick with Vm,n using the uniqueness statements of the previous section. To avoid having to make
such a choice one can work with the Moore–Seiberg groupoid [MS89], but we will not do so here.
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can think of this DS reduction as gluing a cap to the chosen puncture.

We can invert this procedure by Feigin–Frenkel gluing a cap with moment map ι3 and

then Feigin–Frenkel gluing a cap with moment map ι2. Instead, we reverse the order of

inversions, that is to say we first glue a cap with moment map ι2 and then a cap with

moment map ι3. This is an isomorphism since

W3 ∗u (W2 ∗u (W3 ◦u (W2 ◦uVs))) ∼= W2 ∗u (W3 ∗u (W3 ◦u (W2 ◦uVs))) ∼= Vs , (3.2.74)

where we have used Lemma 3.2.15 to swap the order of Feigin–Frenkel gluings. The sub-

scripts on the caps keep track of the labelling of the moment maps and we have suppressed

the G-subscript for clarity. One can realise the actions of the other transpositions in the

same way, and thus generate the action of the full symmetric group on s punctures. The

action of the symmetric group should be understood as swapping the labellings of the mo-

ment maps associated to each puncture. This argument also establishes invariance under

the four move of the first type for the mixed vertex algebras Vm,n.

Now let us consider the case V = Vm,n, the mixed vertex algebra with n pairs of twisted

punctures and m untwisted punctures. We can define the action of transpositions on twisted

punctures, as in the untwisted case, by closing pairs of punctures and gluing caps. Again,

let us pick two twisted punctures, labelled 2 and 3, with moment maps j2 and j3 respec-

tively. We perform DS reduction once more, closing the punctures labelled 2 and then 3, in

order. Once again, we can think of this DS reduction as gluing a twisted cap to the chosen

puncture.

We restore the punctures by Feigin–Frenkel gluing, via the twisted Feigin–Frenkel centre,

two twisted caps with moment maps j2 and j3. We have

Wt,2∗t (Wt,3∗t (Wt,3◦t (Wt,2◦tV))) ∼= Wt,3∗t (Wt,3∗t (Wt,3◦t (Wt,2◦tV))) ∼= V . (3.2.75)

Once more, by Lemma 3.2.15, this results in a vertex algebra that is isomorphic to Vm,n.

All transpositions of twisted punctures can be arrived at using this method and we can
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generate the full symmetric group on 2n twisted punctures. It should be noted that the

automorphism group allows swaps between twisted punctures regardless of whether one has

connected them by twist lines (the twist lines in this abelian setting are a fiction anyways;

they just record monodromies of the punctures). The preceding argument establishes the

action of Sm on the untwisted punctures and so the Vm,n has an action of Sm × S2n by

automorphisms.

For the 4-move of the third kind---the ut-move. Our analysis in terms of permutations fails.

This move swaps between the degeneration limits shown in Figure 3.1---unlike the other

cases the decompositions are no longer related by a simple permutation on the punctures.

Instead, we appeal to Proposition 3.2.30, which states that the two BRST gluings Vm−1,n◦u

VGu,3 and V1,1 ◦t Vm−1,n are isomorphic.

This construction endows the vertex algebras Vm,n with an action of the generalised S-

duality group. Therefore, our recursive definition for Vm,n is well-defined and independent

of the choice of pants decomposition.

A proof of invariance under the ab-move eludes us but we pose this as a conjecture in the

language of semi-infinite cohomology.

Conjecture 3.2.32. Let VGu,3 be the trinion vertex algebra with maximal untwisted punc-

tures and V1,1 be the mixed trinion vertex algebra as before. Let i1, i2, i3 denote the three

actions of V κc(gu) on VGu,3. Similarly, let j2, j3 be the actions of V κc(gt) on V1,1. Then

the following isomorphisms hold,

H
∞
2
+•(ĝu,−κg , gu,VGu,3)

∼= H
∞
2
+•(ĝt,−κg , gt,V1,1) ,

where ĝu,−κg acts on VGu,3 via i2 ⊗ (i3 ◦ σ), with σ the Z2 outer-automorphism, and ĝt,−κg

acts on V1,1 via j2 ⊗ j3.

Establishing invariance under the ab-move for the one punctured torus is sufficient to ensure

invariance for the vertex algebras of all other surfaces. This construction is only relevant

at nonzero genus, so states of higher cohomological degrees will be present. Of course,
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replacing the maximal puncture with a minimal puncture in this duality just recovers S-

duality for non-simply-laced N = 4 super Yang-Mills theory; this also remains an open

conjecture at the level of associated vertex algebras. A computation to show the matching

of indices can be found in [AS14].

3.2.9 The Z/3Z twist of D4

Much of the preceding discussion goes through for case of Z3-twisted punctures in the D4

theory, but there are some new features that are worth mentioning. First, let us lay out the

details of the construction.

The chiral differential operators over G2 are well defined. Here we take G2 to be the ex-

ponentiated form of the g2 Lie algebra, i.e., G2 is a simply connected, simple, algebraic

Lie group. The superconformal index assigned to the twisted cylinder agrees (summand

by summand) with the character of VG2,2, and this once more motivates our construc-

tion.

Pictorially, one imagines the G2 cylinder as having a puncture twisted by ω and the other

by ω2. One might, a priori, expect that there are two possible g2 caps, Wω and Wω2 ,

depending on which puncture is closed. Yet, from the uniqueness argument of [Ara18], the

two putative caps are isomorphic. The outer automorphism, σ, that exchanges ω with ω2

should therefore lift to an isomorphism of vertex-algebras Wω
σ−→Wω2 .

The total monodromy around all punctures must be trivial. This can be satisfied in a

number of ways, but for now we will restrict our attention to the case where punctures

labelled by ω and ω2, respectively, come in pairs (one might think of them as having twist

lines connecting them pairwise). We denote a genus zero surface withm untwisted punctures

and n ω, ω2 pairs of punctures by C0,m,n. We define the mixed trinion, V1,1 as

V1,1 := WSpin(8) ∗u Dch
G2

, (3.2.76)

and the construction of the Vm,n proceeds analogously. The ambiguity in the two versions

of the cap is present here again, and we can ask whether this is physical. Namely, is there
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an S-duality move that swaps two punctures with ω and ω2 labels? We will show that the

vertex algebras Vm,n are indeed invariant under such a move, though there is no expectation

that the underlying SCFTs will enjoy the same symmetry.

Let us first establish some rearrangement lemmas for the Z/3Z case. The isomorphism of

vertex algebras Wω
∼= Wω2 lifts to a natural transformation of functors,

H
∞
2
+0(Zt,Wω ⊗−) ' H

∞
2
+0(Zt,Wω2 ⊗−) . (3.2.77)

In other words, the twisted cylinders whose endpoints are labelled by any combination of

ω, ω2 have isomorphic vertex algebras---all isomorphic to chiral differential operators on G2.

Though unphysical, one can consider the vertex algebra Ṽ1,1 := WSpin(8) ∗u (Wω ∗t Wω).

This would, naively, correspond to the trinion with two maximal punctures twisted by ω

and one untwisted puncture. From the natural isomorphism, however, we have that

Ṽ1,1
∼= V1,1 . (3.2.78)

We can, therefore, use the trinion Ṽ1,1 as the building block for an equivalent construction

of genus zero vertex algebras, which are isomorphic to the V1,1 construction. This con-

struction, however, makes manifest the enhanced symmetry of the vertex algebras, i.e., the

labelling by ω versus ω2 is redundant.

Let us reiterate, as this strikes us as a surprising result. At the level of the associated vertex

algebra, there is are additional automorphisms that swap ω and ω2 punctures which, as far

as we know, do not arise from an underlying S-duality of the four-dimensional physics. For

example, the naive S-duality group of a surface with a pair of ω punctures and a pair of

ω2 punctures is Z2 × Z2, which swaps punctures with the same label. This is enhanced to

S4---swapping between all four punctures---as if these were all identical punctures!

In addition to the mixed trinion that we described above, one can compactify on a curve with

a three pronged twist line---connecting three punctures each with ω (or ω2) monodromy.

The trinion with three ω punctures does indeed correspond to a physical SCFT, and one
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might expect that this trinion is VG2,3. Comparing the superconformal index of this trinion

theory with the character of VG2,3, however, exposes this as wishful thinking. Indeed, this

trinion is something of a mystery, and we currently have no way of constructing it with

the machinery of [Ara18]. For now, we shall refer to the surface with the three pronged

twist line by C0,0,3ω and its corresponding vertex algebra by V0,3ω. We also introduce their

σ-conjugates C0,0,3ω2 and V0,3ω2 , which correspond to the surface with a three pronged twist

line between three ω2 twisted punctures and its associated vertex algebra.

Unlike all of the other trinions we have considered, we expect V0,3ω to be have support

outside cohomological degree zero, i.e., contain fermions. This prediction comes from our

proposed diagnostic concerning the covering space of the UV curve, and is compatible with

some speculative analyses of the superconformal index. Any construction involving Feigin-

-Frenkel gluing is forced to be in degree zero, since we manually truncate to the zeroth

cohomology, so this expectation implies the necessity of other tools to get at this vertex

algebra.

3.2.10 The proof of Theorem 3.2.7

In this section we present our proof of Theorem 3.2.7, reproduced below.

Theorem. We have the following isomorphism:

H0
DS(u,V1,1) ∼= Dch

t ,

so Dch
t ∈ KLu,0.

Proof. First, we establish notation. Let F denote the composition H0
DS(u,H

∞
2
+0(Z,Wu ⊗

−)), which is an endofunctor on Zu−Mod. Notably, on the subcategory KLu,0, F(M) ∼=M

for any M ∈ KLu,0 (see Proposition 9.12 of [Ara18]), and in general F is left-exact. We

wish to show that F(Dch
t ) ∼= Dch

t .

Let χλ : Zt → C be a character defined by χλ(Pi,n) = 0 for n 6= 0 and Pi,0Vt
λ = χλ(Pi,0)Vt

λ.

The Kazhdan–Lusztig category decomposes into blocks KLt
∼=
⊕

KL
[λ]
t where KL

[λ]
t is the
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subcategory of objects on which Pi,0 acts as the generalised eigenvalue χλ(0), i.e., these

are objects which are supported on the formal completion of the ideal (Pi,0 − χλ(Pi,0)) in

SpecZt.

As Dch
t is a vertex algebra object in KLt, it decomposes as

Dch
t
∼=
⊕
λ∈P+

t

Dch
t,[λ] ,

where Dch
t,[λ] are objects in KL

[λ]
t . The increasing filtration on Dch

t induces a filtration on

each Dch
t,[λ],

0 = N0 ⊂ N1 ⊂ · · · ⊂ N =
⋃
i

Ni = Dch
t,[λ] ,

such that successive quotients are isomorphic to Vt
λ,2. While the character of Dch

t is ill-

defined (since each weight space is infinite dimensional), the character of each Dch
t,[λ] is

well-defined. We have that F(Dch
t )[λ] ∼= F(Dch

t,[λ]) since F is left exact. Therefore,

ch F(Dch
t )[λ] ∼= ch F(Dch

t,[λ]) .

The filtration on Dch
t,[λ] induces a filtration on F(Dch

t,[λ]) and since F is left exact, we have

that F(Ni)/F(Ni−1) ⊆ F(Ni/Ni−1), and so

ch F(Dch
t,[λ]) ⩽

∑
i

ch F(Ni/Ni−1) .

Each subquotient, Ni/Ni−1 is an object in KLu,0 by Proposition 3.2.3. Consequently,

ch F(Dch
t,[λ]) ⩽

∑
i

ch (Ni/Ni−1) = chDch
t,[λ] .

From this we conclude that F(Dch
t ) must be Z⩾0 graded. Now, since Dch

t is simple, if we

can show that there is a non-trivial vertex algebra morphism Dch
t → F(Dch

t ), then we will

have F(Dch
t ) ∼= Dch

t . From here we are in a very similar situation as the proof of Theorem

9.9 of [Ara18], so we adapt that proof to our setting. Before we do so, however, we will

need some subsidiary lemmas. Let g+t ⊂ ĝt,−κc = tgt[t]. Then we have:
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Lemma 3.2.33. V
g+t
1,1 = H

∞
2
+0(Zu,Wu ⊗Dch

t )g
+
t ∼= H

∞
2
+0(Zu,Wu ⊗ (Dch

t )g
+
t ) .

Proof. Let C•,• be defined by

Cp,q = Wu ⊗Dch
t ⊗

∧ ∞
2
+p(z(gu))⊗

∧
q((g+t )

∗) ,

where Wu⊗Dch
t ⊗

∧ ∞
2
+•(z(gu) is the Feigin standard complex for computing H

∞
2
+0(Zu,Wu⊗

Dch
t ) and Dch

t ⊗
∧

q((g+t )
∗ is the Chevalley–Eilenberg complex for computing the ordinary

Lie algebra cohomology of g+t . We denote the differentials of each complex by dz and dg,

respectively, and extend them to C•• by letting dz act trivially on
∧•((g+t )

∗ and letting

dg act trivially on Wu ⊗
∧ ∞

2
+•(z(gu)). The two differentials anticommute and so C•• is

a bicomplex from which we form the total complex Ci
tot =

⊕
p+q=iC

p,q with differential

d = dz + (−1)qdg.

