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1 Introduction

Understanding the evaporation process of black holes [1] has played an important role in our
understanding of quantum gravity. Since quantum gravity is a challenging research subject,
the approach of studying toy models of quantum gravity is beneficial. It is essential to
investigate the quantum effects in such toy models where we can compute quantum correction
exactly. The Penington-Shenker-Stanford-Yang (PSSY) model [2], sometimes called the West
Coast model, is a very nice toy model of evaporating black holes. It is a 2-dimensional
Jackiw-Teitelboim (JT) gravity, with end-of-the-world (EOW) branes. This model has two
subsystems, a black hole with its Hilbert space dimension €S represented by the flavors of the
EOW branes, and an auxiliary reference system R representing “radiation” with its Hilbert
space dimension k. It was shown in [2] that depending on k < €S which corresponds to
early black hole or k > €5 which corresponds to late black hole, the dominant topology in
the gravitational path integral changes and that leads to the Page curve behavior changes
before and after the Page point [3, 4].

The analysis done by [2] above is in the planar limit and to see the essential Page
curve behavior change at the Page point, this planar analysis is good enough. However,
it is certainly interesting to investigate the non-planar corrections to this model, which
corresponds to the quantum gravity effects. The motivation of this paper is to investigate
these non-planar corrections to the PSSY model.

One of the main results of this paper is to show that there is a curious correspondence
between the PSSY model and the IOP matrix model [5], another toy model investigated before
as a toy model of proving a black hole. The IOP matrix model is a cousin of the IP model [6]
and represents the decay of the correlation function of the probe fundamental field interacting



with a matrix degree of freedom describing a black hole. The pros and cons of the IOP matrix
model are that it is simpler than the IP model and thus one can solve it in various ways, but
the correlator decays only by the power law, not by the exponential. As we will show explicitly,
the correspondence is seen through the Feynman diagrams of both models. In the IOP matrix
model, not only the planar contributions but also the leading non-planar contributions are
explicitly calculated in [5]. We show that using the correspondence between the PSSY model
and the IOP matrix model, one can evaluate the specific non-planar corrections exactly in
the PSSY model. It would be possible to compute the sub-leading corrections directly from
the PSSY model, but this resummation is very complicated. One advantage of using the IOP
matrix model is that this complicated resummation problem has been already solved in [5],
thus we can simply use the result. This is the main point of this paper.

However, this is not the end of the story. In the PSSY model, in fact, there are two types
of non-planar corrections. The correspondence between the PSSY model and the IOP matrix
model enables us to evaluate only one class of non-planar corrections, which involves the
diagrams of “crossing”. On the other hand, the other non-planar corrections are associated
with the extra-handle-in-bulk diagrams. For the extra-handle-in-bulk diagrams, there is no
associated diagram in the IOP matrix model. Thus, the correspondence is not completely
one-to-one and it does not directly answer all non-planar corrections. Therefore, one needs
to do the direct bulk calculation of resummation of such extra-handle-in-bulk diagrams. We
leave these extra-handle-in-bulk calculations for future work.

The organization of this short note is as follows. In section 2, we review both the
PSSY model and the IOP matrix model. Section 3 is our main result, where we show
there is a correspondence between the PSSY model and the IOP matrix mode, and through
that, we evaluate the non-planar corrections involving the diagram of crossing in the PSSY
model. In section 4, we conclude and discuss open issues as well as possible generalizations
of our works.

2 The PSSY model and the IOP matrix model in the planar limit

In this section, the PSSY model (or the West Coast model) and the IOP matrix model are
reviewed. We focus on the spectral density of a reduced density matrix in a microcanonical
ensemble of the PSSY model and the spectral density of a two-point function of fundamental
fields in the IOP matrix model. After reviewing the two models, in section 3, we will
point out that both spectral densities in the planar limit are represented by the Marchenko-
Pastur distribution in random matrix theory and explain how both models correspond to
each other.

2.1 Review of the PSSY model
The PSSY model [2] consists of a black hole in JT gravity with an end-of-the-world (EOW)

brane behind the horizon with tension p > 0. Its Euclidean action is

S =Sy + p ds, (2.1)

Brane
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Figure 1. Schwinger-Dyson equation for the PSSY model in the planar limit.

