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Abstract: Topological phase has received considerable attention in recent decades. One of the crucial
factors to determine the phase is symmetry. Such a concept involves mathematical, geometrical,
and physical meanings, which displays many fascinating phases in Hermitian and non-Hermitian
systems. In this paper, we first briefly review the symmetry-related topological phases in Hermi-
tian and non-Hermitian systems. The study in this section focuses on the topological phase itself,
not the realizations therein. Then, we present a thorough review of the observations about these
symmetry-related topological phenomena in classical platforms. Accompanied by the rise of quantum
technology, the combination of symmetry-related topological phase and quantum technology leads to
an additional new avenue, in which quantum information tasks can be accomplished better. Finally,
we provide comments about future research into symmetry-related topological phases.

Keywords: symmetry; topological phase; classical and quantum platforms; applications

1. Introduction

Symmetry refers to the property of a system that remains unchanged after performing
certain operations, such as rotation, reflection, and translation, among others. In physics,
symmetry is often closely related to conservation laws; for example, spatial translational
symmetry corresponds to the law of momentum conservation, spatial rotational symmetry
is closely related to the law of angular momentum conservation, and time-reversal sym-
metry has a one-to-one correspondence to the law of energy conservation [1-17]. When
distinguished by type, symmetry includes spatial symmetry, time-reversal symmetry, and
intrinsic symmetry. Spatial symmetry refers to the property of an object that remains
unchanged under spatial transformations, including translational symmetry, rotational
symmetry, and reflective symmetry. Time-reversal symmetry refers to the unchanged
property during time evolution and can be further divided into static symmetry and dy-
namic symmetry. Intrinsic symmetry describes the property of an object that remains
unchanged under certain internal transformations, involving the fundamental particles
and their interactions.

Topological phase refers to a special state of matter, characterized by its properties
that do not depend on the specific shape and size, but only on its intrinsic structure.
The structure of matter is closely related to symmetries, such as translational symmetry
that occurs in periodic lattice systems, as well as symmetry points, symmetry lines, and
symmetry planes in the unit cells of lattice systems. In order to accurately describe the
relationship between topology and symmetry, researchers approach it from the perspective
of group theory and use various mathematical tools to analyze the topological properties
under different symmetries. They have found that when only chiral symmetry, time-
reversal symmetry, and particle-hole symmetry are present, lattice systems can be classified
into ten different categories [17]. But when mirror symmetry is introduced, there are far
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more than ten kinds of topologies. When non-Hermitian couplings are introduced into
lattices, the topological classification characterized by symmetry becomes more diverse [18].
These detailed reviews will be introduced in Section 2.

Not only are mathematical descriptions of symmetry and topological phases rapidly
developing, but researchers are also seeking ways to demonstrate topological phenomena
in practical physical systems. In our review, we will first focus on how to observe physical
phenomena in classical systems. These classic systems mainly involve optical, electrical,
mechanical, and acoustic systems. In these systems, researchers have cleverly designed and
demonstrated topological phenomena corresponding to the description of symmetry. Next,
we will focus on topological phenomena in quantum systems. Due to special quantum
effects, such as quantum decoherence, the topological properties of quantum systems are
not exactly the same as those of classical systems. In this review, we take quantum open
systems as an example and provide a brief introduction to their topological phenomena
by combining quantum jump transitions. The relevant reviews are placed in Section 3.
It is worth noting that due to the existence of a large number of works on topology, we
cannot cite all of them in this review. During our writing, we only selected some of the
representative early studies. Additional studies can be found in the references of the
cited literature.

Furthermore, we also focus on the practical applications of topological phases. By
combining the unique topological structure of exceptional points, chiral energy and infor-
mation transmission can be achieved, and energy and information output can be generated
at specific ports. In particular, the robustness brought by topological properties enables
energy and information transmission in a stable way, even in the presence of external
disturbances. This topological property can also be used for applications such as quan-
tum information. With the help of constructed topological structures, such as exceptional
points, chiral quantum state transmission can be achieved. A corresponding review will be
conducted in Section 4.

Based on the rapidly developing topological properties and their applications, we
provide a summary and outlook at the end, in Section 5. In the summary, we make a
connection between topology and symmetry, as well as the description of novel topolog-
ical properties at present. In the outlook, we focus on various platforms for observing
topological phases and their possible applications.

2. Symmetry

In this section, we review how different symmetries can be achieved in Hermitian
and non-Hermitian fermionic systems. We are now considering a general non-interacting
system composed of fermions, described by a second-order quantized Hamiltonian F. For
a non-superconducting system, A can be written as

A =YY, = ¥ Y (1)

Here, ‘i’}r and ¥ j are creation and annihilation operators of fermions, I and | are
composite labels of lattice sites i, j, ..., and quantum numbers. For example, I = (i,0)
with ¢ = £1/2, where ¥1 and ¥; satisfy the relation {¥;, Y1} = ¢;;, HY is the first-
order quantized Hamiltonian matrix. Similarly, for superconducting systems described by
the Bogoliubov—de Gennes (BdG)-Hamiltonian matrix, the Nambu spin is used instead
of the fermion operator, and the first-order quantized Hamiltonian in the lattice system
remains the matrix H. Next, we discuss explicitly the formed topological phases under
three fundamental symmetries, time-reversal, particle-hole, and chiral symmetries. More
properties of other symmetries and related topological phases can be found in Ref. [13].

2.1. Symmetry of Hermitian Systems
2.1.1. Time-Reversal Symmetry (TRS)

Time-reversal symmetry (TRS) is an important property in physics. It describes the
symmetry exhibited by a physical system under time reversal operations; that is, if the
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motion process of a physical system is recorded and reversed, the system still obeys the
same physical laws. Considering TRS, the time reversal operator T is a non-unitary operator,
which acts on fermionic systems as follows:

9,17 = (up),) ¥, it = —i. )

If a system preserves the canonical anticommutator {‘T’ 1,‘?} } = T{‘T’ 1,‘?} }T’l and
H satisfies THT~! = H under operation T, then this system is TR invariant.

According to TRS, we can obtain the Hermitian matrix operator 6 to satisfy the
fermionic system To(t)T—1 = TetiHtge~iHtT=1 — §(—t), and for generic non-interacting
systems, T : ULH*Ur = +H and (U} Ur)"H(U%Ur) = H. Considering Uy as a unitary ma-
trix, then U = ei"‘U} = (LIT)T = ¢l . We can obtain e2® = 1, and UrUr = %I There-
fore, by applying T2 to the fermion operator ¥, we can obtain T2¢,72 = (U}UT‘T’) = +¥,.
Similarly, for a general system composed of N fermions, one can also obtain the following:

72 = (£1)V, when Uilr = 41, 3)

where the total fermion number operator N:=% I‘i’}r ¥,. When urlr = —I, T2 is the
fermion number parity operator Gy := (=1)N. For a system with an odd number of

fermions T2 = —1, the eigenvalues of fermion systems that satisfy TR invariance exhibit
Kramers’ degeneracy theorem.

2.1.2. Particle-Hole Symmetry (PHS)

Another important symmetry is particle-hole symmetry (PHS). It points out that in a
physical system, the excitation of particles and holes has a certain symmetry. Specifically, if
the Hamiltonian mechanics of a system exhibit invariance under some kind of transforma-
tion between particles and holes, then the system is said to have PHS. When referring to
the fermion system, the unitary transformation of the particle hole (PH) operator C on the
fermion system is provided as follows:

C¥ et = (ug), ¥t @)

The operator C is also called the charge conjugation operator, in particle-number
conserving systems COC = —Q, where Q := N — N/2 and N/2 is half the number of
orbits, i.e., half the dimension of a single particle Hilbert space.

Imagine a fermion system is PHS, the matrix U¢ is unitary when the canonical an-
ticommutation relation is invariant. And for non-interacting systems, H = CHC ™! =
—‘i’Jf(UéHTUC)‘? + TrH, there can be C : UEHTUC = —H. TrH = H" = 0. Consider a
Hermitian system composed of a single fermion, which satisfies the PHS condition and can
be written as —ULH*Uc = H. In a single particle Hilbert space, condition C is not unitary
symmetry, but rather a reality condition on the Hamiltonian H modulo unitary rotations.
Similar to the derivation of TRS in the previous section, we can also obtain

€2 = (£1)N, when UiUc = £1 )
For the PHS system, the eigenstate of H under action C remains the same, since
CHC “1C|a =)E4Cla). Considering a wave function with a single particle energy 4,

HY uf = e/ufl, its particle-hole reversed partner U{ (u4) " is an eigenwave function with
an energy —e*, since U H*UcUE (u?)" = eAUS (u?)".

2.1.3. Chiral Symmetry (CS)

Chiral symmetry (CS) refers to the existence of two independent spin states for parti-
cles with a spin of 1/2, known as up and down states. If the interaction in which particles
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participate is transformed by a certain symmetry group, and the transformation rules of up
particles and down particles are different, then the symmetry reflected by the symmetry
group is called CS. Moreover, the combination of T and C leads to chiral symmetry (CS)
$ = T-C-$, which acts on the fermion system as follows:

SATISA_l = (UCUT)II‘%} (6)

Under the chiral symmetry, the Hamiltonian H is invariant under $ : UfHUs = —H
where Us = UUj and TrH = 0. It can be obtained U2 = eI with T2 = C? = (+)N. By
redefining Us — ¢/*/2Us, the chiral symmetry condition of a single particle Hamiltonian
can be simplified to S : {H,Us} = 0, U3 = UfUs = I and the eigenvalues of the chiral
operator are +1.

