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Abstract
Let Q be the d-dimensional space of finite adeles over the algebraic number field
K and let P = Q∗ be its dual space. For a certain type of Vladimirov type time-
dependent Hamiltonian HV (t) : Q × P → C we construct the Feynman formulas for
the solution of the Cauchy problem with the Schrödinger operator−HV (t)

∧

,where the
caret operator stands for the qp- or pq-quantization.
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1 Introduction

The idea of applying p-adic analysis in physics is due to Volovich. In his 1987 CERN
preprint1 (published later as a paper [54]) he proposed that non-Archimedean space-
time geometry should be considered, and also advocated the development of p-adic
quantum mechanics. The first papers on p-adic quantum systems by Vladimirov and
Volovich appeared in 1989 [50, 51]. Since then, work on p-adic physics has been
developing at a great pace and a substantial number of papers have appeared in this
area.

To get acquaintedwith the development of p-adic physicswe recommend the reader
[16, 23, 38] and the monograph [52] by Vladimirov, Volovich and Zelenov. Relatively
recent review of literature concerning non-Archimedean mathematical physics can be

1 I. V. Volovich. CERN-TH. 4781/87, Geneva, 11 pp., 1987.
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found in [17]. For a variety of applications of p-adic analysis in physics the reader
may consult, for example, some of the recent papers on the porous medium equation
[3, 24], energy landscapes [29, 61], image processing [59], and on p-adic Laplacian
on graphs [10].

Since no prime number p is in any particular way special it seems reasonable to
study physical systems in all p-adic fields. This observation is expressed in Manin’s
article [32], where he writes: "On the fundamental level our world is neither real nor
p-adic, it is adelic."

Consequently, many works have appeared in which the phase space of the physical
system is a ring of rational adeles AQ. We mention here only a few papers: [15]
on adelic quantum oscillator, [39] on quantum fields and strings on adeles, and an
application of adelic quantum mechanics to adelic quantum cosmology [18]. There is
a strong connection between quantum mechanics and probability theory. Stochastic
processeswith values inAQ (ormore generally inAK ,where K is an algebraic number
field), in particular adelic Brownian motion, has recently attracted renewed interest
of researchers [46, 47, 57, 58]. Early works on non-Archimedean diffusion processes
include [2, 26–28, 45, 49]. The recent works [25, 60, 62] give background on the
applications of ultrametric diffusions.

Our research presented here is motivated by the Smolyanov and Shamarov paper
[42]. They consider the Vladimirov operator with variable coefficient and the corre-
sponding Schrödinger operator acting on functions defined on the p-adic configuration
space Q

d
p and give the representation of the solution of the Schrödinger equation in

terms of Feynman-type path integrals.
In [48] the space of adeles A

d
K over the algebraic number field as the configuration

space is considered and the results from [42] are generalized. Specifically, in [48],
we consider a class of Hamiltonians HV = H0 + V on A

d
K × A

d
K such that their

qp-quantization Ĥqp = MgDα + V , where Dα is the Vladimirov operator and Mg

is the operator of multiplication by a real-valued function g. We obtain the Feynman-
Kac formula for the propagator of a quantum mechanical system with the space A

d
K

generated by the Schrödinger operator −ĤV
qp

.

The main aim of this paper is to generalize the results obtained in [48] to the case
of time-dependent Hamiltonians as well as to consider the pq-quantization.

1.1 Setting andmain results

Let K be an algebraic number field (i.e. a finite extension of Q). LetP(K ) (Pf(K ),

resp.) denote the set of places (finite places, resp.) of K .By Kv we denote the comple-
tion of K with respect to the place v, and we let | · |v be the normalized valuation (see
(2.2)). The space Kd

v is endowed with the supremum norm ‖x‖v = max1≤i≤d |xi |v.
The finite (d-dimensional) adele ring of K is defined as

A
d
K =

⎧
⎨

⎩
x = (xv) ∈

∏

v∈Pf (K )

Kd
v

∣
∣
∣
∣ ‖xv‖v ≤ 1 for almost all v ∈ Pf

⎫
⎬

⎭
.
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Thus, the ring A
d
K is a restricted direct product, i.e. the product

∏

v∈Pf (K )

Kd
v

relative to
Rd

v = {x ∈ Kd
v | ‖xv‖v ≤ 1}, v ∈ Pf(K ).

Wedefine a restricted direct product topology onA
d
K by specifying a base of neighbor-

hoods of the identity, consisting of sets of the form
∏

Nv,whereNv is a neighborhood
of the identity in Kd

v andNv = Rd
v for almost all v ∈ Pf . The space A

d
K is a second

countable, locally compact Haussdorff topological space. The elements of A
d
K are

called the (d-dimensional) adeles.
The ring of adeles of K is a locally compact Abelian group under its addition, while

RAd
K

= {a ∈ A
d
K : av ∈ Rd

v for all v ∈ Pf}

is an open and compact subring of A
d
K . By μAd

K
we denote the Haar measure on A

d
K

normalized so that μAd
K
(RAd

K
) = 1. Let Q = A

d
K . When Q is considered a copy of

its dual we denote this space by P.

Definition 1.1 (qp-quantization) Let H : Q × P → C be a continuous function. Let
Ĥqp be a pseudo-differential operator (PDO, for short) with symbol H defined as
follows. The value of Ĥqp on a function ϕ from the Bruhat-Schwartz space D(Q) is
a continuous function Ĥqpϕ : Q → C, given by

Ĥqpϕ(q) = F−1
Ad
K

(
H(q, ·)FAd

K
ϕ(·)

)
(q),

where FAd
K
ϕ is the Fourier transform of ϕ.

Definition 1.2 (pq-quantization) The value of the PDO Ĥ pq with pq-symbol is a
(generalized) function Ĥ pqϕ ∈ D(Q)′ whose Fourier transform FAd

K
(Ĥ pqϕ) is a

regular generalized function with continuous density

p �→ FAd
K
(H(·, p)ϕ(·))(p).

If a vector subspace S ⊂ D ′ is a Banach space with respect to some norm and contains
D(Q), and if the set DS

Ĥqp = {ϕ ∈ D(Q) | Ĥqpϕ ∈ S} is dense in S and the restriction
Ĥqp|DS

Ĥqp
is closable as an operator on S, then such a closure is denoted by Ĥqp

S and

is called a PDO with qp-symbol H on the space S. The PDO with pq-symbol H on
the space S is defined in a similar way.

For α > 1 define
f α(q, p) = ‖p‖α

Ad
K
,
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where ‖ · ‖Ad
K
is the "norm" on A

d
K such that the topology generated by it (i.e. by the

metric ‖x − y‖Ad
K
) agrees with the restricted product topology (see Proposition 2.1).

Definition 1.3 (Vladimirov operator) Since

f̂ αqp = f̂ α pq
(1.1)

we denote the PDO in (1.1) by Dα, i.e.

Dαϕ(q) = F−1
Ad
K

(
‖ · ‖α

Ad
K
FAd

K
ϕ(·)

)
(q).

We refer to Dα (as well as to the corresponding operators on some S) as theVladimirov
operator (of fractional differentiation of order α).

Theoperator Dα
L2(Q)

= ( f̂ α)L2(Q) is self-adjoint andpositive definite [52]. Thedensity
of the Fourier transform of Dαϕ is given by

‖p‖α

Ad
K
FAd

K
ϕ(p).

Remark 1.4 The Vladimirov operator and its corresponding Green function appear in
many places in mathematical physics, for example in the p-adic string theory [20,
53] and p-adic AdS/CFT correspondence [9, 21]. A role of Tate’s thesis [44] in
adelic physics is pointed out in [22] where it is shown that the Green function for
the Vladimirov operator is given by the local functional equation for zeta integrals.

LetC0(Q, C) be the space of all continuous functions from Q toC vanishing at infinity
considered with the uniform norm ‖ · ‖L∞(Ad

K ) and let Cb(Q, R) be the space of all
real-valued continuous bounded function on Q. Let, for t ∈ R+,

g(t, ·) = g(t)(·) ∈ Cb(Q, R).

We set, for q ∈ Q, p ∈ P,

H0(t, q, p) = g(t, q)‖p‖α

Ad
K
.

Let V : R+ × Q → C be a continuous function. Define the Vladimirov type time-
dependent Hamilton function on Q × P by

HV (t, q, p) = H0(t, q, p) + V (t, q). (1.2)

From now on we work under the following two assumptions about g and V , respec-
tively.

Remark 1.5 The context in which we work has strong ties to number theory. The
Hilbert-Pólya conjecture states that the non-trivial zeros of the Riemann zeta function
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correspond to eigenvalues of a self-adjoint operator. There has been recent work sug-
gesting a connection between the non-trivial zeros of the Riemannian function and a
spectrum of operators that are quantizations of certain classical operators used in quan-
tum mechanics [5–8]. Although these results are obtained in the case of Archimedean
fields, they still seem likely to give direction to new research in non-Archimedean
number theory.

Assumption 1.6 We assume that for every t ≥ 0, g(t, ·) ∈ Cb(Q, R+). Moreover, for
every t ≥ 0, there exists c(t) > 0 such that, for every x ∈ Q = A

d
K ,

g(t, x) ≥ c(t) (1.3)

and there exists C > 0 such that for all t ≥ 0,

c(t) ≥ c > 0,

Assumption 1.7 The function V : R+×Q → C is a continuous and bounded function
with positive real part Re V ,which is separated from 0, i.e. there exist constantsC > 0
and c > 0 such that

‖V (·, ·)‖L∞(R+×Ad
K ) ≤ C, and Re V (t, q) > c for all q ∈ Q and t ∈ R+. (1.4)

Definition 1.8 Let A(t) be a generator of an evolution U (t, s) in a Banach space
S ⊂ D ′ and let ψs ∈ S. A solution of the Cauchy problem (or the initial value
problem) (A(t), ψs) :

∂tψ(t, x) = A(t)ψ(t, x) and ψ(s, x) = ψs(x) (1.5)

is the mapping � : [s,+∞) → S defined by �(t) = U (t, s)ψs as well as the
corresponding function ψ(t, x) for which ψ(t, ·) = �(t).

Definition 1.9 A Feynman formula is a representation of a solution of the Cauchy
problem (1.5) (or, equivalently, a representation of the evolutionU (t, s) generated by
A(t)) by a limit of n-fold iterated integrals, i.e. if max |ti+1 − ti | → 0 then

U (t, s)ψs = lim
n→∞ R(tn, tn−1) . . . R(t1, t0)ψs, (1.6)

where t0 = s, tn = t and R(tk, tk−1) are integral operators.

These approximations in many cases contain only elementary functions as integrands
and, therefore, can be used for direct calculations and simulations.