We impose the standard asymptotic boundary condition

dr? 1
ds’|lopm = —5,  dlom = —, (2.3)
22 Ze
where 7 is the boundary Euclidean time, and z. is the near-boundary cutoff.
Suppose that there are k orthogonal states |i)g of the “radiation” system R, which are
entangled with k interior of the EOW brane microstates [i;)B of the black hole B. A pure

state |U) representing this entanglement is given by

k
- ;@ S [0)g lidm (2.4)
=1

where the radiation system R can be interpreted as the early radiation of an evaporating
black hole. The reduced density matrix pr and its resolvent R(\) are defined by

PR ‘= =Trg ‘\Il Z ‘] ’R wz‘¢]> (2-5>
i,j=1
k 1 1 oo

When €5, which is the dimensions of B, and k, which is the dimension of R, are large,
only planar diagrams are dominant in the Schwinger-Dyson equation of R;;(\), as figure 1,
thus we obtain

1 1 ZDisk 1
Rij(A) = X 05 + i nz::l Rz R(AN)" "R (N), (2.7)
where 6;;/A is like “bare propagator” and ZEiSk is the bulk partition function on a disk
topology with n asymptotic boundaries represented by the black solid arrows and n blue
curved lines for the EOW branes. In a microcanonical ensemble with fixed energy FE, the

ratio of the bulk partition functions is simplified as

Disk
Zn

sinh (27T\/E>

=e (D8 S = oM ppig (E)AE,  ppisk(E) = 272 ’

(2.8)



where E dependence appears through S, and AF is the width of the microcanonical energy
window. Performing the infinite sum in eq. (2.7), we obtain

S _ k k2 S
R(A)? + (e — kes> R(\) + ; =0, (2.9)
and a solution of R(\) with the asymptotic behavior R(\) — k/\ at A — +oo is
ke® -S _ -1
RO = S+ ((e .y )+)\—\/(/\—/\+)()\—)\_)> (for A > Ay), (2.10)

2
where Mg := (k:*% + 678/2) . (2.11)

R(\) for A < A4 can be obtained by the analytic continuation. From the definition of
R(\) in (2.6), using

=P () -, (21

the spectral density D(\) of pr is given by

DOV = —%ImR()\ +ie)

eS
= SV A0 N0 A0 =X + (k- 8) 5000k~ ), (213)

where 0(\) is the Heaviside step function.

1

One can check that the normalization of D()\) is
/D(A)d)\ —k, /D(A)A = 1. (2.14)
The first normalization means that the size of pr is k, and the second normalization means

that Trg pr = 1. D()\) is simplified as

D(\) = 2’;1 A (: — A)H(A)G (: - )\> , when k=¢5. (2.15)

Using (2.11) and (2.13), the entanglement entropy Sgr of the auxiliary system R can
be calculated as

Sk = —/d)\D()\))\log)\

= ke /A+ d/\\/()\ —2A)(Ay — A)log \. (2.16)
Al

Com

'From (2.11), we have

R(\) = % ((e_s o E D CRV/e VT )\)) for (s >A_>A>0).

The relative sign in front of square root changes between A > A4+ and 0 < A\ < A_ because we change both of
the argument 64 and 6_ by 7 in A — A = rye®®+ and A — A_ := r_e'®~. See, for instance, [7]. Thus, A=0
pole in R(A) gives a Dirac delta function proportional to

ke

(7T VAT ) = (k= ) 0k - ).



This integral can be computed exactly, and the result is

ﬁ, m :=min{k,e5}, n :=max{k, 5}, (2.17)

Sr = logm —
2n

which perfectly matches the Page’s result for n > m > 1 [3]. If k = €5, the entanglement
entropy is

1
Sm =logh -, if k=eS. (2.18)

2.2 Review of the IOP matrix model

The IOP matrix model [5] is a matrix model given by the following Hamiltonian
Hiop = mALAji + Mala; + Hi, Hin = hala Al Ay, (2.19)

where the sum of subscripts is taken from 1 to N. Here, a; is the annihilation operator
for a harmonic oscillator in the fundamental of U(N), and A;; is the annihilation operator
for an oscillator in the adjoint. This matrix model was introduced as a toy model of the
gauge dual of an AdS black hole, where the adjoint fields can be interpreted as background
N DO-branes for the black hole, and the fundamental fields can be interpreted as strings
stretched from a probe DO-brane.

