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Abstract
New simulation software and machine learning technologies in the

LHCb experiment to evaluate physics performance of Run 3

Michał MAZUREK

The main goal of the work presented in this thesis was to explore new software
and machine learning-based technologies to improve the performance of the LHCb
data processing applications and, in particular, the simulation framework of LHCb,
GAUSS.

GAUSSINO is the new core simulation framework that was created by extracting
all the experiment-independent functionalities of GAUSS. In this work, the
GAUSSINO framework was moved from the advanced prototype stage to the
production-ready framework, which can act as an ideal test bed for all the
new simulation and detector developments in a standalone mode, as well as a
robust core simulation framework for experiments in high-energy physics (HEP).
GAUSS-ON-GAUSSINO is the new version of the LHCb simulation framework, based
on GAUSSINO. In addition to ensuring the smooth transition to the new simulation
framework for Run 3 and beyond, the work included integrating a new interface
to fast simulations, adding support for new detector description toolkits (DD4HEP

and EXTERNALDETECTOR), as well as new visualization tools and web-based
documentation.

In addition to the improvements in the software of the simulation framework,
new machine learning-based technologies were explored and integrated into the
simulation framework. In particular, infrastructure for running Generative AI
(GenAI) models for calorimeter fast simulations in GAUSSINO was integrated.
Moreover, the performance of the first, production-ready CALOML+VAE model
trained on the LHCb electromagnetic calorimeter data was evaluated. An
exploration of the additional use of the machine learning (ML) models in object
detection algorithms for cluster energy reconstruction in the LHCb electromagnetic
calorimeter was also presented.

Finally, validation of the new simulation framework and machine learning-based
fast simulation techniques was presented using a few relevant LHCb decay channels
in the last chapter of this thesis. Validation was done with respect to samples
produced with GAUSS framework when using the well-tested GEANT4 toolkit.

HTTP://WWW.NCBJ.GOV.PL
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Streszczenie
New simulation software and machine learning technologies in the

LHCb experiment to evaluate physics performance of Run 3

Michał MAZUREK

Głównym celem przedstawionej rozprawy było zbadanie nowych technologii
oprogramowania oraz metod opartych na uczeniu maszynowym w celu
poprawy wydajności przetwarzania danych w LHCb, ze szczególnym naciskiem
na oprogramowanie do symulacji w LHCb (GAUSS).

GAUSSINO jest nowym oprogramowaniem symulacyjnym, które zostało
stworzone poprzez wyodrębnienie wszystkich komponentów niezależnych
od eksperymentu. W tej pracy, GAUSSINO zostało udoskonalone i udostępnione
jako gotowe narzędzie w środowisku produkcyjnym, zarówno jako idealne
środowisko testowe dla nowych symulacji i rozwoju detektorów oraz jako
solidny framework symulacyjny dla eksperymentów w fizyce wysokich energii.
GAUSS-ON-GAUSSINO to nowa wersja oprogramowania symulacyjnego LHCb
oparta na GAUSSINO. Płynne przejście na nowe, wydajniejsze oprogramowanie
symulacyjne w Runie 3 było jednym z celów pracy. Dodatkowo praca obejmuje
dodanie nowego interfejsu do szybkich symulacji, wsparcie dla nowych narzędzi
do opisu detektorów (DD4HEP i EXTERNALDETECTOR) oraz nowe narzędzia
wizualizacyjne i dokumentację.

Nowe technologie symulacyjne oparte na uczeniu maszynowym (ML) zostały
również zbadane w tej pracy. W szczególności zbudowana została infrastruktura
niezbędna do uruchamiania modeli generatywnej sztucznej inteligencji (GenAI)
dla szybkiej symulacji w kalorymetrze w GAUSSINO, a na jej podstawie
dodano i przetestowano pierwszy model CALOML+VAE wytrenowany na danych
z kalorymetru elektromagnetycznego LHCb. Dodatkowo zbadano możliwość
wykorzystania modeli ML w algorytmach detekcji obiektów do rekonstrukcji
energii klastrów w kalorymetrze elektromagnetycznym LHCb.

Na koniec przedstawiono wyniki symulacji fizycznych wybranych kanałów
rozpadu istotnych dla eksperymentu LHCb w celu walidacji szybkich symulacji
opartych na uczeniu maszynowym z wykorzystaniem modelu CALOML+VAE.
Walidacja została przeprowadzona przy użyciu próbek wyprodukowanych
za pomocą oprogramowania GAUSS.

HTTP://WWW.NCBJ.GOV.PL
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Dr. Wojciech Krzemień, for their professional guidance and support throughout my
doctoral research.

I would also like to extend my sincere grazie mille to Dr. Gloria Corti, my
supervisor during my Doctoral Studentship at CERN. I am truly grateful for the time
and effort she invested in explaining every detail with such clarity. The opportunity
to spend three years at CERN has been an enriching experience.

I also wish to thank all my colleagues in the LHCb collaboration for their
assistance and encouragement.

Finally, I am deeply thankful to my family for their constant support, especially
to my beloved Klaudusia, whose encouragement has been key in helping me
through difficult decisions.





xi

Contents

Declaration of Authorship iii

Abstract v

Streszczenie vii

Acknowledgements ix

Introduction xxvii

1 Simulations in experimental high energy physics 1
1.1 Particles at high energies . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Elementary particles . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.1.2 Standard Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Experiments in high energy physics . . . . . . . . . . . . . . . . . . . . 4
1.2.1 Particle accelerators . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2.2 Experimental apparatus . . . . . . . . . . . . . . . . . . . . . . . 5
1.2.3 Readout system . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3 Monte Carlo simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3.1 Statistical foundations of Monte Carlo simulations . . . . . . . . 7
1.3.2 Event generation . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.3.3 Detector simulation . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 LHCb experiment in Run 3 11
2.1 Large Hadron Collider . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2 The LHCb detector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2.1 Run 1 and Run 2 setup . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2.2 Run 3 setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2.3 Infrastructure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2.4 Tracking system . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2.5 RICH system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.2.6 Calorimeters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.2.7 Muon system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.3 Physics programme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.3.1 CP violation and the CKM matrix . . . . . . . . . . . . . . . . . . 19
2.3.2 CP-violation measurements . . . . . . . . . . . . . . . . . . . . . 20
2.3.3 Charm physics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.3.4 Rare decays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.3.5 Lepton flavour universality . . . . . . . . . . . . . . . . . . . . . 21
2.3.6 Hadron spectroscopy . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.3.7 High-pT, fixed-target and dark sector physics . . . . . . . . . . 21



xii

3 New simulation software 23
3.1 From GAUSS to GAUSS-ON-GAUSSINO . . . . . . . . . . . . . . . . . . . 23
3.2 Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.2.1 Main generation algorithm . . . . . . . . . . . . . . . . . . . . . 27
3.2.2 Particle guns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.3 Particle transport . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.3.1 Geometry description . . . . . . . . . . . . . . . . . . . . . . . . 31
3.3.2 Detailed simulation with GEANT4 . . . . . . . . . . . . . . . . . 32

Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.3.3 Interfacing fast simulations with GEANT4 . . . . . . . . . . . . . 33
Fast simulation training datasets . . . . . . . . . . . . . . . . . . 34

3.4 Visualization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.4.1 Integration of GEANT4 visualization in GAUSSINO . . . . . . . 37

Available visualization drivers . . . . . . . . . . . . . . . . . . . 37
Geometry visualization . . . . . . . . . . . . . . . . . . . . . . . 39
Simulated data visualization . . . . . . . . . . . . . . . . . . . . 39
Magnetic field visualization . . . . . . . . . . . . . . . . . . . . . 41

3.4.2 PHOENIX visualization . . . . . . . . . . . . . . . . . . . . . . . . 42
3.5 Documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4 Machine learning and simulations 45
4.1 Interfacing machine learning libraries in the simulation framework . . 46

4.1.1 Available backends . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.1.2 Integration in GAUSSINO . . . . . . . . . . . . . . . . . . . . . . 46
4.1.3 Performance tests . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.2 Generative AI for calorimeter fast simulations . . . . . . . . . . . . . . 49
4.2.1 Generic calorimeter fast simulations in GAUSSINO . . . . . . . . 49

CALOCHALLENGE in GAUSSINO . . . . . . . . . . . . . . . . . . 50
Variational Autoencoder with Profiles . . . . . . . . . . . . . . . 51

4.2.2 Adaptation to the LHCb calorimeter in GAUSS . . . . . . . . . . 52
Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.3 Cluster energy reconstruction in the LHCb electromagnetic calorimeter 56
4.3.1 Early feasibility studies with convolutional neural networks . . 56

Convolutional neural networks . . . . . . . . . . . . . . . . . . . 56
You Only Look Once (YOLO) . . . . . . . . . . . . . . . . . . . . 57
YOLO-like framework for the LHCb electromagnetic calorimeter 59

4.3.2 Limitations of the YOLO-like model . . . . . . . . . . . . . . . . 62
4.3.3 Preparation of the training datasets with GAUSSINO . . . . . . . 63

5 Physics validation 65
5.1 Preliminary results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.1.1 Preparing the simulation samples . . . . . . . . . . . . . . . . . 65
5.1.2 Selected decay channels . . . . . . . . . . . . . . . . . . . . . . . 66

B+ → J/ψ (→ e+e−)K+ . . . . . . . . . . . . . . . . . . . . . . . 67
B0

s → J/ψ(→ e+e−)γ . . . . . . . . . . . . . . . . . . . . . . . . . 67
B0

s → J/ψ(→ µ+µ−)γ . . . . . . . . . . . . . . . . . . . . . . . . 67
B0 → K∗0(→ K+π−)γ . . . . . . . . . . . . . . . . . . . . . . . . 70

5.2 Calibrated results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
5.2.1 Calibration of the simulation samples . . . . . . . . . . . . . . . 73



xiii

5.2.2 Selected decay channels . . . . . . . . . . . . . . . . . . . . . . . 73
B+ → J/ψ (→ e+e−)K+ . . . . . . . . . . . . . . . . . . . . . . . 75
B0

s → J/ψ(→ e+e−)γ . . . . . . . . . . . . . . . . . . . . . . . . . 75
B0

s → J/ψ(→ µ+µ−)γ . . . . . . . . . . . . . . . . . . . . . . . . 75
B0 → K∗0(→ K+π−)γ . . . . . . . . . . . . . . . . . . . . . . . . 78

5.2.3 Additional discussion . . . . . . . . . . . . . . . . . . . . . . . . 78

Bibliography 85

A Additional performance plots of the GAUSSINO and
GAUSS-ON-GAUSSINO simulation frameworks 97

B Selected sub-detector visualizations used in the validation of the DD4HEP

detector description 107

C Additional performance plots of the interface to PyTorch and
ONNXRuntime backends in GAUSSINO 111

D Additional performance plots of the ML-based fast simulation in
GAUSSINO and GAUSS-ON-GAUSSINO 117





xv

List of Figures

1.1 Known realms of mechanics represented by the
Bronstein-Zelmanov-Okun cube. . . . . . . . . . . . . . . . . . . . . . . 2

1.2 The standard workflow of a high energy physics experiment. . . . . . 4
1.3 The evolution of particle colliders. . . . . . . . . . . . . . . . . . . . . . 5
1.4 The evolution of trigger systems in high energy physics experiments. 6
1.5 The role of Monte Carlo simulations in the scientific process in high

energy physics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1 The CERN accelerator complex. . . . . . . . . . . . . . . . . . . . . . . . 12
2.2 The layout of the LHCb spectrometer starting from Run 3 of data taking 12
2.3 Distributions of bb̄ production angles at the LHCb experiment

obtained via Monte Carlo simulation. . . . . . . . . . . . . . . . . . . . 13
2.4 The layout of the calorimeter system in the LHCb experiment up to

Run 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.5 The CKM unitarity triangle represented in the complex plane. . . . . . 20

3.1 Projection of the computing resources available to the LHCb
experiment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.2 The data flow in the LHCb experiment. . . . . . . . . . . . . . . . . . . 25
3.3 Dependencies in the simulation software stack before and after

upgrade. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.4 Dataflow in GAUSSINO. . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.5 Detailed timing breakdown per sub-detector in the LHCb Run 3

simulation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.6 A graphical representation of the main generation algorithm. . . . . . 27
3.7 Possible implementations of the sequencing to event generation

processes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.8 Dependencies of GAUSSINO and GAUSS-ON-GAUSSINO on various

detector description libraries. . . . . . . . . . . . . . . . . . . . . . . . . 31
3.9 Integration and workflow between GAUDI and GEANT4 simulation

frameworks in GAUSSINO. . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.10 A simplified model of the FastSimulation interface with a set of

dedicated factories that construct the corresponding Geant4 objects. . . 33
3.11 Comparison of the time spent by different fast simulation models

(benchmarks). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.12 A simple example demonstrating the core functionality of the

PARALLELGEOMETRY package. . . . . . . . . . . . . . . . . . . . . . . . 35
3.13 LHCb upgrade geometry as seen by the GEANT4 toolkit. . . . . . . . . 36
3.14 Particles generated using the SIM10 framework . . . . . . . . . . . . . 36
3.15 Visualization of the training dataset produced by placing a collector

plane in front of the electromagnetic calorimeter. . . . . . . . . . . . . 38



xvi

3.16 Visualization of simple volumes with EXTERNALDETECTOR in
GAUSSINO and the LHCb detector with either the DETDESC or the
DD4HEP detector description toolkits in GAUSS-ON-GAUSSINO and
the OPENGL visualization driver. . . . . . . . . . . . . . . . . . . . . . . 40

3.17 Simulation of an electron hitting a lead cube target and the
visualization of trajectories with different models and filters in
GAUSSINO. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.18 Visualization of the magnetic field in GAUSSINO. . . . . . . . . . . . . . 42
3.19 Examples of trajectory filtering in Phoenix visualization. . . . . . . . . 43
3.20 The GAUSSINO documentation website. . . . . . . . . . . . . . . . . . . 44
3.21 The GAUSS-ON-GAUSSINO documentation website. . . . . . . . . . . . 44

4.1 Total throughput ratio for the PyTorch and ONNX backends in
GAUSSINO with different numbers of inter-op threads and intra-op
threads. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.2 Total virtual memory ratio for the PyTorch and ONNX backends in
GAUSSINO with different numbers of inter-op threads and intra-op
threads. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.3 Visualization of the virtual energy deposits generated by the modified
VAE model in place of the detailed GEANT4 simulation. . . . . . . . . 49

4.4 CALOCHALLENGE setup for generating generic calorimeter training
datasets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.5 Data flow in the hybrid simulation setup in GAUSSINO. . . . . . . . . 50
4.6 Energy distribution of a pure VAE model trained on the

CALOCHALLENGE-compatible dataset produced in GAUSSINO.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.7 Architecture of a modified VAE model (VAEWithProfiles) used for the
calorimeter fast simulations in GAUSSINO. . . . . . . . . . . . . . . . . 52

4.8 Visualization of how the ML-based simulations can be implemented
in production-ready simulations in LHCb for calorimeter showers. . . 53

4.9 Energy deposit distribution of a modified VAE model
(VAEWithProfiles) trained on the CALOCHALLENGE-compatible
dataset produced in GAUSSINO. . . . . . . . . . . . . . . . . . . . . . . 54

4.10 Total energy deposit distribution of a modified VAE model
(VAEWithProfiles) trained on the CALOCHALLENGE-compatible
dataset produced in GAUSSINO. . . . . . . . . . . . . . . . . . . . . . . 54

4.11 Energy deposits in the LHCb electromagnetic calorimeter produced
by a particle gun during the fast simulation. . . . . . . . . . . . . . . . 55

4.12 Performance comparison between the full GEANT4 simulation and
the ML-based simulation in the LHCb calorimeter. . . . . . . . . . . . 55

4.13 Graphical visualization of the feature map produced by the
YOLO-like model for the cluster energy reconstruction. . . . . . . . . . 57

4.14 The backbone of the YOLO-like model for the LHCb calorimeter with
three skip connections and rectangular image input. . . . . . . . . . . . 59

4.15 Comparison of the CELLULAR AUTOMATON and YOLO-like cluster
reconstruction for a single event. . . . . . . . . . . . . . . . . . . . . . . 60

4.16 Number of clusters detected and reconstructed energy as a function
of the MC truth energy. . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.17 Missed rate and ghosts rate as a function of the MC truth energy. . . . 61
4.18 High overlap observed for Run 3 data. . . . . . . . . . . . . . . . . . . . 62



xvii

4.19 Illustration of a particle interaction within the LHCb electromagnetic
calorimeter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.20 Incremental approach for producing training datasets using Gaussino. 64
4.21 Selected training datasets produced by Gaussino using a small, toy

calorimeter inside the LHCb environment. . . . . . . . . . . . . . . . . 64

5.1 B+ invariant mass distribution from the uncalibrated simulation
sample of the B+ → J/ψ (→ e+e−)K+ decay. . . . . . . . . . . . . . . . 67

5.2 e+ transverse momentum distribution from the uncalibrated
simulation sample of the B+ → J/ψ (→ e+e−)K+ decay. . . . . . . . . 68

5.3 B0
s invariant mass distribution from the uncalibrated simulation

sample of the B0
s → J/ψ(→ e+e−)γ decay. . . . . . . . . . . . . . . . . 68

5.4 e+ transverse momentum distribution from the uncalibrated
simulation sample of the B0

s → J/ψ(→ e+e−)γ decay. . . . . . . . . . . 69
5.5 γ transverse momentum distribution from the uncalibrated

simulation sample of the B0
s → J/ψ(→ e+e−)γ decay. . . . . . . . . . . 69

5.6 B0
s invariant mass distribution from the uncalibrated simulation

sample of the B0
s → J/ψ(→ µ+µ−)γ decay. . . . . . . . . . . . . . . . . 70

5.7 µ+ transverse momentum distribution from the uncalibrated
simulation sample of the B0

s → J/ψ(→ µ+µ−)γ decay. . . . . . . . . . 71
5.8 γ transverse momentum distribution from the uncalibrated

simulation sample of the B0
s → J/ψ(→ µ+µ−)γ decay. . . . . . . . . . 71

5.9 B0 invariant mass distribution from the uncalibrated simulation
sample of the B0 → K∗0(→ K+π−)γ decay. . . . . . . . . . . . . . . . . 72

5.10 γ transverse momentum distribution from the uncalibrated
simulation sample of the B0 → K∗0(→ K+π−)γ decay. . . . . . . . . . 72

5.11 Systematic and random error of the CALOML+VAE model with the
default values of eoverflow and noverflow parameters for electrons. . . . . 73

5.12 Systematic and random error of the CALOML+VAE model with the
default values of eoverflow and noverflow parameters for photons. . . . . 74

5.13 Systematic and random error of the CALOML+VAE model with the
tuned values of eoverflow and noverflow parameters for electrons. . . . . . 74

5.14 Systematic and random error of the CALOML+VAE model with the
tuned values of eoverflow and noverflow parameters for photons. . . . . . 75

5.15 B+ invariant mass distribution from the calibrated simulation sample
of the B+ → J/ψ (→ e+e−)K+ decay. . . . . . . . . . . . . . . . . . . . 76

5.16 e+ transverse momentum distribution from the calibrated simulation
sample of the B+ → J/ψ (→ e+e−)K+ decay. . . . . . . . . . . . . . . . 76

5.17 B0
s invariant mass distribution from the calibrated simulation sample

of the B0
s → J/ψ(→ e+e−)γ decay. . . . . . . . . . . . . . . . . . . . . . 77

5.18 e+ transverse momentum distribution from the calibrated simulation
sample of the B0

s → J/ψ(→ e+e−)γ decay. . . . . . . . . . . . . . . . . 77
5.19 γ transverse momentum distribution from the calibrated simulation

sample of the B0
s → J/ψ(→ e+e−)γ decay. . . . . . . . . . . . . . . . . 78

5.20 B0
s invariant mass distribution from the calibrated simulation sample

of the B0
s → J/ψ(→ µ+µ−)γ decay. . . . . . . . . . . . . . . . . . . . . 79

5.21 µ+ transverse momentum distribution from the calibrated simulation
sample of the B0

s → J/ψ(→ µ+µ−)γ decay. . . . . . . . . . . . . . . . . 79
5.22 γ transverse momentum distribution from the calibrated simulation

sample of the B0
s → J/ψ(→ µ+µ−)γ decay. . . . . . . . . . . . . . . . . 80



xviii

5.23 B0 invariant mass distribution from the calibrated simulation sample
of the B0 → K∗0(→ K+π−)γ decay. . . . . . . . . . . . . . . . . . . . . 80

5.24 γ transverse momentum distribution from the calibrated simulation
sample of the B0 → K∗0(→ K+π−)γ decay. . . . . . . . . . . . . . . . . 81

5.25 Variability of electromagnetic showers produced by the
CALOML+VAE model and GEANT4 for different particle types.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
5.26 Variability of electromagnetic showers produced by the

CALOML+VAE model and GEANT4 for different ϕ angles. . . . . . . 82
5.27 Variability of electromagnetic showers produced by the

CALOML+VAE model and GEANT4 for different θ angles. . . . . . . . 83

A.1 Throughput of the generation step as a function of the number of
threads in GAUSSINO. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

A.2 Time per event of the generation step as a function of the number of
threads in GAUSSINO. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

A.3 Virtual memory consumption of the generation step as a function of
the number of threads in GAUSSINO. . . . . . . . . . . . . . . . . . . . 98

A.4 Throughput of the generation step in GAUSS-ON-GAUSSINO as a
function of the number of threads (2016 data-taking period). . . . . . . 99

A.5 Time per event of the generation step in GAUSS-ON-GAUSSINO as a
function of the number of threads (2016 data-taking period). . . . . . . 99

A.6 Virtual memory consumption of the generation step in
GAUSS-ON-GAUSSINO as a function of the number of threads
(2016 beam conditions). . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

A.7 Throughput of the generation step in GAUSS-ON-GAUSSINO as a
function of the number of threads (2022 beam conditions). . . . . . . . 100

A.8 Time per event of the generation step in GAUSS-ON-GAUSSINO as a
function of the number of threads (2022 beam conditions). . . . . . . . 100

A.9 Virtual memory consumption of the generation step in
GAUSS-ON-GAUSSINO as a function of the number of threads
(2022 beam conditions). . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

A.10 Throughput of both the generation and particle transport steps as a
function of the number of threads in GAUSSINO. . . . . . . . . . . . . . 101

A.11 Time per event of both the generation and particle transport steps as
a function of the number of threads in GAUSSINO. . . . . . . . . . . . . 101

A.12 Virtual memory consumption of both the generation and particle
transport steps as a function of the number of threads in GAUSSINO. . 101

A.13 Throughput of the generation and detector simulation steps in
GAUSS-ON-GAUSSINO as a function of the number of threads (2016
beam conditions). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

A.14 Time per event of the generation and detector simulation steps in
GAUSS-ON-GAUSSINO as a function of the number of threads (2016
beam conditions). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

A.15 Virtual memory consumption of the generation and detector
simulation steps in GAUSS-ON-GAUSSINO as a function of the number
of threads (2016 beam conditions). . . . . . . . . . . . . . . . . . . . . . 102

A.16 Throughput of the generation and detector simulation steps in
GAUSS-ON-GAUSSINO as a function of the number of threads (2022
beam conditions). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103



xix

A.17 Time per event of the generation and detector simulation steps in
GAUSS-ON-GAUSSINO as a function of the number of threads (2022
beam conditions). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

A.18 Virtual memory consumption of the generation and detector
simulation steps in GAUSS-ON-GAUSSINO as a function of the number
of threads (2022 beam conditions). . . . . . . . . . . . . . . . . . . . . . 103

A.19 Relative time spent in each sub-detector by different versions of the
simulation framework. . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

A.20 Detailed performance of the SIM10 version of the GAUSS framework. 105
A.21 Detailed performance of the new multi-threaded (1 thread)

GAUSS-ON-GAUSSINO framework. . . . . . . . . . . . . . . . . . . . . 106

B.1 Perspective view of the VP detector in the DETDESC and DD4HEP

visualizations (status as of August 2022). . . . . . . . . . . . . . . . . . 108
B.2 Zoomed-in perspective view of the VP detector in the DETDESC and

DD4HEP visualizations (status as of August 2022). . . . . . . . . . . . . 108
B.3 Downstream view of the VP detector in the DETDESC and DD4HEP

visualizations (status as of August 2022). . . . . . . . . . . . . . . . . . 109
B.4 Zoomed-in downstream view of the VP detector in the DETDESC and

DD4HEP visualizations (status as of August 2022). . . . . . . . . . . . . 109
B.5 A-side view of the VP detector in the DETDESC and DD4HEP

visualizations (status as of August 2022). . . . . . . . . . . . . . . . . . 109
B.6 Perspective view of the FT detector in the DETDESC and DD4HEP

visualizations (status as of August 2022). . . . . . . . . . . . . . . . . . 110
B.7 Front view of the FT detector in the DETDESC and DD4HEP

visualizations (status as of August 2022). . . . . . . . . . . . . . . . . . 110
B.8 Side view of the FT detector in the DETDESC and DD4HEP

visualizations (status as of August 2022). . . . . . . . . . . . . . . . . . 110

C.1 Comparison of the total time per event for the PyTorch and ONNX
backends in GAUSSINO with different numbers of inter-op threads
and one intra-op thread. . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

