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Abstract

String theory suggests that our universe is but one of a vast number of possible
universes, with each universe corresponding to a minimum in the so-called landscape.
Because of the complexity of the landscape, direct analysis is very difficult. In
this thesis, we adopt an indirect approach: we model the landscape as a random
Gaussian field, deriving baseline expectations for the landscape’s properties based
solely on large-number statistics. We find that many of the properties of the
landscape depend on a single parameter, v, that is related to the power spectrum
of the landscape. We further calculate numerous properties of interest, such as
the probability of finding a minimum with a positive vacuum energy, the slopes of
the potential near such a minimum, and the inflationary slow-roll parameter n at
saddles with one downhill direction. We identify regions of the parameter space
where inflation is viable, as well as regions in which a universe resembling ours can

occur.
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Chapter 1

Introduction

1.1 Introduction

In the beginning, there was the Big Bang. Shortly after the Big Bang, there was
inflation.!

The mechanism responsible for inflation is unknown. The leading framework is
so-called “slow-roll inflation”, with inflation driven by a single, minimally-coupled

scalar field called the inflaton. Slow-roll inflation is described by two parameters,

M2 7\ 2
o Mp (Y
V//

Vv

(1.1)
n=M;

where Mp is the Planck mass SZ—CG, V' is the the inflaton potential, and V’ is its
derivative with respect to its parameters ¢.2 Inflation occurs when the slow-roll
parameters € and 7 are small, which happens when the first and second derivatives
of the inflaton are small. Therefore the universe inflates whenever the gradient of
the inflaton is small, hence the name “slow-roll”.

Inflation ends once the slow-roll parameters are no longer small.® After rolling

'In this thesis, we assume inflation happened. There is strong evidence that inflation happened
[40], but it remains a hypothesis.

2Here we use the common notation denoting the inflaton as V().

3Strictly speaking, inflation ends once € = 1, and furthermore, 1 does not need to be small to
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Figure 1.1: In this toy example, our universe would inflate when the inflaton V'(¢)
is on the left where the gradient is small, before eventually settling at the minimum.
The inflaton value at this particular minimum is zero, implying that the vacuum
energy is zero. (Arbitrary units)

down the inflaton potential, the universe eventually settles in a minimum (see Fig.
1.1). The value of the inflaton potential at this minimum manifests as vacuum
energy.* If the vacuum energy is positive, it is repulsive, which is especially relevant
because observations indicate our universe contains dark energy. If the vacuum
energy is negative, then it is attractive, and the universe will eventually contract

into a Big Crunch.
Although the nature of the inflaton is not well-understood, the high energy scale

of inflation suggests that string theory is a natural setting in which to investigate

have inflation (see ultra slow roll inflation [2]). However, getting inflation with n > 1 requires
tuning: without it, a large n would imply that V" is large, and by extension V' (and therefore ¢)
varies wildly. We can have inflation with > 1, but probably not prolonged inflation.

4Vacuum energy is the energy present in a vacuum. Intuitively, we might expect this to be zero,
but there is no a priori reason it has to be zero. Indeed, if dark energy is due to a cosmological
constant, there would be positive vacuum energy.



it. String theory includes 10 or 11 space-time dimensions, which is clearly at odds
with the 4-dimensional universe that we observe. To make the theory compatible
with observations, we need to “compactify” the extra dimensions — i.e., find a way
to roll up the extra dimensions until they are small enough to evade detection.
There are many different ways to perform these compactifications in string theory,
not all of which are compatible with gravity. These inconsistent theories are often
referred to as the “swampland”, while the remainder form the “landscape”. In this
picture, one of the theories in the landscape is the Standard Model of our universe.

The string theory landscape is extremely (possibly intractably) complicated.
The number of scalar fields (“moduli”) that can be used to construct a new theory
is in the hundreds, possibly thousands. Estimates for the number of minima
(“vacua”) range from 10°% to 10?™% [3].5 The landscape effectively defines the
“overall” laws of physics. However, the “effective” laws of physics at low energies®
vary with position in the landscape. The vast number of vacua in the landscape
has historically led string theorists to assume that there must be a vacuum with
low-energy properties that correspond to our Standard Model.

Making sense of the landscape is a tantalizing prospect, because it can potentially
answer some of the deepest questions imaginable. Traditionally, physics has had
no good answer to the question, “Why does our universe have the laws it does?”
Perhaps the only possible explanation was the Anthropic Principle — if the universe
didn’t have those laws, then there wouldn’t exist intelligent life which can ask “why?”
in the first place. This anthropic reasoning makes many people uncomfortable [5].
However, in the context of the string landscape, we can frame probabilities for why
the laws of physics are what they appear to be.

Because the string landscape is so complicated, it is not easy to make sense of
it. Nonetheless, there are attempts at deriving constraints on the landscape. The
swampland congectures [18, 19, 20, 21] attempt to delineate precise conditions that
must be obeyed by all vacua in the landscape. An example is the weak gravity
conjecture [6]. In our universe, gravity is by far the weakest of the four fundamental

forces. The weak gravity conjecture goes further and suggests that, for a theory

5For comparison, an order of magnitude estimate for the number of atoms in the observable
universe is 1050 [4].

6Here “low energies” refers to Large Hadron Collider scales and below — the regime which we
have probed with experiments.



to be consistent, it must require that gravity is the weakest of the four forces. If
the conjecture is true, it would draw a clear line separating the landscape from the

swampland.

An alternative way to approach the landscape is to treat it as a purely random
function, or in practice, a random Gaussian field. 1f a field F' is written as a sum of
Fourier components, and if those Fourier components are independent and random,
then the sum of sufficiently many terms would tend towards a random Gaussian
field by the Central Limit Theorem. There is no guarantee that the terms that
make up the landscape are indeed random and independent, but this approach
sets a baseline expectation — it depends solely on the landscape being comprised of
many terms. This is the simplest choice for a random field, depending primarily on
large-number statistics and without requiring any knowledge of their interactions,
no matter how complicated they may be. Any significant deviation from this

baseline expectation would, in turn, point to “structure” in the landscape.

The first work utilizing this ‘random’ approach was by Aazami & Easther [7].
The authors investigated the eigenvalues of random Hessian matrices associated
with extrema of a random function. From the purely mathematical constraint that
derivatives commute,” the Hessian matrices are symmetric. The eigenvalues of
random symmetric matrices converge to a semicircle distribution in the limit of
large number of dimensions, a result first derived by Wigner in the 1950s [8, 9].
The Wigner semicircle is evenly distributed around zero, implying equal numbers
of positive and negative eigenvalues. In our case, we are interested in minima,
which is equivalent to requiring that every eigenvalue of the Hessian at the point
under consideration is positive.® This requires a massive deviation from the Wigner
semicircle. If we assume that each eigenvalue has equal probability of being positive
or negative, then because there are N eigenvalues in an N-dimensional case, we
get that the probability of a minimum is 27". Aazami and Easther argued that

this simple estimate is too large: assuming that the elements of the Hessian are

"Mathematically, 8/0z(0V/dy) = 8/0y(dV/0z).

8The work on which we build in Section 2 [54] uses the opposite sign convention, where maxima
have positive eigenvalues. The difference arises from the characterisation of random density fields,
for which the gravitational potential has a minimum where the density has a maximum. We
will work with this convention for consistency, but will be careful to resolve any ambiguity when
discussing physical results in the landscape.



random numbers drawn from identical and independent distributions, eigenvalues
are very unlikely to take nearly-equal values, a phenomenon called “eigenvalue
repulsion”. This renders the probability of a minimum much smaller than 2.
Aazami and Easther calculated that minima are super-exponentially (oc eV 2)
suppressed, and therefore minima are vastly outnumbered by saddles. Chen et al.
also described this result [10]. However, this early result was later shown to be
incomplete, because the individual elements of the Hessian are not independently
random [11, 32]. This leads to a density of minima that still decreases exponentially,
but not super-exponentially. The result is more minima, although minima are still

drastically outnumbered by saddles. [32, 33].
Following on this early work, Tye, Xu and Zhang investigated the density

perturbations that might emerge from inflation driven by multiple random Gaussian
fields, concluding from general arguments that the universe will likely undergo
Brownian-like motion on top of the overall drift towards lower values. They
found that in the case where scattering is frequent but weak, the resulting power
spectrum is similar to that of single-field slow-roll inflation; but in the case where
scattering is frequent and strong, much more interesting things happen, such as
detectable features in the Cosmic Microwave Background (CMB) power spectrum
[16]. However, this scenario also leads to an enhanced tensor-to-scalar ratio in the
CMB, which is not supported by recent results [43, 57]. Another feature found by
Tye, Xu and Zhang is that non-Gaussianity is suppressed, a feature observed to be
generic to random Gaussian fields by Frazer & Liddle and Bjorkmo & Marsh using
different methods [17, 23].

Separately, numerous papers have developed the overall problem of large excur-
sion statistics of random matrices. Utilizing a random matrix theory approach, Bray
& Dean computed the number of critical points (including both minima/maxima
and saddles) as a function of their field value and their index — the number of
positive or negative eigenvalues — and arrived at the intuitive result that above a
certain threshold energy, almost all critical points are maxima [12]. Also utilizing
random matrix theory, Dean & Majumdar investigated the probability of large
deviations in the eigenvalues at critical points from the average value [13, 14] and
Majumdar et al. calculated the probability distribution of the number of positive

cigenvalues [15]. All these studies involved a large N limit, an assumption that
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might not work well for the string theory landscape, where N ~ 100 and is not
necessarily “large”.

An alternative way to view the word “random” is in the context of random
functions. These are random elements in the space of all possible functions. A
very simple example of how one might generate a random function is to take
the Taylor expansion near a critical point and draw the coefficients of the Taylor
expansion from a random distribution. Papers utilizing the random function
approach include Agarwal et al. [22] and Bjorkmo & Marsh [23, 24]. All three
papers study the probability of getting inflation that yields observables matching
observations, such as the probability of getting at least 60 e-folds of inflation in
the landscape. Agarwal et al. found emergent properties in the generated random
potential, and in particular the probability of getting N, e-folds of inflation prior
to a waterfall transition scales as P(N.) oc —N3. This result implies that long
periods of inflation are unlikely, with short bursts being the most probable; in
particular the fraction of inflationary trajectories that yield 60 e-folds of accelerated
growth is only about 107°. This low probability is also the conclusion of He et al.
[25]. Nonetheless, if we examine only the regions of the random potential in which
inflation lasted for 60 e-folds, Bjorkmo & Marsh found that compatibility with
Planck’s results is not rare [23].

Yet another approach is Dyson Brownian motion. Originally proposed by
Freeman Dyson [29], the method evolves the elements of the Hessian and/or its
eigenvalues stochastically with the Langevin equation. This can then be used
to find the equilibrium eigenvalues (i.e., the eigenvalues at the minimum), or to
calculate the universe’s trajectory in the landscape as it evolves. It should be
noted that the Dyson Brownian motion method is fundamentally different from
the random Gaussian field method, and hence the two can yield different results.
However, at large N, the two methods converge [23].

Using the Dyson Brownian motion method, Marsh et al. investigated the
inflationary trajectories of specific universes, a problem which had previously
appeared computationally prohibitive [26]. Marsh et al. successfully sidestepped
the heavy computational costs by only realizing the potential around the specific
trajectory. The Hessian matrix is then evolved via Dyson Brownian motion along

the inflationary path. The conclusion was that a prolonged period of inflation is
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unlikely because eigenvalue repulsion causes the gradient near a saddle to grow
[26]. This result was later extended to suggest that the probable resulting power
spectra from inflation are not compatible with observations [27]. Simultaneously,
theoretical problems with using Dyson Brownian motion to create an inflationary
trajectory (such as the fact that it does not yield the same potential value after
moving in a closed loop) were discovered, leaving the reliability of the approach
in question [27, 28]. Although the method might not generate fully physical
inflationary trajectories, it is still useful for investigating the eigenvalues of the
Hessian at a saddle: it is capable of producing the most probable eigenvalue
distribution at a stationary point that agrees with other methods [34], and its
predictions for cosmological observables [36] also agree with those from random
functions [24]. Using the Dyson Brownian motion method to evolve the eigenvalues
of a random matrix, Dias et al. found that as the number of dimensions is increased,
the predictions for cosmological observables become sharper; furthermore, these

predictions are compatible with Planck’s results [35, 36].

A different kind of question to ask is if the minima are stable. Classically
they are always “stable” (since the gradient is zero at the minimum), but it is in
principle possible to quantum tunnel out of the minimum. Because each minimum
has different effective low-energy laws of physics, if this were to happen, the universe
as we know it will undoubtedly be destroyed. Tunnelling probability depends on
the barrier width and height. Greene et al. first found that the distance between
minima decreases as the number of dimensions (i.e. scalar fields) is increased,
leading to the conclusion that the fraction of minima with lifetimes long enough
to be metastable decreases with dimensions [30]. Masoumi and Vilenkin [31] later
expanded on this result to find that the stability of a minimum is highly correlated
with its energy density, with minima being much more stable at lower energy
densities. This result is intuitive, for we would not expect deep (and therefore
stable) minima at high energy densities where minima themselves are very rare.

Related to the question of stability is the question of how steep the slopes
leading out of the minimum are. This tells us about both the end of inflation and
the heights of the barriers around the minima, since gentler slopes also imply a
smaller potential barrier to quantum tunnel across. This eigenvalue distribution

was analyzed by Yamada & Vilenkin [34] using two different methods. The results
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match the intuitive expectation that the higher the energy density of the minimum,
the gentler the slopes leading out of it on average. Yamada & Vilenkin also calculate
P(min|A), the probability that a stationary point with a given energy density will
be a minimum.

In this thesis, we represent the landscape (the ‘potential’) as a multidimensional
random Gaussian field, which is a function of N independent variables. Within

this model to investigate these questions:

1. How likely is it for a minimum to have a potential value A > 0, written
mathematically as P(A > 0|min)? What fraction of minima can lead to a
long-lived universe, and what is the probability distribution of the possible

values of the cosmological constant in these minima?

2. How large are the eigenvalues leading into the most probable minima? This
sheds light on possible quintessence scenarios in the landscape with one or

more active degrees of freedom.

3. Slow-roll inflation occurs when the gradient of the potential is small. The
natural place in the landscape for this to happen is a saddle with only one
downhill direction (henceforth ‘1-saddle’). How steep is the slope leading out
of typical saddles, and how does this depend on the 1-saddle’s potential value
A?