There are two spectral sequences converging to the total cohomology H•
tot(C), with second

pages given by

IE
p,q
2 = H

∞
2
+p(Zu,Wu ⊗Hq(g+t ,Dch

t )) ,

IIE
p,q
2 = Hp(g+t ,H

∞
2
+q(Zu,Wu ⊗Dch

t )) .

Note that Dch
t is injective over U(tgt[t]), so Hq(g+t ,Dch

t ) is concentrated in degree zero.

Furthermore, both H i(g+t ,−) and H
∞
2
+i(Zu,Wu ⊗ −) vanish in negative degrees because

Wu is free over Zu,(<0) and (−)g
+
t is left exact. Therefore, IE

p,q
r collapses at the second

page and IIE
0,0
2 is stable. This gives the isomorphism

IE
0,0
2
∼= H0

tot(C)
∼= IIE

0,0
2 ,

as desired.

Lemma 3.2.34. F(Dch
t )g

+
t = H0

DS(u,V1,1)
g+t ∼= H0

DS(u,V
g+t
1,1) .

Proof. By Theorem 6.8 of [Ara18], the functors H0
DS(u,−) and H

∞
2
+0(ĝu,−κg , gu,Wu ⊗−)
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are isomorphic. Let C•• be defined by

Cp,q = Wu ⊗V1,1 ⊗
∧ ∞

2
+p(gu)⊗

∧
q((g+t )

∗) .

Let du be the differential on Wu ⊗V1,1 ⊗
∧ ∞

2
+•(gu), which computes the relative ĝu,−κg

semi-infinite cohomology, and we extend du to C•• by letting it act trivially on
∧

q((g+t )
∗).

Similarly, let dt be the differential on V1,1 ⊗
∧

q((g+t )
∗), which computes the ordinary Lie

algebra cohomology of g+t , and we can extend this to C•• by letting it act trivially on

Wu ⊗
∧ ∞

2
+p(gu). The two differentials anticommute and so C•• is a bicomplex. We can

form the total complex Ci =
⊕

p+q=iC
p,q with total differential dtot = du + (−1)qdt.

There are two spectral sequences converging to the total cohomology Htot(C), with second

pages given by

IE
p,q
2 = H

∞
2
+p(ĝu,−κg , gu,Wu ⊗Hq(g+t ,V1,1)) ,

IIE
p,q
2 = Hp(g+t ,H

∞
2
+q(ĝu,−κg , gu,Wu ⊗V1,1)) .

Since Wu is semijective in KLu, H∞
2
+•(ĝu,−κg , gu,Wu ⊗−) is concentrated in degree zero.

Therefore, both spectral sequences collapse on the second page, and we have

IE
0,0
2
∼= H0

tot(C)
∼=II E

0,0
2 ,

as desired.

Combining both of the above lemmas, we have

F(Dch
t )g

+
t ∼= F((Dch

t )g
+
t ) ∼=

⊕
λ∈P+

t

F(Vt
λ ⊗ V t

λ∗) ,

where we have used the fact that

(Dch
t )g

+
t ∼= U(ĝt,κc)⊗U(gt[t])⊕CK O(Gt) ∼=

⊕
λ∈P+

t

Vt
λ ⊗ V t

λ∗ .

The Vt
λ ⊗ V t

λ∗ are naturally modules over ztλ and are therefore objects in KLu,0 by Proposi-
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tion 3.2.3. As a result, we have that

F(Dch
t )g

+
t ∼=

⊕
λ∈P+

t

Vλ ⊗ Vλ∗ .

Looking at the ∆ = 0 subspace, F(Dch
t )

g+t
0 , and comparing with our constraint on the

character, we have that

F(Dch
t )0 ∼=

⊕
λ∈Pt

Vλ ⊗ Vλ∗ ∼= O(Gt) ,

as gt ⊗ gt modules. Since, F(Dch
t ) is Z⩾0-graded, the zero weight subspace F(Dch

t )0 is a

unital commutative, associative algebra under the normal product. The quadratic Casimir

provides a Q⩾0-grading,

F(Dch
t )0 =

⊕
d∈Q⩾0

F(Dch
t )0(d) ,

where F(Dch
t )0(d) has eigenvalue d with respect to the quadratic Casimir. The natural

projection F(Dch
t )0 ↠ F(Dch

t )0(0) is an algebra homomorphism.

These observations mean that we are exactly in the situation of the proof of Theorem

9.9 in [Ara18] and so we can apply Lemma 9.10 of loc. cit. to conclude that F(Dch
t )0

is isomorphic to O(Gt) as a commutative Gt × Gt algebra. Additionally, F(Dch
t ) is a KLt

object and so we have an action of V κc(gt). All together, this gives a nonzero homomorphism

Dch
t → F(Dch

t ), as desired.

3.3 Observations and future directions

Having identified the appropriate vertex algebras to associate with the twisted theories

of type Cm,n, there remains a question of how to understand Arakawa's VGt,s for non-

simply laced G. We wish to speculatively suggest a physical interpretation of these vertex

algebras.
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Our suggestion will require a digression to three dimensions. In Section 3.3.1, we describe

the mirrors of the three-dimensional circle reductions of the theories of class S.

These mirrors are star-shaped quiver gauge theories and their Coulomb branches have been

described (in the An case) by [BFN17]. We review the construction of these coulomb

branches, à la Braverman–Finkelberg–Nakajima, in Section 3.3.2. After this review, we

suggest a physical interpretation for the VG,s in terms of certain quiver gauge theories.

In Section 3.3.3, we discuss the associated varieties of the mixed vertex algebras Vm,n. In

particular, we present a conjectural description of the associated varieties of the subfamily,

with one pair of twisted punctures, Vm,1, in terms of the geometric Satake correspon-

dence.

3.3.1 Three dimensional mirrors

The Higgs branches of class S theories, which in the mathematical literature have come to

be known as Moore–Tachikawa varieties following the work of [MT12], are at present most

uniformly understood in terms of circle reduction to three-dimensions. Reducing a four-

dimensional N = 2 theory on a circle results in a three dimensional N = 4 theory.

Three dimensional N = 4 theories share the same branching structure of their moduli space

of vacua as four dimensional N = 2 theories. The two branches are also called the Higgs and

Coulomb branch and both are hyperkähler (holomorphic symplectic) spaces. When a three-

dimensional N = 4 theory arises as a result of S1-compactification of a four dimensional

theory, the Higgs branches of the three-dimensional theory agrees with that of its parent

four-dimensional theory.

Three dimensional physics has its own incarnation of mirror symmetry: two theories that

are mirror dual are characterised5 by the fact that the Higgs branch of one is the Coulomb

branch of the other (and vice versa). Reducing a class S theory on the circle and then taking

its mirror dual results in a three-dimensional N = 4 quiver gauge theory. These theories are
5Strictly speaking, this only holds true for so-called good theories. These theories have Coulomb branches

whose zero dimensional strata consist of a singular point. The quivers we consider will be good theories so
we ignore this nuance.
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SO(2n) USp(2n−2) O(2n − 2) USp(2n−4) O(2)

Figure 3.3: The Lagrangian for the T [SO(2n)] theory that is used to introduce a maximal
untwisted puncture in a theory of type dn.

called the Sicilian theories. The three dimensional mirrors of the An and Dn series of class S

theories were found by Benini–Tachikawa–Xie in [BTX10] using brane web technology. In

that same work, mirror theories for Dn theories with twisted punctures were also presented.

The twisted A2n case has also been explored more recently, in [BGMS20].

In all of these cases, the three dimensional mirrors are quiver gauge theories---they are star

shaped quivers with a central node from which tails radiate outwards, one for each puncture.

Each type of puncture gives rise to a different tail. For example, the maximal untwisted

punctures in type Dn give rise to tails matching the Lagrangian description for the theory

T [SO(2n)] seen in Figure 3.3 [GW09]. For a genus zero theory with maximal punctures, the

quiver is a central SO(2n) node with T [SO(2n)] tails radiating off. For genus g > 0, the

quiver is the same but with the addition of g many hypermultiplets valued in the adjoint

of SO(2n), which look like g loops starting and ending on the central SO(2n) node.

When there is a mixture of twisted and untwisted punctures, the central node is then

replaced by O(2n − 1), and the tails for maximal twisted punctures correspond to the

Lagrangian for the T [SO(2n − 1)] theory, which is displayed in Figure 3.4. Finally, in

addition to the extra adjoint matter arising from positive genus, there are an extra 2st+2g−2

fundamental hypermultiplets of O(2n − 1), where 2st is the number of twisted punctures.

Note that at genus zero, these additional fundamental hypermultiplets only appear in the

presence of four or more twisted punctures. In light of our discussions on residual gauge

symmetries, these extra fundamental hypers might be seen as indicative of the residual gauge

symmetry/derived structure that arises in the twisted setting. (An interesting special case

is for the D2 theory, where the extra fundamentals can be directly identified with extra

adjoints of the twisted algebra sl2.)

119



O(2n− 1) USp(2n−2) O(2n − 3) O(2n − 4) O(1)

Figure 3.4: The quiver for the T [SO(2n − 1)] theory that is used to introduce a maximal
Z2-twisted puncture in a theory of type dn.

3.3.2 The non simply laced construction

In a series of papers [Nak16, BFN18, BFN19, BFN17], (subsets of) Braverman, Finkelberg,

and Nakajima (BFN) have introduced a mathematical construction of the Coulomb and

Higgs branches of three dimensional N = 4 gauge theories. Note that the construction of

the Coulomb branch requires the matter to be valued in a representation of the gauge group

that is of cotangent type---T ∗N for some C-representation, N , of the gauge group G. This

technical assumption can be relaxed and this has been done so in [BDF+22], at the cost of

more complicated machinery.

O(2n − 1)

Tt[O(2n− 1)]Tt[O(2n− 1)]

Tt[O(2n− 1)] Tt[O(2n− 1)]

USp(2))

O(2n − 1)

Tt[O(2n− 1)]Tt[O(2n− 1)]

Tt[O(2n− 1)] Tt[O(2n− 1)]

Figure 3.5: The three dimensional mirrors of the Dn theory on C0,0,2 (left) and of Arakawa's
Vcn−1,4 (right). We claim that the quiver variety of this mirror corresponds to the associated
variety of Vcn−1,4.

For a general quiver with matter in representations of cotangent type, the construction of

BFN involves a vector bundle over the affine Grassmannian. For star shaped quivers in

the An case, one has a much slicker construction via the geometric Satake correspondence

[BFN17]. Let G be a simply connected simple algebraic Lie group, and let GrLG be the
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affine Grassmannian, modelled by the quotient

GrLG = LG(K)/ LG(O) . (3.3.1)

The geometric Satake is an equivalence

Rep(G)
S−→ PervLG(O)(GrLG) (3.3.2)

between representations of G and LG(O)-equivariant perverse sheaves on the affine Grass-

mannian. In particular, consider the ind-representation of G, RG =
∑

λ∈P+ Vλ⊗Vλ∗ , which

by the Peter-Weyl theorem is isomorphic to the co-ordinate ring C[G]. This corresponds to

some ind-object in the category of perverse sheaves AG ≡ S(RG). Now, let ∆b denote the

diagonal embedding

∆b : GrLG ↪→ GrLG × · · · ×GrLG︸ ︷︷ ︸
b copies

. (3.3.3)

Define,

Xb := SpecH•
LG(O)(GrLG(O),∆

!
b(⊠b

k=1AG)) . (3.3.4)

where H•
LG(O)

denotes the LG(O)-equivariant Borel–Moore cohomology. For G = SLn,

[BFN17, Theorem 2.11] states that the Xb are isomorphic to the Coulomb branches of the

an Sicilian theories, i.e., they are isomorphic to the Higgs branches of Σb. Indeed, these

varieties first appeared in unpublished work of Ginzburg and Kazhdan [GK].

This construction is well-defined for any G, and so one might hope that by choosing the

simply connected Lie group, Exp(g), one can construct the corresponding Higgs branches of

the Σb theories for any simply laced Lie algebra. This, however, remains conjectural---such

an isomorphism between the Coulomb branches of star shaped quivers in non An-type and

the varieties of form (3.3.4) has yet to be established.

Nevertheless, [Ara18, Theorem 10.14] shows that the associated variety of VG,b is isomorphic

to the Xb for any simple g, i.e.,

XVG,b
∼= Xb . (3.3.5)
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With this context, there is a reasonably natural guess for the quivers for XVG,b
for non-

simply laced G. Namely, we should think of these as the mirror quivers of the C0,b theories

without the extra fundamental matter---see Figure 3.5 for an illustration.

How about the vertex algebras, VG,b, themselves? In three-dimensions there is a con-

struction that produces a vertex algebra associated to a boundary condition for an N = 4

theory [Gai19, CCG19, CG19]. For theories that are mirror dual to the S1-reduction of

a four-dimensional N = 2 theory, there is a natural boundary condition that recovers the

four-dimensional VOA. However, the quivers without the extra fundamental matter are not

SCFTs. As such, the boundary VOA construction is obstructed by an anomaly that must

be ameliorated by adding in some number of free fermions. Such considerations mean that

a precise conjecture for what physics to associate to the VG,b eludes us.

As an example, consider the dn theory on C0,2. The corresponding vertex algebra has four

actions of gt = usp(2n− 2), and the three dimensional mirror of the theory is given on the

left-hand side of Figure 3.5. We propose to identify Arakawa's VOA Vcn−1,4 as some kind of

boundary VOA for the three dimensional quiver on the right-hand side of Figure 3.5.