Definition 1.10 We call identity (1.6) a Lagrangian Feynman formula, if the
R(tk, tk−1) are integral operators with elementary kernels; if the R(tk, tk−1) are
pseudo-differential operators, we speak of Hamiltonian Feynman formulas.
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Themain objective of this work is to find a representation of the solution of the Cauchy
problem (1.5)with A(t) = −HV (t)

∧qp
C0

and A(t) = −HV (t)
∧pq

L1 under assumptions (1.3)
and (1.4) or equivalently, to find a representation of the evolution operators U (t, s)
generated by A(t), t ≥ 0, in the form of the Feynman formula.

The following theorems are two of our main results and are the starting points for
getting the other Feynman formulas.

For every T ≥ t ≥ s ≥ 0, define the operator

Fqp(t, s) = (e− ∫ ts HV (u)du)

∧qp

C0
. (1.7)

Theorem 1.11 (The qp-Feynman formula) The family {−HV (t)
∧qp

C0
}t∈[0,T ] generates

a family of evolution operators Uqp(t, s) on the space C0 = C0(A
d
K , C) which gives

the solution of the Cauchy problem

∂tψ(t, x) = −HV

∧qp
C0

ψ(t, x), ψ(s, x) = ψs(x).

Moreover,

Fqp(tn, tn−1) . . . Fqp(t1, t0)ϕ → Uqp(tn, t0)ϕ in C0(A
d
K , C) (1.8)

as max |ti+1 − ti | → 0 uniformly with respect to tn, t0 ∈ [0, T ] for every function
ϕ ∈ C0(A

d
K , C).

Let, for T ≥ t ≥ s ≥ 0,

F pq(t, s) =
(
e− ∫ ts HV (u)du

)∧pq

L1
. (1.9)

Theorem 1.12 (The pq-Feynman formula) The family {−HV (t)
∧pq

L1 }t∈[0,T ] generates
the family of evolution operators U pq(t, s) on the space L1(Ad

K ) which gives the
solution of the Cauchy problem

∂tψ(t, x) = −HV

∧pq
L1ψ(t, x), ψ(s, x) = ψs(x).

Moreover,

F pq(tn, tn−1) . . . F pq(t1, t0)ϕ → U pq(tn, t0)ϕ in L1(Ad
K ) (1.10)

as max |ti+1 − ti | → 0 uniformly with respect to tn, t0 ∈ [0, T ] for every function
ϕ ∈ L1(Ad

K ).

Remark 1.13 Note that formulas (1.8) and (1.10) allow us to numerically find the
solution of the corresponding Schrödinger equation. Let us note that in some cases the
Feynman formula can lead to a solution of the Schrödinger equation in the form of the
Feynman-Kac formula. This is the case, for example, when the Hamiltonian does not
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depend on time or when only the potential V depends on time. In the former case, we
can express the solution as an integral over the trajectories of the process generated
by the operator H

∧qp
, see [48, Theorem VII.6],

ψt (x) = Ex e
− ∫ t0 V (γ (u))duψ0(γ (t)), γ (0) = x .

It iswidely known that in theArchimedean case (i.e.when the analysis is done overRor
C) the Feynman-Kac formula establishes a link between parabolic partial differential
equations and stochastic processes. The probabilistic aspect of solving differential
equations has many applications - both in pure mathematics and in applications. For
applications in quantum physics, see the monograph [30, 31].

For the reader’s convenience, we give below examples of fairly simple adelic Hamil-
tonians, for which the analysis of their quantization is relatively uncomplicated. We
must limit ourselves to operators that do not depend on time.

Example 1.14 For details see [57]. Let K = Q, d = 1, Q × P = AQ × AQ. Let, for
j = 1, 2, . . . , | · | j be the p-adic absolute value corresponding to the j-th prime p.
Thus | · |1 is the 2-adic absolute value, | · |2 is the 3-adic absolute value, and so on.
Consider the following free Hamilltonian which is time-independent,

H0(q, p) =
∞∑

j=1

σ j |p j |αj , σ j ≥ 0,
∞∑

j=1

σ j < +∞.

Let
H(q, p) = H0(q, p) + V (q).

Notice that if ϕ is from the adelic Bruhat-Schwartz space D(AQ) (see Sect. 2.3) and

depends only on one "coordinete" j then H
∧qp

acts on ϕ as the standard Vladimirov
operator on Qp j multiplied by a constant term σ j . The analysis of the Vladimirov
operator on Qp j is very well known [52].

The operator H
∧qp

generates a semigroup Tt of operators on L2(AQ) and the cor-
responding stochastic process whose trajectories γ (t) are in the Skorohod space of
càdlàg (continue à droite, limite à gauche) functions from R+ to AQ. Moreover, for
ϕ ∈ D(AQ), the following Feynman-Kac formula holds,

Ttϕ(x) = Ex e
− ∫ t0 V (γ (u))duϕ(γ (t)). (1.11)

Example 1.15 This is simplified version of the setting from [46]. Let K = Q, d = 1,
Q × P = AQ × AQ. Let

H0(q, p) = ‖p‖α,

where ‖ · ‖ is a certain "norm" on AQ (see (2.3)). Then H
∧qp

is a natural generalization
of the Vladimirov operator from Qp to AQ. Let

H(q, p) = H0(q, p) + V (q)
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Then for the semigroup of operators Tt generated by H
∧qp

the Feynman-Kac formula
(1.11) holds.

Themain tool in the proofs of Theorem 1.11 and Theorem 1.12 is the Chernoff product
formula for evolutions (see Theorem 3.6) proved by Vuillermot [55] and Plyashechnik
[36, Theorem 4].

Other types of Feynman formulas for the solutions of the Cauchy problem (1.5)
(of the Schrödinger equation) with A(t) = −HV (t)

∧qp
C0

and A(t) = −HV (t)
∧pq

L1 under
assumptions (1.3) and (1.4) (i.e. Theorems: 6.1, 6.2, 6.4, 6.5, 6.6) are presented in
Sect. 6. They are obtained using the evolution perturbation theorem (Theorem 3.7).

1.2 Structure of the paper

In Sect. 2 we recall basic facts about algebraic number fields, define the Fourier trans-
form for functions defined onA

d
K , as well as the corresponding function spaces, which

will be used later on in the paper.
The generalized Chernoff product formula and perturbation theorem for evolutions

are presented in Sect. 3.
InSect. 4,we study family Fqp(t, s) and family F pq(t, s) andprove their properties,

which we will then use in Sect. 5 to prove Theorem 1.11 and Theorem 1.12.
Finally, in Sect. 6, Hamiltonian and Lagrangian Feynman formulas for the Schrö-

dinger equation corresponding to the qp- and pq-quantizations of the Hamiltonian
HV (defined in (1.2)) are obtained.

2 Preliminaries

2.1 Basic facts on p-adic fields

Formore details, we recommend the reader the followingmonographs [33, 34, 41, 56].
Certain passages in this paragraph closely follow [41, p. 61]. Let K be an algebraic
number field (i.e. a finite extension of Q). A valuation v of K is a homomorphism
v : K → R

+ ∪ {0} such that v(x) = 0 if and only if x = 0, and there is a real number
c ≥ 1 such that for all x, y ∈ K , v(xy) = v(x)v(y) and v(x+y) ≤ cmax{v(x), v(y)}.
The valuation v is non-trivial if v(K ) � {0, 1}. The valuation v is non-Archimedean
if v is non-trivial and we can set c = 1, and is said to be Archimedean otherwise.

We say that two valuations v1 and v2 of K are equivalent if there is an s > 0 such
that v1(x) = v2(x)s for every x ∈ K . An equivalence class v of a non-trivial absolute
value of K is called a place of K . A place v is finite if v contains a non-Archimedean
absolute value, and infinite otherwise. The set of places, finite places and infinite places
of K are denoted byP = P(K ), Pf = Pf(K ) andP∞ = P∞(K ), respectively.

By Ostrovski’s theorem every non-trivial valuation of Q is either equivalent to the
usual absolute value | · |∞, or to the p-adic absolute value | · |p for some rational prime
p > 1, defined by |0|p = 0 and |pk n

m |p = p−k for k, n,m ∈ Z and p � nm.

For every valuation φ of K , the restriction of φ to Q ⊂ K is a valuation of Q and
is equivalent either to | · |∞ or to | · |p for some rational prime p. In the first case
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the place v 
 φ is called infinite (or is said to lie above ∞) - in this case v is either
real (if Kv = R) or complex (if Kv = C) - and in the second case v lies above p
(or p lies below v). We denote by w the place of Q below v and observe that Kv is
a finite-dimensional vector space over the locally compact, metrizable field Qw and
hence locally compact and metrizable in its own right. Choose a Haar measure λv on
Kv (with respect to addition), fix a compact set C ⊂ Kv with non-empty interior, and
write modKv (a) = λv(aC)/λv(C) for the module of an element a ∈ Kv. The map
modKv : K → R+ is continuous, independent of the choice of λv, and its restriction
to K is a valuation in v which is denoted by | · |v.

Above every place v of Q there are at least one and at most finitely many places of
K .

Let RK be the ring of integers of an algebraic number field K . Let p be a prime
ideal of RK , v the (discrete) valuation associated with p ([33, Theorem 3.3]). By Kp

or Kv we denote the completion of K under v, and we call Kp the p-adic field. By
k we denote the quotient field RK /p, the residue class field. The cardinality of this
residue field we denote by q = qp = qv. The extension of v to Kp will be also denoted
by v. The ring of integers of Kp, Rp = {x ∈ Kp : v(x) ≤ 1} is the closure of the ring
R = {x ∈ K : v(x) ≤ 1}, and P = {x ∈ Kp : v(x) < 1} = pRp is a prime ideal of
Rp, which is the closure of the prime ideal {x ∈ K : v(x) < 1} of R. The invertible
elements of Rp form a group U (Rp) of units of Kp. The quotient fields RK /p and
Rp/P are isomorphic ([33, Proposition 5.1]).

We define a uniformizer for v, or a local parameter, to be an element π, also
denoted by πv or πp of Kp of maximal v(π) less than 1. If we fix a uniformizer π,

every element of K ∗
p can be written uniquely as x = uπm for some u with v(u) = 1

and m ∈ Z. Moreover, each element x ∈ K ∗
p can be expressed in one and only one

way as a convergent series

x =
∞∑

i=m

riπ
i , (2.1)

where the coefficients ri are taken from a setR ⊂ Rp (of cardinality q) of representa-
tives of the residue classes in the field kp := Rp/P (i.e. the canonical map Rp → kp
induces a bijection ofR onto kp).

In what follows we consider the normalized valuation

|x |v = v(x) := q−k, (2.2)

where k is the unique integer such that x = uπk for some unit u.

Let K be a field with a valuation v.Then K is a p-adic field with the p-adic valuation
if and only if K is a finite extension of Qp for a suitable p. (See [33, Theorem 5.10].)
In this case an absolute value of K extending | · |p on Qp can be defined by

|x |K = |NK/Qp (x)|1/mp , where m = (K : Qp)

and the determinant NK/Qp(x) is the determinant of the multiplication by x in K , i.e.
the determinant of the linear map from (the vector space over Qp) K to K given by
ξ �→ xξ.
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One can also define the absolute value setting

‖x‖K = |NK/Qp (x)|p.

