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Résumé en francais

La cryptographie a clés publiques, ou asymétrique, découverte il y a 50 ans par
Whitfield Diffie et Martin Hellman, utilise des paires de clés (une clé privée
et une clé publique) pour construire des protocoles sécurisés. Elle est devenue
une part essentielle des systemes quotidiennement utilisés, en particulier pour
construire des protocoles d’échanges de clés. Ces protocoles sont essentiels pour
établir des clés secretes dans le cadre de la cryptographique symétrique.

Cependant, les ordinateurs quantiques sont capables d’attaquer efficacement
les problemes de théorie des nombres garantissant la sécurité des systemes a
clés publiques les plus courants aujourd’hui, particulierement la factorisation
(sur lequel repose notamment RSA) et le logarithme discret (sur lequel repose
la cryptographie basée sur les courbes elliptiques). Pour anticiper cette menace,
des algorithmes post-quantiques sont actuellement développés, qui résistent a la
fois aux attaques classiques et aux attaques quantiques.

Une des familles de cryptosystémes post-quantiques repose sur les isogénies,
c’est-a-dire des homomorphismes entre les courbes elliptiques. En particulier,
deux protocoles d’échange de clés basés sur les isogénies sont en cours d’étude:
SIDH (Supersingular Isogeny Diffie-Hellman) et CSIDH (Commutative Super-
singular Isogeny Diffie-Hellman). Par ailleurs le protocole SIKE (Supersingular
Isogeny Key Encapsulation), dérivé de SIDH, est actuellement en phase d’étude
en vue d’une possible standardisation pour la cryptologie post-quantique. Notre
problématique est la suivante: comment renforcer la confiance dans la sécurité
et la faisabilité des protocoles d’échanges de clés post-quantiques basés sur les
isogénies ?

Nous proposons quatre axes de réponse dans cette these: développer les
forces de la cryptographie basée sur les isogénies, pallier ses faiblesses, généraliser
les protocoles existants, et construire des attaques pour éprouver leur robustesse.
Cette these développe ces axes dans trois parties.

La premiére concerne le protocole CSIDH. Nous en proposons une implé-
mentation en temps constant, construite avec des contre-mesures envers les at-
taques par étude du temps d’exécution, de la consommation de courant, et par
injection de fautes. Pour y parvenir, les parametres publiques et Iespace de
clé autorisés sont soigneusement choisis afin que chaque calcul soit nécessaire
a obtention d’une clé valide. Nous proposons également une variante de ces
parametres qui permet de réaliser le protocole sans avoir recours a un générateur
d’aléa.



Nous proposons dans une seconde partie une généralisation du protocole
d’échange de clés de CSIDH. Pour cela nous utilisons des ensembles de courbes
ayant une isogénie de degré d vers leur conjuguée. Nous nommons ces cou-
ples (courbe, d-isogénies) des (d, €)-structures. Nous prouvons 'existence d’une
action libre et transitive du groupe de classe d’idéaux sur des sous-ensembles
des (d, €)-structures supersinguliéres, et nous utilisons cette action pour étudier
la structure des graphes d’isogénies obtenus. Par la suite nous dérivons de
cette étude un protocole d’échange de clés baptisé HD CSIDH pour Higher
Degree Commutative Supersingular Isogeny Diffie-Hellman. Nous décrivons
concretement son utilisation, et nous en analysons la sécurité. Finalement nous
développons des techniques de compression et de validation des clés spécifiquement
pour HD CSIDH, et nous les comparons avec CSIDH.

Dans une troisieme partie nous étudions les applications cryptanalytiques de
cette nouvelle action libre et transitive, en particulier sur les protocoles SIDH
et SIKE. Nous montrons qu’elle ameéne une généralisation de 'attaque de Delfs
et Galbraith ([DG16]) sur SIDH, et nous évaluons sa complexité et son impact
concret sur la sécurité. Enfin nous identifions un ensemble de courbes faibles
particulierement vulnérables a cette attaque dans le cas spécifique de SIKE et
des parametres choisis pour le premier niveau de sécurité de la spécification.
Cependant nous montrons que ces attaques ne sont pour Iinstant pas suffisam-
ment efficaces pour menacer la robustesse de SIDH et SIKE.



Chapter 1

Introduction

1.1 Landscape of cryptology

Cryptology is literally the science of secrecy. It aims to ensure some or all of
the following guarantees on the information exchanged:

e confidentiality: nobody other than the recipients of a message can have
access to its content;

e authenticity: someone cannot pretend to send a message as someone else;
e integrity: the message cannot be modified by a third party.

Cryptography invisibly surrounds us in our every-day life such as in encrypted
chats, storage of sensitive information, payments on the internet, among other
examples. Considering the importance of the digital world nowadays, cryptog-
raphy is more necessary than ever, for states, companies and private individuals,
to ensure protection against spying and attacks on their digital data.

Symmetric and asymmetric settings Cryptology is often divided into two
main branches: symmetric and asymmetric.

In the symmetric setting, the sender and the receiver share a common secret
key that enables them to encrypt and decrypt their messages. This branch
of cryptography allows fast encryption with block ciphers and stream ciphers.
However some cryptographic primitives, such as signatures, cannot be achieved
with symmetric cryptography. Besides, the problem of securely establishing
the secret key between two parties remains. Two encryption standards chosen
by the American National Institute of Standards and Technology (NIST) are
symmetric block ciphers, namely the Data Encryption Standard (DES) from
1976 to 2001, replaced by the Advanced Encryption Standard (AES) since 2001.

In asymmetric settings, each party, sender and receiver, has a private key
and an associated public key. Asymmetic cryptography is often slower than



its symmetric counterpart, however it also provides a different and comple-
mentary range of primitives, such as signatures, multiparty computation, key
encapsulation, and especially key exchange protocols. For example, the RSA
algorithm, from the name of its inventors (Rivest Shamir and Adleman) in 1977,
is a famous asymmetric cryptosystem, and the basis of a widely-used signature
scheme, whose security relies on the hardness of factoring. The RSA algorithm
can be used for encryption, but due to its relative slowness, it is mostly used to
encapsulate and exchange secret keys before being used in a symmetric protocol.

Key exchange protocols Key exchange protocols are crucial to ensure that
two parties Alice and Bob can create a shared secret key from their respective
private and public key, and later use this shared secret in symmetric encryption
and/or authentification. In this sense, key exchange protocols are the bridge
between the asymmetric and symmetric worlds.

Key exchange protocols have first been introduced by Diffie and Hellman in
their 1976 article “New directions in cryptography” [DH76]. In this revolution-
ary paper, they introduce key exchange protocols as a way to provide a secure
method for two parties to obtain a shared secret.

Elliptic curves Modern cryptography is heavily based on mathematical the-
ory and computer science practice. In particular, a huge part of contemporary
asymmetric cryptology relies on elliptic curves. These curves first appeared in
cryptology in 1986, and now benefit from years of research, both in mathematics
(where they have been used and studied since the 19*" century) and computer
science area. Thanks to these developments, they provide fast and compact
protocols that are widely used in encryption systems like Signal, Telegram or
WhatsApp, signatures for e-commerce, or information encryption in biometric
passports.

1.2 Computationally hard problems

Protocols in cryptography rely on computationally hard problems, i.e. problems
that are assumed not to be solvable efficiently by a computer unless the under-
lying secret is known. This is crucial to ensure that the secret key in symmetric
cryptography, or the private key in asymmetric cryptography, remain secret.
Otherwise the protocol is corrupted and an attacker can decrypt messages or
usurp the identity of someone else. An example of a hard computational prob-
lem used in symmetric protocols is to compute preimages of hash functions, but
from now on we will focus on asymmetric protocols.

Widely used computationally hard problems for asymmetric cryptography
include factorization and discrete logarithm. Note that algorithms to solve these
two problems are known, but that their requirements in time or memory grow
sub-exponentially or exponentially with the size of the input, making them
unpractical for the sizes used in cryptography.
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Factorization Let p and ¢ be two (large) primes. Given their product pq
only, the factorization problem is to recover the factors p and q.

For this problem, the computational effort needed to find the answer grows
subexponentially with the size of the integer pg to be factored. Hence, for
p and ¢ sufficiently large, factorizing their product becomes computationally
infeasible (in the sense that the time needed would be greater than the age of
the universe). The factorization problem is the underlying building block for
the security of the widely used RSA scheme.

Discrete logarithm problem

Definition 1 (Discrete Logarithm Problem). Let (G, x) be a group and g a
generator. Let e be a secret integer. Given ¢° only, the discrete logarithm
problem is to find e.

For this problem, the computational effort needed to find the answer depends
on the underlying group G: it is quasi-polynomial or subexponential in finite
fields, but exponential on elliptic curves. The discrete logarithm problem is the
building block for elliptic curve cryptography.

Hard Homogeneous Spaces The discrete logarithm problem has been gen-
eralized by Couveignes [Cou06] as an instance of a Hard Homogeneous Space
(HHS). Hard Homogeneous Spaces are the kind of settings that allow key ex-
change protocols.

Definition 2 (Homogeneous space). Let G be a finite commutative group. A
homogeneous space H for G is a finite set H of the same cardinality S = #H =
#G which is acted on freely and transitively by G.

This definition means that there is a single orbit and for any g € G not
the identity, the permutation of H induced by g has no fixed points. In other
words, for two elements hy, ho € H there is a unique g in G that maps hy to hs.
The homogeneous spaces of interest for us are the ones where the following
computational problems are easy:

e Group operations for G: Given strings encoding of group elements g; and
g2, decide if they represent elements in GG and if these elements are equal.
Given g1, g2 € G compute g192, g7 and decide if g; = go.

e Random element for G: Find a random element in G with uniform prob-
ability.

e Membership for H: Given a string h decide if h represents an element
in H.

e Equality in H: Given hy, ho € H decide if hy = ho.

e Action of G on H: Given g € G and h € H compute the action of g on h.
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For cryptographic purposes, we are interested in homogeneous spaces having
additional hard computational problems. We consequently define the notion of
hard homogeneous spaces.

Definition 3 (Hard homogeneous space or HHS). A hard homogeneous space
H for G is a homogeneous space for which the following problems are hard:

e Vectorization: Given hq, ho € H, find g € GG such that ho is the result of
the action of g on Ay .

e Parallelization: Let §(hg, h1) be the unique group element mapping hy to
hs. Given hi, ha, hy € H, compute the unique hy such that §(hy, hs) =
d(ha, h1) .

It is conjectured (and proven in quantum settings) that parallelization and
vectorization are equivalent, in the sense that if we can solve one problem effi-
ciently, we can then use it to solve the other problem efficiently too.

1.3 Original Diffie-Hellman

We now present the original version of the Diffie-Hellman key exchange from
[DHT76] in Figure 1.1. It requires a finite cyclic group G of order n, and a
generating element g in G.

Alice and Bob both choose random integers as private keys. They derive
their public keys by exponentiating the group generator by their private keys.
Both of them can compute a shared secret by applying their own private key to
the counterpart’s public key, thanks to the group commutativity.

Note that a passive attacker observing the information exchanged between
Alice and Bob would not be able to obtain any information on the private keys.
The security depends on the hardness of the Diffie-Hellman problem, which is
analogous to Parallelization in a HHS, and on the Discrete Logarithm Problem,
which is analogous to Vectorization.

1.4 Quantum revolution

Contemporary cryptography faces a major threat: the arrival of quantum com-
puters. The publication in 1994 of Shor’s algorithm [Sho94] has been a game
changer. Shor proves that with a quantum computer, his algorithm can solve
the factorization and discrete logarithm problem in polynomial time in the size
of the input. This means that while these two building blocks problems remain
hard against an attacker having only classical resources, they are no longer safe
to be used against an attacker having access to a quantum computer.

Note that when Shor first published his algorithm, there were no quantum
computers available yet. However after years of research, the development of
quantum computers is rapidly growing. While bits on a classical computer have
two distinct states 0 or 1, quantum bits, or qubits, can be in a superposition of
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Public parameters:
A finite cyclic group G of order n (here G is written multiplicatively).
A generating element g in G.

Alice Bob
Private key: Private key:
a€Nja<n beNb<n
Public key: Public key:
PKs=g" PKp=g"

PK 4

PKpg
Shared secret Shared secret
computation: computation:
(PKp)* mod n (PK4)® mod n
Shared secret: Shared secret:
gab gab

Figure 1.1: Original Diffie-Hellman protocol

both states 0 and 1. This allows new type of algorithms to be developed, namely
quantum algorithms, that outperform classical ones on several computational
problems, including several problems on which current cryptography is based.

Today, these quantum computers are not powerful enough to break currently
used cryptography, but they might be in the near future. Current attempts are
far from being enough to implement the quantum algorithm of Shor on integers
of cryptographic size, which would need about 100 logical qubits, scaling up to
thousands of physical qubits due to the need for error corrections. Nonetheless
the power of quantum machines is rapidly growing, and large quantum machines
capable of running interesting instances of Shor’s algorithm could be operational
in five to ten years according to some experts, rendering obsolete many of the
algorithms used in cryptology. While most symmetric cryptosystems can be
patched by roughly doubling the size of the keys, the current state-of-the-art
in asymmetric cryptography, including elliptic-curve based cryptography, will
completely collapse, because the factorization and discrete logarithm problems
would be rendered easy enough to solve.

The consequences of the availability of a fully operational quantum computer
would be disastrous: secure communications, digital signatures, and online pay-
ments, among others would not be safe to use any more. Considering this threat,
there is an urgent need to find new protocols that would be resistant against
quantum attacks. This is exactly what post-quantum cryptography is: algo-
rithms, possibly running on classical computers, that can resist both classical
and quantum adversaries.

The potential post-quantum cryptosystems have five dominant underlying
mathematical techniques:

13



o Lattice-based systems, which rely on the hardness of problems such as
finding a short vector in a given lattice;

¢ Code-based systems, which rely on hard problems from the theory of error
correcting codes;

o Multivariate systems, which rely on the difficulty of solving various kinds
of polynomial systems;

¢ Hash-based systems, which rely on the difficulty of inverting cryptographic
hash functions;

o Isogeny-based systems, which take advantage of the hardness of finding
paths in the graph of isogenies between ordinary or supersingular elliptic
curves.

These problems are currently believed to be hard even for an attacker equipped
with a quantum computer. To encourage efforts in post-quantum research, NIST
(the American National Institute of Standards and Technology) has launched
in 2017 a five-year-program, aiming to standardize a portfolio of quantum-
resistant cryptosystems. The isogeny-based key encapsulation candidate, SIKE
[JACT17], is one of the alternate third round finalists.

1.5 Isogeny history

Elliptic curve cryptography has been used for years due to its efficiency and
compactness. However it relies on the discrete logarithm problem which can be
solved efficiently by quantum computers, triggering the need for a replacement.

Isogenies are morphisms between elliptic curves (preserving the point at in-
finity). In that sense isogeny-based systems naturally evolve from elliptic curve
cryptography. Isogenies have been historically studied for point counting algo-
rithms or endomorphism ring computation on elliptic curves. However, while
the underlying hard problems for elliptic-curve-based systems are easily attack-
able by a quantum computer, the problem of finding an isogeny between two
given elliptic curves remains conjecturally hard for both classical and quantum
attackers. This makes isogenies a suitable candidate for post-quantum cryptog-
raphy.

Isogeny-based cryptography is the youngest of post-quantum paradigm. How-
ever it benefits from years of studies made on elliptic curve cryptography, which
prepared a fertile soil for its growth. It first appeared in 1996, when Couveignes
proposed a key-exchange protocol based on the action of the ideal class group
on an isogeny class of ordinary elliptic curves [Cou06]. Although his discovery
did not spark much interest at the time, a few years later in 2004 the same
scheme was independently rediscovered by Rostovstev and Stolbunov [RS06]
who claimed its post-quantum security. This time it captured more attention,
or at least enough attention for a quantum subexponential attack on the scheme
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to be published. Indeed, Childs, Jao and Soukharev showed in 2010 the exis-
tence of a quantum subexponential attack [CJS14]. This attack, added with the
fact that the scheme is inconveniently slow, despite recent steps towards greater
practicability of the scheme in [DKS18], seemed to temporarily end interest on
the use of isogenies between ordinary elliptic curves for cryptographic purposes.

In order to avoid the quantum subexponential attack on the ordinary case,
De Feo, Jao and Plat proposed in [JD11] and [DJP14] to use isogenies be-
tween supersingular elliptic curves over [, instead of ordinary ones. Indeed,
the attack of [CJS14] strongly relies on the fact that the endomorphism ring
of ordinary elliptic curves is commutative, which is not the case for supersin-
gular curves over Fp2. Using a commutative diagram to replace the missing
commutativity, they provide a quantum-resistant key exchange protocol a la
Diffie-Hellman, named SIDH for Supersingular Isogeny Diffie-Hellman.

The SIDH protocol later lead to SIKE (Supersingular Isogeny Key Encapsu-
lation), the isogeny-based proposal for the post-quantum NIST contest. It has
moved on through the competition to reach the alternate third-round pool. It
offers the shortest key sizes, perhaps the only one being in accessible range for
practical use in some applications (less than kilobytes versus megabytes).

Attempting to improve the ordinary case key exchange protocols of CRS,
Castryck, Lange, Martindale, Panny and Renes had the idea of using supersin-
gular curves defined over F,, (instead of F)2 in SIKE). The endomorphism ring
over ), then happens to be an order in a quadratic field, which is commutative,
exactly as in the ordinary case. Using ideas from De Feo, Kieffer and Smith
initially intended to accelerate the ordinary case protocol [DKS18], they pro-
posed in [CLM™18] a key exchange protocol with efficient public-key validation,
and without sending additional torsion points. This scheme, named CSIDH for
Commutative Supersingular Isogeny Diffie-Hellman still suffers from the subex-
ponential quantum attack, but it offers a nice and complementary alternative
to SIKE with an acceptable running time and the hope that it offers more flex-
ibility to derive other primitives. Note that the existence of a subexponential
quantum attack does not necessarily mean that the protocol is unusable: the
extensively used RSA protocol also has a subexponential attack, and it is the
most currently-used cryptographic protocol.

A growing number of isogeny-based protocols are being developed and stud-
ied, offering a portfolio of quantum-resistant cryptographic primitives. We give
a non-exhaustive list of such primitives to give an idea of the variety of possi-
bilities:

e Hash functions: Charles—Goren—Lauter [CLGO09];

e Key exchange protocols: Couveignes [Cou06], Rostovtsev—Stolbunov [RS06],
SIDH [JD11], CSIDH [CLM™18], CSURF [CD20], BSIDH [Cos20], OS-
IDH [CK20], CTIDH [BBC™*21];

e Key encapsulation protocol: SIKE [JACT17];

e Signatures: SeaSign [DG18], CSI-FiSh [BKV19], SQISign [DKL'20];
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e Verifiable delay functions: [Wes20], [DMPS19];
e Oblivious Transfer: [Vit19];
e Threshold schemes: [DM20];

Isogeny-based cryptosystems benefit from being the natural successor of el-
liptic curves cryptography, taking full advantage of the years of research and
confidence on curves. It is also the only post-quantum system offering a close
analogue of the Diffie-Hellman key exchange protocol, as opposed to key encap-
sulation only.

On the downside, isogeny-based cryptography is criticised for being slower
than other post-quantum families, meaning that much effort on implementations
is needed to make protocols practicable. Since isogeny-based cryptography is a
young field, more research is needed to increase the confidence in the underlying
hard problems.

1.6 Problematic

Considering the advantages and drawbacks of isogeny-based cryptography de-
scribed above, our problematic is the following: how can we increase confi-
dence in the security and practicability of isogeny-based key exchange
protocols?

We base our argumentation on four axes of confidence:

e Mitigating weaknesses: implementation to make key exchange fast and
secure;

e Re-enforcing strengths: key management to provide protocols with effi-
cient public key compression and validation;

e Constructive approach: generalization of existing protocols to cover the
different needs of cryptography;

e Destructive approach: cryptanalysis to test and estimate the resistance of
isogeny-based key exchanges.

1.7 Overview

We start by recalling in Chapter 2 the necessary mathematical preliminaries
to study isogeny-based protocols. We first gather notions on quadratic fields
in order to define the ideal class group in Section 2.1. Then, from algebraic
plane curves in Section 2.2, we gather the tools to properly define elliptic curves
in Section 2.3. We then define the morphisms between these curves, namely
isogenies, in Section 2.4, and the classification of curves that arise from the
structure of their endomorphism ring in Section 2.5. We make precise the action
of the ideal class group in the case of ordinary and supersingular elliptic curves
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in Section 2.6, which allows us to detail the structure of isogeny graphs in
Section 2.7.

In Chapter 3 we introduce isogeny-based key exchanges. We detail three ex-
isting key exchange protocols : the ordinary case (CRS [Cou06, RS06, Sto10]) in
Section 3.1 , the supersingular case of F,,» (SIDH [JD11][DJP14]) in Section 3.2
and the supersingular case over F,, (CSIDH [CLM*18]) in Section 3.3. Eventu-
ally, we compare these schemes in Section 3.5 and we briefly introduce notions
of key management in cryptography in Section 3.4.

After these introductory chapters we study in Chapter 4 the constant-time
implementation of the CSIDH key exchange protocol. We start by recalling
several models of side-channel attacks in Section 4.1, and previous works on
this subject in Section 4.2. Having gathered the necessary notions, we present
a dummy-free fault-attack-resistant constant-time implementation of CSIDH in
Section 4.3, as well as a derandomized variant implementation in Section 4.4.
These two results are part of the joint work in [CCCt19]. For completeness,
we present the results published by the research community after [CCCT19] in
Section 4.5.

We then move on to a generalization of the CSIDH group action in Chap-
ter 5. The results of this section have been published in [CS21]. The chapter
begins with the study of curves having a degree-d isogeny to their Galois conju-
gate in Section 5.1. We call these (d, €)-structures. Next we prove in Section 5.2
that there is a free and transitive action of the ideal class group of Q(v/—dp)
on isogeny classes of (d,€)-structures. This result allows us to prove and de-
scribe the structure of the isogeny graph of (d, €)-structures in Section 5.3. We
eventually show how these structures can be parametrized via modular curves
in Section 5.5 and Section 5.6.

The study of the properties of (d, €)-structures paves the way for our Higher
Degree Commutative Supersingular Isogeny Diffie-Hellman (HD CSIDH) pre-
sented in Chapter 6. We describe the key exchange protocol in Section 6.1 and
detail the practical computation and related algorithms in Section 6.2, illus-
trated by a concrete key exchange example in Section 6.3. We then focus on
key management for this new isogeny-based key exchange, in particular public
key compression in Section 6.4, and public key validation in Section 6.5.

Finally we study cryptanalytic aspects of SIDH in Chapter 7. We start by
recalling the Delfs-Galbraith attack from [DG16] in Section 7.1, before general-
izing the approach in Section 7.2 using the tools developed for (d, €)-structures.
We study the consequences for SIDH in Section 7.3
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Notations and conventions

over K has distinct roots. In most applications it will be a finite field.
e K is the algebraic closure of K.
e [ is a quadratic field.

o (O is the maximal order of k.

K is a perfect field, i.e. a field K in which every irreducible polynomial

e A" is the affine space over K of dimension n, A"(K) is the set of points

defined over KC, and A"(K) is the set of points defined over K.

e P is the projective space over K of dimension n, P"(K) is the set of points

defined over K, and P"(K) the set of points defined over K.

e n = (ng_1...ng)2 is the decomposition in base 2 for an integer n, written

with least significant bits on the right.

° (%) is the Legendre symbol, equal to 0 if p divides n, 1 if n is a nonzero

square modulo p, and —1 otherwise.

e log for the logarithm in base 2.
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Chapter 2

Mathematical preliminaries
for isogeny-based

cryptography

The building block for isogeny-based cryptography is elliptic curves. An elliptic
curve is a smooth curve of genus one with a distinguished rational point. To un-
derstand this definition we start by recalling notions about quadratic fields and
ideal class groups. We then study affine and projective plane curves, along with
the notions of non-singularity, dimension, function fields, divisors and genus.
Having gathered the tools to properly define elliptic curves, we turn to their
properties: an elliptic curve is an algebraic variety but also an algebraic group.
We define the addition in this group using divisors, then scalar multiplication
and torsion subgroups. Finally, we introduce the invariant differential.

After studying properties of elliptic curves we focus on morphisms between
such curves, namely isogenies. We define the notions of separable isogeny, dual
and degree. We give Vélu’s formulae, which are used to compute isogenies in
practice, as well as a concrete example. We conclude the section with an intro-
duction to modular curves an their link to isogenies. We then focus on isogenies
from one curve to itself, i.e. endomorphisms, and recall how the endomorphism
ring of ordinary and supersingular curves differs. We describe the Deuring corre-
spondence which links the world of isogenies with the world of fractional ideals,
and introduce the action of the ideal class group on different subset of elliptic
curves. Finally we introduce isogeny graphs to describe the structure of isoge-
nies linking curves from a given set. With graphical example we highlight the
differences that arise depending on the endomorphism ring properties.
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2.1 Quadratic imaginary order and class groups

We start by recalling notions of quadratic fields, orders, (integral) ideals, invert-
ible and principal fractional ideals, gathering the tools to formally define the
ideal class group itself.

2.1.1 Quadratic fields, orders and ideals

A quadratic field is Q(v/d) where d # 0,1 is a squarefree integer. If d < 0 then
the field is called an imaginary quadratic field. The discriminant of Q(\/a) is
D=difd=1 (mod 4) or D = 4d otherwise.

An order in a field k containing Q is a subring R of k that is finitely generated
as a Z-module and is such that R ®z Q = k. An order O is maximal if every
order @’ such that O C O' C k is such that O' = O. Any order of a quadratic
field is contained in a unique maximal order (see [BV07] Theorem 8.1.4).

Proposition 1. Let O be an order of an imaginary quadratic field k = Q(\/d).
The mazimal order is Oy = Z + wZ, where w = (1 + V/d) if d is congruent
to 1 modulo 4 or w = /d otherwise. Moreover O is a submodule of the mazimal
order, and can be written as O = Z + fwZ, where f =[O : O] is called the
conductor.

Proof. See [BVO0T7] Proposition 7.2.6 and [Gall2] Section A.12.. O

Proposition 2. Let I be an integral ideal of an order O = Z + fwZ in Q(\/d),
where w = Vd if d # 1 (mod 4) and w = (1 + Vd) otherwise. We have
I=c(aZ+ (b+ fw)Z), where a,b and c are integers such that ¢ >0, a >b >0,
and

e a divides b> —d if d £ 1 (mod 4) ;
e a divides b(b+ 1) — % ifd=1 (mod 4) .

Proof. See [BV07], Equation (8.8) and Proposition 8.4.5, with ¢ = 1, and vA =
fv—d. O

Recall that the norm of an ideal I is defined as N(I) = |O/I|. The norm
is multiplicative, i.e. N(IJ) = N(I)N(J). An ideal I strictly included in a
ring R is said to be a prime ideal if for every element a and b in R such that ab
belongs to I, then a or b belongs to I. Using the link between integral ideals and
integral binary quadratic forms, it is possible to show that every ideal whose
norm is coprime to the conductor has unique factorization into a product of
invertible prime ideals (see [BV07] Theorem 8.6.8).

Example 1. The order Oy = Z+ (1%‘/?3)2 is a maximal order of the quadratic
field k& = Q(v/=3). The suborder O = Z + 5y/—3Z has conductor 10. Set
w= %ﬂ The ideal I = 5(21Z + (5 — w)Z) is an ideal of Oy, with norm
525. It is the product of three prime ideals, namely 3Z + (1 — 2w)Z with norm
3, 7Z + (4 + 2w)Z with norm 7, and 5Z with norm 25.
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2.1.2 Fractional ideals

From integral ideals we move on to fractional ideals of an order O. Since frac-
tional ideals are not ideals, we will reserve the term ideal for integral ideals in
order to avoid confusion. Fractional ideals will always be named as such.

A fractional ideal of an order O in a field k is a subset a of k such that aa
is an (integral) ideal O of k for some positive integer a € Z. A fractional ideal
of an order O in a quadratic field k is said to be principal if it can be written
as a = aO for some « in k. It is said to be invertible if there exist a fractional
ideal b such that ab= O .

In the maximal order of a quadratic field, all nonzero fractional ideals are
invertible. Moreover every principal fractional ideal is invertible (see [BVO7]
Corollary 8.4.15, with the second point following from the definition).

The set of fractional ideal forms an abelian semigroup under multiplication
(with usual multiplication of ideals). The set of invertible fractional ideals I(O)
is a subgroup, in which the set of principle ideals Pr(O) is a normal subgroup
(see [BV07] Proposition 8.4.10 and Theorem 8.4.13).

Example 2. Consider the quadratic imaginary field k = Q(v/—3) and its max-
imal order Oy = Z + /—3Z. Consider the ideal I = 6Z + (3 + v/=3)Z of Oj.
Taking o = 2 4+ 21/=3 € Q(v/=3)*, @Oy, and ol are fractional ideals (and not
an integral ideal) of O.

2.1.3 Ideal class group

Definition 4. Let O be an order of an imaginary quadratic field. The ideal
class group is

Cl(0) = I1(0)/Pr(0) .

Intuitively, this means that we will consider equivalence classes of invertible
fractional ideals up to multiplication by an non-zero element of Q(v/d). For
example, the fractional ideals I and al belong to the same class.

Proposition 3. The order of the ideal class group of Oy asymptotically satisfies
log(# C1(0)) ~ log /Id] .

Proof. The is a special case of the Brauer—Siegel theorem (see [Lan94]). See
also [BV07] Theorem 9.3.10. O
2.2 Algebraic plane curves

This section aims to gather all the elements needed to define elliptic curves,

namely the notion of affine and projective spaces, plane curves, dimensions,
smoothness and genus. See [Gall2] for references of the results in this section.
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2.2.1 Affine plane curves

Let K be a perfect field. The affine 2-space over K is the plane A%(K) = {(z,y) :
z,y € K}

An affine plane curve is defined by a single polynomial equation f(z,y). An
algebraic plane curve C is defined over K if its defining polynomial is defined
over K . We denote this by C'/K. If C/K is a curve defined by f(z,y) = 0 with
f a polynomial in K[z,y], and K'/K is an extension, then C(K') = {(x,y) €
A2(K') : f(z,y) = O}.

