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Abstract

String theory suggests that our universe is but one of a vast number of possible

universes, with each universe corresponding to a minimum in the so-called landscape.

Because of the complexity of the landscape, direct analysis is very difficult. In

this thesis, we adopt an indirect approach: we model the landscape as a random

Gaussian field, deriving baseline expectations for the landscape’s properties based

solely on large-number statistics. We find that many of the properties of the

landscape depend on a single parameter, γ, that is related to the power spectrum

of the landscape. We further calculate numerous properties of interest, such as

the probability of finding a minimum with a positive vacuum energy, the slopes of

the potential near such a minimum, and the inflationary slow-roll parameter η at

saddles with one downhill direction. We identify regions of the parameter space

where inflation is viable, as well as regions in which a universe resembling ours can

occur.
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Chapter 1

Introduction

1.1 Introduction

In the beginning, there was the Big Bang. Shortly after the Big Bang, there was

inflation.1

The mechanism responsible for inflation is unknown. The leading framework is

so-called “slow-roll inflation”, with inflation driven by a single, minimally-coupled

scalar field called the inflaton. Slow-roll inflation is described by two parameters,

ε =
M2

P

2

(
V ′

V

)2

η = M2
P

∣∣∣∣V ′′V
∣∣∣∣ (1.1)

where MP is the Planck mass
√

~c
8πG

, V is the the inflaton potential, and V ′ is its

derivative with respect to its parameters φ.2 Inflation occurs when the slow-roll

parameters ε and η are small, which happens when the first and second derivatives

of the inflaton are small. Therefore the universe inflates whenever the gradient of

the inflaton is small, hence the name “slow-roll”.

Inflation ends once the slow-roll parameters are no longer small.3 After rolling

1In this thesis, we assume inflation happened. There is strong evidence that inflation happened
[40], but it remains a hypothesis.

2Here we use the common notation denoting the inflaton as V (φ).
3Strictly speaking, inflation ends once ε = 1, and furthermore, η does not need to be small to
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ϕ

V(ϕ)

Figure 1.1: In this toy example, our universe would inflate when the inflaton V (φ)
is on the left where the gradient is small, before eventually settling at the minimum.
The inflaton value at this particular minimum is zero, implying that the vacuum
energy is zero. (Arbitrary units)

down the inflaton potential, the universe eventually settles in a minimum (see Fig.

1.1). The value of the inflaton potential at this minimum manifests as vacuum

energy.4 If the vacuum energy is positive, it is repulsive, which is especially relevant

because observations indicate our universe contains dark energy. If the vacuum

energy is negative, then it is attractive, and the universe will eventually contract

into a Big Crunch.

Although the nature of the inflaton is not well-understood, the high energy scale

of inflation suggests that string theory is a natural setting in which to investigate

have inflation (see ultra slow roll inflation [2]). However, getting inflation with η > 1 requires
tuning: without it, a large η would imply that V ′′ is large, and by extension V ′ (and therefore ε)
varies wildly. We can have inflation with η > 1, but probably not prolonged inflation.

4Vacuum energy is the energy present in a vacuum. Intuitively, we might expect this to be zero,
but there is no a priori reason it has to be zero. Indeed, if dark energy is due to a cosmological
constant, there would be positive vacuum energy.
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it. String theory includes 10 or 11 space-time dimensions, which is clearly at odds

with the 4-dimensional universe that we observe. To make the theory compatible

with observations, we need to “compactify” the extra dimensions – i.e., find a way

to roll up the extra dimensions until they are small enough to evade detection.

There are many different ways to perform these compactifications in string theory,

not all of which are compatible with gravity. These inconsistent theories are often

referred to as the “swampland”, while the remainder form the “landscape”. In this

picture, one of the theories in the landscape is the Standard Model of our universe.

The string theory landscape is extremely (possibly intractably) complicated.