The first question tells us how likely it is that an observer in the landscape
will observe dark energy.? The second tells us about the end of inflation and the
approach to our current universe. The final question tells us about inflation itself —
in particular, if we can calculate the slow-roll parameter 7, we might be able to say
something about how probable inflation is in the multiverse. We will start with
theoretical derivations in Chapter 2, then deal with the three questions in Chapters

3-5. Finally, we will point out future work and conclude in Chapter 6.

9More precisely, it tells us how likely it is we observe positive vacuum energy. The observed
accelerated expansion of the universe could be due to a variety of reasons, of which positive
vacuum energy is but one of them. Therefore, if this probability turns out to be very low, it does
not show that the universe is not expanding at an accelerating pace.

8



Chapter 2
Preliminaries

Random fields and functions have been widely studied in physics and mathemat-
ics, with applications in statistical mechanics [45, 46], complex dynamics [47, 48],
mathematical physics [49, 51], optics [52, 53] and other fields in addition to cosmol-
ogy. We will start with a mathematical derivation of the relevant theory, before

examining the three research questions in detail.

2.1 Preliminaries

In many ways our approach relies on an N-dimensional generalization of Bardeen,
Bond, Kaiser and Szalay’s (henceforth BBKS) [54] 1985 paper. BBKS’s original
calculation was for 3D, which we extend to N dimensions. In very low dimensions
(N < 3) it is possible to obtain exact analytical results. Conversely, in the large N
limit it is also possible to derive many approximate expressions [55]. In our case,

N is greater than 3 but not necessarily large.
Random fields are defined by BBKS thusly:

An n-dimensional random field F'(r) is a set of random variables, one
for each point r in n-dimensional real space, defined by the set of

finite-dimensional joint probability distribution functions,

P[F(r1), F(ry) ... F(rp)|dF(r1)dF (ry) ... dF(ry) (2.1)

9



that the function F' have values in the range F'(r;) to F'(r;)+dF(r;) for
each of the j = 1,...,m, with m an arbitrary integer and ry,75...,7,

arbitrary points.

This definition is technical, but can be understood on a more intuitive level. The
random field F'(r) maps every point r to a random value. That value depends
on the probability distribution function P, which determines how probable it is
that the field’s value at every point is F(ry), F((ry), etc. Different probability
distribution functions yield different random fields. The particular random field
we are interested in is the random Gaussian field, for which P is a multivariate

Gaussian,
67Q

)y - dyy = ——————dy; .. dy,
o). dy @ryrdetat

where @ = Y yi(M1);;y;/2 and M is the covariance matrix M;; = (Ay;Ay;),

Ay; = y; — (y;). Note in this equation n is not the number of dimensions of the

Py, .. (2.2)

field, but rather the total number of variables being considered. Examples of such
variables are the value of the field, its first derivative, and its second derivative.
We will need all three of these variables because we are dealing with extrema at a
given potential value.

Following BBKS, we use the notation

or
L= : 2.
Th aIZ ( 3)
0’F
Gj = D (2.4)

where F' is the field and the z’s are independent variables. We will also distinguish
between V', which is the potential, and A, which is the potential at a minimum.

The number of minima N,,;, in a region is:

Noin = [ @6 () det(G,)] () (2.5)

where NV is the number of dimensions, \y is the smallest eigenvalue at the minimum,?

IThis foreshadows the notation we will use later: without loss of generality, we order the N
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O is the Heaviside step function, and the integration is over all space. This equation
follows from first principles. The delta functions for 7; indicate stationarity, since
the first derivatives are zero at stationary points. The Heaviside function at the
end enforces the requirement that the stationary point is a minimum, since at
minima all eigenvalues are positive.? If Ay were negative, the stationary point is
no longer a minimum, and the integral gives zero.

The determinant term ensures independence from a change of variables. Re-

member the delta function is defined as:
| = / 5(x)da. (2.6)

Notably, the integration variable needs to be the same as the argument of the delta
function. In Eq. 2.5 the integration variable is x while the argument of the delta

function is n;; a generic change of variables gives:

/dxld:cg Az (fo(@)) S (f(m)) = /dflde RIS 0 (2)

where f is an arbitrary function and the Jacobian J is given by

0x;
det—
df;

_ (2.8)

af;
deta—é

J:

In our case f is 7, so % is just (;;. We therefore need a factor of |det((;;)| in

Eq. 2.5 to cancel this out. Thus far, we have not used the random Gaussian field
assumption.
Now we apply the random Gaussian field requirement (Eq. 2.2). Eq. 2.5

becomes:
e_Q
v/ (@2m)rdet M

eigenvalues of the Hessian as Ay > Ay > A3 ... Ay. For minima, we also have Ay > 0.

2This — minima have positive eigenvalues — is a BBKS convention we also adopt. One could
also take minima to have negative eigenvalues; it changes the math slightly but does not affect
the conclusions, since it is effectively the same as changing the subject of our research questions
from minima above zero to maxima below zero, and these potentials are symmetric about zero.
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In our case the y’s are i, (, and F. The first two are in Eq. 2.5, while the last
will eventually be necessary because we are interested in minima with specific field

values. Therefore we’ll need correlation functions for all of them.

We start with the first one, (F'F). Physically, this is the average of F?, the
value of the field squared. It is reminiscent of the two-point correlation function
between two points Z, i/ of a random Gaussian field F', written as (F/(Z)F(¢)). The
two-point correlation function measures how much knowledge of the field at &
reveals about the field at . Physically, if we know the value of the field at A, we
should know something about the value of the field at a nearby point, A + JA,
but we (usually — it is possible for correlation to increase with distance in certain
regions of field space, especially at low dimensions) know less of the field value at a
more distant point. The correlation function therefore decreases, and physically it
must reach zero at an infinitely distant point. (F'F") corresponds to the two-point

correlation function evaluated at the same position, (F(Z)F(Z)).

To proceed, we consider the power spectrum P(k), which is defined as the

Fourier transform of the two-point correlation function:

1
(2m)»

-
—

/ ¥k (F(Z)F(§))e R, (2.10)

P(k) =

Here N is the number of dimensions (3 in our 3D world, but 100+ for the inflaton).

The inverse Fourier transform then gives the two-point correlation function:

1

(F@F@) = v / ¥k P(k)e ™D, (2.11)

The moments of the distribution are defined as

ol = (2711')N /de; (K*)"P(k). (2.12)

Therefore (F(Z)F(Z)) = o?.

12



y.

For the other correlation functions, we first differentiate Eq. 2.11 and set &

1 0 0 .
@0 (D) = mw a7 | @ kPR

(2m)N 0x' Oy / e 2.13)
= (2;>N/dek;iij(k).

The random Gaussian field is isotropic — the correlation between two gradients
cannot depend on which directions the gradients are in. In other words, (1;(Z)n;(y))
must be the same regardless of the values of ¢ and j. Therefore the correlation must
be proportional to d;; (or it can be constant for all ¢ and j, but that is physically

implausible). So
1

(2m)N
where K is a constant. Multiplying both sides by §¥ and making use of the fact
that in N dimensions §98;; = 6] + 02 + ...+ 5 = N, we have

/ dVE K"K P(k) = Ko, (2.14)

1
(2m)

/de K*P(k) = NK — K = %0%. (2.15)

A similar prescription works for the correlation functions (F(;;) and ((;;Ck)-
For (F'(;;) we get
(F(ij) = S / dNk k'K P (k)
(2m)"
= K,
1

= K = —N(SUO'%

Note the minus sign relative to the (n;(Z)n;(y)) case.

The ((;;(k) case is more complex.

<C13Clm> — (27]_)]\, @J]Z 89&7 8yl aym /d kP(k)e
_ 1 N 1.5 1.l1.m
= @ /d kKK KR P(k).
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Two things to note. First, the expression on the second line is completely symmetric
in 4, j,1,m. Second, isotropy means that the correlation is nonzero only for three
cases: (GiiGjj)s (Gii¢Gji) and (Gi;¢5)- Because of the symmetry of 4, j, [, m, we must also
have that all three correlations are equal to each other, ((;i(j;) = (GiiCii) = (GijGij)-

This lets us write down the expression the correlation must be proportional to:
(GijGim) = K (0ij61m + 0i0jm + Oimdj). (2.16)
Multiplying both sides by d;;0;,, we get

O'; = K(N x N + 5jm5jm + 5jm5jm)
= K(N? +2N) (2.17)
1

S K=ol
2NN 1 2)

Aggregated, the results are the N-dimensional generalization of BBKS equation
Al,

(FF) = oy,

(ms) = 0%

<FCU> ) _%&jai (2.18)
(GiGim) = mag(&j&m + 0adjm + dimdjt)-

See Section 7.1 in the Appendix for an alternative way to derive these relations.

Now we define the vector y:

y={Fn,m,...,C1,2, -, (v Cv—1, 8 SN2, N5 - - - Civs Cv—2, v -1,

2.19
...CLN—l,-“aCl?} ( )

The elements of this vector are the y’s in Eq. 2.9. With this ordering of y, we can
write down the covariance matrix. The general expression is complicated, but as

an example we have the following 10 x 10 matrix in 3-dimensions:

14



(62 0 0 0 —% —% -4 0 0 0]
0 3 3 3
0 Z 0 0 0 0 0 0 0 0
0 0 Z 0 0 0 0 0 0 0
0 0 0% 0 0 0 0 0 0
20 0 0 Z 2 % 09 0 0
M= | o000
-2 0 0 0 7 ZF # 0 0 0
%0 0 0 2 2 Z g 0 0
3 15 15 5 )
0 0 0 0 0 0 0 % 0 0
0 0 0 0 0 0 0 0 % 0
0 0 0 0 0 0 0 0 0 %

This matrix can be constructed directly from Eq. 2.18. The (1,1) element
is the correlation of the first element of y with itself, i.e. (F'F) = o2. The (1,2)
element is the correlation of the first element of y with the second element of y, i.e.
(Fn) = 0, and so on. To simplify the upcoming analysis, we wish to make this

matrix as diagonal as possible. To that end, we adopt the basis transform:

(2.20)

The x,, here are analogous, but not identical, to BBKS’s z, y, z in BBKS’s Appendix
A1. Following BBKS, we also rescale F', introducing v = F/oy. With this choice

of basis the non-zero elements in the covariance matrix become

) =1
(1) =1
(a1} = 2.21)
2n(n — 1)
2=~ (2<n<N
where v = 0%/(0200). For an explicit proof of this result, see Section 7.2.

The only non-diagonal correlation left is between v and z;. For the vector
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y = {v,e1, 22,2, ;... Gy} (where @ > j in the (;; term; note also the
shift in the ordering compared to Eq. 2.19), the covariance matrix M now looks
like this:

14 0 O 0 0 0 0 0]
vy 1 0 0 0 0 0 0 0
00 yagg O 0 0 0 0 0
00 0 x5 0 0 0 0 0
M=100 0 0 00 0 0
00 0 0 0 Z 0 0 0
00 0 0 0 0 0 0
0.2
00 0 0 0 0 0 3y O
00 0 0 0 0 0 0

where the terms in columns 3-5 are for the x’s, and the last two terms are for n

and (;; with ¢ # j. There are N %% terms and yC5 WSH) terms.

Taking the inverse of the covariance matrix and multiplying with the new vector

y, the @ factor in equation (2.2) becomes

2 N N 2

= N(N +2) Nn-q N(N +2)(¢y)

20 — 12 (x1 — ) 2 i)
@=v+ 1—~2 ;;271(71—1):%+ o2 +i;j o3

(2.22)

This is the equivalent of BBKS equation (A4) for N-dimensions. Note that the first

two terms remain constant for all NV, but the remaining terms are N dependent.

Two further simplifications are possible: we are interested in extrema, which
by definition have = 0. Also, we can choose our axes such that ¢;; = 0 if i # j.3

This eliminates the last two terms in Eq. 2.22.

3This corresponds to picking the principal axes of the system in classical mechanics. Alterna-
tively, this corresponds to transforming the symmetric Hessian (the matrix of (’s) into a diagonal
matrix, which is always possible because symmetric matrices S can be expressed as S = PDP’,
where D is a diagonal matrix and P is a unitary matrix.
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2.1.1 The Jacobian

Although we have made progress, we are not yet done. For clarity, we reproduce
the crucial Eq. 2.9:
G_Q

The analysis in the previous section handles M and ),* but there are still terms
in the integral that need to be evaluated. Recall that the y’s (the variables being
integrated over in Eq. 2.9) in our case are F,n, and (. The F' integral will be
evaluated in the final step.® The integral over 7 is trivial: since we do not need the
last two terms of @) (in Eq. 2.22), the only terms in the integrand that depend on
1 are the d-functions, and the 7 integrals evaluate to 1. That leaves the integrals
over (, which we deal with in this subsection.
We claim that

N
[T d¢ud¢ades ... = A(TT Ix = M0) [T dn (2.24)

i<j

where A is some constant and the \’s are the eigenvalues of the Hessian. Note this

N(N+1)
2

is a simplification, since the dimensional vector space (because there are

~C4 (’s) has dropped to N dimensions. To prove Eq. 2.24 we note that given the

N(N+1) 1. . 1. N(N+1
% dimensions, we can span the vector space with %

orthogonal vectors.
We also note that we only have w (’s because we are in the space of symmetric
matrices (in turn a consequence of the fact that the Hessian must be symmetric).

In this space we define an inner product between two symmetric matrices Sy, S,

as Sy - Sy = Tr(S515;). Inner products must satisfy three properties [38]:

1. Tt must obey conjugate symetry, i.e. (z,y) = (y,x). Our Hessians are real,
so the conjugate is equal to itself. Meanwhile Tr(51S2) = Tr(S257) because

the trace is invariant under cyclic permutations. So this item is satisfied.

4We do not actually need M for our research questions, since detM is effectively a constant for
a given random Gaussian field. We will see more about this in the next section and in section 3.
SRemember for the first research question we’re interested in fooo NpindF/ ffooo NpindF.

17



2. Tt must be linear in the first argument, (a(z + v), z) = a(z, z) + a(y, z). This
is easy to see since a(S] +52)S3 = aS153+aS2S3 is a basic property of matrix

multiplication.

3. It must be positive definite, (z,z) > 0 for x # 0. This is not hard to see. If a
matrix is symmetric, then it is diagonalizable, S = PDP’, where D is a diag-
onal matrix and P is a unitary matrix. Then Tr(S15,) = Tr(PDP'PDP’) =
Tr(PD?*P') = Tr(D*P'P) = Tr(D?*) = > A\? > 0, where we've used the
defining property of unitary matrices and the fact that the trace is invariant

under cyclic permutations.

Therefore the trace is a valid inner product. The inner product simultaneously
defines a distance: the distance between two points is simply equal to the length of

the vector between the two points. In other words,
ds® = Tr(dS?). (2.25)

BBKS calls the quantity ds? the “metric”.