In this case, the energy spectrum of a single particle Hamiltonian is a symmetric
spectrum: assuming that the eigenstate of H corresponding to the eigenvalue ¢ is |u), then
Ug|u) is the eigenstate of H with the eigenvalue —e. In the basis in which Ug is diagonal,

H is a block off-diagonal:
0 D

where D is a N4 x Np rectangular matrix and N4 + Np = N. Consider a tight-binding
Hamiltonian of spinless fermions on a bipartite lattice: A= Yon tmnéfnén, tyn = by € C.
Combining the particle-hole (PH) transformation C¢,,C~! = (—)"¢é,, and TRS transfor-
mation T¢,T~! = ¢, (Tz'T = —i) of spinless fermions, chiral transformation $é,871 =
(—)"¢t, and $5iS™! = —i can be obtained. It can be concluded that when t,, is a bipar-
tite hopping, i.e., when t,;, only connects the sites of different sublattices, H is invariant
under $. In addition to the bipartite hopping model, chiral symmetry also exists in QCD
systems [1], BAG systems with TRS and S, conservation [2], bosonic systems [3-5] and
entanglement Hamiltonians [6-9].

2.1.4. BdG System

Next, we take the BAG system as an example and show the different types of topolog-
ical phases under the three mentioned symmetries. Here, we provide a straightforward
illustration of the characteristics of the Hamiltonian matrices and the corresponding proper-
ties of the states, when the system satisfies different symmetries. Then, we provide ten-fold
different topological phases under these symmetries.

Class D

The Nambu spin quantity is expressed as follows:

=
Il
>
<

where Yt = (‘-i”}, e ,‘i’;r\], Y, ,‘?N) satisfies the canonical anticommutation relation as

{Ya ¥§} = oap(4,B=1,---,2N) %
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The operators Y and Y* are not independent of each other, and they satisfy the relation

as (1Y) Tyt (?JFT])T = Y, where the Pauli matrix 7; acts on the Nambu space. The
BdG-Hamiltonian matrix is represented by the Nambu spin quantity as follows:

A= SVHA, ¥y = SVHHY. ®)
Since Y and Y' are not independence from each other, we have H = (1/2)

() TH(Y*Tl)T = —(1/2)¥"(tyH1)"Y + (1/2)Tr(1;Hty), and one can obtain the
following:
wH 't = —H. 9)

That is to say, any single particle BAG-Hamiltonian matrix satisfies the PHS form.
However, Equation (9) is generated by the intrinsic characteristics of the Fermi statistics of
the BdG-Hamiltonian matrix and is not obtained by applying symmetry. Therefore, for
the BAG system, Equation (9) should be referred to as particle-hole constraint or Fermi
constraint [10]. The Hamiltonian ensemble that satisfies constraint Equation (9) is called
class D. By applying different symmetries to the BAG-Hamiltonian matrix, five additional
symmetry families, DIII, A, AlIl, C, and CI, can also be obtained. According to Equation (9),
the BdG-Hamiltonian matrix can be written as

I A
(5 4)

E = &f, A = —AT, where E represents the normal part and A is the anomalous part.
The BdG-Hamiltonian matrix can be considered as the single particle Hamiltonian of
the Majorana fermions. Through the following;:

()ALI >_(‘i’1+‘i’}r >

ALLN i(¥,-%1))

we can obtain the Majorana representation of the BdG-Hamiltonian matrix, where the
Majorana fermions A satisfy

{Aa, Ag} =245, AL =AA(A,B=1,---,2N). (10)
In the Majorana basis, the BdG-Hamiltonian matrix can be written as follows:
H=iA X8}, xX*=X, XT=-X (11)

Here, the 4N x 4N matrix is as follows:

iX—l R_+S_ —i(Ry — S4)
- 2\i(Ry +S4) R_-S_ ’
where Ry = E+ & = j:Ri, Sy = AL A" = —Si. Matrix X can be transformed
into block diagonal form through orthogonal transformation, i.e., X = o):oT, Y =
0 €1
—&1 0
, where o is orthogonal and ¢; > 0. Under the rotation basis
0 EN
—&N 0

&:=0TA, Hamiltonian H = ifT Y. =2 Z?]ﬂ erbor_16ar.

Although it is usually possible to rewrite the BdG-Hamiltonian matrix using the Majo-
rana operator, Majorana eigenstates are rarely BdG-Hamiltonian eigenstates, i.e., unpaired
or isolated Majorana zero-energy eigenstates only appear in very few special cases in BAG
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systems. Furthermore, we found that, in general, one cannot directly represent complex
Fermi operators using a series of given Majorana operators; thus it is impossible to directly
rewrite the Majorana—Hamiltonian correlation in the form of a BdG-Hamiltonian matrix.

Class DIII

Let us consider the case of applying TRS operation T2 = G r on the BdAG-Hamiltonian
matrix, where the TR operator acts on the fermion operator as follows:

T¥, T = (i02) ;0 Y10, (12)

Here, the subscriptis o =1 / |, spin, 03 is the Pauli matrix acting on the spin space. It
can be concluded that the BAG-Hamiltonian matrix satisfies the constraints as follows:

nH'w = —H, »H*0» = H. (13)

It is easy to achieve H satisfies chiral symmetry tyop Hti0» = —H. An ensemble of
BdG-Hamiltonian matrices satisfying Equation (13) is called Class DIIL Similarly, for the
T2 = +1 situation, Class BDI can be obtained.

Classes A and AIIl

Next, we consider the BAG-Hamiltonian matrix with U(1) spin-rotation symmetry
around the Sz axis in spin space as follows:

A=Y H B¥p, (14)

where H is a 2N x 2N unconstrained matrix, and

. NP . ¥,
gt — (‘P}T ‘I’u), ¥ = <‘I’i> (15)

Note that, unlike Nambu spin quantities, there is no constraint relationship between
¥ and ¥*, H is unconstrained and known as symmetry class A.

Let the operator ‘?I ¥ 1, the BdG system Equation (14) can be transformed into
a general Fermi system with particle number conservation, and the U(1) spin-rotation
symmetry can be transformed into pseudocharge U(1) symmetry. Apply TRS to the BAG-
Hamiltonian matrix in Equation (14), we obtain the following;:

where p; 7 3 represent the Pauli matrices that act on particle-hole and spin components. If
we consider ‘P* — ¥4, i.e., the conservation of particle number, then T in Equation (16)

($C, (16)

can form T and C, one can obtain chiral symmetry. In fact, the relationship between
chiral symmetry TC and the U(1) charge Q of the particle-number conservation system

QTCA )Q(TC) - Q is isomorphic to the TRS and the Sz in the Sz conserved BAG system
TS;T~! = S7. That is to say, by reinterpreting Equation (14) as a particle-number con-
serving system, applying TRS can result in chiral symmetry. The Hamiltonian ensemble
that satisfies this chiral symmetry is called class AIIlL Therefore, the BAG system with Sz
conservation and TRS belongs to symmetry class AIIL
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Classes C and CI
We now study the SU(2) spin-rotation symmetry on the BAG-Hamiltonian matrix.
Consider a spin-rotation ad by an angle of ¢ around the rotation axis # acting on a doublet

(‘?T,‘ifi) T as follows:
‘?T N ‘?T A= —i(¢p/2)on TT
(1{"%) — Up (qji) y Up =€ 15["% . (17)
For an operation of spin rotation by ¢ around Sy or Sy axis, ¥ can be transformed into

ﬁﬁ ‘i’ﬁgj) = cos(¢/2)¥ —isin(¢/2)¥C,

X

ag’y%;f = cos(¢p/2)¥ —isin(p/2)¥C (18)

Specifically, when ¢ is 7, there is Y 5 —i¥C or —¥€, which is the discrete PH trans-

formation. That is to say, if we consider Equation (14) in the system of particle-number

conservation, ﬁg Szﬁ;" = —Sy, i = x,y can be regarded as charge complex conjugation

COC = —Q. Actually, 7 §. is a PH transformation with a square of —1, which is opposite

to the PH constraint of class D. For a single particle Hamiltonian H, it can be obtained from
rotation symmetry 73 that

p2H py = —H (19)

The Hamiltonian ensemble that satisfies condition Equation (19) is called class C. We
note that for a quadratic Hamiltonian, the constraint of rotation symmetry ﬁg, corresponds
to a complete SU(2) spin-rotation symmetry. This is because for any SU(2) rotation, the
Hamiltonian H is transformed into ¥*HY¥, and the complex conjugate is ¥ H¥C (ie.,
H— a¥'HY + (1 — «)¥THYC). Tt can be inferred from $THY = ¥*HYC and the Sz
invariance that the BdG-Hamiltonian matrix exhibits SU(2) spin-rotation symmetry.

Further, application of TRS operation Equation (16) yields ¥THY — ¥ p,H*p, (‘i’*) !
= Yo, H'0,¥ = A, i.e., p2H'py = —H. Combining PHS Equation (19), we can obtain
the following:

poHTpp = —H, H* = H. (20)

The Hamiltonian ensemble that satisfies condition Equation (20) is called class CI.