The number of scalar fields (“moduli”) that can be used to construct a new theory

is in the hundreds, possibly thousands. Estimates for the number of minima

(“vacua”) range from 10500 to 1027200 [3].5 The landscape effectively defines the

“overall” laws of physics. However, the “effective” laws of physics at low energies6

vary with position in the landscape. The vast number of vacua in the landscape

has historically led string theorists to assume that there must be a vacuum with

low-energy properties that correspond to our Standard Model.

Making sense of the landscape is a tantalizing prospect, because it can potentially

answer some of the deepest questions imaginable. Traditionally, physics has had

no good answer to the question, “Why does our universe have the laws it does?”

Perhaps the only possible explanation was the Anthropic Principle – if the universe

didn’t have those laws, then there wouldn’t exist intelligent life which can ask “why?”

in the first place. This anthropic reasoning makes many people uncomfortable [5].

However, in the context of the string landscape, we can frame probabilities for why

the laws of physics are what they appear to be.

Because the string landscape is so complicated, it is not easy to make sense of

it. Nonetheless, there are attempts at deriving constraints on the landscape. The

swampland conjectures [18, 19, 20, 21] attempt to delineate precise conditions that

must be obeyed by all vacua in the landscape. An example is the weak gravity

conjecture [6]. In our universe, gravity is by far the weakest of the four fundamental

forces. The weak gravity conjecture goes further and suggests that, for a theory

5For comparison, an order of magnitude estimate for the number of atoms in the observable
universe is 1080 [4].

6Here “low energies” refers to Large Hadron Collider scales and below – the regime which we
have probed with experiments.
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to be consistent, it must require that gravity is the weakest of the four forces. If

the conjecture is true, it would draw a clear line separating the landscape from the

swampland.

An alternative way to approach the landscape is to treat it as a purely random

function, or in practice, a random Gaussian field. If a field F is written as a sum of

Fourier components, and if those Fourier components are independent and random,

then the sum of sufficiently many terms would tend towards a random Gaussian

field by the Central Limit Theorem. There is no guarantee that the terms that

make up the landscape are indeed random and independent, but this approach

sets a baseline expectation – it depends solely on the landscape being comprised of

many terms. This is the simplest choice for a random field, depending primarily on

large-number statistics and without requiring any knowledge of their interactions,

no matter how complicated they may be. Any significant deviation from this

baseline expectation would, in turn, point to “structure” in the landscape.

The first work utilizing this ‘random’ approach was by Aazami & Easther [7].

The authors investigated the eigenvalues of random Hessian matrices associated

with extrema of a random function. From the purely mathematical constraint that

derivatives commute,7 the Hessian matrices are symmetric. The eigenvalues of

random symmetric matrices converge to a semicircle distribution in the limit of

large number of dimensions, a result first derived by Wigner in the 1950s [8, 9].

The Wigner semicircle is evenly distributed around zero, implying equal numbers

of positive and negative eigenvalues. In our case, we are interested in minima,

which is equivalent to requiring that every eigenvalue of the Hessian at the point

under consideration is positive.8 This requires a massive deviation from the Wigner

semicircle. If we assume that each eigenvalue has equal probability of being positive

or negative, then because there are N eigenvalues in an N -dimensional case, we

get that the probability of a minimum is 2−N . Aazami and Easther argued that

this simple estimate is too large: assuming that the elements of the Hessian are

7Mathematically, ∂/∂x(∂V/∂y) = ∂/∂y(∂V/∂x).
8The work on which we build in Section 2 [54] uses the opposite sign convention, where maxima

have positive eigenvalues. The difference arises from the characterisation of random density fields,
for which the gravitational potential has a minimum where the density has a maximum. We
will work with this convention for consistency, but will be careful to resolve any ambiguity when
discussing physical results in the landscape.
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random numbers drawn from identical and independent distributions, eigenvalues

are very unlikely to take nearly-equal values, a phenomenon called “eigenvalue

repulsion”. This renders the probability of a minimum much smaller than 2−N .