Next, since S is symmetric, it is always diagonalizable with a unitary matrix,
and we can take S = RTAR where X is the matrix of eigenvalues after rotation.
Since R is unitary, we must have R'R = I. Differentiating and using the chain
rule, we get:

dR'R + R'dR =0 — dR" = —R'dRR!. (2.26)
We also have, by differentiating S = RTAR,

dS = dR'AR + R'd\R + R'\dR
= —R'dRR'AR + R'd\R + R'\dR (2.27)
= R'(d\ + [\, dRR'))R.

The square brackets denote the commutator. Note this is different from BBKS’s
expression in their appendix B (below Eq. B2); the BBKS expression contains a

typo.
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Now we can compute the value in Eq. 2.25.

ds* = Tr[(R'(d\ + [\, dRR'])R)?]
= Tr[(R'(d\ + [\, dRR'])?R] (2.28)
= Tr[(d\ + [\, dRR'])?].

The second line follows because R'R = I, and the third line follows by invariance

of the trace under cyclic permutation. Expanding the square we get
ds? = Tr(d\? + dA[\, dRR'] + [\, dRR'd\ + [\, dRR']?). (2.29)

The trace of the middle two terms turns out to be zero, if we exploit 1) the cyclic
property and 2) the fact that A and d\ commute (because they are both diagonal).
This leaves the first and last terms. The trace of the first term is of course Y dA2.
For the second term, note that dRR' is a matrix, so its elements can be indexed
by two indices which we can write as (dRR');;. It is also antisymmetric: RRT = 1,
and differentiating this shows dRR! = —RdR' (compare Eq. 2.26). Defining

(dRR");; = wy; for ease of notation, we have the commutator become

[\, dRR'];; = (\dRR");; — (dRR'\),;
= Z AikWrj — Z Wik A\p'j
k k'

= AiiWij — Ajjwi;

- (>\z — )\j)wij.

(2.30)

The third line follow from the fact that A is diagonal, and because these are no
longer matrix multiplications, therefore they comute. We are interested in the

commutator squared, which leads to

M;; = [\, dRR']},

- ;(Ai — Ak)win(Ax — Aj)wp; (2.31)

= Z()\l — )\k)wzk()\] — )\k)wjk.
k
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where the second line follows from matrix multiplication, and the third line uses

the antisymmetric property w;, = —wg;. We want the trace of this, so we set i = j

TeM =) ) (A — M) wiy. (2.32)
i k

Keeping in mind that since w is antisymmetric, it is nonzero only if ¢ # k, and we
can write TrM =Y., (A — A;)?w?. Therefore

v

ds® =) (dN)* + Y (A — Aj)*wl. (2.33)

i#]

and sum over 1.

i#]

Next, we note that there are L+

2
and w of the second. Therefore we can take the d\’s and |\, — A\;|w;; as our

elements in the above: N of the first term,

basis vectors, they span our space, and their product is equal to the product of the
d¢’s.
We are almost at Eq. 2.24. For the rest, keep in mind that the w’s are elements

of a rotation matrix. If we have statistical isotropy, then integrating over all angles
yields a constant (which BBKS calls dvol[SO(3)]), and we arrive at Eq. 2.24.

2.1.2 Putting it together

We again reproduce the crucial Eq. 2.9, in the variables we are now using:

Nmin = /dF(dT]ldT]Q Ce d?’]N)(dglldglg Ce dCNN)
3 () det(G) B () e (234)
K PN Jom)ndetM
with @ given by Eq. 2.22. As argued in the previous subsection, the 7 integrals
evaluate to unity. Furthermore, the results of the previous subsection allow us to
write:
e_Q
(2m)rdet M
(2.35)

Npin = A/dF(d)\ld/\g cdAy) H |Xi — A\jldet(Gii) |0 (AN)

1<j
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A few more simplifications are possible. Because have chosen the principal axes
(Sec. 2.1.1), (;; is now nonzero only for i = j, where its value is the eigenvalue
of the Hessian, \;. Therefore det((;;) =[], Ai- Also, so far, no assumptions have
been made about the eigenvalues )\;. Without loss of generality, we can order the
eigenvalues such that A\; > Ay > A3... > Ay. For minima, we must also have
An > 0. Because there are N! possible orderings that could have been chosen
instead, imposing this ordering divides the result by a constant, N!, which we can
absorb into A. Finally, detM is a constant® and so is 27, which we can also absorb

into A. The final result for minima is:
oo A1 AN
Nopin = A/ d>\1/ dXs . . / d)\N/dF LT = AT [Inle @ (2.36)
0 0 0 i<j i

where the integration limits enforce the ordering Ay > XAy > ... > Ay > 0, and @
is given by (compare Eq. 2.22)

9 N
— N(N + 2
QQ_V2+M+Z<_+

(2.37)

We can see eigenvalue repulsion’ in Eq. 2.36: if \; = );, the integrand becomes
zero. In other words, there are fewer minima as eigenvalues get closer to each other,
and there are no minima for which two eigenvalues are exactly equal.

To modify this equation for saddles, we adapt the integration limits. For

example, if we are interested in 1-saddles, we consider instead the equation:

oo A1 AN—1 0
Noa=A [ an [T [T ane [ ane [ar TEn -0 TN,
0 0 0 —00

1<j i
(2.38)

6 Although detM contains variables that depend on the properties of the random Gaussian
field, none of those variables are being integrated over.

"Eigenvalue repulsion was also mentioned in the Introduction of this thesis, in relation to
Aazami & Easther’s [7] and Marsh et al.’s work. [26] It refers to the tendency of eigenvalues of
random matrices to “repel” one another, such that no two eigenvalues are likely to be the same.
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The integration limits now enforce the order A\y > Ay > A3... > Ay_1 > 02> Ay
Note the absolute value signs around the \’s — these ensure the result is always

positive, even though Ay is negative.

Eqs. 2.36 and 2.38 are key equations for answering our research questions.
Because of the unknown constant A in front of the equation, they are not actually
the number density of minima/saddles. The integrands are, however, an unnor-
malized probability density for minima/saddles: if they are relatively large, then
minima/saddles are more likely, and vice versa if they are small. Evaluating these

equations for different limits on the F' integral is the focus of much of this thesis.

2.1.3 The role of ~

At this point it is worth noting that the only parameter of the random Gaussian field
remaining in Eqgs. 2.36 and 2.38 is 7. In other words, although three parameters
were used in the covariance matrix M (op,0; and o9, see Egs. 2.12 and 2.18),
only the combination 0% /g0 is relevant for the number of minima/saddles. The
intuitive explanation for this is that og is roughly related to the average of the
square of the field value (see Eq. 2.18). Multiplying the field value by a constant
would change oy (Fig. 2.1), but it would not change the number of minima/saddles.
Similarly, oy is the average of the square of the first derivative. Multiplying the
first derivative by a constant — equivalent to rescaling the axes — would change o1,
but again doesn’t affect the relative number of minima/saddles in a fixed volume.
Therefore two of the three degrees of freedom do not affect the statistics, and we
are left with only one parameter ~.

It can be shown that 0 < v < 1. We know v = 0% /00 > 0 because the o; are
positive (from their definition, Eq. 2.12, every term in the integrand is positive;
one can also see from Eq. 2.18 that the ¢’s correspond to the average of squares,

and must therefore be positive). For the other bound, we know®

/(k2 - 0—%)2P(l<:)dk >0 (2.39)

8This proof is due to Shaun Hotchkiss.
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Figure 2.1: In this 1D realization of a random Gaussian field, multiplying the field
value by 2 (dashed line) changes ¢, but does not affect the number or sign of
minima.
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because the integrand is positive. Expanding the square leads to

2 4
/k;‘*P(k;)dk . 2/k2%k2P(ls)dk+/%P(l€)dk
0 0
4 4
_g2_9%L 71
TR
_2_ %5 (2.40)
=05 — 0_—8 > .

2 2 4
2
— 0900 = 0]

—1>7.

Q.E.D.

The exact value vy takes depends on the power spectrum. Because the string
landscape is so complicated, there is no canonical answer to the question “what is
the landscape’s power spectrum?” and therefore no canonical value for ~ either.
Nonetheless, we will consider two simple power spectra: the Gaussian power
spectrum and the power-law power spectrum, for which we can calculate analytical

results. In the next subsections, we will calculate v for both these power spectra.

Gaussian power spectrum

The specific form of the Gaussian power spectrum we adopt is P(k) = Uge*k2/2L2,
where Uy is the amplitude of the Gaussian and L is the correlation length.® The
two-point correlation function is a Gaussian (since the Fourier transform of a

Gaussian is another Gaussian), and we can write, by definition (c.f. Eq. 2.11),

1

2 —¢%/21% __
Use = —(27r)N

/ dV kP (k)e™ oo (2.41)

where ¢ is the Fourier conjugate of k and we have written k - ¢ as k¢ cos 6.

9The correlation length is a rough estimate for the distance at which the correlation function
drops to zero. Its meaning will be discussed in greater detail in Section 5.4.1.
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Differentiate twice w.r.t ¢,

R A / 0N k(—K2cos? (0)) P (ke
0 L4 (
dk

do | dYE*P(k)e™* % cos?(0)sin 2 (0)wn_o

(2.42)

where ' is over all non-6 angles, and w are the non-6 angular terms. w is obviously

N-dependent, hence the subscript. If we set ¢ = 0 then this simplifies to

U1 N_] /dk:/ko2 Jw (2.43)
Lz (27r) + 4] N=2 '

where we have evaluated the integral over § analytically. On the other hand, o? is
by definition (see Eq. 2.12)

o} = 277 /dk/d9k2 )sinN 2(0)wn_o
LY

\/_ 1)) ' (2.44)
™ dkk*P(k)wy_o.
(27T) 5] /0 v
Comparing the two equations, we get

v _ I 5] o} (2.45)

il .

L2 2r[1+ YTV —1)]

or
2T+ %
o = 201+ 5] (2.46)

7]

2

This is exactly the same result as Yamada and Vilenkin’s Eq. 2.4 for o [34]. A
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similar calculation yields expressions for oy and o,

0[N
[2] (2.47)
TR+
SV
from which we get, after using the expression I'(N) = (N — 1)!,
N
=4/ —. 2.48
Y=\ N1 (2.48)

For N = 100, this evaluates to v =~ 0.990.

Power-law power spectrum

The other commonly-used power spectrum is the power-law power spectrum. These
take the form P(k) = Ak~". They come with either and red or blue cutoff,’® to
avoid infinities. For a red cutoff, P(k) = 0 for k < k.. The Fourier transform of

this power-law power spectrum is, up to some constant factors:
/ N k) N2 T oo (o) dE (2.49)
kcut

where N is the number of dimensions and J is the Bessel function [39]. We can
substitute this into the definition for the ¢’s and integrate. Mathematica is able to

evaluate the integrals:

1\Y e
op = | 0= / KNLARTT
27T k?cut ’

AN (2m) N
oo = \/ p— (n> N) (2.50)

10We use ‘red’ and ‘blue’ in the cosmological sense, denoting spectra with more power on large
scales (small k) as red and small scales (large k) as ‘blue’.
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2 1 N - 21, N—1 —n
o] = | — E“ES AR,
27 Kout
ARZEN = (27) N
01—\/ N9 (n>N+2) (2.51)
1\" [
o3 = (—> / KRN AR
27 Eout
AkgiN T (2m) N
02—\/ N 4 (n> N +4) (2.52)
Combined, this yields:
—4—N)(n—N
VN 253

n—N-—2
This expression is valid only if n > 4 + N.!!
Alternatively, we can impose a blue cutoff, P(k) = 0 for k > k.. The same

analysis holds. The moments of the power spectrum are now

1 AR

%= G\ N (n < N), (2.54)
1 AR2ZTN=

oL = e\ N i o (n<N+2), (2.55)
1 Ak4+N—TL

oy = cut (n<N+4), (2.56)

@mN2\ N —n+4

And the final expression for « is:

Vo= i-Nm-N)
N—n+2

v = (2.57)

valid only if n < N. Note that in both Eq. 2.53 and Eq. 2.57, v does not depend
on A or k.. However, this does not mean these parameters are not physically
meaningful. A is related to the root mean square energy of the landscape via

(FF) = o2 (Eq. 2.18), while we will encounter k.,; again in Chapter 5.

UTf n < 44+ N, the integral of the power spectrum over all space will not converge.
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Figure 2.2: v for the power-law power spectrum P(k) = Ak™" as a function of x,
where z is an arbitrary positive number that relates n and N (see text). This result
applies for both a red cutoff and a blue cutoff. ~ is very close to 1 for moderate
values of x, but for sufficiently small = it can also be close to 0.

To illustrate how these expressions for v work, we substitute n =4+ N 4+
in Eq. 2.53 and n +x = N in Eq. 2.57, where z is a positive number. Both
expressions then simplify to v = v4x + 22/(2 + 2). A plot of this expression is
shown in Fig 2.2. It asymptotes to 1 for large x, but small ~ is possible for small x.
In other words, the power-law power spectrum is capable of producing all values of

~ for appropriate values of n.

2.2 Implementation details

The results of the previous section hold for all N. However, the complexity of
Eqgs. 2.36 and 2.38 rise quickly with N. We are interested in N ~ O(100), a
number large enough that analytic treatments are very complex, especially for the
N-dimensional variables we study such as the eigenvalue distributions at very rare
saddles. However, it might not be large enough for a large-N limit to be applicable,
either. Consequently, in what follows we will rely heavily on numerical methods.

In performing these analyses, some details turn out to be critical to computational
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performance.

Firstly (and most importantly), Eq. 2.36 and 2.38 are formulated in terms of
A, the eigenvalues of the Hessian at the point. This turns out to be a bad idea in
practice because the \’s can be very small, in which case the product and difference
terms make the integrand in Eq. 2.36 and 2.38 infinitesimal, in turn leading to

numerical difficulties.

The solution to this problem is to use the difference of eigenvalues as the

integration variable. We define

Y1 = A1 — Ao
Y2 = Aa — A3
(2.58)
YN—1 = AN_1 — AN

YN = AN

The choice made earlier to order the eigenvalues Ay > Ay > A3... > Ay therefore
becomes y; > 0 Vi (this applies for minima where all \; > 0. For saddles where

some number of \; < 0, the relation for y; is trivial to derive).

