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Abstract

Let Q be the d-dimensional space of finite adeles over the algebraic number field
K and let P = Q¥ be its dual space. For a certain type of Vladimirov type time-
dependent Hamiltonian Hy (¢) : Q x P — C we construct the Feynman formulas for
the solution of the Cauchy problem with the Schrédinger operator m, where the
caret operator stands for the gp- or pg-quantization.
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1 Introduction

The idea of applying p-adic analysis in physics is due to Volovich. In his 1987 CERN
preprint! (published later as a paper [54]) he proposed that non-Archimedean space-
time geometry should be considered, and also advocated the development of p-adic
quantum mechanics. The first papers on p-adic quantum systems by Vladimirov and
Volovich appeared in 1989 [50, 51]. Since then, work on p-adic physics has been
developing at a great pace and a substantial number of papers have appeared in this
area.

To get acquainted with the development of p-adic physics we recommend the reader
[16, 23, 38] and the monograph [52] by Vladimirov, Volovich and Zelenov. Relatively
recent review of literature concerning non-Archimedean mathematical physics can be

1 1. V. Volovich. CERN-TH. 4781/87, Geneva, 11 pp., 1987.
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found in [17]. For a variety of applications of p-adic analysis in physics the reader
may consult, for example, some of the recent papers on the porous medium equation
[3, 24], energy landscapes [29, 61], image processing [59], and on p-adic Laplacian
on graphs [10].

Since no prime number p is in any particular way special it seems reasonable to
study physical systems in all p-adic fields. This observation is expressed in Manin’s
article [32], where he writes: "On the fundamental level our world is neither real nor
p-adic, it is adelic."

Consequently, many works have appeared in which the phase space of the physical
system is a ring of rational adeles Ag. We mention here only a few papers: [15]
on adelic quantum oscillator, [39] on quantum fields and strings on adeles, and an
application of adelic quantum mechanics to adelic quantum cosmology [18]. There is
a strong connection between quantum mechanics and probability theory. Stochastic
processes with values in Ag (or more generally in Ag, where K is an algebraic number
field), in particular adelic Brownian motion, has recently attracted renewed interest
of researchers [46, 47, 57, 58]. Early works on non-Archimedean diffusion processes
include [2, 26-28, 45, 49]. The recent works [25, 60, 62] give background on the
applications of ultrametric diffusions.

Our research presented here is motivated by the Smolyanov and Shamarov paper
[42]. They consider the Vladimirov operator with variable coefficient and the corre-
sponding Schrodinger operator acting on functions defined on the p-adic configuration
space Qf, and give the representation of the solution of the Schrodinger equation in
terms of Feynman-type path integrals.

In [48] the space of adeles A‘}( over the algebraic number field as the configuration
space is considered and the results from [42] are generalized. Specifically, in [48],
we consider a class of Hamiltonians Hy = Hy + V on A?( X A?( such that their
gp-quantization H9” = M,D® + V, where D% is the Vladimirov operator and M,
is the operator of multiplication by a real-valued function g. We obtain the Feynman-
Kac formula for the propagator of a quantum mechanical system with the space A‘Il(
generated by the Schrodinger operator —fl;qp .

The main aim of this paper is to generalize the results obtained in [48] to the case
of time-dependent Hamiltonians as well as to consider the pg-quantization.

1.1 Setting and main results

Let K be an algebraic number field (i.e. a finite extension of Q). Let Z(K) (%5 (K),
resp.) denote the set of places (finite places, resp.) of K. By K, we denote the comple-
tion of K with respect to the place v, and we let | - |,, be the normalized valuation (see
(2.2)). The space K¢ is endowed with the supremum norm |[x ||, = maxj<;j<g |Xi|y-
The finite (d-dimensional) adele ring of K is defined as

lxylly < 1 for almost all v € ¢

Ay ={x=w)e [] k¢
veZs(K)
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Thus, the ring A’}Q is a restricted direct product, i.e. the product

[T &

ve Z4(K)

relative to
RI={x e KI| lIxylly < 1}, v e Z(K).

We define a restricted direct product topology on A‘IJ( by specifying a base of neighbor-
hoods of the identity, consisting of sets of the form [ | .4;,, where .4, is a neighborhood
of the identity in K¢ and .4, = R¢ for almost all v € . The space A% is a second
countable, locally compact Haussdorff topological space. The elements of A”[l( are
called the (d-dimensional) adeles.

The ring of adeles of K is a locally compact Abelian group under its addition, while

RN;( ={a GA‘;{ D ay eRﬁforallve Pr}

is an open and compact subring of A‘}(. By p,a we denote the Haar measure on A’}l(
K

normalized so that u AL (R AL )y=1.Let QO = A‘II(. When Q is considered a copy of
its dual we denote this space by P.

Definition 1.1 (¢p-quantization) Let H : Q x P — C be a continuous function. Let
H9 be a pseudo-differential operator (PDO, for short) with symbol H defined as
follows. The value of H9” on a function ¢ from the Bruhat-Schwartz space Z(Q) is
a continuous function H4? ¢ : Q — C, given by

A7) = 7 (H@.)7,4500)) @.
where .7 ALY is the Fourier transform of ¢.

Definition 1.2 (pg-quantization) The value of the PDO HP4 with pg-symbol is a
(generalized) function HP9¢ € 2(Q) whose Fourier transform .% Ad (HP4gp) is a
regular generalized function with continuous density

P ﬁA%(H(u Pe()(p).

If a vector subspace S C 2’ is a Banach space with respect to some norm and contains
2(Q), and if the set DS ={p € Z(Q) | H?¢ € S}isdensein S and the restriction

Hir | DS, is closable as an operator on S, then such a closure is denoted by ng and
qp

is called a PDO with gp-symbol H on the space S. The PDO with pg-symbol H on
the space S is defined in a similar way.
For o > 1 define

£ p) =Pl -
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where || - || Al is the "norm" on A‘;( such that the topology generated by it (i.e. by the
metric [|x — y|| Al ) agrees with the restricted product topology (see Proposition 2.1).

Definition 1.3 (Vladimirov operator) Since
Fer = e (1.1)

we denote the PDO in (1.1) by D¢, i.e.

o _ —1 o
D9(@) = 7 (I 15y g 00)) @
We refer to D¥ (as well as to the corresponding operators on some S) as the Viadimirov
operator (of fractional differentiation of order o).

The operator Dz‘z 0 = (ﬁ) 12() is self-adjoint and positive definite [52]. The density

of the Fourier transform of D%g is given by
o
1PWya Fag @ (P)-

Remark 1.4 The Vladimirov operator and its corresponding Green function appear in
many places in mathematical physics, for example in the p-adic string theory [20,
53] and p-adic AdS/CFT correspondence [9, 21]. A role of Tate’s thesis [44] in
adelic physics is pointed out in [22] where it is shown that the Green function for
the Vladimirov operator is given by the local functional equation for zeta integrals.

Let Co(Q, C) be the space of all continuous functions from Q to C vanishing at infinity
considered with the uniform norm || - ||; « ad) and let Cp(Q, R) be the space of all

real-valued continuous bounded function on Q. Let, for t € R,

gt,) =g(() € Cp(Q,R).

We set, forq € Q, p € P,
Ho(t,q, p) =8, Dllpl -
K

Let V : Ry x QO — C be a continuous function. Define the Vladimirov type time-
dependent Hamilton function on Q x P by

HV(tsCLP)=H0(I,Qsp)+V(IvQ)- (12)

From now on we work under the following two assumptions about g and V, respec-
tively.

Remark 1.5 The context in which we work has strong ties to number theory. The
Hilbert-Pdlya conjecture states that the non-trivial zeros of the Riemann zeta function
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correspond to eigenvalues of a self-adjoint operator. There has been recent work sug-
gesting a connection between the non-trivial zeros of the Riemannian function and a
spectrum of operators that are quantizations of certain classical operators used in quan-
tum mechanics [5—-8]. Although these results are obtained in the case of Archimedean
fields, they still seem likely to give direction to new research in non-Archimedean
number theory.