2.1.5. Ten-Fold Symmetry

We now discuss the non-unitary symmetry classification of single particle Hamiltonian.
Consider the following set of discrete symmetries:

T-'HT=H, T=UrK, UplU;=+I,

C'HC=-H, C=UcKk, UcU;=+I,
S~'HS = —H, S =Us, uz =1, (21)

K is a complex conjugate operator. Under non-unitary symmetry Equation (21), there
are only 10 possible Hamiltonian H symmetry transformations.

Firstly, there are three possibilities for the transformation of H under TRS: (1) H is not
TR invariant, i.e., T = 0 in Table 1; (2) H is TR invariant and T squaresto 1,ie., T=1,(3) H
is TR invariant and T squares to —1, i.e., T = —1. Similarly, there are three transformations
of H under PHS, i.e.,, C =0, +1, and —1. Therefore, there are nine possibilities for how H
can transform under TRS and PHS.
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Table 1. Periodic Table of Topological Insulators and Superconductors. § := d — D, where d is the
spatial dimension and D + 1 is codimension of defect; The leftmost column represents the ten-fold
symmetry classification of Fermi-Hamiltonian systems, with time inversion T, particle-hole C, chiral
S, and different types of symmetries represented by +1 and —1. Z, Z, 2Z and 0 represent the presence
or absence of nontrivial topological insulators, superconductors, or topological defects, as well as
their existing states. D = 0 (6 = d) is corresponding to the tenfold classification of gapped bulk
topological insulators and superconductors [13]. Reproduced with permission [13] Copyright 2016,
American Physical Society.

)

Class T C S 0 1 2 3 4 5 6 7
A 0 0 0 Z 0 Z 0 Z 0 Z 0
AIII 0 0 1 0 7 0 Z 0 7 0 Z
Al 1 0 0 z 0 0 0 27 0 7y 7y
BDI 1 1 1 Zoy Z 0 0 0 27 0 Zo
D 0 1 0 Z, 7y VA 0 0 0 27 0
DIII -1 1 1 0 Zs Zs z 0 0 0 27
All -1 0 0 27 0 Zo Lo 7 0 0 0
CII -1 -1 1 0 27 0 Zs Zs VA 0 0
C 0 -1 0 0 0 27 0 Zo Zo 7 0
CI 1 -1 1 0 0 0 27 0 Zs Zy z

Further, we consider the properties of Hamiltonian under product action S = T-C. In
the presence of TRS or PHS, there are eight possibilities corresponding to S = T-C equals 0
or 1. In the absence of TRS and PHS, there is also an additional possibility corresponding
to S =0 or 1. Therefore, there are (3 x 3 —1) +2 = 10 symmetries, as shown in Table 1.
Table 1 shows the periods of topological insulators and superconductors; the first column
of the table corresponds to these ten symmetries, which are also the framework used to
classify topological insulators and superconductors. In Table 1, Z, Z;, 27 and 0 represent
the presence or absence of nontrivial topological insulators, superconductors, or topological
defects, as well as their existing states. The case of D = 0 (§ = d) corresponds to the ten-fold
classification of gapped bulk topological insulators and superconductors. The ten-fold
symmetry extends the famous “threefold way” scheme of Wigner and Dyson, it was first
proposed in Altland and Zirnbauer’s article on disordered systems [11,12], and is therefore
also known as the Altland-Zirnbauer (AZ) symmetry classes.

2.2. Symmetry of Non-Hermitian Systems
2.2.1. Non-Hermitian Topological Classification

In Hermitian systems, the gapped characteristics of topological insulators/superconductors
are determined by the condition detH(k) # 0, i.e., there is no zero energy in the bulk
spectrum, where k is the momentum on the sphere or torus [14-17]. For non-Hermitian—
Hamiltonian H(k), Kawabata et al. defined their gapped phases under the same condi-
tions [18]. These complex energy gaps are called point gaps (Figure 1a). The topological
classification of point-gapped phases is given by the K-theoretical classification of the
corresponding doubled Hermitian—-Hamiltonian system as follows:

H(k) = (Hi)(k)Hék)), 22)

Note that detH (k) # 0 and detH (k) # 0 are equivalent. This classification scheme
is applied to the 38-fold Bernard—-LeClair classification [18,19]. In addition to point gaps,
there is another type of non-Hermitian gapped structure [18] called the real/imaginary
line-gapped phase (Figure 1a). In this case, the gapped phase is defined as a spectral
structure with non-zero real/imaginary parts. Furthermore, the concept of line gap can be
extended to several spectral islands on the complex energy plane.
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In the situation of Hermitian classification, the classification of nontrivial phases cor-
responds to a topological insulator /superconductor, where the bulk nontrivial topology
represents a topological gapless boundary mode. In fact, the real/imaginary line-gapped
phase can be adiabatically associated with the Hermitian/anti-Hermitian gapped Hamilto-
nian systems without breaking symmetry or closing the line gap [18-21]. Therefore, the
nontrivial topology of the line-gapped phase is essentially the same as that of the Hermitian
gapped phase. The situation of point-gapped phase is completely different, as the doubled
Hermitian-Hamiltonian H corresponding to the bulk-boundary in nontrivial topology does
not correspond to the original Hamiltonian H, and there is no unified physical explanation
for the point-gapped phase. However, in the absence of symmetry or only with transpose
type TRS (TT* = £1), i.e., classes A, AI', and AIl" [18], the symmetry-protected skin
effect provides a physical explanation for the topological classification of point gaps. The
classification of skin effect in these three types is represented by the red font in Table 2.
The above discussion does not mean that the symmetry-protected skin effect only occurs
in A, AT", and AII', as topological invariants of these three classes may be non-zero in
other classes.

Table 2. Topological classification of point gaps in AZ, where red font represents skin-effect classifica-
tion [18]. Reproduced and adapted from CC-BY open access publications American Physical Society.

5
AZ? T C S 0 1 2 3 4 5 6 7
A 0 0 0 0 7 0 Z 0 y/ 0 Z
AIII 0 0 1 Z 0 Z 0 Z 0 Z 0
Alt 1 0 0 0 0 0 27 0 L, L, Z
BDI* 1 1 1 7 0 0 0 27 0 7 7
Dt 0 1 0 7o A 0 0 0 27, 0 7o
pirt -1 1 1 7o 7o Z 0 0 0 27 0
Allt -1 0 0 0 Z, Z, Z 0 0 0 27,
crt -1 -1 1 27, 0 7y Zs Z 0 0 0
ct 0 -1 0 0 27, 0 Z, Zy Z 0 0
crt 1 -1 1 0 0 27, 0 7o Zs 7 0

2.2.2. Ten-Fold AZ" Symmetry Classes and Quantum Anomalies

In non-Hermitian cases, there are two types of TRS: complex-conjugate-type and
transpose-type. Similarly, PHS with complex-conjugate-type and transpose-type can be
defined. The ten-fold AZ symmetry class of Hermitian systems is defined by the combi-
nation of complex-conjugate-type TRS and transpose-type PHS; while the ten-fold AZ*
classification of non-Hermitian systems is defined by the combination of transpose-type
TRS and complex-conjugate-type PHS.

Lee et al. [22] pointed out that in AZ" symmetry class, the point-gap topological in-
variants of PBC curves can count the number of anomalous gapless modes with sufficiently
large imaginary parts. Here, the D-dimensional anomalous gapless mode does not appear in
the bulk of a lattice due to quantum anomalies but can appear in the D+1-dimensional Her-
mitian topological insulator/superconductor of the corresponding Hermitian AZ symmetry
class. In linear dynamics described by non-Hermitian-Hamiltonian systems, eigenvalues
with large imaginary parts are relevant to long-time dynamics. In this sense, the dynam-
ics described by the point-gap nontrivial Hamiltonian are determined by the anomalous
gapless mode of long-time dynamics. For example, the chiral modes appearing on the
edges of quantum Hall insulators can describe the relevant modes in long-time dynamics
of one-dimensional class A nontrivial systems (Figure 1b).

For the anomalous interpretation of non-Hermitian skin effect in classes A, Al and
AII", a symmetry-protected skin effect gives a physical explanation for the nontrivial non-
Hermitian topology under OBC, while anomalous gapless modes give the same effect
under PBC. These facts all indicate an anomalous explanation for the symmetry-protected
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skin effect, which is related to fermion production generated by quantum anomaly. For
example, a traditional skin effect is related to the charge accumulation induced by chiral
currents at the boundary. The anomalous explanation also provides a direct cause for the
occurrence of high-dimensional skin effects in topological defects, with a typical example
being the Rubakov—Callan effect (or monopole catalysis), which was first introduced as a
mechanism for proton decay in the SU(5) grand unified theory. The corresponding skin
effect is realized in a class A three-dimensional Weyl-Hamiltonian system with valley-
dependent dissipation in the presence of a magnetic monopole. In the Nielsen-Ninomiya
theory [23], the chiral magnetic skin effect can be related to a typical fermion product
mechanism, known as the chiral magnetic effect.