To solve the spectrum density analytically in the large N limit with fixed 't Hooft
coupling At gooft := hIV, we also take the large M limit M > m and M > T so that a;rai ~0
in the thermal ensemble at finite temperature T. We consider the following time-ordered
Green’s functions at finite temperature

M a(t) a}(0)>T = G(1)5;, (2.20)

(TA(t )Akl(0)>T =: L(t)6:16%. (2.21)

With the Fourier transformation f(w) = [ dt ™! f(t), free thermal propagators in frequency
space are given by

(2.22)

7 - ? 1 . ) . —m/T
Lo(w)_l_y<w_m+i€ > y=e /T, (2.23)

W —m — 1€

where Go(w) does not depend on T in the large M limit, and L(w) in the large N limit becomes
the free propagator Ly (w) since the backreaction from the fundamental is suppressed by 1/N.

In the limit where N and M are large, the Schwinger-Dyson equation of G(w) is shown
in figure 2, which has the same graphical structure as the Schwinger-Dyson equation of R(\)
in the PSSY model. See figure 2 of [5] and figure (2.25) of [2] as well. The Schwinger-Dyson
equation of G(w) is given by

> —1/A’t Hooft nl
G(w) = Go(w) + yGo(w)C(w) 3 ( A e f) Gw)™. (2.24)
n=0
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Figure 2. Schwinger-Dyson equation for the IOP matrix model in the planar limit.

Performing the infinite sum, we obtain

. 1 1 1—y
— (1 — - = 2.2
G(W) Z( y) < + )\’t Hooft) G(w) W)\’t Hooft O, ( 5)

and its solution is

~ 11— At Hoo
Gw) = % o Hozft ( nyft (1-—y)+w-— \/(w —wy) (w— w)> (for w>wy), (2.26)

where w. = Aff";“ (1+y)* >0, (2.27)

where 0 < y < 1 and we take the branch such that G(w) at w — +oo becomes the free
propagator given by (2.22). G(w) for w < w, can be obtained by the analytic continua-
tion. Again using (2.12) and (2.26), the spectral density F'(w) of the two-point function
of fundamental fields is obtained as?

F(w)= %Re G (w-tie) (2.28)
_ 1 1y

2w )\’t Hooft

\/w wo)(wp—w)l(w—w_)0(ws —w)+(1-y)0(1—y)d(w).  (2.29)

Note that our convention of the propagators includes a factor ¢ in the numerator as seen
in eq. (2.22). F(w) is normalized as

)\’ 00
/F(w)d /F Ywde = Y2t Hooft. (2.30)

2From (2.26), we have

= 1 lfy )\’t Hooft
= — 1- — - - f >w_ > .
G(w) 2 M ot ( Ty l1-y)+w+ \/(w+ w) (w w)) , (for wy >w_ >w>0)

Again, the relative sign in front of the square root changes between w > w4 and 0 < w < w—. Thus, w — 0
pole gives a Dirac delta function proportional to

2)\’tHooft liy
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Figure 3. The prescription to change the IOP vertex (left) to the PSSY vertex (right).

3 The PSSY model and the IOP matrix model correspondence

3.1 Feynman diagram correspondence between the PSSY model and the IOP
matrix model

As seen in figure 1 and 2, in the planar limit, the Schwinger-Dyson equations in the PSSY
model and the IOP matrix model have the same graphical structure. From now on, we
elaborate on the correspondence of each diagram.

From diagrams in the IOP matrix model, one can uniquely construct the corresponding
diagrams in the PSSY model and vice versa. The Feynman diagram correspondence can
be obtained by the following prescription. See figure 3.

1. Extend vertices in the IOP matrix model horizontally and draw straight lines with
horizontal arrows from right to left. These arrows represent the asymptotic boundaries
with the time direction from the ket to the bra in the PSSY model.

2. Rewrite the adjoint correlators in the IOP matrix model as blue solid curves in the
PSSY model. These blue solid curves correspond to EOW branes in the PSSY model.

3. Fill in regions above the right-to-left horizontal arrows corresponding to asymptotic
boundaries with a gray shadow. These shaded regions correspond to bulk geometries in
the PSSY model.

Figure 4 shows examples of corresponding planar diagrams, where we omit arrows in
the IOP matrix model for easier comparison. Due to the correspondence between these
diagrams, there is also the correspondence between the solutions of the Schwinger-Dyson
equations in the planar limit. The correspondence between parameters in both models is
examined in the next subsection.