Assumption 1.6 We assume that for every t > 0, g(¢, -) € Cp(Q, R). Moreover, for
every t > 0, there exists c(¢) > 0 such that, for every x € Q = A‘I’(,

g, x) = c() (1.3)
and there exists C > 0 such that for all r > 0,
c(t)>c>0,

Assumption 1.7 The function V : Ry x Q0 — Cis acontinuous and bounded function
with positive real part Re V, which is separated from 0, i.e. there exist constants C > 0
and ¢ > 0 such that

vV, ')||L°°(R+><A‘II<) <C, and ReV(t,q) > cforallg e Qandr e R;. (1.4)

Definition 1.8 Let A(f) be a generator of an evolution U(¢, s) in a Banach space
S C 2 and let ¥y € S. A solution of the Cauchy problem (or the initial value
problem) (A(¢), ¥y) :

Y, x) =AY, x) and Y (s, x) = Yy (x) (1.5)

is the mapping ¥ : [s,+00) — S defined by W(r) = U(¢, s)¥s as well as the
corresponding function v (¢, x) for which (¢, -) = W(z).

Definition 1.9 A Feynman formula is a representation of a solution of the Cauchy
problem (1.5) (or, equivalently, a representation of the evolution U (¢, s) generated by
A(t)) by a limit of n-fold iterated integrals, i.e. if max |t;+1 — ;| — O then

Ut,s)ys = lim R(ty, ta—1) ... R(11, 10) Y, (1.6)

where 1o = s, t,, =t and R(#, tx—1) are integral operators.

These approximations in many cases contain only elementary functions as integrands
and, therefore, can be used for direct calculations and simulations.

Definition 1.10 We call identity (1.6) a Lagrangian Feynman formula, if the
R(tx, tx—1) are integral operators with elementary kernels; if the R(t,fx—1) are
pseudo-differential operators, we speak of Hamiltonian Feynman formulas.
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The main objective of this work is to find a representation of the solution of the Cauchy
problem (1.5) with A(¢) = m(g’o and A(t) = mz? under assumptions (1.3)
and (1.4) or equivalently, to find a representation of the evolution operators U (¢, s)
generated by A(t), t > 0, in the form of the Feynman formula.

The following theorems are two of our main results and are the starting points for
getting the other Feynman formulas.

Forevery T >t > s > 0, define the operator

: qp
FiP(t,s) = (e~ b5 Hyoduy (1.7)

Theorem 1.11 (The gp-Feynman formula) The family {jlchz}ze[o,n generates
a family of evolution operators U9P (¢, s) on the space Coy = C (A‘Ii(, C) which gives
the solution of the Cauchy problem

QY (t,x) = —Hyay(t.x), (s, x) = y(x).
Moreover,
FIP(ty, 1y—1) ... FIP (11, 10)¢ — U (1. 10) in Co(A%. C) (1.8)

as max |tiy1 — ti| — 0 uniformly with respect to t,, tg € [0, T] for every function
¢ € Co(A%, O).

Let,for7 >t >s5 >0,

Pq

FPa(t,s) = (e* I8 Hv<u>du) (1.9)

L

Theorem 1.12 (The pg-Feynman formula) The family {mi(f}ze[o,n generates
the family of evolution operators UP4(t,s) on the space LI(A?{) which gives the
solution of the Cauchy problem

Oy (t, x) = —Hypiy(t,x),  W(s,x) = ¥ (x).
Moreover,
FPU(ty, 1y 1) ... FPU(11, 10)p — UP (1, 10)g in L' (AL) (1.10)

as max |tiy1 — ti| — 0 uniformly with respect to t,, tg € [0, T] for every function
1oad
p € L (A%).

Remark 1.13 Note that formulas (1.8) and (1.10) allow us to numerically find the
solution of the corresponding Schrodinger equation. Let us note that in some cases the
Feynman formula can lead to a solution of the Schrodinger equation in the form of the
Feynman-Kac formula. This is the case, for example, when the Hamiltonian does not
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depend on time or when only the potential V depends on time. In the former case, we
can express the solution as an integral over the trajectories of the process generated

by the operator ﬁqp, see [48, Theorem VIL.6],

Y (x) = Bge o VOOMdty () y(0) = x.

Itis widely known that in the Archimedean case (i.e. when the analysis is done over R or
C) the Feynman-Kac formula establishes a link between parabolic partial differential
equations and stochastic processes. The probabilistic aspect of solving differential
equations has many applications - both in pure mathematics and in applications. For
applications in quantum physics, see the monograph [30, 31].

For the reader’s convenience, we give below examples of fairly simple adelic Hamil-
tonians, for which the analysis of their quantization is relatively uncomplicated. We
must limit ourselves to operators that do not depend on time.

Example 1.14 For details see [57]. Let K = Q, d =1, Q x P = Ag x Aq. Let, for
J=12,...,]-1; be the p-adic absolute value corresponding to the j-th prime p.
Thus | - |1 is the 2-adic absolute value, | - |, is the 3-adic absolute value, and so on.
Consider the following free Hamilltonian which is time-independent,

oo oo
Ho(q.p) =) ojlpjlf.  0;=0. ) o <+oo.
j=1 j=1

Let
H(q, p) = Ho(q, p) +V(q).

Notice that if ¢ is from the adelic Bruhat-Schwartz space Z(Ag) (see Sect. 2.3) and

depends only on one "coordinete" j then H" acts on ¢ as the standard Vladimirov
operator on QQ,; multiplied by a constant term o;. The analysis of the Vladimirov
operator on Q,; is very well known [52].

The operator " generates a semigroup 7; of operators on Lz(AQ) and the cor-
responding stochastic process whose trajectories y (¢) are in the Skorohod space of
cadlag (continue a droite, limite & gauche) functions from R to Ag. Moreover, for
¢ € 9(Ag), the following Feynman-Kac formula holds,

Typ(x) = Ege™ o V&Mt 1), (1.11)

Example 1.15 This is simplified version of the setting from [46]. Let K = Q, d =1,
0 x P =Ag x Ag. Let
Ho(q. p) = lIpll*,

where || - || is a certain "norm" on Ag (see (2.3)). Then H' is a natural generalization
of the Vladimirov operator from Q,, to Ag. Let

H(q, p) = Ho(q, p) +V(q)
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Then for the semigroup of operators 7; generated by H" the Feynman-Kac formula
(1.11) holds.

The main tool in the proofs of Theorem 1.11 and Theorem 1.12 is the Chernoff product
formula for evolutions (see Theorem 3.6) proved by Vuillermot [55] and Plyashechnik
[36, Theorem 4].

Other types of Feynman formulas for the solutions of the Cauchy problem (1.5)
(of the Schrodinger equation) with A(t) = mtgg and A(t) = —/HMZ? under
assumptions (1.3) and (1.4) (i.e. Theorems: 6.1, 6.2, 6.4, 6.5, 6.6) are presented in
Sect. 6. They are obtained using the evolution perturbation theorem (Theorem 3.7).

1.2 Structure of the paper

In Sect. 2 we recall basic facts about algebraic number fields, define the Fourier trans-
form for functions defined on A‘f(, as well as the corresponding function spaces, which
will be used later on in the paper.

The generalized Chernoff product formula and perturbation theorem for evolutions
are presented in Sect. 3.

In Sect. 4, we study family F97 (¢, s) and family F 74 (¢, s) and prove their properties,
which we will then use in Sect.5 to prove Theorem 1.11 and Theorem 1.12.

Finally, in Sect. 6, Hamiltonian and Lagrangian Feynman formulas for the Schro-
dinger equation corresponding to the gp- and pg-quantizations of the Hamiltonian
Hy (defined in (1.2)) are obtained.

2 Preliminaries
2.1 Basic facts on p-adic fields

For more details, we recommend the reader the following monographs [33, 34,41, 56].
Certain passages in this paragraph closely follow [41, p. 61]. Let K be an algebraic
number field (i.e. a finite extension of Q). A valuation v of K is a homomorphism
v: K — RTU{0} such that v(x) = 0if and only if x = 0, and there is a real number
¢ > lsuchthatforallx, y € K, v(xy) = v(x)v(y)andv(x+y) < c max{v(x), v(y)}.
The valuation v is non-trivial if v(K) 2 {0, 1}. The valuation v is non-Archimedean
if v is non-trivial and we can set ¢ = 1, and is said to be Archimedean otherwise.

We say that two valuations vy and v, of K are equivalent if there is an s > O such
that v; (x) = va(x)* for every x € K. An equivalence class v of a non-trivial absolute
value of K is called a place of K. A place v is finite if v contains a non-Archimedean
absolute value, and infinite otherwise. The set of places, finite places and infinite places
of K are denoted by & = Z(K), P = P (K) and P, = P (K), respectively.