Aazami and Easther calculated that minima are super-exponentially (∝ e−N
2
)

suppressed, and therefore minima are vastly outnumbered by saddles. Chen et al.

also described this result [10]. However, this early result was later shown to be

incomplete, because the individual elements of the Hessian are not independently

random [11, 32]. This leads to a density of minima that still decreases exponentially,

but not super-exponentially. The result is more minima, although minima are still

drastically outnumbered by saddles. [32, 33].

Following on this early work, Tye, Xu and Zhang investigated the density

perturbations that might emerge from inflation driven by multiple random Gaussian

fields, concluding from general arguments that the universe will likely undergo

Brownian-like motion on top of the overall drift towards lower values. They

found that in the case where scattering is frequent but weak, the resulting power

spectrum is similar to that of single-field slow-roll inflation; but in the case where

scattering is frequent and strong, much more interesting things happen, such as

detectable features in the Cosmic Microwave Background (CMB) power spectrum

[16]. However, this scenario also leads to an enhanced tensor-to-scalar ratio in the

CMB, which is not supported by recent results [43, 57]. Another feature found by

Tye, Xu and Zhang is that non-Gaussianity is suppressed, a feature observed to be

generic to random Gaussian fields by Frazer & Liddle and Bjorkmo & Marsh using

different methods [17, 23].

Separately, numerous papers have developed the overall problem of large excur-

sion statistics of random matrices. Utilizing a random matrix theory approach, Bray

& Dean computed the number of critical points (including both minima/maxima

and saddles) as a function of their field value and their index – the number of

positive or negative eigenvalues – and arrived at the intuitive result that above a

certain threshold energy, almost all critical points are maxima [12]. Also utilizing

random matrix theory, Dean & Majumdar investigated the probability of large

deviations in the eigenvalues at critical points from the average value [13, 14] and

Majumdar et al. calculated the probability distribution of the number of positive

eigenvalues [15]. All these studies involved a large N limit, an assumption that
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might not work well for the string theory landscape, where N ∼ 100 and is not

necessarily “large”.

An alternative way to view the word “random” is in the context of random

functions. These are random elements in the space of all possible functions. A

very simple example of how one might generate a random function is to take

the Taylor expansion near a critical point and draw the coefficients of the Taylor

expansion from a random distribution. Papers utilizing the random function

approach include Agarwal et al. [22] and Bjorkmo & Marsh [23, 24]. All three

papers study the probability of getting inflation that yields observables matching

observations, such as the probability of getting at least 60 e-folds of inflation in

the landscape. Agarwal et al. found emergent properties in the generated random

potential, and in particular the probability of getting Ne e-folds of inflation prior

to a waterfall transition scales as P (Ne) ∝ −N3
e . This result implies that long

periods of inflation are unlikely, with short bursts being the most probable; in

particular the fraction of inflationary trajectories that yield 60 e-folds of accelerated

growth is only about 10−5. This low probability is also the conclusion of He et al.

[25]. Nonetheless, if we examine only the regions of the random potential in which

inflation lasted for 60 e-folds, Bjorkmo & Marsh found that compatibility with

Planck’s results is not rare [23].

Yet another approach is Dyson Brownian motion. Originally proposed by

Freeman Dyson [29], the method evolves the elements of the Hessian and/or its

eigenvalues stochastically with the Langevin equation. This can then be used

to find the equilibrium eigenvalues (i.e., the eigenvalues at the minimum), or to

calculate the universe’s trajectory in the landscape as it evolves. It should be

noted that the Dyson Brownian motion method is fundamentally different from

the random Gaussian field method, and hence the two can yield different results.

However, at large N , the two methods converge [23].

