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Abstract

The correspondence between four-dimensional A/ = 2 superconformal field theories and
vertex operator algebras, when applied to theories of class S, leads to a rich family of
vertex algebras that have been given the moniker chiral algebras of class S. These vertex
algebras are fascinating from both a physical and mathematical point of view since they
furnish novel representations of critical level affine Kac—Moody algebras. A remarkably
uniform construction of these vertex operator algebras has been put forward by Tomoyuki
Arakawa in [Aral8]. The construction takes as input a choice of simple Lie algebra g,
and applies equally well regardless of whether g is simply laced or not. In the non-simply
laced case, however, the resulting VOAs do not correspond in any clear way to known
four-dimensional theories. On the other hand, the standard realisation of class S theories
involving non-simply laced symmetry algebras requires the inclusion of punctures that have

been twisted by an outer automorphism of the Lie algebra.

In this thesis, we extend the construction of loc. cit. to theories of class & with twisted
punctures. The resulting family of vertex algebras are, simultaneously, modules over two
different critical level affine Kac—Moody algebras. We show that our proposal passes a
number of consistency checks and establish results on gluing isomorphisms, and the action

of generalised S-duality.
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Introduction

Supersymmetric quantum field theories have proven to be a fertile ground for producing
results in pure mathematics. The sector of BPS states, which enjoy enhanced supersymme-
try, often collect together into rich algebraic structures. This leads to a wonderful cross-

pollination of ideas from geometric representation theory and physics.

Some important examples in this regard include the quiver varieties of Nakajima [Nak94],
which appear, in physics, as a moduli space of vacua of certain three-dimensional N =
4 gauge theories. Or, indeed, the AGT correspondence of [AGT1(0] and its relations to

instanton moduli spaces.

In certain theories, these BPS states may collect together into a vertex algebra. Vertex
algebras, of course, already have a natural role in two-dimensional physics—where they
originated as the holomorphic sectors of two-dimensional conformal field theories. However,
there has been much work in recent years on how one may associate vertex algebras to

quantum field theories in higher (greater than two) dimensions.

Within the context of four-dimensional N' = 2 superconformal field theories (hereafter
abbreviated as SCFT or N' = 2 SCFT), an SCFT/VOA correspondence first appeared in
work of Beem-Lemos-Liendo—Peelaers-Rastelli-van Rees [BLLT15]. Given an N' = 2
SCFT, the authors detail how to extract the data of a vertex algebra from the spectrum of
local operators of the SCFT. Moreover, the associated vertex algebra is invariant under the
action of (generalised) S-duality on its parent SCFT. This makes it a sort of invariant of an
SCFT—hinting at when two SCF'Ts are related by S-duality. The associated vertex algebra

captures much of the intricacy of four dimensional physics—a number of observables of the



parent SCF'T can be fully recovered from the vertex algebra.

For example, the character of the vertex algebra recovers the Schur limit of the supersym-
metric index of the SCFT. A conjecture of [BR1§] (verified in infinitely many examples)
also identifies the Higgs branch of the parent SCFT with the associated variety of the ver-
tex algebra. The global symmetries of the SCFT have affine counterparts in the associated

vertex algebra.

Actually computing the associated VOA, usually requires some detailed knowledge about
the local operators of an SCF'T. However, this requirement can be waived within the setting

of the theories of class S.

The theories of class S, introduced in [Gai09, GMNO09|, constitute a highly structured,
special family of four-dimensional N = 2 SCFTs. These theories are best understood as
the compactification of a six-dimensional N' = (2,0) SCFT, labelled by a simply laced Lie
algebra g,. This six-dimensional theory is compactified on a punctured algebraic curve, X3,

over C—the UV curve.

A number of properties of the four-dimensional SCFT are characterised in terms of the
data of the UV curve, e.g., the marginal gauge couplings of the SCFT are identified with
the complex structure moduli of the curve. Generalised S-duality for these theories can be

identified with the mapping class group of the UV curve.

Each puncture on ¥ gives rise to a g, global symmetry for the SCFT. Starting with two
surfaces ¥ and Y', one can glue these along two punctures to produce a new surface ¥”. On
the SCFT side, this procedure corresponds to gauging the diagonal action of the g, global

symimetry.

The vertex algebras associated to theories of class & were first systematically studied in
[BPRvR15] where they went under the name chiral algebras of class S. In that work, a num-
ber of key properties of this family of VOAs were identified and some explicit computations

performed in simple cases (with parent six dimensional theory of type g, = a1, az).

Since generalised S-duality acts via diffeomorphisms, the vertex algebras are labelled only



by the topological data of the curve. Restricting to genus zero, this is just the number
of punctures of ¥. This gives rise to a family of vertex algebras, Vy, s, labelled by a
simply laced Lie algebr.‘:tﬂ g, and P! with s-punctures. The SCFT/VOA correspondence
of [BLLT15], states that these vertex algebras must satisfy certain gluing isomorphisms,

coming from the gluing of curves along punctures. Namely, we must have that
H7+.(ﬁu,—2hv » Bus Vgu,s ® VgMS/) = Vg75+51_2 ,

where HZ +* (Qu,—2nV; Gu, —) is the functor of relative semi-infinite cohomology, with respect
to an action of the affine Kac—Moody algebra g, at level equal to twice the negative dual

Coxeter number, h".

A speculative vision was also put forward, wherein the general chiral algebras of class S
might be uniquely determined by their various duality properties. Indeed, invariance under
the action of generalised S-duality turns out to be strong enough to completely fix the

superconformal index of class S theories [GRR13)].

Such speculation was answered in the affirmative by a remarkable construction of Arakawa
in [Aral§]. This gives a purely mathematical construction of the chiral algebras of class
S—at genus zero. Arakawa's construction produces a family of vertex algebras Vg, pa-
rameterised by the curve P! with s-marked points and a simple Lie algebra g. Key to this
construction is a gluing operation, which we refer to as Feigin—Frenkel gluing, that seem-
ingly has no physical counterpart. Pictorially, this glues UV curves along interior points as

opposed to punctures.

Each maximal puncture on the UV curve gives rise to a critical level universal affine ver-
tex algebra, V*¢(g) inside the associated VOA—all with a common Feigin—Frenkel centre.
Feigin—Frenkel gluing amounts to identifying the action of this Feigin—Frenkel centre across
the VOAs associated to each surface. The construction of Arakawa, using Feigin—Frenkel
gluing, is a chiral analogue of the construction of Ginzburg and Kazhdan [GK] for the

Moore-Tachikawa varieties [MT12]—the Higgs branches of class S theories.

In [Aralg], this family is labelled as Vg s with G the simply connected Lie group with Lie algebra g.
We will adopt this convention in later sections.



Curiously, Arakawa's construction makes sense for any simple Lie algebra g, whether simply
laced or not. This is in direct contrast to the physics of class S, where the Lie algebra
must be simply laced. In the usual lore of class S, non-simply laced global symmetries
may be introduced by adding twisted punctures to the UV curve [Vaf98, Tac09, Tacll].
This amounts to refining the compactification data to a UV curve with a local system of
Dynkin diagrams. The twisted punctures are labelled by a non-trivial element, o € Out g,,
of the outer-automorphism group of a simply laced Lie algebra g,. Each such twisted
puncture gives rise to a g; global symmetry for the SCFT, with g; the Langlands dual of
the o-invariant subalgebra g,. The theories corresponding to UV curves with such twisted

punctures are called the theories of twisted class S.

In this thesis, we focus on the twisted setting—aiming to answer the following ques-

tion:
What are the associated vertex algebras for the theories of twisted class S?

We propose a novel construction for the associated vertex algebras of twisted class S,
following the techniques of Arakawa. Our proposal allows for the realisation of all vertex
algebras associated to genus zero curves. We are also able to establish a number of the
gluing isomorphism, though we shall see that there are homological obstructions preventing
us from establishing the full scope of expected results. This obstruction is analogous to one

that appears already in [Aral8] in the case of higher-genus chiral algebras.

It is natural to wonder how Arakawa's non-simply laced construction relates to the physics
of twisted class §. There seems to be no straightforward answer to this but we provide
some speculative characterisation of the non-simply laced construction in terms of three-

dimensional theories.

The organisation of the rest of this thesis is as follows.

Overview of Chapter 1

The first chapter will serve as a review of the physics of N=2 SCFTs and the SCFT/VOA

correspondence of [BLLT15].



We start off in Section EI with an idiosyncratically selective review of four-dimensional
N = 2 SCFTs. We focus, in particular, on the case of gauge theories where a number of

the prototypical features of an SCFT can be made more evident.

In Section @, we review the SCFT/VOA correspondence of [BLLT15]. We discuss how
the characteristics of an SCFT, that we discussed in Section @, have vertex algebraic
counterparts. We shall also recast the gauging construction of loc. cit. in the language of

semi-infinite cohomology.

Overview of Chapter 2

This chapter will be devoted to reviewing Arakawa's construction of the chiral algebras of

class S, as well as the physical context of this construction.

We introduce our preferred family of N' = 2 SCFTs—the theories of class S—in Section
@. We review their construction in terms of the parent six-dimensional N' = (2,0) SCFT
and discuss how these theories are classified by a choice of simply laced Lie algebra, and

a curve with marked points. We discuss the classification of these marked punctures in

Section and introduce the gluing construction in .

Section @ is a review of Arakawa's construction of the chiral algebras of class S—the
vertex algebras associated to the theories of class S. We start of with an overview of the
properties one should expect from these vertex algebras in light of the correspondence of
[BLL*15]. We also introduce the key tool of Feigin-Frenkel gluing, a kind of semi-infinite

cohomology with respect to the action of the Feigin—Frenkel centre.

This leads to the construction of an inverse Hamiltonian-reduction functor in Theorem

2.2.8
Hpg(-)

N

KL Z — Mod

NS

Weaox—
which inverts principal Drinfel'd—Sokolov reduction. In particular, this gives an equivalence

between the Kazhdan—Lusztig category of an affine Kac-Moody algebra g at the critical



level, and a full subcategory H2¢(KL,,) = KLy C Z — Mod of modules over the mode

algebra of the Feigin—Frenkel centre.

In Section , we move on to fully reviewing Arakawa's construction of the genus zero
chiral algebras of class S, Vg s. We shall also reproduce a number of the results appearing

in [Aralg], on the properties of the family, Vg ;.

Most of the material in this section will not be original, but we include it to contextualise

our construction in the following chapter.

To end this chapter, we go over a few examples of Vg ¢ in the case where G = SLy and
for s < 4. We give explicit presentations, in terms of strong generators, relations and the

OPEs between them.

Overview of Chapter 3

In Chapter 3, we present our extension of Arakawa's construction to the setting of twisted

class S.

We introduce the eponymous theories of twisted class S in Section @ Let g, be a simply
laced Lie algebra and o € Out(g,) be a non-trivial outer-automorphism of order two. The
twisted theories of class S are classified by a choice of simply laced Lie algebra g, and
a curve—now with two kinds of punctures. One type of puncture—the g, punctures—
are classified as before. Additionally, we have twisted punctures giving rise to g; flavour
symmetries. Once again, we restrict to genus zero and write Cp, ,, for P! with m untwisted
punctures and 2n twisted punctures. The associated vertex algebras will be denoted by

Vin.

Incorporating twisted punctures gives rise to new moves in the web of S-duality and we
review this in Section . In Section , we give expressions for the Schur limit of the

superconformal index for twisted class S theories, following [LPR14].

Our construction begins in Section @ First, we prove a number of technical results on how
the Feigin—Frenkel centres of g, and g; relate to each other. In Section we prove our

first important theorem, Theorem , which leads to the construction of mixed modules



in Section . These mixed modules look like Weyl modules for g, and g, sewn together

by identifying the action of the untwisted Feigin—Frenkel centre.

We start our construction proper in Section , where we give a proposal for how to
construct the vertex algebra V ;—corresponding to a P! with one untwisted puncture and

a pair of twisted punctures. We also state our second main theorem
0 ~Y ch _—
Hps(Vi1) =Dg, = Va2,

i.e., the principal Drinfel'd Sokolov reduction of V7 1 is isomorphic to Arakawa's construc-
tion for the g; cylinder, Vg, 2. In addition, we show that V1 satisfies the properties that

four-dimensional physics predicts.

Before extending this construction to the full family of V,, ,, we make a technical interlude
in Section . Here, we establish a number of lemmas on the interplay between the
various types of gluing we have available. Namely, we will be interested in when the order

of these gluings can be interchanged.

In Section we extend our proposal to the full family of V,,,. The FF-gluing proce-
dure of the previous Chapter can be straightforwardly extended to produce V,, 1, but our
definition of the V,, , will be more involved. We finish by providing partial results on the

gluing isomorphisms for the V, ,,.

In Section , we construct an action of the S-duality group on the V,, , and show that
they act by automorphisms. Finally, in Section , we discuss the order three twists for

Spin(4) and the obstructions to our construction.

To finish, we shall comment on possible physical interpretations of Arakawa's construc-
tion for the non-simply laced case in Section @ In this section, we shall also provide a
conjectural description of the associated varieties of the subfamily V,, 1, in line with the

construction of [BEN17] for the Coulomb branches of Sicilian theories.



Overview of the Appendix

There is a large amount of ancillary machinery that we require in our construction of
the V,, . For the sake of cohesion, we have relegated much of this material to this ap-

pendix.

Appendix @ contains some basic material on nilpotent orbits in Lie algebras. This material
will primarily serve as context and to introduce the concept of Slodowy slices. Appendix

@ is an introduction to vertex algebras with some basic definitions and concepts.

This is followed by Appendix @, where we review affine Kac—-Moody algebras and their
associated universal affine vertex algebras. We also have a brief discussion on their repre-
sentation theory and the Kazhdan—Lusztig category. This appendix also defines the Feigin-

-Frenkel centre—the centre of the universal affine vertex algebra, at critical level.

In Appendix @, we start our long technical digression into opers. We follow the pedagogy
of [Fre07], focusing primarily on opers on the formal disc and its punctured counterpart.
We will review the Feigin—Frenkel isomorphism, relating the Feigin—Frenkel centre to the
algebra of function on the moduli space of opers on the formal disc. Our main goal will be
review the Miura transform and its associated screening charges. These screening charges

will be crucial to the proof of Theorem .

Finally, in Appendix @ we review semi-infinite cohomology in the language of homo-
logical algebra. We shall largely follow the conventions of [Vor93, Vor97]—introducing the
Feigin standard complex and associated vanishing theorems. We shall also review Drinfel'd-

-Sokolov reduction and how it may be described in the language of semi-infinite cohomol-

ogy.



Chapter 1

The SCFT/VOA correspondence

holy the clocks in space holy the

fourth dimension

Allen Ginsberg

Footnote to Howl
1.1 A primer on four-dimensional SCFTs

The following will be a very quick and non-comprehensive review of four-dimensional SCF'Ts.
We shall focus, in particular, on the ingredients appearing in the SCFT/VOA dictionary
and neglect most other features. We point the reader to [Tacl3] for a more pedagogical

introduction to the subject.

As with most quantum field theories, a mathematically precise and general definition of
four-dimensional N/ = 2 SCFTs remains elusive. Instead, we shall try and paint a pic-
ture of the properties that N' = 2 SCFTs possess. To do this, we focus on a family of
prototypical examples of N' = 2 SCFTs—the gauge theories—where these properties are
transparent. Then we shall remark on how to extrapolate these properties to a general

N =2 SCFT.



1.1.1 The superconformal algebra and its representations

The conformal algebra in four (Euclidean) dimensions is s0(2,4), which we identify, after

complexification, with sly = sly X sls. The Poincaré subalgebra is generated by

P.,; Translations

(1.1.1)
M8 M 3 Rotations
where «, & are sly X sly spinorial indices. The additional conformal generators are:
K% Special Conformal Transformation
(1.1.2)

D Dilatations

The eigenvalue of D, is the conformal weight, E.

A conformal field theory that enjoys supersymmetry actually enjoys an enhanced symmetry,
known as superconformal symmetry. For four dimensional NV = 2 superconformal field
theories, the superconformal algebra is s[(4]|2). The bosonic part is given by sl(4) x s[(2) g X
u(1),, where sl(4) is the conformal algebra described above. The additional symmetries are

R-symmetries with generators

Ry ,R_,Resl(2), and reu(l), (1.1.3)

where we have adopted the Chevalley basis for s[(2)g. The fermionic part of the algebra is

generated by the usual supercharges

ol Ora, (1.1.4)

where I is an s[(2)gr index and each supercharge lives in the two-dimensional represen-
tation of s[(2)r. As previously stated, we have an enhanced symmetry with additional
supercharges

S¢St (1.1.5)
called the special conformal supercharges, which also transform in the two-dimensional

10



Multiplet | A | Guj2) [R] 7
Br 2R (0,0) | R 0
DrR,(0,42) 2R+ jo+1 (0,52) | R| j2+1
Driioy | 2R+3+1 | (,0) | R| —ji—1

Crrj) | 2R+J1+j2+2 | (1,72) | B | j1—J2

Table 1.1: Table of some short representations of the superconformal algebra s[(4|2), in the
notation of [DO03]. The columns detail the eigenvalues under dilatation, rotation and the
R-symmetries of the highest weight state. These short representation appear as the Schur
operators in .

representation of s[(2)g. For the full set of relations between the generators of s[(4|2) we

refer the reader to [DO03], whose conventions we shall adhere to.

The representation theory of sl(4|2) can be quite intricate and we avoid a full review of it.
In Table , we introduce a few examples of the so-called short multiplets—a particular
class of highest weight representations. We use E to denote the eigenvalue of the highest
weight state. The generators M, # and M¢ ; generate an s1(2) x sl(2) Lie subalgebra and
we denote by j; and j2 the corresponding weights. We also use R and r to denote the

weights under s((2)r and u(1), respectively.

1.1.2 Four dimensional N = 2 gauge theories

Gauge theories are usually formulated in terms of a Lagrangian description. To do so we first
introduce two particular kinds of representations of the extended supersymmetry algebra:

vector and hyper multiplets.

Fix G =[], G to be a semisimple Lie group with simple summands G; , and let g = Lie G.
We choose P — R?* to be a principal G-bundle with connection A and let Eyx be some

associated vector bundle with fibre N, a quaternionic representation of G.

The connection A combines with two Weyl spinors, A, and Ag, and a scalar ® € C*°(R%, g)

to form a representation of the N' = 2 algebra called the vector multiplet. The highest weight
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state of this algebra is ®, and we summarise the representation in the diagram below.

AL/(I)\AR (1.1.6)
~N S

A

The field-strength F' = dA+ A A A appears in the multiplet D,V where D,, is the covariant

derivative in superspace and V represents the vector multiplet.

Similarly, sections of Ey also live in a N' = 2 multiplet—the hypermultiplet. Let Q €
I'(R*, Ey) and Q' its conjugate. A quaternionic representation has a C-anti-linear involu-
tion I : N — N and let CNQ = T o with @T its conjugate. The hypermultiplet, O, combines

the sections @, @T with Weyl spinors ¢ and 1ZT as below

SN
N

(1.1.7)

There is a second hypermultiplet 8) combining @ and QT with the spinors ibv and T

The multiplets must satisfy the equations of motion coming from extremising an action
functional. Suppose G is simple and let 7 € C be the complexified gauge coupling, the

action functional in the superspace formalism is given by

s— [ dis [atoQle Q)+ [@o((@.20) + (@' 2QD)
R4

. (1.1.8)

+ IZITT /d49trN<1>TeV<1> - ;7; /d20trN(Wo‘Wa + W)

where (-,-) is a Hermitian bilinear form on N, compatible with the unitary action of G.
Here, we use ¢” to denote the exponential map g — G — GL(N) (acting in a suitable

representation). If G is not simple then we sum over the actions for each simple summand-

12



—introducing a gauge coupling 7;, for each simple summand G;.

The action above is for a gauge theoryE with gauge group G, matter content valued in N
and gauge coupling 7. This Lagrangian description, while useful, is somewhat cumbersome
for our purpose. Indeed, the theories of class S do not always have such a Lagrangian
description. To streamline our path toward class S we will provide a more abstract notation

for a gauge theory.
Definition 1.1.1. A four-dimensional N' = 2 gauge theory is a triple (G, N, {7;}), where

« G =[], G, is a semisimple Lie group, with simple summands G;, called the gauge

group
e N is a quaternionic representation of G called the matter content
e For each G; we have a 7; € C called the complexified gauge coupling

A gauge theory is superconformal if the following anomaly
Dyng. (N) — 24, (1.1.9)

vanishes for each simple summand. Here b} is the dual Coxeter number of G; and Dyng, (V)
is the G;-Dynkin index of N, calculated as

dim NV

Pyie(N) = e,

A+ p) (1.1.10)

where \; are highest weights of G; that appear in IV, counted with multiplicity.

The data (G, N, {7;}), fixes the form of the action () and so we adopt this more compact

notation.

Remark 1.1.2. Two degenerate examples of a gauge theory are when either G or N are
trivial. If G is trivial, any vector space N satisfies the anomaly vanishing condition, and

these are known as a theory of free hypermultiplets. If N is trivial, this is called a pure

'The action permits a deformation by adding a mass term fd20<@, MQ)+ (@T, M, Q"), where M is the
mass matrix. However, such a theory can never by superconformal and so we set these mass terms to zero

13



gauge theory. The anomaly vanishing condition for a pure gauge theory can only be met if

G is abelian.

A special class of superconformal gauge theories are the ones corresponding to N’ = 4 su-
persymmetric Yang-Mills (SYM) theories. In our notation these correspond to (G,T*g,7),
where G is a simple Lie group with (complexified) Lie algebra g. The matter content is
valued in the product of the coadjoint and adjoint representation of g. These theories have

enhanced supersymmetry, endowing them with a number of nice properties.

1.1.3 Product of theories

We can define a product on the space of gauge theories by the following construction. Given
two gauge theories, (G, N1, {7;}) and (G2, No{7;}), the product gauge theory (G1, N1, {7 })X
(G2, No, {1;}) is the gauge theory (G1 x G2, N1 & No,{7;} U{7;}), where {7;} U {7;} is the

concatenated list of gauge couplings. At the level of actions, we have that

Stem =957, +S7; - (1.1.11)

More generally, given two SCFTs 771 and 7s, there is a notion of a product SCFT 71 X 7.
Physically, 71 X775 contains the field content of both 77 and 72 with no interactions between

fields in 77 and fields in 75.

1.1.4 Global symmetries and gauging

Suppose that the matter in a gauge theory, (G, N, {r;}), is a quaternionic representation
of another semisimple Lie group G, i.e., N is a quaternionic representation of G x Gp.
In this case, we say that the gauge theory possesses a flavour or global symmetry, with

symmetry group Gp.

Given such a global symmetry, Gp, on (G, N), we can gauge the action of G at coupling
T to produce the gauge theory (G x Gp, N, {7;}U{7}). Note that every gauge theory arises

by gauging free hypermultiplets (hence the naming).

More generally, if we have a Lie group G that acts on the field content of some SCFT T
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by automorphisms then we can gauge this action to produce a N' = 2 theory Tg. Such a
gauged theory might not always be superconformal, unless the anomaly condition of ()

(suitably written for a more general SCFT) vanishes.

1.1.5 S-duality

The natural notion of isomorphism between QFTs is duality. One says that two QFTs are
dual if one can build a correspondence between the observables of both theories. For N' = 2

theories, we will be particularly interested in a kind of duality called S-duality.

For a given theory, the action of S-duality is described by the action of a group (the S-
duality group) which traces out some orbit in the space of N’ = 2 theories by acting on the
complexified couplings. A homological definition of this S-duality group can be found in

[CC18]. For the theories of class S we shall find a more geometric description.

As an example let us consider a theory with gauge group G = SU(2), matter N = T*su(2)
valued in the adjoint and coadjoint representations of SU(2), and some fixed gauge coupling

7. This is ' = 4 SYM with gauge group SU(2). The S-duality group is SL(2,Z) acting via

1

Mobius transformations on 7. In particular, the S-generator that sends 7 — —=, induces a
duality
T——1/7 -1
(SU(2), T*su(2),7) <=5 (SO(3), T*s0(3), —) | (1.1.12)
T

~

where s50(3) = su(2) since we are looking at the complexified Lie algebras. The fact that
this group is the mapping class group of the torus is not an accident and hints at a more

geometric description of this action.

1.1.6 Invariants of an SCFT—the index

While QFTs are hard to study in full detail, often one can extract observables which capture
some shadow of the intricate structure of a full QFT. It is desirable to compute observables
which are invariant under dualities. Computing these observables in various QFTs helps

provide evidence in establishing a duality between them.

One such observable is the superconformal index, which is invariant under S-duality. The
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index is defined as a graded trace over the radially quantised Hilbert space of the theory
[KMMRO7, RR16],
rkgp

. E+2j1—2R—r E—2j1—2R—r .
I(p, q,t,x) = Tr (—1)Fe BB =24, == gl TT g (1.1.13)
=1

where p, g, t are called superconformal fugacities and (FE, j1, jo, R, 7) are various eigenvalues
of diagonal operators in the superconformal algebra. Alternatively, the index can be thought

of as the partition function of the SCFT on S3 x S!.

If the SCFT possesses a flavour symmetry G, one can refine the index by including a term

in the trace of the form

IT =" . (1.1.14)

where the x; are fugacities and \; are weights of Gp. A standard argument implies that

the index can only receive a nonvanishing contribution from states obeying
E—2j5—-2R+r=0, (1.1.15)

and so is actually independent of §. As written, the index counts minimally supersym-
metric states. There are a number of limits with enhanced supersymmetry, and we will be

specifically interested in the Schur limit [GRRY13],
g —t, p arbitrary . (1.1.16)

In this limit, the index is in fact independent of p and takes the schematic form (suppressing
flavour fugacities)

I(q) = Tr(-1)FgF E . (1.1.17)

Moreover, only states which satisfy
E+ji+j—R=0, (1.1.18)

contribute to this index. The short multiplets satisfying this constraint are precisely the
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ones in .

Let us compute the Schur index of a a gauge theory. First, we consider the case of free
hypermultiplets valued in N an irreducible representation of some semisimple Lie group
Gp. Since N is irreducible, it is of the form N = ), N; where the N; are irreducible
representations of the simple summands of Gr. The superconformal index of this theory
is

Z1,n)(q,%i) = PExp

1‘{21:[”1.(&)] , (1.1.19)

where PExp is the plethystic exponen‘cialE and xp, is the character of the irreducible rep-
resentation N;. Gauging a simple summand G C G produces a gauge theory (G, N). The

index of the gauge theory is defined as an integral over a maximal torus in G,

T (%) = 7§ 42K (q,2) Tt (0, %, 2) (1.1.20)

where we have singled out z as the fugacity for the G-symmetry, [dz] is the Haar-measure

and where R are the roots of G, the algebraic group. The K factors are defined by

1 1
K(z) = (q;q)gé g ng (e (2): @)oo (1.1.21)

where (+; ¢)oo are the g-Pochhammer symbolsE .

More generally, if we know the index of an SCFT T with some global symmetry G, we can

compute the index of 7g via an analogous gauging prescription

Furthermore, the index is multiplicative, in the sense that the index of a product theory
T1 X T3 satisfies

I7275(q,ai, bi) = I71(q, 2:) 713 (q, bsi) (1.1.22)

where a; are fugacities for 77 and b; are fugacities for 7s.

k
2The Plethystic exponential of a power series f(x), without a constant term is Exp ( Py £ (’,: )), where

x"* is the tuple (z¥,25,...).
3The g-Pochhammer symbols are defined as (z,q) = [[J°, (1 — zq¢")
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1.1.7 Invariants of an SCFT—the Higgs branch

The Higgs branch of an SCFT is a geometric observable that is invariant under S-duality.

Generally, the Higgs branch is a hyperkédhler manifold.

Physically, the Higgs branch parameterises the space of supersymmetric vacua of an N’ = 2
theory. In fact the full space of supersymmetric vacua has two branches: the Higgs branch

and the Coulomb branch.

For a gauge theory (G, N,{7;}), the Higgs branch is defined as a hyperkahler quotient of
N, by the action of G. In fact, we are only interested in the Higgs branch as a holomorphic
symplectic space and so we equivalently define the Higgs branch as a holomorphic symplectic

reduction of N by the complexified algebraic group Ge.

Since N is a quaternionic representation of G, it is a holomorphic symplectic space with
a Hamiltonian action of G¢. This gives rise to a moment map p : N — g*, where g* is
the linear dual of g = Lie G¢. The Higgs branch of (G, N, 7), as a holomorphic symplectic
variety is,

Mg =1 1(0)//Ge (1.1.23)

where // is the GIT quotient (which ensures the Higgs branch is affine). Note that M v )

is independent of the couplings and indeed is invariant under the action of S-duality.

The space M g n,7) inherits a symplectic structure from the reduction but may have sin-

gularities. Indeed, Mg n ) is expected to have symplectic singularities.

Often, the Higgs branch is a stratified space, with strata corresponding to qualitatively dif-
ferent vacua of the SCF'T. The smallest strata, the origin, corresponds to the original SCFT,
moving out to a larger strata corresponds to choosing a different vacuum and triggering
the Higgs mechanism. The resulting renormalisation flow will land in a different N’ = 2

SCFT.

For a gauge theory (G, N, {7;}), the Coulomb branch is
MG N ey 20 )G ZH W 2 CHE (1.1.24)
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as a variety. Physics endows this space with the structure of a special Kéhler manifold,
with the Kéhler potential capturing the low energy dynamics of the theory. The special
Kahler structure is described by Seiberg—Witten theory and has natural links to the study
of Hitchin systems. The detailed structure of the Coulomb branch will not play a large
role in the rest of this work and so we do not develop this subject further. We will note,
however, that the special Kéhler structure of the Coulomb branch does depend on the gauge

couplings 7 and S-duality does not act via automorphisms on the Coulomb branch.

While Seiberg—Witten theory is capable of computing the Coulomb branch of non-Lagrangian
theories, computing the Higgs branch is difficult. In this sense, the theories of class S
are particularly special as non-Lagrangian theories whose Higgs branches are precisely

known.

Remark 1.1.3. There is an interesting trichotomy in four-dimensional theories, arising from
the qualitatively different ways in which the full moduli space of vacua may branch. An

SCFT may have:

e A "“pure' Higgs branch, where the Higgs and Coulomb branch intersect transversally
at the origin. This means that the generic stratum of the Higgs branch corresponds

to a theory of free hypermultiplets.

e An *“enhanced' Higgs branch, where the generic strata of the Higgs branch describes
a pure abelian gauge theory. The Coulomb branch will intersect the Higgs branch in

codimension zero.

e An "interacting Higgs branch'', where the generic stratum of the Higgs branch de-

scribes an interacting SCFT

From an algebraic perspective, we can think of the presence of an enhanced Higgs branch
as a shadow of an underlying derived structure. For gauge theories, this derived structure
appears as a consequence of the failure of the moment map, p : N — g*, to be flat. In
physics, the nonzero cohomological degrees are captured by the Hall-Littlewood chiral ring
which contains fermionic operators as well as the bosonic Higgs branch operators [BBS]. The

cohomology outside of degree zero corresponds to the auxiliary Coulomb branch directions
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one can move in starting at the generic stratum.

1.2 The SCFT/VOA correspondence

Having given a flavour of what SCF'Ts are and the properties they possess, let us proceed
to a review of the correspondence of [BLLT15]. We introduce the notation below for the

correpsondence.

SCFT —X 5 VOA
(1.2.1)

T —>— X[T]

A naive strategy for associating a vertex algebra to a four-dimensional superconformal field
theory would be to restrict ourselves to a two dimensional plane and consider the algebra of
operators restricted to this plane, which give rise to a two dimensional superconformal field
theory. This is almost the correct strategy however the resulting two dimensional theory
will not be chiral. To recover a vertex algebra we will have to pass to the cohomology of an

appropriate supercharge.

We detail this cohomological construction in Sections and . In Section ,
we describe a key element of the correspondence: global symmetries of the SCFT have
affine enhancements in the VOA. In Section we provide examples for the associated
vertex algebras for theories of free hypermultiplets and vectormultiplets. Finally, in Section
we detail a gauging prescription for how to construct a gauge theory from a free
one. More generally, this gauging prescription gives a vertex algebraic counterpart to the

four-dimensional operation of gauging a global symmetry.

1.2.1 Twisted subalgebras

Let us fix the plane 1 = 29 = 0 in R* and define complex coordinates z = x3 + iz and
Z = x3 — ix4 on this plane. This choice of plane is completely general due to conformal

invariance. Rotations within this plane are generated by

M:=M*t+M*b (1.2.2)
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while orthogonal rotations are generated by
Mt=M *T-M",. (1.2.3)

There are two subalgebras of s[(4]|2) that stabilise our chosen plane: s[(2|1) x s[(2|1) and
s[(2) x sl(2]2). We choose sl(2) x sl(2]|2) since the other algebra is not chiral. The s[(2)

generates holomorphic translations while s[(2]2) is the anti-holomorphic part.