By Ostrovski’s theorem every non-trivial valuation of Q is either equivalent to the
usual absolute value | - |, or to the p-adic absolute value | - |, for some rational prime
p > 1, defined by |0, = 0 and | p* 2|, = p~* fork,n,m € Z and p { nm.

For every valuation ¢ of K, the restriction of ¢ to Q C K is a valuation of Q and
is equivalent either to | - | or to | - |, for some rational prime p. In the first case
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the place v 5 ¢ is called infinite (or is said to lie above 00) - in this case v is either
real (if K, = R) or complex (if K, = C) - and in the second case v lies above p
(or p lies below v). We denote by w the place of QQ below v and observe that K, is
a finite-dimensional vector space over the locally compact, metrizable field Q,, and
hence locally compact and metrizable in its own right. Choose a Haar measure 1, on
K, (with respect to addition), fix a compact set C C K, with non-empty interior, and
write modg, (a) = Ay(aC)/A,(C) for the module of an element a € K,. The map
modg, : K — Ry is continuous, independent of the choice of A,, and its restriction
to K is a valuation in v which is denoted by | - | .

Above every place v of QQ there are at least one and at most finitely many places of
K.

Let Rk be the ring of integers of an algebraic number field K. Let p be a prime
ideal of Rk, v the (discrete) valuation associated with p ([33, Theorem 3.3]). By K,
or K, we denote the completion of K under v, and we call K}, the p-adic field. By
k we denote the quotient field Rk /p, the residue class field. The cardinality of this
residue field we denote by q = g, = q,. The extension of v to K, will be also denoted
by v. The ring of integers of Ky, Ry = {x € K}, : v(x) < 1} is the closure of the ring
R={xeK:v(x) <1},and P = {x € K : v(x) < 1} = pRy is a prime ideal of
Ry, which is the closure of the prime ideal {x € K : v(x) < 1} of R. The invertible
elements of Ry, form a group U (Ry) of units of K. The quotient fields Rk /p and
Ry, /B are isomorphic ([33, Proposition 5.1]).

We define a uniformizer for v, or a local parameter, to be an element 7, also
denoted by 7, or 7 of K}, of maximal v(rr) less than 1. If we fix a uniformizer 7,
every element of K ;‘ can be written uniquely as x = usw™ for some u with v(u) = 1
and m € Z. Moreover, each element x € K, ; can be expressed in one and only one
way as a convergent series

Oo .
X = Zrin’, 2.1

I=m
where the coefficients r; are taken from a set % C Ry, (of cardinality q) of representa-
tives of the residue classes in the field k, := Ry, /B (i.e. the canonical map R, — ky
induces a bijection of % onto k).
In what follows we consider the normalized valuation

x|y = v(x) == g7k, 2.2)

where k is the unique integer such that x = usr¥ for some unit u.

Let K be a field with a valuation v. Then K is a p-adic field with the p-adic valuation
if and only if K is a finite extension of Q,, for a suitable p. (See [33, Theorem 5.10].)
In this case an absolute value of K extending | - |, on QQ, can be defined by

1
x|k = |Nkjg, ()|, wherem = (K : Q)

and the determinant Nk /q,,(x) i the determinant of the multiplication by x in K, i.e.
the determinant of the linear map from (the vector space over Q,) K to K given by

& — x&.
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One can also define the absolute value setting
Ixllx = INk/Q,(X)|p-
Clearly, | - |k and || - ||k are in the same equivalence class.
. .ps d
2.2 Metrizability of Ay
Define the following two functions on A4 ,

o _ llxu [l
ad = A% —
UEJ{ qv

’

1
Ixllg = max lollos el

where ¢, is the cardinality of the residue field and

lxullo = I(x1, ..o Xg) [l = max [x;|y.
J
I<j=d
Let ©
Ixllys  forx € [Tyem, R

Ix o = |
[ ||“ forx ¢ [Tye, R

Proposition 2.1 The restricted product topology on A‘f( is metrizable. The metric is
given by
dyt (6, 3) = x = Ylla 23)

Furthermore, A‘}; with d Ad is a complete non-Archimedean metric space.

Proof See [48, 60]. O

2.3 Function spaces on A%

Let, for v € &, 7, be the Hilbert space Lz(Kff) = LZ(Kf, y), where (y is the
Haar measure on K¢ normalized so that s, (R?) = 1. The linear space K¢ is endowed
with the norm [|x||, = maxj<;<4 |x;|,. A function f : K¢ — C is said to be locally
constant if there exists such an integer £ > 0 that for any x € K ﬁ

f+y=rfe if Iyl <gq,°

Let, for v € %, Q, be the vacuum vector of Rf, i.e. the characteristic function of
Rf. Define the algebraic tensor product

S = Q) S

ve P
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We say that an [ € % is simple if f is of the form f = ®,¢c 5, fy, Where f, = Q,
for almost all v € Z%. The space .7, consists of finite linear combination of simple
elements.

For simple elements f, g we define the inner product and the corresponding norm:

(o8 2wey = [T gl 1F 2@y = [T 1foll2g)

veP veP

and then we extend the above formulas for arbitrary element in .77 by linearity getting
the inner product and the corresponding norm on J%;;,. Restricted tensor product

H =P A
ve P

is the completion of the space .7 in the norm || - || - (AL): We identify the space
L2(A%, p pd) With .

We say that an element f € J7 is locally constant simple adelic function if it is
a simple element of J#, and for every v € %, f, € @(Kg), i.e. f, is a locally
constant function on K l‘f. The adelic Bruhat-Schwartz space 9 (A‘II() is the set of finite
sums of locally constant simple adelic functions with compact support. The set 7 (A‘I’()
is dense in 7 = L*(K?).

The Fourier transform .%, leaves (K ff ) invariant.

We say that a function f : A‘IJ( — C s locally constant on A’f( if for any x € A”[l(
there exists a constant £(x) > O such that f(x + y) = f(x) forany y € By()(0).

Proposition 2.2 The function f belongs to @(A‘[i() if and only if it is locally constant
with compact support.

Let f be a non-zero compactly supported function. We define the parameter of con-
stancy £ of f as the largest non-zero integer power of a number ¢,, v € % such
that

f(x+y) = f(x)forevery x € A%, y € By(0).

By definition we set the parameter of constancy of function 0 to be equal +oo0.

We denote by Qﬁ (A‘;() the subspace of functions from & (A‘I’() with supports con-
tained in the ball Bg and parameters of constancy greater than or equal to £.

We have the following embedding

25(A%) ¢ @g/(A’II{) whenever R < R', £ > ¢'.
We define the convergence in & (A‘;’;). We say that f; tends to 0 as k — +o00 in A‘};

if and only if

1 frx € @é (A%), where R and ¢ do not depend on k;
(ii) fr — O uniformly as k — +o0.

With this notion of convergence @(A‘;() becomes a complete topological vector space.
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2.4 Fourier transform on Aﬁ

Let K be an algebraic number field, v € &, and let C* stands for the multiplicative
group of C. Consider the additive group (K, +). Since K, is locally compact it is
self-dual, that is if y : K, — C* is a non-trivial additive character on (K, +), then
any other character ¢ is of the form ¢(x) = x (ax) for some a € K, [37, 40].

Recall that the rank of a character x is the largest integer r such that x|p = 1.
Let 1, be the normalized Haar measure on (K, +). For a fixed non-trivial character
x of rank zero (see [4, Subsection 2.1] for a construction of rank zero characters) we
define the Fourier transform of f € LY(K,) as (cf. [37])

Fof(x) = / X (—xE) FE)d iy ().

Ky

where u, is the Haar measure normalized so that ©,(R,) = 1. Then the inverse
Fourier transform is given by

FIf) = FEf() = /K (8 £ ()1 ®).

The above definition of the Fourier transform .%, carry over to K ff (see below).

The function e, (x) = 275}y is an additive character of Q p (the canonical additive
character). It is clear that e, (x) = 1 if |x|, < 1. If K is a finite extension of Q,, we
can obtain a non-trivial additive character of K taking the composition ¢, o Trg /0, -

Let A‘Ii{ be the adele ring of K. An adelic additive character
x=x5 A4 - C*, EecAd

corresponds to some & € A‘I’; (since A‘Il{ is self-dual) and is defined as a product over
local characters,
Qv Xv» Xv - K:)i - C*,

and each local character x, (finite or infinite) which lies over p, i.e. v | p, corresponds
to some &, € K, (K, is self-dual) and is given by

Yo() = XSU ()= e2ni{Tr1<v/Qp('»§v)}p’ v p. (2.4)

where (-, -) is a symmetric non-degenerate K,-bilinear form on K¢ x K¢.