2.2.3. Non-Hermitian Topology and Degeneracy Points

In Hermitian topological classification, gapless structures in momentum space, such as
Dirac and Weyl point/line nodes, are widely discussed [24-33]. In a D-dimensional space,
a robust d-dimensional symmetry-protected gapless structure can be characterized by topo-
logical gap structures on the (D-d)-dimensional spheres surrounding the gapless structure.
Based on the similar topological classification on the sphere, topological classification of
point-gap and line-gap around the exceptional points is given in [34]. The parameter-
ized non-Hermitian—-Hamiltonian system at exceptional points is not diagonalized [35-37]
(Figure 1c). Point/line gaps may open or close near exceptional points, as exceptional points
are connected through a gapless structure called the bulk Fermi arc [34—41] (Figure 1c).
Such topological classification utilizes various dimensions (such as exceptional points and
rings) to describe symmetry-protected exceptional structures [38-53].
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Figure 1. (a) Non-Hermitian gap spectrum (blue line). A point/line-gapped spectrum does not
contain red points/lines. (b) The relation between Class-A point gap topology and chiral edge modes
at the quantum Hall effect boundary. (c) Exceptional points (EPs) and their characteristics. Panels
a—c adapted from reference [54]. Reproduced and adapted from CC-BY open access publications
Annual Review.
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3. Physical Implementations of Topological Phenomena

Researchers have used Hamiltonian mechanics to describe lattice systems and wave
functions to describe the state of objects. However, since it does not involve the collective
dynamics of multiple creation and annihilation operators, these Hamiltonians can actually
be realized in classical systems. For example, in the propagation of optical waveguides,
if the propagation direction is designed to be equivalent to time and the paraxial approx-
imation is used, then the propagation of light along the waveguide has an equivalent
form to the dynamics governed by the Schrodinger equation. In a circuit network, if the
relationship between the voltage and current at each node is provided using an admittance
matrix, then the voltage and current connected by such an admittance matrix can actually
be regarded as the Schrodinger equation in the steady state. Other classical systems can
also exhibit topological phenomena using their corresponding classical physical quantities
through similar correspondences. In this part, we provide an overview of physical plat-
forms ranging from classical systems to quantum systems. The explicit correspondences
between the physical Hamiltonians and practical platforms are illustrated.

3.1. Classical System

In recent years, a large number of studies have demonstrated classical simulations of
topological phases on a variety of experimental setups, including photons [55-57], electric
circuits [58-60], and mechanical systems [61,62]. Due to the ubiquitous dissipation, these
classical simulation experiments naturally occur in non-Hermitian situations. Classical
systems can simulate quantum mechanics in many different ways: optical waveguides can
directly simulate the time-dependent Schrédinger equation; the eigenmode problems of
photonic crystals and acoustic systems can be equivalent to the Bloch problem of quantum
systems with periodic potential. In circuits, the analogy is on the level of response functions,
and quantum Hamiltonian can be directly simulated through an asymmetric dynamical
matrix in robotic mechanical metamaterials.

3.1.1. Photonic System

We will focus on introducing photonic crystals, resonators, and coupled optical waveg-
uides here.

Photonic crystals are metamaterials created by the spatially varying but periodic dielec-
tric permittivity e;;(x) and magnetic permeability i;;(x). Similar to electrons in crystalline
solids, in photonic crystals, the electrodynamic eigenmodes of Maxwell’s equations are
subject to Bloch’s theorem. Haldane and Raghu [55,56] proposed using photonic crystals to
simulate quantum Hall states; Wang et al. conducted a series of refinements to this theory,
realizing topological states in gyromagnetic photonic crystal and breaking the time-reversal
symmetry [63,64]. In many photonic crystal experiments, non-Hermitian (NH) topological
phenomena have been implemented, including the observation of Fermi arcs connecting
exceptional points (EPs) [65]. The one-sided invisibility phenomenon of parity—-time (PT)
symmetric metamaterials [66] was observed, which was predicted to occur in PT-symmetric
metamaterials operating at an EP [67-70]. Moreover, recent theoretical studies have pointed
out that Maxwell waves, which exist on interfaces to separate lossless media with differ-
ent signs in permittivity and permeability, have topological properties related to the NH
helicity operator [71], further highlighting the NH characteristics of photonic crystals.

Photonic crystals form microresonators based on tiny defects in photonic crystals,
which have a low Q factor. Whispering-gallery-mode resonators (WGMRs) are optical mi-
croresonators with a high Q factor, where electromagnetic waves are captured in the cavity
due to total internal reflection. Peng et al. demonstrated unidirectional lasing [72,73] and
single-mode lasing in PT-symmetric devices in NH experiments utilizing WGMRs [74,75],
and improved sensitivity against perturbations in cavities operating at second-order EPs
due to their nonanalytical dispersion behavior [76,77]. In addition, some researchers
have studied the dynamical encircling of second-order EPs in microwave cavities [78],
demonstrating experimental characteristics of mode switching.



Symmetry 2024, 16, 1673

12 of 35

Coupled optical waveguides provide another experimental platform for directly simu-
lating the time evolution of tailor-made lattice models. In optical waveguides, Maxwell’s
equation describing the propagation of light along the z-axis, also known as the paraxial
equation, is as follows:

) (1o _kOAn(x,y)
1825( %(aﬁay) g L (23)

Equation (23) is formally equivalent to the two-dimensional Schrodinger equation,
where z is playing the role of time t, the wave function £ represents the envelope of
the electric field polarized along the e, and E(x,,z) = £(x,y,z)e0?~“Ye is assumed
to vary slowly in the case of |VE| < |koE|, ko ~ k; > kyy. The effective potential
V(x,y) o« An(x,y) can be tailor-made by using a femtosecond laser to carve waveguides,
generating a strong spatially dependent local refractive index An(x,y). Under the con-
straints of spatially sharp carving and weak evanescent coupling between waveguides, the
system can be precisely constructed through a tight-binding Hamiltonian, whose hopping
parameters depend on the device and the wavelength A of light. It means that, when
carefully designing the local refractive index An(x,y), the Hamiltonians with different
symmetries can be formed. Optical waveguides have been used to simulate Hermitian
topological phases [79-82], including staggered gain and loss patterns in wires. The time
evolution of effective NH models has also been successfully simulated, including exper-
imental implementations of exceptional rings [83], defect states in NH-SSH chains [84],
topological phase transitions [85], and PT-symmetric flat bands [86]. Research on the stabil-
ity of corner states against gain and loss has also been proposed [87]. It is worth noting that
only passive systems with staggered losses can generate such phases. Although energy
is limited to lower complex half planes, a global shift can make the system effectively
PT-symmetric, where waveguides with less loss are effectively converted to gain [88-92].
Regensburger et al. [93] achieved a true PT-symmetric system by using optical fibers, where
PT-symmetric structures can be realized in the temporal domain using optical amplifiers
and modulators. In addition, nonlinearity has been considered in the optical waveguides,
and many new topological phases are uncovered [94-103].

3.1.2. Electric Circuit

The electric circuit provides another classic platform for implementing a non-Hermitian
topology [58,59]. In electric circuits, people directly study the response function rather than
the properties of Hamiltonian, where capacitors and inductors act as Hermitian elements,
and resistors and amplifiers are non-Hermitian elements. For example, the current flowing
through node i at frequency w is as follows:

li(w) = ), Yij(w)Vj(w), (24)

where [;(w) and V;(w) are the input current and potential at node i, Y;j(w) is the admittance
matrix, and the equivalent inverse impedance matrix is [Z~!(w)] i Specifically, Y;;(w) is
the admittance between nodes i and j, and Yj;(w) is the admittance between node i and
ground [59]. This relation can be derived using current conservation, which means that
under Kirchhoff’s circuit law, the total input current needs to be equal to the total output
current. The current and voltage at the nodes of the circuit are as follows:

(@) = [iwCij+ Ry + (iwky) | L5 [Vi(@) = Vilw)] = [iwCio + Rig! + (iwLio) ™' Vi(w) (25)

where I; and V; are the current and voltage of the node i with the angular frequency w. The
capacitance, resistance, and inductance between nodes i and j are expressed as C;;, R;; and
L;j. The corresponding electric component capacitance, resistance, and inductance between
node i and ground are shown as Cj, Rjp and Ljy. The label (j) means the summation over
all electric nodes connected.
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The periodicity of the circuit structure allows the use of Bloch’s theorem to find the
wave function, while the band structure of the circuit corresponds to the eigenvalues of
admittance Yj;(w). In a circuit network, the voltage and current connected by such an
admittance matrix can actually be regarded as the Schrodinger equation in the steady state,
as follows:

Y(w)[ v | =0 (26)

In this way, the choices of different electric components, e.g., electric capacitance,
inductance, and resistances, can determine the couplings in the admittance matrix, and
that is the Hamiltonian matrix. Therefore, the admittance matrix Y;;(w) can be interpreted
as a Hamiltonian matrix. By arranging capacitors, inductors, and other electronic build-
ing blocks, circuits that simulate the physical characteristics of topologically nontrivial
models can be designed. Therefore, the Hamiltonian matrix with different symmetries
can be uncovered. This idea was proposed by Ningyuan et al. [59] and has been used
to construct topological circuits, whose band structure, i.e., admittance eigenvalues, also
realizes the band topology structure of the Hofstadter model in Mobius strip devices [58,59].
Lee et al. [60] and Imhof et al. [104] reported the implementation of SSH chains and their
two-dimensional extensions in circuits, as well as Weyl semimetal spectroscopy. Imhof
et al. achieved angular states in two-dimensional circuit devices [104]. The implementa-
tion of these circuit-based Hermitian topological phases lays the foundation for their NH
topological phase implementation. Helbig et al. [105] implemented the NH-SSH model
using resistors and amplifiers and confirmed the theoretical predictions. Hofmann et al.
also achieved the NH skin effect [106]. In addition, many ideas have been proposed based
on circuit experimental platforms, including the use of PBC to implement NH honeycomb
lattices [107], NH Chern insulators [108,109], high-order topological models [102] with NH
skin states localized at low dimensional boundaries [110,111], and quantum walk simula-
tions [112], the implementation of three-dimensional Seifert surfaces in four-dimensional
circuits, and the implementation of pseudo magnetic fields to detect singular Landau energy
levels in NH Dirac and Weyl systems [113,114]. Moreover, the high-order topological states,
hybrid topological skin effect, and other topology are also revealed in the circuits [115-124].