The generators of the bosonic part are given by

L.i=P,

; 1
i, =K', Lo = 5(D+ M)

(1.2.4)

L,1=P -, 1=K, Lo=D-M.

The s[(2)r symmetry is also preserved under this construction. The holomorphic part is
purely bosonic and so the supercharges will be antiholomorphic. In terms of the four-

dimensional supercharges, they are given by
ol =0l 9'=9,., &=8, §=8", (1.2.5)

where the I is once again an s[(2)g index and the supercharges transform as a doublet.

Finally, the plane algebra has a central element

Z=r+ M+, (1.2.6)

A priori, one might look for vertex algebras by looking for operators transforming in trivial
representations of s[(2|2). However, any such operator will also transform trivially under
the full four dimensional algebra sl(4) — thus it must be the identity operator and the

chiral algebra will be trivial. We shall evade this issue with the following strategy:

o Construct an s[(2) inside s[(2|2), commuting with the holomorphic sl(2), such that it

is exact with respect to a supercharge Q.

o Impose that anti-holomorphic Mébius transformations are generated by sl(2).
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e Pass to the cohomology of ®, where correlators will be meromorphic.

There is a family of choices for @ which give equivalent cohomologies [BLLT15] and so, for
concreteness, we choose
Q=9 +82. (1.2.7)

The Q-exact sl(2) is generated by

L1={Q}=L1+R_,
L ={Q,8}=1L,+Ry, (1.2.8)

Lo={Q,q} =Lo+R.

Notice that a spatial translation along Z is a spatial translation along the plane as well as
an R-symmetry transformation. Thus, the spacetime and R-symmetries have been twisted

together to form the new conformal algebra s((2) x sl(2).

1.2.2 Schur operators and S-duality

Let us compute the spectrum of local operators in the cohomology. It is important to note
that we restrict ourselves, exclusively, to local operators. The supercharge @ commutes with
f)o and the central charge Z, since both are exact, and so we can decompose the cohomology
into eigenspaces of the two operators. Suppose O is a representative of a cohomology class

and let A = [@, B] be an exact operator, then

[A,0] = [[@,B],0] = - [Q,[B,0]] +[B, [@,0]] =0, (1.2.9)
Q—exact [@,0]=0

where we have used the super-Jacobi identity in the second equality. From this argument,

we see that an operator O that is @-closed but not exact must satisfy

Lo=E+4+j1+j2—R=0, Z=r+j1—jo=0, (1.2.10)

where FE is the (four dimensional) conformal weight and ji, jo are the Lorentz spins of and

R, r are the respective eigenvalues of the generators R and r. In fact, assuming our initial
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four dimensional SCFT is unitary, it is both necessary and sufficient to impose
E+ji+j—R=0. (1.2.11)

Operators satisfying such a constraint are called Schur operators, since they are precisely
the operators that the Schur limit of the index in () counts. The short multiplets that

satisfy the Schur condition are precisely those found in Table . As a vector space,

X[T] = {Schur operators of T} . (1.2.12)

The translation of a Schur operator away from the origin is given by
O(z,2) = L1710 (0)e#E1-201 (1.2.13)

Finally, we note that the OPE of two Schur operators Op(z,z)and O3(0) is also chiral
ie.

A
01(2,2)0:(0) = > M%Ok(())—l—@—exact, (1.2.14)

k Schur
where h; are the two dimensional conformal weights with respect to Lo, and \;;; are the
structure constants of the four-dimensional theory. Once we pass to cohomology, the OPE
becomes meromorphic. Thus, the subspace of Schur operators restricted to this plane has

the structure of a vertex algebra after passing to cohomology.

The short multiplets comprising Schur operators are BPS states, and so are protected from
quantum corrections. In other words, the spectrum of Schur operators is independent of the
choice of gauge couplings. As a result the associated vertex algebra, x[7T], is independent

of any gauge couplings of 7.

The S-duality group acts on the gauge couplings of T, tracing out an orbit in the space of
theories. However, since x[7] is independent of said gauge couplings, the S-duality group
must act on x[7] by automorphisms. In this sense, x[7] is an invariant of 7, just like the

Higgs branch and the superconformal index.
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Furthermore, the product on SCFTs descends to the tensor product over C for the associated

vertex algebras. In other words, for SCFTs 77 and 7T,

X[ B T] = x[Th] @ x[T2] - (1.2.15)

1.2.3 Affine enhancements

We have uncovered a vertex algebra structure within a four dimensional A/ = 2 supercon-
formal field theory. One would be inclined to ask if this is a conformal vertex algebra. To
find a conformal vector, we look at the four dimensional stress tensor multiplet. The Schur
operator in this multiplet is J}rljr, a component of the s[(2)g-symmetry current and not the

four dimensional stress energy tensor. Its image under the correspondence is
T o< x[J34] (1.2.16)

is a good guess for the conformal vector. The TT OPE is completely fixed by the OPE of

the s[(2)g currents and the OPE, after normalization, is [BLLT15]

604d + 2T(0) 8T(O)

2 + = ’

T(2)T(0) ~ — (1.2.17)

24 z

where c4q is the four dimensional central charge. The above has the correct form for a stress

energy tensor OPE. However, we are forced to conclude that the central charge,

Ccoq = —12¢44, (1.2.18)

of the two dimensional theory is negative for a unitary four-dimensional theory. Thus, for a
sensible physical theory, the associated two dimensional theory must be non-unitary, which
is problematic only if we wished to interpret the vertex algebras as arising from a physical

two dimensional CFT.
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The conformal weight of a Schur operator under this conformal vector satisfies,
A=E—-R (1.2.19)
The character of the VOA is given by
chy7) = try (=17 ¢ = tryry (1) F "R (1.2.20)

Comparing to the expression in (), we see that since this trace runs over the Schur

operators the character of x[7] agrees with the Schur limit of the index.

The enhancement of the spacetime s[(2) to the Virasoro algebra is not the only infinite
enhancement. Suppose the four dimensional SCFT has some flavour symmetry G, then
the associated conserved currents Jgd will be part of a multiplet. The Schur operator in
this multiplet is M4 a component of the moment map operator, where A is an index

valued in the adjoint. We suggestively write
J4 o x[MEA) (1.2.21)

for the image under the correspondence. The currents J4 | after normalization, have the

OPEs

JA(2)JE(0) ~ _k‘;‘i/Q +iy AP Jigo) , (1.2.22)
C

which we recognise to be the current algebra OPE of the universal affine vertex algebra,

Vh2d at level kog = —kyq/2 and kyq is the flavour anomaly in four dimensionsE . For a

review of some basic definitions regarding affine vertex algebras, see Appendix @

Therefore, when 7 has a g symmetry, x[7] possesses a chiral moment map ju : V*2¢(g) —
X[T]. The conformal grading on x[7] is Z=¢ graded and so this makes x[7] a vertex algebra

object in the Kazhdan-Lusztig category, KLyg,,, at level kyg.

4This flavour anomaly appears as the coefficient of a mixed U(1),-G anomaly. Alternatively, the flavour
anomaly appears in the most singular term of the four-dimensional OPE between two flavour currents, see
Section 2.6 of [AATM™22] for more details
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1.2.4 The Vertex algebras of hypermultiplets and vectormultiplets

Since hypermultiplets and vectormultiplets are the building blocks of gauge theories, we
shall discuss the vertex algebras associated to each before moving on to discussing gauge

theories.

The Schur operators in a hypermultiplet are the sections @, Q as well as their derivatives
(descendants) with respect to 0, ;. Along with the SU(2)r symmetry, the theory enjoys

an SU(2)p symmetry under which @ and Q transform into each other. Therefore, we shall

Qr= (g) ; (1.2.23)

for the doublet. The corresponding element of the chiral algebra is denoted by ¢; and its

write

OPE is given by

q1(2)qs(0) ~ —=,. (1.2.24)

This is precisely the symplectic boson algebra, or D*(C)—the chiral differential operators
on C. For hypermultiplets valued in a quaternionic (polarised) representation T*N of a
group G, the associated vertex algebra are symplectic bosons valued in T* N or, equivalently
D(N).

The Schur operators of a free vectormultiplet are the gauginos Ay, A\; (suppressing the
adjoint index) as well as their derivatives with respect to 9, ;. The corresponding elements
in cohomology are A(z) = x[\;] and A = X[S\_i_] with OPEs

AA0) ~ ;12 (1.2.25)

This corresponds to the vertex subalgebra of a (b, ¢) ghost system of weight (1,0) under the
identification

Aeb, A< Oc. (1.2.26)

For free vector multiplets in the adjoint representation of a group GG, we have the analogous

subalgebra in the (b, ¢) ghosts system valued in the adjoint representation.
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Note that we have introduced an asymmetry between A and A by our choice. Further-
more, we must restrict to the subalgebra of the (b, c) system that is annihilated by by to

account for the fact that cg modes are not present. This will be important when we discuss

gauging.

1.2.5 Gauge theories

Having constructed the vertex algebras of free theories, let us move onto interacting ones.
We shall try to be as general as possible, so as to not exclude theories without Lagrangians.
Suppose T is a four dimensional N'= 2 SCFT with some global symmetry G that we wish
to gauge. On the four dimensional side, this is done by introducing a vector multiplet V'

valued in g = Lie G and projecting to gauge invariant states via BRST cohomology.

Analogously, the vertex algebra x[7] is has a chiral moment map u : V*2d(g) — x[T],
which gives it the structure of a module over V*2¢(g). Notice that x[V] is very similar to
A T (g), the space of semi-infinite forms for g. It is natural to interpret x[V] as the be

ghost system for BRST reduction.
The BRST current will be

1
JBRrsT = Z JAcA + 3 Z [, P, (1.2.27)
A ABC

where J4 are the images of the generators of V*24(g) under p : V*2(gp) — x[T] and

normal ordering is assumed. The differential is given by

Q - JBRST,(O) . (1228)

The cochain complex (x[7T] ® x[V], Q) is very similar to the Feigin standard complex for
semi-infinite cohomology (see Section for more details). Note that x[V] is not the
full ghost vertex algebra, but rather the subalgebra annihilated by by. This means that
the BRST reduction should be interpreted as the relative semi-infinite cohomology of x[7]-

-relative to the g subalgebra. Therefore, the vertex algebra of the gauged theory must
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satisfy

X[Te] = H2 T (Gry,. 0. X(T]) - (1.2.29)

Note that there are constraints on the level for this BRST reduction to be non-trivial.
If kog # —Kg = —2h", the BRST differential does not square to zero. The semi-infinite
cohomology in this case is still well-defined but vanishes in all degrees. This level-matching
condition is precisely the anomaly vanishing condition that ensures that the resulting gauge

theory is superconformal.

In our definition of gauging, we have not restricted to zero cohomological degree. The
cohomology away from degree zero is, in many interesting cases, non-vanishing and of
physical interest. Recall the trichotomy (see Remark of possible Higgs branches—
in particular the cases of an " “enhanced" Higgs branch which should be thought of as a
derived symplectic space. Physically, these are tracked by fermionic operators in the Hall-
-Littlewood chiral ring. In particular, these fermionic operators are Schur operators and
so contribute to x|[7a] as fermionic states in the vertex algebra. Therefore, we expect the

cohomology of () to have support outside of degree zero.

More formally, the cohomology outside degree zero measures the failure of x[7] to be a
semijective module over g—which should be understood as a chiral analogue of the failure

of a moment map to be flat in symplectic reduction.
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Chapter 2

The chiral algebras of class S

,has the naughty thumb
of science prodded
thy

beauty

E. E. Cummings

[O sweet spontaneous]

2.1 Theories of Class S

In this section, we provide a review on the physics background of theories of class S. This
is not meant to be a comprehensive overview; more background on these theories can be

found in, e.g., [Gai09, GMNO09, Tacl1].

We start with a review of their construction as a dimensional reduction of the six-dimensional
N = (2,0) parent theory on a curve (the UV curve) in Section . The compactification

data includes boundary conditions at the marked points of the curve and we discuss their

classification in Section .

In the setting of class S, the action of S-duality is geometric in nature, arising from the
diffeomorphisms of the UV curve. We discuss this identification in Section , as well as

giving a description of the generators of this group in terms of elementary moves swapping
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between pants decompositions.

In Section we review the TQFT computation of the Schur limit of the superconformal
index, following [GRRY13]. We shall also recast the expression for the index of loc. cit. in
more representation theoretic terms—rewriting them in terms of characters over modules

of the critical level affine Kac-Moody algebra g, .

2.1.1 A definition from six-dimensional origins

The theories of class S are four-dimensional NV = 2 SCFTs with a six-dimensional origin.
Six dimensions is special, in that superconformal theories do not exist in higher dimensions.
The maximal superconformal algebra is that of N/ = (2,0) theories in six dimensions, and

is isomorphic to osp(8,4).

The representation theory of 0sp(8,4), does not allow for any representation to satisfy the
equations of motion of super Ya]rlgfl\/[illsm and so there are no gauge theories of this type.
Nevertheless, these theories are classified by the choice of a simply laced, simple Lie algebra
gu- One way to see the appearance of this ADFE classification is via the string theory

construction.

These theories can be geometrically engineered (see [BI97, HMV14]) as the low-energy
limit of Type IIB string theory on R® x C?/I" with I a finite subgroup of SU(2). Such finite
subgroups have an ADF classification following the Mckay correpsondence. The theories
of An-type admit an M-theory uplift and can be realised as the world-volume theory of a

stack of N + 1-M5 branes in RS.

Starting with such a theory, characterised by a choice of g,, we can compactify on a C-
curve, ¥, to produce a theory on R* x 3, whose low energy limit will be a four dimensional
N =2 SCFTE. The resulting four-dimensional SCFTs are the eponymous theories of class

S. The theory depends on our choice of 3, only up to conformal transformations. In fact

!There is an exception to this statement for abelian gauge groups, however we will not be interested in
such theories

2To preserve eight supercharges one must actually perform a topological twist as part of the compact-
ification. This involves twisting the action of the spatial symmetries by the R-symmetry. We will largely
ignore this subtlety.
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the complex structures of ¥ correspond precisely to gauge couplings in the theory.

Our choice of curve may have boundary components, i.e., punctures corresponding to the
insertion of codimension-2 defects of the six-dimensional theory, which are transversal to

Y. The classification of such defects is quite involved and we shall delve into it momentar-

ily.

For now our working definition of class S is an SCFT that is specified by a triple (g, Xg.s, {Ai}i_1)

where
e gy is a simply laced simple Lie algebra

e Y, is a connected Riemann surface (algebraic curve) of genus g with s many punc-

tures (marked points). We call this the UV curve of the theory.
o {A;};_, are labels for each marked point

Strictly speaking, curves that are related by a conformal diffeomorphism define the ''same"
theory. As a result we should think of our gauge couplings 7; as co-ordinates on the moduli
space M, ; of curves of genus g with s-marked points. In fact, we will also be interested in

singular curves and so work over the Deligne-Mumford compactification M, .

Note that if we choose a disjoint union of curves ¥, s LI Xy o, the resulting theory is the

product of theories defined by ¥, s and Xy .

2.1.2 Untwisted punctures

The labels of punctures in class S fall under a dichotomy of either reqular or irregular, and
in this work we shall restrict our attention entirely to the regular case. For a review of the

irregular case we point the reader to [Xiel3, GMNO09].

Regular, untwisted punctures in a theory of type g, are labelled by a nilpotent element of
gu, up to conjugacy. Therefore, such punctures are labelled by a nilpotent orbit in g, or,
equivalently by the Jacobson-Morozov theorem (Theorem ), by a conjugacy class of

a homomorphism A : sly — g,,.

The defect operator corresponding to such a puncture enjoys some global symmetry that it
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then contributes to the total global flavour symmetry of the four dimensional SCFT. The

contributed symmetry is of the form

fA == keradA(ﬁb) (2.1.1)

i.e., the commutant of the image of sls in g,.

As discussed in Proposition [AT3H, any simple Lie algebra has at least two especially impor-
tant nilpotent orbits: the principal orbit (which is the unique, largest nilpotent orbit) and
the trivial orbit. Their respective commutants are f = 0 for the principal orbit and § = g,
for the trivial orbit. A puncture labelled by the trivial embedding is, therefore, called a
mazimal puncture, while a puncture labelled by the principal embedding contributes no
flavour symmetry and is equivalent to having no puncture at all. With an eye towards
the twisted case, we will nevertheless adopt the convention of referring to a hypothetical

puncture labelled by the principal embedding as an empty puncture.

Given a theory where a particular puncture is maximal, the corresponding theory with
that puncture replaced by a sub-maximal puncture can be realised by partially Higgsing
the g, flavour symmetry associated to that puncture in the four dimensional theory. A
choice of nontrivial A is realised by assigning an expectation value to the **moment map"
Higgs branch operator in the conserved current multiplet that lies in the corresponding
nilpotent orbit. Consequently, for many purposes it is sufficient to be able to construct
theories associated to surfaces with maximal punctures, with other punctures structures
being subsequently reached via partial Higgsing. Henceforth, we shall restrict ourselves to

the case where X, ; has only maximal punctures.

We wish to point out that not all UV curves produce valid SCFTs. For example, the
theories associated to P! with less than three punctures are not good four-dimensional
theories. This is true independent of the labelling of these punctures (so long as we only
have regular punctures). Nevertheless, these objects will play an important role in the

construction of the chiral algebras of class S.
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2.1.3 'Trinions, gluing and residual gauge symmetry

The gauge couplings of the SCF'T are precisely the complex structures 7; of the UV curve.
Therefore, the weak coupling limit of the theory corresponds to the degeneration limits of
the UV curve. Consider driving the complex structures to the most singular stratum of the
(compactified) moduli space—this corresponds to a limit where the UV curve decomposes

into various pairs-of-pants or trinions, with thin tubes connecting maximal punctures.

The SCFTs associated to P! with three maximal punctures can therefore be thought of as
the indecomposable atoms of this space of theories. These are often referred to as trinion
theories or fiztures. There are myriad possible (combinations of) labels that can appear on
a single trinion; these have been extensively detailed by (various subsets of) Chacaltana,

Distler, Tachikawa, and Trimm in [CDT13, CD1(, CD13].

/
g’,s"

/

g,s's CorTe-

Given any two curves X, and X we can form the disjoint union ¥, , LU X
sponding to the product on the associate SCFTs. Suppose each surface has at least one
maximal pumc‘cureE and let us single out one such puncture on each surface. The chosen
punctures give rise to a g, X g, global symmetry on the product theory. We can choose to
gauge by the diagonal action of g, X g,, producing a gauge theory at coupling 7. On the UV
curves, this operation corresponds to gluing 3, s and Z;,7 o along the singled out punctures

to produce a curve X 4 sy, which has one additional complex structure specified by

the coupling 7.

Given a single curve Y, with at least two maximal punctures, one may also perform a
self-gluing by gauging the diagonal g, X g, corresponding to two maximal punctures. This
produces the curve ;11 ,_2. The genus is not conserved under this gluing, and we shall

see that this has certain implications for the underlying SCFT.

Every curve can be produced by gluing (or self-gluing) various pairs of trinions and then
performing Higgsings to obtain the correct labels. Therefore the trinion theories associated

to ¥o,3 are the fundamental building blocks of class S.

3Note that one can only perform gluings along maximal punctures. If one were to try and gauge the
diagonal action of a non-maximal symmetry, the resulting theory would not be an SCFT.
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Before we move on, we shall go through a brief digression on residual gauge symmetries.
Recall the Higgs and Coulomb branches of Section and the trichotomy of pure, en-
hanced and interacting Higgs branches. To the best of our knowledge, in the presence of
regular punctures only pure and enhanced Higgs branches can arise, whereas interacting
Higgs branches are common in Argyres—Douglas type theories that can be engineered with

irregular punctures (once again see [Xiel3, GMNO09)).

In the untwisted class S setting, there is a simple characterisation of under what circum-
stances a theory will have an enhanced rather than a pure Higgs branch: theories of type
Ay, Dy, or E, with genus g have generic residual gauge symmetry with rank equal n x g.
In other words, the genus zero theories of class S (in the untwisted setting) all have pure

Higgs branches.

2.1.4 Mapping class groups and S-duality

The parent six-dimensional theory is conformally invariant and so only sees the UV curve up
to conformal transformations. This conformal invariance implies that the SCFTs associated
to two UV curves, in the same conformal class, should be dual. Precisely stated, we can
identify the S-duality group of a class S theory with the mapping class group MCG(X, )

of its UV curve.

More pictorially, the action of S-duality swaps between the various pair-of-pants decompo-
sitions of a theory. On the SCF'T side this constitutes a highly nontrivial set of quantum
dualities, identifying various different inequivalent gaugings of trinion theories as being

S-dual.

In the untwisted case, all pants decompositions can be reached by iterating two types
of elementary move. Our presentation is similar to that of the Moore—Seiberg groupoid

(Mssd).

For the first type of move, consider P; with four maximal punctures ¥ 4 with some labelling
1,...,4 of its punctures. We move to the singular point on the moduli space where the sphere

decomposes into two trinions connected by a long tube, one of which has punctures labelled
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by 1,2 and the other by 3,4. In Figure @, this is represented by the duality frame on the
left. By moving to a different singular point, one can decompose Y 4 into two connected
trinions labelled by 1,3 and 2,4—shown on the right hand side of Figure @ We call such
a move, moving between the various decompositions of ¥ 4, a 4-move. This can be lifted
to a 4-move acting on any collection of four punctures on a general ¥, ;. First, one moves
to a singular locus on the moduli space where X, ; decomposes into a ¥ 4 that contains the
punctures of interest and is connected by a long tube to ¥, s_4. Then one applies a 4-move

to swap between decompositions of ¥ 4, before moving back out of the singular loci.

For surfaces ¥4 ¢ with g > 0, one must consider another type of move. For example, consider
the one punctured torus ¥ 1. The S generator of the modular group acts by swapping the
a and b cycles of the torus. This is a homeomorphism of the torus to itself that is not
homotopic to any iterated 4-move and so must be a generator, which we call the ab-move.
For a surface, Y, s, there is a natural generalisation of this move. The ab-move acts as
the S-duality 7 — —1/7 on the complex gauge coupling associated to the handle, cf., the
example of SU(2) N =4 SYM in Section

1 3
O O
10 O3
QO O4 A) 7
O O
2 4

Figure 2.1: The 4-move acting on four maximal untwisted punctures.

We are primarily interested in observables that do not depend on exactly marginal defor-
mations, such as gauge couplings. Such observables are locally constant over My 5. In the
untwisted case, the ab-move is trivial for such observables and the action of the 4-moves
can be phrased in terms of the action of permutations on punctures. The 4-moves, in the
untwisted case, act by permuting the flavour symmetries associated to the punctures, which

shows up as permutations on the flavour fugacities (see the next section) of the index or
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permuting the moment-maps of the Higgs branch and the associated vertex algebra. It
is, therefore, useful to phrase the action of S-duality on these observables in terms of the
action of a permutation group. Indeed, this corresponds to the subgroup of automorphisms

Ss C Aut M, s which permute the points in a singular stratum.

2.1.5 The superconformal index of theories of class S

For theories of class S, the form of the full superconformal index has been shown to follow
from duality properties [GRR13], though for our purposes here we will restrict attention
to the Schur limit. The index takes the form of a sum over highest weights in the set
of integrable dominant weight representations PT (i.e., a sum over finite-dimensional g
representations), weighted by some " structure constants' Cyy\, which are functions of q.
For a UV curve with all maximal punctures maximal, ¥, s, which can be realised by gluing

2g — 2+ s trinions, the index takes the form [AOSV05, GPRR1(, GRRY13, ABFH13|

T(g; %1, X2, -, %Xs) = Y (Con(@)? > [ Kl xi)x* (xa) (2.1.2)
AeP+ i=1

where PT are the set of positive integral dominant weights of the simply connected group G,.
The x; are flavour fugacities valued in a maximal torus of G, and the K factors are defined
as in () The x* are Schur polynomials, i.e., characters of the finite-dimensional g,

representation with highest weight A.

At the level of the index, Higgsing a maximal puncture to a non-maximal one amounts to a
fugacity replacement (with a subtraction of certain divergences) that is detailed in [GRRY13,
RR16, BPRvR15]. We will not use this technique but instead we wish to note the following.
Since reducing to an empty puncture amounts to removing the puncture all together, one
has the relation

Caa(g) = (2.1.3)

K(x<)xA(x) 7
where X represents the regularised fugacity replacement for the empty puncture, which is

purely a function of ¢.
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For the empty puncture, we have

rkg

K(x) = H(l (2.1.4)

d; ’
pell CARE OIS

Looking ahead, we can identify /C(x) with the character of the Feigin—Frenkel centre 3(g).
Similarly, we can identify the summand, K(q;x)x*(x) can be identified with the character
of the critical level Weyl module of highest weight A\, V) as

DXT)

K(q;x)x*(x) = chy, = Try, (¢ , (2.1.5)

where D is the quasiconformal weight. For the sake of clarity, we shall often suppress the

flavour fugacities and use the notation ch V' = Try (¢”).

At the critical level, the Weyl modules are not irreducible—instead they have a unique
simple quotient L. The characters of the Weyl module and their simple quotients are
related by

ch V)  K(g;x)x*(x)

h Ly, = =
BT, T KO (x)

(2.1.6)

where 3, is the Drinfel'd-Sokolov reduction of Vy, as in Proposition .

The index of 3, s can then be completely rewritten in terms of characters of Weyl modules,

or their simple quotients, as

s

o T _ ch 'V
I(gxaixe, ... x) = > (ch5) 2 [[ehLy= 3 (chp)* > [[ 5.  (217)
=1

ch
AeP+ i=1 AeP+ A

2.2 Arakawa's construction of the chiral algebras of &

The theories of class S define a family of SCF'Ts for each simply laced g,,, parameterised by a
choice of ¥, 5. Applying the SCFT/VOA correspondence of [BLLT15] gives rise to a family
of vertex algebras also parameterised by a choice of X, ;. However, the vertex algebras are
independent of exactly marginal deformation, i.e., they are independent of the complexified

gauge couplings of the theory. The gauge couplings of the SCFT are precisely the complex
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structures of X, ;. Therefore, the resulting family of vertex algebras only depends on the

topological data of ¥ .

From here on, we shall restrict our attention to the genus zero case, since these are the
focus of Arakawa's construction. We shall also restrict to the case where all punctures
are maximal. The vertex algebras corresponding to non-maximal punctures can then be
obtained through Drinfel'd—Sokolov reduction—the vertex algebraic counterpart of Higgsing

a puncture.

Following Arakawa's lead, we shall also relax the condition that g is simply laced. For the
rest of this chapter g will refer to a simple Lie algebra. While this is unphysical, we wish to
review the construction in its full generality. We will make a comment about the physical

interpretation of vertex algebras with non-simply laced g in Section @

We start this section with a summary of the properties that the genus zero chiral algebras
should possess in Section . We introduce glued modules in Section . These are,
roughly speaking, a product of Weyl modules of g, where we identify the action of the
Feigin—Frenkel centre on each module. The chiral algebras of class S will be limits of these

glued modules.

In Section , we introduce the technology of Feigin—Frenkel gluing, a kind of semi-infinite
cohomology with respect to the action of the Feigin—Frenkel centre. With this technique
in hand, we can begin our review of Arakawa's construction. We start off with defining the
vertex algebras of the cylinder and the cap in Sections and . These are strongly
constrained by their properties under gluing—gluing the cylinder is an identity operation

and gluing the cap closed the puncture.

Having defined the cap, allows us to introduce inverse Hamiltonian reduction in Section
. At the level of pictures, inverse Hamiltonian reduction introduces a puncture to the
UV curve by gluing on a cap wia the interior points. More formally, it defines a (partial)

inverse to the functor of Drinfel'd—Sokolov reduction.

The construction proper will be in Section . Here we review Arakawa's construction

as well as reproducing their results on gluing and the various other properties detailed in

38



Section .

2.2.1 Chiral algebras of class S at genus zero

Before we begin with the construction, let us review the properties we expect from the
vertex algebras associated to the genus zero SCFTS in class §. The following will be a high
level overview of what we should expect from the construction of [Aral§], based on the

SCFT/VOA correspondence of Section @»more details can be found in [BPRvR15]

Fix a simple Lie algebra g. Let ¥4 denote P! with s maximal punctures. To such a curve we
associate a vertex algebra objectH Vg, internal to KL, the Kazhdan-Lusztig category for
Ok.- Recall from Remark that a vertex algebra object, V, in KL is a vertex algebra
V' equipped with a vertex algebra morphism V*¢(g) — V, such that its structure as a

V*e(g)-module is a limit of positive energy representations.

The vertex algebra is independent of the complex structure of X, in other words it is
locally constant over ﬂo,s. In other words the braid group action on Vg 4, coming from
the mapping class group, factors through the action of the symmetric group that permutes

punctures.

Each puncture on Y gives rise to a vertex algebra morphism
i Vie(g) > Vgs, fori=1,...,s, (2.2.1)

From the universal affine vertex algebra of g at the critical level k.. We call these morphisms
the chiral moment maps and their images are commuting V"¢ (g) subalgebras inside Vg s.
The natural symmetric group automorphism of My s means that all punctures are on a

equivalent footing.

Pick such a moment map, we can perform principal Drinfel'd-Sokolov reduction with re-

spect to this moment map to close the corresponding puncture. Therefore, the vertex

4Following Arakawa, we elect to label these vertex algebras by the simply connected group G with Lie
algebra g.

39



algebras Vg s and V,_; are related via principal Drinfel'd-Sokolov reduction,

Hps(Ve,s) = 60i Vst - (2.2.2)

Given two surfaces, Cs and Cy, we can glue them along two specified punctures to produce
Cs1s—2. On the SCFT side this corresponds to gauging the diagonal g symmetry. In Section
we argued that such a gauging on the SCF'T side corresponds to BRST reduction or
(relative) semi-infinite cohomology on the vertex algebra side. Therefore, the family Vg g

must satisfy the following gluing relations
H%+.(§—H9797 VG,S ® VG,SI) =~ VG,S+SI—2 . (2.2.3)

Moreover, we expect these gluings to be concentrated in degree zero, since the correspond-
ing genus zero SCFTs all have pure Higgs branches (see the discussion in Section )

Therefore, we should expect that
H%+i(a—ﬁg7gu VG,S & VS’) = 6i,0V5+S’—2 . (224)
For compactness, we introduce the notation o, where for any M, N € KL,

MoN=H2"(g s, 0, M2 N) . (2.2.5)

Finally, four-dimensional physics also imposes some constraints on the algebraic structure
of Vg . We know that Vg s must be conformal, and from the expressions for the four-

dimensional central charge [CDT13], we see that
eve, = (s —(s—2)hY)dimg — (s — 2)rkg . (2.2.6)

Unitarity demands that cv , is negative and this is true as long as s > 2. Furthermore,
unitarity demands that Vg, is non-negatively %Z—graded by conformal weight, with the

weight zero component being spanned by the vacuum vector. These constraints imply that
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Vg, s is of CFT type for s > 2.

2.2.2 Glued modules of the Feigin—Frenkel centre

In this subsection, we shall define a certain class of modules in KL, which shall appear in

the decompositions of the chiral algebras of class S, as V"<(g) modules.

Let 3(g) C V"¢(g) be the Feigin—Frenkel centre of the universal affine vertex algebra. Recall
that the Feigin—Frenkel centre is a commutative vertex subalgebra of v"<(g) which has non-
singular OPEs with all fields, i.e., it is central. It is strongly generated, as a commutative
vertex algebra, by generators P, where d; are the exponents of g. We denote by Z the

algebra of Fourier modes of 3(g). See Appendix for more details.

As a commutative algebra,
) |di=1,....,tkgn € Z] . (2.2.7)
Furthermore, we denote Z_g to be the subalgebra,

Zeo=C[Pgn, |di=1,...,tkgn € Z], (2.2.8)

where it should be noted that we have used the physicist's gradings on the mode number

with Py, , = Pdi,(n)—di—l-

First we recall the quotient, 3) of Z.g from Definition . Let V) be a Weyl module

over g, with A € P*. Let Z) be the annihilator ideal of V) inside Z.¢, then

N = Z<0/I>\ (2.2.9)

From the definition, 3, acts on V) freely by the projection Z.g — 3.

Suppose M, N € Z-Mod, we endow M ® N with the structure of a Z-module in the following
way. Let 7 = —wg be the Cartan involution, where wyq is the longest word in the Weyl group,

W(g). On g-modules, 7 sends the highest weight representation V) to its contragredient
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dual Vy+. This lifts to an automorphism, 7 of the vertex algebra 3(g), and so its mode

algebra Z, see the proof of [Aral8, Lemma 5.4] or [FG04, Theorem 5.4].

The product, M ® N, has a Z-Mod structure with P € Z acting as
(PR1-1®7(P)). (2.2.10)

The twist by 7 is a matter of convention, but will prove convenient in later constructions

when we wish to glue together modules with respect to the Feigin—Frenkel centre.