C.2 Comparison of the inference throughput for the ONNX backend in
GAUSSINO with different number of intra-op and inter-op threads. . . 112

C.3 Comparison of the inference throughput per thread for the ONNX
backend in GAUSSINO with different number of intra-op and inter-op
threads. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

C.4 Comparison of the inference time per event for the ONNX backend in
GAUSSINO with different number of intra-op and inter-op threads. . . 113

C.5 Comparison of the inference time per event per thread for the ONNX
backend in GAUSSINO with different number of intra-op and inter-op
threads. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

C.6 Comparison of the total simulation throughput for the ONNX
backend in GAUSSINO with different number of intra-op and inter-op
threads. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

C.7 Comparison of the total simulation time per event for the ONNX
backend in GAUSSINO with different number of intra-op and inter-op
threads. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

C.8 Comparison of the total virtual memory usage for the ONNX backend
in GAUSSINO with different number of intra-op and inter-op threads. 114



xx

C.9 Comparison of the inference throughput for the PyTorch backend in
GAUSSINO with different number of intra-op and inter-op threads. . . 114

C.10 Comparison of the inference throughput per thread for the PyTorch
backend in GAUSSINO with different number of intra-op and inter-op
threads. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

C.11 Comparison of the inference time per event for the PyTorch backend
in GAUSSINO with different number of intra-op and inter-op threads. 115

C.12 Comparison of the inference time per event per thread for the PyTorch
backend in GAUSSINO with different number of intra-op and inter-op
threads. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

C.13 Comparison of the total simulation throughput for the PyTorch
backend in GAUSSINO with different number of intra-op and inter-op
threads. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

C.14 Comparison of the total simulation time per event for the PyTorch
backend in GAUSSINO with different number of intra-op and inter-op
threads. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

C.15 Comparison of the total virtual memory usage for the PyTorch
backend in GAUSSINO with different number of intra-op and inter-op
threads. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

D.1 Throughput of the ML-based fast simulation (VAE model) tested on a
simple cylindrical calorimeter with varying photon energies. . . . . . 118

D.2 Time per event of the ML-based fast simulation (VAE model) tested
on a simple cylindrical calorimeter with varying photon energies. . . 118

D.3 Possible speedup obtained with the ML-based fast simulation (VAE
model) tested on a simple cylindrical calorimeter with varying photon
energies. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

D.4 Virtual memory usage of the ML-based fast simulation (VAE model)
tested on a simple cylindrical calorimeter with varying photon
energies. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

D.5 Longitudinal profile distribution of a modified VAE model
(VAEWithProfiles) trained on the CALOCHALLENGE-compatible
dataset produced in GAUSSINO. . . . . . . . . . . . . . . . . . . . . . . 120

D.6 Lateral profile distribution of a modified VAE model
(VAEWithProfiles) trained on the CALOCHALLENGE-compatible
dataset produced in GAUSSINO. . . . . . . . . . . . . . . . . . . . . . . 120

D.7 Output plots of the monitoring algorithm of fast simulated 10 GeV
electrons at θ = 3.36 with not a retrained VAE model. . . . . . . . . . . 121

D.8 Output plots of the monitoring algorithm of fast simulated 10 GeV
electrons at θ = 3.36 with a retrained VAE model. . . . . . . . . . . . . 122

D.9 Output plots of the monitoring algorithm of fast simulated 10 GeV
electrons at θ = 12.7 with a retrained VAE model. . . . . . . . . . . . . 123

D.10 Output plots of the monitoring algorithm of fast simulated 10 GeV
photons at θ = 12.7 with a retrained VAE model. . . . . . . . . . . . . . 124

D.11 Visualization of the ML-based fast simulation (VAE model) tested on
a simple cylindrical calorimeter. . . . . . . . . . . . . . . . . . . . . . . 125

D.12 Visualization of the ML-based fast simulation (VAE model) tested on
a simple planar calorimeter. . . . . . . . . . . . . . . . . . . . . . . . . . 126

D.13 Visualization of the energy deposits in the electromagnetic
calorimeter left by the ML-based and GEANT4-based component
when running fast simulation. . . . . . . . . . . . . . . . . . . . . . . . 127



xxi

D.14 Comparison of the energy deposited in the electromagnetic
calorimeter by the ML-based fast simulation and detailed simulation
as a function of the entry point of the particle. . . . . . . . . . . . . . . 128

D.15 Comparison of the energy deposited in the electromagnetic
calorimeter by the ML-based fast simulation and detailed simulation
as a function of the momentum of the particle and its PDG code. . . . 129

D.16 Validation of the ML-based fast simulation using the CALOML+VAE
model on the LHCb minimum bias events. . . . . . . . . . . . . . . . . 130





xxiii

List of Tables

2.1 Cell sizes and other parameters of the calorimeters in the LHCb
experiment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2 Selected key flavour observables and their uncertainties in the LHCb
experiment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.1 Reconstructed energy and number of clusters detected as a ratio the
MC truth. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61





xxv

Kochanej Klaudusi





xxvii

Introduction

Physicists working in the field of high-energy physics (HEP) aim to understand
the fundamental particles and forces that constitute the Universe. Large HEP
experiments are designed to recreate conditions similar to those just after the Big
Bang, providing insights into the origins and evolution of the Universe.

The Large Hadron Collider (LHC) at CERN is the world’s largest and most
powerful particle accelerator. It was built to probe the fundamental structure of
matter by colliding protons and heavy ions at unprecedented energies. The primary
goal of the experiments at the LHC is to examine the validity and limitations of the
Standard Model of particle physics and to search for New Physics (NP) beyond it,
such as dark matter and supersymmetry.

Experiments at LHC have achieved remarkable successes, including the
discovery of the Higgs boson, pentaquarks, and many more. They rely heavily
on simulations to interpret experimental data, optimize detector design, and test
theoretical models. The traditional approach to these simulations involves Monte
Carlo (MC) event generators and detailed particle propagation and interaction with
the material of the detector using toolkits like GEANT4. Although very effective,
these methods are computationally expensive, especially given the increasing
luminosity and complexity of the experiments. The role of MC simulations in HEP
experiments is explained in detail in Chapter 1.

One of the large experiments at LHC is the one being carried out by the LHCb
Collaboration. It is a single-arm spectrometer designed to study the properties
of particles containing beauty (b) or charm (c) quarks. Originally designed to
make precision studies of CP violation and very rare decays in B-meson systems
by exploiting proton-proton collisions at the LHC as the most copious source
of b-hadrons in the world, the LHCb experiment’s physics programme has been
extended to include a wide range of measurements in the field of heavy flavour
physics and beyond. The results gathered by LHCb so far have demonstrated
that the Standard Model effectively describes phenomena up to an energy scale of
1-10 TeV. The LHCb experiment and its current status (during Run 3 of data taking
at the LHC) is described in more detail in Chapter 2.

The LHCb experiment is facing one of the most challenging trigger rates among
the LHC experiments with the detector and data acquisition system that have been
upgraded. Its simulations are critical for these developments and since Run 2 of data
taking take 90% of all the allocated computing resources. The main goal of the work
presented in this thesis was to explore new software and machine learning-based
technologies in order to improve the performance of the LHCb data processing
applications, and in particular, the simulation framework of LHCb named GAUSS.

In view of the increasing demands at LHCb, the simulation framework, GAUSS,
was redesigned to be more efficient and flexible, allowing for the integration of
new simulation techniques and technologies. The core simulation framework,
GAUSSINO, was developed by extracting the core functionalities of GAUSS, and
making them available as a standalone library. GAUSSINO and the new version of
GAUSS, also called GAUSS-ON-GAUSSINO, is described in more detail in Chapter 3.
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Moving the GAUSSINO and GAUSS-ON-GAUSSINO framework from an advanced
prototype stage to a production-ready framework was one of the main tasks
of this thesis. Moreover, the work included integrating a new interface to
fast simulations, adding support for new detector description toolkits (DD4HEP

and EXTERNALDETECTOR), and developing new visualization tools along with
web-based documentation.

Despite improvements in the simulation framework, the computational cost
of simulating the detector response to particle interactions remains a significant
challenge. To address it, modern simulation techniques based on generative artificial
intelligence (GenAI), have emerged as a promising solution. Generative models
can learn the underlying patterns and correlations in the data, enabling them
to generate realistic simulations with significantly reduced computational costs.
Integrating machine learning-based (ML) models into the simulation framework
of experiments can be complex and time-consuming, requiring adaptation to the
specific environment of the simulation framework. The GAUSSINO framework, with
its modular design, is ideal for exploring generic GenAI models. GAUSSINO can
be used in a standalone mode for rapid prototyping and testing of new models,
as well as running them in various experiment configurations. Once trained and
tested on experiment-agnostic datasets, the models can be easily adapted to the
specific requirements of the experiment’s simulation framework. Chapter 4 presents
a few applications that were explored in this thesis. The interface to the ML
libraries for running inference directly in the simulation framework is presented
in Section 4.1. Integration of the infrastructure necessary to run GenAI models
for calorimeter fast simulations in GAUSSINO, as well as the performance of the
first production-ready CALOML+VAE model trained on the LHCb electromagnetic
calorimeter data is presented in Section 4.2. Brief exploration of the additional use
of the ML models in object detection algorithms for cluster energy reconstruction in
the LHCb electromagnetic calorimeter is presented in Section 4.3.

The last chapter of this thesis, Chapter 5, presents the results of the simulation of
a few relevant LHCb decay channels to validate the methods and tools developed
in the previous chapters. In particular, a detailed physics performance of the first,
production-ready GenAI model for the electromagnetic calorimeter simulation is
presented. Validation was done with respect to samples produced with GAUSS

framework when using the detailed and comprehensively tested GEANT4 toolkit,
before reconstructed data from Run 3 were available.

Additional performance plots of the GAUSSINO and GAUSS-ON-GAUSSINO

simulation frameworks were placed in Appendix A. Selected sub-detector
visualizations used during the validation process of the new detector description in
GAUSS-ON-GAUSSINO were put in Appendix B. Figures representing performance
of the interface to ML backends in GAUSSINO were added in Appendix C.
Finally, additional plots related to the ML-based fast simulation in GAUSSINO and
GAUSS-ON-GAUSSINO were placed in Appendix D.
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1
Simulations in experimental high
energy physics

High energy physics (HEP), also known as particle physics, or physics of particles
and fields, is a leading field of research that stands at the forefront of unraveling
the fundamental building blocks of our Universe. It aims to understand the nature
of matter, the forces that govern it, and the laws that dictate its behavior. In this
chapter, a very brief introduction to high-energy physics will be given. Moreover,
experimental techniques in high energy physics will be discussed, and in particular,
the role of Monte Carlo simulations.

1.1 Particles at high energies

In everyday life, humans interact with objects of various shapes and sizes, often
comparable to their own scale. However, at much smaller scales, matter consists
of very tiny chunks and vast empty spaces in between [1]. These tiny chunks, also
called elementary particles, come in a small number of types, and it is the way they
are arranged that gives rise to the rich variety of complex entities we see around us.

Classical mechanics has been used for centuries to describe the motion of
macroscopic objects. However, it is not sufficient to describe the motion of particles
at very small scales, and at very high speeds. In some specific conditions, the
classical rules of mechanics break down, and other types of mechanics are needed to
describe the motion of particles. Figure 1.1 shows all the known realms of mechanics
and theory of interactions represented by the so-called Bronstein-Zelmanov-Okun
cube. Each axis of the cube represents a particular condition, which when starts
dominating, changes the type of mechanics. For example, when objects travel at
speeds comparable to the speed of light, special relativity is needed to describe their
motion. If in addition to that, the objects are also very heavy, then general relativity is
needed to describe their motion.

Elementary particles are very small, and when they travel at very high speeds,
they are best described by quantum field theory [2, 3], a union of quantum mechanics
and special relativity. A collection of theories describing elementary particle
interactions except gravity, but including strong and electroweak interactions, is
called the Standard Model of particle physics. All elementary particles are briefly
described in Section 1.1.1, and the Standard Model is discussed in Section 1.1.2.
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FIGURE 1.1: Known realms of mechanics represented by the
Bronstein-Zelmanov-Okun cube. Each corner of the cube represents

a different type of mechanics depending on the conditions.

1.1.1 Elementary particles

Our visible Universe is made of fermions, half-odd-integer spin ( 1
2 , 3

2 , ...) particles that
obey the Pauli exclusion principle. They can be then divided into two groups: quarks
and leptons, depending on whether they interact via strong interaction or not. There
are 3 generations of quarks and 3 generations of leptons:

• 1st generations:

– up (u) and down (d) quarks,

– electron (e) and electron neutrino (νe);

• 2nd generations:

– charm (c) and strange (s) quarks,

– muon (µ) and muon neutrino (νµ);

• 3rd generations:

– top (t) and bottom or beauty (b) quarks,

– tau (τ) and tau neutrino (ντ).



1.1. Particles at high energies 3

Each fermion has a corresponding antiparticle, which has the same mass, but
opposite all other additive quantum numbers, e.g. electric charge, strangeness,
baryonic numbers, etc.

Gauge bosons are the force carriers of the interactions in the Standard Model. They
carry integer spins and mediate the interactions between other particles. There are
in total 12 gauge bosons [4, 5] in the Standard Model:

• 8 gluons (g) for the strong interaction,

• 1 photon (γ) for the electromagnetic interaction,

• 3 weak bosons (W±, Z0) for the weak interaction.

There is also one scalar boson, the Higgs boson [6–10], which is produced by the
excitation of the Brout-Englert-Higgs field that is responsible for particle masses.

1.1.2 Standard Model

The Standard Model (SM) [1] of particle physics is a mathematical framework that
unifies electromagnetic, strong and weak interactions. Gravity is not included in
the scope of this theory, and in any case, it is too weak to play any significant
role in processes measurable by present-day HEP experiments. In the SM [11], all
fundamental interactions derive from local gauge invariance of the symmetry group

SU(3)× SU(2)× U(1) (1.1)

where:

• SU(3) is the symmetry group of the strong interaction, formed in theory
known as quantum chromodynamics (QCD),

• SU(2)× U(1) is the symmetry group of the electroweak interaction;

in which the Lagrangian does not change under transformations belonging to these
groups. Thus, the lagrangian density is given by

L = LQCD + LEW + LHiggs (1.2)

where:

• LQCD is the lagrangian density of quantum chromodynamics,

• LEW is the lagrangian density of the electroweak interaction,

• LHiggs is the lagrangian density of the Higgs mechanism.

Despite the fact that the SM is a very successful theory, it is not complete and
it does not explain all the phenomena that physicists observe [12]. As mentioned
before, it does not include gravity, nor does it explain the existence of dark matter
and dark energy, which are believed to constitute the majority of the Universe.
Moreover, it does not explain why neutrinos have mass and why they oscillate from
one type to another. Neither does it explain why there is more matter than antimatter
in the Universe. Beyond Standard Model (BSM) theories, is a term used to describe
theories that attempt to explain these phenomena.
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1.2 Experiments in high energy physics

In Figure 1.2, a schematic diagram of a typical experimental workflow in particle
physics is presented. The absolute minimum of any experimental setup is a source of
particles of interest, an experimental apparatus that allows to detect their interactions,
and a readout system that allows to record and store the outcomes for further analysis.

Source of particles

Experimental apparatus

Readout system

Experimental workflow

Event generation

Particle transport

Detector response

Simulation workflow

Data processing

Offline data analysis

FIGURE 1.2: The standard workflow of a high energy physics
experiment. It represents two possible ways of obtaining data: from

a real, physical experiment (left) or from a simulation (right).

1.2.1 Particle accelerators

Particle accelerators can be used to accelerate particles to high energies and
then collide them with each other or with a fixed target. The largest and the
highest-energy accelerator ever built is the Large Hadron Collider (LHC) [13, 14]
at CERN at the Franco-Swiss border near Geneva in Switzerland. It was designed as
a proton-proton (pp) collider with a capacity to run collisions with center-of-mass
energy up to

√
s = 14 TeV. In Figure 1.3, the evolution of high energy particle

colliders is shown as a function of time. The plan to build machines able to provide
even higher energies and luminosities is already in place. High-Luminosity Large
Hadron Collider (HL-LHC or HiLumi LHC) [15] is a project to upgrade the LHC to
increase its number of collisions by a factor of 5 to 7.5 with respect to the nominal
LHC design. Following the HL-LHC, an ambitious plan to build a completely
new accelerator, the Future Circular Collider (FCC), is being developed. First,
the FCC would operate as a lepton (e+e−) collider (FCC-ee) [16] with a maximal
center-of-mass energy of 365 GeV, and then as a hadron (pp) collider (FCC-hh) [17]
with a maximal center-of-mass energy of 100 TeV. Projects to build linear colliders,
such as the International Linear Collider (ILC) [18] or Compact Linear Collider
(CLIC) [19], are also being considered.
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FIGURE 1.3: The evolution of particle colliders [20]. Particle energy
in the center of mass is shown as a function of time.

1.2.2 Experimental apparatus

Once the particles are produced, they have to be detected by the experimental
apparatus. Modern detectors [21] consist of a series of various detectors, each
designed to measure a specific property of particles. Combined together, they
allow to build a full picture of how particles interacted. In particular, they allow
to reconstruct the trajectories of particles, identify them, and measure their charge
and energy. Tracking detectors are usually in a few places in the experiment,
and are designed to record the trajectory of particles as they pass through the
detector. Curvature of tracks in a magnetic field enables determination of particles’
momenta. A very special type of tracking detectors are silicon tracking detectors,
in which charged particles traverse the silicon layers and generate electron-hole
pairs. Vertex detectors are a specific subtype of silicon detectors, placed very
close to the interaction point (IP) — a point in space where particles collide and
produce secondary particles. Gaseous detectors are also used as tracking detectors
in HEP experiments. In these detectors traversing particles ionize the medium
of the detector, causing electrons and ions to drift in the electric field towards
the electrodes, where the detection takes place. An example of such a detector
is the Time Projection Chamber (TPC), particularly common in low-luminosity
experiments. Calorimeters absorb incident particles in order to measure their energy
lost in absorbing material and released as an electromagnetic or hadronic cascade.
If the particle travels faster than the phase velocity of light in a medium with high
refractive index, it produces a shock wave of light known as Cherenkov radiation, its
apex forming a cone. In Ring-Imaging Cherenkov (RICH) detectors, the light cone is
reflected by mirrors and focused into rings that trigger a photomultiplier tube. The
Cherenkov light is emitted with an angle proportional to the phase velocity thus
enabling determination of particle’s velocity. Therefore, by using information on
the particles velocity, Cherenkov detectors can be used to identify particles, such as
electrons, muons, and pions. The only particles left in the outermost layers of the
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detector are muons which interact with matter with a small cross section, and which
are detected by massive muon detectors, usually located farther from the IP.

1.2.3 Readout system

Detectors produce electric signals that are then recorded by front-end electronics.
Abundance of particles produced in high-energy collisions, as well as high collision
rates, require the data acquisition systems to be very fast and selective. Trigger
systems [22] are usually multi-layer systems that are designed to select only the
events that are of interest to physicists and, in addition, meeting the storage and
CPU limitations of the experiments. Figure 1.4 shows how the trigger rate has been
changing over the years for various experiments. Once filtered, the data is then
passed on to the reconstruction software. The aim of the reconstruction software is
to convert the low-level electronic signals, called the raw data, into the high-level
physics objects, such as tracks, vertices, and particles. Only then the data, once
persisted in storage, is ready to be analyzed offline by physicists.
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FIGURE 1.4: The evolution of trigger systems in high energy physics
experiments [23]. The trigger rate is shown as a function of time.

Data, carefully collected and correctly reconstructed by the experiments, is of
vital importance to any new physics search. However, the data is often contaminated
by various sources of background, such as misidentified particles, detector noise,
etc. As it turns out, constructing a parallel track along the standard experimental
workflow presented in Figure 1.2 is possible. This parallel track is known as Monte
Carlo simulations, subject of the next section, which provides indispensable tools
for the physicists to understand the data, test physical hypotheses, and plan new
detectors.

1.3 Monte Carlo simulations

Experiments in physics can be very complex and expensive in terms of time,
money, and human resources. Careful planning in order to maximize the physics
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performance is thus very important. Once the physics experiment is built, it is
also very important to understand the data collected and compare it with what is
expected from the theory. Physicists use many different types of simulations to
achieve these goals. In particular, in high-energy physics, the model itself has to
also reflect the stochastic nature of the physics processes. There are usually many
possible outcomes, many of which are very rare, and thus require a large number
of events to be simulated. Some events can be very complex, and thus require a lot
of computing power to be simulated. This is where Monte Carlo simulations come
into play. Their role in the scientific process in high-energy physics is summarized
in Figure 1.5.
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FIGURE 1.5: The role of Monte Carlo simulations in the scientific
process in high energy physics inspired by [24].

1.3.1 Statistical foundations of Monte Carlo simulations

A Monte Carlo simulation, informally, is any simulation that relies on random
numbers to solve a problem. This does not mean that the problem itself must be
of stochastic nature, but it must be possible to reformulate the problem in such a
way that the random numbers are used to obtain its solution. More formally, the
Monte Carlo method can be defined as representing the solution of a problem as a
set of parameters of a hypothetical population. Sequences of random numbers can
be used to construct a sample of that population, from which statistical estimates of
the parameter can be obtained [25].

The power of Monte Carlo simulations resides in repeated sampling from the
same probability distribution function many times. The more samples n are taken,
the more the distribution of the random variable will resemble the distribution of
the underlying population. This comes as the result of the law of large numbers. The
law of large numbers provides the very important information about what happens
when n tends to infinity, but it does not say how it is distributed for finite n. This,
in turn, is described by the central limit theorem, which states that the sum of large
number of independent random variables is normally distributed.

The result of the central limit theorem is crucial for Monte Carlo simulations,
as it provides a concrete formula for the error of the Monte Carlo estimate, i.e.
σ/

√
n, where σ is the square root of variance of the sampled distribution. More

importantly, this also implies that the Monte Carlo estimate does not depend on the
dimensionality of the problem. As Monte Carlo can be slower than other methods
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in lower dimensions, it might be significantly more efficient if the dimensionality of
the problem is high and that is usually the case in high-energy physics.

1.3.2 Event generation

Simulation of multiparticle systems is an extremely challenging problem due to
the complexity of both the theory and detecting apparatus usually reflected by the
dimensionality of the problem and correlations between random variables [26, 27].
For each single collision with k outgoing particles, the phase-space volume element
is the (3k-4)-dimensional* momentum space element. If k becomes larger than 3,
the complexity of the integration of the relativistic phase space of multiparticle
interactions becomes too complex to be solved analytically. At the LHC, the number
of particles produced in a single collision can go up to hundreds of all different
species of particles of the SM, and in most cases their momenta span over many
orders of magnitude.

Modern techniques allow to factorize the full process into different regimes,
depending on the amount of momentum transfer:

• at the high scales of energy or momentum transfers, hard subprocesses
dominate, in which the constituents of the incoming beam particles interact
to produce relatively few, but very energetic outgoing particles, and these
interactions can be modeled using perturbation theory;

• at the intermediate scales, many additional partons are produced in the form
of initial- and final-state radiation (parton showers), which still can be modeled
using perturbative QCD;

• at the low scales, soft subprocesses dominate, in which the incoming
partons remain confined in the beams and the outgoing partons interact
non-perturbatively, however, they still have to be modeled in non-perturbative
theories.

Models and algorithms ranging from hard to soft processes can be simulated and
are implemented in the so-called event generators. The most important multi-purpose
generators are:

• PYTHIA [28, 29] (the most popular in LHC simulations),

• HERWIG [30],

• SHERPA [31].

The event generators usually cannot be used as is without prior tuning and
validation [26]. Validation is performed globally in order to make sure that the
models describe the underlying physics. RIVET [32] is a Monte Carlo validation
tool commonly used in high-energy physics experiments. It also provides a set of
experimental analyses useful for MC generator development. Tuning usually boils
down to adjusting the free parameters of the models to improve the description of
the relevant data. An example of such a tuning tool is the PROFESSOR [33] tool.
PROFESSOR works on the output of MC validation analyses where it optimizes the
parameters to achieve the best possible fit to the data.

*This includes all the 3 momentum components of particles, subtracted by the 4 constraints of
energy-momentum conservation.
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In most of the cases, event generators have to be interfaced with other programs
in order to provide a complete simulation of an experiment. The output of such
a generator is usually written in an event record. A very popular format for event
records is the HEPMC [34, 35] format. It gives the possibility to store general
information about conditions, pseudorandom seeds, as well as data objects such
as particles and vertices. Once the event generator fills the event records, they can
be then passed to the following step in the simulation chain, described in the next
section.

1.3.3 Detector simulation

After the collision takes place, all the new and in many cases still unstable particles
traverse the detector and interact with its material. Only then they can be registered
via the readout system. As described in Section 1.2, the detector is usually a
complex system of many different subdetectors, each designed to use different
physics mechanisms to detect properties of the particles. Modeling of particles
traversing geometries of significant complexity and with a large number of volumes,
as well as all the physical interactions, extending from high-energy particles emitted
in collisions down to interactions of eV-scale photons and electrons, is the main task
of the detector simulation software [36]. GEANT4 [37, 38], FLUKA [39] and MARS [40]
are some of the most popular detector simulation tools used in high-energy physics
experiments.