Clearly, | · |K and ‖ · ‖K are in the same equivalence class.

2.2 Metrizability ofA
d
K

Define the following two functions on A
d
K ,

‖x‖(1)
Ad
K

= max
v∈Pf

‖xv‖v, ‖x‖(0)
Ad
K

= max
v∈Pf

‖xv‖v

qv

,

where qv is the cardinality of the residue field and

‖xv‖v = ‖(x1, . . . , xd)‖v = max
1≤ j≤d

|x j |v.

Let

‖x‖Ad
K

=
⎧
⎨

⎩

‖x‖(0)
Ad
K

for x ∈ ∏v∈Pf
Rd

v ,

‖x‖(1)
Ad
K

for x /∈ ∏v∈Pf
Rd

v .

Proposition 2.1 The restricted product topology on A
d
K is metrizable. The metric is

given by
dAd

K
(x, y) = ‖x − y‖Ad

K
. (2.3)

Furthermore, A
d
K with dAd

K
is a complete non-Archimedean metric space.

Proof See [48, 60]. ��

2.3 Function spaces onA
d
K

Let, for v ∈ Pf , Hv be the Hilbert space L2(Kd
v ) = L2(Kd

v , μv), where μv is the
Haar measure on Kd

v normalized so thatμv(Rd
v ) = 1. The linear space Kd

v is endowed
with the norm ‖x‖v = max1≤i≤d |xi |v. A function f : Kd

v → C is said to be locally
constant if there exists such an integer 
 ≥ 0 that for any x ∈ Kd

v

f (x + y) = f (x) if ‖y‖v ≤ q−

v .

Let, for v ∈ Pf , �v be the vacuum vector of Rd
v , i.e. the characteristic function of

Rd
v . Define the algebraic tensor product

Halg =
⊗

v∈Pf

Hv.
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We say that an f ∈ Halg is simple if f is of the form f = ⊗v∈Pf fv, where fv = �v

for almost all v ∈ Pf . The spaceHalg consists of finite linear combination of simple
elements.

For simple elements f , g we define the inner product and the corresponding norm:

〈 f , g〉L2(Ad
K ) =

∏

v∈P
〈 fv, gv〉v, ‖ f ‖L2(Ad

K ) =
∏

v∈P
‖ fv‖L2(Kd

v )

and thenwe extend the above formulas for arbitrary element inHalg by linearity getting
the inner product and the corresponding norm onHalg. Restricted tensor product

H =
⊕

v∈Pf

Hv

is the completion of the space Halg in the norm ‖ · ‖L2(Ad
K ). We identify the space

L2(Ad
K , μAd

K
) withH .

We say that an element f ∈ H is locally constant simple adelic function if it is
a simple element of Halg and for every v ∈ Pf , fv ∈ D(Kd

v ), i.e. fv is a locally
constant function on Kd

v . The adelic Bruhat-Schwartz spaceD(Ad
K ) is the set of finite

sums of locally constant simple adelic functionswith compact support. The setD(Ad
K )

is dense inH = L2(Kd
v ).

The Fourier transformFv leaves D(Kd
v ) invariant.

We say that a function f : A
d
K → C is locally constant on A

d
K if for any x ∈ A

d
K

there exists a constant 
(x) > 0 such that f (x + y) = f (x) for any y ∈ B
(x)(0).

Proposition 2.2 The function f belongs to D(Ad
K ) if and only if it is locally constant

with compact support.

Let f be a non-zero compactly supported function. We define the parameter of con-
stancy 
 of f as the largest non-zero integer power of a number qv, v ∈ Pf such
that

f (x + y) = f (x) for every x ∈ A
d
K , y ∈ B
(0).

By definition we set the parameter of constancy of function 0 to be equal +∞.

We denote by D

R(Ad

K ) the subspace of functions from D(Ad
K ) with supports con-

tained in the ball BR and parameters of constancy greater than or equal to 
.

We have the following embedding

D

R(Ad

K ) ⊂ D
′
R′(Ad

K ) whenever R ≤ R′, 
 ≥ 
′.

We define the convergence in D(Ad
K ). We say that fk tends to 0 as k → +∞ in A

d
K

if and only if

(i) fk ∈ D

R(Ad

K ), where R and 
 do not depend on k;
(ii) fk → 0 uniformly as k → +∞.

With this notion of convergenceD(Ad
K ) becomes a complete topological vector space.
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2.4 Fourier transform onA
d
K

Let K be an algebraic number field, v ∈ Pf , and let C
× stands for the multiplicative

group of C. Consider the additive group (Kv,+). Since Kv is locally compact it is
self-dual, that is if χ : Kv → C

× is a non-trivial additive character on (K ,+), then
any other character ϕ is of the form ϕ(x) = χ(ax) for some a ∈ Kv [37, 40].

Recall that the rank of a character χ is the largest integer r such that χ |Br ≡ 1.
Let μv be the normalized Haar measure on (Kv,+). For a fixed non-trivial character
χ of rank zero (see [4, Subsection 2.1] for a construction of rank zero characters) we
define the Fourier transform of f ∈ L1(Kv) as (cf. [37])

Fv f (x) =
∫

Kv

χ(−xξ) f (ξ)dμv(ξ),

where μv is the Haar measure normalized so that μv(Rv) = 1. Then the inverse
Fourier transform is given by

F−1
v f (x) = F ∗

v f (x) =
∫

Kv

χ(xξ) f (ξ)dμv(ξ).

The above definition of the Fourier transformFv carry over to Kd
v (see below).

The function ep(x) = e2π i{x}p is an additive character ofQp (the canonical additive
character). It is clear that ep(x) = 1 if |x |p < 1. If K is a finite extension of Qp, we
can obtain a non-trivial additive character of K taking the composition ep ◦ TrK/Qp .

Let A
d
K be the adele ring of K . An adelic additive character

χ = χξ : A
d
K → C

×, ξ ∈ A
d
K

corresponds to some ξ ∈ A
d
K (since A

d
K is self-dual) and is defined as a product over

local characters,
⊗vχv, χv : Kd

v → C
×,

and each local character χv (finite or infinite) which lies over p, i.e. v | p, corresponds
to some ξv ∈ Kv (Kv is self-dual) and is given by

χv(·) = χξv
v (·) = e2π i{TrKv/Qp 〈 · ,ξv〉}p , v | p, (2.4)

where 〈 ·, ·〉 is a symmetric non-degenerate Kv-bilinear form on Kd
v × Kd

v .

By Fv we denote the Fourier transform on L2(Kd
v ). The Fourier transform Fv

is an isometry on L2(Kd
v ) ∩ L1(Kd

v ) and can be extended to an unitary operator on
L2(Kd

v ).

The Fourier transform on A
d
K is defined, for f ∈ L1(Ad

K ), by

FAd
K
f (ξ) =

∫

Ad
K

χξ (x) f (x)dμAd
K
(x).
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Further in the text, we often use a more intuitive and convenient notation and write

χ(x · ξ) := χξ (x).

Using this notation, the Fourier transform is written as

FAd
K
f (ξ) =

∫

Ad
K

χ(x · ξ) f (x)dμAd
K
(x).

For a locally constant simple adelic function f in D(Ad
K ) its Fourier transform is

given by
(FAd

K
f )(a) =

∏

v

(Fv fv)(av), a ∈ A
d
K . (2.5)

We extend (2.5) to D(Ad
K ) by linearity. The operator FAd

K
is a unitary operator on a

dense subspace D(Ad
K ) of H . Thus, FAd

K
extends to a unitary operator on H .

3 The Chernoff product formula and perturbation theorem

3.1 Evolution system

Let (X , ‖ · ‖X ) be a Banach space (over R or C),L (X) be the space of all continuous
linear operators on X equipped with the strong operator topology. Let ‖ · ‖ denote
the operator norm on L (X), and I be the identity operator on X . We construct an
evolution system U (t, s) for the initial value problem

∂tψ(t, x) = A(t)ψ(t, x)

and
ψ(0, x) = ψ0(x).

Definition 3.1 Let X be a Banach space. An evolution system (or simply evolution) is
a family of operators U (t, s) inL (X), defined for 0 ≤ r ≤ s ≤ t ≤ T , such that

(i) U (s, s) = I ,
(ii) U (t, s)U (s, r) = U (t, r),
(iii) the map (t, s) �→ U (t, s) is strongly continuous.

For a linear operator A, let ρ(A) stands for its resolvent set.

Definition 3.2 Let, for every t ∈ [0, T ], a linear operator A(t) on a Banach space X
be the infinitesimal generator of a strongly continuous semigroup St (s). The family
{A(t)}t∈[0,T ] is said to be stable if there exist constants M and ω such that

(i) for every t ∈ [0, T ], (ω,∞) ⊂ ρ(A(t)),
(i) for any finite sequences 0 ≤ t1 ≤ . . . ≤ tk ≤ T , and s j ≥ 0,

∥
∥
∥
∥
∥
∥

k∏

j=1

St j (s j )

∥
∥
∥
∥
∥
∥

≤ M exp

⎛

⎝ω

k∑

j=1

s j

⎞

⎠
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Remark 3.3 If for t ∈ [0, t], A(t) is the infinitesimal generator of aC0 semigroup St (s),
s ≥ 0, satisfying ‖St (s)‖ ≤ eωs then the family {A(t)}t∈[0,T ] is stable with constants
M = 1 and ω. In particular any family {A(t)}t∈[0,T ] of infinitesimal generators of C0
semigroups of contractions is stable.

Theorem 3.4 Let T > 0 be fixed. Let X be a Banach space and let {A(t)}t∈[0,T ] be
a stable family of infinitesimal generators of strongly continuous semigroups with
stability constants M and ω. Suppose that the domain of A(t), Dom(A(t)) = D does
not depend on t . Suppose that the function A(t)ϕ is strongly continuously differentiable
for every ϕ ∈ D. Then there is an evolution systemU (t, s), 0 ≤ s ≤ t ≤ T , satisfying
the following conditions:

(1) U (t, s) ≤ Meω(t−s),

(2) U (t, s)D ⊂ D,

(3) for any ϕ ∈ D, the function U (t, s)ϕ is continuous as a function with values in D
with respect to the graph norm of A(0),

(4) for any ϕ ∈ D,

(∂+
t )U (t, s)ϕ|t=s = A(s)ϕ

and
∂sU (t, s)ϕ = −U (t, s)A(s)ϕ.

Proof See e.g. [35, Ch. 5, Sec. 4, Theorem 4.8]. ��
Proposition 3.5 Let the assumptions of Theorem 3.4 hold. Then, for every ϕ ∈ D,

lim
h↘0

U (t + h, t)ϕ − ϕ

h
= A(t)ϕ

uniformly with respect to t .