It would be interesting to identify some indication that the VGt,s VOAs are not related to

four-dimensional physics. At face value they have no serious pathologies---they are conical

with negative central charge and satisfy all known unitarity bounds. These vertex algebras,

therefore, may warrant some attention with an eye towards characterising precisely what

vertex algebras have parent four-dimensional SCFTs.

3.3.3 Moore–Tachikawa varieties for twisted class S

We note that our construction also descends to a construction of the Moore–Tachikawa

varieties of Cm,n---via the associated variety functor. Indeed, the associated variety functor

commutes with DS reduction [Ara15], in the sense that XH0
DS(V )

∼= H0
DS(XV ) for any

V ∈ KL, where finite Drinfel'd–Sokolov reduction is used on the right.

For the special case of Cm,1 we have a conjectural description, in terms of the geometric

Satake correspondence. Let Gu be the simply connected group with Lie algebra gu, then
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the action of σ on gu lifts to an action on Gu. The fixed points under this action of σ form

a Lie group and we set

Gt :=
L(Gσ

u) , (3.3.6)

which comes equipped with a proper immersion LGt ↪→ Gu. This induces a proper mor-

phism

ισ : GrLGt
→ GrGu , (3.3.7)

on the affine Grassmannians. We can pushforward along ισ∗ and apply induction to obtain

a Gu(O) equivariant sheaf on GrGu---denote this composition by ισ∗.

Now, let At be the regular sheaf on GrLGt
and let Au be the regular sheaf on GrGu . Let

∆t : GrLGt
→ GrLGt

× GrLGt
be the diagonal map and similarly let ∆b : GrGu → (GrGu)

b

be the diagonal map for the untwisted case.

The sheaf ισ∗∆!(At ⊠At) is a Gu(O) equivariant sheaf on GrGu . We define,

Xb,1 := mSpec H•
Gu(O)

(
GrGu ,∆

!
b+1

(
(⊠m

k=1Au)⊠ ισ∗∆!
t(At ⊠At)

))
. (3.3.8)

In ongoing work with D. Butson [BN], we hope to prove the following conjectural description

of the associated varieties of the Vm,1.

Conjecture 3.3.1. The associated variety of Vm,1 is isomorphic to Xb,1 as Poisson vari-

eties, i.e.

RVm,1
∼= H•

Gu(O)

(
GrGu ,∆

!
b+1

(
(⊠m

k=1Au)⊠ ισ∗∆!
t(At ⊠At)

))
,

as Poisson algebras, where RVm,1 is the Zhu's C2 algebra of Vm,1.

For the most general Cm,n, this small extension cannot capture the extra information present

in the Hall–Littlewood operators and so one would require a different approach.
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Appendices

Besides, proofs are no help to believing,

especially material proofs

Fyodor Dostoevsky

The Brothers Karamazov

A.1 Nilpotent orbits in Lie algebras

This appendix will be a review of some concepts in Lie theory, with particular focus on the

structure of nilpotent orbits.

Throughout this section, g shall refer to a finite dimensional, simple Lie algebra, over C.

We let G denote a simple algebraic group whose Lie algebra is g---note that we relax our

convention that G is simply connected.

Let R be the root system of g, with R± the positive and negative roots and ∆ the set of

simple roots. We fix, once and for all, some Cartan decomposition g = n− ⊕ h ⊕ n, with

b = h ⊕ n the upper Borel subalgebra and b− = h ⊕ n the lower Borel subalgebra. The

Killing form on g is denoted by (·, ·).

Let g∗ := Hom(g,C) be the linear dual of g. We fix an isomorphism g
∼−→ g∗ by x 7→ (x, ·).

The adjoint action of x ∈ g will be denoted by adx while the coadjoint action on g∗ is

denoted by ad∗x. Similarly, we denote the adjoint action of g ∈ G on g by Adg and on g∗ by

Ad∗g.
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A.1.1 Poisson structure of g∗ and coadjoint orbits

The dual space g∗ is naturally an affine variety with g∗ = Spec Sym(g). The co-ordinate

ring Sym(g) is naturally a Poisson algebra, with Poisson bracket defined by

{x, y} = [x, y], for x, y ∈ g ⊂ Sym(g) (A.1.1)

and extended by the Leibniz rule to arbitrary polynomials. This Poisson bracket is known

as the Kirillov–Kostant–Souriau (KKS) Poisson bracket. The variety g∗ is therefore a

Poisson variety, however it is not symplectic. This is somewhat obvious since dim g∗ can be

odd.

Moreover, note that Sym(g) contains a large Poisson centre; the subalgebra

Sym(g)G ⊂ Sym(g) , (A.1.2)

Poisson commutes with all of Sym(g), since it is ad-invariant. The putative symplectic form

induced by the KKS bracket is, therefore, degenerate.

Coadjoint orbits in g∗, however, are symplectic. Let ξ ∈ g∗ with ξ = (x, ·) for x ∈ g and

let Oξ be the (open) G-orbit of ξ in g∗. We can use the Killing isomorphism to identify the

fibre of TOξ above ξ with a quotient of g

0→ gx → g
adx−−→ TξOξ → 0 , (A.1.3)

where gx, the kernel of adx is equal to gξ, the isotropy subalgebra of ξ. The KKS bracket in-

duces a two-form ωKKS,ξ : TξOξ∧TξOξ → C. on TξOξ. Let x, y ∈ TξOξ with representatives

x̃, ỹ ∈ g, then

ωKKS,ξ(x, y) = (ξ, [x̃, ỹ]) , (A.1.4)

is a non-degenerate two form on the tangent space at ξ. This extends to a closed two-form

ωKKS on Oξ and is non-degenerate on each fibre---hence it is a symplectic form.

Since g∗ has infinitely many G-orbits, there are infinitely many symplectic leaves with
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dimension dim g − rk g. Furthermore, there is a singular locus inside g∗, where coadjoint

orbits have codimension greater than rk g.

Almost by construction, the coadjoint action of G on any orbit Oξ, ξ ∈ g∗ is Hamiltonian

with moment map µξ : Oξ → g∗ given by the natural immersion of the orbit into g∗.

A.1.2 The Harish Chandra centre and the BGG category

Recall that the Poisson algebra of functions on g∗ had a Poisson central subalgebra Sym(g)G.

As an C-algebra Sym(g)G is generated by monomials Pdi of degrees di+1, where di are the

exponents of g for i = 1, . . . , rk g. These generators are called the fundamental invariants

of g and the set of di+1 are the degrees of the fundamental invariants. For any g, P1 is the

lowest degree generator with

P1 =
∑
a,b

κabJaJb , (A.1.5)

where Ja is a basis of g and κab is the inverse of the Killing form κab = (Ja, Jb).

Moreover, by looking at the G-orbits of the Cartan subalgebra h∗, we have that

C[g∗//G] ∼= C[h∗//W ] . (A.1.6)

Definition A.1.1. The universal enveloping algebra, U(g), has a centre Z(g) called the

Harish-Chandra centre. Moreover,

Z(g) ∼= Sym(g)G ∼= C[h∗//W ] ∼= C[Pdi | i = 1, . . . , rk g] . (A.1.7)

This centre plays an important role in the representation theory of g. By Schur's lemma,

Z(g) must act by scalar multiplication on any finite dimensional, highest-weight module Vλ,

for λ ∈ P+. So we define the central character, χλ : Z(g) → C by z · v = χλ(z)v for any

v ∈ Vλ.

Definition A.1.2. Let Og be the Bernstein–Gelfand–Gelfand subcategory of g-mod whose

objects are modules M such that
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• M is finitely generated over g

• h is diagonal on M

• M is locally n-finite, i.e., for any m ∈M , U(n) ·m is finite dimensional.

This category has a block decomposition

Og =
⊕
λ∈P+

Og,[λ] , (A.1.8)

where Og,[λ] is the subcategory where Z(g) acts as the generalised eigenvalue χλ. Equiva-

lently, these can be thought of as the subcategory of modules in Og that are supported set-

theoretically at, i.e., in a formal neighbourhood of, the point (z−χλ(z)) in SpecZ(g).

When we introduce the affine analogue of Og, the Kazhdan–Lusztig category, KL, we shall

observe a similar decomposition.

A.1.3 Nilpotent orbits in g∗

An element x ∈ g is called nilpotent if adx : g→ g is nilpotent. For the case of x ∈ sln ⊂ gln

this agrees with the usual notion of a nilpotent matrix in gln.

We prefer to think of nilpotent elements as living in g∗. To that end we give three equivalent

definitions of nilpotent elements in g∗, following [CG97].

Definition A.1.3. An element ξ ∈ g∗ is nilpotent if any of the following equivalent condi-

tions are met

• ξ = (x, ·) for some nilpotent element x ∈ g

• P (ξ) = 0 for any polynomial P ∈ Sym(g)G with no constant term

• ξ(gξ) = 0 where gξ = {x ∈ g | ad∗x(ξ) = 0} is the isotropy subalgebra

The set of nilpotent elements N ⊂ g∗ is called the nilpotent cone, or nilcone for short.

Condition two in the above definition tells us that N is an algebraic subvariety of g∗, with

ideal of definition generated by the fundamental invariants Pdi for i = 1, . . . , rk g. Moreover,
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it is stable under dilatation by C∗, i.e., the nilpotent cone is actually a cone. The nilcone

has codimension rk g inside g∗.

Condition one tells us that nilpotent elements in g∗ are equivalent to nilpotent elements in g

and so we shall frequently use the Killing isomorphism to think of the nilcone as embedded

in g∗ or g as is convenient.

It follows from the definition that N is stable under the coadjoint action of G, and so we

define a nilpotent orbit to be the coadjoint orbit of some ξ ∈ N .

Theorem A.1.4 (Jacobson–Morozov). Every nilpotent element f ∈ g may be completed to

an sl2 triple (e, h, f), i.e., there exist elements h, e,∈ g, such that

[h, e] = 2e, [h, f ] = −2f, [e, f ] = h , (A.1.9)

with h semisimple and e nilpotent. Thus, nilpotent orbits in g are in one-to-one correspon-

dence with Lie algebra morphism sl2 → g, up to G-conjugation.

The theorem of Jacobson–Morozov allows us to define some auxiliary data associated to a

nilpotent orbit. Suppose ξ ∈ N is of the form (f, ·) for a nilpotent f ∈ g. We may complete

this to an sl2 triple e, h, f where h is diagonal on g. The operator ad∗h defines an integral

grading on g with g =
⊕

i gi. We define a parabolic subalgebra bξ ⊂ g and its nilpotent

radical nξ ⊂ g by

bξ :=
⊕
i≥0

gi , nξ :=
⊕
i>0

gi . (A.1.10)

The Levi subalgebra exponentiates to a unipotent Lie group Nξ ⊂ G which stabilises ξ and

acts on bξ---in fact we shall show that this action is free if ξ 6= 0. Note that these subalgebras

are not unique and they depend on the choice of completion of ξ to an sl2-triple.

Proposition A.1.5. The nilcone N is a stratified algebraic variety

N =
⊔
ρ

Oρ , (A.1.11)

with finitely many strata, corresponding to disjoint coadjoint orbits [Dix96].
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The largest stratum is the principal orbit and has dimension dim g− rk g. This corresponds

to elements in N whose G-stabiliser is of dimension rk g. The principal orbit is Zariski-open

inside N .

Furthermore, there is always a stratum of codimension 2 inside N called the subregular

orbit. The smallest, non-trivial orbit is called the minimal orbit.

The strata of N have a natural partial ordering where ρ′ ≤ ρ if the closure of Oρ in N

contains Oρ′.

Remark A.1.6. The principal orbit always contains the element p∗−1 =
∑

α∈∆ e
∗
−α, where

e−α are the Chevalley generators conjugate to the negative simple roots and ∗ is the image

under the Killing isomorphism. The element p−1 ∈ g can be completed to a number of

sl2 triples, let us choose a special triple. Let ρ̌ =
∑rk g

i ωi be the sum of the fundamental

coweights of g. This defines an element of h by

p0 = 2

rk g∑
i−1

ωi(αi)hi , (A.1.12)

where hi is a basis of h and αi is the root (hi, ·). Note that [p0, p−1] = −2p−1. There is a

unique p1 ∈ g such that (p1, p0, p−1) is an sl2 triple. We call this distinguished sl2 triple the

canonical principal sl2 triple.

The canonical principal triple is a very nice choice of triple in that bp−1 = b and np−1 = n,

and of course Np−1 = N .

For g = sln, every nilpotent element is conjugate to a matrix of nilpotent Jordan blocks. A

nilpotent Jordan block of size k is a k × k whose k − 1 many super-diagonal terms are all

equal to one. For example a nilpotent Jordan block of size 3 is a submatrix of form

0 1 0

0 0 1

0 0 0

 . (A.1.13)

Choosing a matrix of nilpotent Jordan blocks in sln amounts to choosing positive integers

λ1, . . . , λk, specifying the sizes of each block and with
∑

i λi = n.
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Remark A.1.7. Nilpotent orbits in sln are in one-to-one correspondence with partitions of

n. Furthermore, the partial order on the strata of N is precisely the dominance ordering

on partitions.