Now consider V) ® V«, which has two commuting actions of V*¢(g), and so two actions of

Z. We can pass to the quotient
Va2 =V, ® Var 2V, @ Vi, (2.2.11)
I

by identifying the action of the Feigin—Frenkel centre on each Weyl module. The resulting
*“glued" bimodule still retains the two commuting actions of V*¢(g) coming from each

factor. In fact, V) o is naturally a module over

Voo = V" (g) <(®) Vie(g) (2.2.12)
3\8

the glued current algebra. Let us generalise this construction.

Definition 2.2.1. Let A € P* and s € N, we define the glued module V) ; as

V}HS2:V)\®V)\*®...®V;\2V,\®V)\*®...®V;\, (2213)
Z Z zZ DY DY R
s many s many

where X is equal to \* for even s, or A for odd s. The resulting module is an object in KL
with respect to the action of V"<(g) on each factor. We denote their contragredient duals

by D(Vis)-

Note that Vj , are vertex algebra objects for all values of s. In particular, we have vertex

algebra morphisms p; : V*#e(g) for i = 1,...,s, embedding V*<(g) into the ith factor of
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Vo,s. Suppose M is a module over V4, then the embeddings p; give it the structure of a

V*e(g)-module, by restriction.

We denote by KL‘;%( 0) be the category of Vj ; modules such that the action of V*¢(g) via
i gives the module a structure of an object in KL. By construction, the V) s are objects

of KL‘;%(Q).

Proposition 2.2.2 ([Aral&, Prop 8.6]). We have the following isomorphisms

. H]ODS,I(VAﬁ) 2 Vs s—1 and H]%S7S(V)\,S) = V), s—1 where the DS-reduction is performed

with respect to the action of V"<(g) on the first, and last factor respectively.

. H]%S,l(D(VAvs)) = D(Vy« s-1) and H]%&S(D(VX,S)) = D(Vy s—1) where the DS-reduction
is performed with respect to the action of V"e(g) on the first, and last factor respec-

tively.

The Weyl modules have the nice homological property of being projective as a U (t~1[g[t!]])
module and their contragredient duals are injective over U(t[g[t]). The glued modules retain

this property, since 3 acts freely, with respect to each action of V"<(g) on their factors.

Let KL*® be the subcategory of KLf@Z’(g) objects, M, with an increasing filtration,

O=MyCMyCMyC---CM, (2.2.14)
such that each successive quotient satisfies
M;/M;—1 =2V, , (2.2.15)

for some A € P*. Analogously, we define KLV to be the subcategory of KL‘E%(Q) objects,

N, equipped with a descending filtration
N=NgDN{ DNy D---D0, (2.2.16)

with successive quotients

N;i/Niy1 2 D(Vyy) , (2.2.17)
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for some \ € P*T.

Proposition 2.2.3. Let KL5¢ denote the subcategory of objects of KL‘;%(Q) that are simul-
taneously objects of KLS* and KL®Y. Any object M in KL>® is semijective over Ok, with

respect to each action, i.e., projective over U(t~1g[t™1]) and injective over U(tglt]).

As a result, for any N € KL,
H%—H(a—liga 9, M ® N) = 57:,0H%+0(a_ﬁg7gﬂ M ® N) ) (2218)

where we may use any of the s many, V"<(g) actions.

Proof. If M € KL, then it is a colimit of U (¢t~ 'g[t~!])-projective objects and a limit of

U (tg[t])-injective objects. The second statement follows from Theorem . O

2.2.3 Feigin—Frenkel gluing

The current subalgebras of V¢, are all at the critical level, so there could theoretically be
several copies of the Feigin—Frenkel centre present. This turns out to not be the case; in
fact the current subalgebras all share a common Feigin—Frenkel centre. This can be seen

from writing the index in terms of Weyl modules as in ()

This phenomenon of a shared FF centre is a chiral analogue of certain well-known Higgs
branch relations for theories of class S. We recall that for theory of type A, associated
to a UV curve with s punctures, there are s moment map operators ps subject to the
relation

Truf =Trps = =Trpt,  k=2,....n+1. (2.2.19)

More generally, for the D,, and E,, theories there are analogous relations corresponding to
the respective fundamental invariants of those algebras. These play a central role in the
construction of the Moore-Tachikawa varieties (Higgs branches of class S) by Ginzburg—

Kazhdan [GK].

It is not immediate that these Higgs branch relations lead to the identification of Feigin—

Frenkel centres. This is because the Feigin—Frenkel generators are related to, but not equal
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to, the corresponding Higgs branch operators under the SCFT/VOA correspondence.E To
illustrate, consider the case k = 2 of () The Higgs branch operators associated to the
quadratic fundamental invariant are related to the Segal-Sugawara operators, P ; but also

receive a nonzero contribution from the VOA stress-energy tensor 7' [Beel9],
P i=Trpl+aT, (2.2.20)

where « is a fixed (nonzero) constant computed in [Beel9] and P; ; is the quadratic Feigin-
-Frenkel generator associated to the ¢'th puncture. The Higgs branch relations force the
Tr ,u? to be equal and, importantly, there is a unique 80(070) multiplet (the four-dimensional
stress tensor multiplet)—so the operator 7' is the same for each i. As a result, the quadratic
generators of the Feigin-Frenkel centre are identified across different punctures, i.e., P11 =

PLQ =... Pl,s-

For higher order invariants, more information is required about the structure of the vertex
algebra. In the case of the cubic invariant of A,, there will be mixing between Higgs branch
operators (l§3 multiplets) and Cy( ) multiplets, but the uniqueness of the latter is not
apparent. Nevertheless, precisely for the class S theories, the known expression for the
Schur index indicates that the identification of the higher Feigin—Frenkel generators should
indeed hold.

As an abelian Lie algebra, Z has a semi-infinite structure and so can be used to define
semi-infinite cohomology with coefficients in some object of Z-Mod. Specifically, we will
have coefficients of the form M ® N for M, N € Z-Mod. The Feigin standard complex is

then given by

C*(Z,M@N)=MaNo /\2"5) , (2.2.21)
with BRST current .
tk g

Q(2) = (Py,ch)(2) (2.2.22)
i=1

whose zero mode @)(g) acts as a differential for the cochain complex.

5To be precise, the Feigin-Frenkel operators are identified with the corresponding Higgs branch operators
upon passing to the associated graded of the R filtration [BR1§].
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Definition 2.2.4. Given two modules V; and V5 in Z-Mod, we define Feigin-Frenkel (FF)

gluing as the semi-infinite cohomology

ViV =H2t(Z, V0 W). (2.2.23)

In the case when V7 and V3 are vertex algebras, Vi x Vs is also a vertex algebra (see Remark
h2.19).

As was the case with the gauge theory BRST problem, we have a vanishing theorem

here.

Theorem 2.2.5 (Theorem 9.10 of [Aral8]). Let M € Z-Mod be free as a Z.g) module,
then

HZY(Z,M)=0 for i<0.

This is a weaker conclusion than in the vanishing theorem , as the cohomology is
not necessarily concentrated in degree zero. Nevertheless for many purposes it is suffi-

cient E

We see that the BRST procedure enforces that the action of the Feigin—Frenkel centre on
V1 and V5, are identified; in some loose sense, this enforces the Higgs branch relations on
the Schur operators. This is very similar to a chiral version of the Hamiltonian reduction

procedure described in [GK].

2.2.4 Chiral differential operators and the cylinder

The starting point of the construction of [Aralg] is the cylinder VOA; from here one can
define the cap chiral algebra by Drinfel'd-Sokolov reduction and, as it turns out, construct
all genus zero VOAs by FF-gluing. The form of the cylinder algebra for A, theories was
identified concretely in [BPRvR15], but it was subsequently recognised in [Aral5] that
this reproduced a more general, and purely algebraic, construction that makes no explicit

reference to four dimensional physics. The construction is universal and depends only on

SFrom a derived perspective, truncating the cohomology at degree zero is somewhat unnatural. We will
return to this point in a later section.
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a choice of algebraic group G with Lie G = g. Here we take G to be the simply connected

Lie group.

Starting from such a G, the arc space G(O) is a scheme whose C-points are
G(O) == Homgu,/c(D,G) , (2.2.24)
where D is the formal disc D = Spf C[t]. More abstractly, G(O) represents the functor

SCh/(C — Set
(2.2.25)

S HomSch/C (S X ]D), G)

For a nice discussion of arc spaces, we point the reader to [Aral7).

The Lie algebra g = Lie(G) acts on the co-ordinate ring, C[G], via derivations, and, by
functoriality, this action lifts to one of g(O) = g[t] on C[G(O)]. Therefore, C[G(O)] has
the structure of a g[t] @ CK module where K acts as the level x € C. One can further
produce a g, module via induction, which defines the chiral differential operators (cdos) on
the simply connected, algebraic Lie group G [AGO02] (see also [GMS99, GMS01, GMS04,
MSV99)),

D&, = U(dx) ®u(ggack) CIG(O)] . (2.2.26)

We shall be interested in the chiral differential operators at the critical level, kK = k., and

we write

D' = Dgr. - (2.2.27)

At any level, cdos on G has the structure of a conformal vertex algebra [GMS01] with
central charge

coq = 2dim G | (2.2.28)

which matches with the central charge for a twice punctured sphere (see, e.g., [CDT13]).
Note that this central charge is positive, corresponding to a negative central charge for the
putative four-dimensional SCFT—which will be non-unitary. Again, this is expected since

the cylinder class S theory is not a good four-dimensional theory.
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By construction, Dgl is a vertex algebra object in KL and there is an embedding of the
universal affine vertex algebra 7y, : V"¢ (g) — Dgl. This vertex algebra homomorphism is
induced by the embedding of g as left invariant vector fields of G. The Lie algebra g is
also isomorphic to the right invariant vector fields of G and this embedding is also lifted to
a vertex algebra homomorphism 7g : VFe(g) — Dg‘, such that the images of 7y, and 7p

commute [AG02, Theorem 3.7].

The left and right embeddings of V*<(g) restrict to embeddings of the Feigin—Frenkel centre

3(g), and the two embeddings of the Feigin—Frenkel centre coincide [FG04],

m1(3(8)) = wr(3(0)) = (D )Ixel (2.2.29)

The vertex algebra DS is free as a module over U (¢~ 'g[t~1]) and cofree over U (tg[t]) [Aral§];
thus the conditions of Theorem are met and for any M € KL, the cohomology DghoM

is concentrated in degree zero, and furthermore we have the following result.

Theorem 2.2.6 ([AG02, Theorem 5.5]). Let M € KL, then we have that

HE (g, 0, D0 @ M) 2 HE T (§_,, 9, M @ D) = 5;0M . (2.2.30)

Pictorially, gluing the cylinder to any surface must be the identity operation. The above
theorem confirms that DcGh satisfies this condition. By abstract nonsense, Dg‘ must be the
unique object in KL that satisfies such a property.

2.2.5 Equivariant affine )V-algebras and the cap

Starting from the cylinder VOA, the cap algebra is recovered by completely reducing one
maximal puncture. Arakawa has named the resulting VOA the (principal) equivariant affine

W-algebra W (it is an affine analogue of the equivariant W-algebra of [Los07)),

Wq = HYo (D) . (2.2.31)
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In the usual way, this vertex algebra inherits a conformal structure from the cylinder, with
central charge

ew,, = dimg + kg + 24r4(p, p") , (2.2.32)
where p is half the sum of all positive roots and p¥ is the half sum of all positive co-

roots.

By Propositions 6.4 and 6.5 of [Aral8], W is free over U (t~1g[t~!]) and cofree over U (tg[t]),
and so is the g_,, module Wg®M. The cohomology when gauging is therefore concentrated

in degree zero.

Theorem 2.2.7 ([Aral&, Theorem 6.8]). Let M € KL,

HZ*(§-r,, 8, Wa ® M) = Hpg(M) . (2.2.33)

When M is a chiral algebra of class S, this corresponds, pictorially, to the fact that gluing a
cap and a surface together along a maximal puncture has the effect of closing the puncture,

i.e., performing principal DS reduction.

2.2.6 Inverse Hamiltonian reduction

Feigin—Frenkel gluing a cap onto another vertex algebra provides a sort of inverse to the
principal DS reduction functor; by FF gluing a cap onto a vertex algebra V € Z-Mod we
provide it with a V"¢(g) action, and it becomes a vertex algebra object in KL. The cap
is free over Z(gy [Aral8] and so Wg * — : Z-Mod — KL is a left-exact functor that acts,

almost, as an inverse to HI%S.

Theorem 2.2.8 ([Aral&, Theorem 9.11]). Let M € KL, then
M =H>1(2, Wg® H3g(M)) , (2.2.34)

i.e., the composition H2 T0(Z, Wg ® HP«(—)) is the identity functor on KL. Define the
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subcategory KLy C Z-Mod as the image, H%S (KL), then we have an equivalence of categories

Hps(-)
N
KL KLy . (2.2.35)
v

Wg*—

Remark 2.2.9. This almost-equivalence is reminiscent of a result of Riche [Ric17, Proposition
3.3.11]. Let g, be the regular locus inside g*, i.e., the locus whose G-stabiliser is of
dimension rk g. Then

K : QCth(gfeg) = Rep(3q) . (2.2.36)

where 3¢ is the group scheme of G-stabilisers over the principal Slodowy slice Sprin. The
functor x is Kostant—Whittaker reduction, the finite-dimensional Poisson counterpart of
Drinfel'd-Sokolov reduction. The inverse functor is provided by 34 symplectic reduction,((G x
Sprin) X —)///3c, as made precise in [GK]. The equivariant Slodowy-slice G X Spin is the

associated variety of Wg.

Instead of reducing by the action of the group scheme, one can reduce by the action of the
Lie algebroid. Roughly speaking FF-gluing a cap, Wg % — is a chiralisation of this latter

construction.

Asa " “corollary' li of Theorem , the cylinder VOA can be recovered from the equivariant

affine W-algebra by FF gluing two caps together,
WesWg=H21(Z, Wg o Wg) =D& . (2.2.37)
Indeed, there is an obvious generalisation to produce all Vg 5 by repeatedly gluing caps.

2.2.7 Constructing genus zero VOAs and their properties

From here there is a conceptually straightforward construction of all genus zero chiral al-

gebras of class S: one starts with Dgl and repeatedly applies W * — to add more maximal

"This is not quite a corollary since Arakawa's proof of Theorem requires establishing Wg * W &2
D", independently as Theorem 9.9 of [Aralg].
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punctures. The construction of [Aral8] takes a slightly different approach. Instead of per-
forming iterative FF-gluing of caps, one glues all caps together simultaneously—producing

Va,s in one step.

Definition 2.2.10. Take the chain complex

s—1 s—1
ce (@ Zi’i“,WS) =W*® (/\ °2°+°(5(g))> , (2.2.38)

i=1
for s > 1, with differential equal to Q(q), for

s—1
Q(z) =Y Q" (2),
=1
rkg
Q" (2) = D _(ni(Py) = i1 (T(P)))pghi () (2)

J=1

(2.2.39)

where p; represents the action of 3(g) on the i-th factor of W and pyp () acts on the i-th
factor of the ghost system A 2 7*(3(g)). The vertex algebra of a sphere of type g with s

maximal punctures is then defined to be

VG,l =W ’

s (2.2.40)
Ve, =H2 (P 2z we)

=1

Having reviewed their construction, let us continue on to establishing the various expected

properties of the Vg ;.

Each cap W has a morphism p; : V"¢(g), and V¢ s inherits these actions making it a vertex
algebra object in KL for each action u;. These are the chiral moment maps coming from the
maximal punctures on the UV curve. By construction, the Feigin—Frenkel centres of each

wi(V*e(g)) are identified and so Vg 5 is a module over V s and an object in KLZ,(g)-

Proposition 2.2.11 ([Aral&, Proposition 10.10]). The vertez algebras Vg s are objects in
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KL*®. As a result, the gluings,
VgsoVgy & H%Jro(jg\_ﬁg,g,VG,s ®Vy) (2.2.41)

are concentrated in degree zero. Here, the cohomology can be taken with respect to any of

the actions, p; fori=1,...s.
By way of a spectral sequence argument, one can then establish the following result.

Proposition 2.2.12 ([Aral8, Proposition 10.11]). We have the following isomorphism of

vertexr algebra objects in KL,
VG,S © VG’,S’ = VG’,8+3’—2 ) (2242)

where the gluing can be done with respect to any of the actions pu; on each vertex algebra.

Remark 2.2.13. Proposition also implies that gauging is associative, i.e.,

Vi ©(Vas, ©Vass) = (Vasi ©Vas,) © Vass = Vasi+satss—a - (2.2.43)

Furthermore, all cohomologies being concentrated in degree zero is compatible with the
expectation that in genus zero there is no residual gauge symmetry on the Higgs branch,

and so no Hall-Littlewood chiral ring beyond the Higgs chiral ring.
These genus zero vertex algebras also play nicely under FF-gluing.

Proposition 2.2.14 ([Aral8, Proposition 10.2]). For any s > 1, Vg s is free over Z(.g).

Therefore, for any s,s’ > 1,

Ves* Vo =H2(Z Vo, 0Vy) 2V, . (2.2.44)

As a special case, the above proposition implies that the simultaneous construction of the
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V¢,s agrees with the recursive definition, i.e.,

Vos 2H2(Z W e Va,) . (2.2.45)

Additionally, [Aralg, Proposition 10.3] grants the following isomorphism
Hps(Vas) = Ve - (2.2.46)

This establishes the various gluing properties that physics predicts. Next, let us look at

some of the structural results. We collect these into one proposition.

Proposition 2.2.15. The vertex algebras, Vg, are simple and conformal with central
charge

cs = (b—2(b—2)h")dimg — (b—2)rkg . (2.2.47)

Moreover, Vg s are of CFT type for s > 2 with characters

chy, = Z(¢,x1,%a,.-,xs) = ¥ (ch33) [] (2.2.48)

i.e., the characters agree with the Schur limit of the index.

An interesting feature of this construction is that it trivialises S-duality. The 4-move acts by
permuting the various chiral moment maps which amounts to permuting the caps involved
in the construction of Vg . The caps involved in the construction are identical and so

permuting these caps is an automorphism of the vertex algebra.

2.3 Examples of chiral algebras of class S

The preceding construction has been quite abstract, in this section we give examples of

Vg,s for the case G = SLo and s =0, 1,2, 3.

A number of these vertex algebras have appeared earlier in [BPRvR15, Aralg§]. The ex-

pression for Vg, ¢ is based on the free-field realisation technique of [BN23al.

53



2.3.1 The sphere

The vertex algebra Vg o was named the chiral universal centraliser in [Aralg§]. As a vertex

algebra, Vs, 0, is strongly generated by the fields S, X, Y, satisfying the null relation
SXX —YY —30YX +3Y0X — 30X0X — LXPX 1. (2.3.1)

The OPEs between strong generators are given by

3% (w "
S(2) X (w) ~ (i)f(w))z jﬁi} ,

3V (w w
S(2)Y (w) ~ (i{(w))Q (iX_)(w )

l(XX (w) (2.3.2)
V()X (w) ~ 2N
V()Y (w) ~ ‘%ff?)gw) X)W

Here, S generates a commutative vertex subalgebra, which should be identified with 3(sls)-

—with S the degree two generator.

The conformal vector is

To =2S(0Y X — YOX) +350X0X + 1Y 0’X — 0SY X + 3050X X — 20Y0Y .
2.3.3

+30Y9°X — 30°X0°X — 30°YOX — LO°X0X — L0°Y X — ;0" XX .

with central charge ¢ = 26, which agrees with (R.2.6)). The conformal weights of S, X,Y

under this choice of conformal vector are
Asg=2, Ax=-1, Ay =0. (2.3.4)

Note that Vgi, o is not positively graded by conformal weight, nor is it conical since the

A = 0 subspace is infinite dimensional.
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2.3.2 The cap

The cap VOA, Vg, 1 = Wgy, is strongly generated by S, X, Y, for a = +, —, subject to
the relation

XYY, + L0X°X, = 1. (2.3.5)

The OPEs between strong generators is given by

3 ya ya
SEX"w) = o
§Ya SXa
SEYw) = s Ty
(2.3.6)
a b %(XaXb)
Y(2) X" (w) = e —w
1 b abl c 1 c 1 ayb
. LXext) edl(yex, - 1oxcx,) — loxex
Y (Z)Yb(w):_?z_w)g 2( QZ_w ) 4 )

The cap has a single chiral moment map p; : V~2(slz) — Wgr,. The image of the strong

generators e, h, f of V~2(sly) under this map is given by

3 1
e =SXTXt Yty " — %(X+ay+ —0XTY™") - ZaX+E)X+ - gX+62X+ ,

hy=—25X Xt 42y v+ + g()ray+ +XTOY T —0X YT —aXtY ")

1
+ gaXmX— + ZX+62X— ,

1
fi=—SX X +Y Y + g(X_aY_ —9XY7) + zax—ax— + XX

(2.3.7)

Here e; = pi(e), h1 = pi(h), and f1 = p1(f). The X and Y* should be thought of as

highest weight states in the Vy—; Weyl module.

Similarly, the stress tensor 77 is composite and takes the form

3

1
Ty = -S(0X"X,) +0Y"Y, + ;(aX“aYa) + §82X“8Xa + 6ai"xaxa : (2.3.8)

with central charge ¢; = 16. The conformal weights are
Ag=2, Axe=-3, Aya=3. (2.3.9)

-2
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Just like the sphere, W is not conical, nor is it positively graded by weight—again con-

firming the expectation that the class S-theory on ¥; is not a good SCFT.

2.3.3 The cylinder

The cylinder VOA, Vygi, 2 already has a presentation in terms of strong generators and
relations since it is isomorphic to Dg’f;Q. Expressions for the strong generators of Dgl for
any affine algebraic group can be found via results of [GMSO01]. For SLj, the cylinder
vertex algebra is strongly generated by X, for a,b = +,—, and ey, hy, fr, with the null
relation

Xt X o xtx L. (2.3.10)

X++ X+—
X+t X

The er,, hr, f1 are strong generators of a V ~2(sly) current subalgebra and the X, are strong
generators of a commutative subalgebra, with the X,; being highest weight states of Vo @V,

acted on by ey, hr, fL.

It is useful to collect the ey, hyr, f1, into a matrix J¢ ; with
N
Jr, = ) , (2.3.11)

This vertex algebra has an obvious chiral moment map py, : V~2(sly) — Dg’iz whose image
is the V~2(sly) subalgebra generated by the er,hr, fr. Morally, one should think of this

moment map as arising from the embedding of sly as left invariant vector fields.

The embedding of sls as right invariant vector fields gives rise to another, chiral moment

map, gV 2(sly) — Dg’ﬁ2 with image generated by
J& oy =J¢ g XXy 4+ 2X0X y — 08X 0X g . (2.3.12)

The images of py and pr commute and one can verify that the Feigin—Frenkel centres

agree.
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The conformal vector is again composite, now being given by
Ty = J®0X Xy + 02 XP X, 4+ 20X PO X o, . (2.3.13)
The conformal weights are
Aoy =Ay =Ap, =1, Ax, =0. (2.3.14)
While Dgfﬁ2 is not conical it is Z>p-graded by conformal weight.

2.3.4 The trinion

The class S theory corresponding to 33 is a theory of free-hypermultiplets valued in the
representation N = T*(V; @ V1) 2 V1 @ V1 ® V; of sly. The corresponding vertex algebra

V51, 3 should therefore be the 3y system on T%V; @ V;.

Instead, we give an equivalent presentation of Vg, 3 as a vertex algebra strongly generated

by Xape with a, b, c = +, —, subject to no relations. The singular OPEs are

€ad€bebefl
Xop X0~ 2207 7 2.3.15
abc<Ndef (Z — w) ( )
where the ¢, are Levi-Civita symbols.
The three chiral moment maps u1, 2 and p3 have images generated by
Jla b= 660/ 6dd/*X—acd)(bc’d’ 5
J2a b= 6Cc’€dd/Xcach/bd/ s (2316)

Jg b= ECCIEdd/XcdaXc’d’b 5
and one can verify that these all commute and have a shared Feigin—Frenkel centre.

The conformal vector is

T3 = Xgp0X%¢ (2.3.17)

with Ay, . = 1/2. Therefore, Vg, 3 is conical and positively graded and so is of CFT
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type—reflecting the fact that the class S theory on X3 is a good SCFT.
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Chapter 3

The chiral algebras of twisted class

S

It's the black wind through the maples,

and the difficulty of getting tenure...

Hera Lindsay Bird

Lost Scrolls
3.1 Theories of twisted class S
We extend our review of the theories of class S to incorporate twisted punctures with
non-simply laced flavour symmetries.

We start by introducing twisted punctures in Section . Including these punctures allows
for new moves in the web of generalised S-duality and we discuss these in Section .
In Section , we review the computation of the Schur indices of theories with twisted

punctures, following [LPR14].

In Section , we lay out our expectations for the associated vertex algebras of the SCFTs
that feature twisted punctures. This will also serve as a sort of overview of Section @,

where set out to construct these vertex algebras.

Before, moving on to the construction, we divert our attention briefly, in Section m to
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Lie algebra (g,) | Order of twist | Twisted algebra (g:)

aon, 7]27 Cn
Aon—1 Z/QZ bn
On 7.)27. Cnot
04 Z/3Z g2
¢ 7.)27. 1

Table 3.1: Simply laced Lie algebras g, and their corresponding twisted algebras g; for
different choices of outer automorphism twist. The Lie algebras as, and 0,, both give rise
to Lie algebras of type ¢ after a twist. The corresponding theories nevertheless have subtle
differences—see, e.g., [CDT14, BP20]. The algebra 94 has a non-abelian outer automor-
phism group isomorphic to S3, the symmetric group on three elements.

comment on residual gauge symmetries. Unlike in the untwisted case, the genus of the curve
is no longer the sole indicator of whether the Higgs branch is enhanced or not. We shall see
that certain genus zero theories with twisted punctures have residual gauge symmetry at a

generic point of their Higgs branch.

Throughout this chapter, we shall use the subscripts u and ¢ to distinguish between various
objects related to the untwisted simply laced Lie algebra g,, and its non-simply laced, twisted
counterpart g;. For example, KL,, will denote the Kazhdan-Lusztig category for gy, ., while

KL; will be the Kazhdan-Lusztig category for g ..

3.1.1 Twisted punctures

Definition 3.1.1. Let o € Out(gy,), be a non-trivial element. Then we define

o= "(g7) (3.1.1)

where © denotes the Langlands dual.

Note that o is always a graph automorphism of the Dynkin diagram of g,. The associated
twisted algebra, g; will always be non-simply laced. The pairs of untwisted algebras and

their twisted counterparts can be found in Table @

The setting of twisted class S is an extension of the usual class S formalism to incorporate
non-simply laced flavour and gauge symmetries. We refine the compactification data to a
punctured Riemann surface with a local system of Dynkin diagrams. The resulting four-

dimensional theory is an N'= 2 SCFT.
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Any such local system is specified by giving a homomorphism.

m1(2) — Out(gy) , (3.1.2)

from the fundamental group of the UV curve, X, to the outer automorphisms of g,. Con-
cretely, this gives rise to two types of regular punctures: untwisted punctures labelled by
1 € Out(gy,) and twisted punctures labelled by some o € Out(g,). It will be helpful to think

of twisted punctures as appearing in pairs connected by twist-lines.

The untwisted punctures are precisely those described in Section . As with the un-
twisted case, there are a myriad of possible punctures but (in the terminology of [CDT154])
we restrict our attention to the case of regular, typical, twisted punctures. Such twisted
punctures are labelled by nilpotent orbits in g,. There are, again, two special orbits in g;:
the maximal puncture labelled by 0, and the empty puncture labelled by the principal orbit

of g;.

The maximal twisted punctures carries g; flavour symmetry, while submaximal twisted
punctures proceed analogously to the untwisted case. Starting from a maximal twisted
puncture, one can reduce the flavour symmetry by performing nilpotent Higgsing by giving

a nilpotent vacuum expectation value to the moment map.

Importantly, unlike in the untwisted case, the empty twisted puncture (labelled by the
principal nilpotent orbit in g;) remains a nontrivial puncture (as it still carries monodromy
on the UV curve; in terms of twist lines there is still a point where the relevant twist line

ends, which distinguishes the point from a generic point on the UV curve).

We restrict to genus zero, so as not to worry about twist lines that can wrap cycles. We
denote a curve with m maximal punctures and n pairs of maximal twisted punctures by
Cmn. Any such curve is uniquely fixed (up to choice of complex structures) by specifying

m and n.

In the presence of twist lines, curves can be glued together along either twisted or untwisted

maximal punctures. Surfaces with only maximal punctures—like C,, ,—can be built from
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gluing copies of Cy,1, the mized trinion, and X3 the untwisted trinion. A full classification
of trinions with (not necessarily maximal) twisted punctulresE have also been classified by

Chacaltana, Distler, Tachikawa and Trimm [CDT15a, CDT15b].

3.1.2 Dualities with twisted punctures

The complex structures of C,,, once again correspond to gauge couplings—though this
time we have two types of gauge symmetries. However, there is some ambiguity as to which
gauge couplings correspond to which groups. To illustrate this, let us consider the curve

Co,1. This curve has only one complex structure: .

Looking at weak coupling limits gives two types of pants decompositions (see Figure @)
In one frame, Cy; is built by gluing C; ; and a untwisted three punctured sphere ¥3, along
untwisted punctures. In the other frame, C2 1 decomposes into two copies of Cq 1 glued along
a twisted puncture. The action of S-duality relates these two frames, i.e., it relates a weakly
coupled g; gauge theory to a strongly coupled g, gauge theory and vice versa. The complex
structure 7, therefore, can be thought of as a g; or g, gauge coupling depending on which
frame we are working in. Whether to think of 7 as a g, or g; gauge coupling depends on

which open chart of Mo,zx we work in.

Figure 3.1: Two degeneration limits of C2 1. Note that the gluing on the left is untwisted but
twisted on the right. We mark untwisted punctures by unfilled circles and twisted punctures
by filled circles. We connect the twisted punctures by dashed twist-lines for clarity.

The S-duality move that swaps between these two frames is a variant of the 4-move we
described in Section . We call this variant the ut-move, since the gauge group changes
across the frames. The 4-move still acts on a curve Cy, ,, permuting any four identical

punctures—all untwisted or twisted.

Though we shall not look at higher genus curves, the ab-move is particular interesting in

!The case of 94 trinions with non-abelian twists has recently been explored in [DES21]], but we restrict
our attention to the abelian case
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the presence of twist lines. Take, for instance, the untwisted trinion »3. We can gauge the
diagonal action of G, by self-gluing two punctures on the sphere together. However, we
may also gauge with respect to a diagonal action of G, that has been twisted by an outer
automorphism, i.e., G, acts as g® o(g) for (a lift of) an outer automorphism o. Pictorially,
we represent this by a cylinder, with a twist line around it, connecting the punctures. This

results in a genus one curve with a twist line running around the a-cycle of the torus.

Now, consider, the curve C1 ;. Again, we can construct a gauge theory, by self-gluing the
two twisted punctures together. This time, we gauge with respect to the diagonal action of
G. This results in a genus one curve with a twist line running along the b-cycle. These two
theories are known to be S-dual, and the associated UV curves are related by the action of
the ab-move. The two degeneration limits are shown in Figure @ Unlike the untwisted
case, the ab-move changes the rank of the gauge group, as well as moving from strong to

weak coupling.

Figure 3.2: The ab-move swapping between two decompositions of the once punctured torus
with a twist line.

3.1.3 The superconformal index for twisted class S

The Macdonald limit (and so Schur limit by further specialisation) of the superconformal
index in the twisted setting was studied for type Dy theories in [LPR14]. According to
the analysis there, the presence of an single twisted puncture restricts the sum over P+
to representations that are invariant under the action of the outer automorphism twist,
which is equivalent to summing over the set of highest weight representations of the twisted
algebra g; (which we denote by Pt+). The overall structure constants are also modified,
though they are expressed in terms of the same building blocks. For a surface of genus g

with m untwisted punctures and 2n, Zs-twisted punctures such that no twist lines wrap
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any cycles, the index then takes the form

m s %)X (Xi 2.2 (q;y; A ’
)= Y [T Kulgs xi)xa (xi) T2 Ke(a3y5)x (y)_

(Ku(X)x(x )22 Hmt2n (3.1.3)

I(Q7X17 5 Xm, Y1, .-
AP,

Here x; are fugacities for untwisted punctures and y; are fugacities for the twisted ones. We
have adopted notation where A denotes an integral dominant weight in P;" and its image
t(\) € P under the embedding () The characters of G, that appear are at weights

which are invariant under the action of o.

For the non-abelian twist of Dy, a TQFT form of the index was proposed in [DES21)]. This
agrees with the heuristics we have so far observed—namely the sum is restricted to the
integral dominant weights of D4 that are invariant under the action of the twists that are

present.