3.1.3. Quantum Walk

Quantum walk provides another way to simulate and probe NH topological phases.
The concept of quantum walk was proposed by Aharonov, Davidovich, and Zagury [125]
and has been implemented in several experimental platforms, such as trapped atoms [126],
trapped ions [127,128], optical fiber networks [129,130], and nuclear-magnetic resonance [131].
In quantum walks, the coin operator (also known as the “walker”) acting on the internal
degrees of freedom of particles replaces “coin flip”, which introduces classical randomness
by determining the particle trajectories in classical random walks. The dynamic evolution of
quantum walk is determined by the Floquet operator U. The simplest version of quantum
walk is the one-step evolution containing one coin operator and one conditional shift
operator, as follows:
U =T-R(0) (27)

Here, the coin operator R(6) is often chosen as a 2 x 2 matrix, which acts on the
internal degrees of freedom. The conditional shift operator is often taken as follows:

T=)  lx+ (x|t +]x=1){x|&[L){}] (28)

The conditional shift operator indicates the movement of the walker depending on
its internal degrees of freedom. When treating one step evolution governed by U as the
dynamics governed by the Hamiltonian, the effective Hamiltonian is presented as follows:

U = exp(—iHe) (29)
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Therefore, the topology revealed in the quantum walk depends on the coin operator
and can be resorted to the time-dependent effective Hamiltonian He¢. By appropriately
constructing U, the effective Hamiltonian Heg can be made topologically non-trivial, re-
sulting in topological phases in quantum walks [132,133]. These have been validated in
experiments of discrete-time quantum walks [134-142], where U is applied to the walker at
discrete time steps.

Consider a non-unitary Floquet operator U, the corresponding effective Hamiltonian
Hgg is NH, and thus the NH phase can be studied. This idea was introduced by Rudner
and Levitov in the NH-SSH model [143], realizing a passive version of PT-symmetric
SSH chains where the average displacement of a particle is quantized and related to
topological invariants. The experiment on non-unitary quantum walk reveals the existence
of topological edge states at the domain walls of PT-symmetric SSH chains in optical
setups with balanced gain and loss [144,145]. Wang et al. [146] observed skyrmions in
a PT-symmetric non-unitary quantum walk; while Longhi [147] predicted the NH skin
effect and symmetry breaking phase transition in a PT-symmetric discrete-time non-unitary
quantum walk. A model with anisotropic hopping has also been achieved in a discrete-time
non-unitary quantum walk, and the NH skin effect has been observed [147-159].

3.1.4. Mechanical System

The mechanical system provides another experimental platform for implementing
the NH topology phase. There is a formal correspondence between Newton’s second law
and Schrodinger’s equation, which can realize topological phases with phononic boundary
states in mechanical systems. The topological phononic modes classified by Susstrunk
and Huber [160] appear at the boundaries of isostatic lattices built with springs [161], at
boundaries of models composed of rotors and rigid beams [162], at dislocations in Kagome
lattices composed of rigid disks [163], and as helical boundary states in devices composed
of pendula [163]. When mass is replaced by a gyroscope, a gyroscopic metamaterial can be
obtained, which has been shown to host acoustic boundary waves similar to edge states of
the quantum Hall effect [164,165].

Similar to the method proposed by Kane and Lubensky [6] for studying isostatic
lattices, a dynamical matrix associated with the lattice is written as D = QOQT, and the
associated Hamiltonian matrix can be obtained by taking the square root, where Q and QT
are its off-diagonal elements. One can conceive of the NH phononic phases. Starting from
the general NH-Hamiltonian matrix with off-diagonal elements Q and Q, the dynamical
matrix is defined as D = Q@ The asymmetric (D # DT) dynamical matrix of this NH-
Hamiltonian D = QQ has been experimentally implemented in robotic metamaterials
by constructing a lattice consisting of mechanical rotors, control systems, and springs to
combine robotics and active materials. In such a device, the NH skin effect in nonreciprocal
realizations [166] and models similar to anisotropic SSH chains are demonstrated [167].
Schomerus [168] demonstrated through response theory that left eigenstates can also
be detected in these devices; the right wave function specifies the response to external
excitations, and the strength of response from the location of the disturbance is obtained
by the left wave function. Based on this mechanism, when taking the response from
the left and right wave functions into consideration, Schomerus [168] suggested that the
skin effect is dependent on the phase transitions, and perturbations at the critical point
for the phase transition lead to the divergence of sense. In this way, the biorthogonality
of these non-Hermitian systems provides the results beyond the characteristic energy
spectra. In addition, Brandenbourger et al. [166] and Ghatak et al. [167] studied the skin
effect within experimentally elastic lattices when considering the feedback interactions in a
non-local way.

The results provided by Rosa and Ruzzene [169] demonstrated that the bulk wave
was able to be localized at various boundaries under the non-local control. In this way,
corner localization can be formed through designed interactions. Scheibner et al. [170]
demonstrated that an antisymmetric dynamical matrix D = —DT can be constructed
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with mechanical metamaterials. Odd elasticity was applied to realize non-conserving
interactions. Furthermore, with the design of odd elasticity, bulk elastic waves can appear
at the boundaries of one- and two-dimensional metamaterials [171], and host topological
phase transitions. These phase transitions are modulated by the annihilation of active
exceptional rings and gyroscope metamaterials [172]. Yoshida et al. [173] reported the
realization of exceptional rings appear in mechanical metamaterials with friction.

In addition, phononic or acoustic materials [174] and metamaterials have been shown
to host phononic edge states in microtubes [175], quantum spin Hall edge states in the
form of elastic waves [176], and surface acoustic waves with negative refractive index
on the surface of phononic Weyl semimetal [177]. Chiral edge states of quantum Hall
effect can be implemented in a setup where acoustic waves propagate through rotating
fluids arranged in crystals [178], and NH phase can be achieved through reasonable gain
and loss. Shi et al. [179] implemented a PT-symmetric model where the gain is achieved
through coherent acoustic sources, in which they obtain complete control over EPs and
unidirectional transparency. Aurégan and Pagneux [180] also developed a PT-symmetric
acoustic metamaterial in airflow ducts with gain and loss through the scattering of acoustic
waves of diaphragm. Similarly, Rivet et al. [181] demonstrated that acoustic waves with
constant pressure can exist in acoustic waveguides with gain and loss, while Zhu et al. [182]
achieved EPs in lossy acoustic systems and demonstrated unidirectional propagation.
Additional theories proposed to achieve PT symmetric second-order topological phases in
acoustic metamaterials with gain and loss [183,184], as well as invisible acoustic sensors
with PT symmetry [185]. In addition, more interesting topological phenomena based on
acoustic materials have been reported and summarized [186-190].

3.2. Quantum Open Systems

In the above description, we reviewed the results of topological phases displayed on
different classical platforms. However, there are some topological properties that cannot be
fully demonstrated by classical systems. These properties are often related to the collective
dynamics of multiple creation and annihilation operators, such as the topological properties
of quantum open systems. In these quantum systems, there will be collective effects
involving many creation and annihilation operators, such as the complicated couplings of
quantum jump operators in quantum open systems, and so on [191-198].

3.2.1. The Lindblad Form in Quantum Open Systems

The introduction of non-Hermiticity in quantum many-body systems is the quantum
dissipation caused by the coupling between the system and its environment. Experiments
are usually conducted in the case of weak coupling between the system and a Markovian
reservoir, where the Markovian reservoir is represented by the continuous electromagnetic
field modes. In such situation, the evolution of the reduced density matrix p of an open
system is described by the Lindblad master equation as follows:

where the jump operator L, represents the coupling between the system and the environ-
ment. In order to intuitively understand the interplay between coherent quantum dynamics,
dissipation, and topology in complex quantum many-body systems, the Lindblad equation
can be written as 90 = i(pH; — Heftp) + L LupL}, where the effective NH-Hamiltonian
matrix is as follows:

i
Hetg = H =53, LiLn, (31)

which describes the dynamics of the system at short times [169]. At longer times, jump
(or recycling) terms ¥, L,pL} cannot be ignored, leading to decoherence (mixed states),
while the effective non-Hermitian descriptions are constructed through less general pure
states. Consider that the steady state of the Lindblad equation is identical to the ¢ — oo
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state governed by the non-unitary time evolution of the effective NH-Hamiltonian matrix.
A simple and effective method to achieve this is to use L,|¥) = 0 to reverse engineer
models [199], which selects the ground state |'¥) of the Hamiltonian by using a suitable
Lindblad jump operator. This method is particularly suitable for preparing topological
phases, which have parent Hamiltonians composed of noncommutative terms that can be
simultaneously minimized. It can serve as an effective method for utilizing dissipation
and intuition from NH-Hamiltonian matrices to realize essentially Hermitian topological
phases. For Gaussian systems described by the Lindblad equation, an effective NH de-
scription with damping matrix Hp can be systematically derived [200-202], which reflects
different topological characteristics from the aforementioned effective NH [203]. Due to Hp
determining how to suppress steady-state deviations, the long-time limit of the Lindblad
equation is described. The non-Hermitian skin effect can be extended to the Lindblad case,
and exceptional points can also occur within the Lindblad master equation framework.