Example A.1.8. Suppose g = sl2, which we realise as the space of matrices of form

(
h e

f −h

)
. (A.1.14)

Nilpotency for an sln element is equivalent to being a nilpotent matrix. The nilcone of sl∗2
can therefore be identified with the space of singular matrices satisfying

det

(
h e

f −h

)
= −h2 − ef !

= 0 , (A.1.15)

where h2+ef is the degree two fundamental invariant of sl2. We note that C[h, e, f ]/(h2+ef)

is the co-ordinate ring of the A1-singularity C2/(Z/2), and so Nsl2
∼= C2/Z/2 as algebraic

varieties---and, indeed, as symplectic singularities.

There are two nilpotent orbits inside Nsl2 : the trivial orbit of 0, and the principal orbit

containing
(
0 1
0 0

)
. These correspond to the partitions [1, 1] and [2], respectively. In terms

of sl2 triples, these correspond to the trivial triple (0, 0, 0) and the principal triple (h, e, f).

Example A.1.9. Suppose g = sl3, we expect Nsl3 to have three strata---corresponding to

the three partitions of 3, i.e.,

Nsl3 = O[1,1,1] tO[2,1] tO[3] . (A.1.16)

We parameterise sl3 as the space of matrices

h1 e1 e3

f1 h2 − h1 e2

f3 f2 −h2

 . (A.1.17)
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The full nilcone is the vanishing locus of the fundamental invariants,

P1 = e1f1 + e2f2 + e3f3 + h21 − h2h1 + h22 ,

P2 = e3(f3(h1 − h2) + f1f2) + e1(e2f3 + f1h2) + h1((h1 − h2)h2 − e2f2) .
(A.1.18)

The smallest stratum, O[1,1,1] is the trivial orbit of 0 ∈ sl3. The minimal orbit, O[2,1], is the

SL3-conjugacy class of 0 1 0

0 0 0

0 0 0

 , (A.1.19)

and its closure can be presented as the vanishing locus of

h2e1 − e3f2 , f1e
2
1 + e3f2h1 + e1h

2
1 , f3e1 − f2h1, e2e

2
1 + e23f2 + e1e3h1 . (A.1.20)

Note that for sl3, the minimal orbit is the same as the subregular orbit. The principal orbit,

O[3], is the SL3-conjugacy class of 0 1 0

0 0 1

0 0 0

 , (A.1.21)

and its closure is the vanishing locus of P1 and P2, i.e., the full nilcone.

A.1.4 Slices to nilpotent orbits

The ideal of definition of N is a Poisson ideal, since the generators of this ideal are Poisson-

central. Therefore, the Kostant–Kirillov–Souriau bracket restricts to a Poisson bracket on

N making it a Poisson subvariety of g∗. The KKS form, restricted to coadjoint orbits is non-

degenerate and so the strata of N are symplectic. Therefore, N is a stratified symplectic

singularity. In many ways, nilcones of a simple Lie algebra are the prototypical examples

of symplectic singularities.

Definition A.1.10. Given a coadjoint orbit Oξ, containing ξ ∈ g∗, a transverse slice to Oξ

at ξ is a closed subvariety Sξ ⊂ g∗ containing ξ such that Oξ and S intersect only once at

ξ and they intersect transversally, i.e., Tξg∗ = TξOξ ⊕ TξS.

131



Given two nilpotent orbits Oξ ≤ Oξ′ , we denote the intersection Sξ ∩Oξ′ by Sξ′

ξ .

There are a number of ways to construct a transverse slice to a nilpotent orbit Oξ, and

(except for the trivial orbit where the slice is g∗) such a slice is not unique. However, there

is a particularly nice slice that one can define called the Slodowy slice.

Definition A.1.11. Let ξ ∈ N with ξ = (f, ·) for some nilpotent x ∈ g and let Oξ be it's

coadjoint orbit. By Jacobson–Morozov, we can complete f to an sl2 triple (e, h, f) where

h is diagonal on g∗ and e is nilpotent. The Slodowy slice is

Sξ = ξ + (ker ade)
∗ , (A.1.22)

where (ker ade)
∗ is the subspace {(a, ·) ∈ g∗ | a ∈ ker ade}.

Unless explicitly stated otherwise, the notation Sξ shall, henceforth, always refer to the

Slodowy slice

Proposition A.1.12 (Gan–Ginzburg). Let ξ ∈ g∗\{0} be nilpotent, and let Oξ be its coad-

joint orbit. Recall the parabolic subalgebra bξ and nξ and denote their images in g∗ under

the Killing isomorphism by b∗ξ and n∗ξ respectively. Let Sξ be the Slodowy slice, then we have

an isomorphism

Nξ × Sξ
∼−→ ξ + b∗ξ

(n, s) 7→ Ad∗ns

(A.1.23)

As a consequence, ξ + b∗ξ is an Nξ-torsor over Sξ.

To finish, we focus in on the Slodowy slice of the principal orbit. Recall that there is a

canonical sl2 triple, (p1, p0, p−1) corresponding to the principal orbit. Denote the kernel of

p1 by s. It rk g dimensional and has a grading under adp0 with isotypic components

s =

rkg⊕
i=1

sdi (A.1.24)

where {di}rk gi=1 are the exponents of g. The dimensions of each graded component is equal
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to the multiplicity of di in g. The subspace s1, always exists for any g, and is spanned by

p1.

Remark A.1.13. For g not of D-type, the multiplicity of di is always one so we pick a basis

(pdi)
rk g
i=1 for V can with pdi spanning V can

di
. In the case where g = dn, then the exponent

dj = 2n has multiplicity two and in this case we have to choose two linearly independent

vectors p2n and p̃2n.

Definition A.1.14. The canonical principal Slodowy slice is a transverse slice to the prin-

cipal orbit at p∗−1 defined as

Sprin := p∗−1 + (ker adp1)
∗ . (A.1.25)

The Gan–Ginzburg isomorphism tells us that

N × Sprin ∼= p∗−1 + b∗ . (A.1.26)

Furthermore, any slice to the principal orbit is special in that any regular coadjoint orbit

intersects the slice precisely once. Here by regular, we mean that the orbit has dimension

dimg− rk g. In other words, Sprin is a global slice to the coadjoint action of G on g∗, giving

an isomorphism

g∗//G ∼= Sprin ∼= h//W . (A.1.27)

A.2 Vertex algebras

We shall discuss vertex algebras in some generality and introduce some of the techniques

and terminology used in [Ara18].

A.2.1 Preliminaries

There are many, equivalent, definitions of a vertex algebra. We shall follow the definition

by Frenkel–Ben-Zvi---as formulated in [FBZ04].

133



Definition A.2.1. A vertex algebra over C is the collection (V, Y, ∂, |0〉) where:

• V is a vector space over C, i.e. the space of states

• |0〉 ∈ V is a distinguished vector called the vacuum vector

• ∂ : V → V , is the translation operator

• Y (·, z) : V → End(V )[[z, z−1]], is the vertex operator

Satisfying

• Y (|0〉, z) = idV and Y (a, z)|0〉 ∈ V [[z]], the vacuum axiom

• ∀a ∈ V, [∂, Y (a, z)] = ∂zY (a, z), the translation axiom

• T |0〉 = 0

• ∀a, b ∈ V, ∃N ∈ N(z − w)N [Y (a, z), Y (b, w)] = 0, the locality axiom

Remark A.2.2. Let a ∈ V , then

a(z) := Y (a, z) =
∑
n∈Z

a(n)z
−n−1, (A.2.1)

with each a(n) ∈ End(V ). We can therefore think of the data of Y as a family of noncom-

mutative, nonassociative products µn : V ⊗ V → V indexed by n ∈ Z with µn(a, b) = a(n)b

for any a, b ∈ V .

Note that in physics literature, one conventionally labels the Fourier modes as

a(z) =
∑
n∈Z

anz
−n−∆−1 , (A.2.2)

where ∆ is the conformal weight of a (to be defined later). We distinguish between these

two conventions by including brackets for the grading of (A.2.1).

A distribution a(z ∈ End(V )[[z, z−1]]) is called a field if for any v ∈ V ,

a(z)v ∈ V ((z)) . (A.2.3)
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The subspace End(V )((z)) ⊂ End(V )[[z, z−1]] is often called the space of fields. For any

state a ∈ V , the axioms force Y (a, z)v to be bounded below in powers of z. The vertex

operator Y (·, z) is an algebraic manifestation of the state-field correspondence of conformal

field theory.

Vertex algebras have a normally ordered product on states and fields, given by

ab := a(−1)b or on fields as(ab)(z) : := (a(−1)b)(z) . (A.2.4)

This product is neither associative not commutative so we adopt conventions of nesting

from the right, i.e.,

abcd ≡ a(b(cd)) = a(−1)b(−1)c(−1)d . (A.2.5)

A few words on locality

The locality axiom is subtler than it looks. It does not, for example imply that all vertex

operators commute.

Given two fields a(z) and b(w), their products a(z)b(w) and b(w)a(z) are power series in

the space End(V )[[z, z−1, w, w−1]]. Picking a test vector v ∈ V and a linear functional

φ : V → C, we can construct two power series, φ(a(z)b(w)v)) and φ(b(w)a(z)v) in the

spaces C((z))((w)) and C((w))((z)).

The two spaces are not the same; the first has bounded below powers of w but powers of z

are not uniformly bounded below and the second has bounded below powers of z but powers

of w are not uniformly bounded below. Their intersection, is the space C[[z, w]][z−1, w−1,

in which powers of z−1 and w−1 are uniformly bounded. Given a rational function in

the fraction field, C((z, w)), of C[[z, w]][z−1, w−1, we can expand in the region |z| > |w| by

expanding in positive powers of z/w. This results in a power series expansion in C((z))((w)).

Similarly, by expanding around |w| > |z|, i.e., in positive powers of w/z, we have a power

series in C((w))((z)).

The locality axiom implies that the two power series, φ(a(z)b(w)v) and φ(b(w)a(z)v), are
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expansions of the same function in C((z, w)) but in the domains |z| > |w| and |w| > |z|

respectively.

A consequence of the locality axiom, is that the vertex operator Y (−, z) is associative, in

the sense that if we have two fields Y (a, z) and Y (b, w), the product Y (a, z)Y (b, w) is equal

to the expansion Y (Y (a, z − w)b, w).

Definition A.2.3. Given two fields a(z) and b(w) we can define the OPE (Operator-

Product-Expansion)

a(z)b(w) =
∑
n∈Z

1

(z − w)n+1
(a(n)b)(w), (A.2.6)

where the equality should be understood as saying that the two sides represent the expan-

sions of the same ``function'' in two different domains---we leave the subtleties to Section

3.3 of [FBZ04].

Given two fields a(z), b(w), we shall often write the OPE as

a(z)b(w) ∼
∑
n≥0

1

(z − w)n+1
(a(n)b)(w) , (A.2.7)

and suppress all terms that are regular in the limit z → w.

A simple way of satisfying the axiom of locality is if the image of Y (·, z) lives in EndV [[z]],

or in other words, the modes a(n) vanish for all n ≥ 0 for any state a. In such a vertex

algebra the products a(z)b(w) and b(w)a(z) are both in End[[z, w]] and (z−w)N has no zero

divisors in C[[z, w]] for any N ∈ N. Thus locality enforces that [a(z), b(w)] = 0.

Definition A.2.4. A vertex algebra is called commutative, if all fields commute or, equiv-

alently by the preceding discussion, if the image of Y (·, z) is contained in EndV [[z]].

Remark A.2.5. The normal ordered product is commutative and associative in a commu-

tative vertex algebra. Therefore the data of a commutative vertex algebra is equivalent to

that of a unital associative commutative C-algebra with a derivation.

To finish, we generalise our definitions to a vertex superalgebra.
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Definition A.2.6. A vertex superalgebra is a collection (V, |0〉, ∂, Y ), where

• V = V0 ⊕ V1, is a superspace, i.e., a Z/2Z-graded vector space

• |0〉 ∈ V0, is the vacuum

• ∂ : V → V is a linear map with even parity

• Y (·, z) : V → End(V )[[z, z−1]] such that if a ∈ V has parity |a| then Y (a, z) has parity

|a|, i.e., for all n ∈ Z. the modes a(n) have parity |a|

satisfying all the axioms of a vertex algebra except for locality. Instead we require that for

all a, b ∈ V there exists some N ∈ N such that

(z − w)Na(z)b(w) = (−1)|a||b|(z − w)Nb(w)a(z) , (A.2.8)

where |a| and |b are the parities of a and b, respectively.

A.2.2 Morphisms, ideals and modules

We collect definitions for some basic algebraic notions below.

Definition A.2.7. A morphism between two vertex (super)algebras (V, |0〉V , ∂V , YV ) and

(W, |0〉W , ∂W , YW ) is a linear map φ : V →W of even parity satisfying the following:

• φ intertwines the actions of ∂V and ∂W

• φ(|0〉V ) = |0〉W

• for any a, b ∈ V , ρ(a(n)b) = ρ(a)(n)ρ(b) for all modes n ∈ Z.

A vertex subalgebra of V is a ∂-invariant subspace W ⊂ V containing |0〉, such that

Y (W, z) ⊂ End(W )[[z]].

A (left) vertex ideal of V is a ∂-invariant subspace I ⊂ V such that a(n)V ⊂ I for any a ∈ I

and any n ∈ Z. All ideals are two-sided in the sense that, for any v ∈ V , v(n)I ⊂ I must

also hold.