One can also rewrite the twisted index in terms of Weyl modules as

m 2n
I(Q;Xh s Xmy Y- 7}’2n) = Z (Ch 5’;)2292”(H0h Li)f) < H ch Vf\) ’ (314)
i=1 j=1

APt

where we use the superscripts u,t to distinguish between the (simple quotients of) Weyl

modules over each algebra.

It may be worth remarking that all structure constants are of " “untwisted type'' in spite
of the K factors and Schur functions of twisted type. This means that when closing a
twisted puncture, the specialised puncture factor in the numerator won't cancel against a
corresponding factor in the denominator. This is the index-level incarnation of the fact
that empty twisted punctures are nontrivial and cannot be completely erased from the UV

curve.

3.1.4 Chiral algebras of twisted class S at genus zero

Applying the dictionary of Section to twisted class S, produces a new family of vertex
algebras, labelled by a simply laced Lie algebra g, and a punctured sphere with twisted

punctures. We shall call these vertex algebras, mized vertex algebras as they mix together
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the action of g, and g; via the Feigin—Frenkel centre.

Given Cp, p, t.e€., P! with m maximal untwisted punctures and n pairs of maximal twisted
punctures, we wish to construct a vertex algebra V,, ,, that is independent of the complex
structures of C,, . For each untwisted puncture, we expect a chiral moment map (vertex
algebra morphism) fe,; : V*(gy) = Vi pn, making V,, , a vertex algebra object in KLy,
with respect to p,; for i =1,...,m. Similarly, for each twisted puncture, we have a chiral
moment map fu; : V" (g;) = Vo n making V,,,, a vertex algebra object in KL; for each

j=1,...,2n. The images of all moment maps commute.

The action of the 4-move implies that all moment maps (of the same type) are on an equal
footing, i.e., there is an S,, x S, permutation symmetry that acts on V,,,. We may still

Higgs a maximal untwisted puncture to remove it from the UV curve, and so

Vinoin 2 Hpg(u, Vi) for m > 2 (3.1.5)

where the reduction is done with respect to any of the untwisted moment maps. The case

m = 1 will require some care, as we shall see in later sections.

Given two curves Cp, , and Cp 4, we can glue them together via untwisted or twisted punc-
tures. At the level of vertex algebras, this corresponds to semi-infinite cohomology and so

we expect the following isomorphisms

w‘g

Vm,n oy, V .(au,—ﬁg » Bus Vm,n ® Vp,q) = Vm+p—2,q+n )

N
(3.1.6)
N

p.q
o/~
p.q (gt,—l-iga dt, Vm,n & Vp,q) = Vm+p,q+n—1 .

H
H

w‘g

Vm,n Y ,

Since all punctures (of the same type) are on an equal footing, the gluing can be per-
formed with respect to any diagonal chiral moment map of /g\u,_,{ , Or ﬁt,_ng on the two

surfaces.

Furthermore, we expect that V,, ,, are simple and conformal, with central charge [CDT13]

Cmpn = 2ndim g; + (m — 2k, (m + 2n — 2)) dim g, — (m + 2n — 2)rk g, . (3.1.7)
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3.1.5 Residual gauge symmetry for twisted class S

In the case of untwisted class S, all genus zero theories had pure Higgs branches and so
the vertex algebra Vg s were purely bosonic and all gluings were concentrated in degree

Zero.

For twisted theories, the situation is a bit more complicated. To illustrate, we consider
the Do theory. Due to the accidental isomorphism 05 = sly X slo, we can recast theories
of type Dy into sly theories. An untwisted puncture in the Dy theory becomes a pair of
untwisted punctures in the A; theory. The twisted subalgebra is just slo, and a full twisted
puncture becomes a conventional (untwisted) puncture of the a; theory. In particular, the
Spin(4) gauge theory with N; = 4 flavours can be engineered via compactification of the Ds
theory on a sphere two maximal and two minimal twisted punctures. Equivalently, it can be
described as the A; theory compactified on a genus-one surface with two punctures. Thus,
the A; surface is a double cover of the Dy surface, treating the twist lines as branch cuts.
The Dy theory has residual gauge symmetry at a generic point of the Higgs branch—despite
being superficially of genus zero. From the A; perspective, this residual gauge symmetry
is straightforward—since this surface has genus one. We will see that this phenomenon is

characteristic of the twisted theories.

Somewhat more generally, for SO(2n) superconformal QCD—realised in type D,, using a
sphere with four twisted punctures (two minimal and two maximal)—a generic point of the
Higgs branch has precisely a residual U (1) gauge symmetry [APS97]. For n > 3, we have no
more accidental isomorphisms and so there is not an immediate relation to a higher genus
class § theory like the Do case. We can, nevertheless, observe that the presence of outer
automorphism twist lines means that there is a natural covering space for the UV curve
(thought of as the space where the corresponding local system of Dynkin diagrams has no
monodromy), and in this example the covering space has genus one. We believe that in
the general case of twisted class S theories, it is precisely the value of the genus (zero or
nonzero) of this covering space that controls whether a theory in question has a pure or an

enhanced Higgs branch.
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More generally, we take away the lesson that in the presence of twisted punctures, genus
zero theories should perhaps nevertheless be thought of as more analogous to higher-genus
untwisted theories than genus-zero untwisted theories. The genus of this covering space, the
Riemann—Hurwitz genus, is zero only if the number of twisted punctures does not exceed

two.

The corresponding vertex algebras, V,, , must therefore contain fermionic states for n > 1.
Therefore, any gluing of punctures that introduces additional twisted punctures must not

be concentrated in degree zero—so as to account for the fermionic states.

3.2 Constructing mixed vertex algebras

In this section we shall provide a construction of the V,, , and provide partial results on

gluing isomorphisms. We shall restrict our construction to the case where o has order two

though the results of Sections and hold for any non-trivial o.

To establish properties regarding untwisted and twisted gluing, we need to examine the
decomposition of the mixed vertex algebras into semijective objects in both twisted and
untwisted KL categories. This will depend, in a crucial way, on the structure of critical-
level Weyl modules over g ., as modules over the untwisted Feigin-Frenkel centre 3(g,).

We discuss how these two centres are related in Section .

In Section we will prove the following technical result, the proof of which will require a
technical digression involving opers. Let A € P, be an integral dominant weight of g;, and
let t(\) € P be defined as in () Let Opﬁ‘Gt denote the G opers on I of coweight \

with regular singularity and trivial monodromy.

Theorem. The restriction of the closed immersion Oprg,(D*) < Oprg, (D) to the sub-

scheme OpéGt factors as
OPéGt — OP%GU — OpLGu(]D)X) ;

with each map a closed immersion. Equivalently, the natural surjection Fun Oprg, (D*) —
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(Fun Opig, (D*))s, restricts to a surjection
Fun OpéGu — (Fun Op/L\Gu)g ,

on the quotient algebras.
A review of opers on curves can be found in Appendix @

In Section B.2.3, we introduce a class of (gu, 9¢) bimodules, which look like Weyl modules of
each algebra sewn together by identifying the action of 3(g,). We shall also establish some

homological properties of these modules under semi-infinite cohomology.

Our construction of the mixed trinion Vi can be found in Section . We also prove
a number of the expected properties from Section . In particular, we establish that

closing the untwisted puncture via DS-reduction recovers Dg‘t.

Theorem. We have the following isomorphism:
Hpg(u, Vi) 2D (3.2.1)

s0 D§M € KLy 0.

The proof of this theorem will be delayed to Section , since it requires some additional
machinery. This result will be key in establishing our uniqueness result of Proposition
. A number of the results in this subsection shall serve as the base case for inductive

arguments establishing properties for the V, .

Before extending our construction to the full family of V,, , we shall find it useful to prove
a number of technical lemmas regarding the commutativity of the various homological
operations we have introduced. In Section m we establish the conditions, under which,

we can swap the orders of the various cohomologies.

With this result in hand we can extend our construction to the V,, ,, in Section . There
is an obvious analogue of the construction of [Aral§] for the V,, 1, but such a construction

fails if we wish to introduce more punctures. For n > 1, we will be forced to define the
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Vo n recursively, by picking a particular pants decomposition of the surface Cy, . To finish

this section we shall provide partial results on the gluing isomorphisms.

In Section , we shall discuss the action of generalised S-duality on the V,, ,, and show
that the 4-moves of Section act as automorphisms. This justifies that our recursive

definition of the V,, ,, is well-defined.

To end, we shall consider the case when o is not of order two in Section and discuss

the obstructions that arise in this case.

3.2.1 The (un)twisted Feigin—Frenkel centre

The V,, 5, should simultaneously be vertex algebra objects in KL,, and in KL, so they will
admit actions of both Feigin—Frenkel centres. The construction of Vg s suggests that the
action of these Feigin—Frenkel centres should be identified, but of course the twisted and
untwisted centres are not isomorphic. It will be useful, therefore, to first examine how the

actions of these two Feigin—Frenkel centres interact with each other.

Let o € Out(g,) be an outer automorphism (not necessarily of order two), g7 be the o-

invariant subalgebra of g,, and g; = (g%)". There exists a projection [FSS96],

To by — by, (322)

from the Cartan subalgebra of g, to that of g; that projects to elements that are invari-
ant under o. The outer automorphism lifts to an automorphism of U(g,) and we have a

surjection

Z(U(gu)) = Z(U(g1)) , (3.2.3)

which is just the projection of the centre of U(g,) to its (o)-coinvariants, i.e., we set the
o-non-invariant generators of Z(g,) to zero. The action of o can be lifted to g, ., according

to o(xt™) = o(x)t™. This gives a projection

Zy = 2,2 (Z4)o (3.2.4)
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gu | 3(8u) | g | 3(a¢)

Aon—1 PQ,Pg,...,PQn bn Pz,P4,...,P2n
aon PQ,Pg,...,P2n+1 Cn PQ,P4,...,P2n
Dn Pn;PQ,P4,...,Pn,.‘.,PQn,Q Cn—1 PQ,P4,...,P2n,2
¢ Py, P5, P, Py, Py, P1o fa Py, B, Py, P1a
04 Py, Py, Py, P 92 Py, P

Table 3.2: The monomial generators of the Feigin—Frenkel centres of the untwisted algebra
g, and its associated twisted algebra g;. Note that algebras of type 0,, have two generators
of degree n, only one of which is invariant under the outer automorphism. The last row
shows the Z/3Z twist for 04; neither generator of degree four is invariant under this outer
automorphism.

where (Z,), is the space of (o)-coinvariants of the untwisted Feigin-Frenkel centre. The

projection 7, also induces an embedding of weight spaces
L: Pt — PF (3.2.5)

with image ¢(P;") equal to the subset of elements in P,/ that are invariant under the action
of 0. For example if g, = 0, and g; = ¢,—1 (so o is the Z/27Z outer automorphism), we
have

L()\l, )\2, ey )\nfl) = ()\1, )\2, N ,)\nfl, )\nfl) . (3.2.6)

In [LPR14], this was indicated with the notation A’ = A\. We will abuse notation and use
A for both the weight in P;” and its image under ¢ : P;* < P;f. For example, V' denotes
the finite dimensional irreducible representation of g; with highest weight A, and V' is the

finite dimensional irreducible representation of g, with highest weight ().

Given an object M € Z,-Mod, we can lift it to a module in Z,-Mod via the restriction of
scalars associated to Z, —» Z;, giving a functor Z;-Mod — Z,-Mod. Even in the case where
there are no untwisted punctures, the algebra must still have a Z,-Mod structure. This is
because any such algebra should be obtained via DS reduction of a vertex algebra object in

KL,, and the DS reduction functor lands in Z,-Mod.

Similarly to the FF glued modules of Section , we would like to define mixed modules

that are glued via the action of Z, on Vi, and VY, for some A € P and X' € P;". Such a
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glued module should have the form

¥ ® Vi (3.2.7)
3x

While it is obvious that Z; modules can be lifted to Z, modules by way of the projection
Zy, — 24, it is not so obvious that this should hold for the quotient modules 3%, which are
more complicated. There is also a question of which values of A and ) result in non-trivial

modules.

Altogether, there is room for doubt over whether the suggested tensor product over 3%, is
non-trivial. To show that the restriction of scalars descends compatibly to the quotients,

we will have to use the machinery of opers.

3.2.2 Opers with monodromy

Much of the machinery below is introduced in a more pedagogical manner in Section .
For the sake of brevity we shall refer to results and definitions in the appendix, rather than

reproducing them in full.

By the Feigin—Frenkel isomorphism, the Feigin—Frenkel centre and its mode algebra are

related to “G,-opers on the disc and punctured disc:

3(gu) = Oprg, (D) , 2y, = Opig, (D) , (3.2.8)

and analogously for 3(g¢) and Z;. An “G-oper has a representative,
rk gy
V=0 +p1+ Y vgt)pa (3.2.9)

i=1

where vy, € C[t] for D and vy, € C((t)) for D*. Here py, are the basis from Remark .
The outer automorphism acts naturally on the py,, leaving pg, invariant. We can identify

the fixed points of this action with

(Opre,)” =2 Opeg, » (3.2.10)
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for D and D*. The closed immersion Opzg,(D*) = (Opg,)? < Oprg, is precisely the

projection to coinvariants in ()

To proceed, we want to show that we can lift 35 modules, for A € Pft 3% modules for
some X € P;f. Recall, from Appendix the subspace, Opi‘G of opers on D with regular
singularity and no monodromy—specified by a choice of coweight. The main theorem of

[FG10], reproduced in the appendix as Theorem , tells us that
35 = Fun Op’L\Gt , and 3} = Fun Opi‘/Gu : (3.2.11)

Setting all weights to zero recovers the usual spaces Opzg, (D) and Oprg, (D) in the Feigin-

-Frenkel isomorphism.

We would like to construct a morphism Fun Op/L\/Gu — Fun Opi‘Gt along which we can
restrict scalars. Equivalently, we would like to find a morphism, Op? a, Op%/Gu, on the

spaces.

We also have natural closed immersions Op? a, < Oprg, (D*) and Opru — Oprg, (D),
along with the inclusion of fixed points, Opzg, (D*) < Oprg, (D). We would like to show
that these morphisms are all compatible, i.e., the composition Op%Gt — Oprg, (D*) —

Oprg, (D*) factors via Op%la.

Theorem 3.2.1. Let A € P, and also denote its image under the inclusion v : P;" — P}

by A€ Pf.

The restriction of the inclusion of fixed points, Oprg, (D*) < Oprg, (D*) to the subscheme
OpéGt factors as

Opégt — Opégu — OpLGu(DX) )

with each map a closed immersion. Equivalently, the natural surjection Fun Oprg, (D*) —

(Fun Oprg, (D*))s, restricts to a surjection

Fun Op%Gu — (Fun Op%Gu)a )
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on the quotient algebras.

Note that the theorem requires N = (), i.e., this restriction of scalars is only non-trivial

when the untwisted weight X\ € P/ is outer-automorphism invariant.
Corollary 3.2.2. The restriction of scalars 33 —mod — 3\ —mod is fully faithful.
The rest of this subsection will be devoted to the proof of this theorem.

To start with, we recall the Miura transforms (|A.4.20)

P Miura © Conn(QP*)r gy px — Oprg, (D),
(3.2.12)

f4t Miura Conn(th)LHth — Oprg, (D),

where Conn(Q2°)Ly, px is the space of Cartan connections. Fixing dominant integral

weights A € P;” and X € P

u I’

we denote by, Conn(pr)é/Ht and Conn(Q+)} 1.» the space
of Cartan connections with residue at zero equal to A\ and X, respectively. The Miura

transform, restricted to these subspaces, gives a surjection (see Proposition )

N . w N ~
Moy Miura - CODH(QP )LHu - OpLGu = Specﬁ/ 5

(3.2.13)
,ug\yMiura : Conn(th)%Ht —» Opi‘Gt >~ Spech .
The functions on these spaces are easy to describe:
Fun Conn(Qp“)%/H = Clujm|i=1,...,1kgy, m € Z<o] ,
h (3.2.14)
FunConn(th)i‘Ht = Clujm |i=1,...,vkge, m € Zo] .
The C-points of Conn(Qp“)%/Hu are connections of the form
A/
Vi =0+ + > gt (3.2.15)

m<0

with u,, € b, and Wim = (@, uy,) for simple coroots ). There is a natural action of o
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on this subspace, given by

/
o - vu = 815 + U()\ ) —+ Z O'(Um)timil . (3216)
t m<0

From the above expression, it is clear to see that this action is free unless \’ is o-invariant.
Suppose ) is o-invariant, then it is equal to ¢(\) for some X\ € Pt+. We continue to abuse
notation and use A to denote ¢(\) € P;F. Now, a connection in Conn(Qp“)élH is o-invariant

if the u, € (“hy)7 =2 (h,)? =2 Lh;. Therefore, we have an isomorphism

Conn(QPt)%Ht = (Conn(QPu)%HU)U 7 (3.2.17)

A

and an inclusion Conn(Q7*)7 .

< Conn(2P+) .- On functions, we can realise the space

of coinvariants as

(Fun Conn(Qp“)%HJ =Claipli=1,...,tkgy n € Z] , (3.2.18)
where
1
i = > 0 (uin) . (3.2.19)
@ 2,

These are precisely the linear combinations of the generators of Fun Conn () . that are

invariant under (o).

The fibres of the Miura transforms from (), :ui);,Miura and M?,Miura’ are principal N,
and LN, torsors over Op? G and Op? G, respectively. Therefore, we can identify Opﬁ‘Gu and
Op? @, with the LN, orbit space of 22 Conn ()} ¢, and the L N; orbit space of Conn ()7 e

On functions, the infinitesimal action of the unipotent groups is given by the action of the

vector fields () .

Assembling, we have the diagram,

Fun Opg;, —— Fun Conn(Q?)*
B lﬂc, (3.2.20)

NS

Fun Op%Gt <" (Fun Conn(92°)*),
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where the horizontal morphisms are the natural inclusions of “n, = n, and ‘n; = (n,)°
invariants and the vertical arrow is the natural projection to the o-coinvariants. We can
define a map 7 that, we claim, makes the diagram commute via m = 7, o ¢. The map 7 is

precisely the projection of Fun Opé‘;u to its (o) coinvariants.
Our Theorem , is therefore equivalent to the claim that 7 is surjective. Indeed, surjec-

tivity of 7 is precisely the statement that 3} — 3% is a surjection.

Proof of Theorem . Recall that in Section , we described the action of ‘n, = n,

on Fun Conn(#+) " in terms of the vector fields, or screening charges:

rkg
Zaﬂ > Tip- N (3.2.21)
n>\; tj,—n—1
fori=1,...,1k gy, aj; the Cartan matrix of g,, and z;, determined by

> wint " =Exp (— > mmmtm) . (3.2.22)

n<0 m>0

The action of “n; = (n,)? on the space of coinvariants can be realised through the sym-

metrised screening charges
1
Vilhi +1] = Tl - Z 41, (3.2.23)
o'€{o

fori=1,...,rkg;.

A polynomial P € Fun Conn(Qp)%H is in the space of invariants, (Fun Conn(2?))™  if

and only if it is in the intersection of the kernels of the screening charges, i.e.

Vi + 1P =0,  fori=1,...,rkgy . (3.2.24)

L

Similarly, a polynomial P € (Fun Conn(2?)3 ., ), in the space of coinvariants is an nJ = “n,

LHu
invariant, if and only if it lies in the intersection of the kernels of the symmetrised screening

charges Vi[\; +1].
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It is, therefore, sufficient to show that if P is a representative of a o-coinvariant and lies in
the intersection of the kernels of the symmetrised screening charges, then it must lie in the
intersection of the kernels of the n,, screening charges. We make the following observations.
Suppose P lies in the space of coinvariants, then we can realise it as P € Clu;,|i =

1,...,rtkgs; n < 0]. Therefore,

apza<3p>, (3.2.25)

aum 6uj7n

for any o’ € (o). As a result, we must have that
o' (Vi[Ni +1]P) = o' (Vi]\i + 1)) P . (3.2.26)

Suppose P lies in the intersection of kernels of the symmetrised screening charges. First,

we consider the case where o has order two. Now, we have that
Vil + 1P = L(Vi[\i + 1] + o(Vi[\;s + 1])) P =0, (3.2.27)
but from (), this means that
o (Vi[\i +1]P) = =V;[\i + 1] P . (3.2.28)

We shall now show that for any P in the space of coinvariants, the polynomial V;[\; + 1] P,

cannot have eigenvalue —1 under o.

The image of P under the ¢th screening charge is

oP
VzD\z + 1]P = Z Tin—\; * <aﬂau]nl> s (3.2.29)
n>\; ’
and we have
oP
o (Vilhi +11P) = > o(@i) o, - Gig——] (3.2.30)
n>\; J—n—1

where we have made use of the fact that the derivatives of P and the highest weight, A, are
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invariant under o. The outer automorphism does not act with eigenvalue —1 on any simple

root and so we must have that.

O'(V;[)\Z + 1]P) % —V;[)\l + 1]P , (3.2.31)

unless both are identically zero, as desired.

Now we address the Z/3Z case of g, = 04 and g = g2. A nf invariant P must satisfy the

following:

Vil + 1+ VM + 1+ Vi +1)P =0, Ve +1P=0. (3.2.32)

We have, once more, made use of the fact that the derivatives of P and the weight \ are

invariant under the action of Z3. Expanding the first requirement, we have that

oP oP
Z (xl,n—)\l + X3 n—x T+ 134,71—)\1-) <_ +2 > =0. (3.2.33)
= Oug, _n—1 Ouj —p—1
n>A1
Once again, this can only hold if each screening charge individually acts as zero. O

3.2.3 Mixed modules over the (un)twisted Feigin—Frenkel centre

Having proven our main technical result, let us move to defining and establishing various

properties of the putative mixed modules.
In what follows we will make use of the following technical proposition.

Proposition 3.2.3. Let N be a 3§—module. Then N is an object of KLy, i.e., there exists
some M € KL, such that
N = H)(u, M) . (3.2.34)

Proof. We prove this by explicitly constructing an object in KL, whose DS reduction is
isomorphic to N as an object of 34-mod. From Theorem , the 3% action can be lifted

to an action of 3Y.

77



Let VY be the Weyl module of g, ., with highest weight ¢(\). The tensor product,
Vi ®u N, (3.2.35)

is well-defined, where the 3§ action on N is from the lift. By construction, this is an object
in KL, with respect to the g, .. action on the untwisted Weyl module. Let us consider its
DS reduction,

H]%S(U’VK ®3§f N) :

Note that by Proposition ([FG10, Theorem 2]) H34(V,) 2 3, is manifestly free over

31 Combining this with the Kiinneth theorem, we have that
Hpg(u, V§ @ N) 234 @;u N2 N | (3.2.36)

as desired. O

Definition 3.2.4. Let A € P, be an integral dominant weight and let V¥ be the associated
Weyl module of gy ... We also use A € P,/ to denote the image of the embedding ¢ : PtJr —

Pf—let V¥ be the associated Weyl module of gy .. For m € N, we define,

Vil = Vin 2V = (IO VE @ oV e(VieVh) (3237
X E3Y EBY 3x X E3N
m copies

where X is equal to A for odd m and A\* otherwise. We denote their contragredient duals by

D(V,,)-

The mixed modules V;‘\tm are projective over U(t 'g;[t7!] and their contragredient duals
are injective over U(tg:[t]). The analogous statement for g, does not hold. To see this,
note that the modes P; _,, which are not invariant under o, must act as zero on the lowest

degree subspace. Hence, V¥ are not torsion-free—and so cannot be projective—over
’ A,m
b

U(tilgu[til])'
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An immediate application of Proposition gives the following isomorphisms

H]%S(u,Vf\‘fm) = Vi{’fm_l , form>1, (32.38)
Hpg(u, D(VY,,)) = D(VY,, 1), form >1,

m—1

Proposition 3.2.5. Suppose N € Z,—Mod has an increasing filtration 0 = Nog C Ny C

-+ C N with successive quotients
N;i/Ni—1 = VY (3.2.39)

for some X\ € P and a fized m for all quotients. Then M = H%H)(ZU,WU ® N) € KL,

has an increasing filtration, 0 C Mg C My C --- C M whose successive quotients satisfy
Mi/M;y = VY L (3.2.40)

Proof. Note that since Vﬁtm € KL,,0 by (), and so each quotient N;/N;_; is an object
of KL, 0. Applying [Aral8, Theorem 9.14], we have that M has an increasing filtration

with successive quotients,
M; /My 2 HT (2, W, ® N;/N;i_q) 2 HZ (2, W, @ VY, , (3.2.41)

for some A € P;. Now by Theorem , H> (2, W, ® Vi) = VYL and we have

the desired result. O

Remark 3.2.6. Dualising the statement and proof of Proposition implies the following.
Suppose that, N € Z,—Mod has a decreasing filtration N = Ny D N; D --- D 0 with
successive quotients, N;/Nj;1 = D(Vﬁ’fm) Then M = H%JFO(Zu,Wu ® N) € KL, has a

decreasing filtration, with successive quotients,

M; /M1 = D(VY,) . (3.2.42)
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3.2.4 The mixed trinion

In this subsection, we construct the first member of the V,, ,, family, V1 ;. We shall prove
that our candidate for V1 1 possesses a number of desirable properties and also establish a

uniqueness result.

The vertex algebra Vi1 corresponds to P! with two g: punctures and one g, puncture.
The Schur index of Vg1, computed via [LPR14] matches the character of D", the chiral
differential operators on GtE. Thinking back to our cartoon where FF-gluing W, adds an
untwisted puncture, there is a reasonably natural guess for V1 1: FF-glue an untwisted cap

(W) to a twisted cylinder (D§"). As such, we propose

Vii=W, %, D" =H210(2,, W, @ D) . (3.2.43)

Theorem 3.2.7. We have the following isomorphism:
Hpg(u, Vi) = D", (3.2.44)

s0 D§M € KLy 0.

This is the statement that the mixed vertex algebra we have constructed can indeed be
identified with the UV curve Cy 1,1 insofar as closing the maximal untwisted puncture results
in the cylinder of type g;. The proof of the above theorem is not entirely straightforward
because HY¢(u, H?0(Z,, W, ® —)) is not necessarily the identity on a generic object in
Z,-Mod. The full proof of the the theorem is relegated to Subsection ; here we provide

a sketch.

The proof proceeds by first establishing that at the level of formal characters,

ch H)g(u, Vi,1)x < ch fof,\] . (3.2.45)

2Strictly speaking, the characters of the cylinder and cap VOAs don't exist due to infinite-dimensional
weight spaces. However, one can proceed formally by working term-by-term in the sum over integral dom-
inant weights; this can be understood from a vertex algebra perspective as considering the decomposition
into blocks belonging to KL* for each A € P*.
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In words, each weight space (with fixed generalised eigenvalue under the action of the
Feigin-Frenkel zero modes) of HY¢(u, V1) is of dimension less than or equal to that of
the corresponding weight space of th. This is argued by leveraging the fact that th has
an increasing filtration with subquotients VR’Q, which are in KL, o by Proposition . We
show that passing (in a careful sense) to the associated graded of this filtration can only
increase the dimensions of the weight spaces, and on the associated graded the composition
of FF gluing and DS reduction acts as the identity; this leads to () Since D" is
simple, we need only construct a non-zero homomorphism D§"* — HY ¢ (u, V1 1) to establish
the isomorphism. The construction of such a homomorphism follows an adaptation of the

proof of Theorem 9.9 of [Aral8] to this twisted setting.

Theorem will serve as the foundation which lets us build up a number of other impor-

tant properties of the genus zero mixed vertex algebras.

Proposition 3.2.8. The mized trinion V11 has an ascending filtration 0 C Ny C Ny C

-+ C V11 with successive quotients

Ni/Ni—1 = Vi . (3.2.46)

Similarly, V1,1 has a descending filtration Vi1 D Mo D My D --- D 0 with successive

quotients,

M;/M;1 = D(VYY) . (3.2.47)

Therefore, V11 is semijective in KLy, with respect to the ., actions of either twisted

puncture.

Proof. The cylinder D§" has an increasing filtration [FGO04],

0=NoCNiCNpC..., N=JN;=D{", (3.2.48)

81



whose successive quotients take the form
Ni/Ni-1 2 V3 @y Vi = Vi (3.2.49)

for some A € P, and A\* the dual representation. Therefore Proposition applies and

V11 has an increasing filtration
O=MyCM CMpC..., M=|JM;=Vyy, (3.2.50)

with successive quotients M;/M; 1 = Vf{tl, for some A € Pt+. We have already argued that

the mixed modules are projective over U (¢t ~1g:[t71]), so V1 1 is projective over U (t~1g;[t1]).

To establish that Vi ; has an ascending filtration and so is injective over U (tg.[t]), we can

repeat the same argument after taking (D§")° and using the identification
(D§") = D"

O]

We observe that Vi is not semijective in KL,. Intuitively, this is because the extra
generators of the Feigin—Frenkel centre must be set to zero when glued to the twisted
cylinder, and these relations spoil projectivity. More precisely, we consider the vacuum
vector [0). Any state element P; _,|0) can be written as ¢|0) for some ¢ € U(t~lg,[t™!])
a regular element. However, the modes P; _,,, which are not invariant under o, must act
as zero. As there are regular elements in U(¢t~'g,[t1]) which act as zero, V11 cannot be

torsion free—so cannot be projective—over U(t~tg,[t~1]).

The semijectivity of V1 1 in KL; is in accordance with our expectations regarding enhanced
Higgs branches/residual gauge symmetries. The twisted class S theories for surfaces Cp, 1
formed by gluing C;; along twisted punctures have no residual gauge symmetry, so the
gauge theory gluing Vi1 o; — should be concentrated in cohomological degree zero. We
have just established this for our Vi algebra by showing semijectivity in KL;. On the

other hand, gluing along the untwisted puncture may lead to a higher-genus local system
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covering space (cf. Section ), which falls in line with our observation that Vi i is not

semijective in KL,,.

Having shown that V1 1 has the expected properties under gluing, we move on to some more
intrinsic properties of V1 1. Though our construction ensures that Vi is a vertex algebra,
it is not at all clear that it has the properties expected from four-dimensional unitarity.
Namely, V1,1 must be a conical, conformal vertex algebra with negative central charge. Let

us first address the issue of the character.

Proposition 3.2.9. The character of the vertex algebra V11 is given by

Vi =3 Ku(a)xa(a)Ki(b1)x7 (b1)Ki(b2) X7 (ba)

z KulOA () |

where a is a Gy, fugacity and the b; are Gy fugacities. Furthermore, V11 is conical.

Proof. By Theorem , we have that
Hpg(u, Vi) = D" .

As a graded vector space Vi1 = @/\GPJ V1,1,), since it is a colimit of objects in KL;. By

Proposition 8.4 of [Aral§].
chVi )= ") ch LychHYg(u, Vi1y) -

From the structure of the cylinder, we know that H%¢(u, Vi) is zero unless it is in the

image of + : P;" < P}. Therefore, we have
chViy= ") ch L4chV} st Vi .

Recalling Section and using the appendix of [LP15], we can rewrite this in the notation

of IC-factors, giving the desired result.

To show that Vi is conical, note that the cylinder, D§" | is non-negatively graded and
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A(p¥) = 0 since it is integral dominant, with equality only for A = 0. This establishes that
V1,1 is non-negatively graded by weight. The character ch V119 =1+ ... since L§_, and

DC A—o are both conical. Thus the mixed trinion is conical. O

Proposition 3.2.10. The vertex algebra V11 is conformal with central charge
cv,, = 2dim g; + dimg, — rkg, — 24p, - p,, -

Proof. This proof relies on ideas from the proof of Proposition 10.7 of [Aralg], but with
modifications. The vertex algebras W, D", and the ghost system A 2 7*(3(gy)) are all
conformal, and we denote their respective conformal vectors by ww, wper and wyy,. Clearly,
W = ww + Wpeh + wyp, is a conformal vector for the complex, W, ® D¢ @ A 2 G(gw))-

We write

—_ Z Lmzfmfl ,

meZ

for the associated field.

By Lemma 9.4 of [Aralg], the Feigin-Frenkel centre of W, is preserved by the action of

L, for m > —1. For a generator P; € 3(gu),

8132 (d + 1 Gt? z)
+ Z J+1 4 (w)’

where qm

; is some homogeneous state in 3(gy) with weight d; — j + 2. Let us denote by P,

the image of P, under the projection 3(g,) — 3(g:). One then has

~ ~ 42 .
- 0B (d;+1)P M2 (—nip
+( +1) +Z(( i

z—w  (z—w)? z—w)j“qj

where we think of P as a state in 3(g;) C D". Let Q(z) be the BRST differential for

Feigin—Frenkel gluing. We have that

7 (pw (6") = ppen (T(g"))) i

kg d
Q0)(2) Z

&M+
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where pw : 3(gu) — W, and Ppeh 3(gu) — D" denote the action of the untwisted
Feigin-Frenkel centres on W, and on D§" via the projection to 3(g;). Unfortunately, w does
not descend directly to cohomology, so correction terms must be introduced to construct a

putative conformal vector in cohomology.