Using the Dyson Brownian motion method, Marsh et al. investigated the

inflationary trajectories of specific universes, a problem which had previously

appeared computationally prohibitive [26]. Marsh et al. successfully sidestepped

the heavy computational costs by only realizing the potential around the specific

trajectory. The Hessian matrix is then evolved via Dyson Brownian motion along

the inflationary path. The conclusion was that a prolonged period of inflation is
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unlikely because eigenvalue repulsion causes the gradient near a saddle to grow

[26]. This result was later extended to suggest that the probable resulting power

spectra from inflation are not compatible with observations [27]. Simultaneously,

theoretical problems with using Dyson Brownian motion to create an inflationary

trajectory (such as the fact that it does not yield the same potential value after

moving in a closed loop) were discovered, leaving the reliability of the approach

in question [27, 28]. Although the method might not generate fully physical

inflationary trajectories, it is still useful for investigating the eigenvalues of the

Hessian at a saddle: it is capable of producing the most probable eigenvalue

distribution at a stationary point that agrees with other methods [34], and its

predictions for cosmological observables [36] also agree with those from random

functions [24]. Using the Dyson Brownian motion method to evolve the eigenvalues

of a random matrix, Dias et al. found that as the number of dimensions is increased,

the predictions for cosmological observables become sharper; furthermore, these

predictions are compatible with Planck’s results [35, 36].

A different kind of question to ask is if the minima are stable. Classically

they are always “stable” (since the gradient is zero at the minimum), but it is in

principle possible to quantum tunnel out of the minimum. Because each minimum

has different effective low-energy laws of physics, if this were to happen, the universe

as we know it will undoubtedly be destroyed. Tunnelling probability depends on

the barrier width and height. Greene et al. first found that the distance between

minima decreases as the number of dimensions (i.e. scalar fields) is increased,

leading to the conclusion that the fraction of minima with lifetimes long enough

to be metastable decreases with dimensions [30]. Masoumi and Vilenkin [31] later

expanded on this result to find that the stability of a minimum is highly correlated

with its energy density, with minima being much more stable at lower energy

densities. This result is intuitive, for we would not expect deep (and therefore

stable) minima at high energy densities where minima themselves are very rare.

Related to the question of stability is the question of how steep the slopes

leading out of the minimum are. This tells us about both the end of inflation and

the heights of the barriers around the minima, since gentler slopes also imply a

smaller potential barrier to quantum tunnel across. This eigenvalue distribution

was analyzed by Yamada & Vilenkin [34] using two different methods. The results

7



match the intuitive expectation that the higher the energy density of the minimum,

the gentler the slopes leading out of it on average. Yamada & Vilenkin also calculate

P (min|Λ), the probability that a stationary point with a given energy density will

be a minimum.

In this thesis, we represent the landscape (the ‘potential’) as a multidimensional

random Gaussian field, which is a function of N independent variables. Within

this model to investigate these questions:

1. How likely is it for a minimum to have a potential value Λ > 0, written

mathematically as P (Λ > 0|min)? What fraction of minima can lead to a

long-lived universe, and what is the probability distribution of the possible

values of the cosmological constant in these minima?

2. How large are the eigenvalues leading into the most probable minima? This

sheds light on possible quintessence scenarios in the landscape with one or

more active degrees of freedom.

3. Slow-roll inflation occurs when the gradient of the potential is small. The

natural place in the landscape for this to happen is a saddle with only one

downhill direction (henceforth ‘1-saddle’). How steep is the slope leading out

of typical saddles, and how does this depend on the 1-saddle’s potential value

Λ?

The first question tells us how likely it is that an observer in the landscape

will observe dark energy.9 The second tells us about the end of inflation and the

approach to our current universe. The final question tells us about inflation itself –

in particular, if we can calculate the slow-roll parameter η, we might be able to say

something about how probable inflation is in the multiverse. We will start with

theoretical derivations in Chapter 2, then deal with the three questions in Chapters

3–5. Finally, we will point out future work and conclude in Chapter 6.

9More precisely, it tells us how likely it is we observe positive vacuum energy. The observed
accelerated expansion of the universe could be due to a variety of reasons, of which positive
vacuum energy is but one of them. Therefore, if this probability turns out to be very low, it does
not show that the universe is not expanding at an accelerating pace.
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Chapter 2

Preliminaries

Random fields and functions have been widely studied in physics and mathemat-

ics, with applications in statistical mechanics [45, 46], complex dynamics [47, 48],

mathematical physics [49, 51], optics [52, 53] and other fields in addition to cosmol-

ogy. We will start with a mathematical derivation of the relevant theory, before

examining the three research questions in detail.