By %, we denote the Fourier transform on L*(K ff ). The Fourier transform .%,
is an isometry on Lz(Kl’jl YN LYK l‘f ) and can be extended to an unitary operator on
L*(K{).

The Fourier transform on A‘Ii( is defined, for f € L! (A‘Ii(), by

Fag O = [ 100y ),
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Further in the text, we often use a more intuitive and convenient notation and write

x(x-8) = x5 (x).

Using this notation, the Fourier transform is written as
Fat f(&) = / X6 F i ().
K A?{ K

For a locally constant simple adelic function f in & (A‘;’;) its Fourier transform is
given by

(Fpg N@ =[[(Fuf@).  aehf. 2.5)

We extend (2.5) to (A‘Ii{) by linearity. The operator .% Ad is a unitary operator on a
dense subspace & (Ai) of . Thus, F Al extends to a unitary operator on JZ .

3 The Chernoff product formula and perturbation theorem
3.1 Evolution system

Let (X, || - || x) be a Banach space (over R or C), -Z(X) be the space of all continuous
linear operators on X equipped with the strong operator topology. Let || - || denote
the operator norm on .Z(X), and I be the identity operator on X. We construct an
evolution system U (¢, s) for the initial value problem

Wy (L, x) = Ay (1, x)

and
¥ (0, x) = Yo(x).

Definition 3.1 Let X be a Banach space. An evolution system (or simply evolution) is
a family of operators U (¢, s) in .Z(X), defined for0 <r <s <t < T, such that

@ Us,s)=1,

i) U@, s)U(s,r) =U(,r),
(iii) the map (¢, s) — U(t, s) is strongly continuous.
For a linear operator A, let p(A) stands for its resolvent set.
Definition 3.2 Let, for every ¢ € [0, T'], a linear operator A(¢) on a Banach space X

be the infinitesimal generator of a strongly continuous semigroup S;(s). The family
{A(#)}1eq0,77 18 said to be stable if there exist constants M and w such that

(1) foreveryt € [0, T'], (w, 00) C p(A(1)),
(i) for any finite sequences 0 <t} < ... <f < T,ands; > 0,

k k
l_[Stj(Sj) < M exp a)Zsj
j=1 j=1
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Remark 3.3 Iffort € [0, t], A() is the infinitesimal generator of a Cy semigroup S; (s),
s > 0, satisfying ||S; (s)|| < e®* then the family {A(#)};c[0, 7] is stable with constants
M =1 and w. In particular any family {A(¢)};c[0,7] of infinitesimal generators of Cy
semigroups of contractions is stable.

Theorem 3.4 Let T > O be fixed. Let X be a Banach space and let {A(t)};c[0,1] be
a stable family of infinitesimal generators of strongly continuous semigroups with
stability constants M and w. Suppose that the domain of A(t), Dom(A(t)) = D does
notdepend ont. Suppose that the function A(t)g is strongly continuously differentiable
forevery ¢ € D. Then there is an evolution system U (t, s), 0 <s <t < T, satisfying
the following conditions:
() Ut,s) < Me®=9,
2) U(t,s)D C D,
(3) forany ¢ € D, the function U (t, s)¢ is continuous as a function with values in D

with respect to the graph norm of A(0),
(4) forany ¢ € D,

@V $)¢lis = AS)g
and
U, s)p==U(t,s)A(s)p.

Proof See e.g. [35, Ch. 5, Sec. 4, Theorem 4.8]. O

Proposition 3.5 Let the assumptions of Theorem 3.4 hold. Then, for every ¢ € D,

. Ut+hte—o
hm _—

=A
Jimy h (317

uniformly with respect to t.

Proof See [36, Proposition 15] O

The evolution system U (¢, s) from Theorem 3.4 is called a a solution of the Cauchy
problem.

3.2 The Chernoff type product formula

The following generalization of the Chernoff product formula [13] is due to Vuillermot
[55] and Plyashechnik [36, Theorem 4].

Theorem 3.6 (Generalized Chernoff theorem) Suppose that the conditions of Theo-
rem 3.4 hold. Let a family of bounded operators R(t,s), 0 < s <t < T, be such
that

| Rk, tk—1) - .. R(t2, 1)) < C (3.1

for any family of points 0 < t; < ... <ty < T, and let

R(t+ At 1) — 1

Ar g — Al)g (3.2)
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forany g € D as At N\ 0 uniformly with respect to t. Then,

R(ty, ty—1) ... R(t1, 10) f — U(ty, 10) f (3.3)
forany f € X as max |ty — t;| = O uniformly with respect to t,,, to € [0, T].

Proof See Vuillermot [55] or Plyashechnik [36, Theorem 4]. O

3.3 Additive perturbation

Let T > 0 be fixed. Let X be a Banach space and let {A(?) };<(0,77 and {B(#)};<[0,7] be
stable families of infinitesimal generators of strongly continuous semigroups with
stability constants M4, wa and Mp, wp, respectively. Suppose that the domain
Dom(A(¢)) = Dom(B(t)) = D does not depend on ¢. Suppose that the functions
A(t)p and B(t)g are strongly continuously differentiable for every ¢ € D. Then, by
Theorem 3.4 there are evolution systems Ux (¢, s), and Up(t,s), 0 <s <t <T.
Let
L(t) = A(t) + B(1).

Suppose that {L(?)};c[0,7) satisfies assumptions of Theorem 3.4. Denote by U (¢, s)
its evolution system.

The following theorem is a generalization of the corresponding result for semi-
groups [11].

Theorem 3.7 (Additive perturbation) Let the families of bounded operators R4 (t, s),
and Rp(t,s),0 <s <t < T, be such that

Ra(t,s)Rp(t,s) = Rp(t,s)Ra(t,s) (3.4)
and

IRA(tk, tk—1) ... Ra(t2, t)|l < Ca and ||Rp(tk, te—1) ... Rp(t2, 1)l < Cp  (3.5)

for any finite sequence of points 0 < t1, ..., tx < T, and let
Ra(t + At,t)—1 Rp(t+ At,t) —1
ACFALD =T gana RECTALD =L phe (o)
At At
forany g € D as At \ 0 uniformly with respect to t.
Let
R(t,s) = Ra(t,s)Rp(t,s).
Then,
R(ty, ty—1) ... R(t1, 10) f — U(ty, t0) f 3.7

forany f € X as max |tj;1 — t;| — O uniformly with respect to t,, ty € [0, T].
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Proof 1t follows from (3.4) and (3.5) that the family R(z,s), 0 < s <t < T, satisfies
(B.1) withC = Cy4 + Cp.
For each g € D, we have

R(t+ At 1) — 1 Ra(t + At,)Rp(t + At 1)g — g
A—tg—L(t)g = AL —A@)g — B(g

— Rs(t + At, 1) (RBO TALDS—8 B(z))

At
Rs(t + At,t)g —
R4+ AL =D B()g + RACT o 878 _ Ar)e.
Therefore, by (3.6),
R(t+ At,t) —1

lim Lg —Lig| =o.

ANNO At X
Thus all requirements of Theorem 3.6 are fulfilled and hence (3.7) holds. O

4 Two approximating families of operators: FIP(t, s) and FPI(t, s)

In this section we study two families of operators: F4P (¢, s) and FP4(t,s), defined
in (1.7) and (1.9), respectively, and prove their properties, which will be then used in
Sect. 5 to prove Theorem 1.11 and Theorem 1.12.

To start with, we need some facts about the heat kernel for the Vladimirov operator
D%, which we have collected below.

4.1 Heat kernel for the Vladimirov operator D%
Theorem 4.1 (Bochner) A function ¢ : A”}( — C is continuous and positive definite
if and only if it is the Fourier transform of a bounded Radon measure . on A‘IJ(.

Lemma4.2 Foreveryt > 0 and o > 1 the function

o
el
X = e K

is positive definite.