Secondly, for some questions, we will be dealing with the single most likely min-
imum /saddle. To find the most likely minimum /saddle, we do not need to perform
the integration in Eq. 2.36 and 2.38. Instead we maximize the integrand (recall that
Egs. 2.36 and 2.38 are unnormalized probability densities for minima/saddles.)'?
To do this, we make use of Mathematica’s FINDMAXIMUM command. It turns
out that this command evaluates fastest when there are no constraints on the
integration variables. In other words, Mathematica is slower if we ask it to optimize
y; subject to the constraint that y; < 0. To get around this, we implement another

transform

T (zf —\/4+ zf) (2.59)

where N is the number of dimensions. For the case of saddles where yy > 0, we

2There are some subtleties involved with maximizing the integrand instead of performing the
full integration, see Fig. 5.1.
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also use .

These two transforms remove the constraints on y;, since all real values of z; are
acceptable. This leads to a significant speedup.

Finally, FINDMAXIMUM requires a starting point to initiate the search. The
one we use is z; = V1 Vi, a semi-empirical choice based on the approximate values
of z at the maxima. It is conceivable that a different starting point will lead to
a different optimum; however we checked this for various starting points without
finding a different maximum. We can check the probability distribution for N = 2
graphically, as in Fig. 2.3. The probability distribution is smooth, and there is
clearly only one maximum. This ties in with the Gaussian approximation, a detail

we will encounter in Section 3.4.

2.3 Summary

In this chapter, we have derived the key equations Eq. 2.36 and 2.38 that represent,
up to a constant factor, the number density of minima/saddles in a random Gaussian
landscape. We have shown that, although random Gaussian fields in general depend
on three parameters oy, o; and oy, only the combination ¢} /009, or vy, matters
for the number density of minima/saddles. We have further calculated v for two
simple power spectra, the Gaussian power spectrum (Eq. 2.48) and the power-law
power spectrum (Egs. 2.53 and 2.57). These tools form the foundation for our

analysis of the research questions in the upcoming chapters.
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Figure 2.3: Plot of the logarithm of the probability distribution (the integrand
of Eq. 2.36) for N = 2,y = 0.9. We see deep troughs at Ao ~ A;, illustrating
eigenvalue repulsion, and at Ay = 0. As can be seen, the probability distribution is
smooth, and there is only one maximum.
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Chapter 3

Question One: Distribution of
Cosmological Constants in a

Gaussian Landscape

Observations indicate we live in a universe with dark energy. Assuming dark energy
is due to a cosmological constant, then empirically, the cosmological constant is very
small (about 1071 Ep, where Ep is the Planck energy density, or M} in natural
units with ¢ = A = 1), but nonzero. Explaining this small value poses a problem for
physics, because it would have been so much simpler for the cosmological constant
to be exactly zero.

From the perspective of string theory, the string landscape can potentially
support a dense discretuum of cosmological constants' [50]. This allows for an
anthropic explanation of the cosmological constant’s value. However, this still
requires P(A), the probability for each individual value of A, which has not been
calculated in detail for string landscape proposals.

Our first research question investigates this probability. Mathematically, we are

interested in p(A > 0|min).? It should be clear that this probability can be written

!This means the value of the cosmological constant must take specific values as opposed to
varying continuously.

2Beginning from this point, we use A to refer to the value of the field at our minimum. This
notation compares to V', which refers to the more general case of the field value, not necessarily
at our minimum.
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as:

, [ dAN i,

p(A > 0lmin) = m (3.1)
where Ny, is the probability density of minima (Eq. 2.36). If this probability
turns out to be very small, then it is possible that every minimum of the landscape
is “below the waterline”, posing a challenge for landscape explanations of the
cosmological constant. More generally, we can also calculate P(A|min) for different
values of A, in our trial landscape.

Here we make a technical note: we do not evaluate p(A = 107'2*Ep|min)
because this probability depends on the power spectrum used. Put differently, this
probability is dimensionful while the probability we calculate is dimensionless. This
is because V' = voy by definition, and while the machinery of Chapter 2 allows
us to calculate the probability of finding a minimum with a given v, we cannot
translate v into an energy density without the power spectrum-dependent quantity
0o. Nonetheless, v > 0 if and only if V' > 0, and hence if p(A > 0|min) is small, it

will remain small regardless of what the power spectrum is.

3.1 Expectations

Before we evaluate Eq. 3.1, we briefly discuss what we expect to see, on both

intuitive and mathematical levels.

3.1.1 Variation with A

The greater the value of A, the higher up the potential we are. The higher up the
potential we are, the more likely the stationary points we encounter will be maxima.
This is intuitive, because if a (rare) stationary point very high up the potential
is not a maximum, then there must be (even rarer) points nearby with higher
A Accordingly, we expect that the fraction of minima N, /Npaz decreases as A

mcreases.

3By definition, oy is always positive since it corresponds to the average of squares, see Eq.
2.18.
4As mentioned in the Introduction, this result was also derived by Bray and Dean [12].
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Mathematically, we can see this from the definition of @ (Eq. 2.37). As v
increases, (Q increases, e~% decreases, and N,,;, decreases, as expected. Furthermore,
because x is directly proportional to the negative of the sum of eigenvalues, it
is always negative for minima.® Examining the expression for Q (Eq. 2.37), we
see that it contains the term (v — vyw1)?. For negative z;, this term is zero (i.e. Q
maximal, and by extension N,,;, maximal) for a negative value of v, consistent
with the expectation that there are more minima with negative v than positive
v. Comparatively, for maxima, this term is zero for a positive v. We therefore see

that Nyin/Nmae: decreases with v, as expected.

3.1.2 Variation with N

The number N denotes the dimension of the random Gaussian field, or equivalently,
the number of component fields. The fields are typically assumed to be string
theoretic moduli. Like much of the landscape, the precise value of N is uncertain.
Estimates range from dozens [56] to hundreds of thousands in the most complex
compactifications [3], with the most common value cited as “hundreds”.

It stands to reason that the more fields there are, the less likely all of them
reach a minimum at the same point (which they must, for there to be an overall
minimum). Therefore we expect Ny, to decrease with N relative to the number
of saddles. This is clear also from the definition of ): as N increases, () increases,
the exponential term is smaller, and N,,;, decreases.

What is not immediately clear is if p(A > 0|min) decreases with N. We can
get a sense of whether it should by examining Eq. 2.36. As N increases, so does
the number of eigenvalues. This, together with the fact that the polynomial term
favors large ), causes x; to become more negative for minima.® This causes the
second term in Eq. 2.37, which contains the term (z; — yv)?, to favor smaller
values of v. Accordingly, we expect the probability distribution to move, but its
shape to be unchanged. Since we are interested in the part of the distribution
that is greater than 0 as a proportion of the entire distribution, we must have that

p(A > 0|min) decreases with N.

5Keep in mind our convention where minima have positive eigenvalues.
6Recall that x; is the sum of eigenvalues, see Eq. 2.20.
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Figure 3.1: Two 1D realizations of a random Gaussian field. The field on the left
has smaller v and is therefore more “turbulent”, with more minima as well as more
minima above zero.

3.1.3 Variation with v

Intuitively, v is a measure of how “turbulent” the potential is. A power spectrum
that extends over a narrower range of scales yields a potential with large v, and

there are fewer minima and maxima for a given region of space (see Fig. 3.1).

However, the number we are actually after is p(A > 0|min), and it’s not obvious
how this number varies as N,,;, decreases. To get an idea, we again look at the
expression for () in Eq. 2.37. A larger v decreases the width of the second term,
which is the only place where v enters into the expression. Larger ~ also drives the
most likely v to more negative values (bear in mind that x; is negative for minima).
Therefore, we expect the distribution to both become more sharply peaked and
move to lower v, which means that there are proportionately fewer minima above

0, and p(A > 0|min) decreases.

We will see these heuristics bear out in the upcoming sections.

3.2 v integral

Before proceeding further, we note that the integrals over v in Eq. 2.36 can be

performed analytically. The only dependence of the integrand on v is via the first
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two terms of (). Consequently, we can write the denominator of Eq. 3.1 as

denom = / dy/ dVz [N =N ] x e7@
—00 A12A2...20 H ’ H

1<J %

- /de f(xl,xg...)/_z dv exp (_%)

= \/27T(1—72)/dN”5 f(x1,2q..) (3.2)

with
2 N
B Xy N(N+2) 2
[EREREES 1 ISPV ) (YRR (—5—2—%_1)% '

Similarly, we can evaluate the v integral in the numerator of Eq. 3.1:

numer = / dv/ dNz H‘)‘i_/\j|H|>‘i| x e @
0 A>Ao...>0

_ 71 =9 N 121y/1 -2
- “T/d z f(x1,22...) X <1+erf <T>>(33)

The desired integral is then numer/denom.

3.3 Results for 1 < N <12

For small values of N, up to about N = 12, we can directly evaluate the integrals
Eq. 3.2 and Eq. 3.3 numerically using Mathematica. We first investigate how
p(A|lmin) varies with N and ~, in conjunction with the heuristics above. Figure 3.2
plots the resulting unnormalized probability density against the potential value.
We see that the heuristics are obeyed: larger v makes the distribution more tightly
peaked as well as shifts most minima to negative values, while larger N moves the
distribution to more negative values but does not affect the shape.

Keep in mind we are interested in the fraction of the curve that is greater than
zero. In other words, if the area under the curve is normalized to 1, the desired

probability is the area under the curve above V' = 0. The two figures make it clear
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Figure 3.2: [Left] The unnormalized probability density p(A|min) for N = 3,~ =
0.2, 0.5 and 0.8 (blue, orange, green respectively) and [Right] p(A|min) for v =
0.5, N = 3, 5 and 8 (blue, orange, green respectively). The distribution moves
leftward with increasing N and increasing 7. Keep in mind we are interested in
the part of the curve that is greater than zero, so in both figures the green line
represents a smaller p(A > 0min) than the blue line.

that as v and N increase, p(A > 0|min) decreases. A plot of this probability for
three different N’s is in Fig. 3.3.

3.3.1 Comparison with numerical realization

To get an intuitive feel for the results, one can compare the results for N = 2
with a numerical realization of a random Gaussian field. We create the numerical
realization by summing a Fourier series of arbitrary dimensions, amplitude and
frequency, then searching for stationary points.” As a very simple illustrative
example, for N = 2,14, = 2, where N is the number of dimensions and n,,4, is

the maximum frequency, we can expand the field F' as this Fourier series:

F = Xcos(z+y+c1)+ Aacos(x —y + ca) + Az cos(2x + ¢3)
+ Ay cos(2y + ¢4) + A5 cos(z + ¢5) + Agcos(y + ¢s) (3.4)

"We acknowledge the use of code written by Ali Masoumi.
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Figure 3.3: The probability that a given minimum has A > 0 as a function of ~, for
N = 3,6,9. We see that both the heuristics are obeyed: the probability decreases
with N, and ~.
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where the \’s and ¢’s are random constants, and z, y are the two dimensions.® We
can then search a given realization for maxima and minima. This method does not
generate a random Gaussian field with a specific v = 03 /009, but it yields a field

with calculable ~.

For the realization in Eq. 3.4, 07 = (F?) (see Eq. 2.18). There are 36 terms in

9

F?2, but most of them are zero because the average of the cross terms? is zero, a

basic property of Fourier series. Of the remaining terms, the average of a cosine

squared is 1/2. Therefore o3 = >0 | 132,

The o, term is more complicated. In principle, 0? = (n?), where i = x or y.

This indifference to direction is a consequence of the isotropy of the field. However,
the generated random Gaussian field is not generally isotropic — to be isotropic
one would, e.g., need to also include the cos(—x + y + ¢) term and ensure that this
term has the same coefficient A as the cos(z — y + ¢) term. This anisotropy means
o1, and by extension 7, are not well-defined. However, for sufficiently large n,,4z,
the field will still be approximately isotropic, and the calculated ~’s approximately

the same in every direction.
With this caveat aside, we can calculate oy using either of 0% & (n,7,) ~ (n,n,)-

As an illustration, 7, is obviously

Ny = Aisin(z +y + ¢1) — Aosin(z — y + ¢2) — 2A38in(22 + ¢3) — A5 sin(z + ¢s)
(3.5)

from which 0% = %(A% +A3+4X2+ M%), where we have left the number of dimensions

N in the expression (for this 2D field, of course, N = 2).

8Superficially there should be more terms — (21,45 + 1)? in fact — but many are discarded. In
particular, the cos(c) term is discarded because it’s simply a constant. The cos(2z + 2y + ¢) and
similar terms are discarded since the norm of the coefficients, \/(—2)% 4 22, exceeds the length
of the box (which is n,qz, or 2, in this case). This keeps the potential spherically symmetric.
Finally, all terms in which the coefficient of the first frequency is negative (such as cos(—z+y+c))
are discarded because the potential is symmetric if it is multiplied by —1.

9For example, the average of the A\j Ay cos(x + y + ¢1) cos(z — y + c2) term over a full cycle of
x and y is zero.
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Simulated field
~ ~ 0.870
Number of dimensions 2
Number of stationary points (total) 2251
Number of minima 562
Number of minima above zero 5
P(A > 0|min) (Simulated) ~ 0.0088968
P(A > 0jmin) (Calculated) 0.0105489

Table 3.1: Comparison of P(A > 0|min) between a simulated random Gaussian
field and the probability calculated using Eqs. 3.2 and 3.3. The value of ~ is
approximate because the simulated random Gaussian field is not isotropic; however
the calculated ~ for the two different directions still agree to three decimal places.

Figure 3.4: A piece of the simulated field in Table 3.1. For this field, n,,,, = 30.

Similarly,

Coz = M1 cOs(z +y +¢1) — Mg cos(x —y + ) — 43 cos(22 + ¢3) — A5 cos(z + ¢5)
(3.6)

from which o3 = W(A% + A2+ 1602 + \2).

Taken together, these results let us compute v, and therefore compare the
results from this numerical realization against the theoretical results. We show
a simulated 2D field in Fig. 3.4 and its properties in Table 3.1. The simulated
P(A > 0|min) is close to the calculated value.
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This method of comparing against a numerically realized random Gaussian field

scales poorly with n,,.,, and especially with N, restricting its use to simple cases.