Due to the correspondence, there is one-to-one Feynman diagram correspondence between
the IOP matrix model Feynman diagrams and the PSSY model Feynman diagrams. Thus,
the correspondence goes beyond the planar limit. For example, figure 5 shows examples of
corresponding non-planar diagrams. From the perspective of the PSSY model, the left figure
includes two bulk geometries with a crossing, and the right figure includes a twisted bulk
geometry that is anchored to the asymptotic boundaries.

Let us look into a little more on the twisted bulk geometry in figure 5. We can construct
this twisted bulk geometry from a bulk geometry for Z2k as follows. First, prepare the bulk
geometry for ZP* shown at left in figure 6. Next, fold the top part downward so that the
yellow reverse side is visible as shown in the middle figure. Finally, twist the folded part so
that the middle arrow is facing left as shown in the right figure.



Figure 4. Corresponding planar diagrams in the IOP matrix model (upper diagrams) and the PSSY
model (lower diagrams).

A A

Figure 5. Corresponding non-planar diagrams in the IOP matrix model (upper diagrams) and the
PSSY model (lower diagrams).
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Figure 6. How to construct a twisted bulk geometry (right diagram) by twisting a bulk geometry for
ZDisk (left diagram). The yellow-shaded surface represents the reverse side of the gray surface.

Following our prescription in reverse, we can also construct the corresponding diagrams
in the IOP matrix model from the ones in the PSSY model. However, note that not all bulk
geometries in the PSSY model correspond to diagrams in the IOP matrix model. To see
this point, for instance, let us consider three examples of bulk geometries that contribute to
Tr(p$,) as shown in figure 7. In the IOP matrix model, there are diagrams corresponding to
the planar one and the non-planar one with a crossing such as the left and middle geometries
in figure 7, respectively. However, there is no diagram in the IOP matrix model for the
non-planar geometry with an extra handle such as the right geometry where non-planar
effects are due to the extra handle in bulk, not crossings.

These clearly show that the correspondence works as long as we neglect the extra-handle-
in-bulk diagrams. Thus in this paper, using the PSSY and the IOP model correspondence,



Figure 7. Three examples of bulk geometries that contribute to Tr(p%). The left figure is a planar
geometry, the middle figure is a non-planar geometry with a crossing, and the right figure is a
non-planar geometry with an extra handle in bulk.

in subsection 3.3, we calculate the exact non-planar effects associated with a crossing as
the middle figure in figure 7.

3.2 Parameter correspondence between the PSSY model and the IOP matrix
model

Given the one-to-one Feynman diagram correspondence, it is straightforward to read off the
parameter correspondence between them. One can observe that the spectral densities D(\)
in (2.13) and F(w) (2.29) have the same structures. In fact, after rescaling, the spectral
density of the IOP matrix model at infinite temperature limit agrees with the spectral density
D()\) (2.15) of the PSSY model when k = 5.

The reason why we need to take an infinite temperature in the IOP matrix model is
as follows. In the propagator Lo(w) (2.23) of the IOP matrix model, there is a difference
of a factor y between the two terms. See eq. (3.1) of [5] as well. However, there is no
such difference in the PSSY model side. To eliminate this difference, we need to take the

following infinite temperature limit

)\7
y=e™T 51 and Mg oofs — 0 with ), = %‘)& — fixed. (3.1)
-y
In this infinite temperature limit, the spectral density F'(w) (2.29) becomes

1

Flw) =
() 2mwAy

w4y —w)B(w)O(4N, — w). (3.2)

Since there is a correspondence between the Feynman diagrams in the IOP matrix model
and the PSSY model, this F'(w) should correspond to D(\) up to some normalization.
Let us compare D(\) in the PSSY model given by (2.13) and F'(w) in the IOP matrix
model given by (2.29). Then it is clear that under the y — 1 limit, one needs k = €5 limit
for the correspondence to work.? Thus we focus on this limit. Furthermore, in order to take
into account the normalization difference between F'(w) in the IOP matrix model (2.30) and

3We will later see in the discussion section that in order to go beyond k = e limit, one needs to consider a
rectangular model. As long as we are considering a square matrix in the IOP model, one has to take k = €°
limit for the correspondence to the PSSY model to work. Note that even in the rectangular model, one always
needs y — 1 limit in the IOP model for the correspondence to the PSSY model for k # €5.