Lemma A.2.8. If V is a vertex (super)algebra and I a vertex ideal, then the quotient space
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V/I inherits a natural vertex (super)algebra structure.

In the context of physics, vertex ideals appear as so called null states, i.e., states where

some chosen inner product becomes degenerate.

Definition A.2.9. A module over a vertex algebra, (V, |0〉, ∂, Y ), is the collection (M,YM )

where M is a vector space and YM (−, z) : V → End(M)[[z, z−1] satisfying

• YM (|0〉, z) = 1M

• For any a, b ∈ V and any m ∈M , the expressions

YM (a, z)YM (b, w)m ∈M((z))((w)) ,

YM (b, w)YM (a, z)m ∈M((w))((z)) ,

YM (Y (a, z − w)b, w)m ∈M((w))((z − w)) ,

(A.2.9)

are expansions of the same series---as in the discussion on locality---inM [[z, w]][z−1, w−1, (z−

w)−1] in the domains |z| > |w| > 0, |w| > |z| > 0, and |w| > |z − w| > 0 respectively.

Modules over vertex superalgebras are analogously defined, but once again locality is modi-

fied to a suitable ``super'' version. We will primarily be interested in modules over ordinary

(non-super) vertex algebras so we shall forgo the details.

We shall be interested in (co)chain complexes of vertex algebras and so we wish to define a

notion of a differential on a vertex algebra.

Definition A.2.10. A derivation on a vertex superalgebra (V, |0〉, ∂, Y ) is a linear map

Q : V → V of parity |Q|, which intertwines ∂ and for any a, b ∈ V

Q(a(p)b) = (−1)|Q|a(p)Q(b) + (Q(a))(p)b . (A.2.10)

A differential on a vertex algebra is a derivation d such that d2 = 0.

Lemma A.2.11. Let d be a differential on a vertex algebra, then ker d is a vertex subalgebra
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of V and im d ⊂ ker d is a vertex ideal of ker d. Therefore, the cohomology

H(V, d) =
ker d

im d
, (A.2.11)

naturally inherits the structure of a vertex algebra.

Remark A.2.12. A particularly nice source of such differentials are from the BRST con-

struction. Let V be a vertex superalgebra with an auxiliary Z-grading, V =
⊕

i∈Z Vi.

Choose some homogeneous element JBRST ∈ V1, such that QBRST = JBRST,(0) squares to

zero. Then Q is a differential of degree one on the chain complex V =
⊕

i∈Z Vi and the

cohomology H•(V,QBRST ) is a Z-graded vertex superalgebra.

This construction will be used, repeatedly, to construct new vertex algebras out of simpler

ones.

To finish off, let us discuss the matter of how to give a presentation of a vertex algebra.

Definition A.2.13. Let V be a vertex (super)algebra and let B ⊂ V be a linearly indepen-

dent subset of V that does not contain the vacuum. We say that V is weakly generated by

B if every v ∈ V can be written as a linear combination of monomials of the form

b1(n1)
b2(n2)

. . . bk(nk)
|0〉 (A.2.12)

for bi ∈ B and ni ∈ Z and some k ∈ N. Similarly, we say that V is strongly generated if we

can restrict to ni ∈ Z<0.

A.2.3 Conformal vertex algebras

Owing to their origins in two-dimensional conformal field theory, vertex algebras are often

equipped with the structure of a module over the Virasoro algebra. The modes of the

Virasoro algebra appear as the Fourier modes of a particular state.

Definition A.2.14. A state T ∈ V is called the conformal vector if

T (z)T (w) ∼ c/2

(z − w)4
+

2T (z)

(z − w)2
+
∂T (w)

z − w
, (A.2.13)
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and if T(0) = ∂. This is equivalent to demanding that the modes of T satisfy the Virasoro

algebra. The parameter c is the central charge. A vertex algebra is conformal if it has a

(not necessarily unique) conformal vector. We define the conformal weight, ∆, of a state a,

by T(1)a = ∆a

Note that the vacuum vector always has weight ∆ = 0. We say that a conformal vertex

algebra V is conical if the grading by conformal weight is non-negative and the weight zero

subspace is spanned by the vacuum vector. A conformal vertex algebra, V , is of CFT type

if the following conditions are all satisfied

• V is 1
2N-graded by conformal weight

• V is conical

• The contragredient module V ∗ = Hom(V,C) is isomorphic to V as V -modules.

A.2.4 Li's filtration and associated varieties

It was shown by Li [Li05] that every vertex algebra has a canonical, decreasing filtra-

tion.

Definition A.2.15. The Li filtration on a vertex algebra V is a descending filtration V =

F 0V ⊃ F 1V ⊃ . . . whose subspaces are defined by

F pV = SpanC{a(−i−1)b | a ∈ V, b ∈ F p−iV, i ≥ 1} , (A.2.14)

It is compatible with the vertex algebra structure on V , in the sense that

a(n)F
pV ⊂ F p+q−n−1, a ∈ F qV, n ∈ Z ,

a(n)F
pV ⊂ F p+q−n, a ∈ F qV, n ∈ N ,

∂F pV ⊂ F p+1V .

(A.2.15)

We may then define the associated graded space (with respect to the filtration F •V ) of V
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to be

grFV :=
⊕
p≥0

F pV/F p+1V . (A.2.16)

It can be shown, see for instance [Li05], that grFV has the structure of a Poisson vertex

algebra.

Definition A.2.16. The Zhu's C2 algebra of a vertex algebra V is the subspace RV =

V/F 1V . It inherits the structure of a Poisson algebra from V .

There is a canonical way of associating a variety, or more generally a scheme, to a vertex

algebra that has been detailed in [Ara10].

Definition A.2.17. Given a vertex algebra V , the associated scheme, X̃V , and associated

variety, XV , are defined as

X̃V = SpecRV , XV = mSpecRV = (X̃V )red (A.2.17)

where RV is the Zhu's C2 algebra.

In [BR18], it was conjectured that the Higgs branch of the SCFT is precisely XV , for the

associated vertex algebra V . The Zhu's C2 algebra is then the coordinate ring of the Higgs

branch.

A.3 Affine Kac–Moody algebras and universal affine vertex

algebras

A.3.1 Affine Kac–Moody algebras and their modules

Let g be a finite dimensional simple Lie algebra with a basis (Ja). We can endow the loop

space g[[t, t−1]] with a Lie algebra structure by defining the bracket

[Ja
n , J

b
m] = [Ja, Jb]⊗ tm+n , (A.3.1)
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where Ja
m = Ja⊗ tm forms a basis of g[[t, t−1]] and the bracket on the right hand side should

be understood as the Lie bracket on g.

The affine Kac–Moody algebra ĝ, is defined as the central extension

0→ CK → ĝ→ g[[t, t−1]]→ 0 , (A.3.2)

where CK is a one dimensional abelian Lie algebra spanned by K. Such extensions are

classified by H2(g[[t, t−1]],C) ∼= C, or equivalently a choice of ad-invariant symmetric bilinear

form on g. The space of such forms is one dimensional and we choose as our basis element

〈·, ·〉 = 1
2h∨ (·, ·), where (·, ·) is the Killing form on g and h∨ is the dual Coxeter number.

As vector spaces, this sequence splits and we have the isomorphism ĝ = g[[t, t−1]] ⊕ CK,

with the bracket

[Ja
m, J

b
n] = [Ja, Jb]⊗ tm+n +mδm+n,0〈Ja, Jb〉K

[K, a] = 0 ∀a ∈ ĝ .

(A.3.3)

Let ĝ−mod denote the category of left ĝ-modules. We denote by ĝκ−mod, the subcategory

of left ĝ modules on which K acts as multiplication by some scalar κ ∈ C. We often abuse

notation and say that these are modules over ĝκ, the subscript denoting the fact that K

acts as κ on these modules. A module M is smooth if tg[[t]] acts locally nilpotently, i.e., for

any m ∈M and any x ∈ g

x⊗ tnm = 0 (A.3.4)

for some n� 0.

Definition A.3.1. The Kazhdan–Lusztig category, KLκ ⊂ ĝκ-mod, is the subcategory of

G(O)-integrable, Z-graded modules of ĝκ. Equivalently, KLκ is the subcategory smooth

Z-graded ĝκ-modules, M , on which the subalgebra g ⊂ ĝκ acts locally finitely, i.e.,

∀m ∈M, dim(U(g)m) <∞ , (A.3.5)
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where U(g) is the universal enveloping algebra of g.

Since we allow a full Z-grading, then KLκ includes objects that are unbounded below by

weight, which is somewhat pathological. Consider, therefore, KLord
κ , the full subcategory of

KLκ admitting a Z≥0-grading such that each homogeneous subspace is finite dimensional.

The subcategory KLord
κ can be thought of as the category of positive energy representa-

tions.

A.3.2 The universal affine vertex algebra

Let Cκ be a module of the subalgebra g[[t]] ⊕ CK, where g[[t]] acts trivially and K acts as

the scalar κ ∈ C.

Definition A.3.2. The induced module,

V κ(g) := Indĝg[[t]]⊕CKC = U(ĝ)⊗U(g[[t]]⊕CK) Cκ . (A.3.6)

is called the vacuum representation and has a unique VOA structure (V κ(g), ∂, Y, |0〉) with

• |0〉 = 1⊗ v, for some choice of v ∈ Cκ

• ∂ = −∂t

• Y (Ja
−1, z) =

∑
n∈Z J

a
nt

nz−n−1, with other fields defined by acting with ∂.

Equipped with this vertex algebra structure, V κ(g) is called the universal affine vertex

algebra of g.

The commutation relations of ĝ is now captured in the OPEs

Ja(z)Jb(w) ∼ 〈J
a, Jb〉1

(z − w)2
+

[Ja, Jb](w)

(z − w)
, (A.3.7)

where the Ja, Jb appearing inside the commutator and inner product should be understood

as elements of g.

Similarly, given a highest weight representation, Vλ, we can construct the Weyl module, Vλ,
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as

Vκ
λ := Indgκg[[t]]⊕C1Vλ . (A.3.8)

The Weyl modules Vκ
λ admit a Poincare–Birkhoff–Witt basis of lexicographically ordered

monomials of the form

Ja1
−n1

Ja2
−n2

. . . Jam
−nm

vi , (A.3.9)

where vi are a basis of Vλ, n1 ≥ n2 ≥ · · · ≥ nm > 0 and if ni = ni+1 then ai ≤ ai+1.

One reason to study V κ(g) is that

V κ(g)−mod ' ĝκ −modsm (A.3.10)

where ĝκ −modsm is the subcategory of smooth modules of ĝκ. For the proof of this

statement, see Theorem 5.16 and Section 5.18 of [FBZ04]. In particular, this means that

the Kazhdan–Lusztig category KLκ can be thought of as a subcategory of V κ(g)−mod.

The Weyl modules introduced above are modules over V κ(g) and, moreover, are objects of

KLκ.

Remark A.3.3. Following the conventions of Arakawa [Ara18], a vertex algebra object in KLκ

is a vertex algebra V equipped with a vertex algebra homomorphism µV : V κ(g)→ V such

that V is a limit of objects in KLord
κ . The decomposition into positive energy representations

is highly useful, as the vertex algebras introduced in [Ara18] are limits of Weyl modules.

A.3.3 The Feigin–Frenkel centre

A natural question to ask is whether the algebras, V κ(g), are conformal? The answer is yes

and we can show this by explicitly constructing a conformal vector. Let κab be the Killing

form with respect to the basis {Ja} and let κab be its inverse. Then, we may construct the

quadratic Casimir

P1 =
1

2

∑
a,b

κabJa
(−1)J

b
(−1)|0〉 . (A.3.11)
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Suppose κ 6= h∨, then the vector

T =
1

κ+ h∨
P1 , (A.3.12)

is conformal, with central charge

ck =
κdim g

κ+ h∨
. (A.3.13)

This particular choice of conformal vector is known as the Segal–Sugawara construction.

The Segal–Sugawara construction endows the universal affine vertex algebra with a confor-

mal structure in all cases except when

κ = κc ≡ −h∨ (A.3.14)

In this case T becomes singular and is no longer a valid conformal vector.

The universal affine vertex algebra at the critical level is, in fact, not conformal but does

enjoy a number of properties one would expect from a conformal vertex algebra. For

instance, the vertex algebra has a natural Z-grading arising from the degree of the modes

of the generators Ja. One may define a degree operator D with weights D(Ja
n) = −n and

D(|0〉) = 0.

The un-normalised Segal–Sugawara vector P1 is not singular but instead it is central---since

its OPEs with any other field will contain vanishing factors of κ− κc.

Definition A.3.4. At the critical level V κc(g) has a large centre z(g), the Feigin–Frenkel

(FF) centre. By this we mean that z(g) ⊂ V κc(g) is a commutative vertex subalgebra with

non-singular OPEs with all fields of V κc(g).

At non-critical level κ 6= κc, the centre of V κ(g) is spanned by |0〉, see [Fre07, Proposition

3.3.3] for a proof.