34 N>12

For N 2 12, direct calculation becomes very resource-intensive. To make progress,
we use the Gaussian approximation. We approximate the integrals Eqs. 3.2 and
3.3 as Gaussian integrals centered on the point of maximum likelihood:

. (2m)

integral =~ I,/ —— 3.7
where Ip is the value of the integrand at its peak, and H is the Hessian at the
peak. To use this approximation, we first find the z’s that maximize the integrand,
calculate Ip using those values, and finally calculate the Hessian with respect to
those x’s using the finite difference method. This is a standard technique.'® The
first-order approximation to a derivative is:

fl@+h)— flz—h)

OB - (33)

To second order, the approximation is

1

f’(a:)zm (x—2h)—33hf(x—h)+3£hf(x+h) 1 (x 4 2h) (3.9)

12k

The Hessian is the matrix of second derivatives. There are N directions, so it

is a N x N matrix. The second order approximation for the Hessian is therefore

A

1 9 9 1
f”(:v,y)%[ x—2h,y)—3—h (fc—h,y)+3—hf(fc+h,y)—ﬁ (fc+2h,y)}o

2 2 1
3 0= 20 = 2wy = ) 2 ) = o f o+ 20)

10See e.g. https://geometrictools.com/Documentation/FiniteDifferences.pdf. One could in
principle calculate the analytic Hessian, but it is very complex.
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which results in 16 terms. The first four are:

f(x —2h,y — 2k) f(w—2h,y—k:)+f(:c—2h,y+k)

144h? 18h2 18h2
f(x —2h,y + 2k)
— 1
144h? (3.10)
which is simply the ﬁ (x — 2h,y) term composite with the four terms in the

second brackets. The remaining terms are now straightforward to derive.

In the notation of our problem, the z,y correspond to z, zs, z3...xy.'* There
are N? terms in the Hessian, each of which need to be summed. Once done, we can
take the determinant, and calculate the Gaussian integral. The values of h and k
can affect the final value of the approximation. It turns out that the second-order
Hessian allows a relatively large h,k without loss of numerical precision. We
typically take h = k& = 0.0001, and verified that changing this value does not
substantially alter the final results.

How good is this approximation? For N < 12, we can compare against the
numerical integrals. An illustrative comparison is in Fig. 3.5. The Gaussian
approximation turns out to be very good: it produces a curve with roughly the
same shape and peak. It slightly overestimates the numerical value of the integral,
but the factor is roughly independent of A and close to unity. Given that we are
dealing with numbers on the order of 1075 and focus on large differences in the
logarithms of the probabilities, this O(1) factor is completely negligible. We also
plot a comparison of P(A > 0|min), obtained using the Gaussian approximation
and direct evaluation of the integrals, in Fig. 3.6. The plot only goes up to N =8
because for 8 < N <~ 12, although we are still able to numerically calculate the
“exact” value of P(A > 0]y, N, min), for reasonable computational costs the result
is only accurate to within a few % (see Fig. 3.6). Hence, for N > 8 the dominant
error is in the “exact” numerical result as opposed to the Gaussian approximation.
We already see hints of this at N = 8: the relative error for N = 8 is much
choppier than for lower dimensions. The plot does indicate that the relative error

increases slowly with N. If we extrapolate to N ~ 150, it appears that the Gaussian

1 Or y;, z; defined in Section 2.2 — it is equivalent to maximize any of the three variables.
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Figure 3.5: Top: A comparison of the unnormalised exact p(A) (blue line) with
the Gaussian approximation (orange line), for v = 0.6 and N = 4. The left and
right plots show the exact result and the Gaussian approximation, on linear and
logarithmic axes. Bottom: the ratio of the two curves. The Gaussian approximation
always over-estimates the integral, but the ratio is roughly independent of A and
remains close to unity.
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Figure 3.6: Top: Plot of the relative error in log(P(A > 0|y, N) obtained from
calculating P using the Gaussian approximation versus the exact numerical result.
The error never exceeds 0.3% over the whole range, but see discussion in the
text for expectations when extrapolated out to N ~ (O(100). Bottom: Plot of
log(P(A > 0], N) as a function of y, for N = 12. The values are the “exact” results,
calculated using Mathematica’s NINTEGRATE command. Although the result is
quite smooth, one can see tiny fluctuations where the “exact” result calculated
by Mathematica is slightly different from the value if the curve is smooth. We
therefore conclude that the “exact” result is accurate to a few %, a conclusion
consistent with the error estimate reported by Mathematica.
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approximation can be off by ~ 3 in this log plot, or three orders of magnitude.
Although this sounds like a lot, we are dealing with probabilities on the order of
107°% and three orders of magnitude will have only a small effect on the result.
Therefore, we continue to use the Gaussian approximation even for large V.

We make a final comment here on the Gaussian approximation: if we accept the
Gaussian approximation as sound, then we would expect there to be only one overall
maximum in the likelihood (i.e. the peak of the Gaussian). This non-existence
of other maxima is indirectly supported by the fact that we do not find different
optima when calling FINDMAXIMUM with different starting points for the search
(see Section 2.2).

3.5 Results for N > 12

The results for 12 < N < 150, calculated using the Gaussian approximation for
different values of v, are shown in Fig. 3.7 and Fig. 3.8. For N > 150, the
computations required are expensive, even with the Gaussian approximation.

As can be seen from the figures, as N increases, the probability of a minimum
having A > 0 decreases quickly, and for sufficiently large values of ~, it can drop
below 107°%, On its own, this result is not surprising — surely for a sufficiently
smooth random Gaussian field we would expect very few minima, and of those
minima, most of them would be below zero. Therefore, the next question is, what
value of v is reasonable?

To answer this question, we make use of the results from Section 2.1.3 for the ~
of simple power spectra. The Gaussian power spectrum has v = \/m ,
or about 0.990 at N = 100. Fro these parameter values, P(A > 0|min) evaluates to

0°°° minima in the landscape,

07700

10~197. This probability is so minute that even with 1
the probability of a single minimum having V' > 0 is roughly 1 , and thereby
poses a challenge for landscape cosmology. Nonetheless, for the high end estimate
of 10?™% vacua (see the introduction and Ref. [3]) there are still more than enough
minima to go round.!?

The power-law power spectrum has v = 4z + 22/(2 + z), where © =

12This last conclusion might fail if N turns out to be much larger than 100. Like many other
things about the string landscape, its exact value is not known.
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Figure 3.7: The probability that a given minimum has A > 0, as a function of
N for v = 0.2, 0.5, 0.8 and 0.9 (top to bottom) calculated using the Gaussian

approximation.
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Figure 3.8: log,o(P(A > 0|N,7)) as a function of N and 7. For moderately large
N and 7 close to unity, fewer than 1 in 10°°° minima have A > 0.
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n —4 — N for a red cutoff or x = N — n for a blue cutoff. This expression
can generate all possible values of +. It can be shown that in order to have
P(A > 0lmin) > 107°% at N = 100, we need v < ~ 0.96, corresponding to
x < 5.14 (Fig. 3.8).

3.6 Summary

In this chapter, we have calculated P(A > 0|min), thus answering the first research
question. We began with direct integration of Eq. 2.36, which can be efficiently
computed for small N, then introduced the Gaussian approximation to compute
the integrals up to N ~ 150. The key result is Fig. 3.8, which plots P(A > 0|min)
as a function of the two free parameters in the landscape, N and . We see that
for much of the parameter space there are comparatively many minima with A > 0,
but the fraction decreases with increasing N and . For N ~ 100 and ~ close to
unity, this fraction can decrease to the point where fewer than 1 in 10°°° minima

have A > 0, potentially posing a problem for landscape cosmology.
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Chapter 4

Question two: eigenvalues at

minimum

In the landscape picture of our universe’s history, prior to inflation, the universe was
(loosely speaking) located at a saddle. It inflated out of the saddle and eventually
settled in a minimum, where it is currently located. This makes it desirable to
know the properties of the minimum: it would tell us about the end of inflation,
give some indication of the surrounding potential heights,! and also help inform
quintessence models. In quintessence, dark energy is not due to a cosmological
constant, but rather a scalar field analogous to the inflaton. The slope of this scalar
field would then tell us about how fast dark energy is changing.

From the perspective of our calculations, what we are trying to find are the
eigenvalues at the most probable minimum, which we will use as a proxy for
‘our’ minimum. To do this, we recall that Eqs. 2.36 and 2.38 are unnormalized
probability densities for the number of minima and saddles. Accordingly, it is easy
to calculate what the most probable eigenvalues are: simply find the values of A; and
A that maximize the integrand. We do this using Mathematica’s FINDMAXIMUM
function. This yields all N eigenvalues simultaneously.

Before going into the results, we note several things. First, the distribution of
eigenvalues at the most probable A is independent of «. This can be seen from Eq.

2.37. The only place in which 7 enters the expression is in the term (v — )%

'If the minimum is not the global minimum, this is potentially relevant in quantum tunneling
scenarios where our universe continues its evolution by tunneling out of the current minimum.
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Therefore the most likely A (= voy by definition) is the value that minimizes
this term, or yx;09. Choosing this A eliminates the only v dependence from Q.
Secondly, the z’s are intimately related to the eigenvalues, but they also include
a factor of o9 (see Eq. 2.20). Therefore, all the results we derive in this section
are actually for the dimensionless eigenvalues \/oy. Thirdly, three parameters in
Eqgs. 2.36 and 2.38 need to be input by hand: N, v and A. The first two are
(unknown) properties of the random Gaussian field, but the last can be constrained
from observations: it is the value of the potential at our minimum, which in turn is
related to the observed value of dark energy. This value is about 6.3 x 10~*"kg/m?
today.? If we take the natural guess® that oy is approximately the Planck energy
density ¢®/hG = 5.1550 x 10%kg/m3, then A = V/oq &~ O(107'%%). This is a
vanishingly small number. Therefore, in the plots to follow, we consider the point
A = 0 in addition to the most probable value of A.

A final detail is that we want the expected distribution of eigenvalues p(\),
but the method above of maximizing the integrand only finds the most probable
eigenvalues. For any given NN there will be N eigenvalues. We turn this into a
distribution p(\) by first considering n(\), defined as the number of eigenvalues
smaller than A. This function is related to the desired p(\) — recall that by
definition, | /\/\21 p(A)dA yields the number of eigenvalues between Ay and A;. Therefore
n(A) = 0’\1 p(A)dA, or p(A) = dn(X)/dX. Our results do not actually produce a
smooth function n(A) — we only have 100 discrete eigenvalues which we have to
interpolate to get n(\) for all values of A. Accordingly, the approximation fails in
any region in which there are few \: in other words, it will fail to resolve sharp
features in the distribution, and it will not work well in regions which contain
almost no eigenvalues (p(A) ~ 0).

In Fig. 4.1 we plot the expected distribution of eigenvalues p(A) for N = 100,
at both the peak likelihood when A is allowed to vary,* and at the peak likelihood
assuming A = 0,y = 0.9. With no restrictions whatsoever on A, the distribution
of eigenvalues is well-known: it is the Wigner semicircle [8, 9]. The eigenvalue

distribution in Fig. 4.1 is different because we have the extra constraint that we

2Calculated using Q5 = 0.69, as in the Planck results [40], with Hy = 70km/s/Mpc.

3This guess is based on the idea that the string theory landscape only comes into play at
Planckian energies; at lower energies the Standard Model of Particle Physics works well.

4Recall that this distribution is independent of ~.
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Figure 4.1: The expected distribution of eigenvalues at most likely value of A
(numerically calculated to have A/oy = —15.64, red curve) and at A = 0 (blue
curve) for N = 100,y = 0.9. The horizontal axis corresponds to the eigenvalues at
that point, while the vertical axis is the expected number density of each eigenvalue.
Note the red curve is independent of vy (see text). Compare Figures 8 and 9 in
Yamada and Vilenkin [34].

are at a minimum, i.e. all eigenvalues must be > 0. The result is that, for the
most probable A, we see what looks like a Wigner semicircle but with deviations
at small eigenvalues. The deviations occur at larger eigenvalues if we impose the
constraint that A = 0.

This shape of p(A) is in broad agreement with the results derived by Yamada
& Vilenkin [34] using a different method. There is some deviation with Yamada &
Vilenkin’s results at the very smallest eigenvalues, where their curve turns around
and goes to zero. The discrepancy arises because we lack the resolution at those
values — we only have a few eigenvalues in that regime which makes the interpolation
miss the sharp feature — which is in turn because we only have N eigenvalues. We
cannot simply increase N, both because of the computational costs and because the
expected turnaround in the eigenvalue distribution decreases with N [34]. We note,

however, that the distribution must go to zero because the value of the integrand

50



1 I I I I 1 I I I I 1 I I I I 1 I I I I 1 I I I 1 I I I I AN
-0.30 -0.25 -0.2 o eOo1d -0.10
o v e, ~98.0

g ® -98.5

° -99.0
® -99.5

-100.0

-100.5

Figure 4.2: Plot of the unnormalized log-likelihood (vertical axis) against the
dimensionless eigenvalue of the downward direction (horizontal axis), for v =
0.9, N = 10 and A integrated over. The probability increases as A\ increases, up
to about \y = —0.15, before decreasing again. From this, we confirm that the
likelihood goes to zero as Ay — 0, in agreement with Yamada & Vilenkin’s results.

in Eq. 2.36 goes to zero as the smallest eigenvalue Ay goes to zero, a feature we
verified in our code by fixing all eigenvalues except Ay and confirming that Ay =0
is excluded (Fig. 4.2).

Some other results for the eigenvalues are in Figs 4.3, 4.4 and 4.5, where we
investigate the variation with ~, the values of the biggest and smallest eigenvalues,
and the ratio of the two smallest eigenvalues. The ratio of the smallest eigenvalues is
especially intriguing, because if each dimension is associated with one quintessence
field, it raises the possibility that more than one quintessence field is active around
a minimum. Another interesting effect is that the smallest eigenvalues decrease as
7 increases (Fig. 4.4). If the refined de Sitter swampland conjecture [62] turns out
to be valid, then there would be no minima with A > 0. This would require dark
energy to be explained in some other way, such as quintessence. In this case the

region of parameter space we are interested in is v ~ 1,° and Fig. 4.4 indicates that

>This is the region of parameter space for which most minima have A < 0. See Chapter 3.
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Figure 4.3: The expected minimum and maximum eigenvalues of the Hessian at
a local minimum, as a function of N for four values of 4. Dashed lines denote
eigenvalues at the most likely value of A; solid lines indicate values at A = 0.

The expected values of the smallest eigenvalue decreases as N increases, while the
maximum value is roughly unchanged.

the smallest eigenvalues of the minima with A = 0 approach zero in this limit. This
suggests that random Gaussian random functions naturally generate minima with
a very gentle incoming slope which could provide possible quintessence potentials.
We will say more on this in Chapter 6.

In this section, we have shown that the most probable eigenvalues at minima of
the landscape can be investigated using Eq. 2.36. We have shown that the single
most-probable minimum, which has V' < 0, has eigenvalues that are independent
of v. Our results are consistent with previous work by Yamada and Vilenkin [34],
but also go further, since we are able to calculate the most probable eigenvalues
for minima with different V' or . The small eigenvalues we find at rare minima

are especially interesting, with implications for both inflation and quintessence.
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Figure 4.4: A plot of the most probable eigenvalues for v = 0.9 and N = 100. The
left hand plot shows the most likely value of each of the 100 \;; the right hand
plot shows the smallest eigenvalues on a log scale. The orange points correspond
to the most probable eigenvalues when A is allowed to vary, while the blue points
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Figure 4.5: The expected ratio of the two smallest eigenvalues as a function of N.