2.1 Preliminaries

In many ways our approach relies on an N -dimensional generalization of Bardeen,

Bond, Kaiser and Szalay’s (henceforth BBKS) [54] 1985 paper. BBKS’s original

calculation was for 3D, which we extend to N dimensions. In very low dimensions

(N ≤ 3) it is possible to obtain exact analytical results. Conversely, in the large N

limit it is also possible to derive many approximate expressions [55]. In our case,

N is greater than 3 but not necessarily large.

Random fields are defined by BBKS thusly:

An n-dimensional random field F (r) is a set of random variables, one

for each point r in n-dimensional real space, defined by the set of

finite-dimensional joint probability distribution functions,

P [F (r1), F (r2) . . . F (rm)]dF (r1)dF (r2) . . . dF (rm) (2.1)

9



that the function F have values in the range F (rj) to F (rj)+dF (rj) for

each of the j = 1, . . . ,m, with m an arbitrary integer and r1, r2 . . . , rm

arbitrary points.

This definition is technical, but can be understood on a more intuitive level. The

random field F (r) maps every point r to a random value. That value depends

on the probability distribution function P , which determines how probable it is

that the field’s value at every point is F (r1), F (r2), etc. Different probability

distribution functions yield different random fields. The particular random field

we are interested in is the random Gaussian field, for which P is a multivariate

Gaussian,

P (y1, . . . yn)dy1 . . . dyn =
e−Q√

(2π)ndetM
dyi . . . dyn (2.2)

where Q =
∑
yi(M

−1)ijyj/2 and M is the covariance matrix Mij = 〈∆yi∆yj〉,
∆yi ≡ yi − 〈yi〉. Note in this equation n is not the number of dimensions of the

field, but rather the total number of variables being considered. Examples of such

variables are the value of the field, its first derivative, and its second derivative.

We will need all three of these variables because we are dealing with extrema at a

given potential value.

Following BBKS, we use the notation

ηi ≡
∂F

∂xi
(2.3)

ζij ≡
∂2F

∂xi∂xj
(2.4)

where F is the field and the x’s are independent variables. We will also distinguish

between V , which is the potential, and Λ, which is the potential at a minimum.

The number of minima Nmin in a region is:

Nmin =

∫
dNx δN(ηi)|det(ζij)|θH(λN) (2.5)

whereN is the number of dimensions, λN is the smallest eigenvalue at the minimum,1

1This foreshadows the notation we will use later: without loss of generality, we order the N

10



θH is the Heaviside step function, and the integration is over all space. This equation

follows from first principles. The delta functions for ηi indicate stationarity, since

the first derivatives are zero at stationary points. The Heaviside function at the

end enforces the requirement that the stationary point is a minimum, since at

minima all eigenvalues are positive.2 If λN were negative, the stationary point is

no longer a minimum, and the integral gives zero.

The determinant term ensures independence from a change of variables. Re-

member the delta function is defined as:

1 =

∫ ∞
−∞

δ(x)dx. (2.6)

Notably, the integration variable needs to be the same as the argument of the delta

function. In Eq. 2.5 the integration variable is x while the argument of the delta

function is ηi; a generic change of variables gives:∫
dx1dx2 . . . dxnδ(f1(xi)) . . . δ(fn(xi)) =

∫
df1df2 . . . dfnJδ(f1) . . . δ(fn) (2.7)

where f is an arbitrary function and the Jacobian J is given by

J =

∣∣∣∣det
∂xi
∂fj

∣∣∣∣ =
1∣∣∣∣det
∂fj
∂xi

∣∣∣∣ . (2.8)

In our case f is η, so
∂fj
∂xi

is just ζij. We therefore need a factor of |det(ζij)| in

Eq. 2.5 to cancel this out. Thus far, we have not used the random Gaussian field

assumption.