=tl1%
Proof By [48, Theorem 5.7], Z(«,t,x) = L?A_LI,: (e At1i<) (x) is a transition
function of a Markov process with space state A”[Q. Thus the result follows from
Theorem 4.1. O

We will need some properties of the kernel Z(«, ¢, x). Let, for x > 0,

o =[] a ", @.1)

ve P
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where, fort € R,
. [#] ift >0,

L1 = [t]+1 ift <O,

where [¢] is the integer part of 7.
Forn € R, n > 0 we define

ny =min{q? | n < qf,q, € P, B eZ\ {0}
and
n_=max{a) | af <n.q, € P, p € Z\ {0}

Proposition4.3 Let« > 1. For everyt > 0 and every x € A‘IJ( we have:

Z(a, t,x) = Z ®(q/) (e*tq{f“ _ eft(q{,+)“) .

tablas<lxl j .vePr.jeZ\O})
K

Lemma 4.4 The adelic heat kernel Z(w, t, x) on A”,i( satisfies the following:

1) Z(a,t,x) >0,
(ii) fAi Z(a, t,x)duAi x) =1,
(i) Z(e,t,-) € L'(AY),
v) Z(a,t, ) *x Z(a, t',x) = Z(a, t + 1, %),
V) limsos Z(a, t,x) = 8y in Z'(AL),
(vi) Z(a, t, ) is a uniformly continuous function for any fixed t > 0,

4.2)

(vil) Z(a, t, x) isuniformly continuousint,i.e. Z(a,t,x) € C ((0, +00), C(Ad ,R))

orlim,_,,; max, . yd |Z(a, t,x) — Z(a, 1/, x)| = 0 forany t > 0.
Proof See [60, Theorem 105] and [48, Theorem V.7].

Lemma 4.5 The following estimate holds for the heat kernel:
Z(,1,x) < 2|x]| 5 ® ((Hxng; >_> . xEeAR\(0), 1>0.
K K

Proof See [60, Lemma 103] and [48, Lemma V.6].

O

By Lemmad4.5 and definition (4.1) of @ (x) we getimmediately the following corollary.

Corollary 4.6 There exists C > 0 such that for all x with ||x||A¢IJ( >1,

Z(a’ t’x) S Ct||x||725‘
AK
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4.2 Properties of FIP (t, s)
Recall that, forevery 0 <s <t < T,
RPN
FiP(t,s) = (e—fx v (u) u)Co'
Let,forO0<s<t<T,qe Q,peP,
Fruq(p) = e b Hv@@.ndn 43)
Remark 4.7 We have the following upper bound
sup o~ Jy Hv)(q.p)du =sup ‘e—ffg(u,q)llpl\“—V(u,q)du
q q
<sup ‘e, J gwadulpl® | qup ‘effj V(u,q)du (4.4)
q q
Sef(tfs) infy 4 Re g(q,u)| p|* ef(tfs) inf, 4 Re V(u,q)'
Lemma 4.8 The function f;;4(-) € LI(A’;{) and
_ ot
F i Forg() = e VORI (), 45)
where P;{, is a density of a probability measure on A‘;(. Explicitly,
t
Plix)y=2 <af g(u,q)du,x), (4.6)
N

where Z(a, t, x) is the heat kernel for the Vladimirov operator D“.

Proof By (4.4) and the assumptions on g and V we get that forevery 0 <s <r <T

d
and for every g € A%,

t
fong(p) = e—fs Hy (u)(q,p)du

= oI f{ gua)du = [ Vwadu ¢ p1pd )y,

ByLemma4.2, f; ; 4 isacontinuous, positive definite function of p forevery g ands <

t. Therefore, from the Bochner Theorem 4.1 and the fact that Fourier transform maps

L! (A‘Il{) into Q(A‘Il(), we get that 9&; fs,1,4 is of the form (4.5). By [48, Theorem 5.7]
K

—t]-1%
Z(ot,x) =7} (e Né) (x) and (4.6) follows.
K
Definition 4.9 Let
Lo =/ € DAY | Fpy [(0) =0}.

Following [60], we call % a Lizorkin space.

m}
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Remark The space % is an adelic analogue of the Lizorkin space of the second kind
(see [1]).
Lemma 4.10 The following facts are true:

(1) the set £y N Cy is a dense subset of Cqy with respect to the supremum norm;
(ii) the set £y N L' is a dense subset of L.

Proof 1t follows by [43, Proposition 1.3]. O

Proposition 4.11 We have the following upper bound for the Cy — Co-norm of

F(,s),

t
IF (1 9)llcyrcy < supe™ Rels Re Ve,

q
Proof We proceed similarly to [12, p. 9]). Let ¢ € £ N Cy. We have

FP(t.5)p(q) = fA x(gg)e” B W@ GE)dp,, )

= [, rlgere I | epa iy (P ©
A?{ K K

Ak

:/Ad /Ad x(&@G — ek Hv(u)(qf)dudp,A([i( Ee(p)dpya (p)

— Z—1 (= [ Hv)(g.)du) (, _
[, 7 (e ) @ = Po(P)drgg (p)

d
% K

-1
:A%(yA fs,t,q)(q - P)‘P(P)d,uA(;((p)

d
K
By Lemma 4.8,

FIP(s.1)p(q) = A | e I Vwodepl (g — p)o(p)dpyg (p)

K

and consequently

| FP (s, [)QDHLOO(A?()

t
= sup / e~ Js Vw.g)du qu’t(q — (Pt (p)
q |JAY K
t
< sup ‘e_f,T V(u.q)du sup/ ‘Psq,t(q - P)‘P(P)’ diya (p)
q g JAY K
t
< sup e*RefS Re V(u,q)du sup/ |Ptq (g — p)| ditya (p)”(p||L°°(Ad)
g q JAY K %
ot
= sup e~ Re [y Re V(u.q)du ”(p”LOC(AL’]().
q
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Proposition 4.12 For every ¢ € £y N Co,

FiP(t,s)p — ¢

———qp
+Hy(s) ¢
r—s

=0.
Lo(Ad)

lim
NS

Proof Let ¢ € £y N Cy. By Lemma 4.10 (i), the set £y N Cy is a dense subset of Cy.
We start with

Far(t, _ -
i LG
e~ Jy Hva(.&)du _ 1\
-/ RE ( — ) P (€)
+/Ad X CEHy (5)(, E)pE)dppa (8). 4.7)

By the mean value theorem the first integral on the right above is equal to
t/ »
- /A Xy s HVEOCDA Yy (1) (- £)§(E)dpnyg (©), 4.8)
K

where s < t’ < t. We add and subtract the term

A , x(&e AV @COM Hy (5)(, 6)§(E)dpyg (€)

K

to the right hand side of (4.7) and get that the L°°-norm of (4.7) is bounded by

H /I;d x(-£) (l — e_fs’ Hv(u)(-ﬁ)du) Hy (s)(-, S)(ﬁ(é)d/«’q_\t}{ ()
K

L®(A%)

i [ X (6™ K HOCON (11 ). &)
A%
—HV W) 8)§ g @ - (49)
Again, by the mean value theorem, the first norm in (4.9) is equal to
(@ =) / | HC§)e I I WCDIM L (0 ) Hy (1), )(§)d g (€) ,
Ak L% (A%)

(4.10)
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where s < t” < t’ < t. By definition (1.2) of Hy we have

Hy(s)(q, p)Hy (1")(q. p)
= 2(q,98(q, MIpI7% +2(q. )V g, )pls,
K K

+8(¢. 1V (g 9lIpllgy + Vg, 9)V(g.17). (4.11)

Thus the LOO(A‘[J()-norm of the first term in (4.9) is dominated by

g(.)g(. ") /A | XCE)e R VOO g1 Gie)dpg )

L (Ad)

T PN /A %xcs)e‘fs' OEDMENL, Gy ©)

LAY

+leC Ve s) Ad X(-%’)e_fst Hv(u)(-,é)du”%-”Z(;((Z)(%')d/LAalt( é)

L®(A%)

FVE DV /Ad x(E)e e COdG @y, @)
K

L®(Ad)
If t — s then t” — s and the above sum of norms tends to

[@02 s, 4218 OVOD S g, + [ V201

(A% ©Ad)

so by (4.10), the first norm in (4.9) tends to 0. The second norm in (4.9) also tends to
0 by the assumptions on Hy . O

Proposition 4.13 The family F9P (t, s) is strongly continuous att = s, i.e.
lim || F9P(t, s)p — sorady = 0.
NS I ,s)g <P||L (ad)
Proof By the mean value theorem,
qp _
”F (tv S)(P go”LOO(AlIi()

) " fAd X (&) (7 H DN 1) )y (6)

L>®(A%)

=({—-y)

/A | g DIy (1) )G (E)dp g ()

K

L®(Ad)
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where t' € (s, t). Thus, by definition of Hy,
qp _
”F (t,S)(/) (p”L(X)(AZIi{)

<(t-s)

o) /A x(ge k AV @CONMEL, GE)dunyy €)

L®(A%)

4+ —s)

o /Ad (&) Hv(u)(-,é)du||§||X§(¢)(§)duAcIi< &)
K

L®(Ad)
and the above expression tends to 0 as ¢+ — s by the assumptions on g and V. O

4.3 Definition and properties of FP9(t, s)

Recall that, for ¢ > s > 0, the operator
FPr(t,s) e & (L‘(Af;{))

is defined by the formula

— P4
Fr(e, s) = (e vde)
Ll

The Fourier transform of the distribution F79(z, s)¢(q) is a regular distribution with
a continuous density given by

1
p > Fyg (e s T OEDNG ) (p),

That is .
FP(5)9(q) = Z ) (Fyg (e T OCDG0) () (g).