D()) in the PSSY model (2.14), we divide D(A) in (2.15) by k as

1 k 4 4
“D\) = — - - . h =¢S5, .
D) = oo /\<k A)H(A)H(k /\>, when k—e (3.3)
Let’s compare (3.2) and (3.3). One might naively think that w in the IOP matrix model
corresponds to A in the PSSY model. However, this cannot be true since their dimensions do
not match. To make w dimensionless and also to match the parameter range in 6-functions,

we define
- w .4
W:=~—— suchthat 0<w<4\, & 0<w < —. (3.4)
Ayk k
Then, we can define
F(@) := \jkF(w) such that / doF (@) = / dwF(w) = 1. (3.5)

Thus, we obtain

F(@) = kN @ (i — w)a (@) (: - w) : (3.6)

2w

It is then clear that there is a parameter correspondence between the two models as follows

& (IOP) < A(PSSY), F(@)(IOP) < —D(\) (PSSY), (3.7)

1

k

N (IOP) + k = €5 (PSSY) (3.8)

at y — 1 limit. Note that, for the planar limit, we consider the large N limit in the IOP

matrix model and the large k, €5 limit in the PSSY model, and they correspond as (3.8).

Let us investigate the correspondence in more detail. In the PSSY model, the spectral
density D(A) is computed from the resolvent R(\)

R(\) = Ml p- ; |R)\]l . g » (3.9)
k

where pr= 1 3 1j) (iln (¥ilts)s (3.10)
i,7=1

In the IOP matrix model, the two-point function G (w) in the large M limit can be expressed as

Né(w) = Z <al7w]l _iHint azr>T

1=1
24 S < 1 T>
= —iNNG(w) =) (a — al) . (3.11)
=1 XN 1N2ya;‘aiA;'kAki T

Since we take M to be large so that the number of fundamental fields is always one in the
evaluation of G(w), we can treat al |v) as an N-dimensional one-particle excited state basis,

,10,



where |v) is the ground state for the fundamental field. Comparing egs. (3.10) and (3.11),
we obtain the following additional relationships®
Hye 1-—y
AN N2
—iA\yN2G(w) (IOP) < R()\)(PSSY), (3.13)

ala; Al, Ay (IOP) < pr (PSSY), (3.12)

in addition to the parameter correspondence given by (3.7) and (3.8). In (3.12), naively one
might wonder if this term vanishes in the y — 1 limit. However, the adjoint propagator is
also proportional to 1/(1 —y) as seen in (2.23), thus this is a well-defined limit even in y — 1.

Furthermore, |I)g, which forms an orthonormal basis for the radiation Hilbert space,
corresponds to the one-fundamental excited state alT |v) that is again orthogonal. Given these
correspondences, one can also see the relationship

Random ensemble average of (¢;|;)g (PSSY)

1—
< Expectation value of NyA;f.lAh- (I0P). (3.14)

In the PSSY model, the Gaussian random property of (¢;]1;)g is crucial for connected

wormhole contributions. From the viewpoint of the IOP matrix model, this Gaussian
randomness comes from the fact that the adjoint fields AT behave like Gaussian free fields. In
random matrix theory, the spectral density D(\) (2.13) up to the normalization is known as
the Marchenko-Pastur distribution [8], see, for instance, [9]. The reason why the Marchenko-
Pastur distribution appears is that (1;|¢;)g in the PSSY model can be interpreted as a Gram
matrix [10-12] and Hiy in the IOP matrix model is proportional to AfA.

3.3 Non-planar correction of the entanglement entropy in the PSSY model via
the IOP matrix model correspondence

Non-planar 1/N? correction of the two-point function G(w) in the IOP matrix model was
computed by [5]. By using the PSSY model and the IOP matrix model correspondence, it is
straightforward to obtain the non-planar 1/k? correction of the reduced density matrix and
its von Neumann entropy in the PSSY model. Especially, the spectral density D()) (2.15) in
the PSSY model and the rescaled one F(&) (3.6) in the IOP matrix model corresponds in
the planar limit. Then the non-planar 1/N? correction of the von Neumann entropy in the
IOP matrix model would be a part of the non-planar 1/k? correction of the entanglement
entropy in the PSSY model.
The non-planar 1/N? correction of G(w) is calculated in [5], and it is

Glw) = GO (w) + %G(I)(w) e (]\1[4) , (3.15)
) i Y
GO (w) = o, (1 —/1= w) : (3.16)