Now we apply the random Gaussian field requirement (Eq. 2.2). Eq. 2.5

becomes:

Nmin =

∫
dy1dy2 . . . δ

N(ηi)|det(ζij)|θH(λN)
e−Q√

(2π)ndetM
. (2.9)

eigenvalues of the Hessian as λ1 ≥ λ2 ≥ λ3 . . . λN . For minima, we also have λN ≥ 0.
2This – minima have positive eigenvalues – is a BBKS convention we also adopt. One could

also take minima to have negative eigenvalues; it changes the math slightly but does not affect
the conclusions, since it is effectively the same as changing the subject of our research questions
from minima above zero to maxima below zero, and these potentials are symmetric about zero.
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In our case the y’s are η, ζ, and F . The first two are in Eq. 2.5, while the last

will eventually be necessary because we are interested in minima with specific field

values. Therefore we’ll need correlation functions for all of them.

We start with the first one, 〈FF 〉. Physically, this is the average of F 2, the

value of the field squared. It is reminiscent of the two-point correlation function

between two points ~x, ~y of a random Gaussian field F , written as 〈F (~x)F (~y)〉. The

two-point correlation function measures how much knowledge of the field at ~x

reveals about the field at ~y. Physically, if we know the value of the field at A, we

should know something about the value of the field at a nearby point, A + δA,

but we (usually – it is possible for correlation to increase with distance in certain

regions of field space, especially at low dimensions) know less of the field value at a

more distant point. The correlation function therefore decreases, and physically it

must reach zero at an infinitely distant point. 〈FF 〉 corresponds to the two-point

correlation function evaluated at the same position, 〈F (~x)F (~x)〉.

To proceed, we consider the power spectrum P (k), which is defined as the

Fourier transform of the two-point correlation function:

P (k) =
1

(2π)N

∫
dNk 〈F (~x)F (~y)〉e−i~k·(~x−~y). (2.10)

Here N is the number of dimensions (3 in our 3D world, but 100+ for the inflaton).

The inverse Fourier transform then gives the two-point correlation function:

〈F (~x)F (~y)〉 =
1

(2π)N

∫
dNk P (k)ei

~k·(~x−~y). (2.11)

The moments of the distribution are defined as

σ2
n =

1

(2π)N

∫
dNk (k2)nP (k). (2.12)

Therefore 〈F (~x)F (~x)〉 = σ2
0.

12



For the other correlation functions, we first differentiate Eq. 2.11 and set ~x = ~y.

〈ηi(~x)ηj(~y)〉 =
1

(2π)N
∂

∂xi
∂

∂yj

∫
dNk P (k)ei

~k·(~x−~y)
∣∣∣∣
~x=~y

=
1

(2π)N

∫
dNk kikjP (k).

(2.13)

The random Gaussian field is isotropic – the correlation between two gradients

cannot depend on which directions the gradients are in. In other words, 〈ηi(~x)ηj(~y)〉
must be the same regardless of the values of i and j. Therefore the correlation must

be proportional to δij (or it can be constant for all i and j, but that is physically

implausible). So
1

(2π)N

∫
dNk kikjP (k) = Kδij (2.14)

where K is a constant. Multiplying both sides by δij and making use of the fact

that in N dimensions δijδij = δ11 + δ22 + . . .+ δNN = N , we have

1

(2π)N

∫
dNk k2P (k) = NK → K =

1

N
σ2
1. (2.15)

A similar prescription works for the correlation functions 〈Fζij〉 and 〈ζijζkl〉.
For 〈Fζij〉 we get

〈Fζij〉 = − 1

(2π)N

∫
dNk kikjP (k)

= Kδij

⇒ K = − 1

N
δijσ

2
1.

Note the minus sign relative to the 〈ηi(~x)ηj(~y)〉 case.

The 〈ζijζlk〉 case is more complex.