If the right hand side of the above equation equals Q) x for some state x, then w = w + x
is Q-closed and defines a vector in V1 1. to show that such a x exists, it is sufficient to show

that (j}(i) = ﬂ(q]@).

The action of L, for m > —1 on 3(g,) is given by the action of Der(O) on Oprg, (D), which
correspond to infinitesimal coordinate changes on the formal disc [Fre07]. The action of the
group Aut(O) on opers is given in () and we note that it intertwines the action the

action of o. Therefore, cj}(i) = w(qj(.i)). Thus w € Vq .

Now, we wish to show that @ is a conformal vector. The vector x can be written as

X:rz

k gu
i=1

di+2

> P (pw @ ppgr @ pan)(zi5)

j=2

for some z;; € 3(gu) @3(gu) @ A\ 2 T°(3(gu)). Therefore, W) = w; for i = 0,1, so the OPEs
agree up to the quadratic pole. Since V7 1 is non-negatively graded by Proposition ,
Lemma 3.1.2 of [Fre07] says that all we need to check is that wzw = ¢/2/0) for some
c € C., i.e., the quartic pole in the Vir x Vir OPE is a multiple of the identity. However,

as V1,1 is conical, the only operator of dimension zero that can appear in the OPE is the

identity. Thus, w is a conformal vector of V7 ;.

Finally, we wish to show that @ and w have the same central charge in cohomology. Note
that Vi1 = ZAEN Vﬁl with dim Vﬁl < oo and is conical—so Vi is of CFT type. As a
result, Lemma 4.1 of [Mor2(] applies. Namely, for any x € V11, if A(z) > 2 and zgyw = 0

then z € img(71>(V171).

Now suppose w’ was some other conformal vector in V7 1, such that wzl) agrees with w(y).

Then, we have that (w' — @)W = 0, so W' — & = dz for some x € Vi1 with A = 1. Since

Wi = wzi) for : = 0,1, we must have that dx ;1) = 0 so x is central in Vﬁfl. Repeating
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the argument with (w — &)1y and using the Borcherds identities, leads us to conclude that

Oz = 0, so w is unique.

Under DS reduction, HY¢(u, Vi1) & D" and the image of & gives rise to a conformal
vector in D§". By a similar argument as the preceding, one can show that this is the unique
conformal vector which agrees with the grading on D" (see the proof of Proposition 10.7
in [Aral8]). The central charge of D§" is ¢pen = 2dim gy and the central charge of the image

of w is related to cy, ; by
Cpeh = Cvyy + rk g, — dimg,, + 24py - py |

under DS reduction, see Remark . O

Proposition 3.2.11. The vertex algebra V11 is simple.

Proof. We proceed by contradiction. Suppose V1 1 contained some proper Vi j-submodule
V ¢ Vi1. From Theorem , we have that the DS reduction Opg(u, V) ¢ H}(u, Vi1) =

D§" must also be a submodule by functoriality.

However, D" is simple [AM21, Corollary 9.3] and so H3g(u, V) = 0 or H3s(u, V) = Dgh.
Now from Theorem , we can invert this DS reduction by FF-gluing a cap. Therefore, we
should have that V = H%“'O(Zu, W,®0)=0orV = H%JFO(ZU, W, ®Dsh) = V1,1—which

is a contradiction. O

With these propositions established, we know that V11 obeys many of the desirable prop-
erties one would expect from the chiral algebra associated to C; 1. However, we have not
explicitly tied this object to the construction of [BLLT15]. One might reasonably wonder
whether the object we have constructed is necessarily the mixed trinion of class §. We have

the following uniqueness result.

Proposition 3.2.12. The mized trinion V11 is the unique vertex algebra object in KL,
such that

Hpg(u, Vi) = D5 .
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Proof. This follows easily from the fact that D" is an object in KL, . Suppose V € KL,
is a vertex algebra object such that HYq(u,V) = D§". Then it must be the case that
V Wu*thCh, since Wu*u(H]%S(u, —)) is the identity in KL,,. However, V11 = Wu*quh,

so indeed V = V7 5. O

Suppose now that \71,1 is the vertex algebra canonically associated to Ci; via the four-
dimensional construction of [BLLT15]. This must be a vertex algebra object in KL, since it
has an action of V"¢(g,) coming from the untwisted puncture and inherits a suitable grading
from the physical grading of superconformal quantum numbers. Performing untwisted DS

reduction on \71,1 must produce the cylinder Cp 1, which has corresponding vertex algebra

th.a Proposition then applies, so we have

Vii =W, %, D 2V, . (3.2.51)

Thus far, this has been fairly abstract. Let us provide some concrete observations and
predictions. We have argued that the mixed trinion V1 1, as we have constructed it, is the
unique vertex algebra that could be associated to C1 1. Let us consider the vertex algebra
associated to Cy, which is a genus zero surface with one maximal untwisted puncture,
one maximal twisted puncture and an empty twisted puncture. The corresponding vertex

algebra is V= HY (¢, V11).

The surface Cy does correspond to a physical SCFT, and in particular, when g, = 9, and
gt = ¢p—1 the corresponding SCFT is a free hypermultiplet theory (hence the subscript f).
In this case, V should be a symplectic boson vertex algebra with a commuting gy ., X
¢, subalgebra. Unfortunately, this does not hold for the other choices of g, (at generic

rank).

There is, however, another example that has appeared in recent literature. The even rank

A-type Lie algebras g,, = a9, have, as their twisted algebras, g, = ¢,—unlike the 9,, theories,

3To see that one must recover the cylinder upon DS reduction, even though this doesn't correspond to a
physical four-dimensional theory, one may proceed as follows. The physical vertex algebra V1,1 must satisfy
Vi1 0: Vi 1. Performing DS reduction, we must have H%S(u, Vi10:Vi1) 2 V1. By means of a spectral
sequence argument (we delay this until the next subsection) one can rearrange the order of cohomologies to
show HYg(u, Vi1)or Vi1 = Vi1, which implies that H®g(u, Vi.1) = D§".
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these SCFTs have global Witten anomalies. For g, = a2 and g; = ¢; = a1, the SCFT is the
Tx theory of [BLN17]. This was identified as the rank-two Hy F-theory SCFT [BMPR20],
and the class S realisation was given in [BP2(]. In the Eg and As,41 cases, these vertex

algebras remain unstudied to the best of our knowledge.

It is perhaps of technical interest to note that V; should be conical, despite the fact that
it is obtained from the Feigin—Frenkel gluing of just two caps. In the cases where the
two caps are of the same type, one obtains the cylinder Dﬁh or th’—neither of which are

conical.

The identification of V; with a symplectic boson system for g, = 0, leads to a curious

observation.

Conjecture 3.2.13. Let SB(0,) be the symplectic boson system associated to the *bifun-
damental'' representation of 0, X ¢,_1. In other words, SB(d,) = D (Vy, x Vi, _,), where

Va,, and Vi, | are defining representations of 9, and ¢,—1. Then,

Wisp(2n—2) = Hpg(u, SB(2n)) - (3.2.52)

Indeed, this presents an alternate hypothetical construction for the equivariant affine WW-

algebra of C), type.

3.2.5 Rearrangement lemmas

Having established many key properties of the mixed trinion, which is the building block of
the twisted chiral algebras of class S, we would like to extend our results to other genus zero,
mixed vertex algebras. As we increase the number of twisted and untwisted punctures, we
are naturally required to consider how the various types of gluing interact with each other. It
will be useful in this endeavour to have a collection of rearrangement lemmas that establish

the extent to which the various gluings associate.

In this subsection we establish a series of technical rearrangement lemmas concerning the

interplay between the various cohomological operations we have defined thus far. The proofs
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of these lemmas, which are modifications of proofs of [Aralg], rely heavily on the machinery
of spectral sequences. The reader who is uninterested in highly technical details may wish
to skip this section and pick up in the following, where we extend our construction to the

vertex algebras associated to Cp, .

Since we are interested in the interplay of gluings, we will need to consider objects that have
multiple, commuting g, actions. To be completely precise, one should decorate each o in
this section with subscripts to indicate the diagonal action that is being gauged. This would
be somewhat cumbersome, so we will overload the o notation and rely on context to make
the relevant actions clear. Our lemmas only ever concern two such actions, for the sake of
argument we call them the left and right actions. Suppose U, V, W are in KL, such that V'
has two actions of g, and V is in KL with respect to both actions. One should then interpret
the symbol Uo(V o) as the semi-infinite cohomology HZ +* (B—ry» 05 UgHZ** (-k, 8, V®
W)), where the diagonal action of g, is with respect to the right g, action on V" and the
sole g, action on W. Similarly, the diagonal action on U ® H%""(@,Kg,g, V @ W) is with
respect to the sole g, action on U and the g, action on V o W induced by the left action

on V.

Similarly, for objects U, V,W € Z-Mod, we will denote the iterated Feigin—Frenkel gluing,
H> (2, U @ H2 T2,V @ W)) by U  (V * W). Here one should take the action on
V ® W for the first cohomology and on U ® V' for the second—recall that the Z-action on

V descends to the cohomology V « W.

Hereafter, it should be understood that when there are many KL, or KL, actions present,
we choose two such actions for the purposes of the rearrangement lemmas. For the chiral
algebras of class S (both untwisted and twisted), all the moment maps (from the same
algebra) are related by discrete automorphisms, and one can make such a choice without

loss of generality.

First, we recast some of the results of Aral8] as rearrangement lemmas. The following

results hold for any simple Lie algebra g.

Lemma 3.2.14. Let U, V,W be vertex algebra objects in KL such that U is semijective in
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KL and V' has two KL actions, then
Uo(VoW)=(UoV)oW .

Proof. This proof is similar to the proof of Theorem 10.11 of [Aral&]. Consider the bicom-
plex
cr=UavVeWa \z™@o AT (@),

with the differential d; acting on U ® V and the first A\ 2 7*(g) and dy acting on V @ W
and the second A %“(g). It is easy to see that dids + dod; = 0, so the total complex
Cct, = D, n—p C™" is a cochain complex with the differential d = di + (—1)"ds [Wei94].

There are two spectral sequences converging to the total cohomology of (Cio, d)

(ERT=H2 (g, 0. U®H2 (G 0, VO W),

HEPT=HY (g 0, WeHZ (G ., 0,URV)).

By Theorem , the cohomologies H§+p(@_,.C > 8, U®—) are concentrated in degree zero,
so both spectral sequences collapse at the second page. The only nonzero entries are IEg’q

and I[Eg’o. Thus, we have
0,p p,0 D
B0 = 1 Ey” = HY (Ciot, d)

which gives the desired isomorphism. O

The vertex algebra objects Vg s are semijective in KL so the composition of vertex algebras
is associative—in the untwisted setting. Furthermore, gauging at genus zero is always

concentrated in degree zero. In the twisted setting, we will have to work harder.
We have a similar result for Feigin—Frenkel gluing.

Lemma 3.2.15. Suppose My, Ma, M3 € Z-Mod and suppose that My and Ms are free over
Z(<O)' Then
Ml*(MQ*Mg) = (Ml*MQ)*Mg .
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Proof. This proof is similar to the proof of Proposition 10.2 of [Aral8]. Consider the

bicomplex

C* =M @M M /\ 2G0@) @\ 2 G60)

with differentials dis acting on M; ® My ® /\%""(3(9)) and ds3 acting on My ® M3 ®
A 27°(3(g)). The two differentials anticommute, so we can form the total complex C?, =
@p +g=n CP1 with total differential dio; = d12 + (—1)%des. There are two spectral sequences

converging to the total cohomology Hy,: of Cio, whose second pages are given by

By = HE (2, My @ B (2,0, 0 M)

nEyt =H7 (2, (2, M © My) © M) .

By Theorem , the entries FY? in either spectral sequence vanish if p < 0 or ¢ < 0.

Thus, we have ES = E% | which gives the isomorphism
HY (Ciops dior) T HZTO(Z, Mi@HZ (2, My@Ms)) 2 HZ T0(Z, HZ (2, M@ M;)®Ms)

as desired. O

Since the algebras V¢, are free over Z. (Proposition 10.2 of [Aral§]), the above lemma
applies, and Feigin—Frenkel gluing *,, is associative. We hold off on analysing associativity
of x for the twisted algebras, since it is a challenge to understand the twisted FF gluing

between two mixed vertex algebras.
We next consider the combination of the two gluing operations, * and o.

Lemma 3.2.16. Suppose U € Z-Mod, V € KL and W € KL. Additionally, suppose U is

free over Z( gy and W is semijective in KL. Then we have the isomorphism
Usx(VoW)=Z(UxV)oW .
Proof. Consider the bicomplex

cr=UaVeWAT"G0) e />0,
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with differentials dy acting on Vo W @ @A\ 2+*(g) and d; actingon U®V @ A 27 (3(g)).

The differentials anticommute, so we can form the total complex C, = @ CP4 with

m-+n=p
differential dyo; = dg + (—1)%d;. There are two spectral sequences converging to the total
cohomology:

1By =HZ(Z,U @ HE (g, 0,V 0 W) ,

(3.2.53)
By =Hz2"P@G ., g H2 (Z, U V)@ W).

The cohomology H? TP(Z, U®—) vanishes for p < 0 and the cohomology H%‘Fp(@,,{g, g,—®
W) is concentrated in degree zero. Thus both spectral sequences will collapse at the second

page and we have

]Eg’o = HES’O = Htoot(ctota dtot) 5 (3'2'54)

as desired. ]

Now we come to the rearrangement of twisted and untwisted gluing. We again adopt our

conventions of using subscripts v and ¢ to denote objects associated to g, or g;.

The results here are more limited; the obvious generalisations of the above spectral se-
quence arguments often fail in the twisted setting, since the mixed vertex algebras are not
semijective in KL,. Nevertheless, we will manage to demonstrate that some properties of
the gluing of twisted algebras are as we expect. To start with, we have a result for the

interchange of twisted and untwisted gauging.

Lemma 3.2.17. Suppose Vi is in KL,, Vo is in KL, and in KL;, and V3 is in KL;.

Furthermore, suppose that V3 is semijective for g.. Then, we have the isomorphism
Vioy (Vaor V) = (Vioy Vo) o Vs .

Proof. As usual, the proof is via a spectral sequence, but with the new feature that coho-

mology is not necessarily concentrated in degree zero. We define the bicomplex

Cri=VioheoVe \27@E) o N\ 206 ,
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with the differential d,, and d; acting on V} @ Vo @ A %*"(@u) and Vo @ Vo ® A\ %‘“(@t)
respectively. The differentials anticommute, so we can form the total complex C}; =
@p g=m CP1 with the differential dyy = dy, + (—1)Pd;. There are two spectral sequences

converging to the total cohomology, given by

[qu = H%+p(ﬁu,_ﬁg7gu7 V1 & H%+p(gt,—l€gagt7 ‘/2 & VE’))) )

HEY = H2 (8 ey, 06 H2 TGy, 00s VI @ Vo) @ V3)

Since V3 satisfies the conditions of Theorem , the spectral sequences will collapse on
the second page and jEYY = 0 for ¢ # 0 and ;7 E5? = 0 for p # 0. Thus we have the
isomorphism

m __ m,0 __ 0,m
Hig = 1By = ky .

O]

We can also show that the twisted gauging and untwisted Feigin—Frenkel gluing are nicely

compatible,

Lemma 3.2.18. Let M be an object of Z,-Mod such that it is free over Z, <o and let W be
semijective in KL;. Suppose, V is a verter algebra object in KLy, then we have the following
isomorphism.

M sy (Vo W)= (M*, V)o, W .
Proof. Let CP? be the bicomplex
Crt=MeVeoWa N\ T7;)) e \ 26 ,

with the differentials d; acting on M @V & A 2+*(3(gy)) and dg actingon Vo WA H(Gy).
The differentials d; and dy anticommute, so we can form the total complex Cj5y = @, =, CP

with the total differential dyos = d; + (—1)Pdy. There are two spectral sequences converging
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to the total cohomology, given by

1By = H3HP(2,, M @ H3 (Gt 00,V @ W))

nEY =HE (g ey, 00, H2 TUZ,, MR V)Q W) .

The cohomology H%J“q(@t,fng»gt, — ® W) is concentrated in degree zero, so both spectral

sequence will collapse in the second page. Thus, we have the isomorphism

0 0,0 0,0
Hii(Crot, diot) = 1E57 = 1By .

3.2.6 Mixed vertex algebras at genus zero

We first give a construction of the vertex algebras associated to spheres with only one pair
of twisted punctures: C,, 1 before considering the more general case. As in the untwisted
case, one could provide a recursive definition of V,, 1 by repeatedly gluing untwisted caps.
We elect, instead, to perform a simultaneous gluing and will show the equivalence between

the two definitions later on.

Definition 3.2.19. We define the family of mixed vertex algebras, V,, 1, by

V()’l = DtCh s
(3.2.55)
Vm,l = HO(Cm,la Qm) )
where Cp, 1 is the chain complex
I m
m1=Wor oD@ (/\ 2*'(5(%))) , (3.2.56)
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with differential

Qm(Z) _ Z Qi,i+1 7
i=1
= (3.2.57)
QY (2) =+ (pi(P)) = pis1(T(P))))pgn, () : (2) .
j=1

Here p;, for ¢ < m denotes the action of 3(g,) on the ith factor of W,, and py,+1 denotes

the action of 3(g,) on D§* along the projection Z, — Z;.

Pictorially, this is the simultaneous FF-gluing of m caps to the twisted cylinder. The vertex
algebras V,, 1 live entirely in cohomological degree zero (no fermions) since we manually
restrict to the zeroth cohomology—this is compatible with our expectation on the basis of
residual gauge symmetries (see Section . We will later reinforce this by showing that

the cohomology of V,, 1 o; V,, 1 is concentrated in degree zero.

The naive generalisation of our previous construction to the full family V,, , would be to

take the zeroth cohomology of

Chin =W © Vi ® (A °2°+‘<3<gu>>)m . (3.2.58)

However, this cannot be quite right. Indeed, the vertex algebras associated to Cp, , for
n > 1 should be supported outside of cohomological degree zero in order to express the
presence of enhanced Higgs branches for the corresponding SCFTs. On the other hand, the
vertex algebras, W, and Vg, 2, lie in degree zero, and the truncation to zeroth cohomology
means this will persist. One should also expect to see a Z /27 symmetry exchanging positive
and negative cohomological degree (a shadow of CPT in four dimensions). However, the
untwisted caps W, are projective over Z, () and as a consequence the cohomology vanishes
in negative degree. Therefore, even if we do not truncate to degree zero, the resulting vertex

algebra would not have the right form.

Instead, we will define the vertex algebras V,, ,,, by going to some (non-canonically chosen)
duality frame, ¢.e., pants decomposition. We will choose to recursively consider the decom-

position of Cp41,n—1 as Cp1,n—1 and Cp 1 connected by an untwisted cylinder. This gives
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us our definition:

Vin =Vi1104 Vippin-1 . (3.2.59)

As defined, it is not clear whether the V,, , are independent of our choice of duality frame
in which to define them. For example, we could have also obtained this from a twisted
gluing of V1 to V,,—1,. This is just the vertex algebra version of generalised S-duality,
which is now not made manifest by our definition () In the following sections, we

shall work to establish how our definitions fit in with the duality web of class S.

3.2.7 Properties of the genus zero mixed vertex algebras

First, we will check that our definition of the mixed vertex algebras with n = 1 agrees with
?
the recursive definition, V1 = Wy, *, V;,_11. We have an extension of Lemma 10.1 of

Arakawa to the twisted case.
Lemma 3.2.20. For m > 1, we have that
(i) H"(Cpny1, Q) 2 0 forn <0,
(11) Wy %y Vip11 = Vi1 .
Proof. This proof is largely adapted from the proof of Lemma 10.1 in [Aral8]. We proceed
by induction on m. For the base case, m = 1, (i) is true, since W, is projective over Z,(<0)-

The second statement is true by definition, since Vi1 = W *, Dgh. Next, suppose m > 1

and consider the bicomplex
C** =W, @011 ® /\ 3 Glau) (3.2.60)

with differentials Q?g;l acting on Cy,—1,1 and d acting on W, ® Cp,—11 @ A\ 2TG(ga))-
The two differentials anticommute and the corresponding total complex is just C,, 1 with

differential Q%). There is a spectral sequence, with second page

EP? =HZ (2, W, ® H(Cpn1,1, Q) (3.2.61)
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which converges to the total cohomology. By the inductive assumption, H?(Cp, 1, E’S)_ D)
vanishes for ¢ < 0 and W, %, — is left exact. Therefore, ES? = 0 for p,q < 0, so

H"(Cy 1, Q?é)) vanishes for n < 0. Moreover, the entry Eg 0 is stable and we have
ES’O - Wu *q Vm—l,l = HO(Cm,la Q%)) = Vm,l ’ (3262)

as desired. ]
Next, we examine the case of untwisted DS reduction.

Proposition 3.2.21. The mized vertex algebras V,,, are objects in KL, o. In particular,
form>=0andn>1,

H%S(ua Vm—i—l,n) = Vm,n . (3.2.63)

Proof. We proceed by double induction on m and n, first examining the base case of n =1
and arbitrary m. Note that for m = 0, H%S(u, Vi) = D§" from Theorem . Next,

suppose m > 0; for any object in KL, H)¢(u, —) and W, o, — are isomorphic. Therefore,
Hpg(u, Vii11) 2 Wy 0, Vi1 2 Wy 04 (Wy sy Vi) (3.2.64)

where we have used Lemma . Consider the bicomplex
C* =W, @ V1 @W,® \ T G(0u) @ A\ 2 (Gu,s,) » (3.2.65)

with differential dy acting on W, @ Vi, 1 ® A %‘“(@u,_,{g) and d; acting on V,, 1 ® W, ®
A 27°(3(gu)). The two differentials anticommute, so we form the total complex CJ!, =
@p g=n CP4, with total differential dyoy = dg + (—1)%d;. There are two spectral sequences

converging to the total cohomology, given by

Iqu = H%+p(zu7 Wu &® H%+q(ﬁu7_ﬁg7 Gu, Vm71 X Wu)) ;

IIqu = H%er(gu,—mgagua H%Jrq(zw Wu & Vm,l) ® Wu) .

The cohomology, H2 T* (Bu,—rg> Bus —®W,,) is concentrated in degree zero, and H> (2, W,®
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—) vanishes for ¢ < 0. Therefore, both spectral sequences collapse at the second page and
we have

W, *y (Wu Oy Vm,l) = IESO = IIESO =W, o, (Wu * Vm,l) .

Therefore,
H%S(“? Vm—i—l,l) =Wy (Wu Oy Vm,l) =Wy, *y (H%,g(U, Vm,l) , (3.2.66)

but Wy, %y (H¢(u, V1)) & Vi1 by Theorem 9.11 of [Aralg].

Now suppose n > 1. Then, we have that
HY 6 (1, Ving1n) = Wy 0y (Vi1 0y Vinion_1) - (3.2.67)

Since, W, is semijective in KL,, Lemma applies and we have that

H%S(W Vm+1,n) =Viioy (Wy 04 Vm+2,n—1) )
= V171 Oy (H?)S(ua Vm+2,n—1)) ,

= Vl,l O Vm+1,n—1 s

where we have used the inductive assumption. Of course, Vi1 0y Ving1,n—1 18 Viun by

definition and we are done. O

Remark 3.2.22. The uniqueness result for V11 can be readily extended to the V,, . To

reiterate, V,,, , is the unique vertex algebra object in KLE™ such that

H%S(uvvm,n) = mel,n . (3268)

Using Proposition , we can present our version of Proposition 10.10 of [Aral§].

Proposition 3.2.23. The vertex algebras Vo, 1 have an ascending filtration whose successive

quotients are isomorphic to VY for some X € P

Additionally, the vertex algebras V., 1 have a descending filtration whose successive quotients
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are isomorphic to D(V&‘tm) for some \ € P;".

Therefore, the vertex algebras V,, 1 are semijective in KLy, i.e.we have:
Vo VEH2 (G0, V1@ V), (3.2.69)

for any V€ KL, and where we perform the reduction with respect to the moment maps

coming from either twisted puncture on Vo, 1.

Proof. We proceed by induction, noting that the base case for Vi 1 has been established in

Proposition . Now assume, V,, 1 has such filtrations for some m, then from Proposition

the vertex algebra V,,, 11,1 does too since, by Lemma, V11 E Wy Vi 1. O

One could hope to strengthen this to the statement that all V,,,, are semijective in KL;
but such a result is beyond what is easily realised by our technologies. With the current
arguments, we would have to independently establish that the vertex algebras Vg, are
semijective in KL;. Given that our definition of Vj, involves an unbounded cohomology,

it seems difficult to verify such a property.

From a similar argument as with V1 1, the mixed vertex algebra, V,, 1 cannot be semijective
in KL,, so the derived functor Vi o, —, which increases the number of pairs of twisted
punctures by one, is not exact. By construction, the V,,, cannot be concentrated in
cohomological degree zero for n > 1. This is, in one sense, a good thing—going back to our
discussion of residual gauge symmetry, these vertex algebras should have fermionic states
lying in non-zero cohomological degree. On the other hand, this is a rather large roadblock
to our spectral sequence powered proofs of associativity. We will only be able to provide

partial results for how V,, , fit in the duality web.

Similar to the mixed trinion, we can derive the characters and central charges of the mixed

vertex algebras.
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Proposition 3.2.24. The character of the vertex algebra V,, 1 is given by

Try, | <qDﬁai ble) -y [T Kuai)xa (@) Ke(bu)xi (b1)Ks (b2) X3 (ba) -
i=1

. (KuCA00) ™

so the vertex algebra, Vo, 1 is conical for all m € N.

Proof. For m = 1 this is just Proposition , so we take m > 1. We have that

HOD S(u, V1) = Vy_11. As graded vector spaces, we have the decomposition

Vo100 Y VS @ (Vi@ VS, -
\epP;t
Applying Proposition 8.4 of [Aral§] gives us the desired result. The fact that V,,; are

conical follows from the same argument as Proposition . O

Remark 3.2.25. The vertex algebra V,, , is constructed by repeatedly gauging V,,4n—11
with copies of Vi 1. We know how the character behaves under gauging, so this result can

be extended to

= : (3.2.70)

mo2n m A 2 A
T Vi <q E i 1:[1b1> (]Cu(x)xﬁ(x))m—l—Zn—Q

which agrees with the expression in [LPR14].

Proposition 3.2.26. The vertex algebras V,, 1 are simple for all m € N.

Proof. We proceed by induction on m, noting that Vi ; is simple by Proposition .
Now suppose V,, 1 is simple for some m > 1, and consider V,,4y11. If V.C V411 is a
submodule then HI%S (u,V) is a submodule of V,, 1 by Proposition . However, by the
inductive assumption V,, 1 is simple and so H]%S(V) must be 0 or V,, ;. From Theorem
, we see that V = W, %, H]%S(V) and so V. =0or V =V, 1. Therefore V,,, 11 is

simple. ]
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Proposition 3.2.27. The vertex algebras V,, ,, are conformal with central charge
v, =2ndimg; + mdimg, — (m + 2n — 2)rkg, — 24(m + 2n — 2) py - p,,

Proof. First, we prove this statement for the family V,, 1 before moving on to the full family

of Viun.

From Proposition , we know that V1 is conformal with central charge cv,, =

2dim g; + dim g,, — rk g, — 24p,, - p,, so the statement is true of m = 1.

We shall first show that V,, 1 has a conformal vector, then show that it is the unique
conformal vector whose grading agrees with the character and finally show that this results

in the correct central charge.

Consider the vector wy,, € Cy, 1, defined by

m m
Wm = wah + E wWw; + E wgh,i )
=1 =1

where wpen is the conformal vector of Deh, wyy, is the conformal vector of the ith factor of
W, and wyy,; is the conformal vector of the ith ghost system, A > T*(3(gu)). Clearly, wy,
defines a conformal vector on the complex, C;, 1. Like we did for Vi ; we shall argue that

this descends to a conformal vector in cohomology.

For an element P; € 3(g,), where we think of 3(g,) as a subalgebra of one of the W,, factors,

wm acts as

OP,  (d;i+1)P, T (-1
z—w+((ziw))2 +Z (z(— ))‘Zﬂq]()( )

j=2

wm (2) Pi(w) ~

where ¢;(i) is some homogeneous state in 3(g,) with weight d; — j + 2. Let us denote by P,

the image of P, under the projection 3(g,) — 3(g:). One then has

- oP; d+1 dit2
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where we think of P; as a state in 3(g¢) € DM Let Q™ be the differential of Cin.1; the

action of Q™ on the vector w,, is

—_

rk gy d;+

Qo) => & (pu C.l] — e (7(d™)) e

=1 =1 j5=2

©

where p; for i < m denotes the action of the Feigin-Frenkel centre on the ith W, factor

and p,, 11 once again denotes the action of 3(g,) on D§" along the projection to 3(g;).

If the right hand side of the above equation equals Q%)X for some state x, then W, = Wy, +x
is @-closed and defines a vector in V,, 1. For | # m it is clear that pl(qj(i)) - pl+1(q](-i)) is
a coboundary, and we have addressed the [ = m case in the proof of Proposition .

Therefore, such a x exists and may be written as

rk g. d;

m
X=> & (p1 @ pri1 @ pgni)(2if)
=1 =1 j

©
+
[\

Il
¥

for some z;; € 3(gu) @ 3(gu) @ A 2 T(3(gu)). Therefore, Wi, (i) = W,() for i = 0,1, so the
OPEs agree up to the quadratic pole. Since V,, 1 is conical by Proposition , Lemma

3.1.2 of [Fre07] applies once more and we can conclude that w,, is a conformal vector in

Vi1

Now we wish to show that w, is the unique conformal vector whose Lo-grading agrees with
wr. The argument from Proposition using Lemma 4.1 of [Mor20] still works, with

minor alteration, since V,, 1 are conical.

The DS reduction of wy, gives a conformal vector in V,,_; ; with central charge
CVo11 — OV +rk g, — dimg,, + 24p,, - Pq\j s

and which agrees with the grading by w,,—1. But, by the inductive assumption, such a

conformal vector on V,,_1 1 is unique.
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Unwrapping the induction from the base case of V1 = D¢, we get that

ev,,, = mdimg, + 2dimg; — 24m p, - p, — mrkg, .

To extend this to V,, ,, we shall once more make use of the fact the V,, , are constructed
by repeated twisted gaugings of the V,, ; with copies of Vy 1. It is well known that the
conformal vector

T= avk,l + "N‘)Vm +wgh

where wgy, is the conformal vector of the b, c ghost system, descends to a conformal vector
in the BRST cohomology with central charge equal to the central charge of T'. Therefore

the vertex algebras V,, , are conformal, with central charge
V., =2ndimg; + mdimg, — (m + 2n — 2)rkg, — 24(m +2n —2) p, - p,, ,

as desired. ]

Having established a number of intrinsic properties of the genus zero, mixed vertex algebras,
let us examine how they interact with each other under gluing. This will shed some light

on how the V,, ,, fit into the class S duality web.

Given our rearrangement lemmas, we can show that the mixed vertex algebras of the pre-
vious section have the expected behaviour under o, and o;. First, we establish the partial

result

Lemma 3.2.28. We have the isomorphism
Vl,l Ot Vm,n = Vm+1,n .
Proof. First, let us treat the base case of n = 1. We have that

~Y h
Vl,l O¢ Vm,l = (Wu *u Df ) Ot Vm,l 5
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so V110 Vi1 =Wy ok, Vi1 = V11 By Lemma , we have that
(Wu *y th) Ot Vm,l = Wu *u (Dgh Ot Vm,l) = Wu *u Vm,l = Vm+1,1 5

where we have used Lemma . Now, we proceed by induction on n. We have just

established the base case for n = 1, so suppose n > 1. Then,

ViioVimn=Vi10 (Vigin—1 0w Vi),
= (Vi10o Vingrin—1) % V1,1,
= Vimion-1% Vi1,
= Vm—l—l,n )

where in the second line we have used Lemma . O

Proposition 3.2.29. Under gauging, the vertex algebras V,, 1 behave as expected, namely,
Vim0t Vg = Viipg
Vi1 0u Vpg = Vpim—ag41 -

Proof. We proceed via induction for each type of gluing, noting that the base case m =1

is true, either by Lemma or by definition.

Suppose m > 1. Then,

V10t Vpe = (Viior Vi_11) 0ot Vg
= V10 (V1,10 Vpg)

Y
= Vp-i—m,q ’

where in the second line, we have used Lemma to arrive at the desired result.
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Next we treat the o, case. Again, suppose m > 1. Then,

V104 Vg = (Viiot Vin11) o Vg
2Vii0ot (V1,19 Vpg) s

= Vp+m—2,q+1 ;

where, in the second line we have used a slight modification of Lemma which applies,
since the cohomology V1 1 o; — is concentrated in degree zero, so the spectral sequences will

collapse at the second page. O

Of course, we expect that these results should extend to the general case,
Vinn 0t Vpg = Vigpnig—1 5 Vmn ©u Vg = Vingp—244n - (3.2.71)

The obstructions to proving this are as follows. In the case of o;, the inductive step is
Vim0t (Vpti,g—1 04 V1,1) and the corresponding spectral sequence is unbounded and does
not collapse at the second page. Similarly, for the untwisted gluing we have not been able

to establish the putative isomorphism
(Vl,l Oy Vm—i—l,n—l) Oy Vp,q = Vl,l Oy (Vm+1,n—1) Oy Vp,q ’ (3272)

for the inductive step. Neither cohomology is concentrated in degree zero, so the second
page of the spectral sequence is unbounded. To make progress we require more sophisticated

machinery or a different strategy.