2.2.2 Projective plane curves

Let K be a perfect field. The projective 2-space (over K), denoted by P? or
P2(K) is the set of all triplets (X, Y, Z) € A® such that at least one parameter is
nonzero, modulo the equivalence relation (X,Y, Z) ~ (X', Y’, Z') if there exists
a X € K*such that X = AX', Y =)\Y', Z = \Z'.

An equivalence class (AX,\Y,\Z) : A € K* is denoted by (X : Y : Z), and
the individual X, Y, Z are called homogeneous coordinates for the corresponding
point in P? . The set of K-rational points in P? is the set P*(K) = {(X : Y :
Z)YeP?:X,Y,Z € K}.

A projective plane curve is defined by a single homogeneous polynomial
equation f(X,Y,Z) = 0.! Tt is defined over K if its generating polynomial is
defined over K . We denote this by C/K. If C/K is a projective plane curve
defined by f(X,Y,Z) = 0 with f a homogeneous polynomial in K[X,Y, Z], and
K'/K is an extension, then C(K') = {(X : Y : Z) e P*(K') : f(X,Y,Z) =0}.

Example 3. We start with an example of an affine plane curve. Let f =
234+ 7r+21—y% € K[z,y]. Then f defines an affine plane curve C/K = {(z,y) €
A?: 2%+ Tz + 21 —y? = 0}. The polynomial F = X3 +7XZ2+2123-Y?Z =
Z3f(X/2,Y/Z) € K[X,Y, Z] is homogeneous, and defines a projective closure
of C in P2,

2.2.3 Function field
2.2.3.1 Affine case

Definition 5. Let C be a affine algebraic plane curve defined over K generated
by a polynomial f. The coordinate ring of C over K is K[C] = K[z,y]/(f). The
function field is K(C) = {f1/f2: f1, f2 € K[C], f2 ¢ (f)}S with the equivalence
relation f1/fy = f3/f4 if and only if fifs — fafs € (f), the ideal of K[C]
generated by f.

In other words, K(C) is the field of fractions of the affine coordinate ring
K[C] over K. Elements of IC(C) are called rational functions. For a € K the
rational function f : V — k given by f(P) = a is called a constant function.

LA polynomial f € K[X,Y, Z] is homogeneous of degree d if f(AX,\Y,\Z) = A f(X,Y, Z)
for all A € K.
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2.2.3.2 Projective case

Definition 6. Let C be a projective algebraic set defined over K. The homoge-
nous coordinate ring of C over K is K[C] = K[X,Y, Z]/f. The function field
is K(C) = {f1/f2 : f1, f2 € K[C] homogeneous of the same degree , fo ¢ (f)}
with the equivalence relation f1/fs = f3/f4 if and only if f1f4 — fafs € (f)-

In other words, K(C) is the field of fractions of the projective coordinate
ring KC[C] over K. Elements of /IC(C) are called rational functions.

2.2.4 Smooth algebraic plane curves

We study the regularity, or smoothness, of a curve. As an introduction to this
notion, we provide two examples in figures 2.1 and 2.2. The first former is
regular whilst the latter presents a singularity at the origin. We then formally
define these two notions.

\ — 10
/
L / 15
— — 0 y
L — =5
| | | 710
—10 -5 0 5 10

Figure 2.1: Smooth curve y? = 2% + 7z + 21 over R.

2.2.4.1 Affine case

Let C be a plane curve defined by the polynomial f(z,y), and P € C. Then C
is singular at P if the partial derivatives

3(f(w,y))(P) and 2V (@)
dy

5 (P)
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Figure 2.2: The curve over R defined by y? = 2% +2? is singular curve at (0, 0).

are both zero at P. If C is nonsingular at every point, then we say that C is
nonsingular.

Example 4. Let C = {(z,y) € A? : 2® + T + 21 — y?> = 0} and P € C. The
plane curve C' is smooth at P, since

3($3+70§+21*y2)(p) (7+ 312>
a(z? xm —y? =
( +78;L21 y )(p) 2y

has rank 1.

2.2.4.2 Projective case

Let C be a projective plane curve, let P € C', and choose A% C P2 with P € A2.
Then C is nonsingular (or smooth) at P if C' N A? is nonsingular at P. If C is
nonsingular at every point, then we say that C' is nonsingular.

Example 5. Thecurve C = {(X :Y : Z) e P2 : X34+ 7XZ%2+2123-Y?Z =0
is a smooth projective plane curve. Indeed let P € C different from the point
at the infinity. Then taking an affine plane S with Z # 0, C NS = {(z,y) €
A?: 23 4+ 7o + 21 — y? = 0), which is smooth. For the point at the infinity, we
choose another affine plane S with Y # 0 and proceed similarly.
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2.2.5 Morphisms of plane curves

Let C be a plane curve and let f € I(C). Then f is defined or regular at P if
it can be written as f1/f2 with fo(P) # 0 with f1, fo € K[C].

Definition 7. Let C and C’ be two plane curves defined over K. A rational
map ¢ : C — C’ over K which is regular at every point P € C(K) is called
a morphism. If there exists a morphism ¢ : C' — C over K such that @ o
and 1 o ¢ are the identity on C’ and C, respectively, then ¢ is a plane curve
isomorphism.

2.2.6 Divisor of a function

The divisor of a function is a formal sum representing its zeros and poles counted
with multiplicities. The formal definition of a divisor requires the notion of the
valuation of a function at a point. The valuation carries the information of
the behaviour of the function at this point: if it is a zero (resp. a pole), the
valuation is equal to its multiplicity (resp. minus its multiplicity); otherwise,
the valuation is simply zero. To formally define divisors of functions, we first
introduce the local ring of a variety and its maximal ideal.

Definition 8. Let C be a plane curve over K. The local ring over K of C' at
a point P € C(K) is Opx(ay) = {f € K(z,y) : f is regular at P}. We write
Mpizy) = 1 € Ork@y & f(P) = 0} € Opk(a,y) for the maximal ideal of
Opx(z,y)- A uniformizer for C at P is any generator of mp x(z,y)-

Definition 9. Let K be a field. A discrete valuation on K is a function v :
IC* +— Z such that:

1. for all f,g € K*, v(fg) = v(f) + v(9);
2. for all f,g € K* such that f + g # 0, v(f + g) > min(v(f),v(g));

3. there is some f € K* such that v(f) = 1 (equivalently, v is surjective to
7).

Let C be a plane curve over K and P € C(K). Let mp = mpx(c) be as in
Definition 8 and define m%, = Opxx)- Let f € Opj(x) be such that f # 0.
Then the function f +— vp(f) = max{m € N : f € mB} defines a discrete
valuation. We say that vp(f) is the order of f at P. If up(f) =1 then f has a
simple zero at P.

For each point P on the curve, let gp and hp be functions in Opx(x)
such that gp/hp = f. The divisor of f is Div(f) = ZPGC(,C) vp(gp)(P) —
> pecx) vp(hp)(P). The divisor of a function is also called a principal divisor.
We write Prin(C) = {Div(f) : f € K(C)*}.
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2.2.7 Divisor class group

The divisor group of a curve C defined over K, denoted by Div(C), is the free
abelian group generated by the points of C. Thus a divisor D € Div(C) is a

formal sum

D= Y np(P),

PeC(K)

where np € Z and np = 0 for all but finitely many P € C(K). The degree of D
is defined by

deg D = Z np .

PeC(K)
We write
Div?(C) = {D € Div(C) : deg(D) = 0} .

A divisor D = " pcoyne(P) is effective, denoted by D > 0, if np > 0
for every P € C. Similarly, for any two divisors Dy, Dy € Div(C), we write
D; > Dy to indicate that D; — Dy is effective.

Definition 10. Let C' be a curve defined over K and let D =3 pc %) np(P)
be a divisor on C. For ¢ € Gal(K/K) define o(D) = > peci np((P)).
Then D is defined over K if (D) = D for all o € Gal(K/K). We write Divi(C)
for the set of divisors on C' that are defined over K.

Lemma 4. Prin(C) is a subgroup of Divy-(C).

Proof. See [Gall2] Chapter 7 Section 7 Lemma 7.7.6. O

The degree zero divisor class group of a curve C over K is PiCO(C) =
Div?(C)/ Prin(C). We call two divisors Dy, Dy € Div?(C) linearly equivalent
and write D1 = Do if D1 — Dy € Prin(C'). The equivalence class (called a divisor
class) of a divisor D € Div®(C) under linear equivalence is denoted [D].

2.2.8 Genus

Over C, the genus represents the number of “holes” on a curve viewed as a
Riemann surface. It is formally defined for curves over any field using the
divisor class group.

Definition 11. Let D € Div(C). We associate to D the set of functions
L(D)={f € K(C)* : Div(f) > =D} U0. The set L(D) is a finite-dimensional
KC-vector space, and we denote its dimension by ¢(D) = dimg £L(D).

Theorem 5 (Riemann?). Let C be a plane curve over a field K. There is an

integer g > 0 such that £(D) > deg(D) + 1 — g for all divisors D on C . The
smallest such g is called the genus of C .

Proof. See [Gall2] Chapter 8 Theorem 8.4.7. O

2this theorem is a weak form of the Riemann-Roch theorem, but we do not need the full
Riemann—Roch in what follows.

30



2.3 Elliptic curves

Elliptic curves have been used in cryptography since Miller and Koblitz pub-
lished independent triggering papers in 1985 [Mil85][Kob87]. Elliptic curve pro-
tocols provide speed and compact keys. Moreover they benefit from enhanced
security compared to analogous algorithms for finite fields, since the discrete
logarithm problem is believed to be harder to solve on elliptic curves of the
same size.

We start by introducing two common representations of elliptic curves, and
the j-invariant that allows us to identify curves up to isomorphism. Using divi-
sors, we then show that elliptic curves are algebraic groups. From the additive
group law we define scalar multiplication. We also categorize elliptic curves
defined over a finite field into ordinary and supersingular ones.

2.3.1 Representation of elliptic curves

Definition 12. An elliptic curve defined over a field K is a smooth, projec-
tive, algebraic plane curve of genus one defined over K, on which there is a
distinguished point Of called the infinity.

Let E and E’ be two elliptic curves defined over K. A morphism of elliptic
curves ¢ : E — E’ over K is a plane curve morphism with p(Og) = Og/. If
there exists a morphism 1 : E/ — F over K such that ¢ o1 and 1) o ¢ are the
identity on E’ and E respectively then ¢ is an elliptic curve isomorphism. The
curves F and E’ are said to be isomorphic, written E ~ E’.

Proposition 6. FEvery elliptic curve is isomorphic to a curve in the projective
space P2 given by the following Weierstrass equation :

Y2Z 4+ a1 XYZ +a3sYZ? = X3 + axX?Z + auXZ? + agZ? |

where the coefficients a1, ..., ag belong to the field K. If the characteristic of the
field IC is different than 2 or 3, the equation can even be simplified to an affine
short Weierstrass equation as:

V=23 +ax+b,
where a and b belong to K, and v = X/Z, y=Y/Z .
Proof. See [Sil09] Chapter III section 1. O

In addition to the short Weierstrass form, in this thesis we also use exten-
sively elliptic curves in Montgomery form.

Definition 13. Let p > 5 be a prime and F,, the finite field of order p. For A, B
in IFp, an elliptic curve defined by

By? =2+ Az’ + =z

is called an elliptic curve in Montgomery form.
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Not every short Weierstrass curve has a Montgomery equivalent, however
the following proposition gives a useful criteria to determine an isomorphism.

Proposition 7. A Weierstrass form elliptic curve E : y?> = x> 4+ ax + b is
transformable to the Montgomery form if and only if

1. the equation z3 + ax + b =0 has at least one root in F,, and

2. the number 3a* + a is quadratic residue in F,, where a is a root of the
equation 23 + ax +b =0 in F,.

Let s be one of the square roots of (3a® + a)~' in Fp, and set B = s,
A = 3as. Then, the function mapping point (x,y) on E to (s(x — ), sy) gives
an isomorphism E to the Montgomery form elliptic curve defined by By? =
23 4+ Ax? + .

Proof. See [OKS00] Proposition 1. O

The Montgomery form of curve provides numerous algorithmic improve-
ments when using elliptic curves in protocols, including compact representation
of the points by dropping the y coordinate with optimized fast multiplication
using the so-called Montgomery ladder (see [Mon87] for the original article and
[CS18] for a survey on Montgomery curves).

Definition 14. In both the short Weierstrass and Montgomery models, using
the notation above, we define the j-invariant of an elliptic curve E defined over
a field IC by:

(A2 —-3)%  —1728(4a)®

(B) =2 - .
IB) =256 = = Ti6(aas + 2107

Note that in the Montgomery case, the j-invariant does not depend on the
coefficient B of the curve. Two elliptic curves defined over K are isomorphic
over K if and only if they have the same j-invariant (see [Sil09] chapter III
section 1). We warn the reader that curves isomorphic over K are not necessarily
isomorphic over .

Definition 15. Let a be an element of F, \ {0}. For each elliptic curve E :
y* = 2 4 az + b defined over F,, there is a curve

EY/F,(a?) : y* = 2* + a'az + a5

and an F,(«a)-isomorphism 7, : E — E* defined by (z,y) — (a?x,a3y). Abus-
ing notation, we write 7, for this map on every elliptic curve; with this conven-
tion, 73 0 T, = Tag. If § is a nonsquare in F, then EV? is the quadratic twist
(which, up to Fg-isomorphism, is independent of the choice of nonsquare 9)
and 7 5 is the twisting isomorphism.

Let E be an elliptic curve over Fy with char(F,) # 2,3, and j its j-invariant.
If 5 # 0,1728, then the quadratic twist is the only twist up to isomorphism (see
[Gall2] Lemma 9.5.7).
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2.3.2 Algebraic group

One of the many interesting mathematical properties of elliptic curves is that
they are commutative algebraic groups. Indeed, it is possible to define an ad-
dition law on the set of points of the curve. We introduce the group law using
properties of divisors, before giving explicit formulae described with a graphical
interpretation via the chord-and-tangent rule.

Theorem 8. There is a one-to-one correspondence between the points of E and
Pic’(E), namely P — (P)—(Og). It follows that E is an algebraic group for the
law induced by pulling back the divisor class group operations via this bijection.

Proof. See [Sil09], Chapter III, Proposition 3.4. O

Under the bijection, the point at infinity O maps to 0, making O the neutral
element of the group. It follows that if P+ Q = O then P = —(@), which defines
the negation of a point. It corresponds to an involution (x,y) — (x, —y) on the
curve.

2.3.2.1 Link with “chord-and-tangent” rule

In practice explicit formulae are derived from Theorem 8 using the “chord-and-
tangent” rule. Let P and @ be two points on an elliptic curve. Let I(z,y) =0
be the line through P and @ (chord if P # @, tangent to the curve otherwise).

o If P=—Q, then I(z,y) = z — xp is the vertical line passing through P.
It has zeroes P and —P, and one pole O with multiplicity two. Hence
(P)— (0)+(Q) — (0) =Div(l), so P+ Q = O under the bijection.

o If P # —Q@Q, then the line I(z,y) cuts the elliptic curve at a third point
R. The line has zeroes P, @ and R, and one pole O with multiplicity
three. Now let v(xz) = 0 be the vertical line through R. It has zeroes
R and —R and pole O with multiplicity two. Hence Div(l/v) = (P) +
(Q) + (R) = 3(0) = (R) = (=R) +2(0) = (P) + (@) — (R) — (O). Then
(P) —(0)+(Q) — (0) = Div(l/v) + (—R) — (O), so P+ @ = —R under
the bijection.

By expressing the lines I(z,y) and v(z) depending on P, @, and the model
of the curve we obtain explicit formulae for the addition.

2.3.2.2 Weierstrass curves

We first consider formulae for the short Weierstrass model E : y? = 23 4+ ax +b
where F is defined over a field . The point at infinity O is the identity element
for the addition: for all P € E(K) we have P4+ O = O + P = P. The negation
of a point P = (z,y) is —P = (z,—y). Let P,Q € E such that P,Q # O with
P = (zp,yp) and Q = (zq,yq). If @ = —P then P+ @ = O. In the remaining
cases let )
\ { Sthte i p=Q,
YQTUP - if P £ £Q

rQ—Tp
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and set zprg = A2 —ap — 2 and ypig = —A@pyg — zp) — yp. Then
P+Q=(zpiq,yr+qQ)-

2.3.2.3 Montgomery curves

We now consider formulae for the Montgomery model E : By? = 23 4+ A2z? 4 x
where E is defined over a field K. As usual, O is the point at infinity.

Addition The point at infinity is the identity element for the addition: for
all P € E(K) we have P+ O = O+ P = P. The negation of a point P = (z,y)
is —P = (z,—y). Let P,Q € E such that P,Q # O with P = (xp,yp) and
Q= (2g,y0). If @ =—P then P+ @ = O. For the remaining cases let

(3z%+2Azp+1) . -

N 7( PEQBZ)/P‘)D if P=4Q,

ol itp 0.
and set TprQ = B)\Q—(JJP-‘FSCQ) —A and YrP+Q = (21’p+l’Q+A))\—B)\3—yp =
Mazp —2pyg) —yp. Then P+ Q = (2p1Q,YP+Q) -

Pseudo-addition The Montgomery model allows us to compute an z-coordinate-
only pseudo-addition, i.e. compute xpyo = (P + Q) in terms of zp = x(P),
zg =2(Q), and zp_g = z(P — Q). Assume P # @ and P — @ # (0,0) . Since
P—-Q¢{0,(0,0)}, we know that zp_g # 0. If we set

Xpig=|[(zp —1)(zq +1) + (zp + 1)(zq — 1)] ,
Zpig =zp-qllzp —1)(zq + 1) — (zp + 2zp)(vq — 2q)]

then 2, = Xpiq/Zp1q-

Most isogeny-based protocols use elliptic curves in the Montgomery form,
which provides efficient arithmetic and compact data representation since points
can be represented by their z-coordinate only. First introduced by Mont-
gomery in [Mon87], this idea has been improved over the years as Costello
and Smith outlined in [CS18]. An optimized version of the Montgomery lad-
der has also been introduced by Faz-Herndndez, Lépez, Ochoa-Jiménez and
Rodriguez-Henriquez in [FLOR1S].

2.3.3 Torsion

Having an addition law on the set of points of the curve, written F(K), we can
also define a multiplication by integer scalars. For an integer m we define the
endomorphism:

[m]: E(K) — E(K)by m][P=P+P+..+P

that is the sum of m copies of P. If m < 0, then [m]P = [—m](—P). The kernel
of the multiplication by m, i.e.

ker([m]) = {P € E(K) : [m]P = Og} ,
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is called the m-torsion group of E, written E[m]. Points in this subgroup are
called m-torsion points. 1f we want to restrict to the torsion group over a subfield
L C K, we write E[m](L) for the L-rational m-torsion subgroup.

2.3.4 Invariant differential

Let C be a curve. The space of differential forms on C, denoted by Q¢ , is the
K-vector space generated by symbols of the form dz for x € K(C), subject to
the usual relations:

1. d(z +y) = dx + dy for all z,y € K(C).
2. d(zy) = xdy + ydz for all z,y € K(C).
3. da=0foralla €

Definition 16. Let E a elliptic curve over a field K defined by the Weierstrass
equation E : y? 4+ ayxy + asy = 3 + axx? + a4z + ag . The invariant differential

is defined to be

dx
w=———"""¢€0¢.
2y + a1z + as

For both short Weierstrass and Montgomery forms, we have

dx
W= —.
2y

2.4 Isogenies

After studying elliptic curves, we now study morphisms between these curves.
They will be at the heart of the quantum-resistant cryptographic protocols. We
introduce definitions and characteristic of isogenies, before providing computa-
tional details and examples. We then focus on the set of isogenies from a curve
to itself, namely the endomorphism ring.

2.4.1 Definitions

Definition 17. An isogeny ¢ is a non-constant morphism between two elliptic
curves Eq and Ep that maps Op,, the point at infinity of E;, to OF,, the point
at infinity of Fs.

Proposition 9. An isogeny of elliptic curves is necessarily (geometrically) sur-
jective, and must have finite kernel. It is also a homomorphism.

Proof. See [Sil09] Chap.3 Remark 4.3. O

Let E1 /K and E5/K be curves and let ¢ : Eq — E5 be a nonconstant rational
map defined over K. Then composition with ¢ induces an injection of function
fields fixing KC, ¥ : K(Ey) — K(E1), o f = f o ¢, called pullback.
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An isogeny is said to be separable, inseparable, or purely inseparable if the
field extension K(E1)/¢% (K(Es)) is separable®, inseparable, or purely insepara-
ble respectively. A separable isogeny is defined by its kernel up to isomorphism
(see [Gall2] Theorem 9.6.19).

Definition 18. An isogeny ¢ : E — E’ is normalised if o7 (wg) = wg.

Definition 19. Let G be a finite subgroup of an elliptic curve E. We define
E/G to be the codomain of the normalized separable isogeny with kernel G.

The degree of an isogeny is the degree of the finite extension [KC(E;) :
©"(K(E3))]. For separable isogenies, the degree is also the cardinality of the
kernel defining the isogeny. For a positive integer d, a d-isogeny is an isogeny
of degree d. For every d-isogeny ¢ from a curve F; to a curve Fs, there exists
a dual isogeny with degree d from Es to E; such that @ o ¢ = [d].

Recall the definition of the quadratic twist (Definition 15). Let E and E’
be two elliptic curves defined over F,2. For each isogeny ¢ : E — E’ defined
over Fp2, and « an element of F,, \ {0}, there is an F,2(a?)-isogeny, called the
twisted isogeny

0% = (Tq0poTy ) EY — (E')*.

where 7, is the F,2 (a)-isomorphism 7, : E — E* defined by (z,y) — (a?z, a?y).

Every separable isogeny ¢ : E — E’ defined over K can be split as a (gener-
ally not unique) composition ¢ = @1 0+ -0 @y, o [n] where (¢;)1<i<m are prime
degree isogenies defined over K and deg(¢) = n? [[ -, deg(p;) (see [Gall2] The-
orem 25.1.2).

Definition 20. Let E be an elliptic curve over F,. The isogeny class of E is
the set of F,-isomorphism classes of elliptic curves over F, that are isogenous
to E over F,.

Theorem 10 (Tate). Two elliptic curves E and E' over F, are F,-isogenous
if and only if #E(Fy) = #E'(F,).

Proof. See [Tat66]. O

2.4.2 Vélu’s formulae

Now we recall Vélu’s formulae [Vé71] for computing explicit normalized sepa-
rable isogenies. For proofs, see [Gall2] Theorem 25.1.6. We focus on the case
of prime degree ¢. We need different formulae for odd and even /.

Let B : 42 = 2% 4+ ax + b be an elliptic curve defined over K. Let £ be an
odd prime and G a subgroup of order £. The map ¢ defined by

o(P)=(xp+ > (vpiq—zp)yr+ », (yriq—yr))
QEG\Ox QEG\Ox

3 An algebraic field extension E D F is separable if for every o € E, the minimal polynomial
of a over F' is a separable polynomial.
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is invariant under translation by elements of G, and the kernel of ¢ is G. Using
the group law on the curve, we also see that ¢ can be written in terms of rational
functions. Indeed let G* = G\ Og. Partitioning G into two sets GT and G~
such that G* = GTUG~, and P € Gt iff —P € G~ and for each point P € GT,
we define the following quantities:

gp =3zp +a

9p = —2yp
vp = 2gp
up = (g9p)*
0= ¥ u
PeGt
w = Z (up + zpvp) .
PeG+

Then the ¢-isogeny ¢ : E — E’ is given by

B vp up 2yup Yy —yp — gpgp
(p(x,y)—(x—F Z (xfxp (1’7 )»y Z (Iixp);g“"UP (x—xp)g )
PeG+ PeGt

The equation for the image curve is E' : 4% = 23 + (a — 5v)x + (b — Tw).
For even-order subgroup we need different formulae. Let ¢ = 2 and @ a
point of order 2. The map ¢ defined by

o(P) = (zp + (xP+q — =P),yp + (YP+Q — ypr))

is invariant under translation by elements of G = (@), and the kernel of ¢ is G.
Using the group law on the curve, we also see that ¢ can be written in terms of
rational functions. We define the following quantities:
g% =3z% +a
v =96

w=xrqgug -

Then the 2-isogeny ¢ : E — E’ is given by

v Y —Ya
v ).

o(x,y) = (v + Ptk Ay P b

The equation for the image curve is

E' :y?* =2+ (a—5v)z+ (b—Tw) .

2.4.3 Example

Let E; and E5 be the elliptic curves defined over F,, given by the equations
y? = 23 + 2 and y? = 2% — 4z, respectively. Then
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© E1 — E2
(x’y) — (1’+%,y—$%)

defines an isogeny of degree two with kernel generated by (0,0). The curves F;
and Fy have the same j-invariant, hence they are isomorphic over F,, but not
necessarily over F,: the curves are F,-isomorphic if and only if /=1 is in F,,
that is if and only if p =1 (mod 4). One isomorphism E; — Ej is defined by
(x,y) — (=i/2x, (i +1)/4y), where i = /—1. Tt follows that the isogeny ¢ is an
endomorphism over F,, if p =1 mod 4, or F2 if p # 1 (mod 4). This isogeny
is illustrated in the case p = 7 in Figure 2.3.

OE. 77777777777777777777777777777777777 3. Op:
(1.3) (3.3) e
[N (L)
(7272).’””"”"”””"”:7 **** e o
g - 3,1
L .( )
r T
(0,0) (*270>. ((”) - ”(2,0)
- ’ .(3771)
(22® T Ty
0% .y |
E/F;:y?=2%+x E'[F7:y? =23 —4a

Figure 2.3: Homomorphism FE;(F7) — E3(F7) induced by the isogeny from
Section 2.4.3 with kernel (0,0) between curves E;/F7 : y> = 2% + = (on the
left) and Eo/F7 : y?> = 23 — 42 (on the right). The kernel (0,0) is indicated
with a blue square node. Arrows indicate the images of points in E; through
the isogeny. Although the isogeny is surjective over F7, note that over F7 some
points of E5 do not have preimages.

The dual isogeny from FEs to E7, with kernel generated by (0,0) on Es, is
given by
Q/D\ : E2 — E1
(z,y) — (30— 3), 5y +4%)).

2.4.4 Modular curves

This section introduces the correspondence between modular curves and el-
liptic curves with a cyclic subgroup of order d. Let n be a positive integer.
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The n** modular polynomial ®,,(X,Y) defined over Z parametrizes pairs of el-

liptic curves up to isomorphism with a cyclic isogeny of degree n between them,

ie

®,,(j,7") = 0 & {there exists an n-isogeny between curves of j-invariant j and j" } .
Note that ®,(X,Y) = ®,(Y, X) from the definition and the existence of

the dual isogeny. The value of ®,, for a positive integer n can be precomputed.

For a given j-invariant j in F),, we can also efficiently compute the polynomial
®,,(4,Y) using the algorithm from [Sut13].

Example 6.

Oy(X,Y) =X — X?Y? + 1488X%Y — 162000X 2 + 1488XY? + 40773375 XY
+ 8748000000X + Y* — 162000Y? + 8748000000Y — 157464000000000

Let n be a positive integer. The classical modular curve, written Xo(n), is a
completion of the affine plane curve Yy (V) defined by the classical modular poly-
nomial ®,,(X,Y"). On this curve there is an Atkin-Lehner operator, w,,, which
sends an isogeny to its dual. In terms of the modular polynomial ®,,(X,Y), the
operator w,, swaps the coordinates X and Y (see [Chel0] Proposition 3.6 and
following discussion).

2.5 Endomorphisms and curve classification

2.5.1 The endomorphism ring

Endomorphisms are homomorphisms that map a curve to itself. The ring formed
by all endomorphisms carries information about the curve itself.

Definition 21. The endomorphism ring End(E) (resp. K-rational endomor-
phism ring Endg (E)) of an elliptic curve E defined over a field K is the set of
all the isogenies over K (resp. over K) from the curve to itself, with the ring
operations being the pointwise addition and composition.

The scalar multiplication by any integer m is an endomorphism. Moreover
[m] # [n] if and only if m # n, that is, the map from Z to End(FE) is injective: Z is
always a subring of the endomorphism ring. The Frobenius endomorphism of
an elliptic curve E over a finite field F, is given by

T B — F

(@, y) — (29,y7) .
Proposition 11. Fvery endomorphism of E satisfies a quadratic integer poly-
nomial.

Proof. See [Gall2] Theorem 9.9.3. O
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The quadratic integer polynomial satisfied by the Frobenius endomorphism
is called the characteristic polynomial of Frobenius.

Theorem 12 (Hasse). The characteristic polynomial of Frobenius has the form
P(X) = X?—tX +q, where |t| < 2,/q.

Proof. See [Gall2] Chapter 9 Theorem 9.10.7. O
Corollary 13. For a curve E defined over a field F,, we obtain
Pl)y=q+1—t=#E,).

Theorem 14 (Waterhouse). Let ¢ = p™ where p is prime and let t € Z be such
that |t| < 2,/q. Then there is an elliptic curve over Fq with #E(F,) = q—t+1
if and only if one of the following conditions holds:

1. ged(t,p) = 1;

2. m is even and t = £2,/q;

3. m is even, p# 1 (mod 3) and t = +,/q;
4. m is even and p Z 1 (mod 4) and t = 0;
5. misodd, p=23 andt= ipw;

6. m is odd and t = 0.

Proof. See [Gall2] Theorem 9.10.12. O

2.5.2 Supersingular and ordinary cases

A consequence of Proposition 11 is that the possible endomorphism rings are
orders in quadratic fields and quaternion algebras. The endomorphism ring
gives some information about the curve itself, since its type allows to classify
the curves as ordinary or supersingular. Each type has special properties that
are used in different cryptographic protocols.