Proof See [36, Proposition 15] ��
The evolution system U (t, s) from Theorem 3.4 is called a a solution of the Cauchy
problem.

3.2 The Chernoff type product formula

The following generalization of the Chernoff product formula [13] is due toVuillermot
[55] and Plyashechnik [36, Theorem 4].

Theorem 3.6 (Generalized Chernoff theorem) Suppose that the conditions of Theo-
rem 3.4 hold. Let a family of bounded operators R(t, s), 0 ≤ s ≤ t ≤ T , be such
that

‖R(tk, tk−1) . . . R(t2, t1)‖ ≤ C (3.1)

for any family of points 0 ≤ t1 < . . . < tk ≤ T , and let

R(t + �t, t) − I

�t
g → A(t)g (3.2)
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for any g ∈ D as �t ↘ 0 uniformly with respect to t . Then,

R(tn, tn−1) . . . R(t1, t0) f → U (tn, t0) f (3.3)

for any f ∈ X as max |ti+1 − ti | → 0 uniformly with respect to tn, t0 ∈ [0, T ].
Proof See Vuillermot [55] or Plyashechnik [36, Theorem 4]. ��

3.3 Additive perturbation

Let T > 0 be fixed. Let X be a Banach space and let {A(t)}t∈[0,T ] and {B(t)}t∈[0,T ] be
stable families of infinitesimal generators of strongly continuous semigroups with
stability constants MA, ωA and MB, ωB, respectively. Suppose that the domain
Dom(A(t)) = Dom(B(t)) = D does not depend on t . Suppose that the functions
A(t)ϕ and B(t)ϕ are strongly continuously differentiable for every ϕ ∈ D. Then, by
Theorem 3.4 there are evolution systems UA(t, s), and UB(t, s), 0 ≤ s ≤ t ≤ T .

Let
L(t) = A(t) + B(t).

Suppose that {L(t)}t∈[0,T ] satisfies assumptions of Theorem 3.4. Denote by U (t, s)
its evolution system.

The following theorem is a generalization of the corresponding result for semi-
groups [11].

Theorem 3.7 (Additive perturbation) Let the families of bounded operators RA(t, s),
and RB(t, s), 0 ≤ s < t ≤ T , be such that

RA(t, s)RB(t, s) = RB(t, s)RA(t, s) (3.4)

and

‖RA(tk, tk−1) . . . RA(t2, t1)‖ ≤ CA and ‖RB(tk, tk−1) . . . RB(t2, t1)‖ ≤ CB (3.5)

for any finite sequence of points 0 ≤ t1, . . . , tk ≤ T , and let

RA(t + �t, t) − I

�t
g → A(t)g and

RB(t + �t, t) − I

�t
g → B(t)g (3.6)

for any g ∈ D as �t ↘ 0 uniformly with respect to t .
Let

R(t, s) = RA(t, s)RB(t, s).

Then,
R(tn, tn−1) . . . R(t1, t0) f → U (tn, t0) f (3.7)

for any f ∈ X as max |ti+1 − ti | → 0 uniformly with respect to tn, t0 ∈ [0, T ].
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Proof It follows from (3.4) and (3.5) that the family R(t, s), 0 ≤ s ≤ t ≤ T , satisfies
(3.1) with C = CA + CB .

For each g ∈ D, we have

R(t + �t, t) − I

�t
g − L(t)g = RA(t + �t, t)RB(t + �t, t)g − g

�t
− A(t)g − B(t)g

= RA(t + �t, t)

(
RB(t + �t, t)g − g

�t
− B(t)

)

+(RA(t + �t, t)− I )B(t)g + RA(t + �t, t)g − g

�t
− A(t)g.

Therefore, by (3.6),

lim
�t↘0

∥
∥
∥
∥
R(t + �t, t) − I

�t
g − L(t)g

∥
∥
∥
∥
X

= 0.

Thus all requirements of Theorem 3.6 are fulfilled and hence (3.7) holds. ��

4 Two approximating families of operators: Fqp(t, s) and Fpq(t, s)

In this section we study two families of operators: Fqp(t, s) and F pq(t, s), defined
in (1.7) and (1.9), respectively, and prove their properties, which will be then used in
Sect. 5 to prove Theorem 1.11 and Theorem 1.12.

To start with, we need some facts about the heat kernel for the Vladimirov operator
Dα, which we have collected below.

4.1 Heat kernel for the Vladimirov operator D˛

Theorem 4.1 (Bochner) A function ϕ : A
d
K → C is continuous and positive definite

if and only if it is the Fourier transform of a bounded Radon measure μ on A
d
K .

Lemma 4.2 For every t > 0 and α > 1 the function

x �→ e
−t‖x‖α

AdK

is positive definite.

Proof By [48, Theorem 5.7], Z(α, t, x) = F−1
Ad
K

(

e
−t‖·‖α

AdK

)

(x) is a transition

function of a Markov process with space state A
d
K . Thus the result follows from

Theorem 4.1. ��
We will need some properties of the kernel Z(α, t, x). Let, for x > 0,

�(x) =
∏

v∈Pf

q
[[logqv

x]]
v , (4.1)
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where, for t ∈ R,

[[t]] =
{

[t] if t ≥ 0,

[t] + 1 if t < 0,

where [t] is the integer part of t .
For n ∈ R, n > 0 we define

n+ =min{qβ
v | n < qβ

v , qv ∈ Pf , β ∈ Z \ {0}}

and

n− =max{qβ
v | qβ

v < n, qv ∈ Pf , β ∈ Z \ {0}}.

Proposition 4.3 Let α > 1. For every t > 0 and every x ∈ A
d
K we have:

Z(α, t, x) =
∑

{q j
v |q j

v<‖x‖−1
AdK

,v∈Pf , j∈Z\{0}}
�(q j

v)
(
e−tq jα

v − e−t(q j
v+)α

)
. (4.2)

Lemma 4.4 The adelic heat kernel Z(α, t, x) on A
d
K satisfies the following:

(i) Z(α, t, x) ≥ 0,
(ii)

∫
Ad
K
Z(α, t, x)dμAd

K
(x) = 1,

(iii) Z(α, t, ·) ∈ L1(Ad
K ),

(iv) Z(α, t, ·) ∗ Z(α, t ′, x) = Z(α, t + t ′, x),
(v) limt→0+ Z(α, t, x) = δx in D ′(Ad

K ),

(vi) Z(α, t, ·) is a uniformly continuous function for any fixed t > 0,
(vii) Z(α, t, x) is uniformly continuous in t, i.e. Z(α, t, x) ∈ C

(
(0,+∞),C(Ad

K , R)
)

or limt ′→t maxx∈Ad
K

|Z(α, t, x) − Z(α, t ′, x)| = 0 for any t > 0.

Proof See [60, Theorem 105] and [48, Theorem V.7]. ��
Lemma 4.5 The following estimate holds for the heat kernel:

Z(α, t, x) ≤ 2t‖x‖−α

Ad
K
�

(

(‖x‖−1
Ad
K
)−
)

, x ∈ A
d
K \ {0}, t > 0.

Proof See [60, Lemma 103] and [48, Lemma V.6]. ��
ByLemma4.5 and definition (4.1) of�(x)weget immediately the following corollary.

Corollary 4.6 There exists C > 0 such that for all x with ‖x‖Ad
K

≥ 1,

Z(α, t, x) ≤ Ct‖x‖−α

Ad
K
.
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4.2 Properties of Fqp(t, s)

Recall that, for every 0 ≤ s ≤ t ≤ T ,

Fqp(t, s) = (e− ∫ ts HV (u)du)

∧qp

C0
.

Let, for 0 ≤ s ≤ t ≤ T , q ∈ Q, p ∈ P,

fs,t,q(p) = e− ∫ ts HV (u)(q,p)du . (4.3)

Remark 4.7 We have the following upper bound

sup
q

∣
∣
∣e− ∫ ts HV (u)(q,p)du

∣
∣
∣ = sup

q

∣
∣
∣e− ∫ ts g(u,q)‖p‖α−V (u,q)du

∣
∣
∣

≤ sup
q

∣
∣
∣e− ∫ ts g(u,q)du‖p‖α

∣
∣
∣ sup

q

∣
∣
∣e− ∫ ts V (u,q)du

∣
∣
∣

≤e−(t−s) infq,u Re g(q,u)‖p‖α

e−(t−s) infq,u Re V (u,q).

(4.4)

Lemma 4.8 The function fs,t,q(·) ∈ L1(Ad
K ) and

F−1
Ad
K
fs,t,q(·) = e− ∫ ts V (u,q)du Pq

s,t (·), (4.5)

where Pq
s,t is a density of a probability measure on A

d
K . Explicitly,

Pq
s,t (x) = Z

(

α,

∫ t

s
g(u, q)du, x

)

, (4.6)

where Z(α, t, x) is the heat kernel for the Vladimirov operator Dα.

Proof By (4.4) and the assumptions on g and V we get that for every 0 ≤ s ≤ t ≤ T
and for every q ∈ A

d
K ,

fs,t,q(p) = e− ∫ ts HV (u)(q,p)du

= e−‖p‖α
∫ t
s g(u,q)due− ∫ ts V (u,q)du ∈ L1(Ad

K ).

ByLemma4.2, fs,t,q is a continuous, positive definite function of p for everyq and s ≤
t . Therefore, from the Bochner Theorem 4.1 and the fact that Fourier transform maps
L1(Ad

K ) intoD(Ad
K ),we get thatF−1

Ad
K
fs,t,q is of the form (4.5). By [48, Theorem 5.7]

Z(α, t, x) = F−1
Ad
K

(

e
−t‖·‖α

AdK

)

(x) and (4.6) follows. ��
Definition 4.9 Let

L0 = { f ∈ D(Ad
K ) | FAd

K
f (0) = 0}.

Following [60], we call L0 a Lizorkin space.
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Remark The spaceL0 is an adelic analogue of the Lizorkin space of the second kind
(see [1]).

Lemma 4.10 The following facts are true:

(i) the setL0 ∩ C0 is a dense subset of C0 with respect to the supremum norm;
(ii) the setL0 ∩ L1 is a dense subset of L1.

Proof It follows by [43, Proposition 1.3]. ��
Proposition 4.11 We have the following upper bound for the C0 → C0-norm of
F(t, s),

‖Fqp(t, s)‖C0→C0 ≤ sup
q

e−Re
∫ t
s Re V (u,q)du .