The material junction in the quantum transport setup provides another possibility for
realizing the NH topological phase and has been experimentally verified [203,204]. We
now consider a setup where one side of the junction is considered a thermal reservoir
(lead), which induces self-energy on the surface of system, resulting in an effective NH-
Hamiltonian system Hyy = H + )} (w), where H is the Hermitian-Hamiltonian matrix of
the isolated system, )| (w) representing the self-energy close to the chemical potential field
w, reflecting the coupling between the system and the thermal reservoir. All eigenvalues
of Y} (w) satisfy Im[E] < 0. Since ) (w) is usually non-Hermitian, it can have significant
implications on the topology of interface states. This has been investigated in the super-
conducting junction with EPs [205-208], as well as in the interface between the topological
insulator and the ferromagnetic leads [209,210]. In the latter case, the Hall conductance of
the gapped phase loses its quantization [211,212], marking the destruction of the topology
of the system that is well known from the Hermitian limit. However, the non-Hermiticity
of this setup can also enhance topological properties; when the ferromagnet breaks the time
reversal symmetry, it is predicted that it will typically open a gap. As shown by Bergholtz
and Budich [213], there exists a critical magnetization angle beyond which dissipation
overcomes the gap, thereby promoting the symmetry-protected surface topology to a nodal
NH topology phase with EPs and NH-Fermi arcs that is independent of any symmetry.

NH topology may also occur in the boson Bogoliubov—-de Gennes (BdG) problem.
A general mapping between parameter-driven Hermitian bosonic models [211] and non-
Hermitian—-Hamiltonian models beyond BdG formalism can be used to implement NH
topologically nontrivial models in Hermitian bosonic systems [212]. In addition, shaken
cold atoms in optical lattices provide another platform for topological physics, and atomic
losses can trigger the NH skin effect [213-219].

3.2.2. Emergent Dissipation in Closed Systems

Consider a quantum closed system that undergoes a unitary time evolution without
dissipation. However, for interacting quantum many-body systems, their observables
obey nonlinear equations of motion. Studies suggest that dissipation in the form of emer-
gent non-Hermiticity can significantly affect the low-energy description of interacting
and disordered quantum matter [220-226]. Similar to the concept of eigenstate thermal-
ization [224,225], is a nonintegrable quantum system with a large number of degrees of
freedom, which itself serves as a local observable thermal reservoir. In this situation, quasi-
particles have a finite lifetime due to momentum scattering off each other or at impurities,
the corresponding self-energy is non-Hermitian and can feature exceptional degeneracies
and concomitant phenomena.
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There have been studies proposing the emergent topological NH phenomena in
heavy fermion systems, which are natural due to the extreme renormalization of bare
electron properties [221]. Nodal semimetals are ideal systems for realizing NH Nodal
phases [222,226-229]; strongly correlated Kondo materials [230] and magnons (spin-wave
excitations of quantum magnets) are also ideal platforms for NH topology. Bosonic BdG
also exists in magnons, providing an alternative way to achieve the NH phenomenon. In
the early days [231,232], the idea of emergent EPs was also proposed early in nodal-line
semimetals in the presence of external magnetic fields and radiated by circularly polarized
light. Furthermore, the relationship between non-Hermiticity and superconductivity has
been investigated at the level of a toy model [233].

4. Applications of Symmetry-Related Topological Phases in Quantum
Information Processing

So far, we have reviewed topological phases under different symmetries and their
implementations in various classical and quantum systems. However, topological proper-
ties are not only studied as a phenomenon, but as a means of controlling states to achieve
efficient energy or information transmission. Among them, the use of exceptional points
to achieve chiral topological control and transmission of energy can be viewed as a good
application of topological properties.

4.1. Chiral Phenomenon of Dynamic Encircling Exceptional Points

In 1999, W.D. Heiss found that, in non-Hermitian systems with EPs, one can implement
the exchange of two eigenstates when a circle of adiabatic evolution enclosing an EP
happens using quasi-static dynamics [234]. In addition, when the Hamiltonian encircles
EPs twice, the Berry phase is 7. This phenomenon is different from the Hermitian system
where, after encircling the diabolic point (DP), the eigenstate returns to itself and only
obtains one geometric phase, namely the Berry phase. Studies suggest that the state flip
caused by the so-called adiabatic encirclement of EPs is due to the self-orthogonal of the
complex Riemann surface around EPs.

Uzdin et al. conducted further research [235] and found that when dynamically
encircling the EPs, non-adiabatic phenomena may occur depending on the initial state.
This property leads to asymmetric state flips and reflects a fundamental property of gain
and loss systems; the adiabatic theorem does not apply to all eigenstates. As research
deepens, it has been found that, in dynamic encirclement, the output state is predicted
to be determined only by the rotational direction in the parameter space, independent of
the input state. The chiral behavior is a manifestation of the destruction of the adiabatic
theorem in non-Hermitian systems with gain and loss [236-238].

Figure 2 provides a more intuitive display of the differences in the results of encir-
clement evolution between Hermitian and non-Hermitian scenarios [239]. In Hermitian
systems, the adiabatic theorem states that the topological properties of Hermitian systems
originate from the Berry phase that they possess after a slowly encircling evolution in the
parameter space. This phase is entirely determined by the geometric properties of the loop
and, after the system undergoes the encircling evolution, the eigenstate remains unchanged
except for the Berry phase, thus returning to the initial state (see Figure 2C,E). While in
non-Hermitian systems, the above situation is changed. The symmetries in non-Hermitian
systems, such as PT-symmetry, will lead to the existence of EPs in the system which, in
turn, will result in the final state of the system when the dynamic encircling evolution is
not identical to the initial state. Different chiral loops will lead to different final states. The
loop no longer corresponds to a circular ring in Hermitian systems, but to a Riemannian
surface similar to a Mobius ring (see Figure 2D,F), which is a manifestation of the typical
topological properties in non-Hermitian systems.
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Figure 2. Different topological features corresponding to the encircling evolution of Hermitian and
non-Hermitian systems [239]. (A) the energy surface of the Hermitian system. (B) the energy surface
of the non-Hermitian system. (C,D) the qua-si-static encircling in the Hermitian and non-Hermitian
systems. (E,F) the dynamic encircling in the Hermitian and non-Hermitian systems. Reproduced
with permission [239] Copyright 2022, AAAS.

4.1.1. Implementation of Dynamic Encircling Exceptional Points in PT-Symmetry Systems

The PT symmetry in non-Hermitian systems leads to the existence of EPs. Although the
topology of EPs have been experimentally explored [240,241], this chiral behavior has not
been experimentally probed due to the difficulty in manipulation, since the phenomenon of
the adiabatic destruction of dynamic encircling EPs was theoretically proposed in 2011. In
2016, Doppler et al. first implemented the process of dynamic encircling EPs through a dual-
mode waveguide with appropriately designed boundaries and losses and observed the
corresponding phenomenon [238]. They guided the incident wave to bypass the exception
point and induce mode conversion during transmission, transforming the device into a
powerful asymmetric switch between different waveguide modes. At the same time, H. Xu
etal. also realized the same phenomenon in low-temperature optomechanical systems [237]
and demonstrated the energy transfer between two vibration modes using topological
operations. Due to the representativeness of waveguide systems, we will provide a detailed
introduction to the experimental implementation in waveguide systems.

In the experimental scheme proposed by Jorg Doppler et al., an open system with
two resonant modes coupled can be described by the following 2 x 2 non-Hermitian—

Hamiltonian system:
H—((S_i%/z 8 ) (32)
8 —iv2/2

Here g represents coupling, J represents detuning, y; and 7, are the loss rates of
two modes, respectively. When ¢ = 0, the Hamiltonian is PT-symmetric. Under specific
parameter settings, such as 6 = 0 and g = |1 — 72//4, eigenvalues and eigenvectors will
degenerate, which is the signature of EPs. In their design, the neighborhood at this point
presents a self-orthogonal Riemann surface structure. EPs are located at the branching
point where the Riemann surface splits. It is precisely this topology and gain-loss that
allows us to bypass EPs, causing two eigenmodes to exchange or undergo non-adiabatic
transitions back to themselves. This evolution requires continuously changing two system
parameters along a closed path in the parameter space.