Definition 22. Let E be an elliptic curve defined over a field K of character-
istic p. Then E is supersingular if and only if E[p] = E[p|(k) = Og. Otherwise
it is ordinary.

Proposition 15 (Ordinary curves). The endomorphism ring of an ordinary
elliptic curve defined over a finite field Fy is an order in an imaginary quadratic
field k, i.e. End(F) ® Q ~ Q(v/d), where d = |t* — 4q| and t is the trace of the

Frobenius endomorphism.
Proof. See [Koh96] Chapter 4. O

Let O be an order of an imaginary quadratic field k = Q(v/d). The Hilbert
class polynomial is the monic polynomial hy; whose roots are the distinct j-
invariants of all elliptic curves with endomorphism ring isomorphic to O.
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Example 7. The Hilbert class polynomial for Q(v/—23) is h_s3(2) = 3 +
349175022 — 5151296875z + 12771880859375 .

Proposition 16 (Supersingular curves). The endomorphism ring over F, of a
supersingular elliptic curve * is an order in a quaternion algebra, i.e. End(E)®
Q ~ Q(i, j) where ij = —ji, and i%,j2 belong to Q.

Proof. See [Gall2] Theorem 9.11.2. O

2.6 Deuring correspondence and the action of
the ideal class group

2.6.1 Action of the ideal class group on elliptic curves

For O an order of an imaginary quadratic field k, the ideal class group Cl1(O)
acts on the set of ordinary elliptic curves with [F-rational endomorphism ring O,
but also on special subsets of the class of supersingular elliptic curves. We start
by recalling notions on group actions, before describing the specific properties
of the ideal class group action for each type of elliptic curves.

Definition 23 (Action). Let G be a group with identity element e. Let X be
a set. A (left) group action o of G on X is a function

a:Gx X — X,

(with a(g, z) often shortened to gz or g -z when the action being considered is
clear from context), that satisfies the following two properties:

1. Identity: e-x =z for all x in X
2. Compatibility: g- (h-xz) = (gh) - for all g and h in G and all z in X.
A set X together with an action of G is called a (left) G-set.

The action is free if, given g, h in G, the existence of an z in X with g-x = h-x
implies g = h. The action is transitive if X is non-empty and if for each pair
z, y in X there exists a g in G such that g -z = y.

For any elliptic curve E defined over a finite field, and for any order O of a
quadratic field such that O C End(E), we can define an action of C1(O) on E.
However, what will be important for us is to determine on which set of elliptic
curves the action is free and transitive, since these are useful properties when
building key exchange protocols.

Let E be an elliptic curve defined over a finite field IF,, with ¢ = p™. Let 7,
be the p-power Frobenius. Let p be a prime ideal over p corresponding to the
isogeny mp. Let O be an order of a quadratic field k£ such that O C End(E).
Let [a] be an element of C1(OQ) with integral representative a and let r and a’ be
such that a = (p)"d’, where a’ is integral and not contained in p (the existence
of r and o’ follow from unique factorization of ideals in O).

4When considering endomorphisms defined over F, only, the restricted endomorphism ring
is not a quaternion algebra any more, but a quadratic imaginary order. See Theorem 19.
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Definition 24. With the notation above: Let Efa] := [, ker(a) for the ideal
a C End(E). We define ¢ : E — E/E][a] to be the isogeny (up to isomorphism)
whose separable part is the isogeny with kernel (., ker a, and whose purely
inseparable part is r iteration of the Frobenius m,. The image of E under the
action of a is the codomain of the isogeny ¢q.

Theorem 17. We keep the same notation as above, and write [E] for the iso-
morphism class of curves with O C End(E). The map (a,[E]) — [E/E]a]]
defines an action of CL(O) on the set of isomorphism classes.

Proof. See [Wat69] Section 3.2 Kernel ideals. O

2.6.1.1 The ordinary case

Let O be an order of Q(v/d). In the ordinary case, the action of the ideal class
group Cl(O) is free and transitive on the set of curves having same cardinality
over their base field and their endomorphism ring isomorphic to O.

Theorem 18. Let Ell,(O,7,) be the set of elliptic curves E defined over Fy
with Endy,(E) >~ O such that 7, corresponds to the F,-Frobenius endomorphism
of E. Let O be an order in an imaginary quadratic field that Ell,(O,m,) is
non-empty. Then the ideal-class group C1(O) acts freely and transitively on the
set Ell,,(O, m,) via the map
Cl(O) x Ell, (O, m,) — Ell, (O, 7p)
(o], E) — E/Eq]

in which a is chosen as an integral representative.

Proof. See [Wat69] Theorem 4.5. O

2.6.1.2 The supersingular case over [,

In the supersingular case, we can define a free and transitive group action on
(sub)set of supersingular elliptic curves defined over F,,.

Theorem 19. Let O be Z[mp] or Z[H;”] ) Let S be the set of supersingular
elliptic curves over Fy, with endomorphism ring over Fy, equal to O . The ideal

class group Cl(O) acts freely and transitively on S.
Proof. See [Wat69] Theorems 4.5. O

2.6.1.3 The supersingular case over I,

In the supersingular case over Iz, the endomorphism ring is a maximal order
in a non-commutative quaternion algebra. Hence we cannot have a free and
transitive action from the ideal class group of a quadratic order on the entire
set of curves. However there are subsets in which the action is free and transitive.
See Chapter 5 and [Onu21]. In Chapter 6 we extend this action to subsets of
supersingular elliptic curves equipped with distinguished isogenies.
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2.6.2 Deuring correspondence

For elliptic curves whose endomorphism ring is an order O in a quadratic field,
Deuring established the following correspondence between isogenies up to iso-
morphism and elements of the ideal class group, allowing another representation
of isogenies.

Theorem 20. Let E be an elliptic curve defined over a field K whose endo-
morphism ring over K is isomorphic to an order O in a quadratic field. Let E’
be an elliptic curve isogenous to E. We have the following dictionary between
fractional ideals and isogenies.

Endomorphism ring End(E) | Order O of a quadratic field
Isogenies from E to E' | Invertible fractional ideals I(O)
Endomorphisms of E | Principal fractional ideals Pr(QO)

Isogeny composition | Ideal multiplication

Dual isogeny | Inverse

In this thesis, we will use Theorem 20 in the case of ordinary curves and
supersingular curves defined over F,, for which the endomorphism ring over
their base field is a order of a (commutative) quadratic field.

Proof. [Wat69] Chapters 4 for the general case, and [Voil7] Chapter 42 in the
supersingular case over I,. O

Since principal fractional ideals correspond to endomorphisms of the curve,
and invertible fractional ideals are associated with isogenies, we quotient the
abelian subgroup of invertible fractional ideals I(O) by the normal subgroup
of principal fractional ideals Pr(O) in order to keep only isogenies and “kill”
endomorphisms. The equivalence classes of the ideal class group C1(O) hence
corresponds to isogenies up to endomorphism.

2.7 Isogeny graphs

Definition 25. Let K be a finite field of characteristic p, or its algebraic closure.
Let L be a set of primes not including p. The isogeny graph I'(XC, L) is the
directed graph where the vertices are K-isomorphism classes of elliptic curves
defined over K, and the edges are classes of K-isogenies with degree ¢ € L
between the curves. We write I'(KC, ¢) when we consider only L = {¢}.

2.7.1 Ordinary case

In the ordinary case, the f-isogeny graph for a prime ¢ resembles a volcano,
as defined by [FMO02]. An ¢-volcano V is a connected undirected graph whose
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vertices are partitioned into one or more levels Vj, ..., Vg such that the following
hold:

1. The subgraph on Vj (the surface) is a regular graph of degree at most 2.

2. For i > 0, each vertex in V; has exactly one neighbour in level V;_1, and
this accounts for every edge not on the surface.

3. For i < d, each vertex in V; has degree ¢ + 1.

Level Vj is called the floor of the volcano; the floor and surface coincide when
d=0.

Theorem 21 ([Koh96]). Let Fy be a finite field, let £ { q be a prime, let [ be
an tdeal above ¢, and let V' be an ordinary component of I'(Fy, ¢) that does not
contain curves with j-invariants 0 or 1728. We write t,, for the trace of the
Frobenius (every curve in the graph having the same cardinality over Fy, hence
the same trace). Then V is an £-volcano for which the following hold:

1. The depth of V is d, where d is such that 4q = (t,)* — (*%v?disc(Og) with
Lto.

2. The vertices in level V; all have endomorphism ring isomorphic to the
same order O;.

8. L41[0q: O] and [O; : Ojy1] =L for 0 <i < d.
4. The subgraph on Vy has degree 1 + (di%fo")),

5. ]f(dz%go“)) > 0, then |Vp| is the order of [1] in C1(Oyp); otherwise |Vo| = 1.

Proof. Although the theorem is originally from [Koh96] Proposition 23, the vol-
cano terminology first appear in [FM02]. See also [FMO02] in particular Lemmas
2.3, 2.4, and 2.5 and [Gall2] 25.4.6. O

Figure 2.4 illustrates a 2-isogeny volcano of depth 3.

2.7.2 Supersingular case over F,

In the supersingular case over I, the /-isogeny graph for a prime ¢ is again a
volcano, but with limited depth: for £ = 2 it has at most two levels, and for any
other ¢ only one.

Theorem 22 ([DG16]). Let p > 3 be a prime.

1. Ifp=1 (mod 4), then there are h(—4p) Fp-isomorphism classes of super-
singular elliptic curves over Fp, all having the same endomorphism ring
Z[\/=p). From every one there is one Fp-rational horizontal 2-isogeny as
well as two horizontal £-isogenies for every prime £ > 2 with () = 1.
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Crater, End(E) = Oy

Level 1, End(E) = Z + 20,

Floor, End(E) = Z + 220,

Figure 2.4: 2-isogeny volcano

2. If p = 3 (mod 4), then from each vertex there are two horizontal £-
isogenies for every prime £ > 2 with (=) = 1. There are two levels
in the supersingular 2-isogeny graph.

(a) If p =7 (mod 8), then on each level there are h(—p) vertices. The
upper and lower levels are connected 1 : 1 with 2-isogenies. On the
upper level we also have two horizontal 2-isogenies from each vertez.

(b) If p = 3 (mod 8), then we have h(—p) vertices on the surface and
3h(—p) on the floor. Each vertex on the surface has three 2-isogenies
to the lower level. There are no horizontal 2-isogenies.

These graphs are illustrated in Figure 2.5 and Figure 2.6, for p = 101 and
¢ = 2 and 3 respectively. Classes of elliptic curves are represented with the
Montgomery A coefficient of the curve. Note that a curve and its quadratic
twist correspond to two different vertices since they are isomorphic over IF,2 but
not over IF,,. For this reason, the twist of a curve written in black is written in
grey. Since p =1 (mod 4), there are h(—4p) = 14 supersingular elliptic curves
defined over Fio; up to Fj-isomorphisms.

s

0—66 21 57— 64 3 —59

0—66 21 o07T—64 3—959

—

Figure 2.5: T'(F101,2) For the 2-isogeny graph, because each vertex has one 2-
neighbour, we have several connected components, each a special type of crater
that is reduced to two points. Note that there is a 2-endomorphism defined over
F, for the curve defined by y? = 23 4 2122 + .
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0—64—3—21—59—57—066

0—064—3—21 —59— 57— 66

Figure 2.6: I'(F101,3) In the 3-isogeny graph, each vertex has two neighbours.
Every curve is in the same connected component, which is a large crater, because
the ideal class group of Q(+/101) is cyclic: it is generated by a prime ideal with
norm 3.

2.7.3 Supersingular over F,.

In the supersingular case over F,> the {-isogeny graph for a prime £ is an £+ 1
regular expander graph, meaning that it has good mixing properties: a suffi-
ciently long random walk on the graph has the same probability to end up on
any point of the graph. Even better, it is a Ramanujan graph

Definition 26 (Ramanujan graph). A Ramanujan graph G is a regular graph
of degree k such that the eigenvalues A not equal to £k of the adjacency matrix
satisfy the bound |\ < 2vk — 1.

See e.g. [LPS88] for a survey on Ramanujan graphs.

Proposition 23. Let G be a Ramanujan graph. Let S be any subset of the
vertices of G, and x be any vertex in G. Then a random walk of length at least
|S|~*/?1og (2]G])
log %

starting from x will land in S with probability at least %

Proof. See [LPS88]. O

Theorem 24 ([Piz98)). I'(F,2,{) is a connected k = £ + 1-regular multigraph
satisfying the Ramanujan bound of |\| < 2V = 2k —1 for the non-trivial
eigenvalues of its adjacency matriz.

These graphs are illustrated in Figure 2.7 and Figure 2.8, for p = 101 and
¢ = 2 and 3 respectively.
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5/\ ~

66 21 97T — 64 — 3 — 59
T -
Q

Figure 2.7: I'(F1912, 2). Classes of elliptic curves are represented with the Mont-
gomery A coefficient of the curve. Here, « = 37+t and & = 37—t are conjugate
and defined over F2 \ F,, with t2 = 2. There are 9 supersingular elliptic curves
defined over Fig12 up to isomorphism. The 2-isogeny graph is 3-regular with
edges counted with multiplicity.

59—57—66}

I~ /|/
a 2|1}
(0 —3

Figure 2.8: T'(Fyp;12,3). Isomorphism classes of elliptic curves are represented
with the Montgomery A coefficient of the curve, except for the two classes of
curves labelled with o = 37+t and & = 37 — ¢ that are conjugated and defined
over F,2 \ F), with t2 = 2. There are 9 supersingular elliptic curves defined over
Fip12 up to isomorphism. The 3-isogeny graph is 4-regular with edges counted
with multiplicity.
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Chapter 3

Isogeny-based key exchange
protocols

In this chapter we describe three isogeny-based key exchange protocols, fol-
lowing the chronological order of their discovery. We start by presenting the
isogeny-based key exchange protocol in the ordinary case from Couveignes and
Rostovstev—Stolbunov (CRS). We then present SIDH (Supersingular Isogeny
Diffie-Hellman) discovered by Jao and De Feo, on which is based SIKE, the
NIST candidate key exchange protocol. Finally we describe CSIDH (Com-
mutative Supersingular Diffie-Hellman) that uses supersingular elliptic curves
defined over I, developed by Castryck, Lange, Martindale, Panny and Renes.
This protocol is based on the commutative action of the ideal class group on the
set of elliptic curves. We compare the strength and weaknesses of these three
scheme.

3.1 Ordinary case (CRS)

We start by describing the underlying security problems in the ordinary case.
We then present the parameters and the key exchange protocol from Couveignes
[Cou06], and Rostovstev—Stolbunov [RS06], before presenting the computational
improvements proposed by De Feo, Kieffer and Smith in [DKS18]. We eventually
discuss the feasibility of the scheme. In the following, we refer to the key
exchange over ordinary curves as the CRS protocol, unless we want to highlight
which version is considered, in which case we use full names.

Recall Theorem 18 from Chapter 2: If Ell ;(O) is the set of isomorphism
classes over F, of ordinary curves with O = End(F) a maximal order, then
Cl(O) acts freely and transitively on Ell,;(O). This free and transitive action is
at the heart of the CRS protocol.
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3.1.1 Security of the scheme and parameter sizes

The set Ell;(O) of isomorphism classes over F, = F,- of ordinary curves with
O C End(F) is a conjectural hard homogeneous space for CI(Q). The security
hence relies on the vectorization and parallelization problems (see Definition 3).
Graphically speaking, the security of the scheme relies on the difficulty of finding
a path between two given elliptic curves in an ordinary isogeny graph.

Classical attack The best classical attack known on vectorization is to use
random walks on the graph of isogeny as in [DG16]), which gives a solution after
an expected O(pi) isogeny steps.

Quantum attack Since vectorization is an instance of the Abelian Hidden
Shift Problem, the best quantum attack is Kuperberg’s algorithm [Kup05, Reg04,
Kup13] using the Childs—Jao—Soukharev quantum isogeny-evaluation algorithm
as a subroutine [CJS14]. The result is a subexponential algorithm running in
time Lx[1/2,+/2], with N the cardinality of the ideal class group. There is some
debate as to the concrete cost of this quantum algorithm, and the size of the
ideal class group required to provide a cryptographically hard problem instance
for common security levels [BLMP19, BS20, Pei20].

3.1.2 Couveignes key exchange protocol

Public parameters The protocol requires: a prime p; an order O in a
quadratic field; and an initial ordinary elliptic curve Ey defined over F,, where
g = p", such that O C End(Ep). The structure of the ideal class group Cl(O)
and the lattice of relations between the ideals are necessary to compute the ac-
tion of a randomly-sampled fractional ideal: without that structure, there is no
way to convert a random ideal to an equivalent product of small-norm ideals.
This lattice of relations as well as the class number can be computed using the
Hafner—-McCurley algorithm [HM89] as noted in [Cou06].

Key generation Alice randomly samples her private key a € Cl(O) and
computes her public key E4 = Ep/a. Bob proceeds similarly: he samples his
private key b € Cl(O), and computes his public key Ep = Ey/b.

Key exchange Upon receiving Bob’s public key, Alice computes Eg/a. Bob
computes F4/b. From the commutativity of the group action, these two curves
are isomorphic. The shared secret is their j-invariant.

This protocol is summarized in Figure 3.1.

We also give a graphical approach to the protocol: Alice chooses a secret walk
on the isogeny graphs, starting from curve Fy. She arrives on a curve F4 that
will be her public key. Bob does the same and arrives on a curve Fp which is his
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Public parameters: ¢ = p", an ordinary curve Ey such that O C End(Ey),
where O is an order of an imaginary quadratic field.
The structure of C1(O) and the lattice of relations between the ideals.

Alice Bob
Private key: Private key:
a € Cl(O) b e Cl(O)
Public key Public key
computation: computation:
Compute a smooth ideal Compute a smooth ideal
a’ equivalent to a b’ equivalent to b
using the group structure. using the group structure.
Public key: Public key:
EA:EQ/CII EB:Eo/b/

Ey

Ep
Shared secret Shared secret
computation: computation:
EAB:EB/CL/ EBA:EA/b/
Shared secret: Shared secret:
J(EaB) J(EBa)

Figure 3.1: Couveignes key exchange protocol.

public key. After this key generation step, Alice and Bob are ready to compute a
shared secret. Alice simply reproduces her secret walk, but starting from Bob’s
curve Ep, and arrives on a curve F4p. Bob does the same, reproducing his
secret, walk starting at Alice’s curve, and arrives on a curve Fp4. Thanks to
the commutativity property of the ideal class group action, the curves E4p and
Epa are isomorphic and thus share the same j-invariant. This j-invariant is
precisely the shared secret of Alice and Bob.

3.1.3 Rostovstev—Stolbunov key exchange protocol

Public parameters The protocol requires a prime p; an order O in a quadratic

field; an initial ordinary elliptic curve Ky defined over F,, where ¢ = p", such
2

that O C End Ejy; a set of primes ¢; such that the Kronecker symbol (%) =1,

where t is the trace of Frobenius; a fractional ideal [; above each ¢;; a set of

possible integer exponents S.

Key generation Alice samples a private exponent vector (e;)i<i<n € S,
sets a = [, [§" € CI(O) and computes her public key Eg/a. Bob pro-

i=1 "
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ceeds similarly, he samples his private exponent vector (e)i<i<n € S, sets
b=][L,l" € Cl(O) and computes his public key Fy/b.

i=1"

Key exchange Upon receiving Bob’s public key, Alice computes Ep/a. Bob
computes F4/b. From the commutativity of the group action, these two curves
are isomorphic. The shared secret is their j-invariant.

This protocol is summarized in Figure 3.2.

Public parameters: ¢ = p", an ordinary curve Ey such that O C End(Ey),
where O is an order of an imaginary quadratic field;

primes ¢; such that (ﬁ;ﬂ) =1;

a fractional ideal [; above each l;.

Alice Bob
Private key: Private key:
(ei)i<i<n €S (ei)1<i<n €8
Public key: Public key:
EA = E/Cl EB = E/b
such that a = H [ such that b = H [52
i=1 =1
Ey
Ep
Shared secret Shared secret
computation: computation:
Eap=FEg/a Epa=FEs/b
Shared secret: Shared secret:
J(EaB) J(EBa)

Figure 3.2: Rostovstev—Stolbunov key exchange protocol.

Differences between the Couveignes and Rostovstev—Stolbunov pro-
tocols Using a set of given prime ideals and a set of exponents avoids the prob-
lem of needing to compute the class group structure and the p-smooth equiva-
lent ideals in Couveignes’ version. The work of [DKS18] and later [CLM™18] are
built on the Rostovstev-Stolbunov protocol rather than on Couveignes version.
However this convenience comes with a drawback: we are probably not working
with the entire Hard Homogeneous Space, and the key sampling may not be
uniform.
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3.1.4 Computation

The CRS protocols are elegant but also very slow, since several minutes are
needed to compute the key exchange on a laptop [DKS18]. This is due to the
fact that computing the action of the ideal class group using the algorithms
of Couveignes and Rostovstev—Stolbunov involves computing roots of modular
polynomials over field extensions.

To address this drawback, De Feo, Kieffer and Smith used the underlying
mathematical structure to accelerate the computational time. They look for a
starting curve having the special property that the number of points defined
over F,,, i.e. #E(F,), is divisible by as many small ¢; as possible. This en-
sures that the ideal class group action is much faster to compute for these ;.
Indeed, it implies that the points defining the kernel all lie in F,,, and are ex-
actly the ¢;-torsion subgroups. This allows us to compute the action using only
Vélu’s formula, and completely avoids modular polynomials and field extensions
[DKS18].

However, it turns out to be difficult to find an ordinary curve with many
such ¢; simultaneously, and De Feo, Kieffer and Smith only managed to apply
this acceleration for seven primes after an extensive search for starting curves.
However their improvement already accelerates the key exchange protocol by a
factor of 4. This idea is reused in the supersingular case over I, that will be de-
scribed below, and hence opens a door to new efficient cryptographic protocols,
and primitives.

Timings For 128-bits of classical security, the proof-of-concept algorithm in
[DKS18] needs 520 seconds for a key generation. Although that is a factor 4
faster than the original CRS algorithm, and not optimized on the field arithmetic
level, this timing keeps the CRS key exchange in the impracticable protocols
league.

3.2 Supersingular case over F,: (SIDH and SIKE)

First published in 2011 by Jao and De Feo [JD11], Supersingular Isogeny Diffie—
Hellman (SIDH) is the building block for Supersingular Isogeny Key Encapsu-
lation (SIKE) [JACT17]. The protocol SIKE is one of the round-3 alternate
candidates for the NIST post-quantum contest. Both protocols use isogenies
between supersingular elliptic curves over a finite field F,2, which gives a faster
scheme than CRS with more resistance to a quantum computer.

3.2.1 Commutative diagram

The endomorphism rings of supersingular curves over [F,» are orders in a (non-
commutative) quaternion algebra. Although it is possible to define a free and
transitive group action on some specific subsets of the supersingular isogeny
classes (see Section 3.3 and Chapter 6), there is no known commutative action
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having these properties on the full set of supersingular elliptic curves. In order
to circumvent the lack of a commutative action, Jao and De Feo proposed in
[JD11] to use the commutativity of quotient isogenies, as in Figure 3.3.

da

Ey ——  Eas=Ey/(Ga)
¢B [ bAB J
Ep = Ey/(Gp) SLLESN E4p

~ Ep/{¢p(Ga))
~ Ea/{¢a(GB))

Figure 3.3: Commutative diagram for supersingular curves, with Fy an elliptic
curve and (G4), (Gg) two subgroups of Ey.

This commutative diagram allows to have a key exchange protocol a la
Diffie-Hellman, while the lack of a commutative group action protects the
scheme against the subexponential attack of Childs, Jao and Soukharev [CJS14],
offering a more quantum-resistant key exchange protocol than the ordinary case.

3.2.2 SIDH key exchange protocol

The commutative diagram in Figure 3.3 is at the heart of the key exchange
protocol. Alice computes the horizontal arrows of the commutative diagram in
Figure 3.3, whereas Bob computes the vertical ones.

Public parameters Let p be a prime number such that p = f - €507 £ 1,
where ¢4 and ¢p are primes, and f is a cofactor making p prime. Let E be a
supersingular elliptic curve such that #E(F,2) = (p F1)* = (f - (5 €5 )?. Let
(Pa,Qa4) and (Pp,Qp) be bases of E[¢5*] and E[¢%’], the subgroups of £%* and
03P -torsion respectively.

Key generation Alice chooses two secret integers m 4 and n 4, computes the
point G4 = [ma]Pa+[na]@a, the separable quotient isogeny ¢4 of kernel (G 4),
and the curve E4 = F/(G4). She also computes the image of Pg and Qg under
her isogeny ¢ 4. Her private key is the couple (ma,n4), and her public key is

(Ea,04(Pp); 0a(QB))-

Bob does the same using his own secret (mp, ng) and the points of £ g-torsion
Pp and @ p, instead of P4 and Q) 4, to get a public key (Ep, ¢5(Pa), ¢p(Qa)).

Shared secret Alice receives Bob’s public key and computes

Eap = Ep/{¢B(Ga)) = Ep/{[malo(Pa) + [nalép(Qa)) -
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Bob receives Alice’s public key and computes

Epa=E4s/{(¢a(GR)) = Ea/{[mpBloa(Pr) + [nploa(@B)) -

Thanks to the commutativity of quotient isogenies, these two curves are iso-
morphic. Their j-invariant is the shared secret. The protocol is summarized in
Figure 3.4.

Public parameters: p = f - (545 +1;
E supersingular with cardinality (p F1)% = (f - £5052)%
(Pa,Q4) and (Pp,Qp) bases of E[(%*] and E[{{7], respectively.

Alice

Bob

Private key:

ma,NaA €ER Z/fZAZ

Public key:

Ex = E/{[ma]lPs + [na]Qa)
¢a(PB), a(QB)

Private key:

mpg,NB €R Z/ZeBBZ

Public key:

Ep = E/([mp|Pp + [n5]QB)
¢B(Pa), 9B(Qa)

Shared secret Shared secret
computation: computation:

Gap = Gpa =

[mal¢p(Pa) + [nalop(Qa) [mploa(Pr) + [npléa(@Qp)
Eip = E/{(Gas) Epa=FEa/{(Gpa)

Shared secret: Shared secret:

J(EaB) J(Epa)

Figure 3.4: SIDH key exchange.

We also give an intuitive graphical explanation of the protocol. Alice chooses
a walk on the £ 4-isogeny graph to a curve E4 that will be her public key. Bob
does the same on the ¢p-isogeny graph to a curve EFp. To compute the shared
secret, Alice and Bob will switch places and apply their secret walk again, on
the ¢4 and ¢p-isogeny graphs respectively. They will arrive on two curves that
are isomorphic over 2, and that consequently share the same j-invariant. This
j-invariant is their shared secret.

The absence of short cycles! in this isogeny graph (see [OAT20]) implies that
the subgraphs reached by these isogenies look like regular trees. The shared
secret is uniformly distributed on the set of curves with a cyclic £5* £77-isogeny
from Ey.

3.2.3 Underlying security problems

Let Eo[¢5"] and Ey[¢3] be subgroups of £5* and ¢} torsion respectively. Let G 4
and Gp be the generators of subgroups in Ey[¢5*] and Ey[¢7F] respectively. In

Lat least shorter than the number of steps in SIKEp434 and SIKEp503
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the case of supersingular elliptic curves defined over F,,2, the image of ¢4 ((G))
and ¢p((Ga)) are needed to complete the commutative diagram. This con-
straint leads to analogues of the vectorization and parallelization problems.

Definition 27 (Computational Supersingular Isogeny (CSSI) problem [JD11]).
We keep the same notations as above. Additionally let (Pp,Q@p) be a ba-
sis of Ey[¢7’] and let ¢4 : Ey — E4 be an isogeny whose kernel is equal
to (Ga). Given Ea, ¢pa(Pg), and ¢4(Qp), the Computational Supersingular
Isogeny problem is to find ¢ 4.

Definition 28 (Supersingular Computational Diffie-Hellman (SSCDH) prob-
lem [JD11]). We keep the same notations as above. Additionally let m4, na
(respectively mp, ng) be chosen at random from Z/¢5*Z (respectively Z /{37 Z)
and not both divisible by £4 (respectively £g). Let ¢4 : Ey — E4 be an isogeny
whose kernel is equal to ([ma]Pa + [na]Qa), and let ¢p : Ey — Ep be an
isogeny whose kernel is ([mg]Pg + [ng]Qg). Given the curves E4, Ep and the
points ¢4 (Pg), ¢a(QB), ¢5(Pa), ¢5(Q4a), the Supersingular Computational
Diffie-Hellman problem is to find the j-invariant of Eo/ ({ma]Pa + [na]lQa, [mp|Ps + [n5]QB).

Both problems are considered to be weaker instances of the isogeny path
problem due to the additional information contained in the torsion points images
revealed. However when ¢5* and £% are balanced, we do not currently know of
any attacks that exploit this information.

Classical attack The best classical attacks is the Van—Oorschot and Wiener
collision finding algorithm, as shown in [ACC*18]. It runs in time O((5') =
O(pi) (when 05 and (P are balanced, i.e. when £5* ~ (7).

Quantum attack As there is no commutative action involved, the Kuper-
berg algorithm used in the ordinary case does not apply to SIDH. The best
quantum attack against vectorization uses Tani’s algorithm [Tan20]. It is expo-
nential, and runs in O(p%). However the analysis of Adj, Cervantes-Vazquez,
Chi-Dominguez, Menezes, and Rodriguez-Henriquez [ACC™18] shows that this
exponential attack requires a huge amount of memory, and that the classical
van Qorschot and Wiener attack might turn out to be more efficient in practice.