Each transportation process [24, 36, 41] is split into a series of steps, and at each
of these steps the Monte Carlo method requires [42]:

• cross sections in the current material for any possible physical interaction,

• an algorithm to select which interaction will take place,

• a method that applies the effects of each physics interaction such as generation
of secondary particles, etc.

In practice, some interactions that take place below a certain energy cut, such
as in Bremsstrahlung and delta-ray production processes, may not be sampled
individually, but only their collective effect is taken into account [43]. If an external
electromagnetic field exists, the Lorentz equation is used to obtain the equations of
motion. The equations of motion are then solved using, in most cases, numerical
integration methods such as the Runge-Kutta method.

The simulation of electromagnetic interactions in the detector effectively reduces
to modeling the interactions of photons and charged particles [44, 45]. Simulation
of photon interactions is usually considered much simpler, than the simulation
of charged particles, as they occur at discrete points and can modeled this way.
Simulation of electromagnetic interactions of photons includes processes such
as: Rayleigh scattering, photoelectric effect, Compton scattering, and gamma
conversion. As for the charged particles, and in particular electrons and positrons,
the most important processes are ionization, Bremsstrahlung, and Coulomb
scattering. Simulation of charged particles is much more complicated than photons,
mostly due to the large cross sections of elastic and ionization interactions.

Simulation of hadronic interactions, contrary to the electromagnetic interactions,
can only be modeled using measured data and phenomenological models [36, 44,
46]. The largest hadronic cross section at low energies is taken by the elastic
interaction. They are typically parameterized from data. Intranuclear cascade
models describe the hadronic interactions at intermediate energies, modeled as a
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succession of independent collisions of the projectile with nucleons. It can be either
described as an ensemble of nucleons placed randomly in the nucleus such as in the
GEANT4 Binary cascade model, or as a number of shells of constant density, such as
in the GEANT4 Bertini cascade model. At really high energies, the simulation relies
on phenomenological descriptions of soft QCD interactions. In GEANT4, the Quark
Gluon String (QGS) model or the Fritiof (FTF) model are used for this purpose.
On top of that, special treatment is required for the simulation of neutrons as they
are usually abundantly produced and can have many elastic scatterings with nuclei
before they are captured.
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2
LHCb experiment in Run 3

In the previous chapter, the role of Monte Carlo simulations in high-energy physics
was presented. The techniques described there are crucial for the understanding of
the experimental data collected by the experiments and the design of the detectors.
This chapter will focus on the LHCb experiment and its setup, with particular
emphasis on the description of sub-detectors and the physics programme of Run 3
of the LHC data taking.

2.1 Large Hadron Collider

The LHCb experiment is one of the large experiments at the Large Hadron Collider
(LHC) [13, 14, 47]. LHC is, as of 2023, the largest and the most powerful particle
accelerator in the world, located at CERN, near Geneva, Switzerland. It is 27 km
long in circumference and was designed primarily for the study of proton-proton
collisions at a maximal center-of-mass energy of

√
s = 14 TeV.

The LHC is also capable of colliding heavy ions, such as lead ions. The
accelerator consists of two beam pipes, with one proton beam circulating in each
of them. Each beam consists of a sequence of up to 2808 bunches, with around 1011

protons in each bunch. The beams are accelerated in opposite directions and are
brought into collision at four interaction points, which is where the experiments are
located. There are four main large experiments at the LHC: ATLAS [48], CMS [49],
LHCb [50] and ALICE [51].

The LHC operates in a series of interchanging periods of data taking and
maintenance. The data-taking periods are called Runs and are followed by Long
Shutdowns, during which the accelerator is upgraded and maintained. The
operation of the LHC is planned in advance and the schedule is published by CERN.
The LHC is currently in Run 3, which started in 2022 and is planned to last until 2026.
It will then be followed by the Long Shutdown 3 (LS3), which is scheduled to last
for three years, and will result in the upgrade of the LHC to the High-Luminosity
LHC (HL-LHC) [15].
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FIGURE 2.1: The CERN accelerator complex [52]. It is a succession of
smaller accelerators, each boosting the energy of the particles before

they are injected into the LHC (gray ring).

FIGURE 2.2: The layout of the LHCb spectrometer starting from Run 3
of data taking [53, 54].
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2.2 The LHCb detector

The LHCb detector [50] is located at the LHC interaction point 8 of the LHC. It is
a single-arm spectrometer, with a dipole magnet with a forward angular coverage
of 10 mrad up to 300 mrad in the bending plane and up to 250 mrad in the
non-bending plane. The particular layout of the detector, significantly different
from the general-purpose detectors, is due to the fact that the LHCb experiment
is designed to study the decays of heavy flavour hadrons, containing b and c
quarks, produced in the forward region of the LHC. The reason for this is that
the dominant bb̄ production mechanism at the LHCb is through gluon fusion [55].
In this case, the ratio of incoming parton momenta is strongly asymmetric in the
laboratory frame, which results in the center-of-mass energy of the bb̄ pair being
boosted in the direction of the higher momentum proton. Figures 2.3b and 2.3a
show the distribution of bb̄ production angles at the LHCb experiment obtained via
Monte Carlo simulation in terms of pseudorapidity and polar angle, respectively.
In addition, the difference in the production angles of bb̄ pairs at the LHCb and
general-purpose detectors is shown in Figure 2.3b.
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FIGURE 2.3: Distributions of bb̄ production angles at the LHCb
experiment obtained via Monte Carlo simulation [56].

LHCb detector consists of a set of sub-detectors, each designed for a different
task. The whole spectrum of various detectors used in high energy physics
experiment was presented in Section 1.2. In a nutshell, particles leave characteristic
signatures in the detectors, which can be then used to identify and measure their
properties. In LHCb, the tracking system is used to determine the trajectories of
charged particles, and measure their momentum based on their curvature in the
dipole field. The VErtex LOcator (VELO) is a tracking sub-detector that sits the
closest to the interaction point and is used to reconstruct the primary and secondary
vertices with high precision. The Ring Imaging Cherenkov (RICH) system is used
to identify charged particles based on the properties of the Cherenkov radiation
they produce. The calorimeters are used to absorb the energy of particles inducing
electromagnetic and hadronic showers in their heavy metallic bodies. Muons are
detected in the muon system based on the hits they leave in the muon chambers.



14 Chapter 2. LHCb experiment in Run 3

2.2.1 Run 1 and Run 2 setup

The first version of the LHCb detector operated in Run 1 (2010-2012) and Run 2
(2015-2018) data taking [57] periods. The tracking system consisted of a silicon
microstrip Turicensis Tracker (TT) sub-detector upstream of the dipole magnet, and
three tracking stations downstream of the magnet: the silicon microstrip Inner
Tracker (IT) in the inner part and the Outer Tracker (OT) in the outer part of
the stations. VELO consisted of a series of silicon double-sided strip modules
providing measurements of r and φ coordinates. The RICH system consisted of
two sub-detectors: RICH1 and RICH2, each filled with different media in order
to cover different momentum ranges. RICH1 was placed upstream of the magnet
and RICH2 was placed downstream of the magnet. The calorimetry system,
located downstream of the magnet and RICH2, consisted of four sub-detectors:
the electromagnetic calorimeter (ECAL), the hadronic calorimeter (HCAL), the
preshower (PS) and the scintillating pad detector (SPD). The SPD calorimeter was
used to mark the presence of charged particles and the PS was used to identify
the start of electromagnetic showers, necessary in separating electrons, photons and
pions. One muon station M1 was installed in front of the calorimeters and four other
muon stations (M2-M5) were placed behind the calorimeters, at the far end of the
detector. Moreover, the experiment was eqipped with a level-0 (L0) hardware trigger
with an output rate of 1 MHz, followed by a High-Level Trigger (HLT) software
trigger.

Until the end of Run 2, the LHCb detector collected a total of 9 fb−1 of pp,
200 nb−1 of pPb and around 30 nb−1 of PbPb collision data. The LHCb detector
was originally designed to operate at a nominal luminosity of 2× 1032 cm−2s−1 with
a pile-up close to unity, but it was able to operate at a luminosity of 4× 1032 cm−2s−1

already in Run 1.
Nevertheless, the precision of the measurements in key physics observables

during Run 1 and Run 2 was still limited by the statistics of the data sample. The
design of the Run 1-2 detector would not allow for operation at higher luminosities,
not only due to the limitations of the level-0 trigger, but also because it could
not cope with the increased occupancy and radiation load. Therefore, a major
upgrade [58] of the LHCb detector was planned in order to allow for the operation
at higher luminosities and to improve the performance of the detector in general.

2.2.2 Run 3 setup

The LHCb detector was upgraded in view of the Run 3 of the LHC data taking [53,
54]. This upgrade is referred to as Upgrade I in order to distinguish it from Upgrade
II [59], which is planned for Run 5 of the HL-LHC. The layout of the new detector
is shown in Figure 2.2. The luminosity of the experiment has been increased to 2 ×
1033 cm−2s−1, and the L0 hardware trigger has been completely removed resulting in
a fully-software trigger, which plays a crucial role in real-time event reconstruction
and selection, efficiently processing data at 40 MHz collision rate. The first trigger
stage (HLT1) is implemented on GPUs and is executed by the ALLEN application.
HLT1 applies a partial reconstruction and selection on raw data. The second trigger
stage (HLT2) is implemented on CPUs and is executed by the MOORE application.
HLT2 performs a full reconstruction and the selection of specific decay channels.
Further processing of the events for physics analysis is performed at distributed
sites offline.
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The readout electronics and the data acquisition system were almost completely
replaced. In the tracking system, the silicon-strip VELO was replaced with a new
silicon pixel detector, the TT was replaced with a new Upstream Tracker (UT) and
both IT and OT were replaced with a new Scintillating Fibre (SciFi) Tracker. The
new tracking system is described in more detail in Section 2.2.4. SPD and PS were
removed from the calorimetry system, and more information on the remaining
calorimeters, ECAL and HCAL, is presented in Section 2.2.6. The RICH system
was also upgraded, and the details are presented in Section 2.2.5. Finally, the muon
system was also modified, and more information is provided in Section 2.2.7.

2.2.3 Infrastructure

Magnetic field is needed in particle physics detectors to bend the trajectories
of charged particles in order to measure their momentum. In LHCb, a dipole
magnet [50, 60] is used for this purpose. It consists of two saddle-shaped coils,
placed mirror-symmetrically to each other, and mount in a window-frame yoke in
order to fit in the detector acceptance. Each coil is built of 15 pancakes, arranged in 5
triplets and made of aluminium. The magnet provides an integrated magnetic field
of 4 Tm.

The beam pipe [50, 53, 61] in the LHCb detector is a particularly delicate
component since the LHCb detector is a forward spectrometer, and the particle
density is the highest in the forward region. The amount of passive material in this
region must be minimized in order to reduce the number of secondary particles. The
most critical part of the beam pipe (< 12 m), at least when it comes to transparency,
is made of beryllium, which is a material that fits best the requirements thanks
to its high radiation length. The beryllium part of the beam pipe is attached to
the spherical VELO exit window, which is made of a thin aluminium foil. In the
remaining part of the beam pipe (> 12 m), the beam pipe is made of stainless steel.

2.2.4 Tracking system

Vertex reconstruction is crucial for the LHCb experiment. The VErtex LOcator [50,
62, 63] (VELO) is a unique sub-detector that was designed to provide precise
measurements of the primary and secondary vertices. Displaced secondary vertices
are very common in b-hadron decays. VELO covers the full momentum and angular
range of the downstream detectors in LHCb. At trigger level, the VELO is used to
identify the tracks with high-impact parameter. The performance of VELO at the
reconstruction level is equally important, as its excellent secondary vertex resolution
is key in B0

s oscillations and time-dependent CP violation measurements. The former
version of the VELO was used in Run 1 and Run 2 data taking periods, and the
upgraded version has been put into operation before Run 3. Sensors in each module
of the upgraded VELO are arranged in a rotated ’L’ shape and were designed to
tolerate a high and non uniform fluence.

The Scintillating Fibre (SciFi) Tracker [54] is a new tracking system placed
downstream of the magnet. It consists of three stations, each with four tracking
planes. Each tracking plane is made of modules containing scintillating fibres, which
are read out by silicon photomultipliers (SiPMs). The SciFi Tracker was designed to
provide a high detection efficiency, low material budget and high resolution in the
downstream part of the detector.

The Upstream Tracker (UT) [64, 65] is a silicon microstrip detector placed
between VELO and SciFi, just upstream of the magnet. The sensitive area of UT
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consists of four tracking planes where the inner two are placed at a small angle to
the beam axis. Each tracking plane consists of four types of sensors in order to cope
with high occupancy around the beam pipe. In addition to VELO and SciFi, UT
plays an important role in the trigger, as it reduces the number of ghost tracks and
increases the efficiency of the trigger by enabling measurement of low momentum
charged particles before the magnet.

2.2.5 RICH system

As explained in Section 1.2, the Cherenkov radiation is produced by charged
particles when they travel through a medium with a velocity greater than the phase
velocity of light in that medium. Information about the Cherenkov angle of a particle
and its momentum from the tracking system can be used to retrieve the particle’s
mass and thus its identity.

The Ring Imaging Cherenkov (RICH) system [66–68] in LHCb consists of two
sub-detectors: RICH1 and RICH2, each placed in a different location and filled
with different media in order to cover different momentum ranges. The RICH1
sub-detector is located upstream of the magnet and downstream of VELO and is
filled with C4F10 gas. It is used to identify charged particles with momenta in the
range from 2 to 50 GeV/c. On the other hand, the RICH2 sub-detector is located
downstream of the magnet, just before the calorimeters and is filled with CF4 gas.
It is used to identify charged particles with momenta in the range from 15 to 100
GeV/c. They have a similar design: a tilted spherical mirror, a secondary flat mirror
and a photon detector plane, situated outside of the spectrometer acceptance. The
photon detector plane consisted of hybrid photon detectors (HPDs) for the Run 1
& Run 2 version of the RICH detectors, and multi-anode photomultiplier tubes
(MaPMTs) for the upgraded version. The readout system was also replaced for Run 3
in order to handle the increased data rates and to improve the performance of the
RICH detectors.

The main purpose of the identification system provided by the RICH detectors
is to distinguish charged hadrons such as pions, kaons and protons, which is
very important in order to reduce the combinatorial background in flavour physics
experiments. The RICH system also plays an important role in distinguishing finals
states with similar topologies, flavour tagging and trigger-level selections.

2.2.6 Calorimeters

The calorimetry system [53, 69, 70] in LHCb is responsible for the identification
and measurement of the deposited energy of hadrons, electrons, positrons and
photons. It consists of two sub-detectors: the electromagnetic calorimeter (ECAL)
and the hadronic calorimeter (HCAL). Additional two calorimeters, the preshower
(PS) and the scintillating pad detector (SPD), were used in Run 1 and Run 2, but
were removed for Run 3 in view of their limited role in the new purely software
trigger. The ECAL measures the energy of electron, positrons, photons and π0

mesons, whereas the HCAL measures the energy of hadrons. The energy resolution
of the ECAL can be represented with the following formula:

σE

E
=

(9.0 ± 0.5)%√
E

⊕ (0.8 ± 0.2)% ⊕ 0.003
E sin θ

, (2.1)

where E is the energy of the particle in GeV, and θ is the polar angle of the ECAL
cell. The second term in the formula 2.1 is a constant term that depends on the
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mis-calibrations, energy leakage and other effects, and the third term stands for the
electronic noise. The energy resolution of the HCAL, on the other hand, is given by
the following formula:

σE

E
=

(67 ± 5)%√
E

⊕ (9 ± 2)%. (2.2)

The layout of both ECAL and HCAL remains the same in the upgraded version
of the LHCb experiment, while the readout electronics was changed to allow for
40 MHz readout.

SPD PS ECAL HCAL
number of channels 6016 6016 6016 1488
cell size (mm) Inner 39.7 39.8 40.4 131.3
cell size (mm) Middle 59.5 59.76 60.6 -
cell size (mm) Outer 119 119.5 121.2 262.6

TABLE 2.1: Cell sizes and other parameters of the calorimeters in the
LHCb experiment [70].

FIGURE 2.4: The layout of the calorimeter system [70] in the LHCb
experiment up to Run 2. The hadronic calorimeter (HCAL) is located
at the back, followed by the electromagnetic calorimeter (ECAL) and
the preshower (PS) and the scintillating pad detector (SPD) in the
front. Both the PS and the SPD were removed for Run 3 of data taking.

The calorimeter system is placed downstream of the magnet and the tracking
system, perpendicularly to the beamline. The calorimeters are assembled in two
halves (A and C side) and can move out horizontally for assembly and maintenance.
They are segmented into square cells of different sizes, depending on the density
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of particles entering the calorimeter and the energy resolution required. The inner
region of the calorimeters is the most finely granular one, as it is placed directly
around the beam pipe. The cells in the outer region are larger and are located the
farthest from the beam pipe. The ECAL is also equipped with a middle region,
with an intermediate granularity. The visual representation of the granularity of the
calorimeters is shown in Figure 2.4 and the details of the calorimeter cells and other
parameters are presented in Table 2.1.

The calorimeters are built as a succession of absorber, lead for the ECAL and
iron for the HCAL, and scintillator layers along the direction of the beam. Particles
hitting the absorber layers produce showers of secondary particles, which are then
detected by the scintillator layers. The scintillators emit light, which is in turn
collected by wavelength shifting fibres (WLS) and read out by photomultiplier tubes
(PMTs). The readout system of the calorimeters was replaced for Run 3 to handle the
increased data rates and to improve the performance of the calorimeters.

2.2.7 Muon system

A dedicated system is required to identify muons, as they are particles capable of
penetrating the calorimeters and reach the outermost part of the LHCb detector.
The muon system [71–73] in Run 3 is composed of four stations (M2-M5)
interleaved with iron absorbers and is placed the farthest from the interaction point,
downstream of the calorimeters. An additional station, M1, was used in Run 1 and
Run 2, which was placed upstream of the calorimeters, but was removed for Run 3
as not needed in the new fully software-based trigger.

The muon stations are equipped with multi-wire proportional chambers
(MWPCs), which are used to measure the positional information of charged
particles. Each MWPC consists of four layers, also called gaps, each consisting of
anode wires between two cathode planes. Each station can be further divided into
four regions (R1, R2, R3, R4) with increasing distance from the beam. The logical pad
segmentation of the cathode planes of the muon chambers is finer in the horizontal
direction than in the vertical direction, due to the bending of the muon tracks in the
magnetic field that is performed horizontally. The iron absorber plates, also called
muon filters, which are used to filter low energy particles. The readout electronic of
the muon system has been completely replaced for Run 3.

2.3 Physics programme

The LHCb experiment is a renowned, world’s leading flavour physics facility.
Originally designed to make precision studies of CP asymmetries and very rare
decays in the B-meson systems by exploiting the LHC as the most copious source
of b-hadrons in the world [74], the LHCb experiment’s physics programme has been
extended to include a wide range of measurements in the field of heavy flavour
physics and beyond. The results gathered by LHCb so far have demonstrated that
the Standard Model effectively describes phenomena up to an energy scale of 1-10
TeV [75]. Selected key observables and their uncertainties for the LHCb experiment
up to 2018, as well as anticipated uncertainties for the upcoming data taking periods,
are presented in Table 2.2.



2.3. Physics programme 19

Observable End of 2018 Run 3 Run 4 Upgrade II
(9 fb−1) (23 fb−1) (50 fb−1) (300 fb−1)

CKM tests
γ (B → DK, etc.) 4◦ 1.5◦ 1◦ 0.35◦

ϕs (B0
s → J/ψϕ) 32 mrad 14 mrad 10 mrad 4 mrad

|Vub/Vcb| (Λ0
b → pµ− ν̄µ, etc.) 6% 3% 2% 1%

Charm
∆ACP (D0 → K+K−, π+π−) 29 × 10−5 13 × 10−5 8 × 10−5 3.3 × 10−5

AΓ (D0 → K+K−, π+π−) 11 × 10−5 5 × 10−5 3.2 × 10−5 1.2 × 10−5

∆x (D0 → K0
Sπ+π−) 18 × 10−5 6.3 × 10−5 4.1 × 10−5 1.6 × 10−5

Rare Decays
B(B0 → µ+µ−)/B(B0

s → µ+µ−) 69% 41% 27% 11%
Lepton Universality Tests

RK (B+ → K+ℓ+ℓ−) 0.044 0.025 0.017 0.007
RK∗ (B0 → K∗0ℓ+ℓ−) 0.12 0.034 0.022 0.009

R(D∗) (B0 → D∗−ℓ+νℓ) 0.026 0.007 0.005 0.002

TABLE 2.2: Selected key flavour observables and their uncertainties in
the LHCb experiment up to 2018, as well as anticipated uncertainties

for the upcoming data taking periods [59, 76].

2.3.1 CP violation and the CKM matrix

CP violation [74], or in other words, a violation of a combination of charge
conjugation and parity symmetries at the same time, was first observed by V. L.
Fitch , J. H. Cronin, J.H. Christensen and R. Turlay in 1964 in the decays of neutral
kaons [77], for which Fitch and Cronin received a Nobel Prize in Physics in 1980. This
type of violation is one of the three conditions that were proposed by A. Sakharov
in 1967 [78] as necessary for the generation, at the very early stages of the Universe,
of the observed matter-antimatter asymmetry. In the Standard Model, one of just
a few sources of CP-violating phenomena in the quark sector is described by the
Cabibbo-Kobayashi-Maskawa (CKM) [79] quark-mixing matrix:

VCKM =

Vud Vus Vub
Vcd Vcs Vcb
Vtd Vts Vtb

 , (2.3)

where Vij are the elements of the matrix, and are related to the relative strengths of
the transition of down-type quarks (j ∈ {d, s, b}) to up-type quarks (i ∈ {u, c, t}) as
in the following equation: d′

s′

b′

 = VCKM

d
s
b

 . (2.4)

The complex elements of the CKM matrix can be represented as vectors in the
complex plane, and the unitarity conditions force these vectors to form a triangle,
known as the unitarity triangle as shown in Figure 2.5. The position of the apex
of that triangle governs the amount of CP violation in the quark sector of the
Standard Model and thus precise measurements of the angles and sides of the
unitarity triangle are crucial for the understanding of the origin of CP violation and
in the search of new physics. The apex can be determined using entirely tree-level
processes (CKM angle γ and the ratio of the sides |Vub/Vcb|), or via flavour-changing
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neutral-current loop processes (FCNC, CKM angle β and neutral B-meson oscillation
rates ∆md and ∆ms).

2.3.2 CP-violation measurements

The LHCb collaboration determined the precision of the CKM angle γ to be of
4◦ [80, 81] with the data collected until the end of Run 2. Measurements of |Vub|
and |Vcb| were also performed by the LHCb experiment using exclusive decays of
Λ0

b [82] and B0
s [83] hadrons, and the precision of these measurements based on

the data collected up to the end of Run 2 is of 6 %. Decay-time-dependent CP
asymmetries in the B0

s system using b → cc̄s transitions are sensitive to the CKM
phase βs = arg(−VtsV∗

tb/VcsV∗
cb), which is related to the experimental observable

ϕs = 2βs provided that penguin loop contributions to the decay are negligible. The
weak phase ϕs is very precisely predicted in the SM, and thus the measurement of
ϕs is a sensitive probe of new physics. LHCb has already provided very precise
measurements of ϕs via B0

s → J/ψϕ decays that are listed in Table 2.2. Another
source of CP-violating new physics can be found in the parameters (ad,s

sl ) used
in B0

(s) − B̄0
(s) mixing, typically determined using semileptonic decays such as in

B0
s → D−

s µ+νµ channels [84, 85].

Re

Im

|VudV∗
ub|

|VcdV∗
cb|

|VtdV∗
tb|

|VcdV∗
cb|

γ β

α

C = (0,0) B = (1,0)

A = (ρ̄, η̄)

FIGURE 2.5: The CKM unitarity triangle represented in the complex
plane [74].

2.3.3 Charm physics

The SM level of indirect CP violation in charm systems is expected to be very small
and any asymmetry significantly larger than that would be a clear signature of
new physics [59, 76, 86, 87]. There is already a huge dataset available at LHCb
and more data will be collected with the future upgrades of the detector. The
very first observation of CP violation in charm decays was made by the LHCb
collaboration [88] by measuring the ∆ACP asymmetry parameter. Combined with
measurements of other parameters, such as AΓ [89] and ∆x [90] measured by the
LHCb collaboration, the constraints on the fundamental parameters of CP violation
in charm mixing can be obtained. The LHCb experiment is also involved in studies
of direct CP violation in many charm decays (e.g. D0 → K+K− or D0 → π+π−).
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2.3.4 Rare decays

Rare or very rare decays can be very useful in the search for new physics and despite
several deviations with respect to the SM predictions that were observed, more
measurements are necessary in order to verify their nature. This study is central
to the LHCb programme and includes rare decays of beauty and charm hadrons, as
well as τ leptons [59, 76]. For example, LHCb and CMS collaborations made the first
observation of B0

s → µ+µ− decays and even more suppressed B0 → µ+µ−, whose
branching fraction ratio is a powerful test of new physics [91–93]. LHCb is also
involved in measuring a number of flavour-changing b → sℓ+ℓ− and b → dℓ+ℓ−

transitions, as well as lepton-flavour, lepton-number and baryon-number violating
processes (e.g. search for B → e±µ∓), radiative beauty and charm decays (e.g.
B0 → K∗0e−e+), rare (semi-)leptonic charm decays (e.g. D0 → µ+µ−), and rare
decays of strange hadrons with Σ and Λ hyperons.