〈ζijζlm〉 =
1

(2π)N
∂

∂xi
∂

∂xj
∂

∂yl
∂

∂ym

∫
dNk P (k)ei

~k·(~x−~y)
∣∣∣∣
~x=~y

=
1

(2π)N

∫
dNkkikjklkmP (k).
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Two things to note. First, the expression on the second line is completely symmetric

in i, j, l,m. Second, isotropy means that the correlation is nonzero only for three

cases: 〈ζiiζjj〉, 〈ζijζji〉 and 〈ζijζij〉. Because of the symmetry of i, j, l,m, we must also

have that all three correlations are equal to each other, 〈ζiiζjj〉 = 〈ζijζji〉 = 〈ζijζij〉.
This lets us write down the expression the correlation must be proportional to:

〈ζijζlm〉 = K(δijδlm + δilδjm + δimδjl). (2.16)

Multiplying both sides by δijδlm, we get

σ2
2 = K(N ×N + δjmδjm + δjmδjm)

= K(N2 + 2N)

⇒ K = σ2
2

1

N(N + 2)
.

(2.17)

Aggregated, the results are the N -dimensional generalization of BBKS equation

A1,

〈FF 〉 = σ2
0,

〈ηiηj〉 =
1

N
δijσ

2
1,

〈Fζij〉 = − 1

N
δijσ

2
1,

〈ζijζlm〉 =
1

N(N + 2)
σ2
2(δijδlm + δilδjm + δimδjl).

(2.18)

See Section 7.1 in the Appendix for an alternative way to derive these relations.

Now we define the vector y:

y = {F, η1, η2, . . . , ζ11, ζ22, . . . , ζNN , ζN−1,N , ζN−2,N , . . . , ζ1N , ζN−2,N−1,

. . . ζ1,N−1, . . . , ζ12}
(2.19)

The elements of this vector are the y’s in Eq. 2.9. With this ordering of y, we can

write down the covariance matrix. The general expression is complicated, but as

an example we have the following 10× 10 matrix in 3-dimensions:

14



M =



σ2
0 0 0 0 −σ2

1

3
−σ2

1

3
−σ2

1

3
0 0 0

0
σ2
1

3
0 0 0 0 0 0 0 0

0 0
σ2
1

3
0 0 0 0 0 0 0

0 0 0
σ2
1

3
0 0 0 0 0 0

−σ2
1

3
0 0 0

σ2
2

5

σ2
2

15

σ2
2

15
0 0 0

−σ2
1

3
0 0 0

σ2
2

15

σ2
2

5

σ2
2

15
0 0 0

−σ2
1

3
0 0 0

σ2
2

15

σ2
2

15

σ2
2

5
0 0 0

0 0 0 0 0 0 0
σ2
2

15
0 0

0 0 0 0 0 0 0 0
σ2
2

15
0

0 0 0 0 0 0 0 0 0
σ2
2

15


This matrix can be constructed directly from Eq. 2.18. The (1, 1) element

is the correlation of the first element of y with itself, i.e. 〈FF 〉 = σ2
0. The (1, 2)

element is the correlation of the first element of y with the second element of y, i.e.

〈Fη1〉 = 0, and so on. To simplify the upcoming analysis, we wish to make this

matrix as diagonal as possible. To that end, we adopt the basis transform:

x1 = − 1

σ2

∑
i

ζii,

xn = − 1

σ2

n−1∑
i=1

(ζii − ζnn) , (2 ≤ n ≤ N)

(2.20)

The xn here are analogous, but not identical, to BBKS’s x, y, z in BBKS’s Appendix

A1. Following BBKS, we also rescale F , introducing ν = F/σ0. With this choice

of basis the non-zero elements in the covariance matrix become

〈ν2〉 = 1

〈x21〉 = 1

〈νx1〉 = γ

〈x2n〉 =
2n(n− 1)

N(N + 2)
, (2 ≤ n ≤ N)

(2.21)

where γ = σ2
1/(σ2σ0). For an explicit proof of this result, see Section 7.2.