Timings Isogeny-based cryptography benefits from years of research and op-
timization on elliptic curves protocol, which allows us to reach an acceptable
running time for a widespread use. Improvements have been made on formu-
lae for isogeny computation and on efficient arithmetic by Costello, Longa and
Naehrig in [CLN16] and Costello and Hisil in [CH17]. For 128-bits of classical
security, the actual SIKE implementation runs in 5.9 ms for the encapsulation
and decapsulation as claimed in [JAC*17], Table 2.1 (running on a 3.4GHz Intel
Core i7-6700 (Skylake) processor with the use of hand-tuned x64 assembly).
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3.2.4 From SIDH to SIKE

In its call for quantum protocols, NIST required key encapsulation mechanisms
(KEM). Key encapsulation uses asymmetric encryption to transmit a ciphertext,
from which a symmetric key is derived on both sides, later used for message
encryption. In the case of SIDH, going from a Diffie-Hellman protocol to a key
encapsulation protocol can be done following two steps:

1. The first step derives a public key encryption (PKE) protocol from SIDH,
by XORing the hash of the shared secret obtained from SIDH with the
message to be encrypted.

2. The second step uses the Hofheinz, Hovelmanns and Kiltz transform [HHK17]
(a derivative of the Fujisaki-Okamoto transform [FO13]) to create a key
encapsulation mechanism from the PKE protocol. It uses long-term asym-
metric keys for authentification, and ephemeral asymmetric keys to en-
crypt an ephemeral symmetric key.

3.3 Supersingular case over F, (CSIDH)

The action of Cl(Q(y/—p)) on the set of supersingular elliptic curves defined
over I, described in Section 2.6 can be used for key exchange and encapsula-
tion [CLM™18], signatures [DG18, DPV19, BKV19], and other more advanced
protocols. We focus on the key exchange protocol, CSIDH, in the following.

Compared to SIDH [JD11, DJP14], CSIDH is slower. On the positive side,
CSIDH has smaller public keys (although it depends on security estimates for
parameters), is based on a better-understood security assumption, and supports
an easy key validation procedure, making it better-suited than SIDH for static
key exchange.

3.3.1 The ideal class group action

Recall Theorem 19 from Section 2.6. Let S, be the set of supersingular elliptic
curves over F,,. Let O = Z[/—p|. The ideal class group Cl(O) acts freely and
transitively on Sp,.

Let E be a supersingular elliptic curve defined over F, with End(F) =
Z[/—p]. For CSIDH, we are interested in computing the action of small prime
ideals. Consider one of the primes ¢; dividing p + 1; the principal ideal (¢;) C
Z[/—p] splits into two primes, namely l; = (¢;,m, — 1) and [; = (4;,m, + 1),
where 7, is the element of Z[\/—p] mapping to the Frobenius endomorphism of
the curves. Since [;I; = (¢;) is principal, we have [; = [;* in Cl(Q(,/=p)), and
hence

L-(L-B)=1L-(,-BE)=E.

A graphical toy example Figure 3.5 represents the graph of supersingular
isogenies over F), for p = 59 = 4-3 -5 — 1. The circular black graph is the
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graph of 3-isogenies obtained by applying ideals in the class of [(3, 7, — 1)] that
correspond to 3-isogenies having their kernel in E(F,). The graph in blue is the
graph of 5-isogenies obtained by applying ideals in the class of [(5, 7, — 1)].

31

28

Figure 3.5: The supersingular 3-isogeny (the black circle) and 5-isogeny (the
blue star) graph over F,, for p = 59. Vertices are labelled by the A coefficient of
the Montgomery representation of the curves.

3.3.2 CSIDH key exchange protocol

Public parameters The protocol requires a prime p = 4-¥6y---£, - f — 1,
where ¢; are primes and f is a cofactor, and an exponent space S € Z™. We
then choose an initial supersingular curve E defined over F, with cardinality
E(F,) = (p+1). We write [; = [(¢;, 7, — 1)].

Key generation Alice samples a private exponent vector (e;)1<i<n € S, sets
a=[[, " € Cl(Z(v/=p)) and computes her public key Ey/a as a sequence of
e; actions by each [;. Bob proceeds similarly, he samples his private exponent

vector (€})1<i<n € S, sets b =[], [f; € Cl(Z(y/—p)) and computes his public
key Eo/b

Key exchange Upon receiving Bob’s public key, Alice computes Ep/a. Bob
computes E4/b. From the commutativity of the group action, these two curves
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are isomorphic. The shared secret is their j-invariant.

This protocol is summarized in Figure 3.6. Graphically speaking, we navigate
on the /;-isogeny graphs using the action of the ideal class group on curves
exactly as in the ordinary case.

Public parameters: A primep=4-41..4, - f—1;

A list of prime ideals [; above ¢; for each i;

A supersingular curve E defined over F,, such that End(E) ~ O,
where O is an imaginary quadratic order;

An exponent space S in Z"

Alice Bob
Private key: Private key:
(ei)1<i<n €S (e )1<i<n €S
Public key: Public key:
Es=FE/a Ep=E/b
such that a = H [ such that b = H [f’,"
i=1 i=1
Ey
Ep
Shared secret Shared secret
computation: computation:
Esp =Eg/a Epa=E4/b
Shared secret: Shared secret:
J(EaB) J(Epa)

Figure 3.6: CSIDH key exchange.

3.3.3 Security of the scheme

The set S, of supersingular elliptic curves over F, is a conjectural hard homo-
geneous space for Cl(Z(y/—p)), assuming that finding isogenies between super-
singular curves is hard. The security of CSIDH hence relies on the vectorization
and parallelization problems (see Definition 3). Graphically speaking, the secu-
rity of the scheme relies on the difficulty of finding a path between two given
elliptic curves in a supersingular isogeny graph over [F),. For cryptographic pur-
poses, the exponent vectors (e1,...,e,) must be taken from a space of size at
least 22*, where ) is the (classical) security parameter.

Classical attack The best classical attack known on vectorization is to use
random walks on the isogeny graph as in [DG16], which gives a solution after
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an expected O(pi) isogeny steps.

Quantum attack As for CRS, since vectorization is an instance of the Abelian
Hidden Shift Problem, the best quantum attack is Kuperberg’s algorithm [Kup05,
Reg04, Kup13] using the Childs—Jao—Soukharev quantum isogeny-evaluation al-
gorithm as a subroutine [CJS14]. The result is a subexponential algorithm run-
ning in time L,[1/2,v/2]. There is some debate as to the concrete cost of this
quantum algorithm, and the size of p required to provide a cryptographically
hard problem instance for common security levels (see [BLMP19, BS20, Pei20]).

3.3.4 Computation
CSIDH works over a finite field F,,, where p is a prime of the form

n
p=4]Jt-1
=1

with £1,...,¢, a set of small odd primes. Concretely, the original CSIDH arti-
cle [CLM™18] defined a 511-bit p with £1, ..., £, _1 the first 73 odd primes, and
£, = 587.

The set of public keys in CSIDH is a subset of all supersingular elliptic
curves defined over F,, in Montgomery form y* = 2® + Az? + x, where A € F,,
is called the A-coefficient of the curve. The endomorphism rings of these curves
are isomorphic to orders in the imaginary quadratic field Q(1/—p). These orders
have to contain Z[\/—p], because the Frobenius endomorphism is always in the
endomorphism ring, which implies that there at most two possibilities: Z[\/—p],
and Z[L‘Q/jp} (if p =3 (mod 4)).

The authors of [CLM*18] choose to restrict the starting curve and pub-
lic keys to curves with endomorphism rings isomorphic to Z[/—p]. However,
when p = 3 (mod 4), it is also possible to use curves with endomorphism ring

isomorphic to Z[H‘Q/Tp] as in CSURF [CD20].

At the heart of CSIDH is an algorithm that evaluates the class group action
described in Section 3.3.1 on any supersingular curve over IFp.

The input to the algorithm is an elliptic curve E : y? = 23 + A2? + =z,
represented by its A-coefficient, and an ideal class a = [];__, [{*, represented by
its list of exponents (e;,...,e,) € Z™. The output is the (A-coefficient of the)
elliptic crve a- E = [ --- [ - E.

The isogenies corresponding to [; = (¢;,m, — 1) can be efficiently com-
puted using Vélu’s formulee and their generalizations: exploiting the fact that
#E([F,) =p+1=4]]¥, one looks for a point R of order ¢; in E(F,) (ie., a
point in E[¢;], that is, in the kernel of both the multiplication-by-£; map and
(mp — 1)), computes the isogeny ¢ : E — E/(R) with kernel (R), and sets
[;- E = E/(R). Iterating this procedure lets us compute [ - E for any exponent
e > 0.

The isogenies corresponding to I} L are computed in a similar fashion: this
time one looks for a point R of order ¢; in the kernel of (7, + 1), i.e., a point
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in E(F,2) of the form (x,iy) where both x and y are in F, (since i = /-1
is in F,2 \ F, and satisfies i¥ = —i). Then one proceeds as before, setting
;' FE=E/(R).

In the sequel we assume that we are given an algorithm QuotientIsogeny
which, given a curve E/F, and a point R in E(F,2), computes the quotient
isogeny ¢ : E — E' = E/(R), and returns the pair (¢, E’). We refer to this
operation as isogeny computation. Algorithm 1, taken from the original CSIDH
article [CLM™18], computes the class group action.

Algorithm 1: KeyGenCSIDH: The original CSIDH class group action
algorithm for supersingular curves over F,, where p = 4[], ¢;,—1. The
choice of ideals [; = (¢;,m, — 1), where m, is the element of Q(\/—p)
is mapped to the p-th power Frobenius endomorphism on each curve
in the isogeny class, is a system parameter. This algorithm constructs
exactly |e;| isogenies for each ideal [;. In practice the y-coordinate of
the points on the curve is not required, and the scalar multiplications
can be done using Montgomery x-only arithmetic.

Input: A € F, such that E4: y? = 2% + Az? + x is supersingular, and

an integer exponent vector (eq, ..., ey,)

Output: B such that Ep :y? =23 + Ba? +xis [§1 - -+ - - (e . By,
1 B+ A
2 while some e; # 0 do
3 Sample a random z € IF,,
a s+ +1if 2° + Ba? + z is square in F, else s « —1
5 S <« {i|e; #0,sign(e;) = s}
6 if S # () then
7 k «+— HiES fl
8 Q « [(p+1)/k]P, where P = (z,y) with % = 23 + Bz? + 1
9 for i€ S do
10 R+ [k/¢;]Q // Point to be used as kernel generator
11 if R # oo then
12 (EB,¢) < QuotientIsogeny(Ep, R)
13 Q + »(Q)
14 (k,e;) < (k/l;,e; — s)

15 return B

Timings The current fastest constant-time implementation is the one from
CTIDH [BBC*21]. It takes about 40 ms for key generation for 128 bits of
classical security.
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3.4 Key validation

During a key exchange protocol, an active attacker can transmit a flawed public
key to gain knowledge on the counterpart’s private key. To avoid such kinds
of attacks, two solutions are possible: restricting to ephemeral key exchange
protocols, or using static key exchanges with a key validation procedure.

On the one hand, ephemeral key exchange protocols require the private and
public key to be unique to each key establishment to avoid adaptative attacks.
This is the case in SIDH, where an attacker having a public key with dishonestly
chosen torsion points may recover information about the counterpart’s private
key if it is reused for several key exchanges.

On the other hand, static key exchange protocols requires a key-validation
procedure when receiving a public key to verify its correctness, i.e. that it has
been honestly generated. The private and public keys can be reused for several
key exchanges, under the condition that the public key must be validated by
counterparts before using it. The public key is generated only once, but it is
verified at each key exchange protocol. Concrete examples of validation will be
given in Section 6.5.

3.5 Comparison of CRS, SIDH, SIKE and CSIDH

Table 3.1 gives a summary of the main differences between the isogeny-based
key exchanges presented above. We also give a summary of the advantages and
drawbacks for each scheme presented above.

CRS The CRS scheme launched isogeny-based post-quantum cryptography,
and offers an elegant post-quantum Diffie-Hellman protocol. The improvements
of [DKS18] are reused in CSIDH described below, but the implementations of
Couveignes’ and Rostovstev—Stolbunov protocols remain too slow for a practical
and widespread use.

The existence of a subexponential quantum attack does not mean that the
protocol is insecure. Nevertheless, such an attack implies using bigger primes,
and thus bigger key sizes and an even slower protocol to reach an equivalent
security level.

SIDH and SIKE Thanks to algorithmic improvements, the SIDH and SIKE
protocols have reached an acceptable running time. SIKE has the shortest
public key size of all the NIST candidates. Hence it has positioned itself as a
promising post-quantum candidate for standardization.

However, some critiques have been made about the fact that the images of
the torsion points need to be sent in order to be able to compute the com-
mutative diagram without having Alice or Bob reveal their private key. This
may make the problem an easier instance of the quantum-resistant isogeny-path
problem. There have been a few attacks on the isogeny problem with torsion
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point images for unbalanced parameters, i.e. when ¢5* and ¢77 have signifi-
cantly different sizes ([Pet17], [dQKL*21]), but none of them apply to SIDH
parameters. It is still unknown how to use this extra information properly in
the SIDH context.

Furthermore, SIDH and SIKE also lack of efficient public key validation to
verify that a public key has been honestly generated. Galbraith, Petit, Shani,
and Ti have shown in [GPST16] that some public key validation algorithms, if
they were efficient, would also give an attack on SIDH.

CSIDH CSIDH benefits from being several orders of magnitude faster than
its ancestor CRS. It also allows shorter public and private keys than SIDH at
the same security level: for 64 bits of quantum security, the first NIST security
level, SIDH public keys have 330 bytes, whereas CSIDH-512 public keys could
fit in 64 bytes. Unlike SIDH, it allows a secure non-interactive key exchange
protocol as it has efficient public key validation.

However, CSIDH is vulnerable to subexponential quantum attacks, and its
quantum security is the subject of intense discussion (see Section 3.3.3). Slower
than SIDH, it is close to being practical, but remains an order of magnitude
slower than other non-isogeny based key exchange protocols. Moreover, con-
sidering the on-going debates on the level of security offered by CSIDH, the
parameters might need to be larger than what we are currently using to main-
tain the claimed security level.
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CRS CSIDH SIDH/SIKE
Field I, or extensions F, 2
Curves Ordinary Supersingular Supersingular
n
Prime (Any) 4] 6 +1 fesaesr +£1
i=1
{-isogeny Crater or {-regular
graph Volcano depth-2-volcano expander graph
Origin of Ideal class Ideal class Commutative
commutativity group action group action diagram
non-interactive
key establishment Safe Safe Unsafe
Best known Exponential Exponential Exponential
classical attack O(p7) O(p#) O(p?)
(in isogeny steps)
Best known Subexponential ~ Subexponential Exponential
quantum attack Ly[1/2,v/2] Ly[1/2,v/2] O(ps)*
(in quantum queries) or O(p#)

Table 3.1: Comparative table of isogeny-based key exchange schemes. The com-
plexity of the best known quantum attack for SIDH/SIKE is marked with an
asterisk * because, according to the analysis of [ACCT18], its memory require-
ments are too big to be met in practice, meaning that the best quantum attack
would actually be the classical one.
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Part 11

CSIDH implementation
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Chapter 4

Protecting CSIDH against
side-channel attacks

Abstract Side-channel attacks monitor physical parameters during the com-
putation of a cryptographic protocol. In particular, power consumption analysis,
timing attacks, and fault injections can be used to recover the private key dur-
ing a key exchange protocol. Some implementations of CSIDH have tackled the
issue of protecting the scheme against timing and power consumption analysis
[MCR19] [OAYT20]. However they use dummy operations to ensure that the
computation can be run in constant-time, which makes the scheme vulnerable
to fault injections. A dummy-free implementation of CSIDH is necessary to
avoid fault injections attacks. In this chapter we propose two constant-time
implementations of CSIDH which do not use dummy operations, including one
without randomness.
The results of this section have been published in [CCCT19].

4.1 Preliminaries: side-channel attacks

Side channel attacks were introduced in 1996 by Paul Kocher [Koc96], at the
time against contemporary RSA implementations. Today they are widely known
and used against any cryptographic protocol.

The idea of side-channel attacks is to recover the private key by monitoring
information about the execution of the protocol on a real platform, instead of
attacking the underlying mathematical problem. These methods grant differ-
ent powers to the attacker. In passive settings, side-channel attacks rely on
monitoring several computational parameters such as timing, power consump-
tion, sound, electromagnetic leaks, cache memory, or data remanence. In active
settings, an attacker is allowed to induce a voluntary perturbation during exe-
cution, such as fault-injections or the use of a flawed random number generator.
By observing the consequences of her perturbations she may deduce some in-
formation about the secret, or break the cryptosystem.
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We detail four types of side-channel attacks that will be considered in the fol-
lowing sections: timing attacks, power consumption analysis, fault injection and
flawed random number generators. We also introduce the notion of constant-
time algorithms that are a countermeasure against such attacks.

4.1.1 Timing attacks

Timing attacks monitor the duration of the computation: some algorithms run
faster on some inputs and significantly slower on others. When this input is a
cryptographic secret, these variations leak information revealing part or all of it
(see [Koc96], [BB03], and more recently attacks such as Lucky Thirteen [AP13],
Meltdown [LSGT18] and Spectre [KHF*19]).

We give an example with the square-and-multiply algorithm 2 which is
widely used. This algorithm computes exponentiation in a multiplicative group,
e.g. in RSA. An analogue of this algorithm exists in the case of an additive group
law, as in elliptic curves, where square-and-multiply becomes double-and-add.
It relies on the following result: given an element x of a group G written multi-
plicatively and an integer n:

o { 2(2?)"z  if nis odd

(x?)% if n is even

The square-and-multiply algorithm scans the bits of the exponent in base
two from most significant to least significant. If the bit is zero, we square the
previous result, but if it is one, we square the result and multiply by x. This is
computationally more expensive and takes more time.

Algorithm 2: Square-and-multiply exponentiation

Input: = an element of a multiplicative group G,
neNn= (nk_l...n())g
Output: x"
if n =0 then
L return 1

y<1
for i < (k—1) to 0 do

Yy<—yxy
if n; =1 then

Ly<—y><x

[ S

g O A~ W

®

return y

Execution timings reveal the proportions of 0s and 1s in the exponent, al-
though the exact places of the Os and 1s is not revealed. When the exponent
is a secret value (such as an RSA or Diffie-Hellman private key), this leaks
information on the secret and creates security issues.
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4.1.2 Power consumption analysis

Attacks by power consumption analysis monitor the power consumption vari-
ations of the computing device during the execution of an algorithm. These
variations can reveal part or all of a private key.

We give an example of Simple Power Analysis by considering again the
square-and-multiply exponentiation given in Algorithm 2. The power consump-
tion during a square-and-multiply step is different and distinguishable from the
consumption of a square step. When the exponent n is the private key of one
participant, the attacker could read the entire key from the power consump-
tion graph, since the variations reveal each bit of the exponent one by one, as
represented on Figure 4.1.

power consumption
AN

multiply

square

0 >
time

Figure 4.1: Power consumption analysis indicative example — square-and-
multiply with exponent (1100100111011000101110). For clarity we use the
exaggerated ratio of 2 : 1 for the power consumed by a multiplication, relative
to a square.

For details on more powerful power-analysis attacks, such as Differential
Power Analysis, see [KJJ99].

4.1.3 Fault injection

Fault injection is a stronger attack model than timing attacks and power con-
sumption analysis: the attacker is allowed to be active, and not simply an
observer. The attacker can create one or several faults during the computation,
by cutting electrical power, or using a laser to flip some bits for example. Com-
paring the output with and without the faults may reveal information about the
private key. These attacks can be particularly useful when dummy operations
have been added to an implementation to protect against timing and power
consumption analysis attacks: if a fault is injected in a dummy operation, then
it has no impact on the output.

Let us give an example with a modified version of square-and-multiply in
Algorithm 3. In this version, timing and power consumption analysis attacks
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have been prevented by adding fake and useless operations to the square-only
step, to ensure that it has the same computational cost as the square-and-
multiply step.

Algorithm 3: Modified square-and-multiply exponentiation with
dummy operations

Input: = an element of a multiplicative group G,
ne€Nn=(ng_1..n0)2

Output: "

if n =0 then

2 L return 1

if n =0 then
L return 1

y<+1

Z4— 2

for i < (k—1) to 0 do

if n; =0 then

Yy<—yxy

10 z 4y XxXx // dummy operation
11 else

12 Y—yxy

13 Lyeyxx

[y

[N

© 0 N o «

14 return y

In the fault injection model, an attacker could inject a fault during Step ¢
(at Lines 10 and 13), and observe if the output is the same as without the fault
injection. If the result is wrong, then the targeted operation was a real one and
the " bit was 1; if the result is correct, then the operation was a fake one and
the i*" bit was 0.

Of course, being able to insert faults at a precise moment requires more
sophisticated material, and a higher cost for the attacker [TDEP21]. It is non-
the-less feasible, even on everyday smart cards protected by RSA [BJL*14].

4.1.4 Constant-time and dummy-free algorithms

The implementation of an algorithm is said to be constant-time when the analy-
sis of its execution time provides no information on secret inputs. Constant-time
implementations hence ensure that no secret information visible via timing at-
tacks leaks during the execution.!

Constant-time implementations can be achieved by using dummy operations,
however such unnecessary steps create a vulnerability against fault injection. To

1Misleadingly, the execution time of a constant-time implementation does not need to be
constant: it can vary due to randomness, or as a function of public inputs, but not from the
secret inputs.
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further protect an implementation against fault injection, every step has to be
necessary to compute the correct result. A protected version of the square-and-
multiply algorithm is given in Algorithm 5, where each conditional branch has
a square step and a multiply step, both necessary for the completion of the
algorithm [Mon87].

Algorithm 4: Montgomery square-and-multiply exponentiation

Input: = an element of a multiplicative group G,
ne€Nn=(ng_1..n0)2
Output: 2™
1+ 1
To < X
fori=k—1 to0do
if n; = 0 then
‘ (1‘1,])2) < (J?%,.I’l X Jjg)
else
| (1, 22) = (21 X 9,23

PO SN T U I

®

return z;

Algorithm 4 has an if statement which should also be implemented in constant-
time to ensure a full constant-time algorithm. To that aim we use a conditional
constant-time swap between two values: cswap(a, b, t) returns (a, b) if £ = 0 and
(b, a) otherwise. We obtain Algorithm 5.

Algorithm 5: Montgomery square-and-multiply exponentiation with
conditional swap

Input: = an element of a multiplicative group G,
n e N,TL = (’nk_l...’no)g
Output: x"
1+ 1
To < T
fori=k—1 to0do
(x1,x2)  cswap(x1,x2,n;)
Tog = X1 X X2
xy = 23
(1, x2) < cswap(z1,z2,n;)

B =R S NV VN

®

return z;

For completeness we also give in Algorithm 6 the additive version, double-
and-add, of the square-and-multiply algorithm for when the group law is written
additively and not multiplicatively (in elliptic curve scalar multiplication for
example).
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Algorithm 6: Montgomery double-and-add exponentiation

Input: x an element of an additive group G, n € N;n = (ng_1...n0)2
Output: n x x
1 <0
To < X
fori=k—1 to0do
fori=k—1to0do

(z1,x2)  cswap(z1,x2,M;)

T = T1 + X2

T1 =21+

(z1,x2) < cswap(x1,x2,n;)

[ JEN - N S OO N

©

return z;

4.2 Previous constant-time implementations

Prior to our study, several authors had been tackling the issue of timing and
power consumption analysis in the case of CSIDH [MCRI19][OAYT20]. We
briefly recall their protocols before explaining why they are not fault injection
resistant.

4.2.1 Meyer—Campos—Reith

As Meyer, Campos and Reith observe in [MCR19], the original CSIDH algorithm
(Algorithm 1, Section 3.3.2) performs fewer scalar multiplications when the key
has the same number of positive and negative exponents (balanced case) than
it does when the exponents are all positive or all negative (unbalanced case).
Indeed, when the key is balanced, the multiplication at Line 8 in Algorithm 1
has a cofactor of log p/2 bits, meaning that the following multiplications at Line
10 have cofactors of decreasing size from log p/2. However, when the private key
has only positive or only negative exponents, then the multiplication at Line
8 has a cofactor of logp, bits, hence the following multiplications at Line 10
have cofactors of decreasing size from logp only. Adding the bit length of mul-
tiplicative factors for the computation of one isogeny per degree in CSIDH-512,
[MCR19] finds 9066 bits in the balanced case and 16813 bits in the unbalanced
case. As the cost of a point multiplication depends on the size of the cofactor,
Algorithm 1 leaks information about the distribution of positive and negative
exponents under timing attacks.

The authors of [MCR19] also study power consumption attacks. They as-
sume that by studying the variations of power consumption, an attacker can
distinguish between a isogeny computation (Line 12), and a point multiplica-
tion (Line 10) in Algorithm 1. This allows the attacker to compare the degree of
the isogenies computed. They further assume that an attacker can distinguish
between the while-loops at Line 2 in Algorithm 1 in the computation, which
allows the attacker to identify when a new point is sampled. Recall that in
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CSIDH, isogenies whose corresponding private exponents share the same sign
are computed together. This implies that the power consumption analysis de-
scribed above can compare the degree of the isogeny computed and observe
which batches of isogenies are computed together throughout the execution.
Since only isogenies having exponents of same sign exponent can be computed
together, this reveals information about the signs. Hence the possible key space
is reduced, and the complexity of finding the correct key is reduced as well.

In view of this vulnerability, Meyer, Campos and Reith proposed a constant-
time CSIDH algorithm in [MCR19] whose running time does not depend on the
private key (though, unlike [JAMJ19], it still varies due to randomness). The
essential differences between the algorithm of [MCR19] and classic CSIDH are
as follows. First, to address the vulnerability to timing attacks, they choose
to use only positive exponents in [0, 10] for each ¢;, instead of [—5,5] in the
original version [CLM™18], while keeping the same prime p = HZil ; —1. To
mitigate power consumption analysis attacks, their algorithm always computes
the maximal amount of isogenies allowed by the exponent bound, using dummy
isogeny computations if needed. Their algorithm is described in Algorithm 7.

4.2.2 Onuki—Aikawa—Yamazaki—Takagi

Still assuming that the attacker can perform only power consumption analysis
and timing attacks, Onuki, Aikawa, Yamazaki and Takagi proposed a faster
constant-time version of CSIDH in [OAYT20]. The key idea is to use two points
to evaluate the action of an ideal, one in ker(m, — 1) (i.e., in E(F,)) and one
in ker(m, + 1) (ie., in E(F,2) with a-coordinate in Fp). This allows them to
avoid timing attacks, while keeping the same primes and exponent range [—5, 5]
as in the original CSIDH algorithm. Their algorithm also employs dummy
isogenies to mitigate some power analysis attacks, as in [MCR19]. With these
improvements, they achieve a speed-up of 27.35% compared to [MCR19].

We include pseudocode for the algorithm of [OAYT20] in Algorithm 8, to
serve as a departure point for our dummy-free algorithm in Section 4.3. Al-
though not described here, the Elligator algorithm is used in this context as an
algorithm that allows us to randomly generate points on a given elliptic curve
(see [BHKL13]). Specifically, E1ligator(E, u) returns 7_ in E[m, — 1] and
Ty in Efm, + 1].

Remark 1. Algorithms 7 and 8 can be adapted to use other curve models. The
Montgomery model here is used to exploit Montgomery arithmetic for z-only
scalar multiplication.

4.3 Contribution: Fault-attack resistance

This section presents the results obtained on constant-time implementation of
CSIDH in the joint work [CCC*19]. The use of dummy operations in the previ-
ous constant-time algorithms implies that the attacker can obtain information
on the private key by injecting faults during the computation. For example, if

73



Algorithm 7: The Meyer—Campos—Reith CSIDH algorithm for su-

persingular curves over F,, where p = 4[], ¢; — 1. The ideals
l; = (¢;, mp — 1), where 7, maps to the p-th power Frobenius endomor-
phism on each curve, and the exponent bound vector (my, ..., my,), all

positive, are system parameters. This algorithm computes exactly m;
isogenies for each ¢;.

Input: A € F, such that E, : y? = 2% + Az? + x is supersingular, and
a list of integers e = (eq, ..., e,) with e; € {0,1,..,m;} for all
1 < n.
Output: A’ € Fp,, the curve parameter of the resulting curve Ea/.
1 Initialize k =4, e = (e, ...,e,) and f = (f1,..., fn), Where f; = m; — e;.
2 while some e; # 0 or f; # 0 do

3 | Sample random values x € F, until 23 + Az? + z is a square in F,,.
a Set P=(x:1), P« [k]P,S={i|e; #0or f; #0}.

5 foreach i € S do

6 Let m = [];cq 5 li-

7 Set K < [m]P.

8 if K # O then

9 if e; # 0 then

10 (Ear,¢) + QuotientIsogeny(E4, (K))

11 A+ AP+ ¢(P), e; < e; — 1.

12 else

13 (5, -) <QuotientIsogeny(E 4, (K)) // dummy
14 LA(*A,P(*[El]P,fZ%le

15 if ¢, =0 and f; =0 then

16 LSetk(—k-&.

17 return A’

one of the values in Line 19 of Algorithm 8 is modified without affecting the
final result, then the adversary learns whether the corresponding exponent e;
was zero at that point.

We propose an approach to constant-time CSIDH without dummy compu-
tations, making every operation essential for a correct final result. This gives
us some natural resistance to fault injections, at the cost of approximately a
twofold slowdown. Our approach is to change the format of secret exponent
vectors (eq,...,e,). In both the original CSIDH and the Onuki et al. variants,
the exponents e; are sampled from an integer interval [—m;, m;] centered on 0.
For naive CSIDH, evaluating the action of [* requires evaluating between 0 and
m; isogenies corresponding to either the ideal [; (for positive e;) or I ! (for neg-
ative e;). If we follow the approach of [OAYT20], then we must also compute
m; — |e;] dummy /¢;-isogenies to ensure a constant-time behaviour.
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For our new algorithm, the exponents e; are uniformly sampled from sets
S(m;) = {e| e =m; mod 2 and |e| < m;},

that is, centered intervals containing only even or only odd integers. The inter-
esting property of these sets is that a vector drawn from S(m)™ can always be
rewritten (in a non-unique way) as a sum of m vectors with entries {—1,+1}
(i.e., vectors in S(1)™). But the action of a vector drawn from S(1)™ can clearly
be implemented in constant-time without dummy operations: for each coeffi-
cient e;, we compute and evaluate the isogeny associated to [; if e; = 1, or the
one associated to [;1 if e; = —1. It follows that we can compute the action of
vectors drawn from S(m)™ by repeating this step m times.