The orange line is the ratio at the most probable point (which does not depend on
7), while the green and blue lines are for A = 0 and v = 0.5 & 0.9 respectively.
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Chapter 5

Question three: steepness of

outward slopes for saddles

The final research question is arguably the most exciting, because it relates directly
to inflation. In the landscape picture, before inflation, our universe was presumably
located at a saddle with at least one downhill direction. Our universe then “rolls”
downhill along this direction. If the gradient of the downhill direction is small,
then slow roll inflation results. If we assume that all other directions are upwards,*
then the saddle can be described with Eq. 2.38.

Slow roll inflation is parameterized by the two slow-roll parameters, n and ¢
(Eq. 1.1; we have used units ¢ = h = 1):

¢ = (%) (5.1)

no= M| (5.2)

where Mp is the Planck mass, V is the inflaton, and V"’ is its derivative.? Inflation
occurs when these parameters are small.> The first parameter ¢ is by definition

zero at saddles, so we are primarily interested in the second parameter, . We

IThis is an intuitive assumption: if a steeper downhill direction existed, the universe would
probably have rolled down that direction instead.

2Here we switch once again (with apologies) to the notation in the Introduction where V is the
inflaton and ¢ are the parameters of the inflaton. Unfortunately, this notation switch is necessary
to make the upcoming equations more immediately recognizable.

3But see the caveat raised in the Introduction: strictly speaking only € needs to be small.
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note at once that n depends on V", which in turn is related to the eigenvalues of
the Hessian via \; = (;;/02 (see Eq. 2.4; (;; is the second derivative of the field).

Meanwhile, v = A /oy by definition. Therefore, we can write:

)\0’2

= M?
n P g

(5.3)

where A is the eigenvalue in the downward direction. From here, we can use the
methods we used in the last chapter to calculate the most probable value of A for
a given v. Then, we can calculate oy and o, for a specific power spectrum, and
evaluate n. This yields n for the most probable 1-saddle.

Before we proceed, there is a subtlety worth pointing out: while maximizing
the integrand of Eq. 2.38 yields the properties of the most probable 1-saddle, we
are interested in the properties of typical 1-saddles, and the most probable 1-saddle
might not be representative of typical 1-saddles. It turns out that the 14 at which
typical saddles are located is not the same as the 15 for single most probable saddle.
In particular, we find that P(v|y, 1-saddle),

fﬁ()\b"‘)\N;Vﬁ)d/\l"'d>\N
f(;oo dv [ L(A1,-+ - An;v,7)dA -+ dAn

P(v|y, 1-saddle) = (5.4)
where L is the integrand of Eq. 2.38, peaks at a different v compared to the v found
by maximizing the integrand without integrating over v (Fig. 5.1). Physically, this
means that although the single most probable 1-saddle has v = vy, there are a lot
of almost-as-probable 1-saddles at a nearby value of v = 1, such that collectively
one is more likely to find a 1-saddle at v;. In principle, v; is the value we want — it
is the v at which 1-saddles are most likely to be located. Nonetheless, v and v, are
very similar. We therefore calculate v, which is computationally much cheaper.
Here we make another comment: while the results for the first two research
questions only depend on the power spectrum via the parameter v, this third
research question is different — it depends on the ratio 03/0g. Nonetheless, v
remains relevant because it determines if we are likely to find 1-saddles with V' > 0.
In the following sections, we will state as many dimensionless results (meaning power
spectra-independent) as possible for v and A first, before dealing with dimensionful

properties later.
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Figure 5.1: The normalized likelihood for the most probable 1-saddle (red) obtained
by maximizing the integrand of Eq. 2.38, and the result after evaluating Eq. 5.4
using the Gaussian approximation (blue). v = 0.5, N = 20 (right curves) and
v =0.5,N =50 (left curves). The peaks of the red (blue) curve correspond to vy
(v1) in the text. The two values of v are very close to one another, hence we focus
on calculating the much-cheaper vs.

5.1 The number of 1-saddles

A first estimate for the number of 1-saddles is N X N, [28]. Since the number of
minima in the landscape has variously been estimated as 10°% to 102™% [3], for
N ~ O(100), this translates to 10°°% to 10?™2%2 1-saddles, which are close enough
to the original value as to be effectively the same. It is a sign of just how large
the numbers involved are that a two-order magnitude of difference has virtually
no impact on the results. It is also worth noting that the intrinsic error in the
Gaussian approximation (Section 3.4), at N = 100, is expected to be greater than
two orders of magnitude.

The first question to ask is if the number of 1-saddles with V' > 0 follows the
same relation as minima. This is a straightforward problem to attack using the
same methods as with minima. The short answer is ‘yes’ (Fig. 5.2), 1-saddles with
V' > 0 also get rarer as « increases. This should not be surprising — since they have
only one downhill direction, 1-saddles are ‘almost minima’, and they will be rare in

situations where minima are rare.
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Figure 5.2: The likelihood of 1-saddles as a function of v and V/V, 4z, where V4,
is the V" at which most 1-saddles are located, for N = 50 (top left), 100, 200, and
300 (bottom right). The contours show the log of the likelihood. As can be seen,
1-saddles are more probable for small values of 7, and the fraction that is above 0
decreases with V. This is the same behavior seen for minima (Fig. 3.8).



5.2 The value of v

By definition, v = V/oy. In turn, oq is closely related to the root mean square
energy of the landscape (07 = (F'F), see Eq. 2.18), and is therefore something that
can in principle be fixed experimentally. However, the energies required are so high
that no conceivable experiment will be able to probe them.? The only experimental
detail available is that the average energy of the landscape is greater than LHC
scale, which still leaves a wide range of possibilities for oy.

A first guess for o is Planck energy, ¢®/hG, or M3 in units where ¢ = h =
1.> Quantum gravity effects are expected around Planck energy, and the string
landscape would presumably have a roughly similar energy range. This guess
implies that v corresponds to the energy of the pre-inflation saddle in Planck units
— so for example v = 0.1 — V = 0.1M}.

A theoretical issue with this guess for og is that the peak of the likelihood —
the v at which most minima (maxima) are located — decreases (increases) with
N (see Fig. 3.2). In fact, most of the minima for N = 3 already have v < —1.
This implies that most of the maxima and minima are not classically accessible.
To avoid this, one could choose a oy that decreases with N. Calculations show
that the the most probable v varies as VN (Fig. 5.3), which suggests that we
could choose o9 = M3/ V/N. This sets M}, to be the energy density at which most
maxima are located, — M3 to be the equivalent energy density for minima, and the
root mean square energy of the landscape to Ma/v/N — a value still far above the
LHC scale for any likely N.

Another question to address is the value of V' for typical inflationary saddles. If
we ascribe dark energy to a cosmological constant, then V for our current universe
is about 6.3 x 1072"kg/m3.5 The value of V before inflation must be greater than
this, but this value is small enough that it is not much of a constraint.

Surprisingly enough, although our universe is no longer at the saddle of inflation,

4 Actually attaining those energies, and thereby potentially moving from one minimum in the
landscape to another, will very likely annihilate us all. This is because it would change the laws
of physics.

5This convention is widely adopted in cosmology, and we will also adopt these units in
subsequent equations throughout this section.

6This number, first encountered in Section 4, was calculated using Q4 = 0.69 [40] with
Hy = 70km/s/Mpc.
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Figure 5.3: (Left) The value of V' at the point of maximum likelihood for maxima
as a function of N, for (from bottom to top) v = 0.25, 0.5 and 0.95. The results
have been divided by v/N to illustrate their scaling behaviour.

the inflationary V' is potentially observable. Inflation takes the quantum fluctuations
in matter density in the early universe and blows them up to cosmological scales.
These fluctuations are small perturbations to the metric and fields, and are of two
kinds: scalar perturbations and tensor perturbations. Tensor perturbations are
especially interesting for our purposes, because inflation predicts a power spectrum
for them ([41], Eq. 7.147):

2 [ H\?
P~ () | 5.5
o (2 =

where H is the Hubble parameter when the mode in question leaves the horizon.
Since the Hubble parameter is related to the potential of the field by ([41], Eq. 3.7)

e V)

~ 2.6
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a detection of tensor mode perturbations would also fix V', and by extension v.
In practice, results are expressed in terms of the tensor-to-scalar ratio r, which

is related to the energy scale of the inflationary saddle by

Vi~ oz x (18X 101°GeV) ' ~ o ¢ (0.0014Mp) (5:7)

(see [42] Eq. 5). Measuring a nonzero tensor-to-scalar ratio would be evidence of
physics at an energy scale only a few orders of magnitude below the Planck scale.

The only problem with this is that tensor mode perturbations have not been
detected. The best current constraints place the maximum value of r at about
~ 0.044 [57], which puts the energy scale of the inflationary saddle at not more
than about (0.0007Mp)*.

If we take og ~ Mp, then the non-detection of tensor mode perturbations
implies v is at most 0.0014* x 0.63 ~ 2.4 x 1073, If we take oy ~ M#/+/N, then
v is at most ~ 2.4 x 10712 for N = 100. Accordingly, for our calculations of 7, we

take v = 1 x 10712; the results are virtually identical for either value of v.

5.3 The dimensionless eigenvalue A\

By definition, A = V" /o,. Its position in the numerator of Eq. 5.3 indicates that
inflation is more probable with small A. Figure 5.4 shows how the value of A varies
with NV, both at the overall peak (which has v < 0) and at the cosmologically
relevant energy density v = 1072, The most probable \ decreases as N increases or
~ decreases. This result does not mean the dimensionful eigenvalue, Aoy, exhibits
the same behavior with N and -, since that depends on the power spectrum used.
However, calculations show that the dimensionless downhill eigenvalue decreases
when compared to the dimensionless uphill eigenvalues as N increases or 7y decreases
(Fig. 5.5). In other words, the downhill direction is quite gentle when compared to
the uphill directions, and it gets gentler for large N and small ~.

This result suggests that the random Gaussian landscape might offer a natural
solution to the so-called n problem: inflation needs |n| =~ 0.01, but its natural
value is closer to unity. In random Gaussian landscapes, one naturally gets a small

downbhill direction relative to the uphill directions. This does not imply a small
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Figure 5.4: A plot of the most probable downward dimensionless eigenvalue for
v = 0.1. The left hand plot is for the overall peak (which has V < 0), while
the right hand plot is at ¥ = 10712, The most probable downward dimensionless
eigenvalue decreases with NV,

1 — that again depends on the power spectrum — but it does mean that random
Gaussian landscapes might be able to soften the n problem independently of how
the landscape is constructed. In Fig. 5.6 we plot the most probable distribution
of eigenvalues for 1-saddles at various v, illustrating its size relative to the other

eigenvalues.

The variation with ~ is also notable: small v corresponds to the region of
parameter space for which large numbers of 1-saddles have V' > 0 (see Fig. 5.2).
If our universe is but one of many possible universes with a positive cosmological

constant, this would be the region to look at.

5.4 (Gaussian power spectrum

We now proceed to results for explicit power spectra. As a reminder, the specific

form of the Gaussian power spectrum we adopt is P(k) = UOQe_kQ/ 2L

. A caveat for
all the Gaussian power spectrum results in this section is that, if the number of
vacua in the landscape is ~ 1059, the Gaussian power spectrum probably does not

yield any 1-saddles above zero (see Section 2.1.3).

If we nonetheless have a 1-saddle above zero (with ~ 10592 1-saddles, the odds
of this for a 100-dimensional landscape are roughly 1-in-107°), then we have that
v =+/N/(N +2) as derived in section 2.1.3, while 05/0( can be calculated using
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Figure 5.5: The ratio of the downhill eigenvalue to the average of the uphill
eigenvalues, as a function of N and +, for the most probable 1-saddle. (Left) The
plot for V' = 0. (Right) The plot for V' = V,,,4., where V,,,4, is the value of V" at
which most 1-saddles are located. For small v and large N, the downhill slope gets
gentler relative to the uphill slopes.

Eq. 2.47:

09 1

—=—=+/N2+N 5.8

2 - SVNEEN) (55)
We can immediately plot n as a function of N using Eq. 5.3. There is only one
detail: the o9/0¢ ratio involves the unknown L, whose values need to be input by

hand. We will briefly discuss the physical interpretation of this parameter now.

5.4.1 The correlation length L

In these equations, L is the correlation length. It is closely related to the two-point
correlation function, first mentioned in the text above Eq. 2.10. By definition, the

two-point correlation function is the Fourier transform of the power spectrum:

F(|¢1 - ¢2|) =

(271)]\7 / dV kP (k)e*(¢17¢2) (5.9)
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Figure 5.6: The most probable eigenvalue distributions for 1-saddles for various
parameters. The most probable downhill eigenvalue is generally quite small relative
to the uphill ones. Compare Fig. 4.1, which is the corresponding eigenvalue
distribution for minima.

where we have used F(|¢1 — ¢»|) as shorthand for (F(Z)F(y)), with ¢; being the
value of the potential at ¥ and ¢, being the value of the potential at 3.

The two-point correlation function is a measure of how much knowledge at one
point in the potential tells us about neighbouring points. Broadly speaking, given
knowledge of the potential at our current location, we are able to make statements
about the value of the potential at a point up to L away. A large correlation length
therefore implies that the potential is more predictable.

A large correlation length L > 1/Mp also implies correlation drops more slowly.

This is undesirable from a theoretical perspective, for two reasons:

e The very existence of correlation implies the presence of predictive power.
In turn, predictive power implies that some kind of underlying physics,

presumably string theory, is producing the correlation. It would then be
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necessary for multiple short-range (~ Planck length) terms to add up to

long-range correlations, which is unlikely.

e If the correlation drops slowly, the potential has a similar value at long
distances from the original point. Accordingly, a large L makes small 7 trivial.
Mathematically, it is clear that of = F(0), or the peak of the correlation
function. Differentiating this equation with respect to ¢, we also have that
02 o< —d*F/d¢?. A correlation function that decreases quickly (corresponding

to larger d?>F/d¢?, or smaller o;) would also have a shorter correlation length.

Because v = 02/0g0y < 1, for fixed v, a smaller o, necessarily implies a

smaller 5.7 By extension this also leads to a smaller 7, since 7 is directly

proportional to o3 (Eq. 5.3).

Note this is not a necessary conclusion: conceivably, the correlation function
could dip slightly before increasing, and the correlation length might not
be related to d*F/d¢?* at the origin. However, such correlation functions
would be highly contrived, and we can in general expect n to decrease as L is

increased.