Analogously to the higher order Casimir operators, we can construct higher order Segal–

Sugawara vectors Pdi ∈ V κc(g)---where di are the exponents of g. The vertex algebra z(g)

is strongly generated by these fields [FF92]

By Remark A.2.5, a commutative vertex algebra is equivalent to a commutative algebra
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with a derivation. An equivalent presentation of z(g) is as the ring

z(g) ∼= C[Pdi,(n), | di = 1, . . . , rk g n ∈ Z<0] (A.3.15)

with derivation ∂ satisfying ∂Pdi,(n) = Pdi,(n−1).

The topological completion, Ũ(ĝ)/(κ− κc), also has a centre, which we denote by Z. This

centre has a presentation as

Z ∼= C[Pdi,(n), | di = 1, . . . , rk g n ∈ Z] . (A.3.16)

by identifying this centre with the universal enveloping algebra of the Fourier modes of the

fields of z(g).

A module M ∈ KLκc is endowed with a natural action of z(g) and so every object in KLκc

is also a z(g) module. By passing to the universal enveloping algebra, a module M is also

a module over Z.

Following [Ara18], we define Z-Mod to be the category of positive-energy representations

of the Feigin-Frenkel centre. Equivalently, the objects of Z-Mod are the Z modules M such

that M =
⊕

d∈p+NMd for some p ∈ C.

Let us move to describing some distinguished subalgebras and quotients of Z. We de-

fine,

Z(<0) := C[Pdi,(n), | di = 1, . . . , rk g n ∈ Z<0] , (A.3.17)

which is isomorphic (as C-algebras) to z(g). Furthermore, we define

Z<0 := C[Pdi,n, | di = 1, . . . , rk g n ∈ Z<0] , (A.3.18)

where the reader should note that we have used the physicist's gradings on the mode number

with Pdi,n = Pdi,(n)−di−1.
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Definition A.3.5. Let Iλ be the annihilator ideal of Vλ inside Z<0, then

zλ := Z<0/Iλ . (A.3.19)

These quotients will be integral to our construction and will appear again in the following

section, where we shall find a geometric interpretation for them. For now we quote a

result.

Proposition A.3.6 ([FG10, Theorem 2]). Let H•
DS be the (derived) functor of principal

Drinfel'd Sokolov reduction and let λ ∈ P+. We have the following isomorphism of Z-

modules,

H i
DS(Vλ) ∼= δi,0zλ . (A.3.20)

Recall the characters, χλ, of Z(g) defined by the action of Z(g) on finite-dimensional highest-

weight modules Vλ. We may lift this to a character of Z via

χλ(Pdi,(n)) = δn,diχλ(Pdi) . (A.3.21)

The Kazhdan–Lusztig category (at the critical level) KL has a block decomposition, much

like the finite-dimensional BGG category Og, given by

KL =
⊕
λ∈P+

KL[λ] , (A.3.22)

where KL[λ] is the block where the Pdi,(di) act via the generalised eigenvalue χλ.

A.4 Opers and the Feigin–Frenkel centre

Our main theorems, Theorem 3.2.1 and 3.2.7, rely heavily on the machinery of opers on D

and D×. Here we shall review the machinery required for the proofs of the aforementioned

theorems. What follows will largely be a paraphrasing of [Fre07], and we recommend that

text along with [Fre02] for a more holistic review.
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We adopt the following conventions for this section. Let X be a smooth algebraic curve 6

over C, and let G be a simple algebraic Lie group, with LG its Langlands dual. Let B ⊂ G

be a choice of Borel subgroup that splits as B = H ⋉N , where H is the maximal torus and

N is the maximal unipotent subgroup. We denote g for the Lie algebra of G∨. The Borel

subalgebra is b ⊂ g with splitting b = h⊕ n, where h is the Cartan subalgebra and n is the

nilpotent radical.

Define [n, n]⊥ to be the orthogonal subspace to [n, n] with respect to the Killing form. The

quotient [n, n]⊥ ∼=
⊕

α∈∆ g−α retains an adjoint action of B. This action factors through

an action of the maximal torus H and we define O to be the Zariski open H-orbit inside

[n, n]⊥/b. This orbit is isomorphic to the intersection

O = Oprin ∩
⊕
α∈∆

g−α (A.4.1)

where Oprin is the principal nilpotent orbit inside g∗, considered as an adjoint orbit inside

g via the Killing form.

A.4.1 Opers---a first definition

First, we recall a basic concept.

Definition A.4.1. Suppose P is a principal G-bundle on X and let ι : H → G be a

homomorphism of algebraic Lie groups. We say that a principle H-bundle PH → X is a H-

reduction of P if there is an isomorphism PH ×
H
G→ P , where ×

H
corresponds to quotienting

by the free diagonal action of H.

For H ⊂ G a closed subgroup, the choices of such a H-reduction are in bijection with

Γ(X,P/H). To see this, note that P → P/H is a principal H-bundle over P/H and so we

can take the base change along a section s : X → P/H to define a pullback bundle s∗(P)

on X with structure group H.

We need a couple more ingredients before we introduce the definition of a G-oper.
6Note that dimensionality will mean that all principal connections will be flat
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Definition A.4.2. Suppose P is a principal G-bundle on X with ∇ a connection on P and

let PB be a B-reduction of P. Let Lg (Lb) denote the Lie algebroid, over X, of G (resp.

B)-invariant vector fields on P (resp. PB). Note that Lb ⊂ Lg is a sub Lie-algebroid and

let (g/b)PB
≡ Lg/Lb.

The connection ∇ is, by definition, a map of vector bundles, ∇ : TX → Lg over X.

The composition ∇ : TX → Lg → Lg/Lb ≡ (g/b)PB
gives a section c(∇) of the bundle

(g/b)PB
⊗ ΩX called the relative position of ∇ to PB.

For a connection ∇ to preserve the reduced bundle PB under parallel transport, we must

have that c(∇) = 0.

Definition A.4.3. Let P be a principal G-bundle on X with ∇ a connection on P and

let PB be a B-reduction of P. Recall the relative position of ∇ to PB is measured by a

section c(∇) ∈ Γ((g/b)PB
⊗ΩX). We say that ∇ is transversal to B if c(∇) is in the subset

Γ(OPB
⊗ ΩX) ⊂ Γ((g/b)PB

⊗ ΩX).

Suppose we look at the formal neighbourhood of a point x ∈ X; this neighbourhood can

be identified with the formal disc D = Spf C[[t]], by choosing a co-ordinate t. On this

neighbourhood, P and PB can be trivialised. Transversality of ∇ is equivalent to saying

that

∇ = ∂t +
∑
α∈∆

φα(t)e−α + v(t) , (A.4.2)

where φα(t) are nowhere vanishing, v(t) ∈ b[[t]], and e−α are the negative simple root

Chevalley generators of n−.

Definition A.4.4. The space of G-opers OpG(X) on X is the moduli space of triples

(P,∇,PB) where

• P is a principal G-bundle on X

• ∇ is a connection on P

• PB is a B-reduction of G that is transversal to ∇.

Any such triple (P,∇,PB), satisfying the conditions above, is called a G-oper.
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A.4.2 Opers on the disc and the Feigin–Frenkel isomorphism

We shall primarily be interested in the case of opers on the formal disc D and the formal

punctured disc D×, both equipped with a co-ordinate t. In these cases, we can produce a

far more concrete description of moduli space of opers.

First, note that all G bundles over D are trivial7 , therefore the space of opers should be

identified with the space of connections of form (A.4.2), modulo the group B[[t]] of gauge

transformations coming from the choice of trivialisation of PB. If g ∈ B[[t]], then the gauge

transformation acts on a connection ∂t +A(t) as

g · (∂t +A(t)) = ∂t + gA(t)g−1 − g−1∂tg . (A.4.3)

The orbit O is a H-torsor and so we may use H-valued gauge transformations to partially

gauge fix and set all φα equal to unity. Let ÕpG(D) be the space of connections of the

form

∇ = ∂t +
∑
α∈∆

e−α + v(t) , v(t) ∈ b[[t]] . (A.4.4)

Then OpG(D) is ÕpG(D)/N [[t]].

We shall now detail how to pick canonical representatives for each N [[t]]-gauge class. Note

that our special representative for the principal orbit p−1 =
∑

α∈∆ e−α is in O. Recall that

we can complete this element to the canonical principal sl2 triple (p1, p0, p−1) such that

the grading induced by adp0 satisfies n =
∑

i>0 gi and b =
∑

i≥0 gi. As before, we denote

the subspace ker adp1 by s. This subspace inherits the grading on g, and its components

are

s =

rk g⊕
i=1

sdi , (A.4.5)

where di are the exponents of g and the dimension of si is equal to the multiplicity of di.

Let (pi)
rk g
i=1 be the basis of Remark A.1.13.

Lemma A.4.5 ([DS85, Proposition 6.1]). The action of N [[t]] on ÕpG(D) is free and admits
7This statement is a bit quick. If one has a co-ordinate, t on D, one can always construct a section to

P → Spf C[[t]] by appealing to the formal smoothness of P over Spf C[[t]].
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a global slice consisting of connections of the form

∇ = ∂t + p−1 +

rk g∑
j=1

vdj (t)pdj , where vj(t) ∈ C[[t]] . (A.4.6)

As an immediate corollary, we have a very concrete presentation for OpG(D) as an affine

scheme (of infinite type), that is

OpG(D) = SpecC[vdi,n | i = 1, . . . , rk g, n ∈ N] , (A.4.7)

and we denote the co-ordinate ring as FunOpG(D). This gives an identification OpG(D) ∼=

Hom(D, Sprin).

The ring of functions FunOpG(D) is a unital associative algebra over C and one can define

a derivation ∂ by the action ∂vdi,0 = 0 and ∂vdi,n = vdi,n−1 and extending by Leibniz.

Therefore, by Remark A.2.5, FunOpG(D) is a commutative vertex algebra over C.

In fact the commutative vertex algebra FunOpG(D) is known, via a celebrated theorem of

Feigin and Frenkel, to be related to one that we have already met.

Theorem A.4.6 (The Feigin–Frenkel isomorphism). Let G be a simple algebraic group with

Lie algebra g. Let LG denote its Langlands dual. We have an isomorphism of commutative

vertex algebras

FunOpLG(D)→ z(g)

vdi,n 7→ pdi,(n)

(A.4.8)

moreover this isomorphism intertwines the actions of AutO and DerO.

A.4.3 Infinitesimal co-ordinate changes

In the previous subsection, we had (non-canonically) chosen some co-ordinate, t, on D.

What happens if we were to change co-ordinates t = φ(s), where φ ∈ AutO? A connection
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of the form (A.4.2) will now be in the form

∇ = (φ′(s))−1∂s + p−1 + v(φ(s)) , (A.4.9)

So the corresponding connection for ∂s is ∇s = ∂s + (φ′(s))p−1 + φ′(s)v(φ(s)). However,

this is not a canonical representative. To bring it to the form in (A.4.6), we have to twist

by the gauge action of H[[s]]. In particular we should twist by ρ̌(φ′(s)), where ρ̌ is the sum

of fundamental coweights of G. Doing so, gives us a transversal representative.

ρ̌(φ′(s)) · (∇s) = ∂s + p−1 + φ′(s)ρ̌(φ′(s)) · v(φ(s)) · ρ̌(φ′(s))−1 −
(
φ′′(s)

φ′(s)

)
ρ̌ , (A.4.10)

where
(
ϕ′′(s)
ϕ′(s)

)
ρ̌ ∈ h[[s]] by viewing ρ̌ as an element of the Cartan subalgebra, h.

Therefore the group of co-ordinate changes, AutO, acts on ÕpG(D) via this gauge action.

What does the action of AutO look like for the canonical representatives of the form (A.4.6)?

Suppose v(t) =
∑rk g

j=1 vdj (t)pdj , then (A.4.10) is almost of the right form---except for the(
ϕ′′(s)
ϕ′(s)

)
ρ̌ term. We can fix this by a further gauge transformation by n ∈ N [[s]]

g = Exp

(
1

2

φ′′(s)

φ′(s)

)
p1 , (A.4.11)

where Exp : n
∼−→ N is the exponential map. This gives an oper in the form

∇s = ∂s + p−1 +

rk g∑
i=1

ṽdj (s)pdj , (A.4.12)

where

ṽ1(s) = v1(φ(s))(φ
′(s))2 − 1

2Schw{φ, s} ,

ṽdj (s) = vdj (φ(s))(φ
′(s))dj+1 , j > 1 ,

(A.4.13)

where Schw{φ, s} = ϕ′′′(s)
ϕ′(s) −

3
2

(
ϕ′′(s)
ϕ′(s)

)2
is the Schwarzian derivative. The action of AutO

on FunOpG(D) can be read off from these expressions. This action induces an action of

the Lie algebra DerO, which is isomorphic to the algebra generated by the strictly positive

152



modes (Lm)m>0 of the Virasoro algebra.

A.4.4 Opers on the punctured disc and monodromies

We move to considering the space of G-opers on the punctured disc D×. Following the same

analysis as in Section A.4.2, we can write a G-oper on D× as a gauge representative

∇ = ∂t + p−1 +

rk g∑
j=1

vdj (t)pdj , where vdj (t) ∈ C((t)) . (A.4.14)

This gives an identification,

FunOpG(D×) ∼= C[vdj ,(n), | j = 1, . . . , rk gn ∈ Z] . (A.4.15)

Note the similarity to Z. Indeed, combing Proposition 4.3.4 and Lemma 4.3.5 of [Fre07],

we have the following result.