More generally, we want to evaluate the action of vectors (eq,...,e,) drawn
from S(mq) x -+ x S(my,). Algorithm 9 achieves this in constant-time, and
without using dummy operations. The outer loop at Line 3 is repeated exactly
max(m;) times, but the inner “if” block at Line 5 is only executed m; times
for each i; it is clear that this flow does not depend on secrets. Inside the “if”
block, the coefficients e; are implicitly interpreted as

e =1+14+ - +1+(1-1)—-1-1)+(1-1)—-,
| —

e; times m;—e; times

i.e., the algorithm starts by acting by [5'€" () for e; iterations, then alternates
between [; and I;l for m; — e; iterations. We assume that the sign: Z — {£+1}
operation is implemented in constant time, and that sign(0) = 1. If one is
careful to implement the isogeny evaluations in constant-time, then the full
algorithm is also constant-time.

Note that Algorithm 9 is only an idealized version of the CSIDH group action
algorithm. Indeed, like in [MCR19, OAYT20], it may happen in some iterations
that Elligator outputs points of order not divisible by ¢;, and thus the action of
[; or [;1 cannot be computed in that iteration. In this case, we simply skip the
loop and retry later: this translates into the variable z; not being decremented,
so the total number of iterations may end up being larger than max(m,). If the
input value u fed to Elligator is random, its output is uncorrelated to secret
values?, and thus the fact that an iteration is skipped does not leak information
on the secret. The resulting algorithm is summarized in Algorithm 10.

To maintain A bits of classical security, the bounds m; must be chosen so
that the key space is at least as large as 2*. For example, the original imple-
mentation [CLM*18] samples secrets in [—5,5]™, which gives a key space of
size 117*; hence, to get the same security we would need to sample secrets in
S(10)™. But a constant-time version of CSIDH-512 a la Onuki et al. only needs
to evaluate five isogeny steps per prime ¢;, whereas Algorithm 10 would need
to evaluate ten isogeny steps, leading to an approximately twofold slowdown
for this variant compared to [OAYT20]. The field operation counts and clock

2 Assuming the usual heuristic assumptions on the distribution of the output of Elligator,
see [BBCT21].
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cycle counts for the constant-time CSIDH-512 implementations of [CCC*19]3
is given in Table 4.1 and Table 4.2 below.

4.4 Contribution: Derandomized CSIDH

4.4.1 Flawed pseudorandom number generators

Constant-time algorithms are usually allowed to depend on randomness, mean-
ing that the computation time variations cannot depend on secret parame-
ters, but may depend on random elements. Pseudorandom Number Generators
(PRNG) return a sequence of numbers that is computationally undistinguish-
able from a real random sequence, from a seed generated via a source of entropy
such as keyboard strokes, or nuclear disintegration). The quality of the PRNG
output depends on the quality of entropy available.

Flawed PRNGs can have disastrous consequences. If the source of ran-
domness is not sufficiently strong, an attacker might predict a supposed ran-
dom number and gain precious information on the computation. For example,
[ABCT19] describes a voting machine system in Brazil with a PRNG seeded
with switch-on time, but most of the machines were turned on at 8:00 exactly
[ABC™19], creating a breach in their security. Even a bias in the PRNG can
be sufficient, as the example of Taiwanese digital signatures showed [BCC*13]:
several RSA public keys had primes in common, making them insecure.

The algorithms presented in the previous section depend on the availability
of high-quality randomness for their security: the input to Elligator must be
randomly chosen to ensure that the total running time is uncorrelated to the
private key. Typically, this would imply the use of a PRNG seeded with high
quality true randomness that must be kept secret. An attack scenario where
the attacker may know the output of the PRNG, or where the quality of PRNG
output is less than ideal, therefore degrades the security of all algorithms. This
is true even when the secret was generated with a high-quality PRNG if the
keypair is static, and the private key is then used by an algorithm with low-
quality randomness.

4.4.2 Derandomized CSIDH with dummies

We can avoid this issue completely if points of order Hﬁinli‘, where |m;| is the
maximum possible exponent (in absolute value) for ¢;, are available from the
start. Unfortunately this is not possible with standard CSIDH, because such
points are defined over field extensions of exponential degree.

Instead, we suggest modifying CSIDH as follows. First, we take a prime
p =4[[—, 4 — 1 such that [nlog(3)] = 2\, where X is a security parameter,
and we restrict to exponents of the private key sampled from {—1,0,1}. Then
we compute two points of order (p + 1)/4 on the starting public curve, one in
ker(mp,—1) and the other in ker(m,+1), where 7, is the Frobenius endomorphism.

3available at https://github.com/JJChiDguez/csidh.
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This computation involves no secret information, and can be implemented in
variable-time; furthermore, if the starting curve is the initial curve with A = 0,
or a public curve corresponding to a long term private key, these points can be
precomputed offline and attached to the system parameters or the public key.
We also remark that for static public keys, this would additionally speed-up
the key validation process since a point of order p + 1 would be immediately
accessible.

Since we have restricted exponents to {—1,0,1}, every ¢;-isogeny in Algo-
rithm 8 can be computed using only (the images of) the two precomputed points.
There is no possibility of failure in the test of Line 13, and no need to sample
any other point. We note that this algorithm still uses dummy operations.

4.4.3 Derandomized dummy-free CSIDH

If fault-injection attacks are a concern, the exponents can be further restricted
to {—1,1}, and the group action evaluated as in (a stripped down form of)
Algorithm 10. However this further increases the size of p, as n must now be
equal to 2.

This protection comes at a steep price: at the 128 bits security level, the
prime p goes from 511 bits to almost 1500. The resulting field arithmetic would
be considerably slower, although the global running time would be slightly offset
by the smaller number of isogenies to evaluate. Besides, the computation of
large degree isogenies would benefit from the latter published work of [BDLS20],
which shows that they can be computed in O(v/¢) instead of O(¥).

On the positive side, the resulting system would have much stronger quan-
tum security. Indeed, the best known quantum attacks are exponential in the
size of the key space (=~ 22* here), but only subexponential in p (see [CJS14,
DKS18, CLM*18]). Since our modification more than doubles the size of p
without changing the size of the key space, quantum security is automatically
increased. For this same reason, for security levels beyond NIST-1 (64 quan-
tum bits of security), the size of p increases more than linearly in A, and the
variant proposed here becomes natural. Finally, parameter sets with a simi-
lar imbalance between the size of p and the security parameter A have already
been considered in the context of isogeny based signatures [DG18], where they
provide tight security proofs in the quantum random oracle model.

4.5 Following constant-time implementations

We explored ways to protect CSIDH implementations against fault injection
and flawed PRNG. Several other studies have been published afterwards, and
we briefly summarize their content for completeness.

e Published in 2020, the work of [BDLS20] drastically reduces the com-

putational effort to compute large degree isogenies from O(f) to O(V/).
Although this makes original CSIDH and other variants more practical, it
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is even more beneficial for the derandomized version of Section 4.4 which
involves larger prime-degree isogenies.

The works of [CKM*20], [LH21], [TDEP21] show that fault injection is
not that easy to implement in practice, and rather propose to detect fault
injection during the computation while keeping dummy operations, in-
stead of avoiding them. They propose mechanisms to detect such intru-
sions, which make the scheme faster than the dummy-free version proposed
above.

The work of [BBC*21], named CTIDH, shows a faster way for constant-
time implementations of CSIDH (with dummies) by carefully choosing the
exponent sets using batches of primes.
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Algorithm 8: The Onuki-Aikawa—Yamazaki—Takagi CSIDH algo-
rithm for supersingular curves over F,, where p = 4[], ¢; — 1. The
ideals l; = (¢;, mp—1), where m, maps to the p-th power Frobenius endo-

morphism on each curve, and the exponent bound vector (my, ..., my),
are system parameters. This algorithm computes exactly m; isogenies
for each ¢;.

[y

N o0 ok BN

© 0w

10
11
12
13
14
15
16
17
18
19

20

Input: A € F, such that E, : y? = 23 + az? + x is supersingular, and

an integer exponent vector (es,...,e,) with each
e; € [—m;,my).

Output: B the curve parameter of Fg: 4> = 2° + Bxz? + 2 such that

Ep =[S ....[& . Ey.
(€, en) < (my —let],...,mi — |ex]) // Number of dummy
computations
Ep+ E4
while some e; # 0 or e} # 0 do
S« {i|e; #0or e}, #0}
k%Hiesei
u%Random({Z...,p—;l})
(T_,Ty) + Elligator(Ep,u) // T_ € Eg|m, — 1] and

T+ S EB[TI'p + 1}
(Po, Pr)  ([(p+ 1)/KITy, [(p+ 1) /KIT-)

for i € S do
s < sign(e;) // Ideal I{ to be used
Q <+ [k/ZZ]P% // Secret kernel point generator
Prys [&}Puzrs // Secret point to be multiplied

if Q # oo then
if e; # 0 then
(Ep,p) + QuotientIsogeny(Ep, Q)
(Po, P1) + (¢(Po), p(P1))
€< €; —S
else
t Ep < Ep; Pi_s e[fi]P%;e;%e;fl // Dummies

|k kG

21 return B

79



Algorithm 9: An idealized dummy-free constant-time evaluation of

the CSIDH group action.

Input: E an elliptic curve and (e, .

secret vector

Output: (J[_, ) E

1=0 "
(t1,...
(215 .y 2n) (M, ..
while some z; # 0 do

if z; > 0 then
E«1lli.F

e, e —t;

© o N o ok W N =

fury
o

Zi%zifl

11 return

for i€ {1,...,n} do

ti e (=1)" -t

b = isequal(e;,0)

,tn) < (sign(ey),...,sign(en))
Sy My)

cyen) €8(my) X - x S(my,)

// Secret

// Not secret

// Swap sign when e; has gone past 0

Implementation Constant-| Dummy- M S A |Ratio
time free

[CLM™18] No No 0.252| 0.130| 0.348| 0.26

[MCR19] Yes No 1.054| 0.410| 1.053| 1.00

[OAYT20] Yes No 0.733| 0.244| 0.681| 0.67

Algo. 10, [CCCT19] Yes Yes 1.319/0.423|1.389| 1.19

Table 4.1: Field operation counts for constant-time CSIDH-512. Counts are
given in millions of operations, averaged over 1024 random experiments. The
performance ratio uses [MCR19] as a baseline, considers only multiplication and
squaring operations, and assumes M = S.

Implementation |Constant-| Dummy- || Mcycles | Ratio
time free

[CLM™18] No No 155 0.39

[MCR19] Yes No 395 1.00

Algo. 10, [CCCT19] Yes Yes 481 1.22

Table 4.2: Clock cycle counts for constant-time CSIDH-512 implementations,
averaged over 1024 experiments. The ratio is computed using [MCR19] as base-

line implementation.
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Algorithm 10: Dummy-free randomized constant-time CSIDH class
group action for supersingular curves over F,, where p = 4 H?zl l; — 1.
The ideals [; = (¢;, m, — 1), where 7, maps to the p-th power Frobenius
endomorphism on each curve, and the vector (mq,...,m,) of exponent
bounds, are system parameters. This algorithm computes exactly m;
isogenies for each ideal [;.

Input: A supersingular curve E4 over Fp,, and an exponent vector

(e1,...,e,) with each e; € [-m;, m;] and e; = m; (mod 2).
Output: Eg =1['----- [ - Ey4.
1 (1, tn) < <Sign(§1)+1,..., Sign(;")ﬂ) // Secret
2 (21,...,2n) < (M1,...,my) // Not secret
3 EB — EA
4 while some z; # 0 do
5 | u< Random({2,...,2;'})
6 (T_,T}) < Elligator(Ep,u) // T_ € Eg|m, — 1] and
T, € Epmp + 1]
(T,,T) « (T4, [4IT.) // Now Ty, T_ € Ep [[1,
for i e {1,...,n} do
if z; # 0 then

10 (G4,G2) «+ (T4,1T2)
11 cswap(Gy,G_,t;) // Secret kernel generator: G,
12 cswap(T4,T—_,t;) // Secret point to be multiply: 7_
13 for je{i+1,...,n} do
14 | Gy« [4]Gy
15 if G4 # oo then
16 (EB,¢) < QuotientIsogeny(Ep, Gy)
17 (T+7 T—) — (¢(T+)a ¢(T—))
18 b < isequal(e;,0)
19 e < e; + (—1)“
20 t; < t; ® b
21 Zi 2z — 1
22 T1 — [&]Tl
23 cswap(T4,T-,t;)

24 return B
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Part 111

CSIDH generalization:
higher-degree supersingular
group actions
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Chapter 5

(d, €)-structures

Abstract A supersingular curve is defined over F), if its defining equation
coefficients are elements of IF,,. This property is equivalent to having a degree
one isogeny (i.e. an isomorphism) from the curve to its Galois conjugate. Due
to the existence of a free and transitive group action of the ideal class group on
the set of supersingular curve defined over I, (see Section 2.6), they have been
used to build efficient cryptosystems like CSIDH [CLM*18] or CSURF [CD20].
While the isogeny graph for curves over Fy, is well known ([DG16]), the isogeny
graph for curves having a degree d isogeny to their Galois conjugate has not
been studied. In this chapter, we prove the existence of a free and transitive
class group action on the set of curves having a d-isogeny to their conjugate.
We use this action to study the isogeny graph of such curves.

The results of this section have been published in [CS21].

5.1 Curves with a d-isogeny to their conjugate

In this section we define and study the properties of elliptic curves with a d-
isogeny to their conjugate.

5.1.1 Galois conjugates

The Galois conjugate of an elliptic curve over F. is its image under the p-power
Frobenius. Let E be an elliptic curve. If E/F,2 is an elliptic curve, then its
Galois-conjugate curve E®) is defined by p-th powering all of the coefficients in
the defining equation of E. The curve E and its conjugate E(®) are connected by
inseparable “Frobenius” p-isogenies m), : ' — E® and Tp E®W — E. defined
by p-th powering the coordinates (abusing notation, all inseparable p-isogenies

will be denoted by m,). Observe that (E(p))(p) = FE, and the composition of
T B — E® and Tp E® — E is the p2-power Frobenius endomorphism 7
of E.
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Conjugation also operates on isogenies: each isogeny ¢ : E — FE’ defined
over IF» has a Galois conjugate isogeny oP) . E®) E’(p), defined by p-th
powering all of the coefficients in a rational map defining ¢. We always have

(¢(P))(p) =¢ and 7rpo¢:¢(p) omp.
In particular, conjugation gives an isomorphism of rings between End(E) and

End(E(P)), because (¢ + ¢2)(P) _ ¢1(p) + ¢2(p) and (¢1¢2)(p) _ ¢1(p)¢2(p).

5.1.2 (d,e¢)-structures

Let p > 3 be a prime, and d a squarefree integer prime to p.! We are interested
in elliptic curves E/F,2 equipped with a d-isogeny v : E — E®)_ Given any
such d-isogeny v, we have two returning d-isogenies:

@ E® 5 F  and  ¢:E® S E.

g .
F__ %Y . EW
R s
e

Definition 29. Let E/F,> be an elliptic curve equipped with a d-isogeny  :
E — EW® to its conjugate. We say that (E, 1)) is a (d, €)-structure if

12 = )P with ee{-1,1}.
Each (d, €)-structure (F,) has an associated endomorphism
p=mpo1 € End(FE).

NS

Tp

We say that (E,) is ordinary resp. supersingular if E is ordinary resp.
supersingular.

The following lemma gives a useful criterion for identifying a (d, €)-structure,
though it does not distinguish between ¢ = 1 and e = —1.

Lemma 25. If E/F,2 is an elliptic curve with j(E) & {0,1728} and ¢ : E —
E®) is a d-isogeny, then (E,1) is a (d,£1)-structure if and only if ker )P =
ker 1.

ITypically, p is very large and d is very small.
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Proof. We have ker ¢p®) = ker{b\ if and only if @) = a{ﬂ\ for some o in Aut(FE),
and then )¢y = ginp = o[d]. If j(E) ¢ {0,1728}, then Aut(FE) = {£1}. If
o =1 then v is a (d, 1)-structure; if o = —1 then ¢ is a (d, —1)-structure. O

Proposition 26. If (E,v) is a (d, €)-structure and p is its associated endomor-
phism, then

p? = [ed)mp .
If mg is the Frobenius endomorphism of E and tg is its trace, then there exists
an integer v such that [rlu = [p] +eng in End(E), dr? = 2p+etg in Z, and the
characteristic polynomial of u is

P,(T)=T?—rdT +dp .

Proof. We have 9, = mp )| so p? = mpbmpp = mp(mpp P = me(yp®e).
Now ¢»®) = ez/p\ (because (E,v) is a (d, €)-structure), so ®P)¢p = [ed], and
therefore ;12 = [ed]m . For the rest: p has degree dp, so it satisfies a quadratic
polynomial P,(T) = T? — aT + dp for some integer a. The first assertion then
implies [a]p = p? + [dp] = [ed]7 g + [dp]. Squaring, we obtain

(lalp)? = [d* (7% + p*) + 2[dp][ed]n
= [d*(teme) + 2[dp)[ed)Te
= [ed|mp([ed]tp + 2dp) ,

50 a? = edtg + 2dp, hence d | a®. But d is squarefree, so d | a, and then r = a/d
satisfies the given conditions.

O

Remark 2. In the situation of Proposition 26: If E is ordinary, then Z[u] and
Z[r ] are orders in Q(mg) of discriminant d?r? — 4dp and t2% — 4p? = r?(d*r? —
4dp), respectively, so |r| is the conductor of Z[rg| in Z[u].

5.1.3 Isogenies of (d, ¢)-structures

The notions of isogenies, quadratic twists and supersingularity can be extended
from elliptic curves to these (d, €)-structures with minor adaptations.

Definition 30. Let (F,+) and (E’,9’) be two (d, €)-structures. We say that
an isogeny (resp. isomorphism) ¢ : E — E’ is an isogeny (resp. isomorphism,)
of (d, €)-structures if 1’ = ¢P)1p, that is, if the following diagram commutes:

F__ %Y g

¢ ¢(P)
1ol v’ (E/)(P)
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It is easily verified that isogenies of (d, €)-structures follow the usual rules
obeyed by isogenies: the composition of two isogenies of (d,e€)-structures is
an isogeny of (d, €)-structures, the dual of an isogeny of (d, €)-structures is an
isogeny of (d, €)-structures, and every (d, €)-structure has an isogeny to itself (the
identity map, for example). Isogeny therefore forms an equivalence relation on
(d, €)-structures.

5.1.4 Twisting

Lemma 27. Let (E, ) be a (d,€)-structure. Let 6 be a nonsquare in F2, and
let \/3 be a square oot of § in Fpa. Let T be as defined in Section 2.4

1. If (E %) is a (d, €)-structure then

(B,9)% = (BY?, 7 /501 0 )
is a (d, —e)-structure.

2. In particular, the isomorphism class of (E,w)‘/g is independent of the
choice of nonsquare 4.

3. (B, ¢)V%)V? = (E,v).

4. If ¢ : (E ) — (E',4') is an isogeny of (d, €)-structures, then V3 induces
an isogeny of (d, —e)-structures

¢V (B,9)Y0 = (B, ¢)V°.

Proof. To ease notation, write o for v/8. Let 1 := ar—1 Y = TapYTa-1 : B¢ —

Eap — (EO/)(P) Now ’J} = TQTZTQ*P a1l (’lzz))(p)

cause 1®) = g, so (&)(p) =T 2 ne(). But a®* =D = _q/a = —1, because a

is the square root in Fpa of a nonsquare in Fp2; thus 7,2, = 7_1 = [—1], which
proves the first claim. The second and third claims are then straightforward, as
is the fourth: if ¢/¢ = ¢, then o1 ()% = () P11y 0. O

=T W7, = T p2 €YTo—» be-

We call (E, w)‘/g the quadratic twist of (E, ).

Remark 3. Twisting takes us from the category of (d,€)-structures into the
category of (d, —e)-structures and back again.

Example 8. Consider the case d = 1. Each (1, 1)-structure is IF,2-isomorphic to
the base-extension to F,2 of a curve defined over [, (with the l-isogeny being
[£1]); the associated endomorphism is the p-power Frobenius endomorphism
on the base-extended curve, and the integer r of Proposition 26 is the trace
of the p-power Frobenius. Each (1, —1)-structure is the quadratic twist of a
(1,1)-structure: essentially, an ordinary (1,—1)-structure is isomorphic to a
GLS curve [GLS11]. of [Smil6, §3].
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Definition 31. We write Dg(p) for the set of supersingular (d, €)-structures
over F,2 up to F2-isomorphism, and I'(Dg (p)) for the graph on Dy (p) whose
edges are (IF,2-isomorphism classes of) isogenies of (d, €)-structures. For each
prime ¢ # p, we write I'y(Dg,(p)) for the subgraph of I'(Dy(p)) where the
edges are (-isogenies.

Since twisting takes isogenies of (d,e€)-structures to isogenies of (d,—e)-
structures, in general (EV?,1Y9) is not a (d, +1)-structure because conjugation
and twisting generally do not commute. Observe that the quadratic twist gives
an isomorphism of graphs I'(Dg.c(p)) = T'(Da,—(p))-

5.1.5 Involutions

If (E,%) is a (d, €)-structure with associated endomorphism g, then
~(B.w)=(B,~¢)  and  (B9)" = (B y®)

are (d, €)-structures with associated endomorphisms —u and p(?), respectively.
If ¢ : (E,¢) — (E',4') is an isogeny of (d, €)-structures, then ¢ : —(E,¢) —
—(E',4') and ¢ : (E, z/))(p) — (E’,w’)(p) are also isogenies of (d, €)-structures.
We thus have two involutions, negation and conjugation, on the category of
(d, €)-structures and their isogenies.

Remark 4. The isogenies 9 and m, : £ — E®) are both in fact isogenies of
(d, €)-structures (E, ) — (E, )",

5.1.6 Supersingular (d, €)-structures

Proposition 28. Let (E,v) be a (d, €)-structure with associated endomorphism
w. If E is supersingular, then

1. p? = [~dp.

2. The trace of Frobenius satisfies ty = —2ep, and in particular E(F,2)
(Z/(p + €)Z)*.

Proof. With the notation of Proposition 26: The curve FE is supersingular if
and only if p | tg. Now p {1 d, so p | r by Proposition 26. The characteristic
polynomial P,(T) of p has discriminant (rd)? — 4dp; this discriminant cannot
be positive, so |r| < 2\/1%. Since p | r, we have r = 0, so u? = [—dp], and
tp = %2;; = —2ep. O

~

Proposition 28 tells us that if (E,1) is a supersingular (d, €)-structure, then
€ is completely determined by the F,2-isogeny class of E. Further, tg can only
be £2p: the special supersingular traces —p, 0, and p (corresponding to non-
quadratic twists of curves of j-invariant 0 and 1728, if these are supersingular)
cannot occur.
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5.1.7 Curves with non-integer d’>-endomorphisms

There exist rare cases of elliptic curve having a non-integer d?-endomorphism,
which are not (d, €)-structures but studied nonetheless for completeness. If
¢ E — E®) is a d-isogeny but (E,) is not a (d, #1)-structure, then ¢®) o ¢
is a d?-endomorphism that is not 4[d]g. There are two ways that this can
happen. First, if Aut(FE) # {£1} then we could have ¢() o) = o[d] for some o
in Aut(E)\ {£1}. Second, ¥ 09 could be a d*-endomorphism of E with cyclic
kernel.

We describe a technique that can be used to determine all of the j-invariants
of curves with cyclic d?-endomorphisms. These, together with j = 0 and 1728,
are the curves that we need to be careful with. Recall that if ®,(X,Y) is the
level-n classical modular polynomial, then ®4(j(E1),j(E2)) = 0 if and only if
there is a cyclic n-isogeny from E; to Es (possibly defined over some extension
field). Now if @,,(§(E),j(E)) = 0 then E has a cyclic n-endomorphism, so we
just need to be careful with the roots of ®4(X, X) and ®42(X, X).

Example 9. Consider d = 2: we want to find all the curves that might have
cyclic 2- and 4-endomorphisms. This means we need to be careful with curves
whose j-invariants are roots (in [F,2) of

Dy(X, X) = —(X — 1728)(X — 8000)(X + 3375)2
or
Py(X, X) = —2(X — 287496)(X — 54000)%(X + 3375)*
(X2 +191025X — 121287375)2.
Other curves do not have cyclic 2- and 4-endomorphisms.

Example 10. Now consider d = 3: in this case, we need to be careful with
curves whose j-invariants are roots (in F,2) of

®3(X, X) = —X (X — 54000)(X — 8000)%(X + 32768)>
or
g(X, X) = —3(X — 8000)?(X + 32768)%(X + 12288000)>
(X2 — 153542016 X — 1790957481984)
- (X? — 52250000X + 12167000000)?
(X2 — 1264000X — 681472000)>
(X2 4 117964800X — 134217728000)2 .

Other curves do not have cyclic 3- or 9-endomorphisms.

5.2 Action on supersingular (d, ¢)-structures

5.2.1 Preliminaries on orientations

Proposition 28 tells us that the associated endomorphism of each supersingu-
lar (d, €)-structure acts like a square root of —dp in the endomorphism ring.
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We can make this notion more precise using orientations, as described by Cold
and Kohel in [CK20] and Onuki in [Onu2l]. Before going further, we recall
some generalities. We start by introducing the notions of orientations, primi-
tive orientations and induced orientations from [CK20]. We write End’(E) for
End(E) ® Q.

Definition 32 (Orientations). Let k& be an imaginary quadratic field, Oy, its
ring of integers, and O an order in k.

e A k-orientation on an elliptic curve E/F,> is a homomorphism ¢ : k —
End®(E); we call the pair (E,¢) a k-oriented elliptic curve.

e We say ¢ is an O-orientation, and (F,:) is an O-oriented elliptic curve, if
1(O) C End(E).

e An O-orientation ¢ : k — End®(E) is primitive if 1(O) = End(E) N (k):
that is, if ¢ is “full” in the sense that it does not extend to an O’-orientation
for any strict super-order O’ D O.

Example 11. Let E be a supersingular elliptic curve defined over F,. Then
the homomorphism ¢ : Q(y/=p) — End°(E) that maps /—p to the p-power
Frobenius 7, is a Q(y/—p)-orientation, and a Z[/—pl-orientation. If the en-
domorphism ring of the curve over F, is Z[\/—p] then ¢ is also a primitive

Z[+/—p]-orientation.

Definition 33 (Induced orientation). Let (F,:) be a k-oriented elliptic curve.
If ¢ : E — E’ is an isogeny, then there is an induced k-orientation ¢.(t) on E’
defined by

~

1
di(t) ta— ———dola)od.
deg(¢)
We now describe isogenies and isomorphisms that preserve the orientation.

Definition 34 (k-oriented isogenies and isomorphisms). Given two oriented
curves (E,:) and (F’',/), an isogeny ¢ : E — E’ is said to be k-oriented, or
an isogeny of k-oriented elliptic curves, if /' = ¢.(¢). In this case we write
¢ : (E,1) = (E',/). If there exists a k-oriented isogeny ¢ : (E',/") — (E, )
such that ¢ o ¢ = [1]g and ¢ o ¢ = [1]gs, then we say that ¢ is a k-oriented
isomorphism, and we write (E,¢) & (E’,.).

Note that ¢ : (E,t) — (E’,/) is an oriented isomorphism if and only if the
underlying isomorphism of curves ¢ satisfies ¢ o t(a)) = /(a) o ¢ for all v in k.

From k-oriented isogenies we can define the notion of horizontal, ascending
and descending isogenies similarly to isogenies of ordinary elliptic curves. Let
¢: (E,t) = (E',/) be a k-oriented isogeny, with deg ¢ = ¢ be a prime (not equal
to p), Then ¢ is a primitive O-orientation and ¢/ is a primitive O’-orientation
for some orders @ and O in k.

Moreover one of the following cases is true:

e O = (' and ¢ is said to be horizontal; or
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e O C O with [0 : O] = ¢, and ¢ is said to be ascending; or
e OD O with [0: O] =¢, and ¢ is said to be descending.

5.2.2 Action on primitive O-oriented curves

With the definitions above, we can describe the properties of action of the ideal
class group on the set of O-oriented elliptic curves. Onuki [Onu21] shows that
if we restrict to a certain subset of the primitive O-oriented curves, then this
action is transitive and free.

Definition 35. Let O be an order in a quadratic field k£ such that p does not
split in k or divide the conductor of O. Following [CK20], we let SSo(p) de-
note the set of O-oriented supersingular elliptic curves over F, up to k-oriented
isomorphism. The subset of primitive O-oriented curves (up to k-oriented iso-
morphism) is denoted by SSg (p).

Proposition 29 (Transitive action). There is a transitive group action
Cl(O) x 8So(p) — SSo(p) .

Proof. For any integral invertible ideal a in O and any O-oriented curve (E,¢),
we have a finite subgroup

Ela]:={P € E|(a)(P)=0 Vaca}.