Proposition 3.2.30. We have the isomorphism
VGu,s *u Vm,n = Vm—l—s,n .

Proof. We proceed by induction on s, noting that, for s = 1, the statement is true since

Vi,n are in KL, 9. Now suppose s > 1, and consider H%S(U,VGu,s %y Vimn). Of course,
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H%S(u, —) and W, o,, — are isomorphic. We form the bicomplex

C** =W,3Vg, s @V, ® /\ %Jr.(ﬁ(gu») X /\ %Jr.(Gu) )

with differentials d; acting on Vg, s @ Vi n @ A Ste (3(gu)) and dy acting on W, ® Vg, s®
A %“"(gu). The differentials anticommute and we can form the total complex as usual.

The two relevant spectral sequences are

IEg’q = H%—i_p(@u,—ﬁygua W, ® H%—Fq(zm VG,s® Vm,n)) )

1 EPY = H%ﬂ?(Zu, H%*‘CI(guﬁﬁg’gu, W, ®Va,s)® Vi) .

The functor of DS-reduction is exact, so both sequences collapse at page two with IEg’q

and j IEg’O being the only non-zero entries. This gives the isomorphism,
H)o(u, Vs %u Vinn) 2 Vaus—1 %4 Vin = Vings—1n
where we used the inductive hypothesis. Acting by W, %, —, we have that
Véu,s *u Vi = Vintsan (3.2.73)

as desired. ]
Finally, let us consider gauging the untwisted and mixed vertex algebras together.

Proposition 3.2.31. Under untwisted gauging of untwisted vertex algebras, the mized vertex

algebras behave as expected, i.e.,

VGu,s Ou Vm,n = Vm+sf2,n
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Proof. We have the following chain of isomorphisms,

VGu,s Ou Vm,n = (VGu,s—l *u Wu) Ou Vm,n ;
= VGu,s—l *u (Wu Ou Vm,n) ;
= VGu,s—l *u Vm—l,n )

= Vm+sf2,n 5

where in the second line we have used Lemma and in the third we have used Propo-

sition . ]

To conclude this subsection, we should comment on the general issue of associativity.
In [Aralg], the cohomology Vg s o Vg g was concentrated in degree zero, so °"gauging
is associative'' as a consequence of a by-now-standard spectral sequence argument. In our
case, the argument is not so simple—we have repeatedly remarked that zero genus is no
longer sufficient for a gluing to be concentrated in degree zero. The obvious spectral se-
quence no longer collapses on the second page, so the proofs of rearrangement lemmas no

longer hold. Nevertheless, it is our belief that associativity must still hold in general.

Yanagida [Yan20] has defined a derived version of the construction of [Aral§] in a suitably
defined category of dgVOAs. In addition, that work also imported the Moore—Tachikawa
TQFT to the derived setting. In the derived analysis, associativity of gauging follows
from general properties of the derived pushforward—even for nonzero genus. However, the
notion of associativity in the derived setting is a slightly weaker result than the notion of

associativity in this work.

In short, our prescription is normally to pass cohomology before the second gauging—unlike
the derived case, where one does not pass to cohomology but instead holds on to the full
data of the chain complex (as an object in an appropriate derived category). A sufficient
condition for the derived associativity to imply our version of associativity is to show that
the relevant chain complexes are formal, i.e., are isomorphic to their cohomology (thought of
as a complex with zero differential) in that derived category. This is an interesting problem

in its own right but is far beyond the scope of this current work.
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3.2.8 Generalised S-duality and 4-moves

Recall that in our construction of the V,,,, we were forced to non-canonically pick a
particular pants decomposition. In the following, we wish to justify that our construction
is in fact independent of such a choice, by establishing the invariance of our construction

under the various moves of S-duality. To do so, we shall construct an action of the various

4-moves of Sections and .

Let V be some mixed vertex algebra, for now we assume genus zero with only maximal

punctures. There are three different types of 4-move that can act on V.
— The first acts on a collection of four untwisted punctures.
— The second acts on two pairs of twisted punctures.

— The third kind (the ut-move) acts on a pair of twisted punctures and two untwisted

punctures.
We examine each case in turn to establish invariance.

In the purely untwisted case, invariance under the 4-move is baked into Arakawa's construction-
~it permutes the s-many chiral moment maps of Vg ,. Each moment map is inherited from
the s-many caps that are FF-glued together to build Vg ;. These caps are all identical and
the gluing happens simultaneously—hence the permutation group symmetry is manifest.
Let us present an alternate description of this action, which is generalisable to the twisted

case.

We may endow Vg ¢ with the ac‘cionE of a permutation group as follows. Fix a labelling
of the punctures, equivalently, a labelling of the chiral moment maps. We shall describe
the action of the transposition (23). First, we close off the punctures labelled 2 and 3 in
sequence, i.e., we perform DS reduction with respect to the moment maps o, associated to

puncture 2, and then with respect to (3, associated to puncture 3. From Theorem , we

4As written, the action of the 4-move is not an automorphism but an isomorphism to some vertex algebra
object in KL. To correct this to an automorphism, we appeal to the uniqueness property of Vg s (see
Remark 10.13 of [Aral]) and fix an isomorphism from this vertex algebra back to Vg,s. One can perform
a similar trick with V,, , using the uniqueness statements of the previous section. To avoid having to make
such a choice one can work with the Moore-Seiberg groupoid [MS89], but we will not do so here.
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can think of this DS reduction as gluing a cap to the chosen puncture.

We can invert this procedure by Feigin—Frenkel gluing a cap with moment map ¢3 and
then Feigin—Frenkel gluing a cap with moment map t2. Instead, we reverse the order of
inversions, that is to say we first glue a cap with moment map to and then a cap with

moment map ¢3. This is an isomorphism since
Wi, (W2 *u (WB Ou (W2 Oy Vs))) = Wa xy (WB *uy (W3 Oy (W2 On Vs))) =V, (3274)

where we have used Lemma to swap the order of Feigin—Frenkel gluings. The sub-
scripts on the caps keep track of the labelling of the moment maps and we have suppressed
the G-subscript for clarity. One can realise the actions of the other transpositions in the
same way, and thus generate the action of the full symmetric group on s punctures. The
action of the symmetric group should be understood as swapping the labellings of the mo-
ment maps associated to each puncture. This argument also establishes invariance under

the four move of the first type for the mixed vertex algebras V,, ,.

Now let us consider the case V = V,,, ,, the mixed vertex algebra with n pairs of twisted
punctures and m untwisted punctures. We can define the action of transpositions on twisted
punctures, as in the untwisted case, by closing pairs of punctures and gluing caps. Again,
let us pick two twisted punctures, labelled 2 and 3, with moment maps jo and j3 respec-
tively. We perform DS reduction once more, closing the punctures labelled 2 and then 3, in
order. Once again, we can think of this DS reduction as gluing a twisted cap to the chosen

puncture.

We restore the punctures by Feigin-Frenkel gluing, via the twisted Feigin—Frenkel centre,

two twisted caps with moment maps j2 and j3. We have
Wt,2 *¢ (Wt,3 *¢ (Wt,?) O¢ (Wt,2 Otv))) = Wt,3 *¢ (Wt73 Xt (Wt’g Ot (Wt,g Ot V))) &2V. (3.2.75)

Once more, by Lemma , this results in a vertex algebra that is isomorphic to V,, ;.

All transpositions of twisted punctures can be arrived at using this method and we can
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generate the full symmetric group on 2n twisted punctures. It should be noted that the
automorphism group allows swaps between twisted punctures regardless of whether one has
connected them by twist lines (the twist lines in this abelian setting are a fiction anyways;
they just record monodromies of the punctures). The preceding argument establishes the
action of S,, on the untwisted punctures and so the V,,, has an action of S,, x Sa, by

automorphisms.

For the 4-move of the third kind—the ut-move. Our analysis in terms of permutations fails.
This move swaps between the degeneration limits shown in Figure @—unlike the other
cases the decompositions are no longer related by a simple permutation on the punctures.
Instead, we appeal to Proposition , which states that the two BRST gluings V,—1.,04

Vg, 3 and Vi 104 V1, are isomorphic.

This construction endows the vertex algebras V,,, with an action of the generalised S-
duality group. Therefore, our recursive definition for V,, ,, is well-defined and independent

of the choice of pants decomposition.

A proof of invariance under the ab-move eludes us but we pose this as a conjecture in the

language of semi-infinite cohomology.

Conjecture 3.2.32. Let Vg, 3 be the trinion vertex algebra with maximal untwisted punc-
tures and V1,1 be the mized trinion vertex algebra as before. Let i1,12,i3 denote the three
actions of V*<(g,) on Vg, 3. Similarly, let jo, j3 be the actions of V*<(g) on Vi1. Then

the following isomorphisms hold,
H%—F. (gu,fﬂg y Qus VGu,?)) = H%—i_.(gt,fﬁg y Ot V].,l) )

where @u7,,.@g acts on Vg, 3 via iz @ (i3 0 0), with o the Zy outer-automorphism, and @t,,ng

acts on V11 via jo ® j3.

Establishing invariance under the ab-move for the one punctured torus is sufficient to ensure
invariance for the vertex algebras of all other surfaces. This construction is only relevant

at nonzero genus, so states of higher cohomological degrees will be present. Of course,
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replacing the maximal puncture with a minimal puncture in this duality just recovers S-
duality for non-simply-laced N' = 4 super Yang-Mills theory; this also remains an open
conjecture at the level of associated vertex algebras. A computation to show the matching

of indices can be found in [AS14].

3.2.9 The Z/3Z twist of D,

Much of the preceding discussion goes through for case of Zs-twisted punctures in the Dy
theory, but there are some new features that are worth mentioning. First, let us lay out the

details of the construction.

The chiral differential operators over Go are well defined. Here we take Go to be the ex-
ponentiated form of the go Lie algebra, i.e., Go is a simply connected, simple, algebraic
Lie group. The superconformal index assigned to the twisted cylinder agrees (summand
by summand) with the character of Vg, 2, and this once more motivates our construc-

tion.

Pictorially, one imagines the G2 cylinder as having a puncture twisted by w and the other

2. One might, a priori, expect that there are two possible go caps, W,, and W,

by w
depending on which puncture is closed. Yet, from the uniqueness argument of [Aralg], the
two putative caps are isomorphic. The outer automorphism, o, that exchanges w with w?

should therefore lift to an isomorphism of vertex-algebras W, = W 2.

The total monodromy around all punctures must be trivial. This can be satisfied in a
number of ways, but for now we will restrict our attention to the case where punctures
labelled by w and w?, respectively, come in pairs (one might think of them as having twist
lines connecting them pairwise). We denote a genus zero surface with m untwisted punctures

and n w,w? pairs of punctures by Co,m,n- We define the mixed trinion, Vy 1 as
Vi1 = Wgpins) *u D, (3.2.76)

and the construction of the V,, ,, proceeds analogously. The ambiguity in the two versions

of the cap is present here again, and we can ask whether this is physical. Namely, is there
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an S-duality move that swaps two punctures with w and w? labels? We will show that the
vertex algebras V,, ,, are indeed invariant under such a move, though there is no expectation

that the underlying SCFTs will enjoy the same symmetry.

Let us first establish some rearrangement lemmas for the Z/3Z case. The isomorphism of

vertex algebras W, =2 W . lifts to a natural transformation of functors,
HZ (2, W, ®—)~H21(Z,, W2 —) . (3.2.77)

In other words, the twisted cylinders whose endpoints are labelled by any combination of
w,w? have isomorphic vertex algebras—all isomorphic to chiral differential operators on Go.
Though unphysical, one can consider the vertex algebra \71,1 = Waping) *u (Ww *t Wy).
This would, naively, correspond to the trinion with two maximal punctures twisted by w

and one untwisted puncture. From the natural isomorphism, however, we have that
\71,1 =Vy. (3.2.78)

We can, therefore, use the trinion \71,1 as the building block for an equivalent construction
of genus zero vertex algebras, which are isomorphic to the V1 construction. This con-
struction, however, makes manifest the enhanced symmetry of the vertex algebras, i.e., the

2

labelling by w versus w* is redundant.

Let us reiterate, as this strikes us as a surprising result. At the level of the associated vertex
algebra, there is are additional automorphisms that swap w and w? punctures which, as far
as we know, do not arise from an underlying S-duality of the four-dimensional physics. For
example, the naive S-duality group of a surface with a pair of w punctures and a pair of
w? punctures is Zy x Zo, which swaps punctures with the same label. This is enhanced to

Si—swapping between all four punctures—as if these were all identical punctures!

In addition to the mixed trinion that we described above, one can compactify on a curve with
a three pronged twist line—connecting three punctures each with w (or w?) monodromy.

The trinion with three w punctures does indeed correspond to a physical SCFT, and one
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might expect that this trinion is Vg, 3. Comparing the superconformal index of this trinion
theory with the character of Vg, 3, however, exposes this as wishful thinking. Indeed, this
trinion is something of a mystery, and we currently have no way of constructing it with
the machinery of [Aral8]. For now, we shall refer to the surface with the three pronged
twist line by Cp o 3. and its corresponding vertex algebra by V 3,,. We also introduce their
o-conjugates Cy g 3,2 and Vj 3,2, which correspond to the surface with a three pronged twist

line between three w? twisted punctures and its associated vertex algebra.

Unlike all of the other trinions we have considered, we expect V3, to be have support
outside cohomological degree zero, i.e., contain fermions. This prediction comes from our
proposed diagnostic concerning the covering space of the UV curve, and is compatible with
some speculative analyses of the superconformal index. Any construction involving Feigin-
-Frenkel gluing is forced to be in degree zero, since we manually truncate to the zeroth
cohomology, so this expectation implies the necessity of other tools to get at this vertex

algebra.

3.2.10 The proof of Theorem

In this section we present our proof of Theorem , reproduced below.

Theorem. We have the following isomorphism:
HJ%S(U?VL1) = Dgh )

$0 th € KLy .

Proof. First, we establish notation. Let F denote the composition H®¢(u, H%H)(Z , W, ®
—)), which is an endofunctor on Z,—Mod. Notably, on the subcategory KL, o, F(M) = M
for any M € KL, (see Proposition 9.12 of [Aral§]), and in general F is left-exact. We

wish to show that F(D§") = Dsh.

Let x» : Z; = C be a character defined by x(P;,) = 0 for n # 0 and P, ¢V} = XA(Pi,o)Vf\-

The Kazhdan—Lusztig category decomposes into blocks KL; = € KLL)‘] where KL?] is the
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subcategory of objects on which P acts as the generalised eigenvalue x(0), i.e., these
are objects which are supported on the formal completion of the ideal (P;o — xa(F;0)) in

Spec Z;.

As D" is a vertex algebra object in KL;, it decomposes as

ch ~ ch
D" = (P Dily -
Aept

where fof)\] are objects in KL,[:)‘]. The increasing filtration on D§" induces a filtration on
each ng\],

0=NoCM C---CN=[JN=Dfly,
%

such that successive quotients are isomorphic to Vg\ - While the character of th is ill-
defined (since each weight space is infinite dimensional), the character of each Df}[l)\} is

well-defined. We have that F (th)[)\] = F (Dtc’[‘)\]) since F is left exact. Therefore,
ch F(D§")y = ch F(Dghy) -

The filtration on Dtc’[‘)\] induces a filtration on F (DE?A}) and since F is left exact, we have

that F(N;)/F(N;—1) € F(N;/N;—1), and so
ch F(Dgly) <> ch F(N;/Nity) .
Each subquotient, N;/N;_; is an object in KL, o by Proposition . Consequently,

ch F(Dy) < D ch (Ni/Niw1) = chDfly, -

7

From this we conclude that F(D§") must be Z>o graded. Now, since D" is simple, if we
can show that there is a non-trivial vertex algebra morphism D" — F(D§"), then we will
have F(D§") = D¢, From here we are in a very similar situation as the proof of Theorem
9.9 of [Aralg], so we adapt that proof to our setting. Before we do so, however, we will

need some subsidiary lemmas. Let g C §¢ . = tg:[t]. Then we have:
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+ - o
Lemma 3.2.33. V?fl =H21(Z,, W, ® D,fh)g*+ ~H2t(Z, W, ® (DtCh)g;r) .

Proof. Let C'** be defined by

=W, 0D ® [\ 2 ((a.) @ A8

where W, @D @A = 7 (3(gu) is the Feigin standard complex for computing H (2, W,®
D§M) and D¢* @ A4((g;)* is the Chevalley-Eilenberg complex for computing the ordinary
Lie algebra cohomology of g". We denote the differentials of each complex by d; and dy,
respectively, and extend them to C*® by letting d; act trivially on A®((g;)* and letting
dy act trivially on W, ® A 2 T*(3(gu)). The two differentials anticommute and so C** is

- CP4 with differential

a bicomplex from which we form the total complex Cf, = @p i

d = dy + (—1)7d,.

There are two spectral sequences converging to the total cohomology Hf,,(C), with second

pages given by

1By =HZY(2,, W, @ Hi(gf , D)) ,

UEg’q = Hp(gj,H%—Fq(Zquu ® Dgh)) .

Note that D" is injective over U(tg[t]), so H(g;, D§") is concentrated in degree zero.
Furthermore, both H*(g;", —) and H? T(Z,, W, ® —) vanish in negative degrees because
W, is free over Z, o) and (—)9zr is left exact. Therefore, (EX? collapses at the second

page and [ES’O is stable. This gives the isomorphism
0,0 ~ ~ 0,0
1By = Hyy(C) = 1By

as desired. ]
+
Lemma 3.2.34. F(D{M)8 = HY (u, V11)% = HYg(u, VY,) .

Proof. By Theorem 6.8 of [Aralg], the functors H)(u, —) and H%JFO(@u’_Kg,gu,Wu ®—)
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are isomorphic. Let C*® be defined by
cPl=W, ® Vl,l ® /\ %er(gu) ® /\q((g+ *

Let d, be the differential on W, ® Vi1 ® A Ste (9u), which computes the relative gy, —x,
semi-infinite cohomology, and we extend d,, to C*® by letting it act trivially on AY9((g;)*).
Similarly, let d; be the differential on Vi1 ® A%((g;)*), which computes the ordinary Lie
algebra cohomology of g7, and we can extend this to C*® by letting it act trivially on
W. ® A 2 (g,). The two differentials anticommute and so C** is a bicomplex. We can

form the total complex C* = @@ CP1 with total differential dyor = dy, + (—1)%d;.

ptq=i

There are two spectral sequences converging to the total cohomology Hiy (C), with second

pages given by

IEg,q = H%er(ﬂu,—ng,Gu,Wu & Hq(Gjavl,l)) )

IIqu — Hp(g?—7H%+q(gu,—ng7wau (029) V171)) .

Since W, is semijective in KL,, Hz T* (Bu,—rg> Bus Wy ® —) is concentrated in degree zero.

Therefore, both spectral sequences collapse on the second page, and we have
0,0 ~ ~ 0,0
1Ey" & Hyy(C) =1 By

as desired. O

Combining both of the above lemmas, we have

F(DfMer = F(Dhys )y = @ F(V @ VL),
xePt

where we have used the fact that

(DM 2 U§im.) @ugineck O(Gr) P vievi..
\EPT

The Vﬁ\ ® Vf* are naturally modules over 33\ and are therefore objects in KL, o by Proposi-
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tion . As a result, we have that

FDM = P Vy@ Vi .
AP,

+
Looking at the A = 0 subspace, F (th)gt , and comparing with our constraint on the

character, we have that

F(DMo= @ Vae V= 0(GY) ,
ANEP;
as g; ® g¢ modules. Since, F(Dg") is Zso-graded, the zero weight subspace F(D§")g is a
unital commutative, associative algebra under the normal product. The quadratic Casimir

provides a Qsg-grading,

F(DMo= P F(D")o(d)
d€Qxo

where F(D§")o(d) has eigenvalue d with respect to the quadratic Casimir. The natural

projection F(D§M)g — F(D§")o(0) is an algebra homomorphism.

These observations mean that we are exactly in the situation of the proof of Theorem
9.9 in [Aralg] and so we can apply Lemma 9.10 of loc. cit. to conclude that F (D),
is isomorphic to O(G}) as a commutative G; x Gy algebra. Additionally, F(D§") is a KL,
object and so we have an action of V"<(g,). All together, this gives a nonzero homomorphism

Dsh — F(Dgh), as desired.

3.3 Observations and future directions

Having identified the appropriate vertex algebras to associate with the twisted theories
of type Cppn, there remains a question of how to understand Arakawa's Vg, s for non-
simply laced G. We wish to speculatively suggest a physical interpretation of these vertex

algebras.
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Our suggestion will require a digression to three dimensions. In Section , we describe

the mirrors of the three-dimensional circle reductions of the theories of class S.

These mirrors are star-shaped quiver gauge theories and their Coulomb branches have been
described (in the A, case) by [BEN17]. We review the construction of these coulomb
branches, d¢ la Braverman—Finkelberg—Nakajima, in Section . After this review, we

suggest a physical interpretation for the Vg  in terms of certain quiver gauge theories.

In Section , we discuss the associated varieties of the mixed vertex algebras V,,,. In
particular, we present a conjectural description of the associated varieties of the subfamily,
with one pair of twisted punctures, V,, 1, in terms of the geometric Satake correspon-

dence.

3.3.1 Three dimensional mirrors

The Higgs branches of class S theories, which in the mathematical literature have come to
be known as Moore—Tachikawa varieties following the work of [MT12], are at present most
uniformly understood in terms of circle reduction to three-dimensions. Reducing a four-

dimensional NV = 2 theory on a circle results in a three dimensional N = 4 theory.

Three dimensional A/ = 4 theories share the same branching structure of their moduli space
of vacua as four dimensional ' = 2 theories. The two branches are also called the Higgs and
Coulomb branch and both are hyperkahler (holomorphic symplectic) spaces. When a three-
dimensional N' = 4 theory arises as a result of S'-compactification of a four dimensional
theory, the Higgs branches of the three-dimensional theory agrees with that of its parent

four-dimensional theory.

Three dimensional physics has its own incarnation of mirror symmetry: two theories that
are mirror dual are (:harauctelrisedE by the fact that the Higgs branch of one is the Coulomb
branch of the other (and vice versa). Reducing a class S theory on the circle and then taking

its mirror dual results in a three-dimensional ' = 4 quiver gauge theory. These theories are

5Strictly speaking, this only holds true for so-called good theories. These theories have Coulomb branches
whose zero dimensional strata consist of a singular point. The quivers we consider will be good theories so
we ignore this nuance.
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SO(2n) USp(2n—4) f—— oo 0(2)

Figure 3.3: The Lagrangian for the T[SO(2n)] theory that is used to introduce a maximal
untwisted puncture in a theory of type 0,.

called the Sicilian theories. The three dimensional mirrors of the A, and D,, series of class S
theories were found by Benini-Tachikawa—Xie in [BTX10] using brane web technology. In
that same work, mirror theories for D,, theories with twisted punctures were also presented.

The twisted As, case has also been explored more recently, in [BGMS20].

In all of these cases, the three dimensional mirrors are quiver gauge theories—they are star
shaped quivers with a central node from which tails radiate outwards, one for each puncture.
Fach type of puncture gives rise to a different tail. For example, the maximal untwisted
punctures in type D,, give rise to tails matching the Lagrangian description for the theory
T[SO(2n)] seen in Figure @ [GW09Y]. For a genus zero theory with maximal punctures, the
quiver is a central SO(2n) node with T[SO(2n)] tails radiating off. For genus g > 0, the
quiver is the same but with the addition of g many hypermultiplets valued in the adjoint

of SO(2n), which look like g loops starting and ending on the central SO(2n) node.

When there is a mixture of twisted and untwisted punctures, the central node is then
replaced by O(2n — 1), and the tails for maximal twisted punctures correspond to the
Lagrangian for the T[SO(2n — 1)] theory, which is displayed in Figure @ Finally, in
addition to the extra adjoint matter arising from positive genus, there are an extra 2s;+2g—2
fundamental hypermultiplets of O(2n — 1), where 2s; is the number of twisted punctures.
Note that at genus zero, these additional fundamental hypermultiplets only appear in the
presence of four or more twisted punctures. In light of our discussions on residual gauge
symmetries, these extra fundamental hypers might be seen as indicative of the residual gauge
symmetry /derived structure that arises in the twisted setting. (An interesting special case
is for the Do theory, where the extra fundamentals can be directly identified with extra

adjoints of the twisted algebra sls.)
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O@2n—1) O@n —4) F—— o(1)

Figure 3.4: The quiver for the T'[SO(2n — 1)] theory that is used to introduce a maximal
Zo-twisted puncture in a theory of type 0,.

3.3.2 The non simply laced construction

In a series of papers [Nak16, BFN18 BFN19, BFN17], (subsets of) Braverman, Finkelberg,
and Nakajima (BFN) have introduced a mathematical construction of the Coulomb and
Higgs branches of three dimensional A" = 4 gauge theories. Note that the construction of
the Coulomb branch requires the matter to be valued in a representation of the gauge group
that is of cotangent type—1T™*N for some C-representation, N, of the gauge group G. This
technical assumption can be relaxed and this has been done so in [BDF*22], at the cost of

more complicated machinery.

5 B

Figure 3.5: The three dimensional mirrors of the D,, theory on Cp g2 (left) and of Arakawa's
V., . (right). We claim that the quiver variety of this mirror corresponds to the associated
variety of Vi, | 4.

For a general quiver with matter in representations of cotangent type, the construction of
BFN involves a vector bundle over the affine Grassmannian. For star shaped quivers in
the A,, case, one has a much slicker construction via the geometric Satake correspondence

[BFN17|. Let G be a simply connected simple algebraic Lie group, and let Grr be the
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affine Grassmannian, modelled by the quotient
Grg = LG(K)/ *G(0O) . (3.3.1)
The geometric Satake is an equivalence
Rep(G) 5 Pervegoy(Greg) (3.3.2)

between representations of G and “G(Q)-equivariant perverse sheaves on the affine Grass-
mannian. In particular, consider the ind-representation of G, Rg = Y, cp+ VA ® Vi«, which
by the Peter-Weyl theorem is isomorphic to the co-ordinate ring C[G]. This corresponds to
some ind-object in the category of perverse sheaves Az = S(R¢). Now, let A, denote the

diagonal embedding

Ab : GI"LG — GI"LG X oo X GI‘LG . (3.3.3)
b copies
Define,
X3, = Spec HZG(O)(GI'LG(O), Aé(@zzlAg)) . (3.3.4)

where HZG(O) denotes the “G(0)-equivariant Borel-Moore cohomology. For G = SL,,
[BEN17, Theorem 2.11] states that the X} are isomorphic to the Coulomb branches of the
a, Sicilian theories, i.e., they are isomorphic to the Higgs branches of 3. Indeed, these

varieties first appeared in unpublished work of Ginzburg and Kazhdan [GK].

This construction is well-defined for any G, and so one might hope that by choosing the
simply connected Lie group, Exp(g), one can construct the corresponding Higgs branches of
the 3, theories for any simply laced Lie algebra. This, however, remains conjectural—such
an isomorphism between the Coulomb branches of star shaped quivers in non A,-type and

the varieties of form () has yet to be established.

Nevertheless, [Aral8, Theorem 10.14] shows that the associated variety of Vg y is isomorphic
to the X3 for any simple g, i.e.,
Xvg, = Xp . (3.3.5)
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With this context, there is a reasonably natural guess for the quivers for Xy, for non-
simply laced G. Namely, we should think of these as the mirror quivers of the Cy theories

without the extra fundamental matter—see Figure @ for an illustration.

How about the vertex algebras, Vg, themselves? In three-dimensions there is a con-
struction that produces a vertex algebra associated to a boundary condition for an N' = 4
theory [Gaild, CCG19, CG19]. For theories that are mirror dual to the S'-reduction of
a four-dimensional N' = 2 theory, there is a natural boundary condition that recovers the
four-dimensional VOA. However, the quivers without the extra fundamental matter are not
SCFTs. As such, the boundary VOA construction is obstructed by an anomaly that must
be ameliorated by adding in some number of free fermions. Such considerations mean that

a precise conjecture for what physics to associate to the Vg, eludes us.

As an example, consider the 0, theory on Cp2. The corresponding vertex algebra has four
actions of g; = usp(2n — 2), and the three dimensional mirror of the theory is given on the
left-hand side of Figure @ We propose to identify Arakawa's VOA V _, 4 as some kind of

boundary VOA for the three dimensional quiver on the right-hand side of Figure @

It would be interesting to identify some indication that the Vg, s VOAs are not related to
four-dimensional physics. At face value they have no serious pathologies—they are conical
with negative central charge and satisfy all known unitarity bounds. These vertex algebras,
therefore, may warrant some attention with an eye towards characterising precisely what

vertex algebras have parent four-dimensional SCFTs.

3.3.3 Moore—Tachikawa varieties for twisted class S

We note that our construction also descends to a construction of the Moore—Tachikawa
varieties of C,, ,—via the associated variety functor. Indeed, the associated variety functor
commutes with DS reduction [Aralj], in the sense that XH%S(V) ~ HY)o(Xv) for any

V € KL, where finite Drinfel'd-Sokolov reduction is used on the right.

For the special case of C,,1 we have a conjectural description, in terms of the geometric

Satake correspondence. Let GG, be the simply connected group with Lie algebra g,, then
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the action of ¢ on g, lifts to an action on G,. The fixed points under this action of o form
a Lie group and we set

Gy = @9, (3.3.6)

which comes equipped with a proper immersion Gy < G,. This induces a proper mor-
phism

to : Grrg, — Grg (3.3.7)

w )

on the affine Grassmannians. We can pushforward along ¢, and apply induction to obtain

a G4 (0) equivariant sheaf on Grg,—denote this composition by Zy..

Now, let A; be the regular sheaf on Grrg, and let A, be the regular sheaf on Grg,. Let
Ay : Grig, — Grig, x Grrg, be the diagonal map and similarly let A, : Grg, — (Grg,)°

be the diagonal map for the untwisted case.

The sheaf 7,.A'(A; K A;) is a G, (O) equivariant sheaf on Grg,. We define,

X1 = mSpec H¢,, (o) <GrGu, Ab (R Ay) K7, Al (A K At))> : (3.3.8)

In ongoing work with D. Butson [BN], we hope to prove the following conjectural description

of the associated varieties of the V, 1.

Conjecture 3.3.1. The associated variety of V1 is isomorphic to Xy 1 as Poisson vari-
eties, 1.e.

Ry,.. = HE o) <GTGua Ay (R Ay) R0 Ay (A B At))) ;

as Poisson algebras, where Ry, | is the Zhu's Co algebra of Vi, 1.

m,1

For the most general C,, ,,, this small extension cannot capture the extra information present

in the Hall-Littlewood operators and so one would require a different approach.
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Appendices

Besides, proofs are no help to believing,

especially material proofs

Fyodor Dostoevsky

The Brothers Karamazov
A.1 Nilpotent orbits in Lie algebras

This appendix will be a review of some concepts in Lie theory, with particular focus on the

structure of nilpotent orbits.

Throughout this section, g shall refer to a finite dimensional, simple Lie algebra, over C.
We let G denote a simple algebraic group whose Lie algebra is g—note that we relax our

convention that G is simply connected.

Let R be the root system of g, with R4 the positive and negative roots and A the set of
simple roots. We fix, once and for all, some Cartan decomposition g = n_ & h & n, with
b = b & n the upper Borel subalgebra and b_ = h @& n the lower Borel subalgebra. The

Killing form on g is denoted by (-, ).

Let g* := Hom(g, C) be the linear dual of g. We fix an isomorphism g — g* by x — (z,-).
The adjoint action of x € g will be denoted by ad, while the coadjoint action on g* is
denoted by ad},. Similarly, we denote the adjoint action of g € G on g by Ad, and on g* by
Ady.
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A.1.1 Poisson structure of g* and coadjoint orbits

The dual space g* is naturally an affine variety with g* = Spec Sym(g). The co-ordinate

ring Sym(g) is naturally a Poisson algebra, with Poisson bracket defined by

{z,y} = [z,y], forxz,y € g C Sym(g) (A.1.1)

and extended by the Leibniz rule to arbitrary polynomials. This Poisson bracket is known
as the Kirillov—Kostant—Souriau (KKS) Poisson bracket. The variety g* is therefore a
Poisson variety, however it is not symplectic. This is somewhat obvious since dim g* can be

odd.