2.3.5 Lepton flavour universality

Interaction strengths of gauge bosons with all the three generations of charged
leptons – e, µ and τ – are identical, and this comes more as an accidental symmetry
rather than any fundamental axiom of the SM. The only feature there that actually
distinguishes leptons from one another is their mass. Therefore, any NP theories
where the universality of the lepton couplings is violated would be a clear sign of
new physics. At LHCb, the lepton universality is tested in the decays of beauty
hadrons. Quantity RX, defined as the ratio of the decay rates of B → Xµ+µ−

and B → Xe+e−, is a particularly interesting test of lepton flavour universality.
For example, a recent measurement of RK [94] (the ratio of B+ → K+µ+µ− and
B+ → K+e+e− decay rates) shows a deviation from the SM prediction at the level of
3.1 σ.

2.3.6 Hadron spectroscopy

The quark model describes hadrons as bound states of quarks and gluons, where
baryons consist of three quarks and mesons from a quark and an antiquark. It
has been very successful in predicting not only the properties of mesons and
baryons, but also the existence of more exotic states such as tetraquarks and
pentaquarks. The LHCb experiment has been involved in the discovery of many
of these multi-quark states. This includes the exotic P+

c (cc̄uud) [95, 96] pentaquark
states, and the Zcs (cc̄us̄) [97], X0,1(2900) (csūd̄) [98, 99], T+

cc (ccūd̄) [100, 101], and
X(6900) (ccc̄c̄) [102] tetraquark states, as well properties of other states such as the
χc1(3872) state [103–105]. Although the existence of the multi-quark states was
predicted by the quark model, a detailed analysis of their properties is still needed.

2.3.7 High-pT, fixed-target and dark sector physics

The physics programme of the LHCb experiment has a broad scope and includes
many other areas of research, greatly extending the programme in its first shape.
Thanks to the unique capabilities of its detector, which provides access to a kinematic
region that is not covered by the other LHC experiments, the LHCb collaboration
developed a unique programme of studies in the area of top physics [106, 107],
but also the W [108] and Z [109] bosons that play an important role in reducing
the uncertainties of PDFs that are crucial in Higgs boson measurements and NP
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searches, complementing the measurements performed by the ATLAS and CMS
collaborations.

The installation of SMOG (System for Measuring Overlap with Gas) in
2015 [110–113], allowed the LHCb collaboration to pioneer beam-gas fixed-target
physics in addition to the already existing beam-beam collisions. This includes both
proton and lead beams impinging on gaseous targets, such as He, Ar, Ne, etc.

In the dark or hidden sectors [114], the LHCb employed a broad programme of
searches for new particles that might interact very weakly with the SM particles. In
fact, LHCb has proven to be the most sensitive experiment to visible dark-photon
decays [115, 116] and to GeV-scale Higgs-portal scalars [107, 117].



23

3
New simulation software

MC simulations play a crucial role in high energy physics. They are essential
for designing experiments, developing data analysis techniques, and interpreting
the results of measurements. The precision of these simulations directly impacts
the quality of the physics results. The increasing complexity and volume of data
from the LHC and future experiments make the need for efficient and accurate
simulations more pressing than ever. The new simulation framework for the LHCb
experiment, GAUSS-ON-GAUSSINO, was designed to meet these challenges, and is
described in this chapter.

3.1 From GAUSS to GAUSS-ON-GAUSSINO

In LHCb, data collected by the detector is processed using a set of custom
applications based on the GAUDI [118, 119] core software framework. A simplified
view on the sequencing of the LHCb data processing applications is shown in
Figure 3.2. LHCb applications identically process events collected by the detector
itself or events produced by the simulation software. Simulated events are first
handled by GAUSS [120] that performs the event generation and particle transport
through the detector. The BOOLE application then provides signal digitization. It
mimics the specific sub-detector technologies and electronics response, providing
the same digital output of the data acquisition system.

Producing necessary simulated samples for physics analyses in LHCb consumed
around 90% [121–123] of all the distributed computing resources available to LHCb
during Run 2. The increase in the number of events in Upgrade I, and in future
upgrades, will require to simulate even more events (Figure 3.1).

The version of the simulation software used for the MC productions of Run 2
data analysis, SIM10 being the latest, was not designed to meet the requirements
imposed by the upgrade of the detector. Dependencies of the SIM10 GAUSS

framework are shown in Figure 3.3a. It is a single-threaded application that is
not able to take advantage of the multi-core CPUs available in modern computing
systems. Moreover, the size of the code base and the complexity of the framework
made it difficult to maintain. The age of some parts of the code, which evolved from
a version created almost 20 years ago, required pruning to make it easier to extend.

Other major changes in the software stack the simulation software had to
adapt to include the introduction of DD4HEP [124] for geometry description,
multi-threading in GEANT4 and GAUDI [125, 126]. The introduction of new fast
simulation models was also a necessity to reduce the time to produce simulated
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samples. At the same time, GAUSS still has to provide support for the older
geometries when producing simulated samples for Run 1 and Run 2 physics
analyses.

FIGURE 3.1: Projection of the computing resources available to the
LHCb [121] experiment. The CPU needs for producing 100% of the
required samples with the detailed simulation is shown by the green
bars. The CPU needs in two scenarios with different fractions of
events produced with detailed, fast and ultra-fast simulations are

shown by the blue and dashed red lines respectively.

In order to address the challenges mentioned above, the LHCb simulation
team decided to move all the LHCb-independent components from the simulation
software and place it in a separate project, called GAUSSINO [128–135], as a core
simulation framework, on which all the new versions of GAUSS would be built.
It is also possible to run GAUSSINO as a standalone application, and use it to
explore new software technologies and simulation techniques. Dependencies in the
new LHCb version of the framework, called here GAUSS-ON-GAUSSINO for clarity,
are illustrated in Figure 3.3b. GAUSSINO follows the GAUDI’s inter-event-based
parallelism of the event loop, in which algorithms are scheduled in a way that
guarantees thread-safety. GAUSSINO communicates with GEANT4 objects by
creating corresponding object factories that act as GAUDI tools. The multi-threaded
approach in GAUSS-ON-GAUSSINO has already made it possible to simulate more
events in time by limiting the memory consumption of each event as shown in an
earlier paper [130]. Nevertheless, this was still not enough to meet the requirements
imposed by the upgrade of the experiment. Further tuning of the simulation
software was needed, as well as the introduction of fast simulation models with
the use of ML-based models emerging as an innovative alternative to classical,
algorithmic parametrizations.

In the simulation itself, propagating particles through matter dominates the time
used by the application. The time spent by the SIM10 version of GAUSS in the
simulation in the Run 3 LHCb detector is shown in Figure 3.5. Most of the time
is spent in the calorimeters (around 60 %) and the RICH detectors (around 25 %). A
finer analysis of the relative time spent in each sub-detector of the upgrade geometry
is presented in Figure A.19a for the current version of the framework. Consistent
results are obtained for GAUSS-ON-GAUSSINO, as expected and shown in Figure
A.19b. Additional information about the time spent by each particle is given in
Figure A.21 and Figure A.20 in Appendix A.
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FIGURE 3.2: The data flow in the LHCb experiment [125] in different
data taking periods: Run 1 & 2 (top) and in Run 3 (bottom).

GEANT4
PYTHIA8
EVTGEN

GAUDI

LHCb

GAUSS

(A) GAUSS Run 1 and Run 2 framework.

GEANT4 PYTHIA8 GAUDI

LHCbGAUSSINO

GAUSS

(B) GAUSS-ON-GAUSSINO framework

FIGURE 3.3: Dependencies [127] in the simulation software stack
before and after upgrade. Additional LHCb-specific configuration
for GEANT4, PYTHIA and EVTGEN is not shown in the dependency

graph.

FIGURE 3.4: Dataflow in GAUSSINO with two main phases:
generation and (detector) simulation [136, 137].
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FIGURE 3.5: Detailed timing breakdown per detector in the LHCb
Run 3 simulation. Most of the time is spent in the calorimeters

(around 60%) and the RICH detectors (around 25%).

Scenarios with different fractions of the samples produced with detailed
simulation, fast, and ultra-fast models would allow to fulfill the needs within
the resource forecast. In addition, hardware accelerators [131] like GPUs are
being investigated for the electromagnetic calorimeter simulation with software
packages ADEPT [138] and CELERITAS [139], as well as optical photon propagation
in the Cherenkov detectors with MITSUBA3 [140]. A campaign with the goal
to introduce a palette of fast simulation models to complement the detailed
simulation was launched. ReDecay [141] is a technique, in which the underlying
pp interaction is reused in the simulation of the detector multiple times, with an
independently decaying signal for each event. Lamarr [142] is an in-house, ultra-fast
parametrization framework that extends up to the reconstruction level and provides
high-level reconstruction objects in the output. When it comes to the calorimeters, a
fast simulation model of ECAL based on a point library [143], as well as ML-based
fast simulation models [134] are being developed. Nevertheless, a special interface
is needed in GAUSSINO to exploit them via the fast simulation mechanisms available
in GEANT4.

3.2 Generation

Event generation is the very first step in the simulation software, and it is responsible
for generating interactions which are the primary subjects of the study of physics in
this experiment. These scatterings and decays are generated taking into account
the kinematics and known dynamics of interactions. Particles in the final states are
further known as the primary particles. The exact shape of the event generation
process depends on the type of physics processes that are being simulated. In
the first chapter 1.3.2, most of the components of the event generation step were
described in detail, and in particular: hard subprocesses, parton showers and soft
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subprocesses. In LHCb, the additional decays of unstable, heavy-flavour particles is
performed using a dedicated event generator: EVTGEN [144].

As it turns out, in the simulation software, all these processes can be realized
by calling various generator packages, each covering a different aspect of the
event generation process. The exact sequence and the level of precision in which
the event generation is performed can be usually controlled by the user and
depends on how the generator packages are interfaced to the simulation software.
Moreover, additional tools providing other functionalities, such as generator-level
cuts, pile-up interactions, or beam parameters, can be used to further enhance the
event generation process.

FIGURE 3.6: A graphical representation [145] of the main generation
algorithm used in GAUSSINO and GAUSS-ON-GAUSSINO and the
additional tools that are called to attach additional functionalities to

the event generation process.

3.2.1 Main generation algorithm

GAUSSINO’s implementation of the event generation is heavily based on the SIM10
version of the GAUSS framework, i.e. one GAUDI algorithm with additional tools
that are called to attach additional functionalities to the event generation process.
Each tool has a generic interface with several implementations depending on
the provided configuration. A graphical representation of the main generation
algorithm Generation used in LHC collisions in GAUSSINO with the additional
tools is shown in Figure 3.6.

Production Tool is the most general representation of the physics processes
as depicted in Figure 3.7, which is responsible for all the steps required to generate
collisions: simulation of the hard process, parton evolution, the underlying event
and hadronization. A concrete implementation of the Production Tool is
usually realized by interfacing an external generator, such as PYTHIA8 [28, 29],
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or HERWIG [30]. In SIM10 version of GAUSS, other external generators were
also used, for example BCVEGPY [146] for the production of the Bc meson.
GAUSSINO is equipped with two interfaces to PYTHIA8 depending on how the
multi-threading is handled in the generator: shared Pythia8Interface and
thread-local Pythia8MTInterface. Other external generators have not yet been
ported to GAUSSINO or GAUSS-ON-GAUSSINO, as their use still has to be adapted
to the multi-threading scheme used in the new version of the framework. The
scope of operation of the ProductionTool is based on what was used in SIM10
version of GAUSS, however, another way of interfacing the physics processes was
investigated [147] in GAUSSINO, i.e. separating the hard process from the showering
and hadronization processes in the production tool, in order to make the GAUSSINO

flexible enough to interface MADGRAPH explicitly, in view of using its GPU version
currently under development.

Decay Tool is another important type of generation tools that is used to
decay unstable hadrons produced by the Production Tool. In most cases,
the EVTGEN generator is usually the default choice for the Decay Tool in
GAUSS-ON-GAUSSINO, because the LHCb experiment needs a very detailed
simulation of B decays, taking into account CP violation effects or angular
correlations in decay chains.

Sample Generation Tool, on the other hand, defines what type of events are
generated in the simulation. The most common types are:

• Minimum Bias, which keeps all the events generated by the production
generator,

• Inclusive that only keeps events containing a particle out of a configurable
list of particle types, e.g. in GAUSS-ON-GAUSSINO inclusive events are defined
as events containing at least one charm hadron or one beauty hadron,

• Signal, which operates in 3 modes:

– SignalPlain, that keeps all the vents produced by the production
generator containing a ‘signal’ particle of a given type, e.g. in LHCb
containing B+, B0, J/ψ, etc.,

– SignalForcedFragmentation, which does the same as
SignalPlain but uses forced fragmentation to obtain the ‘signal’
particle relatively quickly,

– SignalRepeatedHadronization, which again is the same as
SignalPlain but re-hadronizes the same event several times until the
correct type of ‘signal’ particle is found.

• and Special that is applied to produce events either generated with special
generators settings or specific generators, e.g. H0, Z, W or t-physics in LHCb.

Pile-Up Tool is used to generate additional interactions in a given bunch
crossing. The additional interactions are generated by adding minimum-bias
interactions on top of the main interaction. The Pile-Up Tool then obtains the
number of interactions in one event, Nint, following a Poisson law with a mean value
ν from the formula:

ν =
L · σtot

f
, (3.1)

where L is the instantaneous luminosity, σtot is the total cross-section of the collision,
and f is the collision frequency of the LHC bunches. The Pile-Up Tool can be
used in 3 modes:
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• FixedLuminosity that generates the pile-up events with a fixed luminosity,

• VariableLuminosity that uses an exponentially decreasing luminosity
profile to generate the pile-up events,

• FixedNInteractions that generates a fixed number of interactions per
event.

Beam Tool is responsible for computing the beam parameters based on the
kinematics of two particle beams or a single beam against a fixed target.

If cuts can be applied at the generator level in order to reject the events that
would not participate in the physics analysis, then they can be provided using the
Cut Tool. Concrete implementations exist in GAUSS-ON-GAUSSINO, for example:

• LHCbAcceptance that rejects signal particles that do not travel in the
acceptance of the LHCb detector,

• DaughtersInLHCb that ensures that the direction of decay products of
‘signal’ particles is within the acceptance of the LHCb detector.

VertexSmearingTool is used to implement the generation of the luminous region
of the collisions by applying one of the following modes:

• BeamSpotSmearVertex that smears the position of the interaction point
around the mean collision point by following normal distributions in x, y, and
z and fixed time t,

• FlatZSmearVertex that smears the position of the interaction point around
the mean collision point by following normal distributions in x, y, and flat
distribution in z and fixed time t,

• BeamSpot4D that smears the position of the interaction point around the mean
collision point by following normal distributions in x, y, z, and t.

The main generation algorithm in GAUSSINO is realized in three main actions:

1. Initialization: this step mainly deals with the configuration obtained from
PYTHON configurables,

2. Event loop execution: the result of this step is the generation of one physics
event per thread, which is then stored in the HEPMC3 format and transferred
to the next step,

3. Finalization: monitoring counters and histograms are produced at this stage.

3.2.2 Particle guns

In addition to the Generation algorithm, which is responsible for the generation
of the events with collisions, there is also another algorithm called ParticleGun
that is used to generate an arbitrary number of particles with a given momentum
and position from a given vertex. This algorithm is very useful when it comes to
generating particles for the calibration of the detector or validation of the simulation
and reconstruction algorithms. It can also be used to simulate cosmic rays when the
detector is taking data, but the beam is not present.

ParticleGun is compatible with the Decay Tool, VertexSmearingTool
and Cut Tool in the same way as the Generation algorithm. The main
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FIGURE 3.7: Possible implementations of the sequencing to event
generation processes that were considered in GAUSSINO [147] for
direct control through specific interfaces. The blue and purple are
the final choices depending on the choice of generators and processes

to be simulated.

difference between the ParticleGun and the Generation algorithm is that the
ParticleGun does not use external generators to produce the particles, but instead
generates them directly in the simulation software. This is achieved by using various
Particle Gun Tools:

• FixedMomentum that generates particles with a fixed momentum and
identity,

• FlatPtRapidity, which generates particles by sampling the transverse
momentum and rapidity from a flat distribution,

• GaussianTheta that can be used to generate particles by sampling the polar
angle from normal distribution, and the azimuthal angle and momentum from
a flat distribution,

• MomentumRange that generates particles by sampling the polar angle,
azimuthal angle, and momentum from a flat distribution,

• MomentumSpectrum, which generates particles with momentum sampled
from a custom distribution,

• BeamShape that emulates the beam of particles based on the beam parameters
such as the beam spot size, emittance, etc.

• MaterialEval, which is a tool that generates a grid of particles either defined
in Cartesian or cylindrical coordinates.
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The main PYTHON configurable responsible for the event generation part
in GAUSSINO is called GaussinoGeneration, whereas an equivalent in
GAUSS-ON-GAUSSINO is called GaussGeneration. GaussinoConfigurable
can be also used to generate events based on particle guns.

3.3 Particle transport

In Section 1.3.3, the processes happening in the detector once the primary particles
are generated were described in detail. In GAUSSINO and GAUSS-ON-GAUSSINO,
the main software engine responsible for the particle propagation through the
detector is GEANT4. The simulation with GEANT4 physics-based models is referred
to as the detailed simulation. GEANT4 provides the way of simulating the detector
response, which is the most precise and resembling reality because it simulates
physics interactions in detectors. Parametrization of the detector response is another
way of doing that, and it is referred to as the fast simulation.

DD4hep Internal

Geometry in Gaussino

Geometry in Gauss-on-Gaussino

DetDesc

FIGURE 3.8: Dependencies of GAUSSINO and GAUSS-ON-GAUSSINO
on various detector description libraries.

3.3.1 Geometry description

The geometry of the detector, described in its native format has to be converted
to C++ objects understandable by GEANT4. Therefore, dedicated tools are needed
to convert the geometry description to the format that can be used by GEANT4.
The dependencies of GAUSSINO and GAUSS-ON-GAUSSINO on different description
tools are shown in Figure 3.8. GAUSS supported the legacy geometry description
in LHCb that was used for Run 1 and Run 2 of the data taking: DETDESC [148]
– a toolkit that was used to read the geometry description written in XML format.
The LHCb upgrade required the introduction of a new geometry description toolkit
in the software stack, DD4HEP [124], which speeds up the geometry readout
by moving part of the logic to the C++ code. DD4HEP is a common toolkit
that can be used to describe the geometry of any detector in HEP. An interface
to steer the conversion of DD4HEP objects to native GEANT4 geometry objects
was implemented in GAUSSINO allowing for the description of the Run 3 LHCb
detector within GAUSS-ON-GAUSSINO, as well as for other detectors using pure
GAUSSINO. GAUSSINO is also equipped with an internal geometry description
package, EXTERNALDETECTOR, that allows to add simple volumes to the existing
geometry at runtime, or can be used in GAUSSINO standalone mode to provide a
simple geometry description for the simulation of the detector response.
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3.3.2 Detailed simulation with GEANT4

Interface

GEANT4 is a toolkit that was designed to work in a standalone mode. In
order to pass the data between GAUSSINO and GEANT4, a special interface was
developed [128]. A special customization of the main run manager used by GEANT4
(G4MTRunManager) and thread-local run managers (G4WorkerRunManager) was
introduced in GAUSSINO: GiGaMTRunManager and GiGaWorkerRunManager
respectively. The main execution of the detector transport algorithm is done in
the GiGaAlg algorithm. In addition to that, a special GiGaMT service is used to
initialize GEANT4 and manage event-by-event communications with GEANT4. The
interplay between each of the components is shown in Figure 3.9. GAUDI tools work
as factories that create GEANT4 objects and manage them throughout the simulation
process. Once the event generation phase is finished, the generated event is placed in
a FIFO queue, from which the GEANT4 worker threads take the event and perform
the simulation.

Configuration

Modeling of the interactions between particles and the detector material is done
by using the so-called physics lists. They are used to define the set of models that
are used to simulate the interactions between particles and the detector material.
The models were described schematically in Section 1.3.3. The choice of the physics
list depends on the experiment and usually boils down to the trade-off between
the precision of the simulation and the time needed to perform it. In GAUSSINO,
the physics lists are defined in the GiGaMT service, and the choice of the physics
list is made in the PYTHON configuration file via the GaussinoSimulation
configurable. In GAUSS-ON-GAUSSINO, a set of predefined physics lists is available,
optimized for the LHCb detector, and the choice of the physics list is made
configurable in the GaussSimulation.

FIGURE 3.9: Integration and workflow between GAUDI and GEANT4
simulation frameworks in GAUSSINO.
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3.3.3 Interfacing fast simulations with GEANT4

GAUSSINO provides a generic FASTSIMULATION interface to GEANT4 objects in
order to minimize the work spent in the future on implementing fast simulation
models, and also to guarantee the integrity of the simulated data. Following the
convention already present in GAUSSINO, the FASTSIMULATION interface consists
of object factories ensuring GEANT4 objects are configured properly and at the right
moment when running the application. A set of the most important factories and
their GEANT4 counterparts are presented in Figure 3.10. Most of the work necessary
to implement a fast simulation model itself can be pushed to the configuration in
python files. The most optimistic scenario is that the developer will only have to
implement a G4VFastSimulationModel::DoIt() callback method in C++ that
is the key component of the whole interface and actually describes the whole process
of generating fast hits.

Gaussino

Fast Simulation

PhysicsFactory

RegionFactory

ModelFactory

DetectorFactory

Geant4

G4FastSimulationPhysics

G4Region

G4VFastSimulationModel

G4VSensitiveDetector

construct()

construct()

construct()

construct()
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D

etector
C

onstruction

H
it

Extraction

FIGURE 3.10: A simplified model of the FastSimulation interface with
a set of dedicated factories that construct the corresponding Geant4

objects.

Two, purely abstract, fast simulation models are introduced in GAUSSINO in
order to measure the performance of the interface, and to mark off a lower bound
in terms of time spent on the simulation for all further fast simulation models. An
ImmediateDeposit model generates one hit per particle that intercepts the region
where the ImmediateDeposit model is active and deposits all of its energy in
that hit. ImmediateDeposit gives useful information about the timing needed for
the infrastructure itself to call the fast simulation methods. The ShowerDeposit
model works in a similar manner, but it splits the energy of a particle into a selected
number of hits, and generates them randomly around the position where the particle
intercepted the region. ShowerDeposit provides the minimum amount of time
needed to generate a specific number of hits with no additional calculations.

A comparison between these two different models using a particle gun that
creates a grid of 3328 evenly-spaced photons originating at the LHCb interaction
point, is presented in Figure 3.11. Time spent in the ImmediateDeposit model
is comparable across different photon energies and works as expected. On the
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FIGURE 3.11: Comparison of the time [127] spent by different
fast simulation models (ImmediateDeposit and ShowerDeposit)
and a detailed simulation with GEANT4 in the electromagnetic
calorimeter. In each of the models tested, a particle gun generates a
grid of evenly-spaced photons of a particular energy. For the detailed
simulation the time of the current version of GAUSS is also given as

reference.

other hand, the time spent in the ShowerDeposit model increases with the
energy of photons. Naturally, this is caused by a larger number of hits generated
in each shower. In the worst case, a 100 GeV photon generates 21558 hits on
average in the calorimeter. Only around 25 seconds are needed for the fast
simulation infrastructure in GAUSSINO with 3 threads to simulate 3328 x 21558
hits. In a detailed simulation, the time needed to simulate the same number of
hits rises to 2145 seconds. The results prove that the infrastructure, used by the
FASTSIMULATION interface, provides the possibility to significantly improve the
time spent by the simulation software in the detector, provided the fast simulation
model gives a similar level of precision in physics.

Fast simulation training datasets

Many of the advanced, fast simulation models require prior tuning or training
on some input data in order to provide valid results. When implementing a fast
simulation model, a developer specifies a region of the whole detector that does not
necessarily have to coincide with the sub-detectors boundaries. The information
required to train these models is not always available in a standard output file, as
GAUSSINO stores only the minimum amount of information required for physics
studies. Therefore, the developers of fast simulation models should be given
the possibility to turn off any unneeded optimization features and gather particle
information at any given place in the detector to train the model.

Information about the simulated objects can be easily obtained by introducing a
new, virtual regions, imitating the sensitive sub-detector that would register hits of
an abstract type with all the information needed to train the fast simulation model.
A few difficulties may be encountered with this approach though. Since these
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detectors will only be used in just a few, specific studies, setting them up should
be configurable on the fly without having to introduce them in the existing detector
description, hosted in a database in an xml format. This functionality is provided
by a new package in GAUSSINO called EXTERNALDETECTOR, that allows for virtual
sub-detectors of any shape to be inserted. An example of an external plane-like
detector embedded in the LHCb geometry, as seen by GEANT4, is illustrated in
Figure 3.13. A side view of the same setup is presented in Figure 3.14, together
with information of simulated particles and their origin.