Proof We proceed similarly to [12, p. 9]). Let ϕ ∈ L0 ∩ C0. We have

Fqp(t, s)ϕ(q) =
∫

Ad
K

χ(qξ)e− ∫ ts HV (u)(q,ξ)du ϕ̃(ξ)dμAd
K
(ξ)

=
∫

Ad
K

χ(qξ)e− ∫ ts HV (u)(q,ξ)du
∫

Ad
K

χ(−ξ p)ϕ(p)dμAd
K
(p)dμAd

K
(ξ)

=
∫

Ad
K

∫

Ad
K

χ(ξ(q − p))e− ∫ ts HV (u)(q,ξ)dudμAd
K
(ξ)ϕ(p)dμAd

K
(p)

=
∫

Ad
K

F−1
Ad
K

(
e− ∫ ts HV (u)(q,·)du) (q − p)ϕ(p)dμAd

K
(p)

=
∫

Ad
K

(F−1
Ad
K
fs,t,q)(q − p)ϕ(p)dμAd

K
(p).

By Lemma 4.8,

Fqp(s, t)ϕ(q) =
∫

Ad
K

e− ∫ ts V (u,q)du Pq
s,t (q − p)ϕ(p)dμAd

K
(p)

and consequently

‖Fqp(s, t)ϕ‖L∞(Ad
K )

= sup
q

∣
∣
∣
∣
∣

∫

Ad
K

e− ∫ ts V (u,q)du Pq
s,t (q − p)ϕ(p)dμAd

K
(p)

∣
∣
∣
∣
∣

≤ sup
q

∣
∣
∣e− ∫ ts V (u,q)du

∣
∣
∣ sup

q

∫

Ad
K

∣
∣Pq

s,t (q − p)ϕ(p)
∣
∣ dμAd

K
(p)

≤ sup
q

e−Re
∫ t
s Re V (u,q)du sup

q

∫

Ad
K

∣
∣Pq

t (q − p)
∣
∣ dμAd

K
(p)‖ϕ‖L∞(Ad

K )

= sup
q

e−Re
∫ t
s Re V (u,q)du‖ϕ‖L∞(Ad

K ).

��
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Proposition 4.12 For every ϕ ∈ L0 ∩ C0,

lim
t↘s

∥
∥
∥
∥
Fqp(t, s)ϕ − ϕ

t − s
+ HV (s)
∧qp

ϕ

∥
∥
∥
∥
L∞(Ad

K )

= 0.

Proof Let ϕ ∈ L0 ∩C0. By Lemma 4.10 (i), the setL0 ∩C0 is a dense subset of C0.

We start with

Fqp(t, s)ϕ − ϕ

t − s
+ HV (s)
∧qp

ϕ

=
∫

Ad
K

χ(·ξ)

(
e− ∫ ts HV (u)(·,ξ)du − 1

t − s

)

ϕ̃(ξ)dμAd
K
(ξ)

+
∫

Ad
K

χ(·ξ)HV (s)(·, ξ)ϕ̃(ξ)dμAd
K
(ξ). (4.7)

By the mean value theorem the first integral on the right above is equal to

−
∫

Ad
K

χ(·ξ)e− ∫ t ′s HV (u)(·,ξ)du HV (t ′)(·, ξ)ϕ̃(ξ)dμAd
K
(ξ), (4.8)

where s < t ′ < t . We add and subtract the term

∫

Ad
K

χ(·ξ)e− ∫ t ′s HV (u)(·,ξ)du HV (s)(·, ξ)ϕ̃(ξ)dμAd
K
(ξ)

to the right hand side of (4.7) and get that the L∞-norm of (4.7) is bounded by

∥
∥
∥
∥
∥

∫

Ad
K

χ(·ξ)

(

1 − e− ∫ t ′s HV (u)(·,ξ)du
)

HV (s)(·, ξ)ϕ̃(ξ)dμAd
K
(ξ)

∥
∥
∥
∥
∥
L∞(Ad

K )

+
∥
∥
∥
∥
∥

∫

Ad
K

χ(·ξ)e− ∫ t ′s HV (u)(·,ξ)du (HV (s)(·, ξ)

−HV (t ′)(·, ξ)
)
ϕ̃(ξ)dμAd

K
(ξ)

∥
∥
∥
L∞(Ad

K )
. (4.9)

Again, by the mean value theorem, the first norm in (4.9) is equal to

(t ′ − s)

∥
∥
∥
∥
∥

∫

Ad
K

χ(·ξ)e− ∫ t ′′s HV (u)(·,ξ)du HV (s)(·, ξ)HV (t ′′)(·, ξ)ϕ̃(ξ)dμAd
K
(ξ)

∥
∥
∥
∥
∥
L∞(Ad

K )

,

(4.10)
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where s < t ′′ < t ′ < t . By definition (1.2) of HV we have

HV (s)(q, p)HV (t ′′)(q, p)

= g(q, s)g(q, t ′′)‖p‖2α
Ad
K

+ g(q, s)V (q, t ′′)‖p‖α

Ad
K

+g(q, t ′′)V (q, s)‖p‖α

Ad
K

+ V (q, s)V (q, t ′′). (4.11)

Thus the L∞(Ad
K )-norm of the first term in (4.9) is dominated by

∥
∥
∥
∥
∥
g(·, s)g(·, t ′′)

∫

Ad
K

χ(·ξ)e− ∫ t ′′s HV (u)(·,ξ)du‖ξ‖2α
Ad
K
ϕ̃(ξ)dμAd

K
(ξ)

∥
∥
∥
∥
∥
L∞(Ad

K )

+
∥
∥
∥
∥
∥
g(·, s)V (·, t ′′)

∫

Ad
K

χ(·ξ)e− ∫ t ′′s HV (u)(·,ξ)du‖ξ‖α

Ad
K
ϕ̃(ξ)dμAd

K
(ξ)

∥
∥
∥
∥
∥
L∞(Ad

K )

+
∥
∥
∥
∥
∥
g(·, t ′′)V (·, s)

∫

Ad
K

χ(·ξ)e− ∫ t ′′s HV (u)(·,ξ)du‖ξ‖α

Ad
K
ϕ̃(ξ)dμAd

K
(ξ)

∥
∥
∥
∥
∥
L∞(Ad

K )

+
∥
∥
∥
∥
∥
V (·, s)V (·, t ′′)

∫

Ad
K

χ(·ξ)e− ∫ t ′′s HV (u)(·,ξ)du ϕ̃(ξ)dμAd
K
(ξ)

∥
∥
∥
∥
∥
L∞(Ad

K )

.

If t → s then t ′′ → s and the above sum of norms tends to

∥
∥
∥g2(s)D2α f

∥
∥
∥
L∞(Ad

K )
+ 2

∥
∥g(s)V (s)Dα f

∥
∥
L∞(Ad

K )
+
∥
∥
∥V 2(s) f

∥
∥
∥
L∞(Ad

K )
,

so by (4.10), the first norm in (4.9) tends to 0. The second norm in (4.9) also tends to
0 by the assumptions on HV . ��

Proposition 4.13 The family Fqp(t, s) is strongly continuous at t = s, i.e.

lim
t↘s

‖Fqp(t, s)ϕ − ϕ‖L∞(Ad
K ) = 0.

Proof By the mean value theorem,

‖Fqp(t, s)ϕ − ϕ‖L∞(Ad
K )

=
∥
∥
∥
∥
∥

∫

Ad
K

χ(·ξ)
(
e− ∫ ts HV (u)(·,ξ)du − 1

)
ϕ̃(ξ)dμAd

K
(ξ)

∥
∥
∥
∥
∥
L∞(Ad

K )

= (t − s)

∥
∥
∥
∥
∥

∫

Ad
K

χ(·ξ)e− ∫ t ′s HV (u)(·,ξ)du HV (t ′)(·, ξ)ϕ̃(ξ)dμAd
K
(ξ)

∥
∥
∥
∥
∥
L∞(Ad

K )
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where t ′ ∈ (s, t). Thus, by definition of HV ,

‖Fqp(t, s)ϕ − ϕ‖L∞(Ad
K )

≤ (t − s)

∥
∥
∥
∥
∥
g(t ′, ·)

∫

Ad
K

χ(·ξ)e− ∫ t ′s HV (u)(·,ξ)du‖ξ‖α

Ad
K
ϕ̃(ξ)dμAd

K
(ξ)

∥
∥
∥
∥
∥
L∞(Ad

K )

+(t − s)

∥
∥
∥
∥
∥
V (t ′, ·)

∫

Ad
K

χ(·ξ)e− ∫ t ′s HV (u)(·,ξ)du‖ξ‖α

Ad
K
ϕ̃(ξ)dμAd

K
(ξ)

∥
∥
∥
∥
∥
L∞(Ad

K )

and the above expression tends to 0 as t → s by the assumptions on g and V . ��

4.3 Definition and properties of Fpq(t, s)

Recall that, for t ≥ s ≥ 0, the operator

F pq(t, s) ∈ L
(
L1(Ad

K )
)

is defined by the formula

F pq(t, s) =
(
e− ∫ ts HV (u)du

)∧pq

L1
.

The Fourier transform of the distribution F pq(t, s)ϕ(q) is a regular distribution with
a continuous density given by

p �→ FAd
K
(e− ∫ ts HV (u)(·,p)duϕ(·))(p).

That is
F pq(t, s)ϕ(q) = F−1

Ad
K

(
FAd

K
(e− ∫ ts HV (u)(·,p)duϕ(·))(p)

)
(q).

In the integral form

F pq(t, s)ϕ(q)

=
∫

Ad
K

χ(q · p)FAd
K
(e− ∫ ts HV (u)(·,p)duϕ(·))(p)dμAd

K
(p)

=
∫

Ad
K

∫

Ad
K

χ(q · p)χ(−p · q ′)e− ∫ ts HV (u)(q ′,p)duϕ(q ′)dμAd
K
(q ′)dμAd

K
(p)

=
∫

Ad
K

∫

Ad
K

χ
(
p · (q − q ′)

)
e− ∫ ts HV (u)(q ′,p)duϕ(q ′)dμAd

K
(q ′)dμAd

K
(p).

(4.12)
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Proposition 4.14 There is a non-negative constant c such that for all 0 ≤ s ≤ t ≤ T ,

‖F pq(t, s)‖L1(Ad
K )→L1(Ad

K ) ≤ e−c(t−s). (4.13)

Proof Let ϕ ∈ L0 ∩ L1 (by Lemma 4.10 (ii), L0 ∩ L1 is a dense subset of L1). By
(4.12) we can write

‖F pq(t, s)ϕ‖L1(Ad
K )

=
∥
∥
∥
∥
∥

∫

Ad
K

∫

Ad
K

χ
(
p · (· − q ′)

)
e− ∫ ts HV (u)(q ′,p)duϕ(q ′)dμAd

K
(q ′)dμAd

K
(p)

∥
∥
∥
∥
∥
L1(Ad

K )

=
∥
∥
∥
∥
∥

∫

Ad
K

ϕ(q ′)
∫

Ad
K

χ
(
p · (· − q ′)

)
e− ∫ ts HV (q ′,p)(u)dμAd

K
(p)dμAd

K
(q ′)

∥
∥
∥
∥
∥
L1(Ad

K )

=
∥
∥
∥
∥
∥

∫

Ad
K

ϕ(q ′)F−1
Ad
K
fs,t,q ′(· − q ′)dμAd

K
(q ′)

∥
∥
∥
∥
∥
L1(Ad

K )

.