4To be precise, since the trace of a matrix is invariant under the transformation of a basis, there is the
ambiguity of a unitary matrix U in the correspondence (3.12) as
Hint

o (IOP) & UprU' (PSSY).
Y

— 11 —



xo 1= —i)\yé(o) (w) =

N =

(1— 1—42?’), (3.17)

(D () = izp(1 — o) _ ix )
@ (1 —2x0)4(w(l — 20)2 — XAy)  (w — 4,)5/2w3/2" (3.18)

By using this result, we obtain the non-planar 1/N? correction of the spectral density

F() = FOW) + 35FO(w) + 0 <A1[4> , (3.19)

FO () = %Re GO () = W@(ww 4\, — ), (3.20)
1 - A

FD(w) = —Re G (w) = W3/2(4Aj — w)5/29<“)0 (4N, —w). (3.21)

Since G(V)(w) (3.18) is a rational function of xg and w, F(M)(w) has branch points at w = 0,4\,
that are the same branch points of F(©) (w). This property comes from the fact that the
perturbation equation determining G(M(w) is written in terms of G®)(w). Note that even
though the branch points of F(©(w) and F()(w) are the same, F(!)(w) is more singular
than FO)(w).

Given the correspondence we discussed in the previous subsection, we can read off the
1/k? corrections in the PSSY model from (3.4), (3.5), (3.7), (3.8), and (3.21) as

%Dm)m _ % A (: - A)H(A)@ (2 - A) , (3.22)
%Da)m _ L O(\)0 (i - A) , (3.23)

k3 \3/2 (% B )\)5/2
when k = €5. Here D () and DM ()) are the same order since
1 1
DO\ = O(k), ED(U()\) =O(k) for A~ 1. (3.24)

k
With this, one can calculate the entanglement entropy for the radiation Sg as

SR = —/D()\))\logA

— _/ (D(O)()\) + %D(l)()\) + O<k:14)) Alog A. (3.25)

The leading term can be evaluated as

2 4/k
/D(O)()\))\]Og)\:k/ )\<4)\> log)\d)\:logkfl, (3.26)
2 Jo k 2

which agrees with eq. (2.18). The subleading term is
1 1 4/k
——Q/D(l)()\))\log)\d)\ = ——4/
k wk* Jo 2\3/2 (

1 /4 x? T
where C := —f/ —— 1o (> dzx, 3.28
o (a(a— a0\ 529

where we change the integration variable A = x/k.

A

)

C
5 log AdA = — (3.27)

5/ k2’

— 12 —



C' does not converge due to more singular nature of D (X) than D) ()). To regularize
this integral, we introduce a small cutoff € so that C is regularized as

1 [é-e z2 x
C. = _7/ S ST () da 3.29
mh (@a—2)? C\k (329
_ logq logh+2 1 1/2
=5t gege t13t o(e?). (3.30)

The first and second terms are divergent but they are regulator dependent. On the other
hand, 1/12 is a regulator-independent one. Thus, we focus on this 1/12 by subtracting
the UV divergent terms.’

Therefore, after subtracting the regulator-dependent divergent terms at ¢ — 0, we
obtain a finite result

SRzlogk—;—&—l;k:Q—i—(’)(;) , when k=¢5. (3.31)

Since the leading term (3.26) in Sr agrees with Sg (2.18) in the planar limit, we expect
that the sub-leading term in Sr (3.31) corresponds to a part of non-planar 1/k? corrections
of Sgr in the PSSY model. As shown in figure 7, non-planar corrections of Sg in the PSSY
model come from non-planar diagrams with extra-handle-in-bulk and crossings. We expect
that the sub-leading term in Sy (3.31) corresponds to the non-planar correction of Sg from
crossings, not extra-handle-in-bulk.

4 Short conclusion and discussions

As mentioned in subsection 2.1, the entanglement entropy in the PSSY model and the one
of a random pure state coincide with each other in the planar limit for large Hilbert space
dimensions. We expect that non-planar corrections in the PSSY model and the IOP matrix
model have some connection to Page’s conjecture [3, 14-16] on the entanglement entropy
of a random pure state for general Hilbert space dimensions.