The user can also choose what kind of factories should be attached to an external
detector. In principle, the external detector can become a sensitive detector (i.e.
it will be activated to register hits) or the user can add a monitoring tool that
will be launched when the simulation of the whole event is complete in order
to verify the integrity of the collected data. MCCOLLECTOR provides a set of
abstract sensitive detector factories that are easier to configure than those used in
the standard simulation.

FIGURE 3.12: A simple example demonstrating the core functionality
of the PARALLELGEOMETRY package. In GEANT4, multiple parallel
worlds can be defined, each of them containing a separate geometry.
The simulation takes place simultaneously in all of the defined
geometries depending on the hierarchy of the worlds, location and

materials of the volumes.

Finally, it might be the case that the external detector will overlap with other
existing volumes in the geometry. PARALLELGEOMETRY exploits an abstract concept
introduced by GEANT4 that allows for having multiple geometries in parallel,
each of them performing the particle transport without interference from objects
defined in other geometries. The mechanism of the PARALLELGEOMETRY package
is illustrated in Figure 3.12.

The software provides a generic way of producing the training datasets for fast
simulation models. Two simple examples are presented in this chapter in order to
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FIGURE 3.13: LHCb upgrade geometry [127] as seen by the GEANT4
toolkit with an example of a plane-like detector (red, thin plane),
introduced by the EXTERNALDETECTOR package. When used as a
collector of particle information, it may provide the source of training
information about incident particles for all the sub-detectors placed
downstream from it along the beamline: ECAL (cyan box), HCAL

(orange box), or muon system (green box).
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FIGURE 3.14: Particles generated [127] using the SIM10 framework
in the simulation of a minimum bias event with the beam conditions
as foreseen in the Run 3 data-taking period and the upgrade
geometry. An external plane-like detector that collects information

about traversing particles is depicted with the red color.
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show how they can be used for the models under development for ECAL (e.g. point
library [143] or ML-based [134]). Visual representations of the training datasets,
produced by placing a collector plane in front of ECAL, are illustrated in Figure 3.15.
In Figure 3.15a, a grid of 3328 evenly-spaced photons, similar to that used as an
example when testing the performance of the interface, is shown. In Figure 3.15b, an
input for the fast simulation studies requiring minimum bias events is presented.

3.4 Visualization

Visualization techniques in simulations are essential for verifying the integrity of the
description of the detector geometry, as well as for understanding the data produced
by the simulation. The natural choice for visualization in GAUSSINO is anything that
is already supported by GEANT4, as it is the main particle transport engine used
in the framework. Another possibility is to use the new experiment-independent
framework for event and geometry visualization, already used in LHCb: PHOENIX.
Both of these technologies were explored in GAUSSINO [149], and the results are
presented in the following sections.

3.4.1 Integration of GEANT4 visualization in GAUSSINO

GEANT4 provides support for both interactive and batch visualization of the
geometry and data produced by the simulation. The visualization can be enabled
with the GEANT4 visualization drivers, which are in most cases external libraries
that GEANT4 is linked against. The support for some of the libraries was provided
in the previous versions of the GAUSS simulation framework in the form of the
GEANT4 visualization manager. However, the support for the visualization was
not enabled in the GAUSSINO framework, and it had to be re-implemented facing
the challenges of the multi-threading environment. In particular, the visualization
thread, spawned by GEANT4, had to be correctly synchronized with all the other
GAUDI and GEANT4 threads.

Available visualization drivers

A wide array of visualization drivers is available in GEANT4, each serving a distinct
purpose. Some prioritize achieving the highest resolution, such as DAWN, while
others, like OPENGL, emphasize interactivity. In GAUSSINO, four drivers have been
explored and activated [150]: ASCIITREE, DAWN, HEPREP, and OPENGL.

ASCIITREE serves as a non-graphical system for dumping geometry hierarchy
into a text file. It provides a tree representation with control over the level of
detail and offers calculations for mass and volume. Despite its speed and low
computational cost, ASCIITREE lacks the capability to visualize trajectories or hits,
restricting its use to extracting geometry information only.

DAWN is recognized as a high-quality technical renderer, aiming for
high-resolution images through vector PostScript output. However, its
computational intensity and reliance on specialized browsers limited interactivity
and ease of use for viewing and exporting images.

Unlike its predecessors, HEPREP offers interactive features such as zooming,
translation, and rotation. Its hierarchical view of geometry and data, coupled with
control over data visibility, enhances user experience. Despite supporting various
vector formats for export, photorealistic images are not produced by HEPREP, but is
limited to a wireframe view and simple area fills in geometry.
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(A) Particle gun with a grid of 3328 evenly-spaced 100 MeV photons.
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(B) Minimum bias event with the beam conditions as foreseen in the Run 3 data-taking period and the
upgrade geometry.

FIGURE 3.15: Visualization [127] of the training dataset produced by
placing a collector plane in front of the electromagnetic calorimeter.
Each of the images represent the ECAL energy deposits (hits)
projected onto an xy-plane. The main role of the collector plane
is to gather the positions of all particles intercepting the front face
of ECAL. The particle positions are then linked (red lines) with the

energetic centers of the showers generated by these particles.
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OPENGL provides direct visualization of geometry and data from the GEANT4
command console, rendering photorealistic images with interactive features like
zooming and rotation. While fast redraws are offered leveraging graphics hardware,
additional GL libraries are required, and struggles with large numbers of steps or
hits in visualization are encountered.

Activating the GEANT4 visualization driver in GAUSSINO is straightforward. In
the Python configuration file, the visualization should be initialized, GEANT4 chosen
as the visualization framework, and the desired Geant4 visualization driver selected.

Geometry visualization

Visualization of the detector geometry became the first priority when working on
the integration of the visualization infrastructure in GAUSSINO. The geometry
visualization is crucial for verifying the integrity of the detector description, and
helped in identifying missing or incorrectly modeled parts of the geometry during
the commissioning of the upgraded LHCb detector.

The geometry visualization works with all different geometry description tools
used in GAUSSINO and GAUSS-ON-GAUSSINO. An example of the visualization of
simple volumes using the EXTERNALDETECTOR package in GAUSSINO standalone.
In Figure 3.16a, a cube block made of lead is visualized, in an attempt to mimic the
behavior of the calorimeters, while in Figure 3.16b, a set of silicon planes is used to
mimic the behavior of silicon detectors used for tracking in real experiments.

More advanced visualization of the LHCb detector is also possible with detector
description tools available in GAUSS-ON-GAUSSINO. The upstream viewpoint with
the LHCb detector description rendered with DETDESC is shown in Figure 3.16c,
while the detector description rendered with DD4HEP is shown in Figure 3.16d.
Similarly, the downstream viewpoint is shown in Figure 3.16e and Figure 3.16f for
DETDESC and DD4HEP, respectively.

Simulated data visualization

In the previous section, visualization with GEANT4 of the geometry was discussed.
However, visualization of simulated data is also possible with GEANT4 visualization
drivers and can be enabled in GAUSSINO and GAUSS-ON-GAUSSINO. It can be used
to visualize trajectories, hits, and other data produced by the simulation.

In some cases, a special configuration in GAUSSINO is needed that enables the
recording of additional simulation data information such as full trajectory or native
hit information, which in regular simulations is not stored due to the large amount
of data produced. When it comes to the amount of detail in the visualization of
trajectories, the user can choose between the following options:

• All, when all trajectories are drawn,

• Marked that keeps only the trajectories of particles that hit the sensitive
detectors,

• Truth, when only the trajectories of particles that were persisted in the
simulation are drawn.
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(A) Visualization of a cube block made of
lead with the EXTERNALDETECTOR package in

GAUSSINO standalone.

(B) Visualization of silicon tracking planes with
the EXTERNALDETECTOR package in GAUSSINO

standalone.

(C) Upstream viewpoint with the LHCb detector
description rendered with DETDESC

(D) Upstream viewpoint with the LHCb detector
description rendered with DD4HEP (simulation

status as of August 2022).

(E) Downstream viewpoint with the LHCb
detector description rendered with DETDESC

(F) Downstream viewpoint with the LHCb
detector description rendered with DD4HEP

(simulation status as of August 2022).

FIGURE 3.16: Visualization of simple volumes with
EXTERNALDETECTOR in GAUSSINO and the LHCb detector with
either the DETDESC or the DD4HEP detector description toolkits in

GAUSS-ON-GAUSSINO and the OPENGL visualization driver.
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(A) Trajectories drawn by particle ID (B) Trajectories drawn by momentum

(C) Trajectories with | p⃗| > 10 MeV
(D) Trajectories of neutral particles with

| p⃗| > 10 MeV

FIGURE 3.17: Simulation of an electron hitting a lead cube target and
the visualization of trajectories with different models and filters in

GAUSSINO.

There are several ways to visualize the simulation data and GAUSSINO provides
support for the majority of the options available in GEANT4. An example of the
visualization of trajectories with different models and filters in GAUSSINO is shown
in Figures 3.17. The user can choose to draw trajectories by particle ID, momentum,
or any other attribute, and filter them by momentum, charge, pseudorapidity or any
other attribute. Custom trajectory models and filters can also be created. Additional
options are passed as dictionaries.

Magnetic field visualization

In addition to the visualization of the geometry and simulation data, the
visualization of vector fields with GEANT4 is also possible in GAUSSINO. The
magnetic field visualization is particularly useful for understanding how trajectories
bend in the detector. In order to activate the magnetic field visualization, the user
should set the MagneticField property of the GaussinoVisualization to a
dictionary with the desired properties.
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(A) Uniform magnetic field in a cube rendered
with the EXTERNALDETECTOR package in

GAUSSINO standalone.

(B) The dipole magnet in the LHCb detector
and the visualization of its magnetic field in

GAUSS-ON-GAUSSINO.

FIGURE 3.18: Visualization of the magnetic field in GAUSSINO.

3.4.2 PHOENIX visualization

Having introduced the visualization of the geometry and simulation data with
GEANT4, the next step was to explore the possibility of using the PHOENIX

framework for visualization. PHOENIX [151] is an experiment-independent
framework for event and geometry visualization, based on the THREE.JS [152]
library and ANGULAR [153] framework. A key advantage of PHOENIX is that
it enables direct comparisons between Monte Carlo (MC) simulated events and
their reconstructed counterparts. It was designed to be used in a web browser,
and it provides a user-friendly interface for the visualization of the detector
geometry. In LHCb, PHOENIX has successfully been used for the visualization of
the reconstructed data, in the form of an event display [154], and the possibility of
visualizing the simulated data was yet to be explored [149].

Since it is a web-based framework, PHOENIX can only be used as an external
visualization tool, based on the data produced by the simulation. The simulated
data can be exported in JSON format, which is then used as input for the PHOENIX

visualization. On the other hand, the geometry can be exported to GDML format
with GAUSS-ON-GAUSSINO, and adapted to the format required by PHOENIX.

The user can choose to draw trajectories based on different properties,
filter them by different attributes, and even create custom trajectory models.
The only thing that changes is the fact that there are no drivers to choose
from, as the visualization is done in the web browser. In the PHOENIX

visualization, each trajectory, is a JSON object encompassing attributes necessary
for rendering, such as the ‘pos’ attribute, which is an array detailing all points
traversed by the particle. Additional information included covers the trajectory’s
initial momentum, transverse momentum, pseudorapidity, charge, and the
designated color for depiction. PHOENIX supports various trajectory visualization
models like drawByCharge, drawByParticleID, drawByMomentum, and
drawByKineticEnergy, mirroring the GEANT4 features, thus eliminating the
need for users to configure framework-specific settings. These models facilitate the
selection of visualization preferences through a dedicated interface in GAUSSINO.
Furthermore, PHOENIX allows for the filtering of trajectories, using criteria such
as transverse momentum and pseudorapidity, although these filters require both
minimum and maximum values.
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(A) Trajectories drawn by particle ID (B) Trajectories drawn by momentum

(C) Trajectories of particles with | p⃗| > 25 MeV (D) Trajectories with | p⃗| > 1 MeV and η < 3

(E) Visualization of the LHCb detector geometry in PHOENIX.

FIGURE 3.19: Examples of trajectory filtering in Phoenix
visualization.
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3.5 Documentation

Both GAUSSINO and GAUSS-ON-GAUSSINO frameworks have been documented
with the help of the SPHINX documentation generator [155]. Two websites
have been created [156, 157], one for each framework. Each website contains
installation instructions, simple examples, and detailed descriptions of some of
the configuration options. The landing page of the GAUSSINO documentation
website is shown in Figure 3.20, while the landing page of the GAUSS-ON-GAUSSINO

documentation website is shown in Figure 3.21. The documentation is automatically
generated from the framework source code, and each release has its own
documentation version.

FIGURE 3.20: The GAUSSINO documentation website.

FIGURE 3.21: The GAUSS-ON-GAUSSINO documentation website.
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4
Machine learning and simulations

Experiments in high-energy physics rely heavily on efficient computing systems to
process the vast amounts of data produced by the detectors and simulations. As
outlined in Chapters 1 and 3, the traditional approach to data processing is becoming
increasingly challenging due to the growing complexity of the detectors and the
increasing amount of data produced by the experiments. This is especially visible
in the case of the LHCb experiment, which is expected to face one of the most
challenging trigger rates among the LHC experiments in the upcoming runs (see
Figure 1.4).

Given these challenges, machine learning (ML) techniques arise as an effective
solution due to their ability to learn the underlying patterns and correlations in the
data and produce the results efficiently. ML methods have already been widely
used in high-energy physics for a variety of tasks, such as data analysis, event
reconstruction, and Monte Carlo simulations. The path to the adoption of ML in
high-energy physics is usually not straightforward, as the experiments require a
relatively high level of precision, and at the same time, the algorithms have to be
able to process vast amounts of data in a short time. Moreover, most of the ML
tools and libraries used for training and inference are still being developed. In this
chapter, three selected applications of ML are presented:

• the integration of ML libraries for running inference in the GAUSSINO

simulation framework,

• the use of the Generative AI for generic calorimeter fast simulations in
GAUSSINO, and its production-ready implementation in the simulation
framework of the LHCb experiment: GAUSS-ON-GAUSSINO,

• and the application of ML-based object detection algorithms in the cluster
reconstruction of the LHCb electromagnetic calorimeter.
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4.1 Interfacing machine learning libraries in the simulation
framework

4.1.1 Available backends

Introducing machine learning models in the simulation framework requires an
efficient way to interface with the external libraries to be able to:

• load the model at the initialization stage (the model could be written in a
different language, e.g. Python),

• perform the inference at the event processing stage.

In order to make this happen, the ML backend has to be written in C++, as the
rest of the simulation framework. The multithreading environment should be taken
into account, as the simulation framework is designed to run on multiple threads.
Moreover, different random seeds should be set in threads in a way that allows
for producing stable and reproducible results. Finally, the interface itself should
be relatively simple and flexible to use, so that the user can easily switch between
different models and libraries, ideally without the need to recompile the simulation
framework.

Two main libraries have been considered in this work: C++ APIs for
PyTorch [158] and ONNXRuntime [159]. There are also other libraries available
including Tensorflow [160], Caffe [161], and others, which might be considered in
the future. PyTorch C++ API consists of 5 main components:

• ATen the tensor library,

• Autograd the automatic differentiation library,

• C++ Frontend, which includes high-level constructs for training and
evaluation,

• TorchScript the JIT compiler and interpreter,

• C++ Extensions with custom C++ and CUDA* routines.

ATen can be used in the simulation framework to convert the input data to the tensor
format, which is the main data structure used in PyTorch. The C++ Frontend can
be used to load the model and perform the inference. TorchScript can be used to
convert the model to the intermediate representation, which can be then loaded in
the simulation framework.

On the other hand, the ONNXRuntime was designed to be a cross-platform
ML model accelerator with flexible interface to hardware-specific libraries. ONNX
format is an open format for representing deep learning models, which allows for
interoperability between different frameworks.

4.1.2 Integration in GAUSSINO

The integration of the libraries took place in the GAUSSINO framework, however,
the interface was designed to be as generic as possible, so that it can be easily ported
outside of the framework. Each interface consists of two main components:

*CUDA is a parallel computing platform enabling GPU acceleration for tasks.
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• the ModelServer that inherits from ModelServerBase and depends only
on the components provided by the external library,

• and ModelServerSvc, which inherits from GAUDI’s Service, as well as the
IModelServerSvc that acts as a wrapper around the ModelServer.

Because of the fact that the ModelServer is a pure C++ class, it can be easily tested
in a standalone environment, without the need to run the simulation framework.
The ModelServer exposes the main evaluate method, which is used to perform
the inference on the loaded model. The ModelServerSvc is then used to provide
the access to the ModelServer in the algorithm, as well as to give the possibility
to steer the configuration of the model and the library via PYTHON configuration
files. Moreover, Service is an entity that lasts throughout the whole run of the
simulation framework, so the model is loaded only once at the initialization stage,
and then the inference can be performed by multiple algorithms.

Both inputs and outputs of the evaluate are templated, which allows for a
flexible way of passing the data to and from the model. The evaluate method is
then used to perform the inference on the loaded model. The input data is passed
to the model in the form of the tensor, which is the main data structure used in
PyTorch and ONNXRuntime. If the model accepts a different type of input or
different number of inputs, and the automatic type deduction is not possible, an
error is thrown.

4.1.3 Performance tests

Both PyTorch and ONNXRuntime allow for setting the number of threads used for
the inference. There are two types of parallelisations that can be used:

• inter-op parallelism, which allows for parallelizing the tasks that are forked
within the application process,

• and intra-op parallelism that can be used to speed up element-wise operations
on large tensors, etc.

The performance of the PyTorch and ONNX backends was tested in GAUSSINO

by running the inference on a very simple model to measure the the actual
performance of the infrastructure, not limited by the complexity of the model
or particle transport. The model used for the tests consisted of a single matrix
multiplication operation: C = AB where {A, B, C} ∈ R1024×1024. The operation was
repeated 1000 times with different numbers of inter-op and intra-op threads. The
tests were performed with a single machine equipped with two Intel Xeon E5-2630
v4 CPUs with 10 cores each and hyperthreading enabled, which gives a total of 40
threads. The results of the tests in terms of the total throughput ratio and the total
virtual memory ratio are presented in Figures 4.1 and 4.2, respectively. In these
tests, the number of the inter-op threads is always the same as the number of GAUDI

threads to ensure the same number of events are processed concurrently. Additional,
more detailed results are presented in Appendix C.
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FIGURE 4.1: Total throughput ratio for the PyTorch and ONNX
backends in GAUSSINO with different numbers of inter-op threads

and intra-op threads.
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FIGURE 4.2: Total virtual memory ratio for the PyTorch and ONNX
backends in GAUSSINO with different numbers of inter-op threads

and intra-op threads.
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4.2 Generative AI for calorimeter fast simulations

Generative AI [162] models have emerged as a promising solution to the
computational challenges faced by fast simulations. These models can learn
the underlying patterns and correlations in the data, enabling them to generate
realistic simulations with significantly reduced computational costs. The models
can be divided into two main categories: fully generative models and refinement
techniques. Fully generative models replace classical simulation engines by taking
generated particle data or random noise as input, while refinement techniques
enhance the quality of simulated events by taking lower-quality simulations as
input. State-of-the-art generative models include Generative Adversarial Networks
(GANs), Variational Autoencoders (VAEs), and Normalizing Flows. Some of
them are already being used in HEP experiments in production [134, 163, 164].
On the other hand, newer architectures like Transformer-based models [165]
and Diffusion models [166] have shown promise in producing more accurate
simulations [167–169].

(A) 3D visualization of the virtual energy
deposits in the calorimeter.

(B) Projection of the virtual energy deposits in the
calorimeter onto the x-y plane.

FIGURE 4.3: Visualization [134] of the virtual energy deposits
generated by the modified VAE model in place of the detailed

GEANT4 simulation.

ML models, once tested, have to be integrated into the simulation framework of
the experiment. This process can be complex and time-consuming, as the models
need to be adapted to the specific environment of the simulation framework that
includes complex geometries, demanding multithreading, etc. GAUSSINO with its
modular design is an ideal platform for testing and integrating generic generative
AI models into the simulation framework.

4.2.1 Generic calorimeter fast simulations in GAUSSINO

GAUSSINO with its ability to run standalone simulations, and at the same time being
the building block of the simulation framework of the LHCb experiment [132–134],
is an ideal platform for testing and integrating generic generative AI models into the
LHCb simulation framework. The models can be trained on generic datasets, and
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then adapted to the specific requirements of any experiment’s simulation framework
built on top of GAUSSINO.

CALOCHALLENGE in GAUSSINO

CALOCHALLENGE [170] is the first community-wide challenge for the development
of fast and accurate calorimeter simulations. It provides three datasets, each with
a different level of complexity. The setup for each of the datasets is very similar:
particles are generated in the center of a cylindrical calorimeter, and the energy
deposits are recorded in virtual concentric cylinders acting as detectors. The
detectors are created on the fly, along the direction of the propagated particle in
order to encapsulate the energy deposits. Each detector is segmented along its axial
coordinate z, as well as the radial r and azimuthal ϕ variables. Visualization of the
virtual energy deposits generated in the calorimeter is presented in Figure 4.4a.

(A) Visualization of the how the energy deposits
are generated in CALOCHALLENGE datasets. The

image is taken from [170]

(B) Visualization of the
CALOCHALLENGE-comptible setup in
GAUSSINO consisting of a cylindrical calorimeter

and a particle gun located in the center.

FIGURE 4.4: CALOCHALLENGE setup for generating generic
calorimeter training datasets.

FIGURE 4.5: Data flow in the hybrid simulation setup in GAUSSINO.
The production of ML-based data components (red arrows) is

integrated with the traditional simulation chain (blue arrows).
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The CALOCHALLENGE setup, although very simple in its nature, requires a
bit of work to be adapted to the GAUSSINO simulation framework. The selection
of particles that are fast simulated in the calorimeter is performed with the fast
simulation interface described in Section 3.3.3. At inference time, the particles
are stopped just in front of the calorimeter. GEANT4 performs then the rest of
the simulation within the GiGaAlg algorithm as explained in Section 3.3.2. All
the information about the particles is stored within the CollectorHits. They
are then retrieved from G4Events object in GetCollectorHitsAlg algorithm
that converts them into the hit format compatible with the event model used in
GAUSSINO. The collector hits are then passed to the GetMLCaloHitsAlg that
performs the inference on the ML model with the collector hits as input. The
inference is performed using the interface to ML-backends introduced in Section 4.1.

FIGURE 4.6: Energy distribution of a pure VAE model trained on the
CALOCHALLENGE-compatible dataset produced in GAUSSINO.

Variational Autoencoder with Profiles

Variational Autoencoders (VAEs) [171] have been used as the first model in the
CALOCHALLENGE to generate the energy deposits in the calorimeter. They are
similar to pure Autoencoders, in the sense that they consist of two main components:
the encoder and the decoder. The encoder takes the input data and maps it to the
latent space (i.e. space containing learnt properties, cf. Figure 4.7 in pink), while
the decoder takes the latent space and maps it back to the input space. In VAEs,
the encoder and decoder are connected through a probabilistic latent space, i.e. the
latent space is sampled from a probability distribution (Gaussian). The encoder and
the decoder are trained simultaneously, usually by applying the reparametrization
trick, which allows for backpropagation through the sampling process. At inference
time, only the decoder is used to generate the data.

VAEs are trained in an unsupervised manner, i.e. they do not require labeled
data. The virtual cylinders with energy deposits are fed to the model as input, and
the model is trained to reconstruct the same deposits. Additional information about
the particle is also fed to the model: the type encoded as a one-hot vector, the energy,
and azimuthal θ and polar angles φ at which the particle entered the calorimeter.

VAEs are known to have problems in generating sparse data, which is a typical
case for calorimeter simulations. Figure 4.6 shows the energy distribution of a
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pure VAE model trained on the CALOCHALLENGE-compatible dataset produced
in GAUSSINO. The energy distribution is not accurate, and the model smears the
energy deposit over the whole cylinder.

x

p

encoder
eθ(x)

µx

σx

z ∼ N (µx, σx) decoder
dϕ(z)p

n̂max

êmax

ẑ

φ̂

ρ̂

ê

FIGURE 4.7: Architecture of a modified VAE model
(VAEWithProfiles) used for the calorimeter fast simulations in

GAUSSINO.

In order to improve the quality of the generated energy deposits, a modified
VAE model (VAEWithProfiles) has been proposed. The architecture of the model is
presented in Figure 4.7. Instead of trying to generate the energy deposits directly,
the model is trained to generate the profiles of the energy deposits: ρ, φ, z, as
well as the energy distribution e. The total energy deposit emax and total number
of hits nmax are also added in order to stabilize the postprocessing step, in which the
energy deposits are reconstructed from the profiles. The loss function is a sum of
binary cross-entropy (BCE) terms for the reconstructed profiles and variables, and
KL-divergence term for the similarity of the latent space z ∼ N (µ, σ) to the Gaussian
distribution N (0, 1), and can be written as

L(nmax, emax, ρ, φ, z, e) = LBCE(nmax, n̂max) + LBCE(emax, êmax) + LBCE(ρi, ρ̂i)

+ LBCE(φ, φ̂) + LBCE(z, ẑ) + LBCE(e, ê) + LKL(µ, σ).
(4.1)

The sampling process is not ideal because it assumes that all the profiles are
independent from each other, which is not the case, but it allowed for a significant
improvement in the quality of the generated energy deposits, as well as in the speed
of the training process. The differences in the energy distributions can be neglected
if the granularity of the target calorimeter is much lower than the granularity of
the cylinder used in the CALOCHALLENGE datasets, which is the case for the LHCb
calorimeter. The energy distribution of the model trained on the same dataset is
presented in Figure 4.9. A 3D and 2D visualizations of the energy deposits generated
by the model are presented in Figure 4.3.