Now suppose a is prime to the conductor of O in 0,2 If ¢, : E — E/FE[a] is the
quotient isogeny, then (¢q).(¢) is an O-orientation on E/E[a], and ¢4 is a hori-
zontal isogeny of O-oriented curves. If a is principal then (E/E[a], (¢q)«(1)) =
(F,t), so the map

(a,(E,1)) = (E/Ela], (¢a)«(1))

extends to fractional ideals and factors through the class group, and as in [CK20]
we get a transitive group action Cl(O) x SSo(p) — SSo(p) . O

We now introduce the main theorem of [Onu2l]. Let O be an order in a
quadratic field £ such that p does not split in k or divide the conductor of O.
Let Jo denote the set of j-invariants of elliptic curves E over C (not F,) with
O C End(E). All elements in Jo» are algebraic integers, so an elliptic curve
whose j-invariant is in J» has potential good reduction at any prime ideal.
Since Jp is finite, we can take a number field L and a prime ideal p of L
above p such that for all j € J», there exists an elliptic curve over L with
good reduction at p and j-invariant j. Fix an injection of the residue field of L
modulo p into F,,. Let ElI(O) be the set of isomorphism classes of elliptic curves
FE over L with good reduction at p and j-invariants in J». For every such F,
we let []g be the normalized O-orientation: that is, such that for any invariant

2 Working with the class group, we can always replace ideals that are not prime to the
conductor with equivalent integral ideals that are.
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differential w on E, ([a]g)*w = aw for all ain O. Then reduction mod p defines
a map

p: El(O) — SS5% (p)

Ew— (E,[]5),

where E is the reduction of E/L at p and []5 is the orientation such that
[o] 5 = [a]p (mod p) for all awin O. The map p is surjective up to p-conjugation:
for all (E,:) in SS& (p), at least one of (E,:) and (E® () is in p(El(O))
(see [Onu2l, Proposition 3.3]).

Theorem 30 (Onuki [Onu21, Theorem 3.4]). With the notation above: Cl(O)
acts freely and transitively on p(EN(O)).

5.2.3 Natural orientation for supersingular (d, ¢)-structures

We aim to make Theorem 30 more precise and manageable by focusing on the
case k = Q(v/—dp). We prove that a natural orientation arises in this case, and
study some of its properties. From now on we let kK = Q(y/—dp), and let Oy, be
the maximal order of k.

Definition 36 (Natural orientation). If (E, 1)) is a supersingular (d, €)-structure
and p is the associated endomorphism, then

Ly 1 Q(y/—dp) — End’(E)
v/ —dp — 1

is a Z[/—dp]-orientation by Proposition 28. We call this the natural orientation.

Lemma 31. If E/F 2 is a supersingular elliptic curve with #E(F,2) = (p+¢€)?
and ¢ is a Z[/—dp]-orientation on E, then v is the natural orientation for some
(d, €)-structure (E, ).

Proof. Let p := «(v/—dp) in End(E). We have deg(u) = dp and p t d, so p
factors over F,» into the composition of a d-isogeny and a p-isogeny. Since E
is supersingular, the p-isogeny is isomorphic to m,, and so u = m,1 for some
d-isogeny 1 : E — E®)_ It remains to show that 12)\ = ep®). Now [—dp| = p? =
TpYTp = w(p)wf,w = ¢(p)1/)7rg, and 72 = [—ep] because E is supersingular with
#E(F,2) = (p+ €)%, s0 [d] = ey, and therefore ¢ = epp(®). O

Lemma 32. Let (E,v¢) and (E',¢") be (d,€)-structures with natural orienta-
tions vy and vy, respectively. If ¢ - E — E' is an isogeny, then

(1g) = 1y = ¢ oy =4 0 ¢;
that is, ¢ is an isogeny (resp. isomorphism) of Z[\/—dpl-oriented elliptic curves

(E,v) = (E',!) if and only if it is an isogeny (resp. isomorphism) of (d,€)-
structures (E, ) — (E',¢").
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Proof. Let p resp. p' be the associated endomorphisms of (E, ) resp. (E',1)');
then

Gu(by) = tyr = Gu(ty)(v/ —dp) = 1ty (v/—dp) (\/—dp generates Q(\/—dp)

= popog=[degg] (multiplying by deg ¢)

= gou=p o¢ (cancelling &)

< ¢pompop =m0t o (by definition)

= mpo¢®oy =m0 0 (rpod=¢" om,)

— oW oy =10 (cancelling )

and the result follows on comparing definitions. O

Col6 and Kohel [CK20] and Onuki [Onu21] use class-group actions to study
the isogeny graphs I'(SSo(p)) with vertex set SSo(p) for different orders O.
Proposition 33 allows us to transfer their results to our setting of (d, €)-structures.

Proposition 33. The graphs I'(Dq,(p)) and I'(SSy; /=5 (p)) are explicitly iso-
morphic fore =1 and e = —1.

Proof. This follows from Lemmas 31 and 32, once we can show that the iso-
morphism class of any Z[/—dp]-oriented supersingular curve (E, ¢) over F, con-
tains a representative over F,2 of order (p + €)?. Since j(E) is in F,2, after
a suitable F,-isomorphism we may suppose that F is defined over Fp2 and
#E(F,2) = (p + €)?; and then ¢ is defined over Fj2 because for a supersingular

elliptic curve over [Fj2 all of the endomorphisms are defined over [F2. O

5.2.4 Link between natural and induced orientation

Let k = Q(v/—dp). The order Z[/—dp] has index 2 in O, if —dp =1 (mod 4),
and is equal to Oy otherwise. If —dp Z 1 (mod 4), then, every natural orienta-
tion is a primitive Og-orientation; if —dp =1 (mod 4), each natural orientation
is either a primitive Z[/—dp] orientation or a primitive O-orientation.

Proposition 34. Let (E,¢) be a supersingular (d,€)-structure with natural
orientation L.

1. If —dp # 1 (mod 4), then vy is a primitive Oy -orientation.

2. If —=dp = 1 (mod 4), then vy is a primitive Oy-orientation if the asso-
ciated endomorphism v fizes E[2] pointwise, and a primitive Z[\/—dp]-
orientation otherwise.

Proof. By definition, ¢y is a Z[y/—dpl-orientation. To complete Case (2), it suf-
fices to check whether the element ¢y (5(—14+/—=dp)) = 1 (u—[1]) of End’(E)N
1y (k) is in End(E) (because & (—1++/—dp) generates Oy, but is not in Z[/—=dp)).
This is the case if and only if p — [1] factors over [2], if and only if x fixes E[2]
pointwise. O
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In the light of Propositions 33 and 34, we partition Dy ((p) into two subsets:

Definition 37.
Dyc(p) = D (p) UDLY (p)

where DJ®*(p) contains the classes whose natural orientations are primitive

Op-orientations, and D5"(p) contains the classes whose natural orientations
are primitive orientations by the order of conductor 2 in Ok.

Proposition 35. If —dp # 1 (mod 4), then Dy**(p) = Da.c(p) and D> (p) =
0. If —dp = 1 (mod 4), then [0y, : Z[\/—dp]] = 2, so DI*(p) resp. D3P (p)
consists of the (d, €)-structures where p acts trivially resp. ‘non-trivially on the
2-torsion.

Proof. If —dp # 1 (mod 4), then the maximal order of Q(v/—dp) is Z[\/—dp],
hence all orientations are primitive.

If —dp = 1 (mod 4), then O = Z[@L and [0y : Z[y/—dp]] = 2.
Let (E,v) be a (d,e)-structure, with associated endomorphism p. When g
acts trivially on the 2-torsion, 12“ is the identity and hence belongs to the
endomorphism ring. We obtain that (£,v) belongs to Dg'¢*(p). Otherwise,
1+p

2

is not an endomorphism and (E, ) belongs to Dfl‘feb (p)- O

Given Lemma 32, ¢-isogenies of (d, €)-structures are “ascending”, “descend-
ing”, and “horizontal” with respect to the natural orientations: we have hori-
zontal {-isogenies between vertices in Dy'e*(p) and between vertices in Dﬁl‘feb (p),

while D2 (p) and Dfi‘f (p) are connected by ascending and descending 2-isogenies.
In the language of isogeny volcanoes, vertices in Dg'e™ (p) form the “crater”, and

vertices in DZ‘E’ (p) the “floor”.

5.2.5 Free and transitive class group action

Having defined the natural orientation in the case k = Q(v/—dp), we are now
able to prove on which subsets the action is free and transitive, paving the way
for a new conjectural hard homogeneous space.

Proposition 33 translates the action of CI(Q(v/—dp)) on S5 /=g (p) defined
above into an action on Dg(p). Theorem 36 makes this precise, showing that
Dy&(p) is a principal homogeneous space under Cl(Oy), and that if Df’i‘féb (p) is
not empty then it is a principal homogeneous space under Cl(Z(\/—dp)).

Theorem 36. Let k = Q(v/—dp), let Oy, be its mazimal order, let p be a prime
that does not split in k, and let € = £1.

o The class group Cl(Ok) acts freely and transitively on Dg'e*(p).
o If DZ"leb(p) # 0, then Cl(Z(/—dp)) acts freely and transitively on DZ?!D(p).

Proof. Let O = Oy, or Z[/—dp]. Theorem 30 tells us that CI(Q) acts freely and
transitively on p(ElIl(O)) C SS% (p). Given the isomorphism of Proposition 33,
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it only remains to prove that p(EIl(O)) = SS% (p). For any (E,:) in SSZ(p),
Proposition 3.3 of [Onu21] tells us that (E,¢) or (E,L)(p) is in p(EN(Q)). In
our case, both are in p(Ell(Q)), so the action on SS& (p) is free: the action of
0 = (d,/—dp) on SSY (p) maps (E,¢) to (E,1)'"), because it maps (E, ) to
(E, z/))(p), because E[0] = E[d] Nker p1 = ker 1. O
Corollary 37. Let k = Q(v/—dp), with mazimal order Oy. If we write hy, =
# ClOy), then

hiy if —dp=1 (mod 8),
#Dg&(p) =hi,  and  #DFP(p) = {3hk if —dp=5 (mod 8),

0 otherwise.

Proof. By Theorem 36, we have #D52*(p) = # C1(Oy) and either #D5""(p) = 0
(i —dp £ 1 (mod 4)) or #DP(p) = # ClZ[Y=dp)) (if —dp = 1 (mod 4)).
It remains to compute # Cl(Z[/—dp]) in the case —dp = 1 (mod 4), where
Z[v/—dp] has conductor 2. In this case, the formula of [Cox13, Theorem 7.24]

#CI(O):MH(l_ (?) 2)

simplifies to

4 CU(Z[/—dp)) = [Ox#cuok) (2_ (@)) ’

L[V =dp)"] 2
where (—dp/2) is the Legendre symbol. The result follows on noting that [O,° :
Z|/—dp]*] = 1, because —dp is never —3 or —4. O

5.3 The (d,¢)-supersingular isogeny graph

5.3.1 General structure

We can now describe the structure of the isogeny graph I'(Dy (p)). Factoring
isogenies, it suffices to describe I'y(Dy (p)) for each prime ¢ # p. The class group
actions of Theorem 36 imply the isogeny counts in the theorem illustrated in
Table 5.1.

Proposition 38. For{ > 2, each vertex in T'y(Dy.(p)) has 1+(_po) horizontal
{-isogenies, and no ascending or descending {-isogenies. For { = 2,

1. If —dp=1 (mod 8) then D™ (p) # 0.

o Lach vertex in DJ2*(p) has two horizontal 2-isogenies to vertices in
Dg}?x(p), no ascending 2-isogenies, and one descending 2-isogeny to
a vertex in D3P (p).
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e Each vertex in D5 (p) has no horizontal 2-isogenies, one ascending

2-isogeny to a vertex in Dg”?x(p), and no descending 2-isogenies.

2. If —dp =5 (mod 8) then DZ‘;})(}?) # 0.

e Each vertex in Dy't*(p) has no horizontal or ascending 2-isogenies,

and three descending 2-isogenies to vertices in Dj‘feb (p).

e Each vertex in DS"P(p) has no horizontal 2-isogenies, one ascending

2-isogeny to a vertex in ng?x(p), and no descending 2-isogenies.

3. Otherwise, Dj"‘eb(p) = 0 and Dy(p) = D3¢*(p). Each vertex in Dyc(p)
has one horizontal 2-isogeny, and no ascending or descending 2-isogenies.

Proof. Let ¢ > 2. Let V be a vertex in the graph. From the free and tran-
sitive group action given in Theorem 36 there are no descending or ascending
l-isogenies from V. If £ is split, i.e. if (775”’) =1, then (¢) is a product of two
distinct prime ideals of Oy, and there are two horizontal isogenies from V. If ¢
is inert, i.e. if (77?”) = —1, then (¢) is a prime ideal, and there is no horizontal
isogeny from V. If ¢ is ramified, i.e. if (_po) = 0, then (¢) is the square of a
prime ideal of Oy, and there is one horizontal isogeny from V.

Now we consider the case £ = 2. If —dp = 1 (mod 4), then the maximal

order is Z[*=9] and D5 (p) # 0.

e If —dp =1 (mod 8), then (%dp) =1, the ideal (2) is split in Oy, and there
are two horizontal 2-isogenies and £ — 1 = 1 descending 2-isogeny from
vertices in D2 (p).

o If —dp =5 (mod 8), then (_po) = —1, the ideal (2) is inert in Oy, and
there are £+ 1 = 3 descending 2-isogenies, and no ascending or horizontal
2-isogenies from vertices in D7'#*(p).

In both cases, from the volcano structure, each vertex in D$%P(p) has one as-
cending 2-isogeny to a vertex in D (p). O

| Prime ¢ [ Conditions on (d,p) | Vertex (sub)set | — N
Do () 2 0 1
—dp =1 (mod 8 dre
R ) 0 1 0
B DIax () 0 0 3
(=2 —dp = d de
p=5mod® | pig) 0 L0
—dp # 1,5 (mod 8) Da,.(p) 1 0 0
(>2 — Do (p) 1+(=2)] o 0

Table 5.1: The number of horizontal, ascending, and descending ¢-isogenies from
each vertex in the ¢-isogeny graph I'y(Dg.c(p)).
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5.3.2 Examples

Figures 5.1, 5.2, and 5.3 display ¢-isogeny graphs on Ds1(83), D3 1(101), and
Ds._1(97), for various ¢ generating the class groups. These figures also form
examples of the various 2-isogeny structures listed in Table 5.1. Vertices are
encoded using the Hasegawa parameters for d = 3 that we will introduce in
Section 5.6.2.

A ~C
oo 2 : E ................. B
i ----- i ............. ? _____________ \E\ l.) a i
E A E ........................ —o® E E
b \E,\ i ................. B
............... B(P) oo D'(p)

Figure 5.1: T'¢(D3,1(83)) for £ = 2 (solid), ¢ = 3 (dashed) and ¢ = 5 (dotted).
All isogenies are horizontal. We have Cl(Q(v/—3 - 83)) & Z/2Z x Z/6Z, with
the Z/27Z-factor generated by the ideal above 3, and the Z/6Z-factor generated
by an ideal above 5 (we see this in the length-6 cycles). The ideal above 2
is the cube of an ideal above 5. The correspondence between vertex labels
and parameters for the degree-3 Hasegawa family of §5.6.2 (with A = 2) is
A < 0, B + 32, C +< 40; the vertex D, which corresponds to the Hasegawa
parameter oo, is (E : y? = 2% 4+ 1,4) where ¢ maps (z,v) to (((72v/2 + 14)z> +
(39v/2 +56)) /22, v/2(352% + 52)y/x%). Note that —A = A®) and —D = D®),

5.3.3 Involutions

There are two obvious involutions on I'(Dg.(p)), negation and conjugation.
These are generally not the only involutions. Every prime ¢ dividing the dis-
criminant ramifies in Oy, (and Z[/—dp]); the prime [ over ¢ gives an element of
order 2 in Cl(Of) (and Cl(Z[y/—dp])), and thus an involution on I'(Dg4.(p)).

Let 91,...,0, be the primes above the prime factors of d, and p the prime
above p; note that [01]---[0,] = [p], because 0y -+, p = ().

o If —dp = 1or2 (mod 4) then CI(O)[2] = ([01], ..., [0n], [p]), s0 CI(Ok)[2] =
(Z)27)™.

o If —dp = 3 (mod 4), then C1(Ok)[2] = ([a],[01],---, [0n], [p]) Where a is
the ideal above 2, and Cl(Oy)[2] = (Z/2Z)"+!.

In each case, the action of the ideal class [[,;[0;] = [p] on any (d, €)-structure
(E, ) is realised by the isogeny ¢ : (E, ) — (E®) () and is therefore equal
to the conjugation involution.
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C —E® F E —c®

-D® — R A —-B D
D®) —— _pB» —A B -D
-C EW®) —F —-F c®)

Figure 5.2: T'5(Ds5,1(101)) for £ = 2. The class group of Q(+/—303) is isomorphic
to Z/10Z, and generated by an ideal over 2 (we see this in the length-10 cy-
cle). The correspondence between vertex labels and parameters for the degree-3
Hasegawa family of §5.6.2 (with A =2)is A+ 0, B+ 6, C < 24, D + 25,
and F < 42; the vertex F', which corresponds to the Hasegawa parameter oo, is
(B ) with E : y? = 234+1and ¢ : (z,y) — ((67234-66) /22, (89234+96)v/2y/2>).
Note that A®) = —A4 and F®) = —F. The underlying curves of B and C are
isomorphic.

Figure 5.3: The isogeny graphs I's(Ds _1(97)) (solid) and I's(Ds, _1(97)) (dot-
ted). We have Cl(Q(v/—3-97)) = Z/4Z, generated by an ideal over 5. The
2-isogenies are ascending/descending up/down the page; the 5-isogenies are
horizontal. The correspondence between vertex labels and parameters for the
degree-3 Hasegawa family of §5.6.2 (with A =5)is A+ 47, B + 1, C + 14,
and D < 22. The underlying curves of A and C are isomorphic.

Since the group actions are free, each of the involutions that come from
non-trivial two-torsion elements in the class groups — including conjugation —
has no fixed points. Negation, on the other hand, can have fixed points: for
example, if p = 3 (mod 4) and E is the curve with j-invariant 1728, and i is
an automorphism of degree 4, then (E,7) is a (1, 1)-structure, and —(F,i) =
(E, —i). This is the only fixed point among (1, 1)-structures, and its existence
is implied by the fact that the class number of Cl(y/—p) is odd when p = 3
(mod 4).
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5.3.4 Automorphism of order 3

If —dp =5 (mod 8), then there is an order-3 automorphism 7" of D(Si‘ff (p) cycling
the triplets of vertices with ascending 2-isogenies to the same vertex in Dg'2*(p).
In fact T is induced by the action of an ideal class in Cl(Z[/—dp]). The ideal

t = (4,v/—dp — 1)Z[\/—dp] has order 3 in Cl(Z[/—dp]), but capitulates to
become the principal ideal (2) in Oy, (where v/—dp—1 = 2w, where w is the unit
%(\/f p — 1)). Indeed, t generates the kernel of the canonical homomorphism
Cl(Z[\/—dp]) — Cl(Of). Since t intersects non-trivially with the conductor,
its action on Dfi‘f (p) is not well-defined, but we can consider the action of an
equivalent ideal in the class group. Let [], ;" be the prime factorization of
(dp 4+ 1)/4 (and note that each ¢; is odd); then (v/—dp — 1) = t- [, [{" where
[, :== (4;,v/—dp—1). The product [, [{* is equivalent to t in C1(Z[\/—dp]), prime
to the conductor, and its action on Dﬁl‘fsb (p) induces the automorphism 7. In
the case where d = 1 (CSIDH), this is explained at length in [OT20].

5.4 Crossroads: curves with multiple (d, ¢)-structures

The map (E,v) — E defines a covering from I'(Dg,(p)) onto a subgraph of the
isogeny graph of all supersingular curves over Fp2. For dy # dy the images of
I'(Dg, «(p)) and T'(Dg, (p)) can intersect, forming “crossroads” where we can
switch from walking in I'(Dy, (p)) into I'(Dy, (p)), and vice versa.

Definition 38. Let d; and ds be integers such that dids > 1 is squarefree. We
say that a supersingular curve E/F,2 with #E(F,2) = (p+ €)? is a (d1,d2)-
crossroad if there exist isogenies 97 : E — F; and ¥y : E — E5 such that
(E,41) is a (dy, €)-structure and (E, 1) is a (da, €)-structure.

If (E,v) is a (d1,e€)-structure, then we can easily check whether E is a
(d1, d2)-crossroad by evaluating the classical modular polynomial ®,4, at (j(E, ), j(E)P).
However, (dy,ds)-crossroads are generally very rare. Indeed, if E is a (di, d2)-
crossroad, then it has an endomorphism of degree d;ds with cyclic kernel. We
can therefore enumerate the entire set of (di, dz)-crossroads over a given F,2 by
computing the set of roots j of ®4, 4,(x,x) in F)2, and then checking for which
j we have ®4,(j,j) = 0. The polynomial ®4,q,(z,z) has degree [[,(¢ + 1)
where £ ranges over the prime factors of d;ds, so there are only O(d1ds) (d1, dz)-
crossroads (up to isomorphism) among the O(y/dp) vertices in I'(Dg, (p)).

But while crossroads are rare, computing the few examples is relatively
easy, and computing (d;,ds)-crossroads gives us a useful way of quickly con-
structing some vertices in I'(Dy, (p)) (and in I'(Dy, (p))) at least when the d;
are small. Suppose we want to construct a vertex in I'(Dg,(p)). Choose the
smallest squarefree d’ such that p does not split in the maximal order Oy of
k = Q(v/—dd"), and then construct a curve E/F,> from a root j in Fj2 of the
Hilbert class polynomial for Of. After a suitable twist, F is a supersingular
(d, d")-crossroad with E(F,2) = (Z/(p + €)Z)?. All other vertices in I'(Dg.(p))
can then be reached through the class group action.
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Another way of enumerating crossroads: Suppose that E is a (dy, dz) cross-
road, i.e. E has a (di,e€)-structure and a (dg,€)-structure. Composing the
d-isogeny with the dual of the ds-isogeny F has an endomorphism « of degree
dids. Tts characteristic polynomial is X2 — t, X + dids, which has discriminant
A, = ti —4dyds. Because A, is less than zero, there is only a small number of
possible t,,.

We can use this necessary condition to find all (dy,d2) crossroads : for each
t, such that t?x < 4dydsy, compute the roots of the Hilbert class polynomial of
the discriminant A, = ti —4dydsy. For each root r, test if the elliptic curves with
j-invariant r are supersingular, and have a dj-isogeny and ds-isogeny to their
conjugate. Algorithm 11 computes a crossroad, if it exists, for two squarefree
integers d; and dy coprime to p, and such that dyds is squarefree.

Algorithm 11: Find (d, d2)-crossroad

Input: p prime, dy, ds squarefree integers coprime with p, and such
that dyds is squarefree

Output: A crossroad in Dy, (p) and Dy, (p)

D4, 4, — Modular Polynomial(dyds) // precomputation

for j in Roots(®q,q4,(z,x),F,2) do

L if ®4,(4,47) =0 then

s W N =

L return j

5 return None

Remark 5. A formula for ®4,4, in term of &4 and ®,4, is given in [Cox13]
Proposition 13.14.

5.5 Map from (d, €¢)-structures to modular curves

In this section we write Sg . for the set of isomorphism classes of (d, €)-structures
over [Fy2.

Negation We consider the quotient of Sy . by negation, which identifies (E, ¢))
with —(E, ). Taking elements of Sy . up to negation allows to identify them
with their kernel, a cyclic subgroup of order d. An exception has to be made
for vertices with automorphism group different than {1}, i.e. j =0 and 1728,
but these isolated cases are easy to handle separately. Hence the quotient by
the negation maps the set Sq . into Xo(d)(IF,2), mapping

Sa.e 2 (E,¢) — (B, ker(¢)) € Xo(d)(Fp2)

(see Section 2.4.4 for an introduction to modular curves). It identifies (E, )
and —(FE, ).

Conjugation We now consider the quotient by conjugation. The Atkin—
Lehner involution wy defined in Section 2.4.4, which maps a modular point onto
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its “dual”, acts as conjugation on the image of Sy . It follows that the quotient
by the Atkin-Lehner involution X (d) = Xo(d)/ (wa) identifies +(E,7) and
+(E, ).

Map from S, . onto X (d)(F,) We consequently obtain a four-to-one map
from Sy . into X (d), identifying the isomorphism class of (E, 1) with —(E, 1),
(E, z/))(p), and —(E, w)(p). Since {£(E,v), £(E, 1/))(’7)} is stable by conjugation,
it is a point in Xo(d)(IF,). We can therefore represent an element of Sy as a
point in X (d)(F,) plus two bits: one to determine the sign of the isogeny, and
one to set which of the two conjugate structures is encoded.

Example 12. To illustrate the technique above in more detail, suppose we want
to compress (5, €)-structures over F,2 to elements of F,. The classical modular
polynomial of level 5 is a polynomial ®5(Jy, J1) with integer coefficients, of
degree 6 in Jy and J;. It is symmetric in Jy and Ji, so we can write

O5(Jo, J1) = —F5(Jo + J1, JoJ1)
where

F5(T,N) = N° +40(93T + 41650211662) N*
+ 36(126415T2 — 29966367249912007 + 12277031464804661791632) N3

is an integer polynomial of degree 6 in 7" and 5 in N. In terms of modular
curves: @5 defines an affine model of X((5), and the Atkin—Lehner involution
on X(5) exchanges the variables Jy and J; in this model, so F5 defines an affine
model of X (5), with the quotient map Xo(5) — X (5) defined by (Jo, J1)
(T, N) = (JO + Jl, J(]Jl).

Now suppose we are given a (5, €)-structure (E,v) over F2; we want to
compress (E, 1) down to a single element of F,, plus a few bits. For simplicity,
we will assume that E has no extra automorphisms. First, there is an element
v of Fp2 such that ¥*(wgpw)) = Ywr, where wg and wge) are the invariant
differentials on E and E®) respectively. Fixing a sign function on Fp2, we can
encode the sign of the isogeny 3 as a bit e¢; determining the sign of v. Now
(E,) is determined by (E, ker v, €1).

The pair (E,ker1)) corresponds to the point (j(E),j(E®)) = (j(E),j(E)?)
on Xo(5). Set t = j(E)+j(E)?) and n = j(E)j(E)P, both in FF,,, and let €2 be a
bit determining j(E) as one of the roots in F2 of the quadratic X2 —¢X +n; then
(E, ) corresponds to (€1, €2,t,n). Now let 1 < i <5 determine the position of
n (in lexicographic order, say) among the (at most) 5 roots in F,, of the quintic
F5(t, X); then (E, ) corresponds to (€1, €2,14,t).

Working in the other direction: given (e, €2,4,t), we compute the roots of
F5(t,X) in F,, sort them, and let n be the i-th one; then we use €3 to choose a
root v of X2 —tX +n; then we construct a curve E with j(E) = a, and recover
a 5-isogeny ¢ : E — E® using Elkies’ algorithm, for example (see [Sch95, §7
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and §8]). We use €; to correct the sign of 1 if required by looking at the action
on invariant differentials.

5.6 Parametrization

We can also find a compact representation of the modular curve X (d)(F,).
If XJ (d) is a curve, it can be viewed as a cover of P!, allowing us to further
compress the representative point in X (d)(FF,) to one element of F,, plus a few
bits. This step depends strongly on the geometry of X (d)(F,): for example,
if Xar (d) has genus 0 then we can rationally parametrize it, giving a simple
compression of points in X (d)(F,) to single elements of F,; if X, (d) is hy-
perelliptic, then we can compress points in X (d)(F,) to a single element of F,,
plus a “sign” bit in the usual way. As the gonality of X (d) increases, so does
the number of auxiliary bits required.

Useful explicit constructions for d = 2,3,5 and 7 appear in [Smil6], de-
rived from explicit parametrizations of Q-curves due to Hasegawa [Has97]. We
reproduce these parametrizations below.

Let E be an elliptic curve over a quadratic field k. We say F is a quadratic
Q-curve of degree d if F is d-isogenous to its Galois conjugate with respect
to k/Q. Note that if p is an inert prime in k, then the good reduction of E
modulo p has a d-isogeny to its p-conjugate, and hence we get a (d, €)-structure.

It is known that any Q-curve of degree d without complex multiplication
defined over a quadratic field corresponds to a point of X (d)(Q) (see [GLQO04]
Section 2). Having a map from Sy . onto X (d)(F,), and a parametrization of
Q-curves due to Hasegawa, we obtain a parametrization of elements in Sq . up
to negation and conjugation. We have already used these parametrizations in
our examples in the previous chapter, namely in Figures 5.1, 5.2 and 5.3.

5.6.1 Representing (2, ¢)-structures

Proposition 39. Let A be a nonsquare in Fy,, and fix a square root VA in Fpe.
Lete = —(—2/p). The following map gives a parametrization of (2, €)-structures:

IFp — DQ,E(p)
u — (EQ,ua "/}2,u)

with
Eou/Fpe i y? = 2% — 6(5 — 3uv/A)z + 8(7 — Juv/A)

. o 9(1+uw/A) y (-1 9(1+uVA)
1/12,u-($7y)'—><2_ T4 ’\/72<2+($4)2>>'

Proof. [Smil6] Let A be a nonsquare in Fy,, and fix a square root VA in Fpe.
For each u in Iy, the curve

B /T y? = 2% — 6(5 — 3uv/A)z + 8(7 — 9uV/A)
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has a rational 2-torsion point (4,0), which generates the kernel of a 2-isogeny
Vou @ By — Egyu(”) defined over Fp2. If we use Vélu’s formulae to compute
the (normalized) quotient isogeny Es, — Ea./((4,0)), then the isomorphism
Es./((4,0)) — Eg’u(p) is 7y,/=3. Composing, we obtain an expression for ¢,
as a rational map:

2 z—-4 y=2\ 2 (x —4)2

At this point we can either directly compute the dual isogeny 1;2\1; and compare

1/)2,:(:Ey)b—><x 91+ uvA) y (1 9(1+u\/3)>>.

it with wg,u(p ), or we can compose w27u(p ) with 12, and compare the result with
[2]g, . Either way, we find that (Es.,,%2.) is a (2, —(—2/p))-structure, that
is, (Fau,2.4) is a (2,1)-structure if p = 5,7 (mod 8), or a (2, —1)-structure
if p = 1,3 (mod 8). (To obtain a family of (2, —1)-structures when p = 5,7
(mod 8) or (2, 1)-structures if p = 1,3 (mod 8), it suffices to take the quadratic
twist.) O

When € is the opposite sign of the one wanted, one can simply take the
quadratic twist of the curve given by the parametrization. Similarly, when the
isogeny wanted is the one with opposite sign, then one takes (E2.,, —t2.4)-

5.6.2 Representing (3, ¢)-structures

Proposition 40. Let A be a nonsquare in Fy,, and fix a square root VA in Fpe.
Lete = —(=3/p). The following map gives a parametrization of (3, €)-structures:

F, — Ds,(p)
u > (Esu,¥3u)
with
B3 /Fpe :y? = 2® — 3(5 + 4uv/A)z + 2(2u*A + 14uv/A +11)
the kernel polynomial of 13, being
X(W3u) =2—3

Proof. [Smil6] Let A be a nonsquare in F,, and fix a square root /A in Fe.
For each u in I, the elliptic curve

By o/Fp2 y? = 2° — 3(5 + duvVA)z + 2(2u*A + 14uV/A + 11)

has a subgroup of order 3 defined by the polynomial z — 3, consisting of the
points O and (3, 42(1 — uv/A)). Taking the quotient with Vélu’s formulae and
composing with 7y, /=3 yields an explicit 3-isogeny ¢z : E3,u — Eg)u(p), and
we find that (E3,,vs3,.) is a (3, —(—3/p))-structure, that is, (E3,,%¥s3,.) is a
(3, 1)-structure if p = 2 (mod 3), or a (3, —1)-structure if p = 1 (mod 3). (To
obtain a family of (3, —1)-structures when p =2 (mod 3) or (3, 1)-structures if
p=1 (mod 3), take the quadratic twist.) O
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When € is the opposite sign of the one wanted, one can simply take the
quadratic twist of the curve given by the parametrization. Similarly, when the
isogeny wanted is the one with opposite sign, then one takes (E3., =13 4)-

5.6.3 Representing (5, ¢)-structures

For d = 5, there exists a family of Q-curves of degree 5 for every prime p = 3
(mod 4).