The upshot is: we want a small n at small v, but not large L.

5.4.2 Results

After accounting for L above, the resulting n for v = 0.1,0.5 and 0.9 is shown in
Fig. 5.7. We do not plot the curve for v = 1072 because it is “off the charts” —
the calculated downhill eigenvalue A decreases only slightly with increasing v, and
cannot compensate for the factor of v in the denominator of Eq, 5.3. Note that
nL?/M3% is much greater than 1 unless L > Mp — exactly the type of correlation
length we do not want. Furthermore, nL?/M? increases with N for constant L,
which means the most probable minima of landscapes with more than ~ 100 moduli
are still not likely to support slow-roll inflation.

It is in principle possible that a less-probable minimum will have a smaller 7.

Therefore we would like to calculate exactly how much less probable this scenario

"oy cannot vary by much because it is fixed to the root mean square energy of the landscape.
See Section 5.2.
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Figure 5.7: The value of the slow-roll inflation parameter nL?/M%, where L is
the correlation length and Mp is the Planck mass, as a function of the number
of dimensions N for a Gaussian power spectrum, at the most probable 1-saddle.
From top to bottom, v = 0.1,0.5 and 0.9. It can be seen that for these parameters,
7 is greater than 1 unless L > Mp. n also increases with N, which does not bode
well for inflation.

is. We can do this by examining how the likelihood (the integrand of Eq. 2.38)
varies as the downhill eigenvalue is varied. This likelihood is plotted in Fig. 5.8. It
can be inferred from Fig. 5.7 and Eq. 5.3 that, for v ~ 107'2, we need a downhill
eigenvalue that is ~ 107° to get n ~ 0.01. From Fig. 5.8, we see that this is roughly
60 orders of magnitude less probable than the most probable downhill eigenvalue
at this value of v, which is about ~ 0.1. If we take the number of minima in the
landscape as 1059, then with the probability of even having a 1-saddle with V' > 0
in the first place already roughly 10772 this makes the probability of having a
viable slow-roll inflation saddle roughly 10~7%°. Note this is not a precise estimate,
because we have not calculated the probability that this 1-saddle with V' > 0 also

has v ~ 107'2. Nonetheless, it is likely to be fairly close, because the scarcity of

8See Section 3.5.
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Figure 5.8: The likelihood of a 1-saddle with fixed downward eigenvalue for
v =107 =0.990, N = 100. On the horizontal axis is log()109), the log of the
downhill eigenvalue in dimensionless units. On the vertical axis is the likelihood with
the most probable eigenvalue normalized to 0. The most probable dimensionless
downhill eigenvalue is about 0.1, while a downhill eigenvalue of 107! is about 60
orders of magnitude less probable.

1-saddles with V' > 0 implies that any 1-saddle “above the waterline” will almost
surely have very small v. This minute probability makes it very improbable that

059 minima. On the other

slow-roll inflation can occure in a landscape with 1
hand, the high-end estimate of 10272°° minima still has more than enough vacua

to support slow-roll inflation.

5.5 Power-law power spectrum

We next consider the power-law power spectrum. We will start by considering a
power spectrum with a red cutoff. In this case the power spectrum is P(k) = Ak™"
for k > k.., and 0 otherwise. As shown earlier, the o;’s for this power spectrum
are of the form Eq. 2.50-2.52. 05/0y is

09 2 4
— =k l—-— 1
o0 cut\/ 4—TL+N (5 O)
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valid only if n > 4 + N. After using the substitution n =4 4+ N + x as in the text

below Eq. 2.1.3, we get

A 4+
= M22K? .
n PV cut T

(5.11)

To proceed, we must 1) choose a value for z, and by extension a value for ~;
2) choose a value of v, corresponding to the energy density of the pre-inflation
saddle, and 3) compute the most probable A. First, however, we will investigate the
parameter k.,;. As will be shown, this parameter controls the correlation length in

the landscape.

The correlation function for the power-law power spectrum is (Eq. 2.49 with
different limits on the integral):

Flo) = o [ B o) o) (512)

<27T> kcut

where J is the Bessel function of the first kind, and we have set ¢o = 0 for simplicity.

This integral can now be evaluated analytically,

_ A 1 -n—N/27,—n  —N N—n N n_ on N
T[n/2]i Fy [N > n A _; 2 —ikzgutng
(5.13)

where 1 F} is the regularized generalized hypergeometric function [60].

A plot of this function for representative parameter values is given in Fig. 5.9.
The normalized correlation function is plotted on the y-axis, while the horizontal
axis is ¢, which can be loosely interpreted as the “distance” in the landscape. From
the left-hand figure, if we hold k.,; constant, then the correlation function drops
off more slowly with large N, corresponding to a correlation length that increases
with N. On the other hand, if we adopt k... = V/N, then the correlation function
asymptotes, and there is a maximum correlation length in the landscape that is
independent of N. Hence, we will adopt k., = V/N. Note that this choice adds
a factor of N to n (Eq. 5.11), a manifestation of the result in Section 5.4.1 that

decreasing the correlation length increases 7. Nonetheless, this factor of N alone is
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Figure 5.9: The value of the normalized correlation function (y-axis) as a function of
¢, for four different numbers of dimension N: from bottom to top, N = 3,5, 10,20
respectively. The plots are for x = 0.1. Left: the normalized correlation function
with k,.;, = 1. Right: the normalized correlation function with k,,;, = V/'N.

not fatal for small 7 — it is possible the downhill eigenvalue decreases faster than
N.

Figure 5.10 shows the values of n calculated using Eq. 5.11 for a red cutoff, at
different values of v, v, and N. As can be seen, 7 is much greater than 1 when v is
small — the downward eigenvalue does not decrease fast enough to compensate for
the 1/v factor in 1. In the v = 1 case, n changes relatively quickly with N for small
N, but for N > ~ 20 it is virtually constant with N — any variations are at the
sub-% level. Also plotted are the regions of parameter space where the likelihood
of finding a 1-saddle is 1072%° and 10~°% relative to the likelihood at v = —/N.?
The regions above the dotted lines are not likely to have any 1-saddles in the first
place.

The analysis for a blue cutoff, where P(k) = Ak~ for k < ke and P(k) =0
otherwise, is very similar but less satisfactory. This is because the power spectrum
imposes long-range correlations in the landscape for small .1% In this case o9/

is (see Eqgs. 2.54) the same as in the red case,

()] 2 4
ZmkR - — 14
o0 C“t\/ 4—n+ N (5.14)

v = —V/N is the approximate peak likelihood, i.e. the value of v at which most saddles are
located. See Section 5.2.

0Keep in mind that k is the conjugate variable of ¢, and ¢ measures the ‘distance’ in the
landscape.

9
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Figure 5.10: Most likely values of 7 with v = 1 and v = v/N (top), and v = 10~
(bottom) for a power-law power spectrum with a red cutoff. The light and heavy
dashed lines correspond to regions above which the likelihood of finding a 1-saddle
is 1 in 10%° and 1 in 10°% relative to the likelihood for v = —v/N. Above these
dashed lines, there are not likely to be any 1-saddles with V' > 0. Note the slightly
different contours in the v = 1 plot, necessary to show the same feature as in the
v = 10712 plot.
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except this equation is valid only if n < N. As with the red cutoff, we substitute
n — N —§, which yields v = 1/d(4 + §)/(0 + 2), where § > 0. This is exactly the

same as for the red cutoff. Putting in the expressions for the moments, n becomes
A )

= ME=K2 ) ——. 5.15

n PV cut 4+ 5 ( )

N—n} ~(N—n'N—n N 1

The correlation function is

A
F(l¢]) = WTN/%Z;”F {

5 1By 5 Ty +1;5§_Zk§ut ?
(5.16)
This correlation function is plotted in Fig. 5.11. We again set k., = VN /Mp, as
the correlation function shows the same scaling behaviour with N as the red case.
However, it does not necessarily asymptote to zero — the terminal value shows a
significant dependence on ¢, and becomes arbitrarily close to unity as ¢ approaches
zero. This is because small values of § imply more power at very small k (bear in
mind P(k) = Ak~*%), introducing long-range coherence into the landscape. To
get a meaningful correlation function, we need to either impose a second cutoff at
small k, which yields similar results to the red case; increase k., as  increases,
which increases n per Eq. 5.15;'! or simply exclude scenarios where ¢ is small. In
the last case, Fig. 5.11 suggests taking ¢ 2 2, corresponding to vy 2 \/3/2 ~ (0.866.

The resulting raw n plots are in Fig. 5.12. The dotted lines again indicate
the regions of parameter space where one does not expect to find a 1-saddle with
V' > 0. The regions with v < \/3/ 2 are greyed out, indicating the zone that is
excluded if one takes 6 > 2. Excluding these zones also excludes the regions where
the most probable 1-saddle has n < 1.

Similar to the Gaussian power spectrum, the values of n at v = 1072 for the
most probable 1-saddle are very large for both the infrared and the ultraviolet
cutoff. However, it is possible that a less probable 1-saddle will have n ~ 0.01.
Again similar to the Gaussian power spectrum, we calculate how the integrand
of Eq. 2.38 varies as the downhill eigenvalue is varied. This likelihood is plotted
in Fig. 5.13 for v = 1072,y = 0.1, N = 100. The general shape of the plot is
roughly independent of these parameters, but the probability drops off more quickly

"'Note again the inverse relationship between the correlation length and 7.
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Figure 5.11: The correlation function for a power-law power spectrum with a blue
cutoff. N =50 and (from top) 6 = 0.5,1,2,4 and 10, with k., = v/50. For small §
the correlation function does not asymptote to zero, yielding an arbitrarily-large
correlation length, but it does go to zero for sufficiently large 0.

for large . We can see from the two bottom plots of Fig. 5.10 and 5.12 that in
order to get n ~ 0.01 for a cosmologically interesting 1-saddle we need a downhill
Ay < =~ 107'*. Figure 5.13 indicates that such a downhill eigenvalue is ~ 15
orders of magnitude less probable than the most probable downhill eigenvalue,
which is of order 0.01. This is clearly not ideal — our inflationary 1-saddle is ~ 10%°
times less probable than the most probable 1-saddle. On the other hand, v = 0.1
is also in the region of parameter space for which a significant fraction of 1-saddles
have V' > 0 (see Fig. 5.2). With ~ 10°°° minima total in the landscape, this 10"
difference is insignificant, and there will be plenty of viable 1-saddles.

Comparing the left hand figure of Fig. 5.13 with Fig. 5.8, the rate at which
the probability decreases clearly depends on ~. This dependence on v is shown in
the right hand figure of Fig. 5.13. The probability of anomalously small downhill
directions decreases with v, further emphasizing that the region of parameter space

with small v is also the region most able to support inflationary 1-saddles.

5.6 Summary

In this chapter, we have investigated how the downhill eigenvalue of 1-saddles
vary as N,~v and v are varied. We see that the downhill eigenvalue is naturally

much smaller than most uphill eigenvalues, and it gets smaller for large N or
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Figure 5.12: Most likely values of 7 with v = 1 and v = v/N (top), and v = 10~
(bottom) for a power-law power spectrum with a blue cutoff. The light and heavy
dashed lines correspond to regions above which the likelihood of finding a 1-saddle
is 1 in 10%° and 1 in 10°%° relative to the likelihood for v = —v/N. Above these
dashed lines, there are not likely to be any 1-saddles. The regions with v < v/3 /2

are greyed out: for these values of 7, the correlation length is unbounded.

72



4 LoglA] _14 0.4 0.6 0.8

Figure 5.13: (Left) The likelihood of a 1-saddle with fixed eigenvalue for v =
10712,y = 0.1, N = 100. On the vertical axis is the log-likelihood with the most
probable eigenvalue normalized to 0. On the horizontal axis is log(A1g0), the log
of the downhill eigenvalue in dimensionless units. We can see that a very small
eigenvalue of 1071, sufficient for n ~ 0.01, is still only ~ 14 orders of magnitude
less likely than the most probable 1-saddle. (Right) The log-likelihood of a 1-saddle
with A = 107! relative to the most probable )\, as a function of v and with N = 100,
v =10"'2. For v = 0.1, the log-likelihood is 107!, corresponding to the result in
the left-hand figure.

small 7. This suggests that random Gaussian landscapes can naturally solve the
1 problem by providing a small negative mass term compared to the average
mass. We also investigated the inflationary slow-roll parameter n for the power-law
power spectrum and the Gaussian power spectrum. We find that 1 depends on the
correlation length, and we investigated how 7 varies with the correlation length. We
find that the Gaussian power spectrum is very unlikely to produce a single viable
inflationary 1-saddle unless there are more than ~ 10'%% vacua in the landscape, or
unless the correlation length is very large. The power-law power spectrum, however,
is capable of producing slow-roll inflation while bounding the correlation length,

for appropriate choices of its free parameters k.,; and n.
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Chapter 6
Conclusions and Future Work

In this thesis, we have used the random Gaussian field approach to investigate the
string landscape. We derived the number density of minima (Eq. 2.36) and saddles
(Eq. 2.38) from first principles. We evaluated these integrals directly (Section 3.3)
for N <12, then adopted the Gaussian approximation for large N (Section 3.4).
These methods form the foundation of all our results. Using this machinery, we

reached the following key conclusions:

1. The random Gaussian field has as its parameters the number of dimensions
N, and the three moments of the power spectrum og, 01, 05. For the number
density of minima and saddles, however, only N and the combination 0% /g0,
i.e. 7, matters. We showed ~ is necessarily between 0 and 1, and roughly
measures how turbulent the landscape is — small v corresponds to a more

turbulent landscape, while large v corresponds to a smoother landscape.

2. For v 2 0.96, the probability of having a minimum with positive energy
density (V > 0) at N = 100 drops below 10759, A Gaussian power spectrum
(and by extension, a Gaussian correlation function) yields v = /N/(N + 2),
which for N ~ 100 evaluates to v = 0.990, a number firmly in the regime
where minima with positive energy densities are an extreme rarity. Conversely,
a power-law power spectrum can be configured to yield a landscape with any

value of 7. These results are in Section 2.1.3 and Chapter 3.

3. The slopes of the single most probable minimum/saddle are independent of .
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The eigenvalues resemble a Wigner semicircle with deviations at very small
eigenvalues. The slopes of a minimum/saddle with other energy densities

depend on 7. These and other results are in Chapter 4.