4.2.2 Adaptation to the LHCb calorimeter in GAUSS

Additional steps are required to adapt the setup presented in the previous section to
be functional in production simulations in LHCb. The electromagnetic calorimeter
in LHCb is a planar calorimeter, and that means that a dedicated collector plane
can be used to store information about the incident particles just in front of the
calorimeter. Unfortunately, the calorimeter is not uniform and there is some passive
material in the upstream area of the calorimeter, such as a so-called beam plug and a
neutron shielding wall that can affect the energy deposits. Moreover, the calorimeter
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is slightly tilted around the x axis of the LHCb reference frame, and the inner hole
in the calorimeter introduces additional complexity. The configuration of this setup
is presented in Figure 4.8. The collector plane is placed just in front of the neutron
shielding (blue line). Since the position of the collector plane is roughly 500 mm
away from the front face of the calorimeter, the particles are virtually transported
to the beginning of the sensitive area of the calorimeter (red box) by calculating the
distance x to the collector plane:

x =
|xcoll |
n̂ · v̂

, (4.2)

where:

• xcoll is the shortest distance to the collector plane from the initial point P,

• n̂ is the normal vector of collector plane,

• v̂ is a vector describing the direction of a particle at point P.
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FIGURE 4.8: Visualization [134] of how the ML-based simulations
can be implemented in production-ready simulations in LHCb for
calorimeter showers. The particles of interest are stopped before
the calorimeter (red line), and the ML-based simulations are used to
simulate the energy deposits produced by particles in the sensitive

area of the calorimeter (red, dotted line).

The right side of Figure 4.5 shows what happens in GAUSS-ON-GAUSSINO

once the ML-based hits (VirtualFastHits) are generated in GAUSSINO.
VirtualFastHits are energy deposits generated by a ML model in fictitious
cylinders that have to be then mapped to the real calorimeter geometry.
CaloHitsExporter is an algorithm that takes the VirtualFastHits as an input
and created the ExportedHits, which are linked to physical cells in the calorimeter.
The ExportedHits are then passed to the CaloHitsMerger algorithm that
merges the ExportedHits with the DetailedHits produced by the Geant4
simulation. The output hits of the CaloHitsMerger are persisted and can be used
in the subsequent steps of the simulation chain.
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Training

The training of the model was performed on a total of 2 million events, with
1.5 million events used for training and 0.5 million for validation. Additional
4 thousand events were used for testing. The particles were generated with a
MomentumRange particle gun. The dataset consists of 4 equal subsets, each with
a different energy range: 10-100 MeV, 100-1000 MeV, 1-10 GeV, and 10-1000 GeV.
Each subset consists of an equal number of particles with different types: electrons
and photons. The training was performed on a single NVIDIA A100 GPU, and
the training time was approximately 8 hours. The improved energy distribution
obtained with the VAEWithProfiles model is presented in Figure 4.9. Total energy
distribution is presented in Figure 4.10.

FIGURE 4.9: Energy deposit distribution of a modified VAE model
(VAEWithProfiles) trained on the CALOCHALLENGE-compatible

dataset produced in GAUSSINO.

FIGURE 4.10: Total energy deposit distribution of a
modified VAE model (VAEWithProfiles) trained on the

CALOCHALLENGE-compatible dataset produced in GAUSSINO.

Validation

The performance of the model was validated with the following datasets:

• 4 datasets produced with MomentumRange particle gun, each with 1000
events, and energy ranges: 10-100 MeV, 100-1000 MeV, 1-10 GeV, and
10-1000 GeV,

• 10000 events produced with MinimumBias setup,
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• dedicated physics channels, which are discussed in detail in Chapter 5.

The MomentumRange particle gun was used to scan the whole phase space of the
calorimeter and check if the model is robust enough. MinimumBias, on the other
hand, was used to check the performance of the models on more realistic data,
similar to the one that is produced in real collisions. Comparison of the total
simulation throughput with and without the ML-based simulation is presented in
Figure 4.12b and is estimated to be up to 2 orders of magnitude faster. Figures 4.11a
and 4.11b represent the remaining part of particles that still remain simulated with
GEANT4 due to the difficulties of running ML-based simulation around the inner
hole and with other particle species. As it turns out, the ML-based solution is able
to capture around 40% of all the energy deposits in MinimumBias events due to
relatively large input of hadrons and particles showers generated around the inner
hole.

After the simulation, the whole reconstruction chain was run, and the
performance of the model was compared using reconstructed variables. The
reconstructed energy of the particles is presented in Figure 4.12a and is in
good agreement with the reconstructed energy from the full Geant4 simulation:
the difference is between 1% and 4% depending on the energy of the particle.
Additional performance plots of the ML-based fast simulation in GAUSSINO and
GAUSS-ON-GAUSSINO were placed in Appendix D.
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(A) ML-based simulation that replaces the
standard detailed simulation with Geant4.
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(B) Geant4-based detailed simulation that still
remains due to the difficulties of running

ML-based simulation around the beam hole.

FIGURE 4.11: Energy deposits in the LHCb electromagnetic
calorimeter produced by a particle gun during the fast simulation.
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4.3 Cluster energy reconstruction in the LHCb
electromagnetic calorimeter

Reconstructing data in calorimeters typically involves solving a clustering problem,
where energy deposits left by secondary particles are grouped together. These
clusters of energy deposits are then used to infer more complex features in the
reconstruction process, such as the energy of particles as explained in Section 1.2.
The data reconstruction algorithms in calorimeters significantly impact the overall
reconstruction time. In LHCb, the calorimeters account for approximately 25% of
the total HLT2 processing time [172]. CELLULAR AUTOMATON [173] and GRAPH

CLUSTERING [174] are examples of the classical, unsupervised algorithms that have
been used in LHCb up to Run 2, and for Run 3 respectively.

Recent advancements in the field of computer vision and the use of more
advanced, machine-learning based algorithms show that there is still significant
improvement possible. Object detection algorithms share many similarities with the
algorithms used for clusterization in high-energy physics such that on an abstract
level both problems can be analysed in a similar way. In particular, for planar
calorimeters, such as those used in LHCb, it is possible to construct an image
or a graph of the detector with hits as pixels or nodes. Recent results (as of
2020) show that it is possible to improve the cluster reconstruction algorithm using
recent developments in computer vision. In particular, there is a lot of potential
in the frameworks based on convolutional neural networks (CNNs)[175–182] and
graph neural networks (GNNs)[181, 183–186]. In Section 4.3.1, the early feasibility
studies of CNN-based cluster energy reconstruction in the LHCb electromagnetic
calorimeter are presented. In the following Section 4.3.3, another approach in the
preparation of the training datasets with GAUSSINO, the experiment-agnostic core
simulation framework introduced in Section 3.1, is discussed.

4.3.1 Early feasibility studies with convolutional neural networks

Convolutional neural networks

Computer vision and high-energy particle detectors are similar in the sense that the
reconstruction algorithms operate either on a finely grained set of pixels or detector
hits, respectively, and then try to infer more complex properties from them. The
simplest way to represent the data from the planar calorimeter is to construct an
image with energy deposits as pixels. In this case, a natural candidate that deals with
this kind of input is the neural network based on convolutional layers. It employs
a convolution that acts on subsets of the image in order to give each pixel additional
knowledge about its neighbourhood [187]. The operation can be written as:

s(t) = (x ∗ w)(t) =
∫

x(a)w(t − a)da, (4.3)

where x is the input and w is the kernel. The kernel slides over the image and
convolves with the pixels within the receptive field. The output of the convolutional
layer is called a feature map. The motivation for using convolutional layers is
threefold. Firstly, thanks to the kernel usually having narrower support than the
input, the number of parameters is significantly reduced. This is sometimes referred
to as sparse connectivity. Secondly, parameter sharing is employed, which means that
the same parameter is used for more than one function in the model. Finally, with
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convolutional layers the equivariance to translation is achieved, which means that the
output of the convolutional layer is invariant to the translation of the input.

In practice, convolutional neural networks consist of at least three stages:
convolutional layers, non-linear activation functions and pooling layers. The
non-linear activation functions are used to introduce non-linearity to the model,
which is essential for the network to be able to approximate complex functions. The
pooling layers are used to reduce the spatial dimensions of the input, which helps to
reduce the number of parameters in the network. For example, max pooling takes the
maximum value from the subset of the input, while average pooling takes the average
value.

You Only Look Once (YOLO)

You Only Look Once (YOLO) [175, 176, 179, 181] is a state-of-the-art, real-time,
one-stage detection system based on convolutional layers. It applies the neural
network to the whole image at once. The image is divided into a grid S × S and
each cell of that grid is assigned B bounding boxes. In the full YOLOv3 model, there
are 3 grids with different granularities.

FIGURE 4.13: Graphical visualization of the feature map produced by
the YOLO-like model for the cluster energy reconstruction.

At the training stage, the YOLOv3 model is trained on a set of images and the
corresponding labels. The labels are transformed into the form of the bounding
boxes and the class probabilities and attached to the grid cells. The backbone of the
YOLOv3 model is the Darknet-53 architecture with 53 convolutional layers and 3
skip connections that allows to introduce grids of different granularities. At the end
of the backbone, the feature map consists of bounding box priors assigned to the
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grid cells. Additional refinement of the bounding box priors is performed according
to the formula

bx = σ(tx) + cx,
by = σ(ty) + cy,

bw = pwetw ,

bh = pheth ,

(4.4)

where:

• bx, by are the coordinates of the center of the bounding box,

• bw, bh are the width and height of the bounding box,

• cx, cy are the offsets from the top left corner of the image,

• pw, ph are the width and height of the bounding box priors,

• tx, ty, tw, th are the coordinates of the bounding box priors.

The loss function for the YOLOv3 model is a sum of minimum mean squared
error and binary cross-entropy losses:

LYOLOv3(x, x̂, y, ŷ, C, Ĉ, p, p̂) =

λcoord

S2

∑
i=0

B

∑
j=0

1
obj
ij [(xi − x̂i)

2 + (yi − ŷi)
2]

+ λcoord

S2

∑
i=0

B

∑
j=0

1
obj
ij [(

√
wi −

√
ŵi)

2 + (
√

hi −
√

ĥi)
2]

−
S2

∑
i=0

B

∑
j=0

1
obj
ij (Ci log(Ĉi) + (1 − Ci) log(1 − Ĉi))

− λnoobj

S2

∑
i=0

B

∑
j=0

1
noobj
ij (Ci log(Ĉi) + (1 − Ci) log(1 − Ĉi))

−
S2

∑
i=0

1
obj
i ∑

c∈classes
(pi(c) log( p̂i(c)) + (1 − pi(c)) log(1 − p̂i(c))).

(4.5)

where:

• xi, yi are the coordinates of the centers of the bounding boxes,

• wi, hi are the width and height of the bounding boxes,

• Ci is the confidence score of whether the bounding box contains an object,

• pi stands for the class probabilities,

• 1
obj
ij and 1

noobj
ij are the indicators of whether the bounding box contains an

object or not.

At inference time, the model outputs the bounding boxes with the highest
confidence scores. Since there are usually at least a few bounding boxes assigned
to each cell, the non-maximum suppression (NMS) algorithm is used to remove the
redundant bounding boxes. It is based on the intersection over union (IoU) metric,
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which is defined as the ratio of the area of the intersection of the bounding boxes to
the area of their union:

IoU =
S(B1 ∩ B2)

S(B1 ∪ B2)
. (4.6)

The YOLO-like framework has been tested using the official Monte Carlo
simulation data [181] for the LHCb calorimeter.

YOLO-like framework for the LHCb electromagnetic calorimeter

In order to apply the YOLO-like framework to the LHCb electromagnetic
calorimeter, the energy deposits have been represented as pixels in the image. Since
the granularity is not uniform, the image has been divided into a rectangular grid
384 × 312, with the cell size 2, 3, and 6 times smaller than the cell size of the inner,
middle, and outer regions of the calorimeter, respectively. Moreover, with the help
of three skip connections, the problem of hybrid granularities in calorimeters can be
easily addressed by assigning bounding boxes with significantly different shapes to
a grid that fits best their size. A graphical visualization of the feature map produced
by the YOLO-like model for the cluster energy reconstruction is presented in Figure
4.13. The energy deposit has been added as one of the additional features in the
bounding box candidates. Therefore, the loss function is a sum of the original YOLO
loss and the mean squared error loss for the energy deposit E:

LYOLOv3(x, x̂, y, ŷ, C, Ĉ, p, p̂) +
S2

∑
i=0

B

∑
j=0

1
obj
ij (Ei − Êi)

2. (4.7)
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FIGURE 4.14: The backbone of the YOLO-like model for the LHCb
calorimeter with three skip connections and rectangular image input.

For the training of the model, an official production with a dataset containing
105 minbias events was chosen. At that time the official algorithm used for
cluster reconstruction was the CELLULAR AUTOMATON algorithm, and therefore the
results for the current algorithm (GRAPH CLUSTERING) were not yet available. The
sample had to be then exported from its native ROOT format to a more optimized
TFRECORD† format. This allowed to prefetch the data during the training process
and to avoid the bottleneck of the I/O operations and running out of memory. The
training was performed on the Świerk Computer Center on nodes equipped with
NVIDIA Tesla K80 GPUs with MirroredStrategy, which allows the training
process to be distributed across multiple GPUs. The training was performed with
the Adam optimizer with a learning rate of 10−4 and a batch size of 32. Additional
callbacks were used to monitor the training process, such as the ModelCheckpoint

†Dedicated format for storing sequences of binary records.
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callback to save the best model, the EarlyStopping callback to stop the training
process if the validation loss does not improve for N epochs, and the TensorBoard
callback to monitor the training process in real time.

At inference time, an additional matching algorithm on top of the regular NMS
algorithm was used to match the predicted clusters with the MC truth. The idea was
to estimate the number of ghost particles (false positives) and missed particles (false
negatives) in the output of the model. This is a classical assignment problem that
can be written as an optimization problem:

min
x

m

∑
i=1

n

∑
j=1

cijxij

s.t.
n

∑
j=1

xij = 1 ∀i,

m

∑
i=1

xij = 1 ∀j,

xij ≥ 0.

(4.8)

where cij is the distance between the predicted cluster i and the MC truth cluster j in
3D space (x, y and energy), and xij is the binary variable that indicates whether the
predicted cluster i is matched with the MC truth cluster j. The Hungarian algorithm
was used to solve this problem [181]. In addition to the matching algorithm, two
additional constraints were added to prevent from matching too distant clusters:

• the centroid of the predicted cluster must be within twice the size of the
predicted cluster from the MC truth cluster,

• the energy difference cannot differ by more than one order of magnitude.

FIGURE 4.15: Comparison of the CELLULAR AUTOMATON and
YOLO-like cluster reconstruction for a single event [181].

Around 2000 events were used at the testing stage and compared with the
CELLULAR AUTOMATON algorithm. An exemplary event showing a comparison
between the performance of the current and YOLO-like cluster reconstruction has
been chosen from the subset of the preliminary results to show the potential of
the framework and is presented in Figure 4.15. The number of clusters detected
and the reconstructed energy as a ratio of the MC truth for the YOLO-like model
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and CELLULAR AUTOMATON algorithm are presented in Table 4.1 and visualized in
Figure 4.16. The missed rate and ghosts rate as a function of the MC truth energy for
the YOLO-like model, as well as the energy resolution for the YOLO-like model and
CELLULAR AUTOMATON algorithm are presented in Figure 4.17. The results show
that the YOLO-like model is able to detect clusters with possibly higher efficiency
than the CELLULAR AUTOMATON algorithm, however, the energy resolution is
still not satisfactory. Moreover, high missed and ghost rates are observed for the
YOLO-like model, which indicates that the model is not able to detect all the clusters
and introduces many ghost particles.

Clusters [%] Energy [%]
YOLO-like (current) YOLO-like (current)

≥1 GeV 97.6 70.1 95.7 84.6
≥2 GeV 97.8 83.6 95.7 90.5
≥3 GeV 97.6 90.7 95.2 94.3

TABLE 4.1: Reconstructed energy and number of clusters detected
as a ratio to the MC truth for the YOLO-like model and CELLULAR

AUTOMATON algorithm [181].

FIGURE 4.16: Number of clusters detected (left) and reconstructed
energy (right) as a function of the MC truth energy for the YOLO-like

model and CELLULAR AUTOMATON algorithm [181].

FIGURE 4.17: Missed rate and ghosts rate as a function of the MC
truth energy for the YOLO-like model (left), as well as the energy
resolution for the YOLO-like model and CELLULAR AUTOMATON

algorithm (right) [181].
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4.3.2 Limitations of the YOLO-like model

The high ghost and missed rates discussed in the previous section are not the only
challenges that need to be addressed. Images generated based on the calorimeter
output are usually not homogeneous enough and may consist of many sub-detectors
with different granularities. Moreover, many neural networks with YOLO included,
which use anchors for the bounding boxes, impose implicit constraints on the size
of the objects. Showers do not have well-defined edges and hence the output of
the calorimeter is usually a sparse matrix. In general, showers induced by the
electromagnetic particles are highly concentrated around the entering point of the
particle, however, the energy deposits caused by hadronic showers can be scattered
all over the detector with different densities and magnitudes.

Another problem is the high overlap observed for Run 3 data, as shown in Figure
4.18. YOLO’s performance is known to drop significantly in the case of small,
grouped objects with high overlap. It is especially challenging in the inner region
around the beam pipe.

FIGURE 4.18: High overlap observed for Run 3 data.

Moreover, the information required to produce high-quality training datasets
is not always available in the standard output file, as software applications
in high-energy physics usually store only the minimum amount of information
required for physics studies. For the training datasets, it is very important to
turn off any unneeded optimization features and to give the possibility to gather
information at any given place in the detector. For example, placing a virtual thin
detector in front of the calorimeter could be used to collect precise information
about incident particles. Another example is the fact in the LHCb simulation
software, all hits generated by the particles traveling upstream from the hadronic
calorimeter are assigned to the ancestor particle that entered the calorimeter, and
therefore determining the size of the cluster is not straightforward. Both examples
are illustrated in Figure 4.19.
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FIGURE 4.19: Illustration of a particle interaction within the LHCb
electromagnetic calorimeter, showing the track of the particle as
it enters the calorimeter from the simulation point of view. The
alternating layers of lead (Pb) and scintillator (A) facilitate energy

deposition and detection for cluster energy reconstruction.

4.3.3 Preparation of the training datasets with GAUSSINO

In order to address some of the challenges mentioned in the previous section,
GAUSSINO with its custom simulation interface can be used to produce training
datasets. The main advantage of this new framework is that it can be used to
produce training datasets for very simple, toy models (Figure 4.20a), as well as
very complex, full-scale high-energy experiments (Figure 4.20c). Moreover, a hybrid
approach is also possible (Figure 4.20b), in which a toy model can be directly tested
in the environment of the real detector. This gives the possibility to test the impact of
the geometry and environment on the performance of the machine learning model
in a seamless manner.

The performance of the YOLO-like model trained on a toy model placed inside
the LHCb environment is presented in Figure 4.21a and 4.21b. The precision
of the coordinates of the bounding boxes can be further improved by the use
of the calorimeter with higher granularity. In GAUSS-ON-GAUSSINO, the same
configuration with just a few modifications can be then used to test the neural
network on the real LHCb electromagnetic calorimeter.
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(A) Bare toy model (B) Toy model in the
environment of the experiment.

(C) Full-scale detector

FIGURE 4.20: Incremental approach for producing training datasets
using Gaussino.

(A) Standard granularity used for getting the
coordinates of the bounding boxes.

(B) The precision of the coordinates of the
bounding boxes can be further improved by the use

of the calorimeter with higher granularity.

FIGURE 4.21: Selected training datasets produced by Gaussino using
a small, toy calorimeter inside the LHCb environment. Blue boxes
represent true clusters as taken from the Monte Carlo simulation and
red boxes represent reconstructed clusters by the YOLO-like model.
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5
Physics validation

One of the final steps in the development of the new simulation software discussed
in Chapter 3 and machine learning models described in Chapter 4 is to validate its
physics performance for the LHCb Run 3 data. There are many changes and new
features in the new version of the simulation framework, GAUSS-ON-GAUSSINO,
and the list includes a new detector, updated detector description (DD4HEP), more
recent GEANT4 version, as well as all the fast simulation components described in
Chapter 4. Physics validation with selected decay channels is crucial to ensure that
the new simulation framework with all the new additions is able to produce results
suitable for physics analyses. Validation with simulated samples of the ML-based
fast simulations is described in this Chapter.

5.1 Preliminary results

5.1.1 Preparing the simulation samples

The simulation samples were prepared using the new simulation
GAUSS-ON-GAUSSINO framework, described in Chapter 3. At the time of
preparing the physics validation studies, the first official minimum bias samples
were available for the 2022 data-taking conditions, and therefore this setup was
used to prepare the samples for the physics validation studies. In 2022, the UT
detector was not yet installed and so it was not included in the simulation, and
therefore the validation studies are performed without the UT detector. As of
2023, the new simulation framework, GAUSS-ON-GAUSSINO, was still missing the
implementation of the RICH detectors physics processes, i.e. the simulation of the
optical photons in the detector. Therefore, the identification system is incomplete
and might lead to misidentified hadrons, such as pions and kaons.

The simulation software was configured to produce samples in two scenarios:

• ML-based fast simulation, in which the CALOML+VAE fast simulation
described in Section 4.2 was turned on in the electromagnetic calorimeter, and
detailed simulation with GEANT4 10.7.3 was used in the rest of the detector,

• Detailed simulation, in which the detailed simulation with GEANT4 10.7.3 was
used in the whole detector.

Each scenario was repeated for each of the decay channels resulting in a total of 8
large samples, 1 million events each.
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The digitization of the samples was performed on both simulated samples with
BOOLE. The HLT trigger and reconstruction software (MOORE) was then run on the
digitized samples. Following the sequence described in Figure 3.2, n-tuples were
created with the DAVINCI framework. All simulated samples were produced and
processed up to the trigger and reconstruction making use of the LHC computing
grid.

Most of the developments described in Chapter 4 are focused on the
electromagnetic calorimeter, and therefore the validation described in this chapter
focuses on decays with photons and electrons in the final state. Therefore, there
should be at least one decay channel with a photon in the final state and one decay
channel with an electron in the final state, as well as a decay channel with both
photon and electron in the final state.

Radiative B decays play an important role in search of new physics [188, 189].
In LHCb, the direct CP asymmetry can be searched with B(s) → K(∗,∗∗)γ decay
channels. In particular, the ratio of branching fractions of B0 → K∗0γ and B0 → ϕγ,
or the direct CP asymmetry in B0 → K∗0γ decays are observables that can be
measured with good precision at LHCb [190]. B0 → K∗0γ is also one of the
channels that were used to validate the photon reconstruction performance of the
electromagnetic calorimeter in the past [191]. In this channel, K∗0 decays to K+π−,
and using it in the validation studies may be problematic due to the missing RICH
physics in GAUSS-ON-GAUSSINO, nevertheless, the decision was made to include
this channel in the validation studies due to its importance. In order to avoid bias
in the results from the mis-identification of hadrons, another radiative channel was
included in the validation studies to provide a complementary check.

B(s) → J/ψγ radiative decays are very rare, and no significant signal has been
detected using 3 fb−1 [192] of data. Nevertheless, the B0

s → J/ψ(→ µ+µ−)γ decay
is a very useful channel to test the fast simulation of photons, and at the same
time, the muon reconstruction performance with the new simulation framework.
The B0

s → J/ψ(→ e+e−)γ decay is also included in the validation samples
to test simultaneously the electron reconstruction performance and the photon
reconstruction performance based on the fast simulation samples. The choice of
these two channels is also motivated by the fact that decays involving b → sℓℓ
transitions are used in tests of lepton universality [193, 194]. In particular, the ratio of
branching fractions B(J/ψ → e+e−)/B(J/ψ → µ+µ−) is an important observable,
as it is constrained to unity by theory assuming the lepton flavour universality.
In addition, decays including J/ψ → e+e− are also frequently used to measure
the electron reconstruction efficiency. In LHCb [195], the B+ → J/ψ(→ e+e−)K+

decay was previously used to determine the electron reconstruction efficiency using
a tag-and-probe method and kinematics constraints. Therefore, the same decay
channel is included in the validation studies in this work as a source of electrons.

5.1.2 Selected decay channels

All eight samples (four decay channels, and two simulation scenarios) were
produced according to the setup described in the previous section. The results
consist of the plots of invariant mass distributions of the B mesons, as well as the
transverse momentum distributions of selected final state particles in the decay
channels.
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B+ → J/ψ (→ e+e−)K+

The B+ meson invariant mass distribution from the B+ → J/ψ (→ e+e−)K+ decay
is shown in Figure 5.1. Good agreement between the two simulation scenarios is
observed, although the mass peak in the fast simulation scenario is slightly shifted
towards lower mass values by around 10 MeV/c2. The transverse momentum
distribution of the e+ of the same decay channel is shown in Figure 5.2. The sample
with fast simulated showers shows a slightly lower number of events around the
peak. Good agreement is observed in higher transverse momentum values.
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FIGURE 5.1: B+ invariant mass distribution from the uncalibrated
simulation sample of the B+ → J/ψ (→ e+e−)K+ decay.