Proposition 41. Let p be a prime such that p = 3 (mod 4). The following
map gives a parametrization of (5,1)-structures:

IFp — DS,l(p)
u — (E5,ua "/)5,u)

with
Es./Fp2 i y* = 2° + 3A(u)x + B(u)

where
Au) = —27u(11u — 2)(3(6u? + 6u — 1) — 20u(u — 1)v/—1),

B(u) = 54u®(11u — 2)?((13u? + 59u — 9) — 2(u — 1)(20u + 9)v/—1)
and the kernel polynomial of v ., being

X(Ws.0) = (1+2v/—1)(z — 3u(1lu — 2)(2 — vV—1))* + 81u(11u — 2)(1 +uv/—1)?

Proof. The proof is similar to that of Proposition 39 and Proposition 40. See
[Smil6]. O

For primes p such that p = 1 (mod 4), Hasegawa gives in Proposition 2.3
of [Has97] a methodology to find a quadratic Q-curve of degree 5, provided we
have an element A such that (5/p;) = 1 for every prime p; # 5 dividing A.

5.6.4 Representing (7, ¢)-structures

For d = 7, there exists a family of Q-curves of degree 7 for every prime p = 3
(mod 4).

Proposition 42. Let A be a nonsquare in Fy,, and fix a square root VA in Fpe.
Lete = —(=7/p). The following map gives a parametrization of (7, €)-structures:

F, —  Dr(p)
u — (E’?,uv'l/}?,u)

with
Eq./Fpe i y? = 2° + 3A(u)x + B(u)

where
A(u) = —3C (u)(85 + 96uvA + 15u2A),
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B(u) = 14C (u)(9(3u* A% + 130u>A + 171) + 16(9u>A + 163)uv/A)
C(u) = 7(27 + u*A)
and
X(¥7) = (2= C(u)? =42(1—uv/A)*C(u)[3(z— C(u)) +4(1-uVA) (2T+uVA)]

Proof. The proof is similar to that of Proposition 39 and Proposition 40. See
[Smil6]. O
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Chapter 6

HD CSIDH: Higher degree
commutative supersingular
Diffie—Hellman

Abstract In Chapter 5 we introduced a generalization of the CSIDH group
action. We extended it from elliptic curves defined over F,, to any elliptic curve
having a degree d-isogeny to their conjugate, named as (d, €)-structures, CSIDH
being the case d = 1. Having a generalization of the group action, we want to
build a key exchange protocol using (d, €)-structures. In this chapter, we detail
the derived key exchange protocol HD CSIDH, study the underlying security
problems and the practical computation, as well as key compression and key
validation procedures.
The results of this section have been published in [CS21].

6.1 HD CSIDH: Higher degree CSIDH

We use the same notations as in Chapter 5: let &k = Q(y/—dp) with Oy, the max-
imal order of k, let ng?x(p) be the set of isomorphism classes of supersingular
(d, €)-structure over > whose natural orientation are primitive Oy-orientations,
and D3P (p) the set of classes whose natural orientations are primitive orienta-
tions by the order of conductor 2 in Oy.

The action of Cl(Of) on Dg?*(p) and Cl(Z[y/—dp]) on ’thf’(p) makes the
graph I'(Dg (p)) a natural candidate for HHS-based post-quantum cryptosys-
tems following Stolbunov [RS06, Sto09, Sto10] and Couveignes [Cou06]. For
each d > 1, we can define a key exchange algorithm on Dy .(p) generalizing
CSIDH [CLM*18] and CSURF [CD20], which use respectively the action of
CI(Zly/~p]) on DP(p) and CL(Q(y/~p)) on DIE(p).

Despite the prominence of orientations, the relationship between key ex-
change in Dy (p) and the “oriented-SIDH” OSIDH protocol [CK20] is distant.
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The O-orientations in OSIDH involve orders O with massive conductors in Oy,
where Oy, has tiny class number; here, O has tiny conductor and Oy has massive
class number. In OSIDH, the path is a descending path within the graph start-
ing from a curve with an O-orientation where O is an order of large conductor
in O, and #Cl(Of) = 1. In our case, we use curves with an O-orientation
where O has tiny conductor in O, and # Cl(Oy) is huge.

6.1.1 Hard problems

The conjectural hard problems for the action of Cl(Oy) on Dg.(p) are vector-
ization and parallelization from Couveignes’ Hard Homogenous Spaces frame-
work [Cou06]. We describe the instances of Vectorization and Parallelization
from Definition 3 in this special context:

Vectorization Given (E,v) and (E’,%') in Dg(p), find a € CI(Of) such
that a- (E, ) = (E', 1),

Parallelization Given (Eo, o), (E1,%1), and (Ez,12) in Dg(p), compute
the unique (Ej3,13) in Dg(p) such that (Es3,v3) = (aia2) - (Eo, o) where
(EZ,’L/JZ) =4a; - (E(),l/)o) for i =1 and 2.

Solving Vectorization immediately solves Parallelization. In the opposite di-
rection, no classical reduction is known in the abstract HHS framework or in the
concrete world of isogenies. The quantum equivalence of these two problems is
shown in [GPSV18].

An extensive study of the possible classical and quantum attacks on Vec-
torization for d = 1 can be found in [CLM™18]. All of these attacks extend to
d > 1 with a slowdown at most polynomial in d for class groups of the same
size, with that slowdown due to the more complicated isogeny evaluation and
comparison algorithms involved in working with (d, €)-structures instead of plain
elliptic curves.

The best classical attack known on Vectorization is to use random walks in
I'(Dg,c(p)) (exactly as in the d = 1 case in [DG16]), which gives a solution after
an expected O((dp)'/*) isogeny steps.

Since vectorization is an instance of the Abelian Hidden Shift Problem, the
best quantum attack is Kuperberg’s algorithm [Kup05, Reg04, Kupl3] using
the Childs—Jao—Soukharev quantum isogeny-evaluation algorithm as a subrou-
tine [CJS14], adapted to push the d-isogeny v to the conjugate through the
{-isogenies. This adaptation may incur a practically significant but asymptot-
ically negligible cost; the result is a subexponential algorithm running in time
Lap[1/2,V/2]. Even for d = 1, there is some debate as to the concrete cost of
this quantum algorithm, and the size of p required to provide a cryptographi-
cally hard problem instance for common security levels [BLMP19, BS20, Pei20].
(If and) when some consensus forms on secure parameter sizes for CSIDH, the
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same parameter sizes should make Vectorization and Parallelization in Dg ¢(p)
cryptographically hard, too.

We argue that using d > 1 instead of d = 1 does not dramatically affect
the security, but that it rather increase it asymptotically. When we compare
Q(v/—dp) with Q(y/—p), the class number grows by %log(d) bits asymptotically
as mentioned in Proposition 3. Using d > 1 instead of d = 1 hence leads
asymptotically to using a larger class group, and to more security. However we
need small d (< log(p)) for efficiency reasons, so if there is a net gain in security
it is only modest.

However these are asymptotics that do not apply for the sizes of p and d
that would be used in cryptographic practice. For these kinds of small d, and
concrete p, computing the two class numbers # Cl(y/—dp) and # Cl(y/—p) and
comparing them is the only way to tell if there is more or less security between
CSIDH and HD CSIDH. This idea is illustrated in Example 13 in Section 6.3.

6.1.1.1 Impact of involutions

We consider the impact of the various involutions existing in I'(Dg,(p)) exhib-
ited in Section 5.3.3 on the security analysis, again comparing with CSIDH,
which is the case d = 1.

The negation involution already exists for d = 1, where it essentially flips
between a curve and its quadratic twist over IF,. This involution has not yet
been exploited to give an interesting speed-up in solving vectorization or par-
allelization in the case d = 1; a speed-up for any d would be an interesting
result.

For d > 1, however, there is at least one new involution: namely, conjugation.
We note that solving vectorization modulo conjugation solves vectorization, be-
cause a vertex and its conjugate are always connected by the action of an ideal
of norm d. Working modulo conjugation allows us to shrink search spaces by a
factor of 2, yielding a speed-up by a factor of up to /2 analogous to working
modulo negation when solving the classical ECDLP (as in [BLS11]). When d
has n prime factors, we get more involutions that would allow us to work with
equivalence classes of 2™ vertices, shrinking the search spaces by a factor of 2™.
Prime d therefore seems the simplest and strongest case to us.

6.1.1.2 Impact of crossroads

Finally, we note that if a random walk should wander into a crossroad, then
we have found an isogeny to a supersingular curve with much known on its
endomorphism ring. In this case, attacks analogous to that of [GPST16] should
apply. But as we have seen, crossroads are vanishingly rare, the chance of ran-
domly wandering onto one is negligible for cryptographic size p. Their existence
should not create any weakness for schemes based on I'(Dg..(p)), no more than
they do for CSIDH.
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6.1.2 HD CSIDH

We now describe the non-interactive key exchange protocol based on the class
group action on I'(Dg.c(p)), generalizing CSIDH (the case d = 1). We believe
that the flexibility of the class group action allows many more cryptographic
applications as for CSIDH.

The public parameters are

e a prime p;
e a prime d;
e anein {1,—1};

e a set of primes {¢;}}_; coprime to dp and splitting in Q(v/—dp), together
with a prime ideal [; above each ¢;;

e a starting vertex (Eo, ) in Dy(p) (constructed using the crossroad tech-
nique from Section 5.4, for example).

We also fix a private keyspace K C Z™ of exponent vectors such that #K > 224
to provide X bits of security against meet-in-the-middle attacks (though smaller
K may suffice: see [CSCDJRH20]). The prime p must be large enough that
vectorization and parallelization cannot be solved in fewer than 2* classical
operations, or a comparable quantum effort.

For key generation, each user randomly samples their private key as a vector
(€i)1<i<n from K, representing the ideal class [a] = [[];_, [{] in C1(O). Their
public key is a vertex (E, ) representing [a] - (Eo, 1), which we can compute
using the methods of Section 6.2.

For key exchange, suppose Alice and Bob have key pairs ([a], (F4,%4)) and
([6], (EB,v¥B)), respectively. Alice receives and validates (Ep, %), and com-
putes Sap = (Eap,vap) = [a]- (Ep,¥5); Bob receives and validates (E4,14),
and computes Spa = (Epa,¥pa) = [0] - (Ea,%4). The commutativity of the
group action implies that Sap = Spa, so Alice and Bob have a shared secret
up to isomorphism.

To obtain a unique shared value for cryptographic key derivation, they can
take j(Eap) = j(Epa). Although this deletes the isogeny and its sign, for
a general vertex the curve only has one isogeny to its conjugate (up to sign).
Hence for a general vertex (E, ), using j(F) instead of the modular invariant
representing the (d, €)-structure only loses one bit of information (the sign of
the isogeny). Even if the vertex curve had two different kernels of isogenies
to its conjugate, we would only be losing two bits of information by using the
j-invariant. The advantage of this approach is that we avoid computing the
possibly complicated isomorphism invariants of the isogeny . This protocol is
described in Figure 6.1.

Remark 6. When ideal classes represent cryptographic secrets, it is important to
compute their actions in constant time. A number of techniques have been pro-
posed for this in the context of CSIDH [MCR19, OAYT20, CCC*T19, CKM*20,
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Public parameters: A prime p;
A squarefree d € Z, d < p;
Anein {1,-1};

A set of primes {¢;}? ; coprimes to dp and splitting in k = Q(v/—dp);

A prime ideal [; above each /;;
A starting vertex (Ey, o) in Dg ¢(p);
A private keyspace K C Z".

Alice Bob

Private key: Private key:
(es)iny €K (e, €K
Public key: Public key:

(Ea,va) = [a] - (Eo,%0)
with a = [[", [ € CI(O))

i=1"
(Easva)
(EB,v¥B)
Shared secret
computation:
(EaB,%aB) =
[a] - (EB, V)

Shared secret:
J(EaB)

(Ep,¥B) = [b] - (Eo,%0)

’

with b = ", [ € CI(O})

i=1 "1

Shared secret
computation:
(Epa,¥pa) =

(6] - (Ea,%4)

Shared secret:
J(EBa)

Figure 6.1: HD CSIDH key exchange protocol.
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BBC™21]. Each of these methods generalizes in a straightforward way to com-
pute class-group actions on (d, €)-structures. The only real algorithmic difference
when evaluating an isogeny ¢ : (E,v) — (F’,v¢’) is that the isogeny ¥ must
be pushed through ¢ in constant-time as well. For d = 2 and 3, this amounts
to pushing the x-coordinate of a single point through the isogeny, something
that is already part of constant-time CSIDH implementations. For d > 3 the
kernel polynomial of ¢ can be pushed through ¢ using the theory of elementary
symmetric functions (see Section 6.2.1).

6.2 Practical computation

For our computations, we can represent a (d, €)-structure (E,v) as (E, fy, a),
where f, is the kernel polynomial of 1 (that is, the monic polynomial whose
roots are the z-coordinates of the nonzero points in ker+) and « is the element
such that ¢ = 7, 0, where ¢ : E — E/ker is the normalized “Vélu” isogeny.
Note that for j # 0,1728, « is determined by (E, fy) up to sign, so we can just
store a single bit to encode « if desired, though this complicates the resulting
algorithms.

We now detail how the ideal class group action can be computed. We start
with a theoretical result, before presenting two possible approaches for the com-
putation.

Lemma 43. Let k = Q(v/—dp) and Oy = Z|w] its mazimal order. Let I be an
(integral) ideal of Oy of norm L. If there exists b € 7 such that b < { and

o (| (dp+0b?) if —dp # 1 (mod 4), or

o (] (b(b+1)+ ) if —dp=1 (mod 4)
then I = (£,b+w).
Proof. From Proposition 2, taking into account that the norm of the ideal is
prime, which implies (a,c) = (¢,1) or (1,2). O
Remark 7. Note that b depends only on p, d and ¢, and can be included in

public parameters.

We now want to compute (E’, '), the image of (F, 1) under the action of the
ideal I = (¢, b+ w) with w such that Oy = Z[w]. Following [DKS18], we consider
two approaches: “Vélu” and “modular”. The first one keeps track of v, while
the second tracks ker) and is oblivious of the sign, which occasionally makes
two possible ¥ collide for curves that have two d-isogenies to their conjugates.

6.2.1 Vélu approach

In the “Vélu” approach, we compute a generator Ky of the kernel E[¢] of ¢.
This point may only be defined over an extension IF,2- of Fp2. We then compute
the quotient isogeny ¢ : E — E' := E/(K,) using Vélu’s formulae, at a cost
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of O({) Fjer-operations, or using the algorithm of [BDLS20] in O(W7) Fp2r-
operations.

Finally, we push v through ¢ by computing the image of its kernel sub-
group and choosing the correct sign for the d-isogeny. If we are given an Fpe-
rational generator G for kert, then pushing ¢ through ¢ essentially costs one
isogeny evaluation; otherwise, this amounts to computing symmetric functions
(see paragraph below), with a cost on the order of O(d) isogeny evaluations.
Each evaluation costs O(f) or O(v/7) [F,2--operations. The total cost is dom-
inated by the cost of the multiplication by the cofactor #E(F,2-)/¢ needed
to find K;: we have log (#E(F2r)/f) = 2rlogp, so constructing K, requires
O(r?log p) operations in F,2. The algorithm to compute a single (-isogeny step
using this approach is presented in Algorithm 12.

Algorithm 12: ComputeOrientedNeighborVélu: For a vertex V on
the crater, computes its neighbour V' in the direction given by b, i.e.
the action by the ideal (£, u + [b]).

Input: V, /b

Output: V'

(F4, ¢a) < IsogenyFromKernel (E, x)

[

2 (L4 TpO g

// Computing the image curve by the action
3 Compute K, in E[{] such that u(K,) + [b] K, = O
4 x¢  KernelPolynomial (/)
5 (Fy, ¢¢) < IsogenyFromKernel(FE, x,)
6 Assert ®q(j(Fy),j(Fy)?) =0

// Finding the d-isogeny to its conjugate
7 for (F4,74) in ComputeKernelPolynomials (¥, d) do
8 V' = (F, Td, 1)

V” = (F, Td, —].)

10 if IsOrientedEl1Neighbor(V,V’ ¢, x,) then
11 | return V’

12 else if IsOrientedEl1Neighbor(V, V" ¢, x,) then
13 L return V"

Symmetric functions Let S, ;(X1,...,X,) = Zl§j1<j2<...<jk§n XX,
be the elementary symmetric polynomial with n variables and degree k. For
example the elementary symmetric polynomials with 3 variables are

S31=X1+Xo + X3
S32=X1Xo+ X0 X3+ X1 X3
S35 = X1 XoXs.

Theorem 44 (Fundamental theorem of symmetric polynomials). Let f be a
rational function symmetric in n variables on a field KC. Then there exist a
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unique rational function g on K such that
f(Xla ceey X’n.) = g(Sn,la sy Sn,n)

with Sn,k(le ,Xn) = Zl§j1<j2<...<jk§n le"'Xjn

Proof. See Chapter I, Section 2, paragraph Elementary symmetric functions in

[Mac98]. O

Let x4 be the kernel polynomial of a degree d-isogeny. Then

n

Xa(X) =) (-1)"e; X!

=0

with the ¢; satisfying ¢; = Sy, n—i(a1, ..., @) where the a; are the roots of xg4.
Now let 74 be the kernel polynomial of the image of the degree d-isogeny through
a degree f-isogeny ¢y. Then

n

ma(X) = (1) X

i=0

with the ¢; satisfying ¢; = Sy pn—i(¢e(0), ..., pe(cn)) where the ¢p(ey) are the
roots of 74. For every ¢ € {1,...,n}, ¢, is symmetric in aq, ..., a,. Hence there
exist a function g; such that ¢ = g;(Sp1(a1,...;an),..; Snnlar, ..., o)) =
gi(c1,...,cn). By computing the g;, we can compute 7 from the coefficients
of x4 without having to find the roots of the polynomial.

6.2.2 Modular approach

The “modular” approach uses modular polynomials. It requires the preceding
neighbour Ejy to be given to indicate the direction to be taken, by avoiding
backtracking.

The motivation for this second approach is that cases where there is more
than one d-isogeny to the conjugate of a curve are extremely rare. More pre-
cisely, when it occurs, the curve has an endomorphism of degree d?. Hence its
j-invariant is a root of the modular polynomials ®4(X, X)) and ® 4 (X, X).
Because ®42(X, X) has degree d? + 1, there are at most d? + 1 j-invariants
concerned, compared to O(3(logd)\/p) curves in Dy .(p). Hence, in the vast
majority of cases, the d-isogeny to the conjugate is unique and can be recovered
easily, although up to sign only. Note that in this case the class group action is
not strictly free and transitive any more. In practice, if using this method leads
to a curve with two d-isogenies to its conjugate, we can always stop and switch
to the Vélu method to disambiguate.

To compute the action of an ideal [on (E, 1)), we compute G = ged(Py4(X, XP), ®,(5(E), X))
(if d = 1, then we take ®1(X, X?) = X? — X). In general G has only two roots
in IF,2, corresponding to the two f-neighbours. In a non-backtracking walk we
can divide by X — j(E"), where (E’, ') is the preceding vertex, to find the next
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step. Otherwise, we can distinguish between the two neighbours by examining
the action of p on the /-torsion. However, note that v’ cannot be recovered
with certainty. This method is presented in Algorithm 13.

To compute ged(Dy(X, XP), ®i(5(E), X)), we compute F(X) := ®,(j(E), X)
in O(f) Fp2-operations, and then Y := X? mod F(X) using the square-and-
multiply algorithm in O(¢log p) F2-operations. We then compute Z := &4(X,Y")
mod F, and then ged(Z, F), in O(d*¢?) F2-operations. Generally ¢ is polyno-
mial in log p, but typically it is even smaller, and then the dominating step is
the computation of Y. Note that depending on the size of d with respect to p,
the dominating cost might switch between the first step and the second one.

Algorithm 13: ComputeOrientedNeighborModular: For a vertex V
on the crater, computes its neighbour V in the direction given by b, i.e.
the action by the ideal (£, u + [b]).
Input: V, 4, b
Output: V’
1 (Fy, ¢4) < IsogenyFromKernel (FE, x)
2 {4 TpO Qg
// Computing the image curve by the action
Compute Ky in E[f] such that u(K,) + [b|K, = O
X¢ ¢ KernelPolynomial (Kj)
(Fy, ¢¢) + IsogenyFromKernel(F, xy)
Assert ®q4(j(Fe), j(Fp)P) =0
// Finding the d-isogeny to its conjugate
for (Fy,x/,) in ComputeKernelPolynomials (j(F), d) do
VI =((F), F,xq, 1)
o | V" =((F), Fxg—1)
10 if IsOrientedEl1Neighbor(V,V’ ¢, x,) then

[ I, B )

o

11 | return V'
12 else if IsOrientedEl1lNeighbor (V,V" ¢, x,) then
13 L return V'’

As in the ordinary case described in [DKS18], for F, = F, the Vélu approach
is more efficient when 72 < ¢; in particular, when K, is defined over Fpe. If we
are free to choose p, then we can optimize systems that use the action of a series
of small primes ¢;. This can be achieved by taking p such that the ¢; split in
Z[\/—dp] i.e. (A/t;) =1 where A is —dp or —4dp, and p = ¢ [[\-; ¢; — € with
¢ a cofactor making p prime. In the case d = 1, this is exactly the optimization
that is key to making CSIDH practical. Choosing d in a similar way allows to
have r = 7/ = 1, reducing the complexities.

6.3 Example
We present a toy example of the HD CSIDH key exchange protocol for

p=35419 =4 x5 xTx11x23—-1,

115



with Fp2 defined as F,(¢) with * = 2. We consider the supersingular elliptic
curves having an 11-isogeny to their conjugate, and the ¢-isogenies between them
for ¢ € {5,7} (the primes 5 and 7 are both split in Q(y/—11p)). The starting
vertex is given by the curve Ep : y? = x2 + 24260z + 22318 and the 11-isogeny
generated by the point (15782t + 184, 13566t + 24868, 1) on E( which lands on
EO(P)_

We follow the steps described in Figure 6.1. Alice starts by generating her
public key PKA from her private key SKA = [2,1]. She computes two 5-
isogenies and one 7-isogeny from Ej using Algorithm 12 or Algorithm 13. She
obtains her public key

PKA: (y* = 2® 4 (26533t + 34484)x + (18638t + 9766);
ker 11 = (16432t + 22256, 27739¢ + 28012)))

composed of the supersingular elliptic curve and the 11-isogeny with kernel
ker 11 to its conjugate. The curve has j-invariant j4 = 26208¢ + 11691.

Bob proceeds similarly with his private key SKB = [0, 3] and obtains his
public key

PKB: (42 = 2® + (30329t + 18059)x + (22203t + 34829);
ker 17 = ((11315¢ + 28673, 19838t + 20559)))

composed of the supersingular elliptic curve and the 11-isogeny with kernel
ker 11 to its conjugate. The curve has j-invariant jp = 6864¢ + 31835.

Alice then applies her private key to Bob’s public key and Bob his private
key to Alice’s public key. They both land on the same vertex which has a
representative

(y® = 2® + (34232t + 7209)z + (3505t + 15937);
ker @11 = (7122t + 21835, 22925¢ + 30171)) .

Their shared secret is the j-invariant of the curve, i.e. 28267t + 8980.

6.4 Public key compression

6.4.1 Key compression with modular curves

Suppose we are given a (5, €)-structure (E,1) over F,2; we want to compress
(E,%) down to a single element of F,, plus a few bits, using the ideas of Sec-
tion 5.5. For simplicity, we will assume that £ has no extra automorphisms.

Sign First, there is an element vy of F,2 such that ¥*(wgw ) = Ywg, where
wg and Wy are the invariant differentials on F and E®)| respectively. Fixing
a sign function on Fp2, we can encode the sign of the isogeny 1 as a bit €;
determining the sign of 7. Now (E, ) is determined by (E, ker ¢, €;).
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From (d, ¢)-structures to modular curves The pair (E, ker ) corresponds
to the point (j(E),j(E®)) = (j(E),j(E)P) on Xo(5). Set t = j(E) + j(E)?
and n = j(E)j(E)?, both in F,, and let e be a bit determining j(E) as one
of the roots in )2 of the quadratic X2 —tX + n; then (FE,1) corresponds to
(61, €2, t, 7’L)

Compression Now let 1 <4 <5 determine the position of n (in lexicographic
order, say) among the (at most) 5 roots in F, of the quintic F5(¢, X); then (E, )
corresponds to (e, €2,1,1).

Decompression Working in the other direction: given (e1,€2,4,t), we com-
pute the roots of F5(t, X) in F,, sort them, and let n be the i-th one; then we
use ez to choose a root o of X2 — tX + n; then we construct a curve E with
§(E) = a, and recover a 5-isogeny 1 : E — E®) using Elkies’ algorithm, for
example (see [Sch95, §7 and §8]). We use €; to correct the sign of @ if required
by looking at the action on invariant differentials.

Size The encoding (E, ) — (€1, €2,i,t) requires [log(p)] + 5 bits, since 1 <
i < 5 can be encoded in three bits. We see that for general d, the number
of extra bits depends (logarithmically) on the gonality of the modular curve
X (d) (i-e., its degree in N above). Using alternate models of modular curves
may reduce this to some extent.

6.4.2 Key compression with parametrization

When the modular curve has genus 0, it can be rationally parametrized over
F,2 as described in Section 5.6. This lets us get down to a single element of F,
plus a choice of sign, as in [Smil6, §5].

Compression The parameters ¢; and €5 are computed as in Section 6.4.1.
Then we use the parametrization of the modular curve to encode the parameters
n and ¢ from Section 6.4.1 as a single element v in F),. The parametrization
encodes elements of (Dg,1(p)) or (Dg1(p)). We add a single bit ¢, to indicate
whether the twist of the curve needs to be taken or not.

Decompression Working in the other direction: given (eg, €1, €2,u), we com-
pute the corresponding curve and isogeny using the parametrization. Then we
use €5 to choose a root a of X2 — tX + n; then we construct a curve E with
J(E) = a, and recover a 5-isogeny 1 : E — E®) using Elkies’ algorithm, for
example (see [Sch95, §7 and §8]). We use €; to correct the sign of ¥ if required
by looking at the action on invariant differentials. We use ¢y to know if the
computation of the quadratic twist is needed.

Size The encoding (E,) — (¢o, €1, €2,u) requires [log(p)] + 3 bits.
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6.5 Public key validation

The public key validation procedure in CSIDH allows a secure static key ex-
change protocol, meaning that public keys can be reused across multiple runs
of the key exchange protocol (see Section 3.4). The generalization of CSIDH
described in Chapter 5 would benefit from a public key validation algorithm
for the same reasons. Recall that in this case, public keys are pairs (E, ). A
public key is valid if and only if it is a (d, €)-structure and if E is supersingular.

6.5.1 CSIDH versus HD CSIDH

The validation process for CSIDH from [CLM*18] turns out to be irrelevant for
HD CSIDH. In CSIDH, i.e. for the case d =1 and p = 3 (mod 8) with p > 5,
an element A € F, is a valid public key if the Montgomery curve defined by
y? = 23+ Az +u is supersingular and if its endomorphism ring over F,, End,(E)
is isomorphic to Z[v/—p]. The validation process in CSIDH uses Proposition 45
and Proposition 46 below.

Proposition 45. Let p > 5 be a prime such that p =3 (mod 8), and let E/F,
be a supersingular elliptic curve. Then End,(E) = Z[\/—p] if and only if there
exists A € F,, such that E is F,-isomorphic to the curve E4 : y? = 23+ Az +x.
Moreover, if such an A exists then it is unique.

Proof. See Proposition 7 in [CLM*18]. O

Hence when the curve 32 = 22 + Az? + x is proven to be supersingular, the
form of the endomorphism ring over [, immediately follows.

Proposition 46 ([CLM*18]). Let p = 4[[;_y¢; — 1, p > 5 and let E be an
elliptic curve defined over . If there exists a point of order Hjej L; greater
than 4,/p for J a subset of {1,...,n} then E is supersingular.