. For saddles with one downhill direction (1-saddles), we can directly calculate
the expected inflationary slow-roll parameter n for a given power spectrum.
For a Gaussian power spectrum, the probability of a 1-saddle with V' > 0
and 1 ~ 0.01 is about 10719 at N = 100, rendering multiverse cosmology

0°% minima. A power-law power

highly improbable for landscapes with ~ 1
spectrum cannot simultaneously produce a bounded correlation length and a
most-probable 1-saddle with n <~ 0.01, but it is possible for a less-probable
1-saddle to have n ~ 0.01. With ~ 10°%° minima in the landscape, there is a
region of parameter space in which one can bound the correlation length and
still find plenty of 1-saddles with V' > 0, n < 0.01. These and other results

are in Chapter 5.

. We find that for saddles with one downhill direction, the eigenvalue of the
downward direction is small relative to the uphill directions, and it gets
smaller for large N and small . This conclusion is independent of the power
spectrum, and suggests that the inflationary n-problem may be naturally
softened in some landscape scenarios. More details for this result are in
Section 5.3.

Our results show that it is possible to extract quantitative predictions for the

landscape using the random Gaussian approximation. We now briefly touch on

two questions: 1) what could invalidate the above conclusions, and 2) where do we

go from here?

6.1 What could go wrong?

We made no approximations when deriving they key equations Eqgs. 2.36 and 2.38.

However, we did use the Gaussian approximation in calculating our results. If

numerical errors exist, this is the most probable source. There are two possibilities:

the extrapolation to large N, and the intrinsic error of the Gaussian approximation
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itself (Fig. 3.6). This possibility is studied in Section 3.4. We do not expect the
approximation to fail, but we have not rigorously proved that it doesn’t.

Another possible source of error is if there are multiple maxima in the likelihood.
In this scenario, the “most probable” peak we identify is a local maximum as
opposed to global maximum. We investigated this in Section 2.2 and found no
such behavior for low N. It also seems unlikely there are multiple maxima in the
likelihood based on the form of the integrand.

A further, key caveat that applies to all our results is that they are based on
the random Gaussian approximation, which only sets the baseline expectation. In
other words, the actual string theory landscape can (and almost surely will) have

different properties from the system we examine here.

6.2 What next?

The random Gaussian field approach makes minimal assumptions, yet allows us
to make quantitative calculations. This makes it an attractive tool to further
investigate various questions about landscape cosmology. We briefly outline several

such topics.

6.2.1 Topological inflation

Topological inflation was first proposed by Alexander Vilenkin in 1994 [58]. It is
distinct from slow-roll inflation in that there is a central peak in the potential which
falls off on both sides, which supports a stable field configuration. An example

potential is, as originally proposed by Vilenkin,

V() = ik(ﬁ —n?)? (6.1)

where X\ and 7 are constants.! In this case there are two minima at ¢ = =4n, while
¢ = 0 is a local maximum. The central peak drives eternal inflation, and there is a

domain wall separating the two minima at =£n.

IThese are not eigenvalues )\, the Fourier conjugate variable ¢, or the slow-roll inflation
parameter 7. The notation is the one used by Vilenkin, but the conflict in notation with the rest
of this thesis is unfortunate.
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In the terminology of this thesis, the ¢ = 0 point can be viewed as a 1-saddle.?
It is therefore possible to investigate the properties of the 1-saddle using Eq. 2.38.
To do this, we first need to derive the constraints on A and v required for topological
inflation. We start by considering the Taylor expansion about the central saddle,
V'O//¢2

V(g) =V -0

(6.2)

where V' is the second derivative of the field at the origin. The value of ¢ for which
the potential drops to zero is ¢ = £4/2V,/V]’. Meanwhile, the wall’s boundaries

are where the gradient energy balances the potential energy,

(%)2 ~ V. (6.3)

To calculate the gradient energy, we note that the coordinate ¢ changed by ~
\/2Vy/ Vi over a ‘distance’ that is the width 0 of the domain wall. Therefore

9¢ 2Vo/ V'

— ~ 6.4
al‘ 6 Y ( )
and using Eq. 6.2 we get
2
§ ~ W. (6.5)

For topological inflation to occur, we need § > Hy', where Hy ' is the horizon

size of the vacuum energy within the wall [58]. This leads to:

] 3
- —=m
H, P\ 8V,

2V,
1

<

Yo S5y

where m,,, Mp are the Planck mass and reduced Planck mass respectively. Here

Vy' and Vj are physical quantities. Substituting V' — Aoy and Vi — 100, we

2 Although there looks like two downhill directions, one towards the minimum at +n and the
other towards the minimum at —7, there is only one parameter ¢ varying. There is also only one
eigenvalue for the same reason (recall that the eigenvalue is the second derivative of the Hessian).
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see that topological inflation requires practically the same condition as slow-roll
inflation. The only difference is that the bound on the slow-roll parameter 7 is
slightly different: n < ~ 2/3. Accordingly, the results from Section 5 carry over
smoothly, and within the same region of parameter space where we expect typical
1-saddles to support slow-roll inflation, we can also expect typical 1-saddles with

V' ~ M3} to support topological inflation.

6.2.2 Quintessence

Quintessence has already been mentioned a few times in this Thesis. It is a scalar
field(s) similar to the inflaton that drives the accelerating expansion of the universe,
except that 1) non-relativistic matter needs to be included in the dynamics, and
2) it is at much lower energy than inflation. [59] Compared to the cosmological
constant, it is dynamic; its energy density changes over time. This leads to a dark
energy equation of state that also varies with time.

In the same way that inflation occurs when the inflaton is nearly flat, accelerated
expansion also requires the quintessence field to be nearly flat. This is hinted at in
our results — for minima that have A > 0, the smallest eigenvalues are naturally
very close to zero. If each eigenvalue corresponds to one quintessence field, then
the slope of the potential in a direction is related to the mass squared of that field
by m? = g3)\;. The closeness of the eigenvalues then implies that the masses of the
fields are similar, but also that no two masses can be exactly equal, because of
eigenvalue repulsion. It also raises the possibility that more than one quintessence
field might be active near an extremum even if the evolution is dominated by a
single field at greater distances. It might be possible to investigate the consequences
of this with the relative sizes of the slopes of the scalar fields (Fig. 4.5).

6.2.3 Other properties of the landscape

We have calculated 7 for several power spectra as well as P(V > 0lmin) as a

function of 7, but there are other interesting questions to ask of the landscape:

e How far is it to the next minimum? This affects the rates of quantum

tunneling between minima. The first step to approaching this problem would
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be investigating the constant A in Egs. 2.36 and 2.38 to get an actual number

of minima/saddles in a unit volume.

How probable is it to have > 60 e-folds of inflation? This depends on the

downhill eigenvalue starting small and staying small.

What does a typical evolutionary track look like? As discussed in the
Introduction, there have already been efforts to calculate this [26, 27], but the
method used has theoretical problems [27, 28]. It remains a worthy question,

however, whose solution will tell us about what to expect during inflation.

Is it possible to construct a power spectrum for the landscape such that
inflation gets more probable with N7 This question stems from the fact that
the dimensionless downward eigenvalue, Ay, already decreases as N increases.
The ‘reason’ n does not always decrease with N is because the moments of
the power spectrum, os/0y (see Eq. 5.3), increases with N more quickly
than Ay decreases. It is relatively simple to construct a power spectrum
such that oy/0g does not increase with N (a power-law power spectrum with
kew =1/ VN will do it), but constructing such a power spectrum that also
has a bounded correlation length is much harder. In Section 5.4.1 we provided
general arguments to believe such a power spectrum should not exist unless
highly contrived, but this is not a hard no-go theorem. In this case, the ‘ideal’
power spectrum for multiverse cosmology will have both 1 and the correlation

length decreasing with N.

How probable (or improbable) are various swampland conjectures? If the
conjectures involve some function of V, V' or V", it might be possible to
investigate them with the random Gaussian approximation. The lack of
success at constructing a de Sitter vacua (i.e., a minimum with V' > 0) in
string theory has led some to a conjecture that string theory admits no de
Sitter vacua [61] or that de Sitter vacua are in the swampland [19]. If this
turns out to be the case, then the corresponding region of parameter space

in the random Gaussian approximation is v ~ 1.

Another conjecture is that either [V'| > O(1)V, or min(V") < —O(1)V,

where min(V”) is the smallest eigenvalue [62]. The conjecture is designed
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Figure 6.1: A contour plot of the ratio /v for maxima, at the most probable v
as a function of N (left), and at fixed v with N = 100 (right). The ratio is O(1).
Since gq/0 is O(100) for both the Gaussian power spectrum and the power-law
power spectrum for typical choices of the correlation length and N ~ 100, this
implies the second condition is usually satisfied for maxima with V' > 0.

to prohibit de Sitter vacua — it is trivially satisfied for V' < 0 since the first
condition is always true. We can investigate this conjecture by examining
maxima with V' > 0.2 At these maxima, V' = 0, so the first condition is never
satisfied; therefore for the conjecture to be true, the second condition must
be always satisfied. We can investigate if it is always satisfied using Eq. 2.36.
In the notation of this thesis, the second condition is —A\jo9 < O(1)vog.?
A contour plot of the ratio —A;/v is in Fig. 6.1. Whether the constraint
is satisfied depends on the power spectrum, of course, but the results are
encouraging for the conjecture: for N = 100, o9/0¢ is O(100) for both the
Gaussian power spectrum and the power-law power spectrum (Eq. 5.8 and
Eq. 5.10), given typical choices for the correlation length. This implies the

conjecture is indeed satisfied for maxima with V' > 0.

3This is equivalent to examining minima with V' < 0; see footnote 2 on Page 11.
4This formula is written for minima, where \; is positive and v is negative. Note that we are
considering A1, which in this thesis is the largest eigenvalue.
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Chapter 7

Appendix

7.1 Derivation of BBKS Equation A1l

In this section we adopt the notation of BBKS’s [54] Appendix A.

The two equations of interest are:

0.2

(min) = 51513' (7.1)
o3
(GijCrt) = B(5z’j5kz + 0ixdj + dudjk) (7.2)

BBKS gave these for 3 dimensions, and we want to derive the corresponding
expressions in N dimensions. The first equation is relatively easy to derive. By

definition,
(VF)?) = ai (7.3)

This is not in BBKS, but is sensible given Eq. 4.6¢ in the paper. Each gradient
adds a factor of 7k in Fourier space, and the power spectrum is proportional to the

absolute square of the Fourier coefficients. Adding a factor of k% in the integral
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then is equivalent to taking the gradient. Then

(G () (5)1)
() () () )
()

3(n2)

where the third line follows by isotropy. The correspondence with Eq. 7.1 is now
obvious. There are no cross terms, hence the delta function.

The second equation is harder. From the definition,
(V2F)?) = o3 (7.4)
The LHS is (in 3D)
PF\®  [(0PF\® [PF\’
2F 2 — - - i el
v =((5e) + (5) + (5) )
210 92 270 92 210 92
<20F8F 0°F 0°F 6F8F> (7.5)

ox? Oy? +28x2 0z? * 28y2 022

i.e. there are nine terms, reducible to six since products commute. Now we claim

that )2 N
O°F O°FO°F
(5) ) -5 ae) o
To prove this, we define a new direction @ = (Z + y) . Shifting into Fourier space,
ky, = (k, + k,)/+/2. Taking the fourth power,

AkY = K} + Ky + Ak kD) + A(k, kD) + 6(k2k2) (7.7)

Taking the expectation value of this, the two terms in the middle disappear

because the k’s are odd functions, leaving
4 4 4 272
(4k,) = (k) + (k) + (6(kzk)) (7.8)
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Remembering that in Fourier space, taking the derivative is equal to multiplying
by k, this is

() ) - () )+ () ) olGate) oo

We must have ((55)%) = ((55)%) = ((.5)?) by isotropy, so

(G- o

which is the desired result. Now we are almost done. From Eq. 7.5, we see there

are N squared terms and 2yC5 cross terms. This means that

- (2220 ()

— N(N + 2)<275887€> (z # y)

Note there’s nothing special about the x’s and y’s, and they could equally have

been any other dimension.

7.2 Proof of Eq. 2.20

We reproduce the original correlations, Eq. 2.18.

(FF) = o
(nin;) = %%‘Uf
(Féij) = —%%Uf
(GiiCim) = mai(&j@m + 0i10m + 0im0j1)
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as well as the basis transform Eq. 2.20,

L1 = —U%ZQ@'

1 n—1
i=1
We wish to derive Eq. 2.21,
(V) =1
(a7) =1
() = (11
9 2n(n—1)
@) = Ny Ty @SN

The first of these four equations is trivial because v = F'/o by definition. For

the second,
(r121) = % (Z<Cm<zz> +2 Z(Cii(jﬁ)
2 i i#j
1 1 9 2 2
-3 (Frg O Y g a)
_ —N(Nl+ 5 (3N + N(N —1))

as desired. The second line follows from the fact that there are N ((;(;;) terms

and yCs ((ii¢j;) terms. Similarly, for the third equation,

(7.13)
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Finally, for the fourth equation,

n

i=1

(i) = Ui<(

Bear in mind that n is not a dummy index — it is also in x,, on the left hand side of
the equation. We need to handle the square of a sum, which is tricky. The easiest
way to approach it is to write out some examples for low n. If n = 3, then the
term in the brackets is [(C11 — (33) + (o2 — (33)]?, which evaluates to

(G — Ga)® + (Coo — Ga3)® + 2(Cir — C33) (Coa — Ca3)

Similarly, forn = 4, we get three terms (Cll — C44)2 -+ (CQQ — <44)2 + (ng — <44)2 and

the cross terms 2(C11 — Caa) (o2 — Caa) +2(Cu1 — Caa) (33 — Gaa) +2(Coz2 — Caa) (€33 — Caa)-
This is indicative of what the general formula might look like,

( 3 (sz - Cnn)> = Z(C@z - Cnn)Q + i (sz - CHTL)(CJ] - Qm)

i=1 i=1 1,53i#]

n—1 n—1
= (G = 26 + o) + D (GG — GiiGun — GjiGnn + Con)

i=1 i,43i7]
(7.15)

Applying Eq. 2.18,
1 1 2
nTn) =—5 1023 x2— ———03(1

() =z % 0= 1) (535780 < 2 - g0 .

1 b ey
+ 0’% X 2 Xn—1 CQ( N(N+2)O'2(1)+ N(N+2)O'2(3))

where the first line corresponds to the first sum, and the second line corresponds
to the second sum. Note the total number of terms in the second sum is 2 x,,_; Cs,

since there are ,_1C5 ways to choose two values for 7, 7, but any choice for i, 7 is
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equivalent to making the same choice for j,7. Simplifying this equation yields.

4 2
=01 (5w ) 000 -2 ()
- (7.17)
" N(N +2)

as desired.
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