B0
s → J/ψ(→ e+e−)γ

The B0
s meson invariant mass distribution from the B0

s → J/ψ(→ e+e−)γ decay
is shown in Figure 5.3. In this case, the mass peak in the fast simulation scenario
is much more shifted towards lower mass values by around 40 MeV/c2. The
transverse momentum distribution of the e+ of the same decay channel is shown
in Figure 5.4. Similarly to the previous decay channel, the fast simulation sample is
underestimating the number of events around the peak. The transverse momentum
distribution of the γ of the channel with B0

s meson is shown in Figure 5.5. The
momentum is slightly underestimated in the fast simulation scenario across the
whole range of transverse momenta.

B0
s → J/ψ(→ µ+µ−)γ

In the B0
s mass distribution in Figure 5.6, with J/ψ decaying to muons, an even larger

shift of around 80 MeV/c2 is observed. In addition, the mass peak is much higher in
the fast simulation scenario. The transverse momentum distribution of the µ+ of the
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FIGURE 5.2: e+ transverse momentum distribution from the
uncalibrated simulation sample of the B+ → J/ψ (→ e+e−)K+

decay.
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FIGURE 5.3: B0
s invariant mass distribution from the uncalibrated

simulation sample of the B0
s → J/ψ(→ e+e−)γ decay.
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FIGURE 5.4: e+ transverse momentum distribution from the
uncalibrated simulation sample of the B0

s → J/ψ(→ e+e−)γ decay.
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FIGURE 5.5: γ transverse momentum distribution from the
uncalibrated simulation sample of the B0

s → J/ψ(→ e+e−)γ decay.
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same decay channel is shown in Figure 5.7. Relatively good agreement is observed
across the whole range of transverse momenta, which is expected as the muon
simulation is not affected by the fast simulation happening in the electromagnetic
calorimeter area. The transverse momentum distribution of the γ of the same decay
channel is shown in Figure 5.8 and shows a similar trend as the B0

s meson invariant
mass distribution.
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FIGURE 5.6: B0
s invariant mass distribution from the uncalibrated

simulation sample of the B0
s → J/ψ(→ µ+µ−)γ decay.

B0 → K∗0(→ K+π−)γ

Finally, the B0 meson invariant mass distribution from the B0 → K∗0γ decay is
shown in Figure 5.9. Similarly to the B0

s meson with J/ψ decaying to muons, the
mass peak is shifted towards lower mass values by around 80 MeV/c2 and the mass
peak is larger in the fast simulation scenario. The transverse momentum distribution
of the γ of the same decay channel is shown in Figure 5.10 and represents a relatively
good agreement across the whole range of transverse momenta.

5.2 Calibrated results

Relatively large mass peak shifts, as well as the underestimated momenta in the
fast simulation scenario presented in the previous section, were not expected, as
the systematic error of the trained model was estimated to be between 1-4 %,
depending on the particle momentum. Careful analysis of the preliminary n-tuples
of reconstructed quantities revealed that it was necessary to reduce the systematic
error of the model down to 0.01 % in order to achieve better agreement between the
two simulation scenarios.
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FIGURE 5.7: µ+ transverse momentum distribution from the
uncalibrated simulation sample of the B0

s → J/ψ(→ µ+µ−)γ decay.
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FIGURE 5.9: B0 invariant mass distribution from the uncalibrated
simulation sample of the B0 → K∗0(→ K+π−)γ decay.
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FIGURE 5.10: γ transverse momentum distribution from the
uncalibrated simulation sample of the B0 → K∗0(→ K+π−)γ decay.
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5.2.1 Calibration of the simulation samples

Tuning of the CALOML+VAE model can be performed in two ways: either by
tuning the model hyperparameters, or by tuning the total energy deposit emax and
total number of hits nmax of the postprocessing step described in Section 4.2.1. The
second approach was chosen, as the procedure did not require retraining of the
model, and therefore was faster to perform. Two parameters were introduced:
eoverflow and noverflow, which act as additional coefficients for emax and nmax,
respectively.

In total, 360 calibration points were selected to cover the parameter space of
eoverflow and noverflow. The noverflow parameter was varied from 1.0 to 1.5 with a step of
0.05, and the eoverflow parameter was varied from 1.0 to 1.035 with a step of 0.001. For
each combination of the two parameters, 4 samples with 10000 (MomentumRange
particle gun) events were generated, one per magnitude of the momentum of the
particle gun: [0.1, 1.0), [1.0, 10.0), [10.0, 100.0), [100.0, 1000.0) GeV/c. Each of the
momentum ranges was split into 10 logarithmic bins, and systematic and random
errors were calculated for each bin and plotted as a function of the momentum in
Figure 5.11 for electrons and Figure 5.12 for photons, for the default values of eoverflow
and noverflow parameters. The same plots for the tuned values of eoverflow and noverflow
parameters are shown in Figure 5.13 for electrons and Figure 5.14 for photons.
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FIGURE 5.11: Systematic and random error of the CALOML+VAE
model with the default values of eoverflow and noverflow parameters for

electrons.

5.2.2 Selected decay channels

The results of the calibration of the CALOML+VAE model described in the previous
sections are presented in this section. Calibrated samples were prepared using the
same setup as the uncalibrated samples, and the same plots were produced.
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FIGURE 5.12: Systematic and random error of the CALOML+VAE
model with the default values of eoverflow and noverflow parameters for

photons.
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FIGURE 5.14: Systematic and random error of the CALOML+VAE
model with the tuned values of eoverflow and noverflow parameters for

photons.

B+ → J/ψ (→ e+e−)K+

Calibrated sample with B+ → J/ψ (→ e+e−)K+ as the decay channel is represented
by the B+ invariant mass distribution in Figure 5.15 and e+ transverse momentum
distribution in Figure 5.16. Very good agreement between the two simulation
scenarios is observed, and the mass peak in the fast simulation scenario is no longer
shifted towards lower values. The transverse momentum of the e+ coming from
the fast simulation sample is almost exactly the same as the one coming from the
detailed simulation sample.

B0
s → J/ψ(→ e+e−)γ

B0
s invariant mass distribution from the B0

s → J/ψ(→ e+e−)γ decay is shown
in Figure 5.17. The mass peak is no longer shifted towards lower values, and
the statistical analysis shows that both distributions are almost indistinguishable,
although a slight overshoot in the fast simulation scenario is observed around
the peak. e+ transverse momentum of the same decay channel is presented in
Figure 5.18. Similarly to the B+ → J/ψ (→ e+e−)K+ decay channel, the transverse
momentum distribution of the e+ is almost indistinguishable between the two
simulation scenarios.

B0
s → J/ψ(→ µ+µ−)γ

In the B0
s → J/ψ(→ µ+µ−)γ decay channel, the mass peak of B0

s (Figure 5.20)
is also no longer shifted towards lower values, however, the whole mass peak is
slightly narrower and higher in the fast simulation scenario, despite the fact that
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FIGURE 5.15: B+ invariant mass distribution from the calibrated
simulation sample of the B+ → J/ψ (→ e+e−)K+ decay.
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FIGURE 5.16: e+ transverse momentum distribution from the
calibrated simulation sample of the B+ → J/ψ (→ e+e−)K+ decay.
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FIGURE 5.17: B0
s invariant mass distribution from the calibrated

simulation sample of the B0
s → J/ψ(→ e+e−)γ decay.
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FIGURE 5.18: e+ transverse momentum distribution from the
calibrated simulation sample of the B0

s → J/ψ(→ e+e−)γ decay.
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FIGURE 5.19: γ transverse momentum distribution from the
calibrated simulation sample of the B0

s → J/ψ(→ e+e−)γ decay.

the statistical properties of the two distributions are very similar. pT distribution of
the µ+ (Figure 5.21) represents a very good agreement between the two simulation
scenarios, similarly to the uncalibrated sample. pT distribution of the γ (Figure 5.22)
is in a very good agreement across the whole range of transverse momenta.

B0 → K∗0(→ K+π−)γ

Moving to the last decay channel considered, the B0 → K∗0(→ K+π−)γ decay, it is
observed that the mass is also no longer shifted towards lower values, as shown in
Figure 5.23 Despite having a slightly narrower mass peak, the statistical properties
of the two distributions are very similar. pT distribution of the γ (Figure 5.24) is
indistinguishable between the two simulation scenarios.

5.2.3 Additional discussion

Results presented in this chapter, and in particular disagreements between the fast
and detailed simulations show that detailed physics validation is an indispensable
step in the development of the new simulation software and machine learning
models. In particular, reconstruction algorithms and trigger selections are
particularly sensitive to the quality of the simulation samples, and a major effort
is needed to ensure that the fast simulation samples are as close as possible to those
obtained with the GEANT4 modeling.

The calibration of the CALOML+VAE model presented in this chapter shows
that decreasing the systematic error of the model is crucial in order to achieve good
agreement between the fast and detailed simulations samples. Small differences in
shapes of the invariant mass distributions are observed, and more understanding is
needed in order to determine the source of these differences. One of the possible
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FIGURE 5.20: B0
s invariant mass distribution from the calibrated

simulation sample of the B0
s → J/ψ(→ µ+µ−)γ decay.
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calibrated simulation sample of the B0 → K∗0(→ K+π−)γ decay.

sources of the differences is the fact that the CALOML+VAE model is relatively
simple, and does not take into account the full complexity of the electromagnetic
calorimeter, and as a result, the electromagnetic showers produced in the fast
simulation scenario suffer from too low variability. A simple test was made to verify
this hypothesis: selected points across the calorimeter phase space were chosen and
each particle was shot 50 times at each point with different pseudorandom seeds.
The results are represented as the ratio of the active energy to the total momentum
of the particles as a function of the particle type in Figure 5.25, as a function of the
ϕ angle in Figure 5.26, and as a function of the θ angle in Figure 5.27. In all the box
plots, it is clearly visible that the variability of the electromagnetic showers produced
by the CALOML+VAE model is much lower than the one produced by GEANT4. In
particular, the variability of the showers produced with the CALOML+VAE model is
almost constant across the whole phase space, and the whiskers are very short with
much fewer outliers than in the case of GEANT4. The results of this test suggest
that the CALOML+VAE model should be improved in order to produce more
realistic electromagnetic showers, and therefore more realistic simulation samples,
although the statistical analysis of the samples presented in this chapter shows that
the differences between the fast simulation and detailed simulation samples are
already very small. Studies conducted in this section show that the choice of the
model, along with careful training and tuning, is crucial for achieving successful
performance and high precision results.
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the Gaussino CaloChallenge-compatible infrastructure for ML-based fast
simulation in the LHCb Experiment”. In: ACAT2024 (). URL: https : / /
indi.to/FYGgf.

[135] Michał Mazurek, Marco Clemencic, and Gloria Corti. “Gauss and Gaussino:
the LHCb simulation software and its new experiment agnostic core
framework”. In: PoS ICHEP2022 (Nov. 2022), p. 225. DOI: 10.22323/1.
414.0225.

[136] LHCb collaboration. “LHCb computing: Technical Design Report”. In:
CERN-LHCC-2005-019 (2005).

[137] LHCb collaboration. “LHCb Upgrade Software and Computing”. In:
CERN-LHCC-2018-007 (2018).

[138] G. Amadio et al. “Offloading electromagnetic shower transport to GPUs”.
In: J. Phys. Conf. Ser. 2438.1 (2023), p. 012055. DOI: 10.1088/1742-6596/
2438/1/012055. arXiv: 2209.15445 [hep-ex].

[139] S. C. Tognini et al. “Celeritas: GPU-accelerated particle transport for detector
simulation in High Energy Physics experiments”. In: Snowmass 2021. Mar.
2022. arXiv: 2203.09467 [physics.data-an].

[140] Adam C. S. Davis et al. “Optical Photon Simulation with Mitsuba3”. In: (Sept.
2023). arXiv: 2309.12496 [physics.comp-ph].

[141] Dominik Müller et al. “ReDecay: A novel approach to speed up the
simulation at LHCb”. In: Eur. Phys. J. C78 (2018), p. 1009. DOI: 10.1140/
epjc/s10052-018-6469-6. arXiv: 1810.10362 [hep-ex].

[142] LHCb Collaboration, LHCb Collaboration. Performance of the Lamarr
Prototype: the ultra-fast simulation option integrated in the LHCb simulation
framework. https://cds.cern.ch/record/2696310. Oct. 2019.

[143] Matteo Rama and Giacomo Vitali. “Calorimeter fast simulation based on hit
libraries LHCb Gauss framework”. In: EPJ Web Conf. 214 (2019), p. 02040. DOI:
10.1051/epjconf/201921402040.

[144] D. J. Lange. “The EvtGen particle decay simulation package”. In: Nucl.
Instrum. Meth. A462 (2001), pp. 152–155. DOI: 10.1016/S0168-9002(01)
00089-4.

[145] I. Belyaev et al. “Handling of the generation of primary events in Gauss, the
LHCb simulation framework”. In: J. Phys. Conf. Ser. 331 (2011), p. 032047. DOI:
10.1088/1742-6596/331/3/032047.

[146] Chao-Hsi Chang et al. “BCVEGPY: An Event generator for hadronic
production of the Bc meson”. In: Comput. Phys. Commun. 159 (2004),
pp. 192–224. DOI: 10.1016/j.cpc.2004.02.005. arXiv: hep- ph/
0309120.

[147] Ruben Pozzi. “Upgrade of the LHCb simulation framework with advanced
particle event generators. Uppgradering av LHCb:s simulationsverktyg
med avancerade partikelgeneratorer”. CERN-THESIS-2023-272. KTH Royal
Institute of Technology, 2023. URL: http://cds.cern.ch/record/
2883035.

[148] G. Barrand et al. “The LHCb detector description framework”. In: 11th
International Conference on Computing in High-Energy and Nuclear Physics. Feb.
2000, pp. 96–100.

https://cds.cern.ch/record/2859941
https://cds.cern.ch/record/2859941
https://indi.to/FYGgf
https://indi.to/FYGgf
https://doi.org/10.22323/1.414.0225
https://doi.org/10.22323/1.414.0225
https://doi.org/10.1088/1742-6596/2438/1/012055
https://doi.org/10.1088/1742-6596/2438/1/012055
https://arxiv.org/abs/2209.15445
https://arxiv.org/abs/2203.09467
https://arxiv.org/abs/2309.12496
https://doi.org/10.1140/epjc/s10052-018-6469-6
https://doi.org/10.1140/epjc/s10052-018-6469-6
https://arxiv.org/abs/1810.10362
https://doi.org/10.1051/epjconf/201921402040
https://doi.org/10.1016/S0168-9002(01)00089-4
https://doi.org/10.1016/S0168-9002(01)00089-4
https://doi.org/10.1088/1742-6596/331/3/032047
https://doi.org/10.1016/j.cpc.2004.02.005
https://arxiv.org/abs/hep-ph/0309120
https://arxiv.org/abs/hep-ph/0309120
http://cds.cern.ch/record/2883035
http://cds.cern.ch/record/2883035


94 Bibliography

[149] Filip Bilandzija. “Visualization of geometry and simulated events for
Gaussino and Gauss-on-Gaussino”. In: (2022). URL: https://cds.cern.
ch/record/2836877.

[150] Geant4 Documentation. 2024. URL: https : / / geant4 . web . cern . ch /
docs/.

[151] Edward Moyse et al. “The Phoenix event display framework”. In: EPJ Web
Conf. 251 (2021), p. 01007. DOI: 10.1051/epjconf/202125101007.

[152] Three.js. 2024. URL: https://github.com/mrdoob/three.js/.
[153] Angular. 2024. URL: https://github.com/angular/angular.
[154] Andreas Pappas. “New Web Based Event Data and Geometry Visualization

for LHCb”. 2021. URL: https://cds.cern.ch/record/2792618.
[155] Sphinx. 2024. URL: https://github.com/sphinx-doc/sphinx.
[156] Gaussino Documentation. 2024. URL: https://gaussino.docs.cern.ch/

master/index.html.
[157] Gauss-on-Gaussino Documentation. 2024. URL: https : / / lhcb - gauss .

docs.cern.ch/master/index.html.
[158] Jason Ansel et al. “PyTorch 2: Faster Machine Learning Through Dynamic

Python Bytecode Transformation and Graph Compilation”. In: 29th ACM
International Conference on Architectural Support for Programming Languages and
Operating Systems, Volume 2 (ASPLOS ’24). ACM, Apr. 2024. DOI: 10.1145/
3620665.3640366. URL: https://pytorch.org/assets/pytorch2-
2.pdf.

[159] ONNX: Open Neural Network Exchange. https://github.com/onnx/
onnx. 2019.

[160] Martín Abadi et al. TensorFlow: Large-Scale Machine Learning on Heterogeneous
Systems. Software available from tensorflow.org. 2015. URL: https://www.
tensorflow.org/.

[161] Yangqing Jia et al. “Caffe: Convolutional Architecture for Fast Feature
Embedding”. In: arXiv preprint arXiv:1408.5093 (2014).

[162] Andreas Adelmann et al. “New directions for surrogate models and
differentiable programming for High Energy Physics detector simulation”.
In: Snowmass 2021. Mar. 2022. arXiv: 2203.08806 [hep-ph].

[163] Michele Faucci Giannelli and Rui Zhang. “CaloShowerGAN, a Generative
Adversarial Networks model for fast calorimeter shower simulation”. In:
(Sept. 2023). arXiv: 2309.06515 [physics.ins-det].

[164] Matteo Barbetti. “Lamarr: LHCb ultra-fast simulation based on machine
learning models deployed within Gauss”. In: 21th International Workshop
on Advanced Computing and Analysis Techniques in Physics Research: AI meets
Reality. Mar. 2023. arXiv: 2303.11428 [hep-ex].

[165] Ashish Vaswani et al. “Attention Is All You Need”. In: 31st International
Conference on Neural Information Processing Systems. June 2017. arXiv: 1706.
03762 [cs.CL].

[166] Jonathan Ho, Ajay Jain, and Pieter Abbeel. “Denoising Diffusion Probabilistic
Models”. In: (June 2020). arXiv: 2006.11239 [cs.LG].

[167] Piyush Raikwar et al. “Transformers for Generalized Fast Shower
Simulation”. In: EPJ Web Conf. 295 (2024), p. 09039. DOI: 10.1051/epjconf/
202429509039.

[168] Piyush Raikwar, Renato Paulo Da Costa Cardoso, Anna Zaborowska,
Dalila Salamani, Kristina Jaruskova, Sofia Vallecorsa, Kyongmin Yeo,
Vijay Ekambaram, Nam Nguyen, Jayant Kalagnanam, Mudhakar Srivatsa.

https://cds.cern.ch/record/2836877
https://cds.cern.ch/record/2836877
https://geant4.web.cern.ch/docs/
https://geant4.web.cern.ch/docs/
https://doi.org/10.1051/epjconf/202125101007
https://github.com/mrdoob/three.js/
https://github.com/angular/angular
https://cds.cern.ch/record/2792618
https://github.com/sphinx-doc/sphinx
https://gaussino.docs.cern.ch/master/index.html
https://gaussino.docs.cern.ch/master/index.html
https://lhcb-gauss.docs.cern.ch/master/index.html
https://lhcb-gauss.docs.cern.ch/master/index.html
https://doi.org/10.1145/3620665.3640366
https://doi.org/10.1145/3620665.3640366
https://pytorch.org/assets/pytorch2-2.pdf
https://pytorch.org/assets/pytorch2-2.pdf
https://github.com/onnx/onnx
https://github.com/onnx/onnx
https://www.tensorflow.org/
https://www.tensorflow.org/
https://arxiv.org/abs/2203.08806
https://arxiv.org/abs/2309.06515
https://arxiv.org/abs/2303.11428
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/2006.11239
https://doi.org/10.1051/epjconf/202429509039
https://doi.org/10.1051/epjconf/202429509039


Bibliography 95

“CaloDiT: Diffusion with transformers for fast shower simulation”. In:
ACAT2024 (). URL: https://indi.to/kDFtx.

[169] Erik Buhmann et al. “CaloClouds II: ultra-fast geometry-independent
highly-granular calorimeter simulation”. In: JINST 19.04 (2024), P04020.
DOI: 10 . 1088 / 1748 - 0221 / 19 / 04 / P04020. arXiv: 2309 . 05704
[physics.ins-det].

[170] CaloChallenge. 2024. URL: https : / / calochallenge . github . io /
homepage/.

[171] Diederik P. Kingma and Max Welling. “Auto-Encoding Variational Bayes”.
In: (Dec. 2013). arXiv: 1312.6114 [stat.ML].

[172] LHCb collaboration. Throughput and resource usage of the LHCb upgrade HLT.
https://cds.cern.ch/record/271521. LHCB-FIGURE-2020-007. 2020.

[173] V Breton, N Brun, and P Perret. A clustering algorithm for the
LHCb electromagnetic calorimeter using a cellular automaton. Tech. rep.
LHCb-2001-123. Geneva: CERN, Sept. 2001. URL: https://cds.cern.ch/
record/681262.

[174] Núria Valls Canudas et al. Graph Clustering: a graph-based clustering algorithm
for the electromagnetic calorimeter in LHCb. 2022. DOI: 10.48550/ARXIV.
2212.11061. URL: https://arxiv.org/abs/2212.11061.

[175] Joseph Redmon et al. “You Only Look Once: Unified, Real-Time Object
Detection”. In: 2016 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR). IEEE, June 2016. DOI: 10.1109/cvpr.2016.91. URL:
https://doi.org/10.1109/cvpr.2016.91.

[176] Joseph Redmon and Ali Farhadi. YOLOv3: An Incremental Improvement. 2018.
arXiv: 1804.02767 [cs.CV].

[177] Ross Girshick et al. “Rich Feature Hierarchies for Accurate Object Detection
and Semantic Segmentation”. In: 2014 IEEE Conference on Computer Vision and
Pattern Recognition. IEEE, June 2014. DOI: 10.1109/cvpr.2014.81. URL:
https://doi.org/10.1109/cvpr.2014.81.

[178] Ross Girshick. “Fast R-CNN”. In: 2015 IEEE International Conference on
Computer Vision (ICCV). IEEE, Dec. 2015. DOI: 10.1109/iccv.2015.169.
URL: https://doi.org/10.1109/iccv.2015.169.

[179] Joseph Redmon and Ali Farhadi. “YOLO9000: Better, Faster, Stronger”. In:
2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE,
July 2017. DOI: 10.1109/cvpr.2017.690. URL: https://doi.org/10.
1109/cvpr.2017.690.

[180] Kaiwen Duan et al. “CenterNet: Keypoint Triplets for Object Detection”. In:
2019 IEEE/CVF International Conference on Computer Vision (ICCV). IEEE, Oct.
2019. DOI: 10.1109/iccv.2019.00667. URL: https://doi.org/10.
1109/iccv.2019.00667.

[181] Michał Mazurek, Blaise Raheem Delaney, and Joao Coelho. Deep learning
solutions for 2D calorimetric cluster reconstruction at LHCb. Oct. 2020. URL:
https://indi.to/pgYNG.

[182] Núria Valls Canudas et al. “Deep Learning approach to LHCb Calorimeter
reconstruction using a Cellular Automaton”. In: EPJ Web Conf. 251 (2021),
p. 04008. DOI: 10.1051/epjconf/202125104008. URL: https://doi.
org/10.1051/epjconf/202125104008.

[183] Steven Farrell et al. Novel deep learning methods for track reconstruction. 2018.
arXiv: 1810.06111 [hep-ex].

[184] Steven Farrell et al. “The HEP.TrkX Project: deep neural networks for
HL-LHC online and offline tracking”. In: EPJ Web of Conferences 150

https://indi.to/kDFtx
https://doi.org/10.1088/1748-0221/19/04/P04020
https://arxiv.org/abs/2309.05704
https://arxiv.org/abs/2309.05704
https://calochallenge.github.io/homepage/
https://calochallenge.github.io/homepage/
https://arxiv.org/abs/1312.6114
https://cds.cern.ch/record/681262
https://cds.cern.ch/record/681262
https://doi.org/10.48550/ARXIV.2212.11061
https://doi.org/10.48550/ARXIV.2212.11061
https://arxiv.org/abs/2212.11061
https://doi.org/10.1109/cvpr.2016.91
https://doi.org/10.1109/cvpr.2016.91
https://arxiv.org/abs/1804.02767
https://doi.org/10.1109/cvpr.2014.81
https://doi.org/10.1109/cvpr.2014.81
https://doi.org/10.1109/iccv.2015.169
https://doi.org/10.1109/iccv.2015.169
https://doi.org/10.1109/cvpr.2017.690
https://doi.org/10.1109/cvpr.2017.690
https://doi.org/10.1109/cvpr.2017.690
https://doi.org/10.1109/iccv.2019.00667
https://doi.org/10.1109/iccv.2019.00667
https://doi.org/10.1109/iccv.2019.00667
https://indi.to/pgYNG
https://doi.org/10.1051/epjconf/202125104008
https://doi.org/10.1051/epjconf/202125104008
https://doi.org/10.1051/epjconf/202125104008
https://arxiv.org/abs/1810.06111


96 Bibliography

(2017). Ed. by C. Germain et al., p. 00003. DOI: 10 . 1051 / epjconf /
201715000003. URL: https : / / doi . org / 10 . 1051 / epjconf /
201715000003.