(4.14)
In view of Lemma 4.8 we have

‖F pq(t, s)ϕ‖L1(Ad
K ) =

∥
∥
∥
∥
∥

∫

Ad
K

ϕ(q ′)e− ∫ ts V (u)(q ′)du Pq ′
s,t (· − q ′)dμAd

K
(q ′)

∥
∥
∥
∥
∥
L1(Ad

K )

,

where Pq
s,t is a density of a probability measure on A

d
K . Consequently,

‖F pq(t, s)ϕ‖L1(Ad
K )

=
∥
∥
∥
∥
∥

∫

Ad
K

ϕ(q ′)e− ∫ ts V (u)(q ′)du Pq ′
s,t (· − q ′)dμAd

K
(q ′)

∥
∥
∥
∥
∥
L1(Ad

K )

≤ e−(t−s) infq′,u Re V (u)(q ′)
∫

Ad
K

∫

Ad
K

|ϕ(q ′)|Pq ′
t (q − q ′)dμAd

K
(q ′)dμAd

K
(q)

= e−c(t−s)
∫

Ad
K

|ϕ(q ′)|
∫

Ad
K

Pq ′
t (q − q ′)dμAd

K
(q)dμAd

K
(q ′)

= e−c(t−s)
∫

Ad
K

|ϕ(q ′)|dμAd
K
(q ′)

= e−c(t−s)‖ϕ‖L1(Ad
K )

and (4.13) is proved. ��
Proposition 4.15 For every 0 ≤ s ≤ t ≤ T ,

if ϕ ∈ C0(A
d
K , R) �⇒ F pq(t, s)ϕ ∈ C0(A

d
K , R).
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Proof First we show that F pq(t, s)ϕ ∈ C(Ad
K , R), i.e. is continuous. By (4.14),

F pq(t, s)ϕ(q) =
∫

Ad
K

ϕ(q ′)F−1
Ad
K
fs,t,q ′(q − q ′)dμAd

K
(q ′). (4.15)

By Lemma 4.8,

F−1
Ad
K
fs,t,q ′(q − q ′) = e− ∫ ts V (u,q ′)du Z

(

α,

∫ t

s
g(u, q ′)du, q − q ′

)

. (4.16)

Denote,

rs,t (q) =
∫ t

s
g(u, q)du.

Clearly, there are positive cs,t and Cs,t such that for all q ∈ A
d
K ,

0 < cs,t ≤ rs,t (q) ≤ Cs,t .

Then

∣
∣F pq(t, s)ϕ(q) − F pq(t, s)ϕ(q0)

∣
∣

=
∣
∣
∣
∣
∣

∫

Ad
K

ϕ(q ′)e− ∫ ts V (u,q ′)du (Z
(
α, rs,t (q

′), q − q ′)

−Z
(
α, rs,t (q

′), q0 − q ′)) dμAd
K
(q ′)

∣
∣
∣

≤
∫

Ad
K

∣
∣ϕ(q ′)

(
Z
(
α, rs,t (q

′), q − q ′)− Z
(
α, rs,t (q

′), q0 − q ′))∣∣ dμAd
K
(q ′).

(4.17)

Let K be a compact subset of A
d
K . We split the integral on the right hand side of

(4.17) into two part: over K and its complement K c. Denote by UC(Ad
K , R) the

sapce of all real valued uniformly continuous functions on A
d
K . By Lemma 4.4 the

following map
[cs,t ,Cs,t ] 
 u �→ Z(α, u, ·) ∈ UC(Ad

K , R)

is uniformly continuous. Therefore, by Corollary 4.6,

∫

K c
Z
(
α, rs,t (q

′), q − q ′) dμAd
K
(q ′)

≤
∫

K c
max

u∈[cs,t ,Cs,t ]
Z
(
α, u, q − q ′) dμAd

K
(q ′)

≤ 2Cs,t

∫

K c
‖q − q ′‖−α

Ad
K
dμAd

K
(q ′). (4.18)
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Let ε > 0. Taking appropriate K , i.e. "large enough" we get that

∫

K c
Z
(
α, rs,t (q

′), q − q ′) dμ
Ad
K
(q ′) < ε and

∫

K c
Z
(
α, rs,t (q

′), q0 − q ′) dμ
Ad
K
(q ′) < ε.

Therefore, the integral on the right in (4.17) over K c is smaller than 2‖ϕ‖L∞(Ad
K )ε.

Finally, consider the integral in (4.17) taken over K . This integral is bounded by

‖ϕ(q ′)‖L∞(Ad
K )

∫

K

∣
∣Z
(
α, rs,t (q

′), q − q ′)− Z
(
α, rs,t (q

′), q0 − q ′)∣∣ dμAd
K
(q ′).

Clearly, for all q ′ ∈ K ,

lim
q→q0

∣
∣Z
(
α, rs,t (q

′), q − q ′)− Z
(
α, rs,t (q

′), q0 − q ′)∣∣ = 0.

Hence, by dominated convergence theorem,

∫

K

∣
∣ϕ(q ′)

(
Z
(
α, rs,t (q

′), q − q ′)− Z
(
α, rs,t (q

′), q0 − q ′))∣∣ dμAd
K
(q ′) → 0

as q → q0. Consequently F pq(t, s)ϕ ∈ C(Ad
K , R).

Now we show that F pq(t, s)ϕ vanishes at infinity. To do this we write as in (4.17)

|F pq(t, s)ϕ(q)| =
∣
∣
∣
∣

∫

K ∪K c
ϕ(q ′)e− ∫ ts V (u,q ′)du Z

(
α, rs,t (q

′), q − q ′) dμAd
K
(q ′)

∣
∣
∣
∣ .

Consider the integral over a compact set K ,

∣
∣
∣
∣

∫

K
ϕ(q ′)e− ∫ ts V (u,q ′)du Z

(
α, rs,t (q

′), q − q ′) dμAd
K
(q ′)

∣
∣
∣
∣

≤
∫

K

∣
∣ϕ(q ′)Z

(
α, rs,t (q

′), q − q ′)∣∣ dμAd
K
(q ′)

≤ ‖ϕ‖L∞(Ad
K )

∫

K
max

u∈[cs,t ,Cs,t ]
Z
(
α, u, q − q ′) dμAd

K
(q ′). (4.19)

By Lemma 4.5,

∫

K
max

u∈[cs,t ,Cs,t ]
Z
(
α, u, q − q ′) dμAd

K
(q ′)

≤ 2Cs,t

∫

K
‖q − q ′‖−α

Ad
K
�

(

(‖q − q ′‖−1
Ad
K
)−
)

dμAd
K
(q ′) (4.20)

and consequently from (4.19) and (4.20) we get that

lim
q→∞

∣
∣
∣
∣

∫

K
ϕ(q ′)e− ∫ ts V (u,q ′)du Z

(
α, rs,t (q

′), q − q ′) dμAd
K
(q ′)

∣
∣
∣
∣ = 0. (4.21)
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Proceeding similarly to (4.19) and using (4.18) we get
∣
∣
∣
∣

∫

K c
ϕ(q ′)e− ∫ ts V (u,q ′)du Z

(
α, rs,t (q

′), q − q ′) dμAd
K
(q ′)

∣
∣
∣
∣

≤ max
x∈K c

|ϕ(x)|
∫

K c
max

u∈[cs,t ,Cs,t ]
Z
(
α, u, q − q ′) dμAd

K
(q ′)

≤ max
x∈K c

|ϕ(x)|2Cs,t

∫

K c
‖q − q ′‖−α

Ad
K
�

(

(‖q − q ′‖−1
Ad
K
)−
)

dμAd
K
(q ′).

Since α > 1 the above integral tends to 0 as q → ∞. This and (4.21) implies that
limq→∞ F pq(t, s)(q) = 0. Thus F pq(t, s)ϕ ∈ C0(A

d
K , R). ��

Proposition 4.16 For every ϕ ∈ L1(Ad
K ),

lim
t↘s

∥
∥
∥
∥
F pq(t, s)ϕ − ϕ

t
+ HV (s)
∧pq

L1ϕ

∥
∥
∥
∥
L1(Ad

K )

. (4.22)

Proof For every ϕ ∈ L0 ∩ L1 (by [43, Proposition 1.3],L0 ∩ L1 is a dense subset of
L1) we write

F pq(t, s)ϕ(q) − ϕ(q)

t − s
+ (ĤV (s))pqϕ(q)

=
∫

(Ad
K )2

χ
(
p · (q − q ′)

)
(
e− ∫ ts HV (u)(q ′,p)du − 1

t − s

)

ϕ(q ′)dμAd
K
(q ′)dμAd

K
(p)

+
∫

(Ad
K )2

χ
(
p · (q − q ′)

)
HV (s)(q ′, p)ϕ(q ′)dμAd

K
(q ′)dμAd

K
(p). (4.23)

By the mean value theorem the first integral on the right above is equal to

−
∫

(Ad
K )2

χ
(
p · (q − q ′)

)
e− ∫ t ′s HV (u)(q ′,p)du HV (t ′)(q ′, p)ϕ(q ′)dμAd

K
(q ′)dμAd

K
(p),

where s < t ′ < t . We add and subtract the term
∫

(Ad
K )2

χ
(
p · (q − q ′)

)
e− ∫ t ′s HV (u)(q ′,p)du HV (s)(q ′, p)ϕ(q ′)dμAd

K
(q ′)dμAd

K
(p)

to the right hand side of (4.23) and get that (4.23) is equal to
∫

(Ad
K )2

χ
(
p · (q − q ′)

)
e− ∫ t ′s HV (u)(q ′,p)du (HV (s) − HV (t ′)

)

(q ′, p)ϕ(q ′)dμAd
K
(q ′)dμAd

K
(p)

+
∫

(Ad
K )2

χ
(
p · (q − q ′)

)
(

1 − e− ∫ t ′s HV (u)(q ′,p)du
)

HV (s)

(q ′, p)ϕ(q ′)dμAd
K
(q ′)dμAd

K
(p). (4.24)
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Applying the mean value theorem the second integral is equal to

(t ′ − s) ×
∫

(Ad
K )2

χ
(
p · (q − q ′)

)
e− ∫ t ′′s HV (u)(q ′,p)du HV (s)HV (t ′′)

(q ′, p)ϕ(q ′)dμAd
K
(q ′)dμAd

K
(p) (4.25)

with t ′ < t ′′ < t . Multiplying HV (s) by HV (t ′′) (see (4.11)) we get that the integral
in (4.25) is equal to

∫

(Ad
K )2

χ(p · (q − q ′)e−
∫ t ′′
s HV (u)(q ′,p)dug(q ′, s)g(q ′, t ′′)‖p‖2α

Ad
K

ϕ(q ′)dμ
Ad
K

(q ′)dμ
Ad
K

(p)

+
∫

Ad
K

χ(p · (q − q ′)e−t ′′HV (q ′,p)‖p‖α

Ad
K
g(q ′, s)V (q ′, t ′′)ϕ(q ′)dμ

Ad
K

(q ′)dμ
Ad
K

(p)

+
∫

Ad
K

χ(p · (q − q ′)e−t ′′HV (q ′,p)‖p‖α

Ad
K
g(q ′, t ′′)V (q ′, s)ϕ(q ′)dμ

Ad
K

(q ′)dμ
Ad
K

(p)

+
∫

Ad
K

χ(p · (q − q ′)e−t ′′HV (q ′,p)V (q ′, s)V (q ′, t ′′)ϕ(q ′)dμ
Ad
K

(q ′)dμ
Ad
K

(p).