Theorem A.4.7 ([Fre07, Theorem 4.3.6]). We have an isomorphism,

Z ∼−→ FunOpLG(D×)

vdj ,(n) 7→ Pdj ,(n)

(A.4.16)

that intertwines the (DerO,AutO) actions on each side.

We now have geometric models for both z(g) and Z.

Recall the quotients zλ, defined as Z/Iλ for Iλ = AnnZ(Vλ). These should correspond to

closed subschemes of SpecZ carved out by the sheaf of ideals, Iλ. What do they look like

in terms of opers? To answer this question, we will have to examine the pole and residue

structures of a connection at t = 0.

Definition A.4.8. Let λ ∈ P+ be a dominant integral weight of G, i.e., a coweight of LG.

We denote by Opnilp,λLG
the space of B[[t]]-conjugacy classes of connections of the form

∇ = ∂t +
∑
α∈∆

t(α̌,λ)ψi(t)e−α̌ + v(t) +
n

t
, (A.4.17)
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where ψ(t) ∈ C[[t]]×, v(t) ∈ Lb[[t] and n ∈ Ln. This is called the space of nilpotent opers

with coweight λ.

Furthermore, let OpλLG ⊂ Opnilp,λLG
denote the closed subscheme of conjugacy classes of

connections of the form

∇ = ∂t +
∑
α∈∆

t(α̌,λ)ψi(t)e−α̌ + v(t) , (A.4.18)

i.e., where n = 0. These are the opers with trivial monodromy.

Both Opnilp,λLG
and OpλLG can be thought of as subschemes of OpLG(D×) by taking the

B((t) conjugacy classes of connections in the given forms. This gives rise to closed embed-

dings,

OpλLG ↪→ Opnilp,λLG
↪→ OpLG(D×) . (A.4.19)

Theorem A.4.9 ([FG10, Theorem 1]). We have a commutative diagram

Z FunOpLG(D×)

zλ Endĝκc (Vλ) FunOpλLG

∼

∼ ∼

(A.4.20)

In other words, the closed embedding OpλLG ↪→ OpLG(D×) ∼= SpecZ has image Spec zλ.

Now that we have a geometric understanding of zλ, we want to try and give a concrete

presentation of it. To do so, we shall introduce Miura opers.

A.4.5 Miura opers and Cartan connections

Definition A.4.10. A Miura G-oper on X is a quadruple (P,∇,PB,P ′
B), where (P,∇,PB)

is a G-oper on X and P ′
B is a B-reduction of P that is preserved by ∇. We denote the

space of Miura G-opers on X by MOpG(X) and it comes with a natural projection

oblv : MOpG(X)→ OpG(X) . (A.4.21)
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Once again, we restrict to the case when X = D. A Miura G-oper is generic if PB and P ′
B

are in generic relative positions and we denote the subspace of generic Miura opers on D by

MOpG(D)gen.

A B-reduction of P that is preserved by∇ is uniquely determined by a choice of B-reduction

of the fibre of P at 0, P0. The space of such B-reductions is given by the space of sections

Γ({0},P0/B) which are just the C-points of P0/B and may be identified with P0 ×
G
G/B.

Therefore, the natural projection MOpG(D)→ OpG(D) should be a principal B-bundle over

OpG(D),

Define Puniv to be the universal G-bundle on OpG(D) with abstract fibre P0 at the point

(P,∇,PB). Then, by the preceding argument

MOpG(D) ∼= Puniv ×
G
G/B . (A.4.22)

For a fixed PB, P ′
B is in generic relative position if it lies in the pullback of the big cell

U ⊂ G/B to P0 ×
G
G/B. By a similar argument as before,

MOpG(D)gen ∼= PB,univ ×
B
U . (A.4.23)

As a corollary, MOpG(D)gen → OpG(D) is a principal N -torsor.

Given a generic Miura oper (P,∇,PB,P ′
B) on D, we can define H-bundles PH = PB/N

and P ′
H = P ′

B/N .

Lemma A.4.11 ([Fre07, Lemma 8.2.1]). For a generic Miura oper (P,∇,PB,P ′
B) on D,

PH and P ′
H are related by

P ′
T
∼= w∗

0(PT ) , (A.4.24)

where w∗
0 is a bundle morphism that twists the fibres by the longest element of the Weyl

group w0.

The connection ∇ on P preserves P ′
B and descends to a connection on P ′

H . Since, PH and

P ′
H are related by an automorphism, this defines a connection, ∇, on PH .
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Lemma A.4.12 ([Fre07, Lemma 4.2.1]). The H-bundle PH is isomorphic to the H-bundle

Ωρ̌, which is characterised by requiring that φ ∈ AutO acts on the trivialisation, of Ωρ̌, by

the transition function ρ̌(φ′).

Thus, the connection ∇ is a connection on Ωρ̌ and we have a map to the space of connections

of Ωρ̌ on D.

Proposition A.4.13 ([Fre07, Proposition 8.2.2]). The map

β : MOp(D)gen → Conn(Ωρ̌)D

(P,∇,PB,P ′
B) 7→ ∇

(A.4.25)

is an isomorphism.

This is nice, since any connection in Conn(Ωρ̌)D is of the form ∇ = ∂t + h(t) for some

element h(t) ∈ h[[t]]. Thus, we can identify MOpG(D)gen ∼= h[[t]]. Composing with the

forgetful morphism, oblv : MOpG(D)gen → OpG(D), gives us a morphism

µMiura : Conn(Ω
ρ̌)→ OpG(D) . (A.4.26)

called the Miura transform. This will be highly useful since the simple presentation of

Conn(Ωρ̌) will be invaluable in establishing various properties about OpG(D).

Now that we have covered the case where X = D, let us move to discussing the case of the

punctured disc. By [FG06, Lemma 3.2.1], we have that every Miura oper on D× is generic

and so we have an isomorphism

MOpG(D×) ∼= Conn(Ωρ̌)D× . (A.4.27)

Just like with the disc, composing this map with the forgetful morphism gives the Miura

map

µMiura : Conn(Ω
ρ̌)D× → OpLG(D×) . (A.4.28)

We shall abuse notation slightly and use µMiura for both Miura maps.
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Let λ ∈ P+ be a dominant integral weight of G, i.e., a coweight of LG. We form the

pullback
MOpλLG(D

×) MOpLG(D×)

Opnilp,λLG
OpLG(D×)

(A.4.29)

Similarly, for ρ the sum of fundamental dominant weights in G, we can define the space of

Cartan connections, Conn(Ωρ)−λ
D as the space of gauge conjugacy classes of connections of

the form

∇ = ∂t −
λ

t
+ u(t) , (A.4.30)

where u(t) ∈ h[[t]]. To reiterate, these are connections for an LH principal bundle, i.e.,

the dual torus of G, with residue λ at 0. Functions on this space have a very concrete

realisation,

Fun(Conn(Ωρ)−λ
D ) ∼= C[ui,n | i = 1, . . . , rk gn ∈ Z<0] . (A.4.31)

There is a natural embedding

ConnLH(Ωρ)−λ
D ↪→ ConnLH(Ωρ)D× , (A.4.32)

by taking LH((t)) conjugacy classes.

Now consider the restriction of the Miura map to this subspace,

µλMiura : ConnLH(Ωρ)−λ
D → OpLG(D×) , (A.4.33)

where we think of ConnLH(Ωρ)−λ
D as a subspace of ConnLH(Ωρ)D× via (A.4.32).

Proposition A.4.14 ([FG06, Proposition 3.5.4] [FG10, Lemma 2]). Let λ ∈ P+ be an

integral dominant weight of G, then we have the following pullback square

OpλLG OpλLG

ConnLH(Ωρ)−λ
D OpLG(D×)

∼

µλ
Miura

, (A.4.34)
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i.e., the image of µλMiura in OpLG(D×) coincides with the image of the closed embedding

OpλLG ↪→ OpLG(D×) . Moreover, the map µλMiura : ConnLH(Ωρ)−λ
D → OpλLG, is a principal

N -bundle.

Therefore, we have a map on functions,

zλ ∼= Fun(OpλLG)
(µλ

Miura)
#

↪−−−−−−→ Fun(ConnLH(Ωρ)−λ
D ) ∼= C[ui,n | i = 1, . . . , rk gn ∈ Z<0] ,

(A.4.35)

giving a realisation of zλ inside a free polynomial algebra, in other words a free-field reali-

sation. In the next subsection, we shall describe the image of this embedding as the kernel

of certain screening operators. .

A.4.6 Screening charges

We want to recast the image of the Miura transform as the kernel of certain screening

operators. To do so, recall that Proposition A.4.14 states that µMiura : ConnLH(Ωρ)D →

OpLG(D) is a principal LN -bundle. In other words, we can identify OpLG(D) with the orbit

space (ConnLH(Ωρ)D)//
LN .

The infinitesimal action of LN on (ConnLH(Ωρ)) ∼= C[ui,n | i = 1, . . . , rk g , n ∈ Z<0] is

generated by the vector fields [Fre07]

Vi[1] =

rk g∑
j=1

aji
∑
n≥0

xi,n
∂

∂uj,−n−1
, (A.4.36)

for i = 1, . . . , rk g and aji the Cartan matrix of g. The xi,n are determined by

∑
n≤0

xi,nt
−n = Exp

(
−
∑
m>0

ui,−m

m
tm

)
. (A.4.37)

These vector fields generate the Lie algebra Ln. Therefore, we have the isomorphism [Fre07,
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Proposition 8.2.3].

Fun(OpLG(D)) ∼=
(
Fun(ConnLH(Ωρ)D

)Ln ∼= rk g⋂
i=1

kerVi[1] ⊂ C[ui,n | i = 1, . . . , rk g , n ∈ Z<0] .

(A.4.38)

This analysis carries over for the image of the restricted Miura map µλMiura, see Proposition

A.4.14. The actions of the vector fields, however are a little different. The action of Ln

on Fun(ConnLH(Ωρ)−λ
D ) ∼= C[ui,n | i = 1, . . . , rk g , n ∈ Z<0] is generated by the vector

fields

Vi[λi + 1] = −
rk g∑
j=1

aji
∑
n≥λi

xi,n−λi

∂

∂uj,−n−1
, (A.4.39)

Proposition A.4.15 ([Fre07, Proposition 9.6.3]). Let λ ∈ P+ be an integral dominant

weight of G and so a coweight of LG. The Miura embedding can be realised as

zλ ∼= FunOpλLG
∼=

rk g⋂
i=1

kerVi[λi + 1] ⊂ Fun(ConnLH(Ωρ)−λ
D ) . (A.4.40)

A.5 Semi-infinite homological algebra

Much of the techniques of [Ara18] rely on various forms of BRST reduction. In the context

of vertex algebras, the correct formalism for dealing with BRST cohomology is that of semi-

infinite homological algebra. Semi-infinite cohomology was introduced by Feigin in [Fei84],

and adapted for use in bosonic string theory by Frenkel, Garland and Zuckerman in [FGZ86].

We shall largely follow the formalism of Voronov [Vor93, Vor97], who recast semi-infinite

cohomology in the language of homological algebra.
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A.5.1 Semi-infinite structure

For the rest of this section, g shall be a Z-graded Lie algebra over C. We define the two Lie

subalgebras

g+ :=
⊕
i>0

gi ,

g− :=
⊕
i≤0

gi ,

(A.5.1)

We define gl ⊂ End(g) to be the (Lie algebra of the) restricted general linear group on g,

consisting of all matrices, φ, whose φ−+ : g+ → g− block is of finite rank. We then define

the space g̃l to be a one dimensional central extension of gl, see [Vor93] for details. The

adjoint representation ad : g→ gl, lifts to a homomorphism of Lie algebras ad : g→ g̃l. We

define β ∈ g∗ to be the composition of the lifted ad followed by a left splitting of the short

exact sequence

0→ C→ g̃l→ gl→ 0 , (A.5.2)

as vector spaces. For any graded Lie algebra g, we may choose a splitting such that β(gi) = 0

for i 6= 0, see Prop 2.4 of [Vor93].

Definition A.5.1. Let g be a Z-graded Lie algebra over C. A semi-infinite structure on g

is a 1-cocycle β ∈ g∗ defined as above such that β(gi 6=0) = 0.

Since β is a one cocycle, we have a natural one dimensional module associated to it: Lβ.

As a vector space, Lβ ∼= C, with the g action given by x ·m = β(x)m for all Lie algebra

elements x ∈ g and m ∈ Lβ.

There are two examples of Lie algebras that admit a semi-infinite structure that shall be of

great use to us:

• Any Abelian Lie Algebra, with β = 0.

• Any Kac-Moody algebra with its natural grading admits a semi-infinite structure.

More generally, we can equip any semi-simple Lie algebra g, with a Z-grading, with a semi-

infinite structure by setting β = 0---as a consequence of the Whitehead Lemmas.

160



Remark A.5.2. A semi-infinite structure also gives a generalisation of the BGG category Og

to non-semisimple Lie algebras. Given a Lie algebra g with semi-infinite structure, we define

Og to be the category of g-modules where g+ acts locally finitely, i.e., for every element m,

the subspace U(g+)m has finite dimension.