To observe the phenomena in practical systems, the Hamiltonian in Equation (32) is
mapped to the microwave transmission problem of a smooth deformed metal waveguide
with absorption. The waveguide is along the x-axis direction, and the following discussion
is limited to a single transverse dimension y. Within this framework, the parameters encir-
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cling of the 2 x 2 model shown above are transformed into slow variations by modulating
along the periodic boundaries of the waveguide. At the EP, the Bloch wave number K and
Bloch mode A of the electric field distribution @(x,y) = A(x,y)e’* degenerate simultane-
ously. Furthermore, the harmonic solution ¢(x,y) = @(x,y,t)e ! of the oscillating field
with frequency w follows the Helmholtz equation as follows:

AD(x,y) +V(x,y)2(x,y) =0 (33)

Here A is the two-dimensional Laplace operator, V(x,y) = s(x,y)‘z’—zz is the com-

plex potential proportional to the dielectric function ¢, and c is the speed of light. For a

straight rectangular waveguide with a fixed width of W in the y-direction, the solution of
Equation (33) without dissipation is as follows:

@n(x,y) = un(y)e™ (34)

The transverse mode function is u,(y) = sin(nmry/W) and the wave vector is k, =
Vw?/c2 —n212 /W2. By selecting the suitable input frequency w, the transmission problem
can be naturally reduced to only two propagation modes n = 1,2. To achieve controllable
coupling between these modes, we consider a waveguide that is influenced by a boundary
modulation ¢(x) = osin(k,x). By selecting boundary wave numbers k, = k1 —kp + 6
(9] < kp), near resonance scattering can appear between fundamentally different modes
@1 and Jy. The complete solution of the field can be written in the following form:

I(x,y) = a1(x)21(x,y) + az(x)D2(x, ) (35)

The amplitude of a slowly changing mode is described as follows:

Cl(x)> ( Vikyo (x) ) —idx

, = = - 36
yxy) (Cz(x) V=ikaa(x) ) 36
By using the Floquet Bloch hypothesis, a Schrodinger type equation can be obtained

as follows: ’
o0 (Tt ) @

The slow variation of the parameters g and J in Equation (32) can be achieved through
the smooth variation of the potential field V(x,y) in the waveguide. Through placing
an absorbing material at the center of the waveguide can lead to losses due to the odd
or even nature of 11(y) and uy(y). All parameters of the non-Hermitian-Hamiltonian
system in Equation (32) can be determined in waveguide experiments. However, the
Hamiltonian here is not used to describe temporal dynamics, but to describe longitudi-
nal mode propagation. Therefore, the theoretical scheme of encircling EPs with time t
corresponds to waveguide boundary parameters that slowly vary along the propagation
direction x. Through the correspondence between the waveguide and the Hamiltonian, the
phenomenon of encircling EPs can be observed in experiments.

Since the chiral phenomenon was experimentally verified, this field has attracted many
attentions and made some important breakthroughs. For example, in 2018, Zhang et al.
pointed out that the chirality of the dynamic encircling EPs in a ferromagnetic coupled
waveguide actually depends on the starting point of the loop [242]. Especially, when the
loop of dynamic encircling EPs starts from the PT-symmetric phase, the chiral behavior
will disappear.

In 2021, Du’s research group first realized the evolution of dynamic encircling EPs
in a real quantum system, i.e., an atomic single spin structure, and also observed related
phenomena [243].
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4.1.2. Dynamic Encircling Exceptional Points in APT Symmetric Systems

The Hamiltonian system used in the waveguide experiments above satisfies PT-
symmetry when one of its parameters is 0. The anti-parity—time- (APT)-symmetric sys-
tem, whose Hamiltonian follows {PT, H} = 0, has recently attracted widespread atten-
tion [244-247]. Mathematically, the APT-symmetric Hamiltonian can be obtained by mul-
tiplying the PT-symmetric Hamiltonian with the imaginary number “i”; constructing a
realistic APT-symmetric system is challenging as it requires the coupling between two states
to be purely imaginary. Therefore, there are few experimental works on APT-symmetric
systems. APT-symmetric systems also have EPs, but different Hamiltonians may lead to
different physical phenomena. Therefore, it is very important to explore the unique features
of APT-symmetric systems through experiments and apply them to new applications,
especially those that cannot be achieved in traditional PT-symmetric systems. In 2019,
Zhang et al. experimentally achieved the dynamic encircling of EPs in an APT-symmetric
system [248], using the following Hamiltonian model:

(gt +istt) ik
H(t)< Sk g(t)i&(t))’ (38)

where ¢ and ¢ represent coupling and detuning, respectively. When é = 0, the Hamiltonian
satisfied APT-symmetry {PT, H} = 0. Subsequently, they utilized a waveguide platform to
achieve dynamic encircling of electromagnetic pulses. The experimental platform consists
of three waveguides with an absorber in the middle. As shown in Figure 3, the distance
between the two gaps continuously changes along the waveguide, making the transmission
of electromagnetic waves through the system equivalent to a loop encircling EPs in the
parameter space. Research has found that chiral transmission behavior occurs when
the starting/ending point is located in the PT-broken phase, where the eigenmode is a
symmetry-broken mode. This is opposite to PT-symmetric systems, where chiral behavior
only applies to symmetric and anti-symmetric modes. The discovery of new physics in
APT-symmetric systems can lead to new applications, where symmetry-broken modes
can be used for asymmetric mode switching, which cannot be implemented using PT-
symmetric systems.

Figure 3. Chiral mode switch in an APT-symmetric coupled waveguide system [248]. (a) the structure
of system; (b) the circling tra-jectory around the EP; (c—f) the evolution results from different inputs
and encircling directions. Figures are adapted from CC-BY open access publications Springer Nature.
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4.1.3. Study on the Efficiency of Chiral Transmission

The efficiencies of chiral transmissions in the experiments introduced in Sections 4.1.1
and 4.1.2 are quite low, mainly because the path related losses generated by slowly en-
circling along a continuous loop around EPs. Due to this inherent low efficiency, chiral
transmission and other non-Hermitian phenomena are still out of reach for technological
applications. The implementation of practical non-Hermitian photonic devices and systems
requires a protocol of encircling EPs that can achieve high transmission efficiency.

In order to reduce the length of waveguide and improve transmission efficiency, the
encircling loop should be reduced while ensuring the parameter evolute adiabatically.
However, if EPs remain fixed in the parameter space, shrinking the loop may be impossible
because the EPs may be excluded from the loop. In 2022, Liu et al. designed and fabri-
cated a non-Hermitian waveguide system based on subwavelength gratings (SWGs) to
demonstrate the mobile electromagnetic pulses in a system [249]. The parameters can be
adiabatically evolved along a smaller loop through a moving EP, which can significantly
reduce the losses compared to fixed EPs, and the mode transparency has significantly
improved. This method of encircling moving EPs has great potential for reducing the path,
such as in highly integrated broadband optical switches and converters for telecommunica-
tions wavelength operation.

In 2020, Chen’s group proposed a new protocol of encircling EPs to overcome the
challenge of low transmission efficiency [250]. The protocol utilizes rapid variations of
a Hamiltonian at the parameter boundaries, known as “Hamiltonian hopping”, which
enables robust chiral mode switching with near unity efficiency. When the parameters of the
system approach infinity, the eigenstates of the Hamiltonian converge, and by transitioning
between these states, chiral dynamics related to the EP can be obtained without path
dependent loss. By mapping the required Hamiltonian parameters onto appropriately
designed coupled waveguides, chiral mode switching was theoretically predicted and
experimentally demonstrated on a standard silicon-insulator platform. Research has shown
that the proposed protocol can realize almost uniform transmission efficiency across the
entire telecommunications spectrum due to its robustness to the encircling path and has
demonstrated an efficiency near 90% in experiments at a wavelength of 1550 nm.

4.2. Topological Transmission of Quantum Entangled States

The development of quantum technology has received widespread attention in recent
years. One important research objective is to achieve efficient and stable quantum infor-
mation transmission and processing. Compared with classical information transmission,
quantum information transmission can achieve absolute security; the speed of quantum
information processing can be improved by orders of magnitude. Although the transmis-
sion and processing of quantum information have many advantages, the quantum states
storing quantum information are very “fragile” and are easily affected by the surrounding
environment, which greatly limits the subsequent transmission and processing of quantum
information. Therefore, achieving stable quantum information transmission and processing
in real physical systems has become a hot topic of concern for everyone. Due to the strong
robustness of topologically protected boundary states to local disturbances, they can be
utilized for quantum state processing.

Recently, the application of topological protection in quantum entanglement trans-
mission has also attracted wide attention. In 2018, Andrea Blanco-Redondo et al. used
a nanophotonic experimental platform to achieve topological protection of two-photon
states [251]. Their experiment was based on a one-dimensional silicon nanowire array
with alternating adjustable length and gaps, which can be used to adjust the coupling
strength between adjacent nanowires and form an SSH lattice. The defects between the
strong couplings of the lattice act as topological interfaces in the SSH lattice model and
generate topological edge states at the interface between the two phases. Two photons are
transmitted at this topological interface and have been proven to have robust spatial modes
against disorder.
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Based on the above platform, the team successfully achieved the first experimen-
tal proof of topological protection for entangled two-photon states of spatial modes in
2019 [252]. Figure 4 shows a scanning electron microscope (SEM) image of a fabricated
lattice, in which two topological defects between long couplings are separated by five
dimers, i.e., ten nanowires, to avoid coupling between the two topological defect modes.
The parameters of the silicon nanowires contained in the lattice in the experiment are length
I = 381 um, height i = 220 nm, and width w = 450 nm. The gaps separating the waveg-
uides alternate between short gaps gs = 173 nm and long gaps g; = 307 nm. Entangled
two-photon states are generated through spontaneous four-wave mixing (SFWM) inside
the photonic chip. At the input of the chip, a mode-locked laser is used to emit 1550 nm
picosecond pulses, which are divided into two arms with equal intensity using a multimode
interferometer. Then point each arm towards the central waveguide in two defects between
strong couplings to excite the two topological modes of the lattice. When short pulses
propagate through silicon nanowires, the high peak power and spatial limitations of light
result in the probabilistic generation of correlated signal and idle photon pairs over a wide
frequency range through SFWM. These frequency dependent photon pairs generate spatial
entanglement. At the output of the lattice, they filter signal photons and idle photons that
satisfy energy conservation at 1545 nm and 1555 nm and detect them separately using
superconducting nanowire single-photon detectors (SSPDs). By measuring the matching
arrival time of the signal and idle photon pairs through a time-correlated circuit (TCC), the
spatial contour of the entangled two-photon state can be drawn. Finally, they demonstrated
that topological structures can indeed protect entanglement from the effects of disorder and
defects by intentionally introducing varying degrees of disorder at waveguide positions.
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Figure 4. Nanophotonic experimental platform for entanglement transmission with topological
protection [252]. (A,B) the topological and non-topological systems. (C) the whole experimental
process for the entanglement transmission. Figures are adapted from CC-BY open access publications
De Gruyter.