The L1-norm (with respect to the variable q) of the above sumof integrals is dominated
by the sum of its norms which tend to

∥
∥
∥D2α(g2(s)ϕ)

∥
∥
∥
L1(Ad

K )
+ 2

∥
∥g(s)V (s)Dαϕ

∥
∥
L1(Ad

K )
+
∥
∥
∥V 2(s)ϕ

∥
∥
∥
L1(Ad

K )

as t → s. Since g(s) and V (s) are bounded we get by [60, Lemma 93] (see also
[48, Lemma 5.3]) that Dαϕ and D2αg2(s)ϕ ∈ L0. Thus the above norms are finite.
Consequently, (4.25) tends to 0 when t → s. Since the first integral in (4.24) tends to
zero, as t → s, the equality (4.22) is proved. ��

Proposition 4.17 The family F pq(t, s) is strongly continuous at t = s.

Proof Let ϕ ∈ L0 ∩ L1. By the mean value theorem we have

‖F pq (t)ϕ − ϕ‖L1(Ad
K )

=
∥
∥
∥
∥
∥

∫

(Ad
K )2

χ(p · (· − q ′)
(
e−

∫ t
s HV (u)(q ′,p)du − 1

)
ϕ(q ′)dμ

Ad
K

(q ′)dμ
Ad
K

(p)

∥
∥
∥
∥
∥
L1(Ad

K )

= (t − s)×

×
∥
∥
∥
∥
∥

∫

(Ad
K )2

χ(p · (· − q ′)e−
∫ t ′
s HV (u)(q ′,p)du HV (t ′)(q ′, p)ϕ(q ′)dμ

Ad
K

(q ′)dμ
Ad
K

(p)

∥
∥
∥
∥
∥
L1(Ad

K )

.
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If t → s then t ′ → s and the above norm tends to
∥
∥
∥
∥
∥

∫

(Ad
K )2

χ(p · (· − q ′)HV (s)(q ′, p)ϕ(q ′)dμAd
K
(q ′)dμAd

K
(p)

∥
∥
∥
∥
∥
L1(Ad

K )

≤ ‖Dα(g)ϕ‖L1(Ad
K ) + ‖Vϕ‖L1(Ad

K ).

��

5 Proof of Theorem 1.11 and Theorem 1.12

Theorem 5.1 (Dorroh [14]) Let X be a Banach space (under the supremum norm) of
bounded complex valued functions on a set S and a : S → R be a bounded positive
function on S which is bounded away from zero. Suppose that aX ⊂ X , and let A be the
infinitesimal generator of a strongly continuous semigroup of contraction operators
in X , then aA is also the infinitesimal generator of a contraction C0-semigroup in X .

Theorem 5.2 Let A be a linear operator in a Banach space X with domain D(A) ⊂ X .

Suppose that its resolvent set ρ(A) �= ∅ and let L be a bounded linear operator on X .

If L A with domain D(A) is a generator of the one-parameter semigroup on X , then
AL with domain D(AL) = {x ∈ X | Lx ∈ D(A)} is a generator of the one-parameter
semigroup on X .

Proof See [19, Theorem 3.20 (i), Chapter III, p. 202]. ��
We will need the following result from the perturbation theory of semigroups.

Theorem 5.3 Let X be a Banach space and let A be the infinitesimal generator of
a C0-semigroup T (t) on X , satisfying ‖T (t)‖ ≤ Meωt . If B is a bounded linear
operator on X then A + B is the infinitesimal generator of a C0-semigroup S(t) on
X , satisfying ‖S(t)‖ ≤ Met(ωM+‖B‖).

Proof See e.g. [35, Ch. 3, Sect. 1, Theorem 1.1]. ��
Lemma 5.4 The −HV (t)

∧qp
on the space C0 exists and satisfies

−HV (t)
∧qp

ϕ(q) = −g(t, q)Dαϕ(q) − V (t, q)ϕ(q)

with domain coinciding with the domain Dα of the operator Dα.

Proof We have, by definition of −̂HV (t)
qp

,

−HV (t)
∧qp

ϕ(q) = F−1
Ad
K

(
(−g(t, q)‖ · ‖α

Ad
K

− V (t, q))FAd
K
ϕ(·)

)
(q)

= −g(t, q)F−1
Ad
K

(
‖ · ‖α

Ad
K
FAd

K
ϕ(·)

)
− V (t, q)ϕ(q)

and the statement follows. ��
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Proposition 5.5 For every t ∈ [0, T ] the operator −HV (t)
∧qp

C0
is the infinitesimal gen-

erator of a C0-semigroup Sqpt (s), s ≥ 0, satisfying

∥
∥Sqpt (s)

∥
∥
C0→C0

≤ es‖V (t)‖C0→C0 .

Proof We start with the case V = 0. By Lemma 5.4

−H0(t)
∧qp

ϕ(q) = −g(t, q)Dαϕ(q).

By [48] the operator−Dα is the infinitesimal generator of a contractionC0-semigroup
in C0(Q, C). Thus the result for V = 0 follows from Theorem 5.1.

The operator −HV (t)
∧qp

is an additive perturbation of −H0(t)
∧qp

by a bounded
operator of multiplication by V (t). Thus the result follows from Theorem 5.3. ��
Lemma 5.6 The operator −HV (t)

∧pq
on L1 exists and satisfies

−HV (t)
∧pq

(·) = −Dα ◦ (g(t)·) − (V (t)·)

with domain { f ∈ L1(Ad
K ) | g f ∈ Dom(Dα)} = g(·)−1Dom(Dα).

Proof By definition of −HV (t)
∧pq

,

〈FAd
K
−HV (t)
∧pq

ϕ,ψ〉 =
∫

Ad
K

ψ(p)FAd
K

(
(−g(t, ·)‖p‖α

Ad
K

− V (t, ·))ϕ(·)
)

(p)

= −
∫

Ad
K

ψ(p)‖p‖α

Ad
K
FAd

K
(g(t)ϕ)(p)dμAd

K
(p)

−
∫

Ad
K

ψ(p)FAd
K
(V (t)ϕ)(p)dμAd

K
(p)

= −〈F
Ad
K
(Dα(g(t)ϕ)), ψ〉 − 〈FAd

K
(V (t)ϕ), ψ〉.

��
Proposition 5.7 For every t ∈ [0, T ] the operator −HV (t)

∧pq
L1 is the infinitesimal gen-

erator of a C0-semigroup of operators S pq
t (s), s ≥ 0, satisfying

∥
∥S pq

t (s)
∥
∥
L1→L1 ≤ es‖V (t)‖L1→L1 .

Proof First we assume that V = 0. It is known that −Dα is a generator of a C0-
semigroup of contractions in each of the spaces C0 and Lρ, ρ ≥ 1 (see [48], cf. [42]).
Therefore the resolvent set of −Dα is nonempty. From the proof of Proposition 5.5
the composition of operators −(g·) ◦ Dα

C0
considered with the domain of the operator

Dα is a generator of a C0-semigroup of contractions in C0 = C0(Q, C). The operator
(g(t)·) of pointwisemultiplication in L1(Ad

K ) by the function g is defined and bounded
everywhere on L1(Ad

K ). Therefore, by Theorem 5.2 the operator −Dα ◦ (g·) with its
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domain equal to g(·)−1Dom(Dα) is a generator of a one-parameter semigroup of
operators in L1(Ad

K ). Since by Lemma 5.6

−H0(t)
∧pq

L1 = −Dα ◦ (g(t)·)

the result for V = 0 is proved.
Now consider a non-zero V . By Lemma 5.6, (−̂HV )

pq
L1 = (−̂H0)

pq
L1 − (V ·). Thus

the result follows from Theorem 5.3. ��
Proposition 5.8 The families of operators {−HV (t)

∧qp
C0

}t∈[0,T ] and {−HV (t)
∧pq

L1 }t∈[0,T ]
are stable.

Proof By Proposition 5.5 (Proposition 5.7, resp.) for every t ∈ [0, t] the operator
−HV (t)
∧qp

C0
(the operator −HV (t)
∧pq

L1 , resp.) is the infinitesimal generator of a C0-

semigroup {Sqpt (s)}s≥0 ({S pq
t (s)}s≥0) satisfying ‖Sqpt (s)‖C0→C0 ≤ es‖V (t)‖C0→C0

(‖S pq
t (s)‖L1→L1 ≤ es‖V (t)‖L1→L1 , resp.). By our assumption c ≤ ‖V (t)‖C0→C0 ≤ C,

for all t ≥ 0. Thus the statement follows from Remark 3.3. ��
Proof of Theorems 1.11 and 1.12 By Proposition 5.8 the families {−HV (t)

∧qp
C0

}t∈[0,T ]
and {−HV (t)
∧pq

L1 }t∈[0,T ] are stable. Thus the existence of the families of evolution
operators Uqp(t, s) and U pq(t, s) follows from Theorem 3.4. To prove the conver-
gence in (1.8) for Fqp (convergence in (1.10) for F pq , resp.) it suffices to verify the
validity of the conditions of Theorem 3.6 with Q = Fqp (with Q = F pq , resp.). By
Proposition 4.11 (Proposition 5.7, resp.)

‖Fqp(t, s)‖C0→C0 ≤ e−(t−s)c and ‖F pq(t, s)‖L1(Ad
K )→L1(Ad

K ) ≤ e−(t−s)c, resp.