In the integral form

FPa(t, $)p(q)

= /Ad x(q - p)ﬂA?{ (g—fs’ HV(M)('vP)du(p(.))(p)dMA(;( (p)

K

1 /
=/ / X(q - pP)x(=p-ghe s W@ -Pdug @,y (qdpga (p)
A Jad K K

t ’
=/ / x(p-(qg—qh)e I VW@Pdugghapy, o (q")duy (p).
AL Jad K K
(4.12)
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Proposition 4.14 There is a non-negative constant ¢ such that forall0 <s <t <T,
—c(i—s
IFPAC ) ad ) ady < € ct=s), 4.13)

Proof Let ¢ € % N L' (by Lemma 4.10 (ii), % N L' is a dense subset of L!). By
(4.12) we can write

| FPi(t, S)QDHLI(AII/()

t ’
= /d /d x(p-(—gh)e Js v P (g Ydmgg ()dpgg (p)
AK AK LI(A(;]()

1 /
= / w(q’)/ X (p-(=gh)e V@ PWau  (pydu,a(q)
A% A% K K

LY(A%)
= / 0@ F ) forg ¢ —q)duya (@)
A% K K 1 ad
L1(A%)
(4.14)
In view of Lemma 4.8 we have

1 ’ /
||qu(l»5)‘/7||Ll(A‘}<) = H/d go(él/)e_fs V(u)(q )duP;{t(, _ q/)dMA[[{( (q/) 7
i L)

where P;{ ; 1s a density of a probability measure on A”I’(. Consequently,
pq
| F (f,S)(P||L1(A7()

t 7 !
- H/I;d 9(g)e s Vw@dupd (. _ qdpya (q')
K

L'(A%)

< IRV 0D [ o1 G~ g @iy @
AL JAY K K
=70 f | le@) f , Pl —adugg @dpyg @)
A Al
K K

= U9 /Ad lp@)ldpyg (@)

K
— pct=9) le ”Ll (N,’()
and (4.13) is proved. ]

Proposition 4.15 Forevery) <s <t <T,

if o € Co(AL, R) = FPI(1,5)p € Co(A%, R).
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Proof First we show that FP9(t, s)p € C(A%, R), i.e. is continuous. By (4.14),
FPi(t, s)p(q) 2/ 9@ T fing (@ —adpg @), (4.15)
Ad K K
By Lemma 4.8,
1 / ¢
Z il g g —q) = e LV (af / g(u.q"du, q 61’> . @16
S
Denote,
t
rsi(q) = / g(u, q)du.
A
Clearly, there are positive ¢, ; and Cy ; such that for all g € Al

0< Cot =< rs,t(‘]) =< Cs,t-

Then

|FP(t, $)p(q) — FP (1, )9(q0)|
= ‘/f;‘f( o(q)e V@D (7 (a1 (). q — q')
—Z (ot.75.4(q).90 = q')) diya (61’)‘
= /Ad @) (Z (@ rsi(@)a = ') = Z (@ rs0(a") 90 = @) | g (@)

K

4.17)

Let .# be a compact subset of A’}é. We split the integral on the right hand side of
(4.17) into two part: over .# and its complement .#¢. Denote by UC (A%, R) the

sapce of all real valued uniformly continuous functions on A‘f(. By Lemma 4.4 the
following map
[cs.ts Cs.i] 2 u > Z(atou, ) € UC(A%, R)

is uniformly continuous. Therefore, by Corollary 4.6,
| Z(riaa =) dug @)
< / max Z (a, u,q— q’) diga (q")
e u€lesr,Cs 1] K

=2Cy,; /f llg — q/llg%dﬂAi q". (4.18)
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Let ¢ > 0. Taking appropriate %, i.e. "large enough" we get that
/ Z (o, r5.0(q"). g —q")dpya (¢') < e and / Z (o, r5,0(q"). g0 —q') diega (q') < e
Hc K A K

Therefore, the integral on the right in (4.17) over 2 is smaller than 2||¢||; « (Ad)E-
Finally, consider the integral in (4.17) taken over .#". This integral is bounded by

0@ oot /;g |Z (o750 g = ¢') = Z (e 1@ 0 — ¢) [ d iy (@)
Clearly, for all ¢’ € 7,

lim |Z (o, 75,(q").q—q") — Z (o, 75,0(¢"). q0 — q')| = 0.

q9—>90

Hence, by dominated convergence theorem,
/X 0@ (Z (e 75,0040 = ¢') = Z (et 75.0(q)). q0 — ¢')) | d1tpa (4) — O

as ¢ — qo. Consequently FP4(t, s)p € C(A%, R).
Now we show that F74(t, s)¢ vanishes at infinity. To do this we write as in (4.17)

|FPa(t, $)p(q)| = ‘/ o(ge Vg (o v (g, g —q')dpga (q’)'.
HUKC K
Consider the integral over a compact set %,
Vl o(qhe K Vw7 (o v (g, q - q) dptya (q’)‘
< [ 10@)Z (@ restarea - a)] iy @)
N K

/ /
< 19l ot /we[g%“]z(a,u,q ~q)dmg @), @19

By Lemma 4.5,

Z(o,u,g—q")d !
[, o g =) dig @)

<20, / lg —q'I5 @ ((Ilq ~4'l| >_> dpgi () (420)
N K K K

and consequently from (4.19) and (4.20) we get that

q—>00

lim ' / so(q/)efs'VW)d“Z(a,rs,,(q/),q—q/)dqu;{(qS'=0. @.21)



105 Page 26 of 38 R. Urban

Proceeding similarly to (4.19) and using (4.18) we get
V 0(q"e™ ki V@D NZ (o r 1 (q')o g — q) iy (61/)‘
A€ K

< max |p(x max Z (o, u,qg—q')d !
< max ool [ (o 0.0~ 4') ity @)

c u€lcs,,Cs
< max |g(x)|2C; -4 g —q¢'I"H_)a .
= max |o()[2C;. /// lg = a4 ((Ilq 9y )- ) ditgg (@)

Since « > 1 the above integral tends to 0 as ¢ — oo. This and (4.21) implies that
limy— o0 FP9(t, 5)(q) = 0. Thus FP4(t, s)p € Co(A%, R). o

Proposition 4.16 For every ¢ € L' (A%),

FPi(t,s)p — —
fim | L8 L g5, (4.22)
AN t

L'(A%) .
Proof For every ¢ € % N L' (by [43, Proposition 1.3], % N L' is a dense subset of

LY we write

Fra(, _ o
©99@ = 9@ GG )

t—s
o= L Hv(@' . pydu _
:/ g X (P@=) 9(q"dpyg (q)dpyg (p)
(A%)? t—s ¢ d
* /(Ad 2t (P (@ —q)) Hy(5)(q'". p)e(q)d iy (9)dpya (p). (4.23)

By the mean value theorem the first integral on the right above is equal to

1/ ,
- /( i X (Pr@=a)) e~ Iy IV@O@ DAy (1) (g, p)p(qdigg (@ )iy (),
K

where s < t’ < t. We add and subtract the term

t/ ’
/(Ad x(pa—a") e by v @ pdu g () (g, P¢(@)dpya (¢)dpya (p)
)
K

to the right hand side of (4.23) and get that (4.23) is equal to
f x(p-(q—qh) e ds @D (g (5) — Hy (1))
(A%)?
@', p)eqduya (q)dpya (p)
+/ x(p-a—q") (1 —e HV(”’(q””)d”) Hy (s)
(A%)?