[185] Xiangyang Ju et al. Graph Neural Networks for Particle Reconstruction in High
Energy Physics detectors. 2020. arXiv: 2003.11603 [physics.ins-det].

[186] Blaise Raheem Delaney. “Determination of the CKM ratio |Vub|/|Vcb| using
semileptonic B+

c decays at LHCb”. PhD thesis. DOI: 10.17863/CAM.87305.
URL: https://www.repository.cam.ac.uk/handle/1810/339884.

[187] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. http:
//www.deeplearningbook.org. MIT Press, 2016.

[188] Tobias Hurth. “Inclusive rare B decays”. In: 5th International Symposium on
Radiative Corrections: Applications of Quantum Field Theory to Phenomenology.
Apr. 2001. arXiv: hep-ph/0106050.

[189] Tobias Hurth and Thomas Mannel. “Direct CP violation in radiative B
decays”. In: AIP Conf. Proc. 602.1 (2001), pp. 212–219. DOI: 10.1063/1.
1435929. arXiv: hep-ph/0109041.

[190] LHCb, Albert Puig. “Rare radiative decays at LHCb”. In: CERN Proc. 1 (2018).
Ed. by David d’Enterria, Albert de Roeck, and Michelangelo Mangano, p. 243.
DOI: 10.23727/CERN-Proceedings-2018-001.243.

[191] O. Deschamps et al. “Photon and neutral pion reconstruction”. In: (Sept.
2003).

[192] LHCb collaboration, R. Aaij et al. “Search for the decays B0→ J/ψγ and
B0

s → J/ψγ”. In: Phys. Rev. D92 (2015), p. 112002. DOI: 10.1103/PhysRevD.
92.112002. arXiv: 1510.04866 [hep-ex].

[193] LHCb collaboration, R. Aaij et al. “Test of lepton universality using
B+→ K+ℓ+ℓ− decays”. In: Phys. Rev. Lett. 113 (2014), p. 151601. DOI: 10.
1103/PhysRevLett.113.151601. arXiv: 1406.6482 [hep-ex].

[194] LHCb collaboration, R. Aaij et al. “Test of lepton universality with
B0→ K∗0ℓ+ℓ− decays”. In: JHEP 08 (2017), p. 055. DOI: 10 . 1007 /
JHEP08(2017)055. arXiv: 1705.05802 [hep-ex].

[195] LHCb collaboration, Roel Aaij et al. “Measurement of the electron
reconstruction efficiency at LHCb”. In: JINST 14 (2019), P11023. DOI: 10.
1088/1748-0221/14/11/P11023. arXiv: 1909.02957 [hep-ex].

https://doi.org/10.1051/epjconf/201715000003
https://doi.org/10.1051/epjconf/201715000003
https://doi.org/10.1051/epjconf/201715000003
https://doi.org/10.1051/epjconf/201715000003
https://arxiv.org/abs/2003.11603
https://doi.org/10.17863/CAM.87305
https://www.repository.cam.ac.uk/handle/1810/339884
http://www.deeplearningbook.org
http://www.deeplearningbook.org
https://arxiv.org/abs/hep-ph/0106050
https://doi.org/10.1063/1.1435929
https://doi.org/10.1063/1.1435929
https://arxiv.org/abs/hep-ph/0109041
https://doi.org/10.23727/CERN-Proceedings-2018-001.243
https://doi.org/10.1103/PhysRevD.92.112002
https://doi.org/10.1103/PhysRevD.92.112002
https://arxiv.org/abs/1510.04866
https://doi.org/10.1103/PhysRevLett.113.151601
https://doi.org/10.1103/PhysRevLett.113.151601
https://arxiv.org/abs/1406.6482
https://doi.org/10.1007/JHEP08(2017)055
https://doi.org/10.1007/JHEP08(2017)055
https://arxiv.org/abs/1705.05802
https://doi.org/10.1088/1748-0221/14/11/P11023
https://doi.org/10.1088/1748-0221/14/11/P11023
https://arxiv.org/abs/1909.02957


97

A
Additional performance plots of
the GAUSSINO and
GAUSS-ON-GAUSSINO simulation
frameworks

This chapter provides additional performance plots of the GAUSSINO and
GAUSS-ON-GAUSSINO simulation frameworks focusing on the performance
analysis of multi-threaded interfaces to PYTHIA8 and GEANT4, two critical
components implemented in GAUSSINO and described in Chapter 3.

Multi-threaded interface to PYTHIA8 is represented by Figure A.1, which
illustrates the throughput of the generation step as a function of the number of
threads in GAUSSINO. Figure A.2 shows the time per event as a function of the
number of threads, while Figure A.3 depicts the virtual memory consumption for
the same setup.

The multi-threaded interface to PYTHIA8 was also tested in LHCb conditions
with GAUSS-ON-GAUSSINO. This is highlighted in Figures A.4, A.5, and A.6 in 2016
beam conditions. Performance in 2022 beam conditions is shown in Figures A.7, A.8,
and A.9.

The multi-threaded interface to GEANT4 is examined in the GAUSSINO

standalone setup with the EXTERNALDETECTOR package in Figures A.10, A.11, and
A.12. These figures illustrate the throughput, time per event, and virtual memory
consumption, respectively, for both the generation and particle transport steps.

The detector simulation of Run 3 using DD4HEP and DETDESC geometry
descriptions is presented for 2016 beam conditions in Figures A.13, A.14, and A.15,
and for 2022 beam conditions in Figures A.16, A.17, and A.18.

Comparison of the relative time spent in each sub-detector between the
GAUSS-ON-GAUSSINO and the former version of GAUSS (SIM10) is presented in
Figure A.19. Relative time spent by each particle in the sub-detectors measured with
respect to the time spent in that detector for SIM10 is shown in Figure A.20. The
same plot for GAUSS-ON-GAUSSINO is shown in Figure A.21.
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GAUSS-ON-GAUSSINO simulation frameworks
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FIGURE A.1: Throughput of the generation step as a function of
the number of threads in GAUSSINO using shared and thread-local
interface to PYTHIA8 for head-on pp-collisions with varying beam

energies.
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FIGURE A.2: Time per event of the generation step as a function of
the number of threads in GAUSSINO using shared and thread-local
interface to PYTHIA8 for head-on pp-collisions with varying beam

energies.
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FIGURE A.3: Virtual memory consumption of the generation step
as a function of the number of threads in GAUSSINO using shared
and thread-local interface to PYTHIA8 for head-on pp-collisions with

varying beam energies.
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FIGURE A.4: Throughput of the generation step in
GAUSS-ON-GAUSSINO as a function of the number of threads
using shared and thread-local interface to PYTHIA8 for pp-collisions
(minimum bias events) with the same beam conditions as during

Run3 (2016) data-taking period in LHCb.
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FIGURE A.5: Time per event of the generation step in
GAUSS-ON-GAUSSINO as a function of the number of threads
using shared and thread-local interface to PYTHIA8 for pp-collisions
(minimum bias events) with the same beam conditions as during

Run3 (2016) data-taking period in LHCb.
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FIGURE A.6: Virtual memory consumption of the generation step
in GAUSS-ON-GAUSSINO as a function of the number of threads
using shared and thread-local interface to PYTHIA8 for pp-collisions
(minimum bias events) with the same beam conditions as during

Run3 (2016) data-taking period in LHCb.
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FIGURE A.7: Throughput of the generation step in
GAUSS-ON-GAUSSINO as a function of the number of threads
using shared and thread-local interface to PYTHIA8 for pp-collisions
(minimum bias events) with the same beam conditions as during

Run3 (2022) data-taking period in LHCb.
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FIGURE A.8: Time per event of the generation step in
GAUSS-ON-GAUSSINO as a function of the number of threads
using shared and thread-local interface to PYTHIA8 for pp-collisions
(minimum bias events) with the same beam conditions as during

Run3 (2022) data-taking period in LHCb.
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FIGURE A.9: Virtual memory consumption of the generation step
in GAUSS-ON-GAUSSINO as a function of the number of threads
using shared and thread-local interface to PYTHIA8 for pp-collisions
(minimum bias events) with the same beam conditions as during

Run3 (2022) data-taking period in LHCb.
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FIGURE A.10: Throughput of both the generation and particle
transport steps as a function of the number of threads in GAUSSINO
measured using a photon gun with varying energies shot at a simple

cylindrical calorimeter.
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FIGURE A.11: Time per event of both the generation and particle
transport steps as a function of the number of threads in GAUSSINO
measured using a photon gun with varying energies shot at a simple

cylindrical calorimeter.
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FIGURE A.12: Virtual memory consumption of both the generation
and particle transport steps as a function of the number of threads in
GAUSSINO measured using a photon gun with varying energies shot
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FIGURE A.13: Throughput of the generation and detector simulation
steps in GAUSS-ON-GAUSSINO as a function of the number of threads
using shared and thread-local interface to GEANT4 for pp-collisions
(minimum bias events) with the same beam conditions as during

Run3 (2016) data-taking period in LHCb.

0 5 10 15 20 25 30 35 40
Threads No.

0.0

2.5

5.0

7.5

10.0

12.5

Ti
m

e 
pe

r e
ve

nt
 [s

]

LHCb Simulation Preliminary
Gauss v60r1 with Geant4 v10.7.3
Detailed Simulation
pp-collisions @ 

√
s  = 13 TeV

L = 4 ·1032 cm 2s 1

Run3 (2022) detector / DD4hep, Pythia8(shared)
Run3 (2022) detector / DD4hep, Pythia8(thread-local)
Run3 (2022) detector / DetDesc, Pythia8(shared)
Run3 (2022) detector / DetDesc, Pythia8(thread-local)
Run2 (2016) detector / DetDesc, Pythia8(shared)
Run2 (2016) detector / DetDesc, Pythia8(thread-local)

FIGURE A.14: Time per event of the generation and detector
simulation steps in GAUSS-ON-GAUSSINO as a function of the
number of threads using shared and thread-local interface to
GEANT4 for pp-collisions (minimum bias events) with the same beam

conditions as during Run3 (2016) data-taking period in LHCb.
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FIGURE A.15: Virtual memory consumption of the generation and
detector simulation steps in GAUSS-ON-GAUSSINO as a function of
the number of threads using shared and thread-local interface to
GEANT4 for pp-collisions (minimum bias events) with the same beam

conditions as during Run3 (2016) data-taking period in LHCb.
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FIGURE A.16: Throughput of the generation and detector simulation
steps in GAUSS-ON-GAUSSINO as a function of the number of threads
using shared and thread-local interface to GEANT4 for pp-collisions
(minimum bias events) with the same beam conditions as during

Run3 (2022) data-taking period in LHCb.
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FIGURE A.17: Time per event of the generation and detector
simulation steps in GAUSS-ON-GAUSSINO as a function of the
number of threads using shared and thread-local interface to
GEANT4 for pp-collisions (minimum bias events) with the same beam

conditions as during Run3 (2022) data-taking period in LHCb.
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FIGURE A.18: Virtual memory consumption of the generation and
detector simulation steps in GAUSS-ON-GAUSSINO as a function of
the number of threads using shared and thread-local interface to
GEANT4 for pp-collisions (minimum bias events) with the same beam

conditions as during Run3 (2022) data-taking period in LHCb.
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(A) SIM10 GAUSS framework with GEANT4 v10.6.
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(B) New multi-threaded (1 thread) GAUSS-ON-GAUSSINO framework with GEANT4 v10.7.

FIGURE A.19: Relative time [127] spent in each sub-detector when
simulating minimum bias events using different versions of the
framework with the nominal beam conditions during the Run 3
data-taking period and the Run 3 geometry. The time spent in the
calorimeters is very similar in the current and new versions of the
framework as expected. Simulation of the optical photons in RICH1
and RICH2 was turned off in the SIM10 version of GAUSS as it is not

yet available in GAUSS-ON-GAUSSINO, for easier comparison.
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(A) Relative time spent by each particle in a sub-detector measured with respect to the total time spent
on the simulation.
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(B) Relative time by each particle in a sub-detector measured with respect to the time spent in that
sub-detector.

FIGURE A.20: Detailed performance [127] of the SIM10 version of
the GAUSS framework when simulating minimum bias events with
the nominal beam conditions of the Run 3 data-taking period and the

Run 3 geometry.
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(A) Relative time by each particle in a sub-detector measured with respect to the total time spent on
the simulation.
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(B) Relative time by each particle in a sub-detector measured with respect to the time spent in that
sub-detector.

FIGURE A.21: Detailed performance [127] of the new multi-threaded
(1 thread) GAUSS-ON-GAUSSINO framework when simulating
minimum bias events with the nominal beam conditions of the Run 3

data-taking period and the Run 3 geometry.
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B
Selected sub-detector
visualizations used in the
validation of the DD4HEP detector
description

This chapter provides a selection of sub-detector visualizations that were used for
validating the DD4HEP detector description by comparing it with the DETDESC

visualization as described in Chapter 3.
The comparison starts with the perspective view of the VP detector in both the

DETDESC and DD4HEP visualizations, as shown in Figure B.1. Figure B.2 provides a
zoomed-in perspective of the same detector for closer examination. The downstream
view of the VP is shown in Figure B.3, followed by a zoomed-in version in Figure B.4.
Lastly, Figure B.5 presents the A-side view of the VP detector in both visualizations.

The next set of visualizations focuses on the FT detector. A perspective view is
shown in Figure B.6, followed by the front view in Figure B.7, and the side view in
Figure B.8.

Figures presented in this chapter are only a small subset of all the figures that
were used to validate the new detector description. Missing volumes of the neutron
shielding observed next to the FT detector, as well as missing volumes of the beam
pipe in Figures representing the VELO detector, are some examples showing how
indispensable the visualization tools in the simulation framework are.
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(A) VP in DETDESC (B) VP in DD4HEP

FIGURE B.1: Perspective view of the VP detector in the DETDESC and
DD4HEP visualizations (status as of August 2022).

(A) VP in DETDESC (B) VP in DD4HEP

FIGURE B.2: Zoomed-in perspective view of the VP detector in the
DETDESC and DD4HEP visualizations (status as of August 2022).
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(A) VP in DETDESC (B) VP in DD4HEP

FIGURE B.3: Downstream view of the VP detector in the DETDESC
and DD4HEP visualizations (status as of August 2022).

(A) VP in DETDESC (B) VP in DD4HEP

FIGURE B.4: Zoomed-in downstream view of the VP detector in the
DETDESC and DD4HEP visualizations (status as of August 2022).

(A) VP in DETDESC (B) VP in DD4HEP

FIGURE B.5: A-side view of the VP detector in the DETDESC and
DD4HEP visualizations (status as of August 2022).
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DD4HEP detector description

(A) FT in DETDESC (B) FT in DD4HEP

FIGURE B.6: Perspective view of the FT detector in the DETDESC and
DD4HEP visualizations (status as of August 2022).

(A) FT in DETDESC (B) FT in DD4HEP

FIGURE B.7: Front view of the FT detector in the DETDESC and
DD4HEP visualizations (status as of August 2022).

(A) FT in DETDESC (B) FT in DD4HEP

FIGURE B.8: Side view of the FT detector in the DETDESC and
DD4HEP visualizations (status as of August 2022).
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C
Additional performance plots of
the interface to PyTorch and
ONNXRuntime backends in
GAUSSINO

This chapter provides additional performance plots of the interface to PyTorch and
ONNXRuntime backends implemented in the GAUSSINO framework, as described
in Chapter 4. These plots focus on comparing the performance of the PyTorch and
ONNXRuntime backends across various configurations, specifically the number of
intra-op and inter-op threads, which are key factors in optimizing machine learning
inference libraries.

Figure C.1 compares the total simulation time per event for the PyTorch and
ONNX backends using different numbers of inter-op threads with one intra-op
thread. Figure C.2 presents the inference throughput for the ONNX backend, while
Figure C.3 shows the throughput per thread.

Inference time comparisons for the ONNX backend are given in Figure C.4 (total
inference time per event) and Figure C.5 (time per thread). The total simulation
throughput and time for the ONNX backend are shown in Figures C.6 and C.7,
respectively. Figure C.8 provides a comparison of virtual memory usage.

For the PyTorch backend, inference throughput is compared in Figures C.9 (total)
and C.10 (per thread). Figures C.11 and C.12 show inference time comparisons. The
total simulation throughput and time for PyTorch are displayed in Figures C.13 and
C.14, while virtual memory usage is depicted in Figure C.15.
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FIGURE C.1: Comparison of the total time per event for the
PyTorch and ONNX backends in GAUSSINO with different numbers

of inter-op threads and one intra-op thread.
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FIGURE C.2: Comparison of the inference throughput for the ONNX
backend in GAUSSINO with different number of intra-op and inter-op

threads.
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FIGURE C.3: Comparison of the inference throughput per thread for
the ONNX backend in GAUSSINO with different number of intra-op

and inter-op threads.
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FIGURE C.4: Comparison of the inference time per event for the
ONNX backend in GAUSSINO with different number of intra-op and

inter-op threads.

0 5 10 15 20 25 30 35 40
Inter-op Threads = Gaudi Threads

0

10

20

30

40

In
tra

-o
p 

Th
re

ad
s

Gaussino Private
v0r1 standalone

Interface to ONNXRuntime (C++)
Benchmark test: C = AB where {A, B, C}⊂M1024 × 1024( )

ONNXRuntime inference time per event per thread

10 Ti
m

e 
[m

s]

FIGURE C.5: Comparison of the inference time per event per thread
for the ONNX backend in GAUSSINO with different number of

intra-op and inter-op threads.
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FIGURE C.6: Comparison of the total simulation throughput for the
ONNX backend in GAUSSINO with different number of intra-op and

inter-op threads.
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FIGURE C.7: Comparison of the total simulation time per event for
the ONNX backend in GAUSSINO with different number of intra-op

and inter-op threads.
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FIGURE C.8: Comparison of the total virtual memory usage for the
ONNX backend in GAUSSINO with different number of intra-op and

inter-op threads.
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FIGURE C.9: Comparison of the inference throughput for the PyTorch
backend in GAUSSINO with different number of intra-op and inter-op

threads.
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FIGURE C.10: Comparison of the inference throughput per thread for
the PyTorch backend in GAUSSINO with different number of intra-op

and inter-op threads.
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FIGURE C.11: Comparison of the inference time per event for the
PyTorch backend in GAUSSINO with different number of intra-op and

inter-op threads.
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FIGURE C.12: Comparison of the inference time per event per thread
for the PyTorch backend in GAUSSINO with different number of

intra-op and inter-op threads.
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FIGURE C.13: Comparison of the total simulation throughput for the
PyTorch backend in GAUSSINO with different number of intra-op and

inter-op threads.
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FIGURE C.14: Comparison of the total simulation time per event for
the PyTorch backend in GAUSSINO with different number of intra-op

and inter-op threads.
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FIGURE C.15: Comparison of the total virtual memory usage for the
PyTorch backend in GAUSSINO with different number of intra-op and

inter-op threads.



117

D
Additional performance plots of
the ML-based fast simulation in
GAUSSINO and
GAUSS-ON-GAUSSINO

This chapter provides additional performance plots of the ML-based fast simulation
implemented in the GAUSSINO and GAUSS-ON-GAUSSINO simulation frameworks,
as described in Chapter 4. The plots focus on the performance of the CALOML+VAE
model.

Figure D.1 shows the throughput of the ML-based fast simulation (VAE model)
when tested on a simple cylindrical calorimeter with varying photon energies.
Figure D.2 provides the corresponding time per event, while Figure D.3 illustrates
the potential speedup achieved using this fast simulation model. Virtual memory
consumption is depicted in Figure D.4.

The longitudinal and lateral profile distributions of a modified VAE model,
trained on a CALOCHALLENGE-compatible dataset produced in GAUSSINO, are
presented in Figures D.5 and D.6, respectively.

Monitoring output for fast simulated 10 GeV electrons at two angles (θ = 3.36◦

and θ = 12.7◦) with both retrained and non-retrained VAE models is shown in
Figures D.7, D.8, D.9, and Figure D.10 for fast simulated photons.

Visualization of the ML-based fast simulation tested on simple cylindrical and
planar calorimeters is presented in Figures D.11 and D.12.

Figures D.13, D.14, and D.15 illustrate the validation of the ML-based fast
simulation, showing comparisons between energy deposits left by ML-based and
GEANT4-based simulations in the electromagnetic calorimeter, across different
particle momenta and positions.

Finally, Figures D.16a, D.16c, D.16d, D.16e, and D.16f present the validation
results for the ML-based fast simulation on LHCb minimum bias events.
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FIGURE D.1: Throughput of the ML-based fast simulation (VAE
model) tested on a simple cylindrical calorimeter with varying

photon energies.
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FIGURE D.2: Time per event of the ML-based fast simulation (VAE
model) tested on a simple cylindrical calorimeter with varying

photon energies.
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FIGURE D.3: Possible speedup obtained with the ML-based fast
simulation (VAE model) tested on a simple cylindrical calorimeter
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FIGURE D.5: Longitudinal profile distribution of a
modified VAE model (VAEWithProfiles) trained on the

CALOCHALLENGE-compatible dataset produced in GAUSSINO.

FIGURE D.6: Lateral profile distribution of a modified VAE model
(VAEWithProfiles) trained on the CALOCHALLENGE-compatible

dataset produced in GAUSSINO.
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FIGURE D.7: Output plots of the monitoring algorithm of fast
simulated 10 GeV electrons at θ = 3.36 with not a retrained VAE

model.



122
Appendix D. Additional performance plots of the ML-based fast simulation in

GAUSSINO and GAUSS-ON-GAUSSINO

FIGURE D.8: Output plots of the monitoring algorithm of fast
simulated 10 GeV electrons at θ = 3.36 with a retrained VAE model.
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FIGURE D.9: Output plots of the monitoring algorithm of fast
simulated 10 GeV electrons at θ = 12.7 with a retrained VAE model.



124
Appendix D. Additional performance plots of the ML-based fast simulation in

GAUSSINO and GAUSS-ON-GAUSSINO

FIGURE D.10: Output plots of the monitoring algorithm of fast
simulated 10 GeV photons at θ = 12.7 with a retrained VAE model.
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FIGURE D.11: Visualization of the ML-based fast simulation (VAE
model) tested on a simple cylindrical calorimeter. The energy of the
incident particle increases from left to right. Images in the top row
represents a projection of the calorimeter response in the x-y plane
of the virtual cylinder. The middle row consists of the GEANT4
visualizations of the showers as sees from the z axis of the main
coordinate system. The bottom row represents 3D visualizations of

the showers.
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FIGURE D.12: Visualization of the ML-based fast simulation (VAE
model) tested on a simple planar calorimeter. The energy of the
incident particle increases from left to right. Images in the top row
represents a projection of the calorimeter response in the x-y plane
of the virtual cylinder. The middle row consists of the GEANT4
visualizations of the showers as sees from the z axis of the main
coordinate system. The bottom row represents 3D visualizations of

the showers.
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(A) ML-based sim. for p ∈ [0.1, 1.0] GeV.
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(B) GEANT4-based sim. for p ∈ [0.1, 1.0] GeV.

3000 2000 1000 0 1000 2000 3000
x [mm]

3000

2000

1000

0

1000

2000

3000

y 
[m

m
]

LHCb Simulation Preliminary
Sim11, 10000 events
PGun / MomentumRange
p∈ [1.0, 10.0] GeV/c
∈ [1.0, 23.0]
∈ [0.0, 360.0]

ML-based hits during fast simulation

1000

2000

3000

4000

5000

D
ep

os
ite

d 
En

er
gy

 [M
eV

]

(C) ML-based sim. for p ∈ [1.0, 10.0] GeV.
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(D) GEANT4-based sim. for p ∈ [1.0, 10.0] GeV.
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(E) ML-based sim. for p ∈ [10.0, 100.0] GeV.
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(F) GEANT4-based sim. for p ∈ [10.0, 100.0] GeV.
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(G) ML-based sim. for p ∈ [100.0, 1000.0] GeV.
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(H) GEANT4-based sim. for p ∈ [100.0, 1000.0]
GeV.

FIGURE D.13: Visualization of the energy deposits in the
electromagnetic calorimeter left by the ML-based and GEANT4-based
component when running fast simulation. The ML-based fast
simulation is turned off around the beam pipe. Moreover, the fast
simulation is only applied to photons and electrons with momenta in

the range of 0.1-1000 GeV.
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FIGURE D.14: Comparison of the energy deposited in the
electromagnetic calorimeter by the ML-based fast simulation and

detailed simulation as a function of the entry point of the particle.
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FIGURE D.15: Comparison of the energy deposited in the
electromagnetic calorimeter by the ML-based fast simulation and
detailed simulation as a function of the momentum of the particle

and its PDG code.
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Appendix D. Additional performance plots of the ML-based fast simulation in

GAUSSINO and GAUSS-ON-GAUSSINO
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fast simulation.
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FIGURE D.16: Validation of the ML-based fast simulation using the
CALOML+VAE model on the LHCb minimum bias events.
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