Therefore, for all T ≥ tk ≥ . . . ≥ t1 ≥ 0,

‖Fqp(tk , tk−1) . . . Fqp(t2, t1)‖C0→C0 ≤ C and ‖F pq (tk , tk−1) . . . F pq (t2, t1)‖L1→L1 ≤ C

and (3.1) with R = Fqp (R = F pq , resp.) in Theorem 3.6 is satisfied. Finally,
by Theorem 4.12 (Theorem 4.16, resp.) (3.2) is also satisfied with R = Fqp and
A(t) = −HV (t)
∧qp

C0
(with R = F pq and A(t) = −HV (t)

∧pq
L1 , resp.). ��

6 Hamiltonian and Lagrangian Feynman formulas

6.1 The qp-quantization

Theorem 6.1 For any t > 0 and any q0 ∈ Q, the following Hamiltonian Feynman
formula for the Cauchy problem

∂tψ(t, x) = −HV

∧qp
C0

ψ(t, x), ψ(s, x) = ψs(x) ∈ C0(Q, C),
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holds:

ψ(t, q0) = lim
n→∞

∏

p∈P

∏

v|p

∫

(Q×P)n
e−2π i

∑n
k=1 TrKv/Qp {pk ·(qk−qk−1)}p

×e
−∑n

k=1
∫ t−(k−1)(t−s)/n
t−k(t−s)/n g(u,qk−1)‖pk‖α

AdK
+V (u,qk−1)du

×ψs(qn)dμAd
K
(qn)dμAd

K
(pn) . . . dμAd

K
(q1)dμAd

K
(p1). (6.1)

Proof of Theorem 6.1 It is enough to apply Theorem 1.11. Consider the following
sequence of times

t >
(n − 1)(t − s)

n
+ s > . . . >

t − s

n
+ s > s.

We have to compute the following product

Fqp
(

t, t − t − s

n

)

Fqp
(

t − t − s

n
, t − 2(t − s)

n

)

. . .

. . . Fqp
(
2(t − s)

n
,
t − s

n
+ s

)

Fqp
(
t − s

n
+ s, s

)

, (6.2)

where

Fqp(t, s)ϕ(q) =e− ∫ ts HV (u)du
∧qp

C0
ϕ(q)

=
∫

χ(qξ)e− ∫ ts HV (u)(q,ξ)du ϕ̃(ξ)dμ(ξ),

with
HV (u)(q, ξ) = g(u, q)‖ξ‖α

Ad
K

+ V (u, q)

and check if this product is equal to the right hand side of (6.1). We will leave this as
an exercise for the reader. As an example, we only show how two operators in (6.2)
are composed. We have

Fqp
(
2t

n
+ s,

t

n
+ s

)

Fqp
(
t

n
+ s, s

)

=
∫

P

∫

Q
χ (p1 · (q0 − q1)) e

− ∫ s+2(t−s)/n
s+(t−s)/n g(u,q0)‖p1‖α

AdK
−V (u,q0)du

∫

P

∫

Q
χ (p2 · (q1 − q2))

×e
− ∫ s+(t−s)/n

s g(u,q1)‖p2‖α

AdK
−V (u,q1)du

ψ0

(q2)dμAd
K
(q2)dμAd

K
(p2)dμAd

K
(q1)dμAd

K
(p1).
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Now it is enough to write explicitly χ (see (2.4)). ��
Let I ⊂ R+ = [0,+∞) be the interval (finite or not). Let D(I , Q) be the Skhorohod
space of paths γ : I → Q = A

d
K which are right-continuous and have left-limits at

each point of the half-axis R+ = [0,+∞). ByB we denote the σ -algebra generated
by all mappings of the form πs : γ �→ γ (s), s ∈ R+.

For every q0 ∈ Q, the family−H0(t)
∧qp

C0
with H0(t, q, p) = g(t, q)‖p‖Ad

K
,where g

satisfies Assumption 1.3, determines the probability measure dWs,q0(γ ) onB which
is the distribution of the corresponding Markov process γ (t), t ∈ I , - the evolution
generated by Uqp(t, s) - starting at time s from q0, i.e. γ (s) = q0 and

Uqp(t, s)ϕ(q0) =
∫

Ad
K

ps,t (q0, q)dμAd
K
(q) = Es,q0ϕ(γ (t))

=
∫

D([s,t],Q)

ϕ(γ (t))dWs,q0(γ ),

where ps,t (·, ·) are the transition densities (propagators) of γ (t).

Theorem 6.2 LetUqp(t, s)be the evolutiongeneratedby−H0(t)
∧qp

C0
with H0(t, q, p) =

g(t, q)‖p‖Ad
K
, where g satisfies Assumption 1.3. Then

Uqp(t, s)ϕ(x) = lim
n→+∞

∫

(Ad
K )n

ϕ(xn)
n∏

k=1

Kg

s+ (k−1)(t−s)
n ,s+ k(t−s)

n

(xk−1, xk)

dμAd
K
(x1)dμAd

K
(x2) . . . dμAd

K
(xn), (6.3)

where x0 = x and

K g
s,t (x, y) = Z

(

α,

∫ t

s
g(u, x)du, x − y

)

, (6.4)

where Z(α, t, x) is the heat kernel corresponding to Dα.

Proof Since V = 0 we have by (4.15) and (4.16) the that

Fqp(t, s)ϕ(x) =
∫

Ad
K

ϕ(y)Kg
t,s(x, y)dμAd

K
(y).

Then, by Theorem 1.11,

Uqp(t, s)ϕ(x) = lim
n→+∞

∫

(Ad
K )n

ϕ(xn)
n∏

k=1

Kg

s+ (k−1)(t−s)
n ,s+ k(t−s)

n

(xk−1, xk)

dμAd
K
(x1)dμAd

K
(x2) . . . dμAd

K
(xn),

where x0 = x . ��
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Let y ∈ A
d
K . Taking ϕ = δy in (6.3) (i.e. approximating δy by a sequence of elements

from D(Ad
K )) we get the following corollary.

Corollary 6.3 LetUqp(t, s)be the evolutiongeneratedby−H0(t)
∧qp

C0
with H0(t, q, p) =

g(t, q)‖p‖Ad
K
, where g satisfies Assumption 1.3. Then transition densities (propaga-

tors) of the corresponding Markov process γ are given by

ps,t (x, y) = lim
n→+∞

∫

(Ad
K )n

n∏

k=1

Kg

s+ (k−1)(t−s)
n ,s+ k(t−s)

n

(xk−1, xk )dμ
Ad
K

(x1) . . . dμ
Ad
K

(xn−1),

where x0 = x, xn = y, and K g
s,t (x, y) is defined in (6.4).

Theorem 6.4 For any t > 0 and any x0 ∈ Q, the solution ψ for the Cauchy problem(
−HV (t)
∧qp

C0
, ψs

)
is given by

ψ(t, x0) = lim
n→+∞

∫

(Ad
K )n

ψs(xn)

n∏

k=1

(

Kg

s+ (k−1)(t−s)
n ,s+ k(t−s)

n

(xk−1, xk)e
− ∫ s+k(t−s)/n

s+(k−1)(t−s)/n V (u,xk )du
)

dμAd
K
(x1) . . . dμAd

K
(xn).

Proof The family −V (t, x), t ∈ R+ generates the evolution

G(t, s)ϕ(x) = e− ∫ ts V (u,x)duϕ(x). (6.5)

By Theorem 3.7,

ψ(t, x0) = lim
n→∞ Fqp

(

t, t − t − s

n

)

G

(

t, t − t − s

n

)

. . .

. . . Fqp
(

t − t − s

n
, t − 2(t − s)

n

)

G

(

t − t − s

n
, t − 2(t − s)

n

)

. . .

. . . Fqp
(
2(t − s)

n
+ s,

t − s

n
+ s

)

G

(
2(t − s)

n
+ s,

t − s

n
+ s

)

. . .

. . . Fqp
(
t − s

n
+ s, s

)

G

(
t − s

n
+ s, s

)

ψs(x0) (6.6)

and the result follows. ��

6.2 The pq-quantization

Consider the following Cauchy problem

∂tψ(t, x) = −HV

∧pq
L1ψ(t, x), ψ(0, x) = ψs(x) ∈ D(Ad

K ). (6.7)
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Theorem 6.5 Let

ψn(t, q0) =
∏

p∈P

∏

v|p

∫

(Q×P)n
e−2π i

∑n
k=1 TrKv/Qp {pk ·(qk−qk−1)}p

×e
−∑n

k=1
∫ t−(k−1)(t−s)/n
t−k(t−s)/n g(u,qk )‖pk‖α

AdK
+ V (u,qk )du

×ψs(qn)dμAd
K
(qn)dμAd

K
(pn) . . . dμAd

K
(q1)dμAd

K
(p1). (6.8)

Then
ψn(t, ·) ∈ C0(A

d
K , R)

and the followingHamiltonian Feynman formula for the solutionψ of Cauchy problem
(6.7) holds:

ψ(t, ·) = lim
n→∞ ψn(t, ·) in L1(Ad

K ).

Proof If ψs(x) ∈ C0(A
d
K , R) ∩ L1(Ad

K ) then by Proposition 4.15,

F pq
(

t, t − t − s

n

)

F pq
(

t − t − s

n
, t − 2(t − s)

n

)

. . .

. . . F pq
(
2(t − s)

n
+ s,

t − s

n
+ s

)

F pq
(
t − s

n
+ s, s

)

ψs ∈ C0(A
d
K , R). (6.9)

It is easy to show by induction that (6.9) evaluated at q0 ∈ A
d
K is equal to the right

hand side of (6.1). Now it is enough to apply Theorem 1.12. ��
Remark By Theorem 6.5 there is an increasing sequence of natural numbers nk →
+∞, k ∈ N, so that the sequence

ψnk (t, ·) → ψ(·), μAd
K
-a.e.

Theorem 6.6 Let ψs ∈ D(Ad
K ) and define

ψn(t, x0)

=
∫

Ad
K

ψs(xn)
n∏

k=1

(

Kg

s+ (k−1)(t−s)
n ,s+ k(t−s)

n

(xk−1, xk)e
− ∫ s+k(t−s)/n

s+(k−1)(t−s)/n V (u,xk )du
)

dμAd
K
(x1) . . . dμAd

K
(xn), (6.10)

Then ψn(t, ·) ∈ C0(A
d
K , R) and the following Hamiltonian Feynman formula for the

solution ψ of Cauchy problem (6.7) holds:

ψ = lim
n→∞ ψn in L1(Ad

K ).
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Proof Let V = 0. Then, by (4.15) and (4.16),

F pq(t, s)ϕ(x) =
∫

Ad
K

ϕ(y)K y
t (x, y)dμAd

K
(y),

where

K y
t (x, y) = Z

(

α,

∫ t

s
g(u, y)du, x − y

)

.

Let G(t, s) be as in (6.5). Then, by Theorem 3.7,

F pq
(

t, t − t − s

n

)

G

(

t, t − t − s

n

)

. . .

. . . F pq
(

t − t − s

n
, t − 2(t − s)

n

)

G

(

t − t − s

n
, t − 2(t − s)

n

)

. . .

. . . F pq
(
2(t − s)

n
+ s,

t − s

n
+ s

)

G

(
2(t − s)

n
+ s,

t − s

n
+ s

)

. . .

. . . F pq
(
t − s

n
+ s, s

)

G

(
t − s

n
+ s, s

)

ψs(·) −→ ψ(t, ·) in L1(Ad
K ).

Thus, (6.10) follows. ��
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