(¢, p)w(q/)duAc;( (q/)d/«LAc;( (p). (4.24)
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Applying the mean value theorem the second integral is equal to

’// ’
(' = 5) x f(Ad Lx(p@=d)) ¢ e MWDy (5) Hy (1)
K

(@', P)0(@ 1 pg (@)piyg (P) (4.25)

with ¢’ < t”” < t. Multiplying Hy (s) by Hy (t”") (see (4.11)) we get that the integral
in (4.25) is equal to

t” ’
/ L X (g —ghe S HVAOWDg(ql o’ I 9 )dp g @)dm gy (P)
(a%)? K K K

M ’
+ / X @ =ghe IV P, 6@’ )V 1")p(q Vdma (q)dpya ()
AK K K K

" ’
+/d x(p-(q—ghe VP I g(q VG 0@y (@ )diya (p)
Ay K K K

" ’
[, 2@ = DY VG g @i )
AK K K

The L'-norm (with respect to the variable ¢) of the above sum of integrals is dominated
by the sum of its norms which tend to

| D))

+2 ls@ VD | 11p0, + H Vz(s)wu

Ll(A% L'(A%)

as t — s. Since g(s) and V(s) are bounded we get by [60, Lemma 93] (see also
[48, Lemma 5.3]) that D%¢p and D% g2(s)(p € %. Thus the above norms are finite.
Consequently, (4.25) tends to O when t — s. Since the first integral in (4.24) tends to
zero, as t — s, the equality (4.22) is proved. O

Proposition 4.17 The family FP1(t, s) is strongly continuous att = s.
Proof Let ¢ € %y N L'. By the mean value theorem we have

pq —
1F7 () wl\U(Af;()

1 /
[ x e =) (RO D) g g @i (0
(a2 K K| pad
@ad)

=(t—s5)X

1 /
x / X =ghe S VAW P by (0 pyp(gdpe g (a)d i g (p)
(A%)? K K

L'ad)



105 Page 28 of 38 R. Urban

If t — s then ¢/ — s and the above norm tends to

/d X(p- (=g Hv($)(q' P)e(q)dpyg (q")d g (p)
(A)? L1(a%)

< 1Dl L1ad) + IVOllL1ad )

5 Proof of Theorem 1.11 and Theorem 1.12

Theorem 5.1 (Dorroh [14]) Let X be a Banach space (under the supremum norm) of
bounded complex valued functions on a set S and a : S — R be a bounded positive
function on S which is bounded away from zero. Suppose thataX C X, andlet A be the
infinitesimal generator of a strongly continuous semigroup of contraction operators
in X, then aA is also the infinitesimal generator of a contraction Cy-semigroup in X .

Theorem 5.2 Let A be a linear operator in a Banach space X with domain D(A) C X.
Suppose that its resolvent set p(A) # ) and let L be a bounded linear operator on X .
If L A with domain D(A) is a generator of the one-parameter semigroup on X, then
AL withdomain D(AL) = {x € X | Lx € D(A)}isa generator of the one-parameter
semigroup on X.

Proof See [19, Theorem 3.20 (i), Chapter III, p. 202]. O
We will need the following result from the perturbation theory of semigroups.

Theorem 5.3 Let X be a Banach space and let A be the infinitesimal generator of
a Co-semigroup T (t) on X, satisfying | T ()| < Me®". If B is a bounded linear
operator on X then A + B is the infinitesimal generator of a Co-semigroup S(t) on
X, satisfying | S(1)|| < Me'@MHIBI)

Proof See e.g. [35, Ch. 3, Sect. 1, Theorem 1.1]. O
Lemma5.4 The %qp on the space C exists and satisfies

———qp

—Hy (1) ¢(q) = —g(t,q)D%(q) — V(t,q)p(q)
with domain coinciding with the domain Dy of the operator D*.

Proof We have, by definition of —ﬁv\(t)qp,
—iy 0" 0@) = 7} (e Dl 1% — V(. a)F000) @
Ad ’ Ad ’ A%
_ -1 o
= 5.7 (115, Fag00) = V. 0)e(a)

and the statement follows. O
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Proposition 5.5 For everyt € [0, T] the operator —/H\v(z‘)(épo is the infinitesimal gen-
erator of a Co-semigroup S/ (s), s > 0, satisfying

I 6 ey, < &1 O,
Proof We start with the case V = 0. By Lemma 5.4
———qp o
—Ho(t)" ¢(q) = =g, ) D%¢(q).
By [48] the operator — D is the infinitesimal generator of a contraction Co-semigroup
in Co(Q, C). Thus the result for V = 0 follows from Theorem 5.1.

The operator —Hy (t)qp is an additive perturbation of —Ho(t)qp by a bounded
operator of multiplication by V (¢). Thus the result follows from Theorem 5.3. O
Lemma 5.6 The operator m[)q on L' exists and satisfies

———rq o
—Hy (@) () =-D%o(g()) — (V(1))
with domain {f € L'(A%) | gf € Dom(D%)} = g(-)~'Dom(D%).

Proof By definition of —/H\v(t)pq,

(Fps —Hy (D). 9) = fA VD4 (8PN =V DeO) ()
K

—/ VPPl Fpa (8¢)(p)dya (p)
A?{ e K K

- f V(D) F g (VOP) (D)1 (p)
A(II( K K

—<9A§( (D)), V) = (Fpa (V(D)@), ).

O

Proposition 5.7 For everyt € [0, T] the operator %ZC{ is the infinitesimal gen-
erator of a Co-semigroup of operators S (s), s > 0, satisfying

” Stpq(s)||Ll_>Ll < SVl

Proof First we assume that V = 0. It is known that —D% is a generator of a Cp-
semigroup of contractions in each of the spaces Cog and L”, p > 1 (see [48], cf. [42]).
Therefore the resolvent set of —D% is nonempty. From the proof of Proposition 5.5
the composition of operators —(g-) o Dgo considered with the domain of the operator
D is a generator of a Cop-semigroup of contractions in Cop = Co(Q, C). The operator
(g(r)-) of pointwise multiplication in L ! (A‘Ii() by the function g is defined and bounded
everywhere on L' (A‘[l(). Therefore, by Theorem 5.2 the operator —D“ o (g-) with its



105 Page 30 0f 38 R. Urban

domain equal to g(-)~'Dom(D%) is a generator of a one-parameter semigroup of
operators in L' (A‘Ii(). Since by Lemma 5.6

“Ho(D)y1 = —D% o (g(1)")

the result for V = 0 is proved.
Now consider a non-zero V. By Lemma 5.6, (—HV)IL’? = (—Ho)i(f — (V). Thus
the result follows from Theorem 5.3. O

Proposition 5.8 The families of operators {jlmg)}ze[o,r] and {jlmi?}te[o,ﬂ
are stable.

Proof By Proposition 5.5 (Proposition 5.7, resp.) for every ¢ € [0, t] the operator
—Hy (t)qCI; (the operator —Hy (t)i?, resp.) is the infinitesimal generator of a Cy-
semigroup {S77(s)}s=0 ({7 (5)}s=0) satisfying |57 (s)llcyc, < €1V PN~
ISP () 1 pr < eV Ot resp). By our assumption ¢ < |V (2)llcy—c, < C,

for all + > 0. Thus the statement follows from Remark 3.3. O

Proof of Theorems 1.11and 1.12 By Proposition 5.8 the families {ch,;}te[o,ﬂ

and {mi?},e[o,r] are stable. Thus the existence of the families of evolution
operators U9P (¢, s) and UP4(t, s) follows from Theorem 3.4. To prove the conver-
gence in (1.8) for F7” (convergence in (1.10) for FP4, resp.) it suffices to verify the
validity of the conditions of Theorem 3.6 with Q = F4%7 (with Q = F?4, resp.). By
Proposition 4.11 (Proposition 5.7, resp.)

—(t—s)c

| FIP(t, lco—cy < e ¢ and | FPa(e, S)”LI(A‘IJ()—>L1(A‘IJ() =e , Tesp.