Page’s conjecture on the entanglement entropy Sg of a random pure state [3], which
was proved by [14-16], is

K1 m-—1
k=n+1

where m and n are Hilbert space dimensions of two subsystems, and we assume that n > m.
By expanding Sk with large n, we obtain

1—m? 1 1
L -k 1
-1 2m 12 12m? <> ] 4.9
Sr =logm + - - +0 i (4.2)
When m = n = k = €5, this expansion becomes
1 1 1 1 1
=logk—-+(5+=)— - 4.
Sr = log 2+<2+12) k2+0<k4) (4.3)

Let us compare with the non-planar correction of entanglement entropy in the PSSY
model computed in eq. (3.31). In eq. (3.31), we have 1/12k?, which appears in (4.3). This
gives a natural prediction that the resummation of the extra-handle-in-bulk diagrams, as
shown in the right figure in figure 7, should yield 1/2k2.

5One might be able to justify this argument along the line of “renormalized entanglement entropy” of [13].
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Figure 8. An example of bulk geometries with a handle connecting two shaded regions.

How to show 1/2k? by re-summing all the extra-handle-in-bulk diagrams by an explicit
calculation is an open question. The main difficulty is associated with the systematic
resummation of all diagrams. Note that each diagram can be explicitly calculated at least
in a canonical ensemble using the Weil-Petersson volume as shown in [17]. However, if we
restrict only some subsets of diagrams and assume that the others do not contribute, one
can handle the resummation. For example, one may consider the following ansatz for the
Schwinger-Dyson equation

— , R(\)"
pu— .4
AR(N) k+n§Zn iz (4.4)
with
) ZDisk
R(\) = RO\ + RY(\), Z, = ZP¥%(1 + a), n___ — =Sl (4.5)

( ZPisk ) n

where RY()\) is the resolvent in the planar limit (2.10). We introduce the subleading terms
RY()\) and a, where a does not depend on A and it captures the effects of extra-handle-in-bulk
on a disk. Then, we can solve R'()\) perturbatively as a function of a, which depends on
FE in the microcanonical ensemble. Since the black hole entropy S depends on E, E is a
function of the dimension of the Hilbert space of the subsystem, and thus, E dependence
can be converted into €5 dependence. See appendix A for more detail.

Of course, this approach enables us to resum only the subsets of all the diagrams with an
extra handle, since the ansatz (4.5) includes only a disk geometry with an extra handle on it.
It does not include two disks connected by a handle such as the double trumpet geometry.
For example, the diagram as figure 8 is missing. We leave this resummation problem of all
the extra-handle-in-bulk diagrams as a future problem.

So far we have considered the correspondence in the case of k = 5. To generalize it
to the case of k # €5 with y = 1, we can consider a rectangular model such that A' is a
rectangular N x K matrix. The two-point function G(w) of the rectangular model in the
large N limit with fixed K/N was derived by [5]

Cl) = o [V = Ky + (1= 9) — (1 =y —wn)@-w)| . (40
wi =1 (N + Ky +2V/NKy). (4.7)
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In the infinite temperature limit (3.1), we obtain

~ 7

Oy ()\y(l—K/N)er— \/(w—w+)(w—w)>, (4.8)

Wi =) (1 + \/KTN>2 (4.9)

To compare with the PSSY model, let us define the following rescaled ones

G(@) = i\ KG(w) = % ((Kl N+ V@ —a) @ - @_)) : (4.10)
&= AyLK Gy = ;:} = (N3 iK*%)2. (4.11)

Comparing them with egs. (2.10) and (2.11), there is a relationship between the parameters
as follows

& (IOP) +» A(PSSY), G(@)(IOP) < %R(A) (PSSY), (4.12)
N (IOP) < k(PSSY), K (IOP) « €5 (PSSY). (4.13)

In the IOP matrix model, there is a parameter y for finite temperature. However, there
is no such parameter in the PSSY model, and thus we consider the infinite temperature
limit (3.1). It is interesting to generalize the PSSY model for the correspondence in the
case of y # 1.
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A Comments on the partial resum approach in the PSSY model

In the PSSY model, the subleading non-planar corrections of Sg come from two types of
geometries such as the middle and right figures in figure 7. We estimate the non-planar
correction from the geometry with an extra handle on a disk by using a simple ansatz. Note
that our ansatz does not include all geometries with an extra handle. We consider a disk
geometry with an extra handle and take the partial resum of only these effects among all
non-planar geometries. We do not consider two disks connected by a handle such as the
double trumpet geometry and leave its resum and evaluation as future work.
The Schwinger-Dyson equation of R(\) in the PSSY model is given by

RA)"

AR(N) = k+ 3 Zn o o
1

n=1

(A1)
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Then, we consider the following ansatz