Proof. Asp > 5, an elliptic curve F defined over F,, is supersingular if and only
if #F(F,) = p+ 1. The existence of a point of order d > 4,/p implies that
there exists only one multiple of d in the Hasse interval [p +1 — 2\/p,p + 1 +
2,/p). Besides, since d = Hjej ¢;, this multiple must be p + 1 by Lagrange’s
theorem. O

To validate a public key in CSIDH, following the propositions above, a point
on the curve is sampled, and its order is computed. Ifit is greater than 4,/p, then
the curve is supersingular (Proposition 46) and the key is valid (Proposition 45).
Otherwise the process is repeated until a suitable point is found. In the case a
repeated failure, the curve is ordinary.

However this technique for supersingularity proving does not extend to the
case d greater than 1, because the curves are defined over IF,2. Indeed in this
case an adaptation of the proof from Proposition 46 would require to check if
E/F,2 has a point of order at least 4p to be able to use the result on the Hasse
interval. But our valid curves have E(F,2) = (Z/(p + €)Z)?, and therefore no
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points with order greater than 4p. Hence the same methodology cannot be
applied.

Instead we proceed in two steps: we first check that the HD CSIDH public
key (E,v) is a (d, €)-structure, then we prove the supersingularity of E using
an adapted and faster version of Sutherland’s supersingularity test tailored for
HD CSIDH specific context [Sut12]. We now describe these two steps in detail.

6.5.2 Checking (d, ¢)-structures

To check that (E,v) is a (d, €)-structure, we first verify that 1 is indeed an
isogeny from E to E® and then that 7:/)\ = ep®) . If this is the case then the key
is valid, otherwise it is to be rejected. This can be checked with two d-isogeny
computations, one for the conjugate and one for the dual. Using Vélu’s formulze,
it costs O(d) curve operations when d is small, and O(v/d) curve operations for
larger d (see [BDLS20]).

In the case of Montgomery curves, there exist explicit formulae to compute
the dual of a degree d-isogeny for small d in [NR19]; those formulae could
be generalized to other curve forms. When a key is encoded using Hasegawa
parameters as in Section 6.4, there is no need to check if it is a (d, €)-structure,
because every such parameter specifies a curve and an isogeny from a family of
(d, €)-structures. It only remains to verify the supersingularity of the curve.

6.5.3 Checking supersingularity: Sutherland’s algorithm

In order to verifying supersingularity for d > 1, we specialize the determinis-
tic supersingularity test of Sutherland [Sut12], which we recall below in Algo-
rithm 14. It relies on the following result.

Proposition 47. Let w2 be the Frobenius endomorphism of E/F,.. If E is
ordinary, then the maximal height of the 2-isogeny wolcano containing E is

log(p) + 1.

Proof. Let mg be the Frobenius endomorphism of E/F,2. The discriminant of
Z[rg] is bounded by 4p?, so the conductor of Z[rg] in the maximal order Oy, is
bounded by 2p; hence, if F is ordinary, then the maximal height of the 2-isogeny
volcano containing F is log(p) + 1. O

Since the height of an ordinary volcano is bounded, Sutherland’s supersin-
gularity test takes random non-backtracking 2-isogeny walks starting from each
of the three 2-isogeny neighbours of E. If E is ordinary, then at least one of
these walks will descend the 2-isogeny volcano, and will therefore terminate
(with no non-backtracking step defined over F,2) after at most log(p) + 1 steps.
Conversely, if no walk terminates after log(p) + 1 steps, then E must be super-
singular.
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Algorithm 14: IsSupersingular
Input: (E, )
Output: True if F is supersingular, False otherwise
1 Compute the set T of 2-neighbours.
2 if #7 # 3 then
3 L return Fualse

4 for E in T do

5 Take a 2-isogeny step to the neighbour E’ of E.
6 i1

7 while ¢ <log(p) do

8 Compute the set T of 2-neighbours of E’.

9 if 7/ = {FE’'} then

10 L return False

11 E’ + random element in 7'\ E’

12 i+ 1

13 return True

6.5.4 Adaptation of Sutherland algorithm

The supersingularity testing algorithm can be optimized for (d,€)-structures
(E, 1) by taking advantage of the information contained in .

Walk length First, the walk length limit can be reduced once we know that
the public key (E, 1) is a (d, €)-structure, using the following proposition.

Proposition 48. Let (E, ) be a (d,¢€)-structure. If E is ordinary, then the
length of the path from the curve to the bottom of the 2-isogeny volcano is not

longer than log(2+/p/d) + 1.

Proof. Let p be the endomorphism obtained from v as in Section 5.1. We know
that the endomorphism ring of the curve considered contains Z[u]. Besides
Zlrg] C Z[u], and the conductor of Z[rg| in Z[u] is the integer |r| of Propo-
sition 26, which is bounded by 24/p/d. From Subsection 2.7.1 and the bound
on the conductor of Z[rg] in Z[u], the length of the path from the curve to the
bottom of the volcano is not longer than log(24/p/d) + 1. We can therefore
reduce the walk length limit from log(p) + 1 to % (log(p) — log(d)) + 1. O

Direction We can also avoid trying every direction in the first step of Suther-
land algorithm, but instead choose a descending path directly from the start.

o If —dp £ 1 (mod 4), then we know that the maximal order of Q(v/—dp) is
Z[+/—dp], hence the graph I'(D; ((p)) has only one level, and only horizon-
tal isogenies. Hence we can choose a descending path in the full 2-isogeny
graph by choosing the only neighbour that is not a (d, €)-structure.
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© 0 0 0

Figure 6.2: Illustration for the adaptation of Sutherland supersingularity check-
ing algorithm. The graph above represents part of the 2-isogeny graph. The
nodes in black are the curves having a 2-isogeny to their conjugate. The black
edges are 2-isogenies which are also isogenies of (2, €)-structures. Dotted edges
are regular 2-isogenies. The curve to be validated in highlighted in orange. The
blue arrows represent the supersingularity checking steps. We first choose a
descending direction using the structure of the graph of (d, €)-structures , then
compute a sufficiently long path in the regular 2-isogeny graph.

e If —dp # 1 (mod 4) however, the maximal order of Q(v/—dp) is Z[2=% VZ*dp],
and the graph I'(Ds .(p)) has two levels. Let (E, ) be the (d, €)-structure
considered, and p its associated endomorphism.

— If (E,v) belongs to the upper level, i.e. if u fixes the 2-torsion point
wise, then it has two horizontal neighbours and one descending neigh-
bour in I'(Dy(p)). Hence we choose the only neighbour (E’,')
whose associated endomorphism does not fix the 2-torsion (ensuring
that it is on the lower level of the graph).

— If (E, ) belongs to the lower level, i.e. if u does not fix the 2-torsion
point wise, then it has one ascending neighbour in I'(Ds (p)), and
two descending neighbours in the full 2-isogeny graph. Hence we
choose any of the two neighbours not on the upper level, i.e. with
associated endomorphism not fixing the 2-torsion.

Using the induced orientation in I'(Ds ((p)) hence allows to choose the right
path from the beginning within at most two steps in the graph, and omit the
other two paths. Note that in Sutherland algorithm this is not possible without
computing an orientation first.
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6.5.5 Determining the level

If required, and only if —dp = 1 (mod 4), we can determine whether (F, ) is
in D2 (p) or Dfl‘feb (p) (defined in Definition 37). This is done by computing
the action of p on the 2-torsion (at the cost of one or two d-isogeny evaluations)
or by computing the 2-neighbours of (E, ) in I's(Dg(p)). Note that we have
E(F,2) = (Z/(p + €)Z)* from Proposition 28. Since 2 divides (p + €) we obtain
that E(F,2)[2] = Z/27Z x Z/27Z hence E[2] = E[2](F,2), meaning that the full
two-torsion is rational over 2. The procedure is described in Algorithm 15.

Algorithm 15: D7'#*(p) or Djlt‘ﬁb(p)

Input: (E,9) € Dg(p)

Output: “max” if (E,1) € Dge*(p), “sub” if (E,v) € DZ‘}f(p)
W= Tp oY

Compute the two-torsion E[2](F,z2).

for P € E[2] do

L if u(P) # P then

L return sub

[ NI R

return mazx

(=]

6.5.6 Validation algorithm for HD CSIDH

We now describe the full validation process for HD CSIDH public keys. To
verify that a pair (E, ) is a valid public key, we have to check that (E,v) is
a (d, €)-structure, then verify that E is a supersingular elliptic curve. If needed
we also determine if (F,) is in Dg*(p) or Dfi“f’ (p). To check that (E,1) is a
(d, €)-structure we use the results of Section 6.5.2. This step costs two d-isogeny
computations. To verify that F is a supersingular elliptic curve, we use the
results of Section 6.5.3 and the adaptation of Sutherland’s algorithm. This step
costs (5 (log(p) —log(d)) 4+ 5) 2-isogeny computations. We obtain the validation
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algorithm described in Algorithm 16.

Algorithm 16: HD CSIDH public key validation

W N

© o N o oA

10
11
12

13

Input: (E, )
Output: True or False
Check that (E,) is a (d, €)-structure as in Section 6.5.2
Compute the set T of 2-neighbours of F.
Pick a descending neighbour E’ as in paragraph Direction of
Section 6.5.4.
141
while i < (1(log(p) —log(d))) do
Compute the set 77 of 2-neighbours of F’.
if there exist E” in T’ such that E” # E’ then
E+ FE
E + E"
1+ 1+1
else
L return False

return True

Total cost The total cost of the procedure is the cost of computing two d-
isogenies and (3 (log(p) — log(d)) + 5) 2-isogenies. Considering that d is in
O(logp), and that the cost of computing the 2-isogeny is asymptotically the
cost of finding the roots of a quadratic (or cubic for the first step) polynomial
which costs O(log(p)) operations in F,,, we obtain a total asymptotic complexity

of O(log(p)?) operations in F,.

6.5.7 CSIDH and HD CSIDH validation comparison

We give a comparison between CSIDH and HD CSIDH validation process in

Table 6.1. It details the parameters on which the complexity depends, the

complexity itself, and the main steps of the validation.
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Scheme Process Complexity

To log(n
O( lg(;)(gp()loggé) )) F

CSIDH Supersingularity
checking in F,

HD CSIDH | Element of Dy (p) * O(logd) F 1
(or O(log Vd) F)
Supersingularity O(log(p)?) F
checking using
special structure

HD CSIDH Supersingularity O(log(p)?) F
with Hasegawa checking using
special structure

! Not needed when using Hasegawa parameters.

Table 6.1: Comparison for validations, where F stands for the cost of a multi-
plication in F..
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Part IV

Cryptanalysis
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Chapter 7

Cryptanalysis for SIDH

Abstract To address the general supersingular isogeny problem of finding a
path in the graph of supersingular elliptic curves defined over IFj2, Delfs and
Galbraith use in [DG16] the action of the ideal class group on the subset of su-
persingular curves defined over F,,. Since we proved in Section 5.2 the existence
of free and transitive actions on other subsets of supersingular elliptic curves,
we study how the Delfs—Galbraith algorithm can be generalized. We provide a
generalized algorithm using several subsets at once. We study its complexity,
the set of relevant parameters to be chosen, and measure the improvement of-
fered by this enlarged approach. Finally, we focus on the parameters in SIDH
and SIKE. We highlight a set of weak public keys, and propose a combination
of the Van Oorschot and Wiener attack with the generalized Delfs—Galbraith
algorithm.
The results of this section have been published in [CS21].

7.1 The Delfs—Galbraith algorithm

7.1.1 The general supersingular isogeny problem

Definition 39 (The general supersingular isogeny problem). Given two su-
persingular elliptic curves Fy and E, defined over F,2, compute an isogeny
¢ : E1 — EQ.

This problem is believed to be hard in the sense that the best classical (resp.
quantum) algorithms to solve it have exponential (resp. subexponential) com-
plexities in the size of the underlying finite field. In [DG16], Delfs and Galbraith
proposed an algorithm to solve the general supersingular isogeny problem. It
takes advantage of the free and transitive action of the ideal class group Cl(y/—p)
on the subset of supersingular curves defined over IF,,.

Let Sp2 be the set of supersingular curves over Fp2, up to isomorphism, and
Sp the subset of curves defined over Fp2. Let E; and Ey be two curves in Sp2.
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In order to find an isogeny between F; and Es, the Delfs—Galbraith algorithm
has two phases:

The first phase computes a random non-backtracking isogeny walk from Ej
(resp. Es) until landing on a curve E{ (resp. Ej) in S,. These walks yield
isogenies ¢1 : By — Ej and ¢, : Ey — Ej. The isogeny graph on S, has
excellent mixing properties, and since #S,2 ~ p/12 and #S, = O(,/p), this
first phase takes an expected O(,/p) random isogeny steps.

The second phase finds an isogeny ¢’ : Ej — E} using the action of C1(Q(1/=p))
on S,. It starts by selecting a set of primes £ such that the L-isogeny graph
is connected, ensuring that a path between E] and F) exists. Under the Gen-
eralized Riemann Hypothesis, Cl(Q(v/—p)) is generated by the set £ of ide-
als of prime norm up to 6log (JA|)?, where A is the discriminant of Q(y/—p)
(see [Bac84]) though in practice we do not need so many primes [DG16]. The
L-isogeny graph on S, is therefore connected, and we can use random walks in
this subgraph to construct ¢’ : Ej — Ej. By the birthday paradox, this phase
takes an expected O({/p) random steps before finding the collision yielding ¢'.

In total, O(y/p) isogeny steps (via roots of modular polynomials, not actual

isogeny evaluations) are needed to find the isogeny ¢ = ¢1 0 ¢’ o @ from FE4
to Fs. These two steps are detailed in Algorithms 17 and 18. The concrete
computation uses roots of modular polynomials in F), and .
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Algorithm 17: Delfs—Galbraith path finding algorithm: Step 1

1
2
3

[S."

© 0 N O

10
11
12

13
14
15
16

17
18

19

Input: A supersingular elliptic curve E defined over IFj2, and a bound
B = 6log (|A])?, where A is the discriminant of Q(y/—p).
Output: A supersingular elliptic curve E’ defined over F,, and path S

from F to E'.
J < i(E)
S« []
found + false

e prime < B
Oy < ModularPolynomial (£)
Vi & Roots(®(j, X),F,2)
Append(S, j')
if j/ € F, then

L found + true
while not found do

¢ & prime < B
&, + Modular Polynomial ()
5" <% Roots(®y(j, X),Fp2) with j” # j
Append(S, j')
if j/ € F, then
L found + true
Rl
j/ <;j//

return (j,5)

// non-backtracking
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Algorithm 18: Delfs—Galbraith path finding algorithm: Step 2

Input: Two supersingular elliptic curves Ej and EY defined over F,,
and a bound B = 6log (JA|)%, where A is the discriminant of
QD).

Output: A path S in the £-isogeny graph of elliptic curves defined

over F,, from Ej to E}.

1 L < {primes £ < B | (£) = 1}

2 S« []

3 Take vertical 2-isogenies (if required) so that E{ and E) are on the
surface, i.e. endomorphism ring over F,, is the maximal order in
Q(v/~p))-

4 disjoint < true

5 for i € {1,2} do

6 | Ji< J(E)

7 | Si <[4

s | (L&

9 &y < ModularPolynomial({)

10 | ji <& Roots(®e((ji, X),Fy))

11 Append(S;, jl)

12 if j1 € S; then

13 disjoint < false

14 k « Index(Ss, j1)

15 S « Cat(S1, Reverse(Sz[1, ..., k]))

// S is the concatenation of S; with Sy from first to
kth element, taken in reverse order.

16 while disjoint do
17 for i € {1,2} do

18 t& ¢

19 by + Modular Polynomial ()

20 gl & Roots(®e(ji, X),Fp) with j' # j; // non-backtracking
21 Append(S;, jI')

22 Ji < Ji

s | | e

24 if j1 € S then

25 disjoint < false

26 k < Index(Ss, ji)

27 S« Cat(S1, Reverse(Sa]1, ..., k]))

// S is the concatenation of S; with Sy from first to
kth element, taken in reverse order.

28 return S
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7.2 Generalization

The Delfs-Galbraith algorithm exploits the action of C1(Q(4/—p)) on S,. Note
that this is a special case of the group action we described in Section 5.2, namely
the action of Cl(Q(y/—p)) on D1 1(p).

We proved in Section 5.2 that for any squarefree d there is a free and transi-
tive action of Cl(y/—dp) on Dy (p). We can hence extend the subset of related
curves used in the second step of Delfs—Galbraith algorithm [DG16]. Making
the distinguished set larger allows us to reduce the number of random steps to
be taken before reaching it.

We generalize the Delfs—Galbraith algorithm by replacing the distinguished
subgraph I'(D; ¢(p)) with a union of subgraphs UgepI'(Dg,e(p)) where D is a
set of coprime squarefree integers prime to p. We further require that the
set D is such that for all pairs (d,d’) € D?, dd’ is squarefree, there exists a
(d,d’)-crossroad (see Section 5.4). We study the new complexity of the attack
and show that it reduces the number of operations needed to solve the general
supersingular isogeny problem. Throughout this chapter we write Dy (p) for
the underlying set of curves of D4 (p), i.e. forgetting the data of the d-isogeny
to the conjugate.

7.2.1 Generalized Delfs—Galbraith algorithm

Let Ey and E3 be two supersingular elliptic curves defined over Fp.. Let D be
defined as above. In order to find an isogeny between E; and Es, the algorithm
has two phases.

The first phase computes a random non-backtracking isogeny walk from
Eq (resp. Es) until we land on a curve Ej (resp. F%) in UgepDg.(p). The
membership testing can be done using (the product of) modular polynomials
®, for d € D. These walks yield isogenies ¢1 : By — Ej and ¢o : Fy — FE.
Since #S,2 ~ p/12 and # Ugep Da,c(p) = O((X4ep Vd)y/D), this first phase
takes an expected O(,/p/(34cp Vd)) random isogeny steps.

Let dy and dy in D such that E{ € Dq, (p) and Ej € Dy, (p). The second
phase starts by computing a (di,ds)-crossroad E.. Note that this could be

precomputed. It then finds an isogeny E{ — E. in Dy, (p) and an isogeny

E} — E. in Dy, (p) using the action of C1(Q(v/—d1p)) (resp. Cl(Q(v/—d2p)))
acting on Dy, (p) (resp. Dg,.(p)). By the birthday paradox, this phase takes
an expected O(/dip) (resp. O(+/dap)) random steps before finding the collision
yielding the path.

These two steps are detailed in Algorithms 19 and 20. In total, O(\/p/(>_4cp
isogeny steps are needed to find an isogeny ¢ from F; to Fs, reducing the asymp-
totic complexity by a factor (3, V/d). Compared with the original algorithm,
less steps are needed to reach the subset of curves considered in Phase 1, but
the isogeny steps are more expensive than before because of the need to test
d-isogeny existence. In Phase 2, more steps are required because the subset is
larger, with the cost of one step growing with d as well. This means that the
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elements of D must be quite small for this approach to be effective: polynomial
in O(logp) or in O(B), for example. In practice, we would probably work with
smaller d.

Computing modular polynomials Note that the modular polynomials ®,
(mod p) can be precomputed and stored. If the storage capacity is not sufficient,
®y(j, X) € Fy[X]) can also be computed modulo p on the fly using [Sut13].

Algorithm 19: Generalized Delfs—Galbraith algorithm: Step 1
Input: Supersingular elliptic curve E over Iz, a bound
B = 6log (JA])?, where A is the dlscrlmlnant of
Q(y/—max{d € D 1p).
Output: A supersingular elliptic curves E in Dy (p) and path S from
E to E'.
1 L« {primes { < B | () =1}
2 S« [j(E)]
5§ ()
// First step

atEr
5 &y + Modular Polynomial(¢)
7' <& Roots(®4(j, X), Fp2)
Append(S, j')
if j/ S udEDDd,e(p) then

L found + true

© w0 N O

// Other steps
10 while not found do
11 (&
12 &, + Modular Polynomial ()
18 | j” <% Roots(®,(j', X),F,2) with j” # j
14 Append(S, j")
15 if j” € UgepDa,c(p) then
16 L found < true

17 jg
18 | 4"

19 return (j,5)

7.2.2 Choosing the set D

The generalized Delfs-Galbraith algorithm is not worthwhile for large d or
large D. A balance needs to be found between the benefit of shorter walks
and the higher cost of testing the membership in Dy (p) in Phase 1 on the one
side, and the cost of longer walks in I'(Dg.(p)) in Phase 2 on the other side.

Asymptotically, #Da.(p) is in O((X_4cp \/3)\/13), so the expected number
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of steps in phase 1 is reduced by a factor of O(}_,cp Vd). However, the indi-
vidual steps become more expensive: if we use modular polynomials to check
membership of each Dy (p), then the number of F2-operations per step grows
linearly with } ., d, overwhelming the benefit of the shorter walks. Asymptot-
ically, therefore, there is no benefit in taking large d or large D in phase 1. (For
more analysis of random walks into Dy (p), in different contexts, see [EHL120]
and [CLGO09].)
The generalized Delfs-Galbraith algorithm can become interesting for D con-
sisting of a few small d, precisely because the asymptotic k(d, p) := #Dg,(p)/#D1,(p) =

V/d no longer holds. For d < 10, we can have k(d,p) substantially greater
than v/d (and also substantially less than 1). Let us illustrate this idea with an
example:

Example 13. Let p be the toy SIDH-type prime 252 - 333 — 1. Then &(5,p) ~
4.916. If we can test for an isomorphism or a 5-isogeny to the conjugate faster
than we can compute six 2-isogenies, then we can take D = {1,5} and walk
into D1,¢(p) U D5 (p) faster than walking into Dy .(p) alone. This speedup is

counterbalanced by a slowdown in Phase 2, because walking in I'(D5 .(p)) costs
more, and because the walks need to be a square-root of (5, p) longer, though
we can work modulo conjugation to mitigate this cost.

7.2.3 Comparisons

Complexity comparisons between the original walk and its generalization with a
set D of coprime squarefree integers d prime to p are summarized in Table 7.1.

7.3 Application to SIDH/SIKE cryptanalysis
7.3.1 Specific case: weak public keys in SIKEp434

As we noted in Section 5.3, the probability of a random walk in the supersingular
¢-isogeny graph hitting a vertex in Dy ((p) is very low. It is even lower when we
consider SIDH/SIKE graphs, which cover only a very small proportion of the
full isogeny graph, resembling trees of walks of short, fixed length.

Nevertheless, when we look at specific SIKE graphs, we see that they contain
sections of I'y(Dg.c(p)) and I's(Dg,(p)) for various d. For example, let us con-
sider the starting curve in SIKEp434, defined in [JAC*17] as y? = 23 + 622 +
over [Fp2 for the prime

p= 2216 .3137 -1

from the specification SIKEp434. This curve has a d-isogeny to its conjugate
for d € D = {5,13,17,29,37,41} (and possibly also for much higher, but less
practical values of d). If we consider the 2-isogeny graph, then we find that
I'2(Dg,c(p)) passes through the starting curve and continues down through the
tree towards a public key for d = 17 and 41. Hence, if we can find a 2-isogeny
path from a SIKEp434 public key to a vertex in the image of D17 (p) or Day (p),
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then we have an express route to the starting curve. Such an attack succeeds in
a reasonable time with only a very small probability, but it is still devastatingly
effective for a tiny proportion of SIKEp434 keys.

N

5,13,17,29,37,

Ep
{5,13,17,29, 37,

/\

{17 {17
Eb Ez; EM
{17 {17, {} {}
EdZ Es3 E54 Ed\) Eas E57 Eds
{17 ar, ar, ar,

A A AL

En Ep E;3 Eu Eis Ew Esr Eis Ei FEso Esi Esx Eszs Esa Esz  Ese
{7, aparap{ary {aey {17y {a7p {a} {4} {r {r {r {r {r {} {} {}

Figure 7.1: The beginning of the SIDHp434 2-isogeny “tree”, Ej being the
starting curve. Below the curves are indicated the d < 42 for which there exists
a d-isogeny to the conjugate. The 17-spine, and 4l-spine are highlighted in
blue and orange. The curve Ei, is the curve y? = 22 + x which has additional
automorphisms, and two endomorphisms of degree 2.

7.3.2 General case: SIDH, shortcut

We now consider the more general settings of SIDH. Suppose we are searching
for a path from F; to Es in a SIDH graph. Unless log d is about the size of log p,
randomly scanning for near neighbours in Dy ((p) will not be efficient. However,
it can be combined with attacks against SIDH to produce occasional shortcuts
in the pathfinding algorithms. The analysis of [ACC*18] suggests that the best
classical attack on this problem is the van Oorschot-Wiener golden collision-
finding algorithm, which computes a series of curves from E; and Es until a
“golden” (essentially unique) collision is found. Scanning for curves in Dg ¢(p)
while searching for a golden collision allows us to use a possible shortcut: given
partial paths By — Ef and Ey — E% with B} and EY both in Dy (p) for some
d, we can close the path between E{ and F} in O(+/dp) steps using the ideal
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class group action.
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Algorithm 20: Generalized Delfs-Galbraith algorithm: Step 2

Input: Supersingular elhptlc curves F', E. € Dg.(p), a bound
B = 6log (JA|)?, where A is the discriminant of
Q(y/—max{d € D 1p).
Output: A path S in Dy (p) from E’ to E..
E, < CurveFromjInvariant (FindCrossroad (di, do, p))

L+ {primes £ < B | (£) =1} // Precomputed

2 S+ []
3 Take vertical 2-isogenies (if required) so that E’ and E. are on the

© 00 N O s

10

11
12

13
14

15
16

17
18

19
20
21
22

23
24
25
26

27

surface, i.e. their endomorphism ring over F,, is the maximal order in
Q(v—dp)).
J1 < J(E")
j2 — .](Ec)
St 1]
52 — [Jc]
for i € {1,2} do
(& ¢
Oy < ModularPolynomial (£)
j; < Roots((ji, X), Fye)
Append(S;, jl)
if ji € Sy then
L disjoint < true
while disjoint do
for i € {1,2} do
¢ & prime
&, + Modular Polynomial()
g £ Roots(®(j;, X),Fp) with ji # j; // non-backtracking
Append(S;, j;')
Ji < Ji
Ji < 3¢
if ji € Sy then
disjoint < false
k + Index(Sa,j})
S + Cat(S1, Reverse(Sa[1, ..., k]))
// S is the concatenation of S; with S; from first to
kth element, taken in reverse order.

return S
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Generalized with a set D
[DGlG] o= (ZdeD d)
(Algorithms 19 and 20)
Distinguished subset graph D, (p) UpDa.e(p)
Size of the subgraph O(v/p) O(\/op)
Length of walk to the subset | O(p'/?) O((2)1/?)
Length of walk in the subset | O(p'/4) O((op)t/*)
Total cost O(p*/?) o(2)1/2)

Table 7.1: Complexity comparison in term of isogeny steps between the original
and the generalized Delfs-Galbraith path finding algorithms. The d in the set D
should be chosen to be small, making the cost of testing membership in Dy (p)
asymptotically negligible.
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Summary and perspectives

Several contributions have been presented in this thesis:

1. By presenting efficient dummy-free and derandomized implementations of
CSIDH, we contributed to mitigating the relative slowness of CSIDH, as
well as filling a gap between theory and practical implementations.

2. By highlighting and studying new subsets of supersingular elliptic curves
having a free and transitive group action, we have contributed to a better
understanding of the isogeny theoretical landscape. The generalization of
CSIDH in Chapters 5 and 6 offers new alternatives and adaptability to
isogeny-based key-exchange protocols, building a wider range of construc-
tive options.

3. By proposing public key validation and compression in HD CSIDH, we re-
enforced the compactness and reusability of keys, two strengths of isogeny-
based protocols.

4. By studying the cryptanalysis consequences on SIDH of the new free and
transitive group actions, we have shown that they do not offer a significant
asymptotic advantage to an attacker. In the specific case of SIKE434, the
fact that only a very small subset of curves are vulnerable increases under-
standing of the security and confidence in the robustness of the protocol.

In the light of these contributions, we also identify several future directions to
be studied. First, the parameters of the generalized Delfs—Galbraith algorithm
can be fine-tuned to the specific parameters of SIDH and SIKE, in particular to
find the optimal balance between the number and size of underlying parameter d.
Then, more parametrized families for HD CSIDH in optimised curve form can
be exhibited. Finally, isogeny computation algorithms in the specific case of HD
CSIDH can be optimized to improve performances. The possibility to determine
formulae using the Hasegawa parameters cn also be considered.
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Résumeé : Alice et Bob souhaitent échanger des in-
formations sans qu’un attaquant, méme muni d’'un or-
dinateur quantique, puisse les entendre. Pour cela,
ils ont recours a la cryptologie et en particulier a un
protocole d’échange de clés. Ces protocoles reposent
sur la théorie des nombres et la géométrie algébrique.
Cependant les protocoles actuellement utilisés ne
résistent pas aux attagues quantiques, c'est pour-
quoi il est nécessaire de développer de nouveaux
outils cryptographiques. Lun de ces outils repose

Titre : Actions de groupe supersinguliéres et échages de clés post-quantiques
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sur les isogénies, c’est-a-dire des homomorphismes
entre des courbes elliptiqgues. Dans cette these nous
proposons une implémentation d'un des protocoles
d'échange de clés basé sur les isogénies qui résiste
aux attagues par canaux auxiliaires (étude de la durée
d’'exécution, de la consommation de courant et injec-
tion de fautes). Nous généralisons également ce pro-
tocole a un plus grand ensemble de courbes ellip-
tiques.

Abstract : Alice and Bob want to exchange informa-
tion and make sure that an eavesdropper will not be
able to listen to them, even with a quantum computer.
To that aim they use cryptography and in particular a
key-exchange protocol. These type of protocols rely
on number theory and algebraic geometry. However
current protocols are not quantum resistant, which is
the reason why new cryptographic tools must be deve-
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loped. One of these tools rely on isogenies, i.e. homo-
morphisms between elliptic curves. In this thesis the
first contribution is an implementation of an isogeny-
based key-exchange protocol resistant against side-
channel attacks (timing and power consumption ana-
lysis, fault injection). We also generalize this protocol
to a larger set of elliptic curves.
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