In 2019, Jin’s group realized topologically protected two-photon quantum correlation
transmission [253]. In the experiment, they used the direct writing technology of a fem-
tosecond laser to fabricate photonic chips. By creating a non-diagonal Harper lattice model
in borosilicate glass, the model inherited the robust boundary state of a two-dimensional
integer quantum Hall effect and had similar topological features. As shown on the left side
of Figure 5, when the two-photon state evolves in the topological photonic lattice on the
photonic chip, and when the photon is incident from the middle of the chip, i.e., the non-
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topological area, it can be observed that the scattering loss is significant. However, when
incidents from the boundary, due to topological protection, the two-photon at the boundary
is highly likely to be localized at the boundary, preventing scattering loss problems. In the
experiment, they placed the photonic chip with above features in the experimental setup
shown on the right side of Figure 5, a periodically polarized potassium titanyl phosphate
(PPKTP) crystal generated both horizontally polarized photons and vertically polarized
photons with a wavelength of 810.4 nm through a spontaneous parameter down conversion.
After the designed polarization rotation and projection, both are converted to horizontal
polarization with a 25% probability. Then they are injected simultaneously into the lattice
of the photonic chip. Here, the single-photon sensitive enhanced CCD (ICCD) camera
probes the emission distribution of photons, and the avalanche photodiode (APD) detects
the quantum correlation of photon pairs after the fiber splitter. Finally, they obtained
a violation of the Cauchy-Schwarz inequality with high cross-correlation and up to 30
standard deviations by analyzing the quantum correlation of photons starting from topo-
logically nontrivial boundary states. Moreover, they prepared different quantum sources
and experimentally demonstrated the robustness of topological protection to wavelength
differences and the distinguishability of two photons. Subsequently, based on the above
research, the group implemented the topological protection of two-photon polarization
entangled states on photonic chips in 2022 [219]. In the experiment, they utilized laser
direct writing technology to realize the topological lattice of the SSH model on a photonic
chip. BBO crystals were utilized to generate polarized entangled photon pairs, where
one photon is directly received by the detector and the other photon is incident on the
photonic chip for coincidence measurement, as shown in Figure 6. Due to the existence of
topological protection, the entangled state maintains high concurrency and purity during
transmission. The output entangled states of photonic lattices with transmission distances
of z = 20 mm and 140 mm were measured, and the corresponding entanglement degrees
were 0.88 £ 0.02 and 0.95 + 0.02, respectively, while the purities were 0.89 £ 0.02 and
0.94 & 0.03, respectively. However, it can be seen from the density matrix that the fidelity
of the entangled state cannot be maintained continuously during transmission but varies
greatly. This problem also urgently needs to be solved.

QWP HWP PPKTP LPF PBS  Lens Chip
405 nm

laser ﬁv i_ ‘ ‘/

Figure 5. Experimental schematic diagram of implementing topological protection for two-photon
quantum correlation [253]. Figures are adapted from CC-BY open access publications Optica Publish-
ing Group.
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Figure 6. Schematic diagram and results of the experiment on topologically protected two-photon

polarization entangled state transmission [254]. (a) the obtained density matrices at different positions

during the transmission. (b,c) the con-currence and fidelity at different positions. Figures are adapted

from CC-BY open access publications Elsevier.

Zhang's group constructed a special type of topological channel using an anti-design
method, effectively solving the problem that the fidelity of quantum entangled state trans-
mission rapidly decreases with transmission distance [255-258]. In the topological channel
they designed, quantum entangled states can maintain high fidelity suffering transmission
or conversion, and the idea has been verified in experiments based on a photonic quantum
walk platform. As shown in Figure 7a—d, they incident the two-photon maximum entan-
gled state into the constructed topological channel. At each step of quantum walk, the
angle at which the photon passes through the half slide is determined through anti-design.
Compared with directly transmitting entangled states in a topological channel without
an anti-design, the topological channel designed in this way can provide a sufficiently
high localization probability and extremely high fidelity for the quantum entangled states
transmitted in the topological channel, as shown in Figure 7e. Furthermore, they also
introduced the corresponding approach of an anti-design topological channel into the
entangled state conversion. After the anti-design, the topological channel can maintain
a high probability of localization during the process of entangled state conversion. The
transformed entangled state also has extremely high fidelity, as shown in Figure 7f. The
relevant results not only provide new ideas for optical quantum information processing,
but offer excellent application scenarios for the study of topological photonics.
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Figure 7. (a) Preparation of Two-Photon Entangled States. (b) Multi-step quantum random walk. The
quantum random walk of each step consists of a translation operator (S and S_) and a coin operator
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topological channel. (c) The final state by coincidence measurement. (d) List of components. (e) The
perfect transmission of entangled states |@) = %( |00)+|11)). Even after 5 steps, there is still a
high fidelity (above 98%, brown line) and a high localization probability (green line); (f) The perfect
conversion of entangled states (|@1) = %( [00)+[11)) — |@4) = %(|01)—|10)) ); After 4 steps, the
fidelity between the output states |@) is extremely high (above 99%, brown line), and the localization
probability is also high (green line) [255]. Reproduced with permission [255] Copyright 2022, Wiley
Online Library.

Furthermore, the research group designed a non-Hermitian quantum walk and
achieved efficiently topological control on quantum states. The research group studied
the phenomenon of quantum state transition encircling exceptional points and exceptional
lines both in theory and experiment based on a non-Hermitian quantum walk platform.
Compared with the case of encircling exceptional points, it was found that the final state of
the evolution encircling exceptional line is independent of the initial state and evolution
direction, and the transfer of quantum states is more efficient. Moreover, the group has
developed a robust method for entangled state generation that is insensitive to the incident
state and has been experimentally verified [257]. Furthermore, an effective solution is
provided for realizing high fidelity and stable operation of quantum entangled states by
designing fourth-order degenerate exceptional points and realized topologically protected
entangled state chiral switches. Due to the fact that the designed Riemann energy sur-
face with degenerate exceptional points shares the same eigenstates with entangled states,
asymmetric transformations between entangled states can be achieved by encircling excep-
tional points. Due to the topological properties of the Riemann surface, the manipulation
of entangled states is topologically protected. In addition, these phenomena have been
experimentally demonstrated through the construction of a quantum walk platform [258].

5. Conclusions and Outlook

In this review, we start with symmetry and analyze the topological phases that will
form under different symmetries, as well as the topological properties. When consider-
ing chiral symmetry, time-reversal symmetry, and particle-hole symmetry, ten different
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topological phases will form in Hermitian systems; When other symmetries, such as mir-
ror symmetry, are introduced, more topological phases will be formed. In addition, in
non-Hermitian systems, due to the differences between the transpose operation and the
Hermitian conjugation operation, more topological phases will also be formed. Next,
we reviewed the observation of topological phases on different experimental platforms
and the topological phenomena unique to quantum systems. Then, for the application of
topological phases, we conducted a detailed exploration using chiral energy transfer as an
example and reviewed the research on the application of chiral topological modulation to
the quantum information processing.

Current research on topological properties is no longer limited to topological phases
related to symmetry. Currently, research on topological phases related to asymmetry
has also received great attention, such as topological phase transitions caused by dislo-
cations and tailored structures [259-261]. The research on many-body systems and open
systems is also developing, such as the skin effect generated in many-body systems and
the phase transitions related to measurement and feedback generated in quantum open
systems [262-266]. In particular, the observation of chiral topological dynamics has been
realized on a digital quantum computation, which combines the advances of quantum
computation and topology [262,263].

The use of topological phenomena in non-Hermitian physics to achieve topological
protection of entangled states has been a focus of research in recent years, as it provides
a feasible path for the practical application of quantum entanglement as an important
resource. However, due to the complexity of the work, it is also highly challenging.
Therefore, as an emerging and important direction, there are still many issues that need to
be addressed. Here, we provide a brief summary of the prospects for future work:

Firstly, current work utilizing non-Hermitian topological phenomena mainly focuses
on manipulating Bell states, while there has been no progress in research related to higher
dimensional entanglements, such as GHZ states. To address this issue, it can be achieved
by increasing the dimensionality of the studied system, but it also requires topological
phenomena in high-dimensional non-Hermitian systems as a basis. Therefore, utilizing
high-dimensional quantum walk models to study and discover new high-dimensional topo-
logical phenomena, and extending to the application of GHZ states, is a highly worthwhile
direction for research.

Secondly; it is very hard to realize photon coupling in free space, but in waveguide
systems on integrated chips, photon coupling can be effectively achieved by adjusting the
distance between adjacent waveguides, and the non-unitary evolution of entangled states
on integrated chips is much easier to achieve. Therefore, it is also necessary to combine non-
Hermitian topological theory with integrated chip systems and further expand it [267-269].
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