Therefore, forall T >t > ... >t >0,

| FP (., ty—1) ... FIP (2, 1)l cy— o < C and [|FPA (1, 1 1) ... FP9(ta, 1)l g1y ;1 < C
and (3.1) with R = F (R = FP4, resp.) in Theorem 3.6 is satisfied. Finally,
by Theorem 4.12 (Theorem 4.16, resp.) (3.2) is also satisfied with R = F9’ and
A(t) = —Hy ()¢, (with R = FP9 and A(t) = —Hy ()11, resp.). O
6 Hamiltonian and Lagrangian Feynman formulas
6.1 The gp-quantization

Theorem 6.1 For any t > 0 and any qo € Q, the following Hamiltonian Feynman
formula for the Cauchy problem

WY (t,x) = —Hyayr(t.x),  ¥(s,x) = ys(x) € Co(Q, O),
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holds:

wit.q0 = tim TTT] / o2 Tl Tk, (e a-aivl,

> peb vlp Y (@XPY"

f—1)(1—s
=2 k=1 ftt—k((t—x))(/tn O g (ugi—)ll pi II“A,;{+V(M,61k—|)du
xe

X Vs (qn)d iy (qn)digd () - .- diiya (qU)dpga (p1). (6.1)

Proof of Theorem 6.1 1t is enough to apply Theorem 1.11. Consider the following
sequence of times

- (n—l)(t—S)+s>

r—s
> — 45 > 5.
n n

We have to compute the following product

F‘”’(t,t—t_S)F‘”’(t—t_s,t—2(t_s)>...
n n n

..F‘H’(Z(t_s),t_s+s>F‘H’<t_S , ) 6.2)
n n

where

. ap
FIP(t, 5)p(q) =e~hs V@ . ()

=/ X (g&)e™ Js HY (@8 @y gy (&),

with
Hy(u)(q,§) = g(u, q)IISII“A% + V(u,q)

and check if this product is equal to the right hand side of (6.1). We will leave this as
an exercise for the reader. As an example, we only show how two operators in (6.2)
are composed. We have

2t t
F‘”’( + s, ——}—S)qu(——i—s,s)
n

_ sH2t—s)/n

s+(t—s)/n g(u.qo)l\plllqd =V (u,q0)du
/fX(Pl (g0 —qn)e i

//X(Pz (g1 — q2))

= [T g ugnllp21?, g =V )i

xe Yo

(qz)duN;( (612)dMA§1( (pz)duAc;( (QI)dMAr[i( (p1).
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Now it is enough to write explicitly x (see (2.4)). m]

Let I C Ry = [0, 4+00) be the interval (finite or not). Let D(I, Q) be the Skhorohod
space of paths y : [ — Q = A‘I[{ which are right-continuous and have left-limits at
each point of the half-axis R4 = [0, +00). By % we denote the o-algebra generated
by all mappings of the form 5 : y +— y(s), s € Ry.

Forevery qo € Q. the family —Ho(r)¢, with Ho(t, ¢, p) = g(t, )| p| a4 Where g
satisfies Assumption 1.3, determines the probability measure dWj 4, (y) on % which
is the distribution of the corresponding Markov process y (¢), t € I, - the evolution
generated by UYP (¢, s) - starting at time s from g, i.e. y (s) = go and

U(t, s)p(qo) = /Ad Ps.1(q0s @)d1tyd () = Es g,9(y (1))
=f oy ())dWs 40 (v),
D([s5,11,0)

where p; ; (-, -) are the transition densities (propagators) of y (¢).

Theorem 6.2 Let U9 (t, s) be the evolution generated by mg with Hy(t, q, p) =
g(t, q)||p||A(;(, where g satisfies Assumption 1.3. Then

n
Ui (e, s)px) = Jim i @(xn) ;[[1 Ki ki | s (Xk—1, Xk)
dptpg () djtyg (). djtyg (o), 6.3)
where xg = x and
t
K.il(xa y):Z(aa'/ g(uv-x)dua-x_y>a (64)
N

where Z(a, t, x) is the heat kernel corresponding to D*.

Proof Since V = 0 we have by (4.15) and (4.16) the that
P00 = [ p0IKE (g ).
K

Then, by Theorem 1.11,

n

_ : 8

U (t, s)p(x) = lim iy @ (xn) E KY oo g ket 90)
dMAr;( ()Cl)dltAzIf< (x2) .. ~dMA§< (xn),

where xg = x. ]
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Lety € A’}Q. Taking ¢ = 6, in (6.3) (i.e. approximating &, by a sequence of elements
from 9 (A‘Ii()) we get the following corollary.

Corollary 6.3 Let U9P(t, s) be the evolution generated by %{gg with Hy(t, q, p) =
g, Plpll Al where g satisfies Assumption 1.3. Then transition densities (propaga-

tors) of the corresponding Markov process y are given by
Ps,t(x,y) = lim / I_IKg D) k) Ck—1> XK ya (X1) .. diya (xp—1),
’ n—-+o00 (Allj()” i} s &=DE=s) 2,(173),5'4—70;3) Ak Ak

where xo = x, X, =y, and Kﬁt(x, y) is defined in (6.4).

Theorem 6.4 For anyt > 0 and any xo € Q, the solution  for the Cauchy problem
— 4P .
(—Hv(t)co, %) is given by

Y(t, x0) = lim Vs (Xn)

n——+0o (Ail()n

n

s+k(t—s)/n
| | g _f,+k—1 Zoy/m V(uxp)du
<Ks+<k—]3,<r—w,s+k<t;5) (Xk—1, Xp)e =D/
k=1

dMAoIi( (x1)... dMAf;( (xn).
Proof The family —V (¢, x), t € R, generates the evolution
G(t, 5)p(x) = e~ b VD dugy () (6.5)

By Theorem 3.7,

¥ (t,x0) = lim qu<t,t—t_s)G<tt—t S)

n—oo n "

..F‘H’<t—t_s,t Z(I_s))G(t = 2(t—s)>
. n

..F‘”’(Z(t_s)+s,t_s+s>G<2(t_s) t_s+s>...
n n

t—s t
. FP ( —I—s,s) G (T + s, s) Yy (x0) (6.6)

n

and the result follows. O

6.2 The pg-quantization

Consider the following Cauchy problem

Oyt x) = —Hypiy(t,x),  ¥(0,x) =9 (x) € Z(AL). (6.7)
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Theorem 6.5 Let

Y (t, qo) = H H/ o271 Xiimt Ty jap {Pe-(@—ar-1},,

peP v|p (@xpyr
—(k—=1)(t—
=Y G s wa Pl + V gi)du
xXe K

XUs @)1 pg @nd1g (Po) - ditgg (@dpyg (). (6.8)

Then
Un(t, ) € Co(A%, R)

and the following Hamiltonian Feynman formula for the solution v of Cauchy problem
(6.7) holds:
Y(t,-) = lim v, (1, ) in L' (A%).
n—o0
Proof If Y, (x) € Co(A%, R) N L' (A%) then by Proposition 4.15,

Fra (,,,_Q>qu<t_g,t_M)m
n n n

...FP4 (@ +s,t%s+s> FP4 (t%s +s,s) Y5 € Co(A%L . R).  (6.9)

It is easy to show by induction that (6.9) evaluated at o € A‘}l( is equal to the right
hand side of (6.1). Now it is enough to apply Theorem 1.12. O

Remark By Theorem 6.5 there is an increasing sequence of natural numbers ny —
400, k € N, so that the sequence

‘(//nk (ta ) - W(), ,U«A;i(-a.e.

Theorem 6.6 Let i, € Z(A%) and define

I/fl’l (ts )C())
n
_ g = SRV w0 du
= /Ad Vs (xn) 1_[ <Ks+(k—l’)7(t—.r) ’s+k(xn—x) (Xk—1, xp)e IstE=Di=s)/
K k=1
dptgg (¥1) - dp g (o), (6.10)

Then Y, (1, -) € Co(A%, R) and the following Hamiltonian Feynman formula for the
solution r of Cauchy problem (6.7) holds:

¥ = lim v, in L'(A%).
n—oo
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Proof Let V = 0. Then, by (4.15) and (4.16),
FPi(t, s)p(x) = /Ad eKF (x. )iy (),
K

where

t
K)(.y) =2 (a/ oG, y)dit, x — y> .

Let G(¢, s) be as in (6.5). Then, by Theorem 3.7,

r— r—
FP‘1<t,t——S>G<t,t— S)
n n
.qu(t_t—sJ_Z(t—s))G(t_t—s’t_2(t—s)).“
n n n n

2(t — t— 2(t — t—
.qu< ( S)—i—s, S—I—S)G( ( s)+s, S—i—s)...

n n n n

ppa (f ~5 s) G (t%s +s,s> Us() — Y2, in L' (AL).

n

Thus, (6.10) follows. O
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