Disk
R(\) = R'(\) + RY(\), Z, = 2ZP%(1 44a), 0 = SO (A.2)

@y
where RY()\) is the resolvent in the planar limit (2.10). We introduce the subleading terms
RY()\) and a, where a does not depend on A\. We set k = €5, and R°()\) becomes

k‘2

D)

R'(\)

By substituting our ansatz (A.2) into the Schwinger-Dyson equation (A.1), we obtain
the following perturbative equation of R!()\)

k:3

~ kR'%(N) E3RO(\)
ARI(A) = ap5— R0) 2 e T R'())

(A4)

where we leave only the first order terms proportional to R'()\) or a. Its solution is

 ak(RO(N)? ak(kA—1)  ak*\1— g5 (kA=3)
RO = k3 — (k2 —RO(\)2X 2% 2(kX — 4) ' (A.5)

The spectral density for R'(\) is given by

ak?y /& —1(kA—3 a
D) = —%Ile()\qLie): 2’:(M_(4) a6 <4—>\> ELPTN

ak23\/47 ak?1 1 ) 4 ak

_ S . . TN ( - A) — —8(N), (A.6)
o 4 om 4 2

( T kA s %_1 k

where the delta function term —%5()\) comes from —2% in R'()\). Note that the branch

points A = 0,4/k of D()\) are the same branch points of D(\) (2.15) in the planar limit.
As explained in the case of the IOP matrix model, this property seems to come from the
perturbative equation of R'()\). One can confirm that

/d/\Dl()\) =0, /dADl(/\)A =0. (A7)
Correction of entanglement entropy by this spectral density is

Sk = —/d)\Dl()\))\log(/\) - g (A.8)

Let us specifically compute the value of a in JT gravity. First, in a microcanonical
ensemble, ZP¥K(E) is given by [2]

ZTIL)isk, microcanonical(E) — GSOPDisk(E)h(E, ,u)"AE, (Ag)

sinh (27v/2E)

ppisk(E) = 52

. h(B,p) =272 (u - % + i\/2E> 2. (A.10)
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Next, let us consider the bulk partition function with an extra handle,
Z%—handle7 microcanonical __ eisopl—handle(E)h(Ey ,U,)nAE, (All)

where p1pandie(F) can be obtained [17] using the explicit expression of the Weil-Petersson
volume [18] as

pl—handle(E) = /0 bdbvvl,l(b)pTrumpet(Ea b) > (A12)
1
Vi1(b) = ﬂ(b2 + 47?). (A.13)

PTrumpet (£, b) is known explicitly [19] as

cos (b\/ZE)
rumpet (E,0) = ———".
PTrump t( ) W\/ﬁ

However, the integral (A.12) for b does not converge. To make it convergent, one can

(A.14)

introduce a regulator e~ in the integrand of (A.12) as

> 3 —4n’E
¢ _ b . 20 == 2
2 e (B) = /0 bV ()P tvamper (B, b)e ™™ = e o(¢?). (A.15)

Thus, in the limit vanishing regulator { — 0, one obtain

() 3—4r’E
P1-handle = 187 B2 \/ﬁ'

By combing (A.9) and (A.11), we obtain

(A.16)

ZDisk, microcanonical + Zl—handle7 microcanonical
n n

_ So, . n P1-handle(F) )
= e ppisk(E)h(E, p)"AE <1 * 20 o)) (A17)

Therefore, in JT gravity, a in our ansatz (A.2) is given by
Zl-handle, microcanonical
n

_ pl—handle(E)
ZT]lDisk7 microcanonical "~ 2S5y pDisk(E) ’ (AlS)

a =

which is a function of the fixed energy E in the microcanonical ensemble. Moreover, a is

proportional to 62%0 as expected.
_ 2
Let us express a as a function of S. From eq. (2.8), we obtain E ~ % when F is large.

Therefore using (A.10), (A.16) and (A.18), a can be expressed under this approximation
of large F as

_ Plhandie(E) 1675(6 — (S — Sp)?)

= A.19
“ 6280pDisk(E) 3€S+SO<S — 50)5 ( )

The expression of a depends not only on S, which is related to the dimension of Hilbert space
of the subsystem, but also on Sy. This result means that, in contrast to Page’s conjecture (4.3),
a cannot be expressed by the dimension of Hilbert space only. This discrepancy with Page’s
conjecture might be resolved by doing the resum including all geometries with an extra handle.
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