Moreover, note that Sym(g) contains a large Poisson centre; the subalgebra
Sym(g)“  Sym(g) , (A12)

Poisson commutes with all of Sym(g), since it is ad-invariant. The putative symplectic form

induced by the KKS bracket is, therefore, degenerate.

Coadjoint orbits in g*, however, are symplectic. Let £ € g* with £ = (z,-) for x € g and
let O¢ be the (open) G-orbit of £ in g*. We can use the Killing isomorphism to identify the

fibre of TO¢ above £ with a quotient of g
0— g = 0 -5 T0 — 0, (A.1.3)

where g, the kernel of ad; is equal to g¢, the isotropy subalgebra of £. The KKS bracket in-
duces a two-form wr kg ¢ : TeOQe AT Q¢ — C. on T¢O;¢. Let z,y € T:O¢ with representatives
Z,y € g, then

WKKS,{(xay) = (57 [55,?]) ) (A'1'4)

is a non-degenerate two form on the tangent space at £&. This extends to a closed two-form

wr ks on Q¢ and is non-degenerate on each fibre—hence it is a symplectic form.

Since g* has infinitely many G-orbits, there are infinitely many symplectic leaves with
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dimension dim g — rkg. Furthermore, there is a singular locus inside g*, where coadjoint

orbits have codimension greater than rkg.

Almost by construction, the coadjoint action of G on any orbit O, { € g* is Hamiltonian

with moment map p¢ : Q¢ — g* given by the natural immersion of the orbit into g*.

A.1.2 The Harish Chandra centre and the BGG category

Recall that the Poisson algebra of functions on g* had a Poisson central subalgebra Sym(g)<.

As an C-algebra Sym(g)® is generated by monomials P, of degrees d; + 1, where d; are the
exponents of g for i = 1,...,rkg. These generators are called the fundamental invariants
of g and the set of d;;1 are the degrees of the fundamental invariants. For any g, P; is the

lowest degree generator with
P =Y s, (A.1.5)
a,b
where J, is a basis of g and k% is the inverse of the Killing form gy = (Jq, J).

Moreover, by looking at the G-orbits of the Cartan subalgebra h*, we have that

Clg* )Gl = Clh* W] . (A.1.6)

Definition A.1.1. The universal enveloping algebra, U(g), has a centre Z(g) called the

Harish-Chandra centre. Moreover,

Z(g) = Sym(g)Y = C[h* W] = C[Py, |i=1,...,1kg] . (A.1.7)

This centre plays an important role in the representation theory of g. By Schur's lemma,
Z(g) must act by scalar multiplication on any finite dimensional, highest-weight module V},
for A\ € PT. So we define the central character, x, : Z(g) — C by z-v = xa(2)v for any

v e V.

Definition A.1.2. Let O4 be the Bernstein-Gelfand-Gelfand subcategory of g-mod whose

objects are modules M such that
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e M is finitely generated over g
e N is diagonal on M
o M is locally n-finite, i.e., for any m € M, U(n) - m is finite dimensional.

This category has a block decomposition

Og= P Oy - (A.1.8)
Aep+

where O [y is the subcategory where Z (g) acts as the generalised eigenvalue x,. Equiva-
lently, these can be thought of as the subcategory of modules in Oy that are supported set-

theoretically at, i.e., in a formal neighbourhood of, the point (2 —xx(z)) in Spec Z(g).

When we introduce the affine analogue of Oy, the Kazhdan-Lusztig category, KL, we shall

observe a similar decomposition.

A.1.3 Nilpotent orbits in g*

An element x € g is called nilpotent if ad, : g — g is nilpotent. For the case of x € sl,, C gl,,

this agrees with the usual notion of a nilpotent matrix in gl,.

We prefer to think of nilpotent elements as living in g*. To that end we give three equivalent

definitions of nilpotent elements in g*, following [CG97].

Definition A.1.3. An element £ € g* is nilpotent if any of the following equivalent condi-

tions are met
o ¢ = (z,-) for some nilpotent element x € g
« P(¢) = 0 for any polynomial P € Sym(g)® with no constant term
e &(ge) = 0 where g¢ = {z € g|ad,({) = 0} is the isotropy subalgebra

The set of nilpotent elements N' C g* is called the nilpotent cone, or nilcone for short.
Condition two in the above definition tells us that N is an algebraic subvariety of g*, with

ideal of definition generated by the fundamental invariants Py, for ¢ = 1,...,rk g. Moreover,
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it is stable under dilatation by C*, i.e., the nilpotent cone is actually a cone. The nilcone

has codimension rk g inside g*.

Condition one tells us that nilpotent elements in g* are equivalent to nilpotent elements in g
and so we shall frequently use the Killing isomorphism to think of the nilcone as embedded

in g* or g as is convenient.

It follows from the definition that A is stable under the coadjoint action of G, and so we

define a nilpotent orbit to be the coadjoint orbit of some & € N.

Theorem A.1.4 (Jacobson—-Morozov). Every nilpotent element f € g may be completed to

an sly triple (e, h, f), i.e., there exist elements h,e, € g, such that
[h,e] =2e, [h,f]=-2f, le,fl=h, (A.1.9)

with h semisimple and e nilpotent. Thus, nilpotent orbits in g are in one-to-one correspon-

dence with Lie algebra morphism slo — g, up to G-conjugation.

The theorem of Jacobson—Morozov allows us to define some auxiliary data associated to a
nilpotent orbit. Suppose £ € N is of the form (f,-) for a nilpotent f € g. We may complete
this to an sly triple e, h, f where h is diagonal on g. The operator ad; defines an integral
grading on g with g = €, g;. We define a parabolic subalgebra bs C g and its nilpotent

radical ng C g by

be == @gi , Mg = @gi : (A.1.10)

i>0 i>0
The Levi subalgebra exponentiates to a unipotent Lie group N C G which stabilises { and
acts on bg—in fact we shall show that this action is free if { # 0. Note that these subalgebras

are not unique and they depend on the choice of completion of £ to an sly-triple.

Proposition A.1.5. The nilcone N is a stratified algebraic variety
N=|]o,, (A.1.11)
p
with finitely many strata, corresponding to disjoint coadjoint orbits [Diz96].
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The largest stratum is the principal orbit and has dimension dim g —rkg. This corresponds
to elements in N" whose G-stabiliser is of dimension rkg. The principal orbit is Zariski-open

inside N .

Furthermore, there is always a stratum of codimension 2 inside N called the subregular

orbit. The smallest, non-trivial orbit is called the minimal orbit.

The strata of N have a natural partial ordering where p' < p if the closure of Q, in N

contains @,,/ .

Remark A.1.6. The principal orbit always contains the element p*, = >° -1 €*,, where
e_q are the Chevalley generators conjugate to the negative simple roots and * is the image

under the Killing isomorphism. The element p_; € g can be completed to a number of

sly triples, let us choose a special triple. Let p = Z?kg

; ~w; be the sum of the fundamental

coweights of g. This defines an element of § by

rkg
po =2 wi(ai)hi , (A.1.12)
i—1
where h; is a basis of h and «; is the root (h;,-). Note that [pg,p—1] = —2p_1. There is a

unique p; € g such that (p1,po,p—1) is an sly triple. We call this distinguished sly triple the

canonical principal sly triple.

The canonical principal triple is a very nice choice of triple in that b, , = b and n,_, =n,

and of course N, , = N.

For g = sl,,, every nilpotent element is conjugate to a matrix of nilpotent Jordan blocks. A
nilpotent Jordan block of size k is a k x k whose kK — 1 many super-diagonal terms are all

equal to one. For example a nilpotent Jordan block of size 3 is a submatrix of form

(A.1.13)

o O O
o O =
o = O

Choosing a matrix of nilpotent Jordan blocks in sl,, amounts to choosing positive integers

A, ..., A, specifying the sizes of each block and with ), \; = n.
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Remark A.1.7. Nilpotent orbits in sl,, are in one-to-one correspondence with partitions of
n. Furthermore, the partial order on the strata of A is precisely the dominance ordering

on partitions.

Example A.1.8. Suppose g = sls, which we realise as the space of matrices of form

h e
L), o

Nilpotency for an sl,, element is equivalent to being a nilpotent matrix. The nilcone of sl

can therefore be identified with the space of singular matrices satisfying

det (; jh) =—h?—ef=0, (A.1.15)

where h2+ef is the degree two fundamental invariant of sly. We note that C[h, e, f]/(h®+ef)
is the co-ordinate ring of the Aj-singularity C2/(Z/2), and so Ny, = C?/Z/2 as algebraic

varieties—and, indeed, as symplectic singularities.

There are two nilpotent orbits inside Ny,: the trivial orbit of 0, and the principal orbit
.. 0 1 . .
containing <0 0). These correspond to the partitions [1, 1] and [2], respectively. In terms

of sly triples, these correspond to the trivial triple (0,0,0) and the principal triple (h, e, f).

Example A.1.9. Suppose g = sl3, we expect Ny, to have three strata—corresponding to

the three partitions of 3, i.e.,

Nty = Op 1) U Oy WOy (A.1.16)

We parameterise sl3 as the space of matrices

h1 €1 €3
fi ho—hi e | . (A.1.17)
I3 fo —hs
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The full nilcone is the vanishing locus of the fundamental invariants,

P =eif1 +eafs +esfs + hi — hohy + h3
(A.1.18)

Py = e3(f3(h1 — h2) + fif2) + e1(eafs + fiha) + hi((h1 — ha2)ha — ez f2) .

The smallest stratum, Oy ;1) is the trivial orbit of 0 € sl3. The minimal orbit, Op 1, is the

SLs-conjugacy class of

(A.1.19)

o O O
o O =
o o O

and its closure can be presented as the vanishing locus of

haer —esfa,  fiel +esfoha +e1hi . faer — fohi, esei +e3fa+ereshy . (A.1.20)

Note that for sl3, the minimal orbit is the same as the subregular orbit. The principal orbit,

O3, is the SLz-conjugacy class of

(A.1.21)

o O O
o O =
o = O

and its closure is the vanishing locus of P; and P, i.e., the full nilcone.

A.1.4 Slices to nilpotent orbits

The ideal of definition of N is a Poisson ideal, since the generators of this ideal are Poisson-
central. Therefore, the Kostant—Kirillov—Souriau bracket restricts to a Poisson bracket on
N making it a Poisson subvariety of g*. The KKS form, restricted to coadjoint orbits is non-
degenerate and so the strata of N are symplectic. Therefore, N is a stratified symplectic
singularity. In many ways, nilcones of a simple Lie algebra are the prototypical examples

of symplectic singularities.

Definition A.1.10. Given a coadjoint orbit O, containing § € g*, a transverse slice to O
at £ is a closed subvariety S¢ C g* containing £ such that Q¢ and S intersect only once at

¢ and they intersect transversally, i.e., Teg* = T¢O¢ @ T¢S.
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Given two nilpotent orbits Q¢ < O¢, we denote the intersection S¢ N Qg by S’g.

There are a number of ways to construct a transverse slice to a nilpotent orbit O¢, and
(except for the trivial orbit where the slice is g*) such a slice is not unique. However, there

is a particularly nice slice that one can define called the Slodowy slice.

Definition A.1.11. Let { € N with § = (f,-) for some nilpotent = € g and let Q¢ be it's
coadjoint orbit. By Jacobson—-Morozov, we can complete f to an sly triple (e, h, f) where

h is diagonal on g* and e is nilpotent. The Slodowy slice is
Se =&+ (kerade)”™ (A.1.22)

where (kerad.)* is the subspace {(a,-) € g*|a € kerad.}.

Unless explicitly stated otherwise, the notation S¢ shall, henceforth, always refer to the

Slodowy slice

Proposition A.1.12 (Gan-Ginzburg). Let £ € g*\{0} be nilpotent, and let Q¢ be its coad-
joint orbit. Recall the parabolic subalgebra be and ne and denote their images in g* under
the Killing isomorphism by bz and nz respectively. Let Sg be the Slodowy slice, then we have
an isomorphism

N¢ x S¢ = &+ bz

(A.1.23)
(n,s) — Ad} s

As a consequence, £ + bg is an Ng-torsor over Sg.

To finish, we focus in on the Slodowy slice of the principal orbit. Recall that there is a
canonical sl triple, (p1,po, p—1) corresponding to the principal orbit. Denote the kernel of

p1 by s. It rk g dimensional and has a grading under ad,,, with isotypic components

rkg

§ = @5011. (A.1.24)
i=1

where {dl}fﬁ are the exponents of g. The dimensions of each graded component is equal
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to the multiplicity of d; in g. The subspace s1, always exists for any g, and is spanned by

p1.

Remark A.1.13. For g not of D-type, the multiplicity of d; is always one so we pick a basis

(pdl.)?;gl for V" with pg4, spanning Vi In the case where g = 0y, then the exponent

d; = 2n has multiplicity two and in this case we have to choose two linearly independent

vectors pa, and pop.

Definition A.1.14. The canonical principal Slodowy slice is a transverse slice to the prin-

cipal orbit at p* | defined as

Sprin = p*_l + (ker adm)* . (A125)

The Gan—Ginzburg isomorphism tells us that
N X Sprin & pZ; + b7 . (A.1.26)

Furthermore, any slice to the principal orbit is special in that any regular coadjoint orbit
intersects the slice precisely once. Here by regular, we mean that the orbit has dimension
dimg —rk g. In other words, Spin is a global slice to the coadjoint action of G' on g*, giving
an isomorphism

9" //G = Sprin Zh//W . (A.1.27)

A.2 Vertex algebras

We shall discuss vertex algebras in some generality and introduce some of the techniques

and terminology used in [Aral§].

A.2.1 Preliminaries

There are many, equivalent, definitions of a vertex algebra. We shall follow the definition

by Frenkel-Ben-Zvi—as formulated in [FBZ04].
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Definition A.2.1. A vertex algebra over C is the collection (V.Y 0,|0)) where:
o V is a vector space over C, i.e. the space of states
o |0) € V is a distinguished vector called the vacuum vector
e 0:V — V. is the translation operator
e Y(-,2):V — End(V)[z,271], is the vertex operator
Satisfying
e Y(]0),2) =idy and Y(a,2)|0) € V[[z]], the vacuum axiom
e Ya eV, [0,Y(a,z)] =0.Y(a,z), the translation axiom
.« T|0) =0

Ya,b €V, IN € N(z —w)N[Y(a,2),Y (b,w)] = 0, the locality axiom

Remark A.2.2. Let a € V, then

a(z) =Y(a,2) = > amz """, (A.2.1)
neZ

with each a(,) € End(V). We can therefore think of the data of Y as a family of noncom-
mutative, nonassociative products pi,, : V. ® V' — V indexed by n € Z with un(a,b) = ag,)b

for any a,b € V.

Note that in physics literature, one conventionally labels the Fourier modes as

a(z) = Z anz "L (A.2.2)

nez

where A is the conformal weight of a (to be defined later). We distinguish between these
two conventions by including brackets for the grading of ()

A distribution a(z € End(V)[z, 27']) is called a field if for any v € V/,

a(z)v e V((2)) . (A.2.3)
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The subspace End(V)((z)) € End(V)[z,271] is often called the space of fields. For any
state a € V, the axioms force Y (a, z)v to be bounded below in powers of z. The vertex
operator Y (-, z) is an algebraic manifestation of the state-field correspondence of conformal

field theory.

Vertex algebras have a normally ordered product on states and fields, given by

ab = a(_b or on fields as(ab)(z) : == (a(—1)b)(2) . (A.2.4)

This product is neither associative not commutative so we adopt conventions of nesting
from the right, i.e.,
abed = a(b(ed)) = a—1yb—1yc—nd - (A.2.5)

A few words on locality

The locality axiom is subtler than it looks. It does not, for example imply that all vertex

operators commute.

Given two fields a(z) and b(w), their products a(z)b(w) and b(w)a(z) are power series in
the space End(V)[z, 27!, w,w™!]. Picking a test vector v € V and a linear functional
¢ V. — C, we can construct two power series, ¢(a(z)b(w)v)) and ¢(b(w)a(z)v) in the

spaces C((2))(w)) and C((w))((2)-

The two spaces are not the same; the first has bounded below powers of w but powers of z
are not uniformly bounded below and the second has bounded below powers of z but powers
of w are not uniformly bounded below. Their intersection, is the space C[z,w][z~%, w™},
in which powers of z=! and w™! are uniformly bounded. Given a rational function in
the fraction field, C((z,w)), of C[z,w][z~!,w™!, we can expand in the region |z| > |w| by
expanding in positive powers of z/w. This results in a power series expansion in C((z))(w)).

Similarly, by expanding around |w| > |z|, i.e., in positive powers of w/z, we have a power

series in C((w))((2)).

The locality axiom implies that the two power series, ¢(a(2)b(w)v) and ¢(b(w)a(z)v), are
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expansions of the same function in C((z,w)) but in the domains |z| > |w| and |w| > |z|

respectively.

A consequence of the locality axiom, is that the vertex operator Y (—, z) is associative, in
the sense that if we have two fields Y (a, z) and Y (b, w), the product Y (a, 2)Y (b, w) is equal

to the expansion Y (Y (a, z — w)b, w).

Definition A.2.3. Given two fields a(z) and b(w) we can define the OPE (Operator-

Product-Expansion)
1
a(z)b(w) = Z m(a(n)b)(w), (A.2.6)
nez
where the equality should be understood as saying that the two sides represent the expan-

sions of the same * “function'' in two different domains—we leave the subtleties to Section

3.3 of [FBZ04).

Given two fields a(z),b(w), we shall often write the OPE as

a(2)b(w) ~ Y (Z_i})nﬂ(a(n)b)(w) , (A27)

n>0
and suppress all terms that are regular in the limit z — w.

A simple way of satisfying the axiom of locality is if the image of Y (-, 2) lives in EndV[z],
or in other words, the modes a(n) vanish for all n > 0 for any state a. In such a vertex
algebra the products a(z)b(w) and b(w)a(z) are both in End[[z,w] and (z —w)" has no zero

divisors in C[z,w] for any N € N. Thus locality enforces that [a(z),b(w)] = 0.

Definition A.2.4. A vertex algebra is called commutative, if all fields commute or, equiv-

alently by the preceding discussion, if the image of Y'(-, 2) is contained in EndV[z].

Remark A.2.5. The normal ordered product is commutative and associative in a commu-
tative vertex algebra. Therefore the data of a commutative vertex algebra is equivalent to

that of a unital associative commutative C-algebra with a derivation.

To finish, we generalise our definitions to a vertex superalgebra.
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Definition A.2.6. A vertex superalgebra is a collection (V,]0),0,Y"), where

o V =Vy® Vi, is a superspace, i.e., a Z/2Z-graded vector space

|0) € Vp, is the vacuum
e 0:V — Vis a linear map with even parity

e Y(-,2):V — End(V)[z,27!] such that if a € V has parity |a| then Y (a, 2) has parity

|al, i.e., for all n € Z. the modes a(,) have parity |a|

satisfying all the axioms of a vertex algebra except for locality. Instead we require that for

all a,b € V there exists some N € N such that

(z — w)Na(2)b(w) = (=) (z — w)Nb(w)a(z) , (A.2.8)

where |a| and |b are the parities of a and b, respectively.

A.2.2 Morphisms, ideals and modules
We collect definitions for some basic algebraic notions below.

Definition A.2.7. A morphism between two vertex (super)algebras (V,|0)y,dy, Yy ) and

(W, 10)w, Ow, Y ) is a linear map ¢ : V- — W of even parity satisfying the following:
e ¢ intertwines the actions of 9y and Jy
« ¢(l0)v) =0)w
o for any a,b € V, p(a,)b) = p(a)m)p(b) for all modes n € Z.

A vertex subalgebra of V' is a O-invariant subspace W C V containing |0), such that

Y(W, z) C End(W)[z].

A (left) vertex ideal of V' is a O-invariant subspace I C V' such that a(,)V C I for any a € [
and any n € Z. All ideals are two-sided in the sense that, for any v € V', v(,)I C I must

also hold.

Lemma A.2.8. IfV is a vertex (super)algebra and I a vertex ideal, then the quotient space
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V/I inherits a natural vertex (super)algebra structure.

In the context of physics, vertex ideals appear as so called null states, i.e., states where

some chosen inner product becomes degenerate.

Definition A.2.9. A module over a vertex algebra, (V,0),0,Y), is the collection (M, Ys)

where M is a vector space and Yy (—, z) : V — End(M)[z, 2~ satisfying

o Yi(]0),2) =1n

e For any a,b € V and any m € M, the expressions

Yar(a, 2)Yar (b, w)m € M((2))(w)) ,
Yas (b, w)Yar(a, 2)m € M(w)((2) (A.2.9)

Yu(Y(a,z —w)b,w)m € M(w))(z — w)) ,

1 -1

are expansions of the same series—as in the discussion on locality—in M [z, w][z~",w™", (2—

w) Y] in the domains |z| > |w| > 0, |w| > |2| > 0, and |w| > |z — w| > 0 respectively.

Modules over vertex superalgebras are analogously defined, but once again locality is modi-
fied to a suitable * “super' version. We will primarily be interested in modules over ordinary

(non-super) vertex algebras so we shall forgo the details.

We shall be interested in (co)chain complexes of vertex algebras and so we wish to define a

notion of a differential on a vertex algebra.

Definition A.2.10. A derivation on a vertex superalgebra (V,]0),0,Y) is a linear map

Q@ : V — V of parity |@Q|, which intertwines 0 and for any a,b € V

Qagb) = (=1)?a) Q1) + (Qa)) b - (A.2.10)

A differential on a vertex algebra is a derivation d such that d? = 0.

Lemma A.2.11. Let d be a differential on a vertex algebra, then ker d is a vertex subalgebra
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of V and imd C kerd is a vertex ideal of kerd. Therefore, the cohomology

B kerd

HV,d)= o0

(A.2.11)

naturally inherits the structure of a vertex algebra.

Remark A.2.12. A particularly nice source of such differentials are from the BRST con-
struction. Let V' be a vertex superalgebra with an auxiliary Z-grading, V = @,., V.
Choose some homogeneous element Jprsr € Vi, such that Qprsr = Jprsr,0) squares to
zero. Then @ is a differential of degree one on the chain complex V = €,., Vi and the

cohomology H*(V,Qprst) is a Z-graded vertex superalgebra.

This construction will be used, repeatedly, to construct new vertex algebras out of simpler

ones.
To finish off, let us discuss the matter of how to give a presentation of a vertex algebra.

Definition A.2.13. Let V be a vertex (super)algebra and let B C V be a linearly indepen-
dent subset of V' that does not contain the vacuum. We say that V is weakly generated by

B if every v € V' can be written as a linear combination of monomials of the form
1 32 k

for b* € B and n; € Z and some k € N. Similarly, we say that V is strongly generated if we

can restrict to n; € Z.

A.2.3 Conformal vertex algebras

Owing to their origins in two-dimensional conformal field theory, vertex algebras are often
equipped with the structure of a module over the Virasoro algebra. The modes of the

Virasoro algebra appear as the Fourier modes of a particular state.

Definition A.2.14. A state T € V is called the conformal vector if

c/2 n 2T (2) +8T(w)

T(2)T(w) ~ 1 5

, (A.2.13)

(z —w) (z —w) z—w
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and if T(g) = 0. This is equivalent to demanding that the modes of T" satisfy the Virasoro
algebra. The parameter c is the central charge. A vertex algebra is conformal if it has a
(not necessarily unique) conformal vector. We define the conformal weight, A, of a state a,

by T(l)a = Aa

Note that the vacuum vector always has weight A = 0. We say that a conformal vertex
algebra V is conical if the grading by conformal weight is non-negative and the weight zero
subspace is spanned by the vacuum vector. A conformal vertex algebra, V', is of CF'T type

if the following conditions are all satisfied
e Vis %N—graded by conformal weight
e V is conical

o The contragredient module V* = Hom(V, C) is isomorphic to V' as V-modules.

A.2.4 Li's filtration and associated varieties

It was shown by Li [Li05] that every vertex algebra has a canonical, decreasing filtra-

tion.

Definition A.2.15. The Li filtration on a vertex algebra V is a descending filtration V =

FOV 5 F'V 5 ... whose subspaces are defined by
FPV = Spanc{a(_;_1ybla € V,b€ FF'V,i > 1} (A.2.14)

It is compatible with the vertex algebra structure on V, in the sense that

am)F*V C Frra—n=l o c FIV, ne 7,
a@FPV C FPY" a € FV,n €N, (A.2.15)

OFPV C FPly .

We may then define the associated graded space (with respect to the filtration F*V') of V'
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to be

grpV = FPV/Frity (A.2.16)
p=>0

It can be shown, see for instance [Li05], that grpV has the structure of a Poisson vertex

algebra.

Definition A.2.16. The Zhu's Co algebra of a vertex algebra V is the subspace Ry =

V/FV. It inherits the structure of a Poisson algebra from V.

There is a canonical way of associating a variety, or more generally a scheme, to a vertex

algebra that has been detailed in [Aral(].

Definition A.2.17. Given a vertex algebra V, the associated scheme, Xy, and associated

variety, Xy, are defined as
Xy = Spec Ry, Xy = mSpec Ry = (XV)rod (A.2.17)

where Ry is the Zhu's Cy algebra.

In [BR1g], it was conjectured that the Higgs branch of the SCFT is precisely Xy, for the
associated vertex algebra V. The Zhu's C'y algebra is then the coordinate ring of the Higgs

branch.

A.3 Affine Kac—Moody algebras and universal affine vertex

algebras

A.3.1 Affine Kac—Moody algebras and their modules

Let g be a finite dimensional simple Lie algebra with a basis (J%). We can endow the loop

space g[t,t~ 1] with a Lie algebra structure by defining the bracket

[, Ih] = 1%, I @™t (A.3.1)
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where J% = J*®t™ forms a basis of g[t,#~1] and the bracket on the right hand side should

be understood as the Lie bracket on g.

The affine Kac—Moody algebra g, is defined as the central extension
0+ CK —g—gt,t '] —0, (A.3.2)

where CK is a one dimensional abelian Lie algebra spanned by K. Such extensions are
classified by H?(g[t,t~!],C) = C, or equivalently a choice of ad-invariant symmetric bilinear
form on g. The space of such forms is one dimensional and we choose as our basis element

.- = 5t (-, ), where (-, -) is the Killing form on g and 2" is the dual Coxeter number.
() o7 g g

As vector spaces, this sequence splits and we have the isomorphism g = g[t,t" '] ® CK,

with the bracket

[J2, J0] = [J%, J°] @ ™ 4 mbyno(J?, JOVK

mr“n

(A.3.3)
[K,a]=0 Vacj.

Let g—mod denote the category of left g-modules. We denote by g, —mod, the subcategory
of left g modules on which K acts as multiplication by some scalar k € C. We often abuse
notation and say that these are modules over g,, the subscript denoting the fact that K
acts as k on these modules. A module M is smooth if tg[t] acts locally nilpotently, i.e., for
any m € M and any = € g

r@t"m=0 (A.3.4)

for some n > 0.

Definition A.3.1. The Kazhdan-Lusztig category, KL, C g.-mod, is the subcategory of
G(O)-integrable, Z-graded modules of g,. Equivalently, KL, is the subcategory smooth

Z-graded g,-modules, M, on which the subalgebra g C g, acts locally finitely, i.e.,

VYm e M, dim(U(g)m) < oo , (A.3.5)
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where U(g) is the universal enveloping algebra of g.

Since we allow a full Z-grading, then KL, includes objects that are unbounded below by
weight, which is somewhat pathological. Consider, therefore, KLZ”I, the full subcategory of
KL, admitting a Z>o-grading such that each homogeneous subspace is finite dimensional.
The subcategory KLZ”I can be thought of as the category of positive energy representa-

tions.

A.3.2 The universal affine vertex algebra

Let C,, be a module of the subalgebra g[t] & CK, where g[t] acts trivially and K acts as

the scalar x € C.

Definition A.3.2. The induced module,

V(@) = Ind.0xC = U§) ®u(gyeck) Cr - (A.3.6)

is called the vacuum representation and has a unique VOA structure (V*(g),d,Y, |0)) with
e |0) =1® v, for some choice of v € C,
e 0=—0
o Y(J%,2) =3, Jit"27"" !, with other fields defined by acting with 9.

Equipped with this vertex algebra structure, V*(g) is called the universal affine vertex

algebra of g.

The commutation relations of g is now captured in the OPEs

a Tb a 7b w
<(i _{U;;l N [J(ZiL(}) ) 7 (A.3.7)

J(2) " (w) ~

where the J¢, J® appearing inside the commutator and inner product should be understood

as elements of g.

Similarly, given a highest weight representation, V), we can construct the Weyl module, Vy,
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as

§ = Tnd% o0 Va (A.3.8)

The Weyl modules V§ admit a Poincare-Birkhoff-Witt basis of lexicographically ordered
monomials of the form

JU J92 T (A.3.9)

—MNni1“—ng
where v; are a basis of V), ny > ng > -+ > ny, > 0 and if n; = ni41 then a; < a;41.

One reason to study V*(g) is that
V*(g) —mod ~ g,, —modg, (A.3.10)

where g, —mody,, is the subcategory of smooth modules of g.. For the proof of this
statement, see Theorem 5.16 and Section 5.18 of [FBZ04]. In particular, this means that
the Kazhdan—Lusztig category KL, can be thought of as a subcategory of V*(g)—mod.
The Weyl modules introduced above are modules over V*(g) and, moreover, are objects of

KL.

Remark A.3.3. Following the conventions of Arakawa [Aral§], a vertex algebra object in KLy
is a vertex algebra V' equipped with a vertex algebra homomorphism py : V*(g) — V such
that V is a limit of objects in KLZ’"d. The decomposition into positive energy representations

is highly useful, as the vertex algebras introduced in [Aral8] are limits of Weyl modules.

A.3.3 The Feigin—Frenkel centre

A natural question to ask is whether the algebras, V*(g), are conformal? The answer is yes
and we can show this by explicitly constructing a conformal vector. Let gy, be the Killing
form with respect to the basis {J%} and let k% be its inverse. Then, we may construct the
quadratic Casimir

P = > KOTE T 0). (A.3.11)
a,b
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Suppose k # h", then the vector

1
T=——_P A.3.12
R (A3.12)
is conformal, with central charge
rdim g
= ) A.3.13
Ry Y ( )

This particular choice of conformal vector is known as the Segal-Sugawara construction.
The Segal-Sugawara construction endows the universal affine vertex algebra with a confor-

mal structure in all cases except when
K=kKe=—h" (A.3.14)

In this case T becomes singular and is no longer a valid conformal vector.

The universal affine vertex algebra at the critical level is, in fact, not conformal but does
enjoy a number of properties one would expect from a conformal vertex algebra. For
instance, the vertex algebra has a natural Z-grading arising from the degree of the modes
of the generators J* One may define a degree operator D with weights D(J%) = —n and
D(|0)) = o.

The un-normalised Segal-Sugawara vector P; is not singular but instead it is central—since

its OPEs with any other field will contain vanishing factors of k — k..

Definition A.3.4. At the critical level V*<(g) has a large centre 3(g), the Feigin—Frenkel
(FF) centre. By this we mean that 3(g) C V"¢(g) is a commutative vertex subalgebra with

non-singular OPEs with all fields of V*<(g).

At non-critical level k # k., the centre of V*(g) is spanned by |0), see [Fre07, Proposition

3.3.3] for a proof.

Analogously to the higher order Casimir operators, we can construct higher order Segal—
Sugawara vectors Py, € V"¢(g)—where d; are the exponents of g. The vertex algebra 3(g)

is strongly generated by these fields [FF92]

By Remark , a commutative vertex algebra is equivalent to a commutative algebra
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with a derivation. An equivalent presentation of 3(g) is as the ring
5(9) gC[Pdiy(n)7 ’dz - 1,...,I‘kg ne Z<0] (A315)

with derivation 9 satisfying 0Py, () = Py, (n—1)-

The topological completion, U(§)/(xk — k), also has a centre, which we denote by Z. This

centre has a presentation as
(n)> \dizl,...,rkgnEZ] . (A.3.16)

by identifying this centre with the universal enveloping algebra of the Fourier modes of the

fields of 3(g).

A module M € KL,, is endowed with a natural action of 3(g) and so every object in KL,,
is also a 3(g) module. By passing to the universal enveloping algebra, a module M is also

a module over Z.

Following [Aralg], we define Z-Mod to be the category of positive-energy representations
of the Feigin-Frenkel centre. Equivalently, the objects of Z-Mod are the Z modules M such

that M = @ e,y Ma for some p € C.

Let us move to describing some distinguished subalgebras and quotients of Z. We de-
fine,

Z(<0) = C[Pdi,(n)a |d1 =1,...,tkgne Z<0] , (A317)

which is isomorphic (as C-algebras) to 3(g). Furthermore, we define
Zog = C[Pdi,na ’dz =1,... ,I‘kg nc Z<0] s (A318)

where the reader should note that we have used the physicist's gradings on the mode number

with Pyn = Pdi,(n)—d,-—l'
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Definition A.3.5. Let Z), be the annihilator ideal of V) inside Z.(, then

3r = Z<0/Iy . (A.3.19)

These quotients will be integral to our construction and will appear again in the following
section, where we shall find a geometric interpretation for them. For now we quote a

result.