A.5.2 The space of semi-infinite forms and the Feigin standard complex

Let Cliff(g) be the Clifford algebra of g i.e. the algebra generated by g ⊕ g∗ with the

symmetric bracket

{x, y} = {α, γ} = 0 , {α, y} = {y, α} = α(y) , for x, y ∈ g , α, γ ∈ g∗ . (A.5.3)

The space of semi-infinite forms,
∧ ∞

2
+•g is the representation of Cliff(g) generated by a

choice of vacuum vector ω0 subject to

xω0 = αω0 = 0 , for x ∈ g− , α ∈ g∗+ . (A.5.4)

The grading on
∧ ∞

2
+•g is defined by setting degω0 = 0, deg g = −1 and deg g∗ = 1. Let us

choose a basis {ei}i∈Z of g compatible with the Z-grading, such that g− = Span{e0, e−1, . . . }.

Let {e∗i } denote the dual basis. In this basis, ω0 is can be written as a determinant with an

infinite tail

ω0 = e∗0 ∧ e∗−1 ∧ e∗−2 ∧ . . . , (A.5.5)

hence the name semi-infinite. Thus, a generic element is given by

ω = α1 ∧ α2 ∧ · · · ∧ e∗−n ∧ . . . . (A.5.6)

Note that ω and ω0 ``agree'' after a finite number of terms. The action of the Clifford

algebra is given by

ε(α)ω = α ∧ ω , α ∈ g∗ ,

ι(x)α1 ∧ α2 ∧ . . . =
∑
k≥1

(−1)k+1{x, αk}α1 ∧ α2 ∧ · · · ∧ α̂k ∧ . . . , x ∈ g ,
(A.5.7)
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where the ̂ denotes an omitted entry.

Following [FGZ86],we define the normal ordering operator on semi infinite forms as

: ι(ei)ε(e
∗
i ) : =


ι(ei)ε(e

∗
i ) for i ≤ 0

ε(e∗i )ι(ei) for i > 0

. (A.5.8)

We can now define a g-module structure on
∧ ∞

2
+•g by the action

ρ(x) =
∑
i∈Z

: ι([x, ei])ε(e
∗
i ) : +β(g) , x ∈ g . (A.5.9)

As complicated as this may look, the action of ρ(x) is actually the natural action [FGZ86]

ρ(x)α1 ∧ α2 ∧ · · · =
∑
k>1

α1 ∧ α2 ∧ · · · ∧ (ad∗(x)αk) ∧ . . . , (A.5.10)

where ad∗(x) is the coadjoint action of g on g∗. Thus
∧ ∞

2
+•g has the structure of a g-module

and in particular is an object in category Og.

Let M ∈ Og, then M ⊗
∧ ∞

2
+•g can be given a g-module structure. The grading on∧ ∞

2
+•g∗ ⊗M is inherited from the grading on

∧ ∞
2
+•g and setting degM = 0. We define

a differential d on
∧ ∞

2
+•g⊗M by

d =
∑
i

ei ⊗ ε(e∗i ) +
∑
i<j

: ι([ei, ej ])ε(e
∗
i )ε(e

∗
j ) : +ε(β) . (A.5.11)

It can be shown that d satisfies d2 = 0 (see [Vor93, FGZ86]) and has deg d = 1 with

respect to the grading on
∧ ∞

2
+•g∗ ⊗M . This is the semi-infinite analogue of the usual

Chevalley-Eilenberg differential in finite dimensional Lie algebra cohomology. Thus, as a

generalisation of the Chevalley-Eilenberg complex, we define the Feigin standard complex

for a g-module M as the cochain complex C∞
2
+•(g,M) = (

∧ ∞
2
+•g∗ ⊗M,d).

While it may seem arcane, the Feigin standard complex is a very familiar construction in

vertex algebraic language. Suppose, for now that g is an affine Kac–Moody Lie algebra

ĝ.
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Let us introduce a friendlier notation. We write the actions of the Clifford algebra as

ε(e∗i ) = ci and ι(ei) = bi, i.e. the Clifford algebra is the (b, c) ghost system of BRST. The

space of semi-infinite forms is nothing more than the vacuum module of the ghost system

and so has the structure of a vertex algebra.

Let J i(z) be the generating currents of V κ(g). In this notation, the differential (A.5.11) is

the zero mode of the BRST current

JBRST (z) =
∑
i

(J ici)(z) +
∑
i,j,k

fij
k : cicjbk : (z) , (A.5.12)

where fij k are structure constants of g. Therefore, the Feigin standard complex is equivalent

to the usual vertex algebra BRST complex.

A.5.3 Semi-infinite cohomology

Having defined the Feigin standard complex, we define the semi-infinite cohomology of a

Lie algebra g (with semi-infinite structure) with coefficients in a g-module M as

H
∞
2
+•(g,M) = H•

(∧ ∞
2
+•g∗ ⊗M,d

)
. (A.5.13)

In ordinary Lie algebra cohomology, one can compute the cohomology of a Lie algebra

relative to some subalgebra. We can extend this naturally to the semi-infinite case. Let

h ⊂ g be a subalgebra of a Z-graded Lie algebra, g, that admits a semi-infinite structure.

We define the relative Feigin standard complex [FGZ86] as

C
∞
2
+•(g, h,M) = {c ∈ C

∞
2
+•(g,M) | ι(x)c = (x⊗ 1 + 1⊗ ρ(x))c = 0) , ∀x ∈ h} . (A.5.14)

Thus we can define the semi-infinite cohomology of g relative to h with coefficients in M

by

H
∞
2
+•(g, h,M) = H•(C

∞
2
+•(g, h,M)) . (A.5.15)

This is a useful construction, which allows us to limit ourselves to certain sectors of coho-
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mology.

Computing, semi-infinite cohomology with coefficients in an arbitrary module can be fairly

involved. There are two main tools that make this computation tractable. First, we have a

spectral sequence that converges on the cohomology H
∞
2
+•(g,M).

Theorem A.5.3. (Theorem 2.3 of [Vor93]) For a Lie algebra g = g−⊕ g+ and M ∈ O, we

have a spectral sequence (Ep,q
r , dp,qr ) with p ≥ 1, q ≤ 0 such that

• Ep,q
1 = Hq(g−,

∧ ∞
2
+p(g/g−)⊗M) = H−q(g−,

∧ ∞
2
+•(g−)⊗

∧ ∞
2
+p(g/g−)⊗M), where

we have used Poincaré in the second equality and H−q is the Koszul homology

• lim←−E
p,q
r = Ep,q

∞ , where the limit is taken with respect to the epimorphisms dr

• Ep,q
∞ = grpH

∞
2
+p+q(g,M)

Thus, the spectral sequence converges to the cohomology H
∞
2
+•(g,M).

This is just the familiar Hochschild–Leray–Serre spectral sequence in the context of semi-

infinite cohomology. There is a similar spectral sequence with respect to g+---see Theorem

2.2 of [Vor93].

By using these two spectral sequences, one can establish the second valuable tool, a vanishing

theorem8

Theorem A.5.4. (Theorem 2.1 of [Vor93]) Let M ∈ O such that it is injective as a g+

module and projective as a g− module. Then

H
∞
2
+p(g,M) =


M

g+
g− for p = 0 ,

0 else,
(A.5.16)

where Mg+
g− = im((M ⊗ Lβ)g+ → (M ⊗ Lβ)g−) which is the natural projection of the g+-

invariants onto the g−co-invariants. More concretely,

M
g+
g− = {m ∈M | g+m = 0}/{m ∈M | g+m = 0 and m = (x+βx)m′ for some x ∈ g−} .
8We believe that there is a misprint in the original text which states that the cohomology vanishes for

p = 0 and is M
g+
g− for others. The proof of this theorem in [Vor93] agrees with our statement.
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We have met a number of cohomological constructions in relation to the vertex algebra

correspondence of [BLL+15, BPRvR15]. Let us recast them in the light of semi-infinite

cohomology, in line with the construction of [Ara18].

A.5.4 Gauging

In Section 1.2.5, we have described the gauging prescription for vertex algebras. Given a

vertex algebra V ∈ KLκg we can gauge the action of the affine Lie algebra by introducing

a (b, c) ghost system and performing BRST reduction. The ghost system is nothing more

than the space of semi-infinite forms
∧ ∞

2
+•g that we have introduced and so we can write

this in the semi-infinite language as the cohomology

H
∞
2
+•(ĝκg , V ) . (A.5.17)

We have the canonical embedding g ↪→ ĝ−κg via x 7→ xt−1 and thus we have a short exact

sequence of Lie algebras

0→ g→ ĝ−κg → ĝ−κg/g→ 0 . (A.5.18)

For any such sequence, we have an associated Hochschild–Serre spectral sequence, which

computes the cohomology H
∞
2
+•(g, V ). The second page is

Ep,q
2
∼= H

∞
2
+p(ĝ−κg , g, V )⊗Hq(g,C) (A.5.19)

where Hq(g,C) is just ordinary Lie algebra cohomology with coefficients in C. In fact, the

spectral sequence collapses on the second page [Ara18] and so

H
∞
2
+•(ĝ−κg , V ) ∼= H

∞
2
+•(ĝ−κg , g, V )⊗H•(g,C) . (A.5.20)

This does not seem to be particularly helpful, until we introduce:

Theorem A.5.5 ([Ara18, Proposition 3.4]). Suppose V ∈ KL−κg , such that V is projective
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as a U(t−1g[t−1]) module and injective as a U(tg[t]) module. Then

H
∞
2
+•(ĝ−κg , g, V ) = 0 for i 6= 0 . (A.5.21)

Proof. Follows from Theorem A.5.4.

A.5.5 Drinfeld-Sokolov reduction

Let f be a nilpotent element of g, by the Jacobson–Morozov theorem (Theorem A.1.4, this

can be completed to an sl2 triple, (e, h, f) in g. The Cartan element h induces an integral

grading on g, see Section A.1.3. We set g>0 =
⊕

i>0 gi and g≥2 =
⊕

i≥2 gi. The Lie algebra

that will appear in our semi-infinite cohomology is

g̃ = g>0[t, t
−1] . (A.5.22)

with the natural grading by loop-rotation. Let χ be a character of g≥1[t
−1] such that

χ : g≥2[t, t
−1]→ C ,

χ : xtn 7→ δn,−1(x, f) .

(A.5.23)

Note that χ is completely determined by f . We define a one dimensional representation Cχ

of the subalgebra g>0[t] ⊕ g≥2[t
−1] ⊂ g>0[t, t

−1] by letting g>0[t] act trivially and g≥2[t
−1]

act via χ. This induces a vacuum representation Fχ of g>0[t, t
−1] via the usual,

Fχ = Ind
g>0[t,t−1]
g>0[t]⊕g≥2[t−1]

Cχ = U(g>0[t, t
−1])⊗U(g>0[t]⊕g≥2[t−1]) Cχ . (A.5.24)

This looks overly abstract but Fχ is nothing more than the βγ-system associated to the

symplectic vector space g1 and so is a fairly straightforward vertex algebra.

Let V ∈ KLκ, then, in particular, V is also an object in the category O of g>0[t, t
−1]

modules. The module V ⊗ Fχ is again a g>0[t, t
−1] module with the diagonal action.

Definition A.5.6. The Drinfel'd–Sokolov reduction of V ∈ KLκ, with respect to the nilpo-
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tent f , is defined as the semi-infinite cohomology,

H•
DS,f (V ) = H

∞
2
+•(g>0[t, t

−1], V ⊗ Fχ) . (A.5.25)

Remark A.5.7. The Drinfel'd–Sokolov only depends on the G-conjugacy class of f . To see

this, note that V ∈ KLκ is G-integrable and so one can twist the action of ĝ by the action

of G, taking f to any other element in its orbit. These twists act by automorphisms and so

the resulting reductions are isomorphic.

In general, if V ∈ KLκ is a vertex algebra object, then H•
DS,Λ(V ) is also a vertex algebra. For

the special case where V = V κ(g), the resulting vertex algebra H0
DS,f (V

κ) is the W -algebra

associated with (g, f) at level κ, Wκ(g, f). Therefore we have a functor

KLκ

H0
DS,f−−−−→Wκ(g, f) . (A.5.26)

Once again, we have a vanishing theorem.

Theorem A.5.8 ([Ara10, Theorem 4.3.2]). For any M ∈ KLκ and any nilpotent element

f ∈ N , the cohomology H i
DS,f (M) = 0 for i 6= 0 and so H0

DS,f : KLκ → Wκ(g, f) is an

exact functor.

Remark A.5.9. Suppose, V ∈ KLκ is a vertex algebra object, and also suppose that V is

conformal. Then the reduction H0
DS,f(V ) is a conformal vertex algebra.

An explicit expression for the conformal vector can be found in Section 2.2 of [KRW03],

but the central charge of H0
DS,f(V ) is related to the central charge cV of V by

cH0
DS(V ) = cV − dimOf − 3

2dim g1 + 12(ρ, h)− 3(κ+ h∨)(h, h) (A.5.27)

where h is the Cartan element of the sl2 triple, Of is the orbit of f and ρ is the Weyl vector.

Suppose κ = κc, then we have the isomorphism [FF92] of vertex algebras

z(g)→Wκc(g, p−1) , (A.5.28)
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where p−1 is our standard representative for the principal nilpotent orbit. Applying Theo-

rem A.5.8, we have an exact functor

H0
DS,p−1

: KLκc → Z-Mod . (A.5.29)

We shall primarily be interested in principal DS reduction and so as shorthand we use H0
DS

to denote H0
DS,p−1

.
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