Proposition A.3.6 ([FG10, Theorem 2]|). Let H{)q be the (derived) functor of principal
Drinfel'd Sokolov reduction and let X € PT. We have the following isomorphism of Z-

modules,

Hpg(V)) 265031 - (A.3.20)

Recall the characters, x», of Z(g) defined by the action of Z(g) on finite-dimensional highest-

weight modules V). We may lift this to a character of Z via

XA (P (n)) = On,a xa(Fa,) - (A.3.21)

The Kazhdan—Lusztig category (at the critical level) KL has a block decomposition, much

like the finite-dimensional BGG category Oy, given by

KL= P KLy . (A.3.22)
APt

where KLy is the block where the Py, (4,) act via the generalised eigenvalue x .

A.4 Opers and the Feigin—Frenkel centre

Our main theorems, Theorem and , rely heavily on the machinery of opers on D
and D*. Here we shall review the machinery required for the proofs of the aforementioned
theorems. What follows will largely be a paraphrasing of [Fre07], and we recommend that

text along with [Fre02] for a more holistic review.
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We adopt the following conventions for this section. Let X be a smooth algebraic curve i
over C, and let G be a simple algebraic Lie group, with “G its Langlands dual. Let B ¢ G
be a choice of Borel subgroup that splits as B = H x N, where H is the maximal torus and
N is the maximal unipotent subgroup. We denote g for the Lie algebra of GV. The Borel
subalgebra is b C g with splitting b = h @ n, where § is the Cartan subalgebra and n is the

nilpotent radical.

Define [n,n]* to be the orthogonal subspace to [n,n] with respect to the Killing form. The
quotient [n,n]t = PDoca 9o retains an adjoint action of B. This action factors through
an action of the maximal torus H and we define O to be the Zariski open H-orbit inside

[n,n]+/b. This orbit is isomorphic to the intersection

0 =Oprin N EP 9-a (A41)
aEA

where Opyiy is the principal nilpotent orbit inside g*, considered as an adjoint orbit inside

g via the Killing form.

A.4.1 Opers—a first definition
First, we recall a basic concept.

Definition A.4.1. Suppose P is a principal G-bundle on X and let ¢ : H — G be a

homomorphism of algebraic Lie groups. We say that a principle H-bundle Py — X is a H-

reduction of P if there is an isomorphism Py x G — P, where x corresponds to quotienting
H H

by the free diagonal action of H.

For H C G a closed subgroup, the choices of such a H-reduction are in bijection with
I'(X,P/H). To see this, note that P — P/H is a principal H-bundle over P/H and so we
can take the base change along a section s : X — P/H to define a pullback bundle s*(P)

on X with structure group H.

We need a couple more ingredients before we introduce the definition of a G-oper.

5Note that dimensionality will mean that all principal connections will be flat
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Definition A.4.2. Suppose P is a principal G-bundle on X with V a connection on P and
let Pp be a B-reduction of P. Let Ly (Lp) denote the Lie algebroid, over X, of G (resp.
B)-invariant vector fields on P (resp. Pgr). Note that £, C Ly is a sub Lie-algebroid and

let (a/b)py, = Lo/ Lo

The connection V is, by definition, a map of vector bundles, V : TX — L over X.
The composition V : TX — L4 — Ly/Ly = (g/b)p, gives a section ¢(V) of the bundle

(g/b)p, ® Qx called the relative position of V to Pp.

For a connection V to preserve the reduced bundle Pp under parallel transport, we must

have that ¢(V) = 0.

Definition A.4.3. Let P be a principal G-bundle on X with V a connection on P and
let Pp be a B-reduction of P. Recall the relative position of V to Pp is measured by a
section ¢(V) € I'((g/b)p, ® Qx). We say that V is transversal to B if ¢(V) is in the subset

['(Op, @ 2x) CT((g/b)py @ Qx).

Suppose we look at the formal neighbourhood of a point x € X; this neighbourhood can
be identified with the formal disc D = Spf C[t], by choosing a co-ordinate ¢. On this
neighbourhood, P and Pp can be trivialised. Transversality of V is equivalent to saying
that

V=0+> ¢alt)ea+v(t), (A.4.2)

acA
where ¢,(t) are nowhere vanishing, v(t) € b[t], and e_, are the negative simple root

Chevalley generators of n_.

Definition A.4.4. The space of G-opers Opg(X) on X is the moduli space of triples
(P,V,Pp) where

e P is a principal G-bundle on X
e V is a connection on P
e Ppis a B-reduction of G that is transversal to V.

Any such triple (P, V, Pp), satisfying the conditions above, is called a G-oper.
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A.4.2 Opers on the disc and the Feigin—Frenkel isomorphism

We shall primarily be interested in the case of opers on the formal disc D and the formal
punctured disc D*, both equipped with a co-ordinate ¢. In these cases, we can produce a

far more concrete description of moduli space of opers.

First, note that all G bundles over D are trivialB , therefore the space of opers should be
identified with the space of connections of form (|A.4.9), modulo the group B[t] of gauge
transformations coming from the choice of trivialisation of Pp. If g € B[t], then the gauge

transformation acts on a connection d; + A(t) as

g- O+ A) =0 +9gAt)g — g '0g . (A.4.3)

The orbit O is a H-torsor and so we may use H-valued gauge transformations to partially
gauge fix and set all ¢, equal to unity. Let OAp/GGD)) be the space of connections of the

form

V=0i+> eqotuv(t), vt)ebft]. (A.4.4)

aEA

Then Opg(D) is Opg (D) /NTt].

We shall now detail how to pick canonical representatives for each N[t]-gauge class. Note
that our special representative for the principal orbit p_1 = > cA € is in O. Recall that
we can complete this element to the canonical principal sly triple (p1,po,p—1) such that
the grading induced by ad,, satisfies n =%, g; and b = 3,59, As before, we denote
the subspace kerad,, by s. This subspace inherits the grading on g, and its components

are
rkg

5 = @%i , (A.4.5)
i=1

where d; are the exponents of g and the dimension of s; is equal to the multiplicity of d;.

Let (pi)=8 be the basis of Remark .

Lemma A.4.5 ([DS85, Proposition 6.1]). The action of N[t] on O?)JG(]D) is free and admits

"This statement is a bit quick. If one has a co-ordinate, ¢t on D), one can always construct a section to
P — Spf C[t] by appealing to the formal smoothness of P over Spf C[t].
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a global slice consisting of connections of the form
rkg

V=0+p1+ Zvdj (t)pa; , where v;(t) € C[t] . (A.4.6)
j=1

As an immediate corollary, we have a very concrete presentation for Opg (D) as an affine

scheme (of infinite type), that is
Opg(D) = SpecClvg, |t =1,...,1kg, n € N], (A.4.7)

and we denote the co-ordinate ring as Fun Opg (D). This gives an identification Opg (D) =

Hom(ID, Sprin ).

The ring of functions Fun Op(D) is a unital associative algebra over C and one can define
a derivation 0 by the action dvg, 0 = 0 and dvg, , = vg, n—1 and extending by Leibniz.

Therefore, by Remark , Fun Opg (D) is a commutative vertex algebra over C.

In fact the commutative vertex algebra Fun Op,(D) is known, via a celebrated theorem of

Feigin and Frenkel, to be related to one that we have already met.

Theorem A.4.6 (The Feigin-Frenkel isomorphism). Let G be a simple algebraic group with
Lie algebra g. Let “G denote its Langlands dual. We have an isomorphism of commutative

vertez algebras

Fun Op (D) — 3(g) (A.4.8)

Vd;,;n 7 Pd;,(n)

moreover this isomorphism intertwines the actions of Aut O and Der O.

A.4.3 Infinitesimal co-ordinate changes

In the previous subsection, we had (non-canonically) chosen some co-ordinate, ¢, on D.

What happens if we were to change co-ordinates t = ¢(s), where ¢ € Aut O7 A connection
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of the form (jA.4.2) will now be in the form
V= (¢'(s) "9 +p-1+0v(s(s)) , (A.4.9)

So the corresponding connection for 0 is Vs = 95 + (¢/(s))p—1 + ¢'(s)v(¢(s)). However,
this is not a canonical representative. To bring it to the form in (), we have to twist
by the gauge action of H[s]. In particular we should twist by p(¢/(s)), where p is the sum

of fundamental coweights of G. Doing so, gives us a transversal representative.

¢"(s)
¢'(s)

ﬁ(cb'(S))-(Vs):@erp1+¢’(8)ﬁ(¢’(5))'v(¢(8))-ﬁ(¢'(8))_1—( )ﬁ, (A.4.10)

where (q;///((j)) ) p € h[s] by viewing p as an element of the Cartan subalgebra, b.

Therefore the group of co-ordinate changes, Aut O, acts on @G(D) via this gauge action.

A

What does the action of Aut O look like for the canonical representatives of the form (|A.4.6)?

Suppose v(t) = Z;igl vg, (t)pa,, then () is almost of the right form—except for the

(‘il,/((i))) p term. We can fix this by a further gauge transformation by n € N[s]

9= Exp(éijéi)pl ; (A.4.11)

where Exp : n =5 N is the exponential map. This gives an oper in the form
rkg
Ve=0s+p-1+ Y Ua,(s)pa, (A.4.12)

=1

where

B1(s) = 01(6(5))(9/(5))? — SSchw (g, s} |
5, (5) = v, (G (@ ()Y, j>1,

(A.4.13)

117 1 2
where Schw{¢,s} = Z,(S’)) — % <(Z,((j)) > is the Schwarzian derivative. The action of Aut O
on Fun Opg(D) can be read off from these expressions. This action induces an action of

the Lie algebra Der O, which is isomorphic to the algebra generated by the strictly positive
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modes (Ly,)m>o of the Virasoro algebra.

A.4.4 Opers on the punctured disc and monodromies

We move to considering the space of G-opers on the punctured disc D*. Following the same

analysis as in Section , we can write a G-oper on D* as a gauge representative

rkg
V=0 +p-1+ Y va(t)pa, , where vy (t) € C(1) . (A.4.14)
j=1
This gives an identification,
Fun Op(D*) = Clvg, (ny, | = 1,...,tkgn € Z] . (A.4.15)

Note the similarity to Z. Indeed, combing Proposition 4.3.4 and Lemma 4.3.5 of [Fre07],

we have the following result.

Theorem A.4.7 ([Fre07, Theorem 4.3.6]). We have an isomorphism,

Z = Fun Oprg (D) (A416)

Vs (n) = Fty ()
that intertwines the (Der O, Aut O) actions on each side.

We now have geometric models for both 3(g) and Z.

Recall the quotients 3y, defined as Z/Zy for Zy = Annz(V)). These should correspond to
closed subschemes of Spec Z carved out by the sheaf of ideals, Zy. What do they look like
in terms of opers? To answer this question, we will have to examine the pole and residue

structures of a connection at ¢t = 0.

Definition A.4.8. Let A € P be a dominant integral weight of G, i.e., a coweight of LG.

We denote by Opggp A the space of B[t]-conjugacy classes of connections of the form

V=0 + > t@Vy(t)e g +o(t) + % , (A.4.17)

aEA
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where ¥(t) € C[t]*, v(t) € “b[tJand n € In. This is called the space of nilpotent opers
with coweight .

nilp,

LG * denote the closed subscheme of conjugacy classes of

Furthermore, let Op%G C Op

connections of the form

V=0 +> t“Npte_s+o(t), (A.4.18)

aEA
i.e., where n = 0. These are the opers with trivial monodromy.

Both Opﬁgp’)‘ and Op?, can be thought of as subschemes of Oprg(ID*) by taking the
B((t) conjugacy classes of connections in the given forms. This gives rise to closed embed-
dings,

Opig = Opig ™ = Oprg(D) . (A.4.19)

Theorem A.4.9 ([FG10, Theorem 1]). We have a commutative diagram

Z —=—— FunOprg(D*)

l | (A.4.20)

3x —— Endg—(V,) —=— FunOp2,

c

In other words, the closed embedding Opﬁ‘G — Oprg(D*) = Spec Z has image Spec3y.
Now that we have a geometric understanding of 35, we want to try and give a concrete

presentation of it. To do so, we shall introduce Miura opers.

A.4.5 Miura opers and Cartan connections

Definition A.4.10. A Miura G-oper on X is a quadruple (P, V, Pg, Pj), where (P, V,Pp)
is a G-oper on X and Pj is a B-reduction of P that is preserved by V. We denote the

space of Miura G-opers on X by MOp(X) and it comes with a natural projection

oblv : MOpg(X) — Opg(X) . (A.4.21)
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Once again, we restrict to the case when X =D. A Miura G-oper is generic if Pp and Pj
are in generic relative positions and we denote the subspace of generic Miura opers on D by

MOpG (D)gen .

A B-reduction of P that is preserved by V is uniquely determined by a choice of B-reduction

of the fibre of P at 0, Pg. The space of such B-reductions is given by the space of sections

I'({0},Py/B) which are just the C-points of Py/B and may be identified with Py x G/B.
G

Therefore, the natural projection MOpg(D) — Opg (D) should be a principal B-bundle over

OpG (]D))7

Define Pyyiv to be the universal G-bundle on Opq(D) with abstract fibre Py at the point

(P,V,Pg). Then, by the preceding argument

MOpg (D) = Puniv X G/B (A.4.22)

For a fixed Pp, P} is in generic relative position if it lies in the pullback of the big cell

U C G/B to Py é G/B. By a similar argument as before,
MOPG(D)gen = PB,univ E 7 (A.4.23)

As a corollary, MOpg(D)gen — Opg (D) is a principal N-torsor.

Given a generic Miura oper (P,V,Pp,Py) on D, we can define H-bundles Py = Pp/N
and Py = Pp/N.

Lemma A.4.11 ([Fre07, Lemma 8.2.1]). For a generic Miura oper (P,V,Pp,Pg) on D,
Pu and Py are related by
Pr = wi(Pr) , (A.4.24)

where w§ is a bundle morphism that twists the fibres by the longest element of the Weyl

group wo.

The connection V on P preserves Pj; and descends to a connection on Pj;. Since, Py and

P}, are related by an automorphism, this defines a connection, V, on Px.
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Lemma A.4.12 ([Fre07, Lemma 4.2.1]). The H-bundle Py is isomorphic to the H-bundle
0P, which is characterised by requiring that ¢ € Aut O acts on the trivialisation, of QP, by

the transition function p(¢').

Thus, the connection V is a connection on 2 and we have a map to the space of connections

of Q7 on D.

Proposition A.4.13 ([Fre07, Proposition 8.2.2]). The map

B : MOp(D)gen — Conn(Qp)D
(A.4.25)

(vaapBaplB) = v

is an isomorphism.

This is nice, since any connection in Conn(Q?)p is of the form V = 8; + h(t) for some
element h(t) € h[t]. Thus, we can identify MOpg(D)gen = h[t]. Composing with the

forgetful morphism, oblv : MOpg (D) gen, = Opg(DD), gives us a morphism

fMiura : Conn(QP) — Opg (D) . (A.4.26)

called the Miura transform. This will be highly useful since the simple presentation of

Conn(©2?) will be invaluable in establishing various properties about Op¢ (D).

Now that we have covered the case where X =D, let us move to discussing the case of the
punctured disc. By [FG06, Lemma 3.2.1], we have that every Miura oper on D* is generic

and so we have an isomorphism

MOp¢(D*) = Conn(Q°)px . (A.4.27)

Just like with the disc, composing this map with the forgetful morphism gives the Miura

map

pMiura : Conn(Q°)px — Oprg(D*) . (A.4.28)

We shall abuse notation slightly and use pjura for both Miura maps.
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Let A € PT be a dominant integral weight of G, i.e., a coweight of “G. We form the

pullback
MOp? (D%) —— MOpig(D¥)

i J (A.4.29)

Op e ——— Oprg(D*)

Similarly, for p the sum of fundamental dominant weights in G, we can define the space of
Cartan connections, Conn(Qp)BA as the space of gauge conjugacy classes of connections of

the form

vz@—%+mw, (A.4.30)

where u(t) € b[t]. To reiterate, these are connections for an “H principal bundle, i.e.,
the dual torus of G, with residue A at 0. Functions on this space have a very concrete

realisation,

Fun(Conn(Q”) ;%) = Clujpn|i=1,...,tkgn € Zo] . (A.4.31)
There is a natural embedding
Connr g (Q°)p* < Connz 7 (Q°)px (A.4.32)

by taking “H ((t)) conjugacy classes.

Now consider the restriction of the Miura map to this subspace,
ul/}/[iura : COHHLH(Q'D)HSA — OpLG(DX> > (A433)

where we think of Connr H(Qp)]ﬁ)‘ as a subspace of Connr g (2°)px via ()
Proposition A.4.14 ([FG0G, Proposition 3.5.4] [FG10, Lemma 2]). Let A\ € P' be an

integral dominant weight of G, then we have the following pullback square

Opry ———— Opig,
l l : (A.4.34)
A
Connz 7 (Q°)5" 2038 Op, o (D¥)

157



i.e., the image of uﬁ/ﬁura in Oprg(D*) coincides with the image of the closed embedding
OpéG — Oprg(D*) . Moreover, the map ,uﬁ/ﬁura : COHHLH(QP)HSA — Op%G, s a principal

N-bundle.

Therefore, we have a map on functions,

A
(MMiura)#

3y Fun(Opi‘G) Fun(Connr (7)) = Clujp i =1,...,tkgn € Zg] ,
(A.4.35)
giving a realisation of 3, inside a free polynomial algebra, in other words a free-field reali-

sation. In the next subsection, we shall describe the image of this embedding as the kernel

of certain screening operators. .

A.4.6 Screening charges

We want to recast the image of the Miura transform as the kernel of certain screening
operators. To do so, recall that Proposition states that pnfiura @ Connz g (Q°)p —
Oprg(D) is a principal ©N-bundle. In other words, we can identify Opz (D) with the orbit
space (Connz g (92°)p) /= N.

The infinitesimal action of YN on (Connw () = Cluipnli = 1,...,tkg, n € Zg] is

generated by the vector fields [Fre07]

rkg
0
Villl =3 aii D @ing—— (A.4.36)
7j=1 n>0 7
fori=1,...,tkg and aj; the Cartan matrix of g. The x;, are determined by

Z:L‘i,nt_” = Exp (— Z ui’mmtm) . (A.4.37)

n<0 m>0

These vector fields generate the Lie algebra “n. Therefore, we have the isomorphism [Fre07,
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Proposition 8.2.3].

rkg
Fun(Op.g(D)) = (Fun(Connz 5 (Q2°)p ﬂ ker Vi[1] C Cluip |i=1,...,1tkg, n € Z<o] .

(A.4.38)

This analysis carries over for the image of the restricted Miura map uﬁ/ﬁura, see Proposition
. The actions of the vector fields, however are a little different. The action of ‘n
on Fun(Connry(Q2°)p?) = Clup|i = 1,...,tkg, n € Zg| is generated by the vector

fields
rkg

Zaﬂ > Tinag—— 8% — (A.4.39)

n>\;

Proposition A.4.15 ([Fre07, Proposition 9.6.3]). Let A € P be an integral dominant

weight of G and so a coweight of “G. The Miura embedding can be realised as

rkg

3» 2 FunOpy; = () ker Vi[A; + 1] € Fun(Conny (07)5%) . (A.4.40)
=1

A.5 Semi-infinite homological algebra

Much of the techniques of [Aral§] rely on various forms of BRST reduction. In the context
of vertex algebras, the correct formalism for dealing with BRST cohomology is that of semi-
infinite homological algebra. Semi-infinite cohomology was introduced by Feigin in [Fei84],
and adapted for use in bosonic string theory by Frenkel, Garland and Zuckerman in [FGZ86].
We shall largely follow the formalism of Voronov [Vor93, Vor97], who recast semi-infinite

cohomology in the language of homological algebra.
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A.5.1 Semi-infinite structure

For the rest of this section, g shall be a Z-graded Lie algebra over C. We define the two Lie

subalgebras

9+ = @gz’,

>0

g- = @gz’,

<0

(A5.1)

We define gl C End(g) to be the (Lie algebra of the) restricted general linear group on g,
consisting of all matrices, ¢, whose ¢_ : gy — g— block is of finite rank. We then define
the space gl to be a one dimensional central extension of gl, see [Vor93] for details. The
adjoint representation ad : g — gl, lifts to a homomorphism of Lie algebras ad : g — QT[. We
define 5 € g* to be the composition of the lifted ad followed by a left splitting of the short
exact sequence

0—C—gl—gl—0, (A.5.2)

as vector spaces. For any graded Lie algebra g, we may choose a splitting such that 3(g;) = 0

for i # 0, see Prop 2.4 of [Vor93].

Definition A.5.1. Let g be a Z-graded Lie algebra over C. A semi-infinite structure on g

is a 1-cocycle 3 € g* defined as above such that ((gi+) = 0.

Since [ is a one cocycle, we have a natural one dimensional module associated to it: Lg.
As a vector space, Lg = C, with the g action given by z - m = f(z)m for all Lie algebra

elements z € g and m € Lg.

There are two examples of Lie algebras that admit a semi-infinite structure that shall be of

great use to us:
e Any Abelian Lie Algebra, with 8 = 0.
e Any Kac-Moody algebra with its natural grading admits a semi-infinite structure.

More generally, we can equip any semi-simple Lie algebra g, with a Z-grading, with a semi-

infinite structure by setting 8 = 0—as a consequence of the Whitehead Lemmas.
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Remark A.5.2. A semi-infinite structure also gives a generalisation of the BGG category Oy
to non-semisimple Lie algebras. Given a Lie algebra g with semi-infinite structure, we define
Oy to be the category of g-modules where g, acts locally finitely, i.e., for every element m,

the subspace U(gy)m has finite dimension.

A.5.2 The space of semi-infinite forms and the Feigin standard complex

Let Cliff(g) be the Clifford algebra of g i.e. the algebra generated by g @ g* with the

symmetric bracket

{l‘,y} - {0‘77} =0, {a,y} = {y, a} = a(y), forxz,y €g,a,v € g* . (A.5.3)

The space of semi-infinite forms, A 2 1*g is the representation of Cliff (g) generated by a

choice of vacuum vector wgy subject to
rwp =oawg =0, forzeg_,acg]. (A.5.4)

The grading on /\ %‘“g is defined by setting degwy = 0, degg = —1 and deg g* = 1. Let us
choose a basis {e; };cz of g compatible with the Z-grading, such that g_ = Span{eg,e_1,... }.
Let {e}} denote the dual basis. In this basis, wp is can be written as a determinant with an
infinite tail

wo=egNeT NegN ..., (A.5.5)

hence the name semi-infinite. Thus, a generic element is given by

w=ayAagA---ANe A.... (A.5.6)

n

Note that w and wg " “agree'' after a finite number of terms. The action of the Clifford

algebra is given by

cw=aAw, acg",

A5.7
L(x)al/\ag/\...:Z(—l)kﬂ{x,ak}al/\ag/\---A@A..., reEg, ( )

k>1
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where the ~ denotes an omitted entry.

Following [FGZ86],we define the normal ordering operator on semi infinite forms as

t(ei)e(er) fori <0
cu(e)e(ey) 1= . (A.5.8)

e(ef)e(e;) fori>0

We can now define a g-module structure on /\ %“g by the action

ple) = s ullz,e])e(e]) : +8(s), z€q. (A.5.9)

1€EZ

As complicated as this may look, the action of p(x) is actually the natural action [FGZ86]

plx)ar Aag A -+ = Zal Nag A~ A (ad*(z)ag) A ..., (A.5.10)
k>1
where ad*(x) is the coadjoint action of g on g*. Thus A % 1T*g has the structure of a g-module

and in particular is an object in category O,.

Let M € Oy, then M ® /\%“g can be given a g-module structure. The grading on
2 Zteg* @ M is inherited from the grading on A Z1*g and setting deg M = 0. We define
a differential d on A\ 2 *g®M by

d= Z e; @ €( Z ([ei, ej])eey)e(e;) = +e(B). (A.5.11)

i<j
It can be shown that d satisfies d*> = 0 (see [Vor93, FGZ86]) and has degd = 1 with
respect to the grading on A %Jr'g* ® M. This is the semi-infinite analogue of the usual
Chevalley-Eilenberg differential in finite dimensional Lie algebra cohomology. Thus, as a
generalisation of the Chevalley-Eilenberg complex, we define the Feigin standard complex

for a g-module M as the cochain complex C'2 7*(g, M) = (A\ z t*g* @ M, d).

While it may seem arcane, the Feigin standard complex is a very familiar construction in

vertex algebraic language. Suppose, for now that g is an affine Kac—-Moody Lie algebra

g
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Let us introduce a friendlier notation. We write the actions of the Clifford algebra as
e(ef) = ¢ and i(e;) = by, i.e. the Clifford algebra is the (b,c) ghost system of BRST. The

space of semi-infinite forms is nothing more than the vacuum module of the ghost system

and so has the structure of a vertex algebra.

Let Ji(z) be the generating currents of V*(g). In this notation, the differential () is

the zero mode of the BRST current

Tprsr(2) =Y _(J')(2) + D fi ¥ by (2), (A.5.12)

? i7j7k
where f;; k are structure constants of g. Therefore, the Feigin standard complex is equivalent

to the usual vertex algebra BRST complex.

A.5.3 Semi-infinite cohomology

Having defined the Feigin standard complex, we define the semi-infinite cohomology of a

Lie algebra g (with semi-infinite structure) with coefficients in a g-module M as

H2 (g, M) =H* (/\ T @ M, d). (A.5.13)

In ordinary Lie algebra cohomology, one can compute the cohomology of a Lie algebra
relative to some subalgebra. We can extend this naturally to the semi-infinite case. Let
h C g be a subalgebra of a Z-graded Lie algebra, g, that admits a semi-infinite structure.

We define the relative Feigin standard complex [FGZ86] as
CEH(g, b, M) ={ce C2* (g, M) |u(z)c=(z®1+1® p(x))c=0), Vz € h}. (A.5.14)

Thus we can define the semi-infinite cohomology of g relative to b with coefficients in M
by
HZ**(g,h, M) = H*(CZ (g, h, M)). (A.5.15)

This is a useful construction, which allows us to limit ourselves to certain sectors of coho-
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mology.

Computing, semi-infinite cohomology with coefficients in an arbitrary module can be fairly
involved. There are two main tools that make this computation tractable. First, we have a

spectral sequence that converges on the cohomology HZ e (g, M).

Theorem A.5.3. (Theorem 2.3 of [Vor93]) For a Lie algebra g = g_ ® g+ and M € O, we

have a spectral sequence (EX?, d?) with p > 1, ¢ < 0 such that

« EDI=Hi(g_,\2"P(g/g-)®M)=H_g(g—, \ 2 "(g-)®A\ % "P(g/g—) @ M), where

we have used Poincaré in the second equality and H_, is the Koszul homology
. T&lEf’q = EBI where the limit is taken with respect to the epimorphisms d,
o EBI = grP H%er*q(g,M)
Thus, the spectral sequence converges to the cohomology H%Jr'(g, M).

This is just the familiar Hochschild—Leray—Serre spectral sequence in the context of semi-

infinite cohomology. There is a similar spectral sequence with respect to g, —see Theorem

2.2 of [Vor93].

By using these two spectral sequences, one can establish the second valuable tool, a vanishing

theoremE

Theorem A.5.4. (Theorem 2.1 of [Vor93]) Let M € O such that it is injective as a g+

module and projective as a g— module. Then

- M+ forp=0,
HE (g, M) ={ ° (A.5.16)

0 else,

where Mg+ = im((M ® L)% — (M ® Lg)y_) which is the natural projection of the g -

tnvariants onto the g_ co-invariants. More concretely,

Mgt ={meM|gym=0}/{me M|gim=0 andm = (x+px)m’ for somez € g_}.

8We believe that there is a misprint in the original text which states that the cohomology vanishes for
p=0and is My" for others. The proof of this theorem in [Vor93] agrees with our statement.
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We have met a number of cohomological constructions in relation to the vertex algebra
correspondence of [BLL'15, BPRvR15]. Let us recast them in the light of semi-infinite

cohomology, in line with the construction of [Aralg§].

A.5.4 Gauging

In Section , we have described the gauging prescription for vertex algebras. Given a
vertex algebra V' € KL, we can gauge the action of the affine Lie algebra by introducing
a (b, c) ghost system and performing BRST reduction. The ghost system is nothing more
than the space of semi-infinite forms A §+°g that we have introduced and so we can write

this in the semi-infinite language as the cohomology
HZ (5, V). (A.5.17)

We have the canonical embedding g < g, via x 2t~ and thus we have a short exact
sequence of Lie algebras

0—=9g—8r, = 8k,/8—0. (A.5.18)

For any such sequence, we have an associated Hochschild—Serre spectral sequence, which

computes the cohomology HZ e (g, V). The second page is
EPY=HZT™(§ ., ,0,V)® H(g,C) (A.5.19)

where H9(g,C) is just ordinary Lie algebra cohomology with coefficients in C. In fact, the

spectral sequence collapses on the second page [Aral8| and so
HE*(§n, V) 2 HE (3.0, V) © H(3,C). (A.5.20)

This does not seem to be particularly helpful, until we introduce:

Theorem A.5.5 ([Aral8, Proposition 3.4]). Suppose V € KL_,, such that V is projective
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as a Ut tg[t™1]) module and injective as a U(tg[t]) module. Then

H2 " (§_r,,0,V)=0 fori#0. (A.5.21)
Proof. Follows from Theorem . O

A.5.5 Drinfeld-Sokolov reduction

Let f be a nilpotent element of g, by the Jacobson-Morozov theorem (Theorem , this
can be completed to an sly triple, (e, h, f) in g. The Cartan element h induces an integral
grading on g, see Section . We set g~0 = ;- 8i and g>2 = P,> 9;- The Lie algebra

that will appear in our semi-infinite cohomology is
§=g-olt,t']. (A.5.22)
with the natural grading by loop-rotation. Let x be a character of g>1[t~!] such that

X : 9>2lt, t_l] — C,
(A.5.23)

Xt = 0 —1(z, f) .

Note that x is completely determined by f. We define a one dimensional representation C,
of the subalgebra g-o[t] ® g>2[t 1] C g=0[t,t 1] by letting g~o[t] act trivially and g>o[t!]

act via x. This induces a vacuum representation F, of g=o[t,t~!] via the usual,

tt~! -
P = g0 o€ = U(@50lt:t™1)) @t offonsai) Cx (A-5.24)

This looks overly abstract but F) is nothing more than the B+-system associated to the
symplectic vector space g1 and so is a fairly straightforward vertex algebra.

Let V € KL, then, in particular, V is also an object in the category O of g-g[t,t!]

modules. The module V ® F), is again a g-o[t,t~!] module with the diagonal action.

Definition A.5.6. The Drinfel'd—Sokolov reduction of V' € KL, with respect to the nilpo-
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tent f, is defined as the semi-infinite cohomology,

Hpyg (V) =H=2 ™ (goolt.t 1,V R F). (A.5.25)

Remark A.5.7. The Drinfel'd-Sokolov only depends on the G-conjugacy class of f. To see
this, note that V' € KL, is G-integrable and so one can twist the action of g by the action
of G, taking f to any other element in its orbit. These twists act by automorphisms and so

the resulting reductions are isomorphic.

In general, if V' € KL is a vertex algebra object, then H DS, A (V) is also a vertex algebra. For
the special case where V = V*(g), the resulting vertex algebra HY f(V"“) is the W-algebra

associated with (g, f) at level k, W*"(g, f). Therefore we have a functor
H]%S,f K
KL, —2%5 Wr(g, f) . (A.5.26)

Once again, we have a vanishing theorem.

Theorem A.5.8 ([AralQ, Theorem 4.3.2]). For any M € KL, and any nilpotent element
f € N, the cohomology H]gsf(M) =0 fori # 0 and so H]%Sf : KL, — W*q(g, f) is an

exact functor.

Remark A.5.9. Suppose, V € KL, is a vertex algebra object, and also suppose that V is

conformal. Then the reduction H2g (V) is a conformal vertex algebra.

An explicit expression for the conformal vector can be found in Section 2.2 of [KRWO03],

but the central charge of H]%S7f(V) is related to the central charge cy of V' by
e vy = cv — dim Oy — Sdimgy + 12(p, h) — 3(k + h")(h, h) (A.5.27)

where h is the Cartan element of the sly triple, Oy is the orbit of f and p is the Weyl vector.

Suppose Kk = ke, then we have the isomorphism [FF92] of vertex algebras

3(g) = W™ (g, p-1), (A.5.28)
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where p_1 is our standard representative for the principal nilpotent orbit. Applying Theo-

rem , we have an exact functor
Hps,_, : KL, — Z-Mod. (A.5.29)

We shall primarily be interested in principal DS reduction and so as shorthand we use H]%S

to denote HJq b1
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