The only non-diagonal correlation left is between ν and x1. For the vector

15



y = {ν, x1, x2 . . . , xn . . . ηi . . . ζij} (where i > j in the ζij term; note also the

shift in the ordering compared to Eq. 2.19), the covariance matrix M now looks

like this:

M =



1 γ 0 0 0 0 0 0 0

γ 1 0 0 0 0 0 0 0

0 0 4
N(N+2)

0 0 0 0 0 0

0 0 0 12
N(N+2)

0 0 0 0 0

0 0 0 0
. . . 0 0 0 0

0 0 0 0 0
σ2
1

N
0 0 0

0 0 0 0 0 0
. . . 0 0

0 0 0 0 0 0 0
σ2
2

N(N+2)
0

0 0 0 0 0 0 0 0
. . .


where the terms in columns 3–5 are for the x’s, and the last two terms are for η

and ζij with i 6= j. There are N
σ2
1

N
terms and NC2

σ2
2

N(N+2)
terms.

Taking the inverse of the covariance matrix and multiplying with the new vector

y, the Q factor in equation (2.2) becomes

2Q = ν2 +
(x1 − γν)2

1− γ2
+

N∑
n=2

N(N + 2)

2n(n− 1)
x2n +

Nηηη · ηηη
σ2
1

+
N∑

i,j;i>j

N(N + 2)(ζij)
2

σ2
2

.

(2.22)

This is the equivalent of BBKS equation (A4) for N -dimensions. Note that the first

two terms remain constant for all N , but the remaining terms are N dependent.

Two further simplifications are possible: we are interested in extrema, which

by definition have η = 0. Also, we can choose our axes such that ζij = 0 if i 6= j.3

This eliminates the last two terms in Eq. 2.22.

3This corresponds to picking the principal axes of the system in classical mechanics. Alterna-
tively, this corresponds to transforming the symmetric Hessian (the matrix of ζ’s) into a diagonal
matrix, which is always possible because symmetric matrices S can be expressed as S = PDP ′,
where D is a diagonal matrix and P is a unitary matrix.
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2.1.1 The Jacobian

Although we have made progress, we are not yet done. For clarity, we reproduce

the crucial Eq. 2.9:

Nmin =

∫
dy1dy2 . . . δ

N(ηi)|det(ζij)|θH(λN)
e−Q√

(2π)ndetM
(2.23)

The analysis in the previous section handles M and Q,4 but there are still terms

in the integral that need to be evaluated. Recall that the y’s (the variables being

integrated over in Eq. 2.9) in our case are F, η, and ζ. The F integral will be

evaluated in the final step.5 The integral over η is trivial: since we do not need the

last two terms of Q (in Eq. 2.22), the only terms in the integrand that depend on

η are the δ-functions, and the η integrals evaluate to 1. That leaves the integrals

over ζ, which we deal with in this subsection.

We claim that

∏
dζ11dζ12dζ13 . . . = A

(∏
i<j

|λi − λj|
) N∏

i

dλi (2.24)

where A is some constant and the λ’s are the eigenvalues of the Hessian. Note this

is a simplification, since the N(N+1)
2

dimensional vector space (because there are

NC2 ζ’s) has dropped to N dimensions. To prove Eq. 2.24 we note that given the
N(N+1)

2
dimensions, we can span the vector space with N(N+1)

2
orthogonal vectors.

We also note that we only have N(N+1)
2

ζ’s because we are in the space of symmetric

matrices (in turn a consequence of the fact that the Hessian must be symmetric).

In this space we define an inner product between two symmetric matrices S1, S2

as S1 · S2 = Tr(S1S2). Inner products must satisfy three properties [38]:

1. It must obey conjugate symetry, i.e. 〈x, y〉 = 〈y, x〉. Our Hessians are real,

so the conjugate is equal to itself. Meanwhile Tr(S1S2) = Tr(S2S1) because

the trace is invariant under cyclic permutations. So this item is satisfied.

4We do not actually need M for our research questions, since detM is effectively a constant for
a given random Gaussian field. We will see more about this in the next section and in section 3.

5Remember for the first research question we’re interested in
∫∞

0
NmindF/

∫∞
−∞NmindF .
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2. It must be linear in the first argument, 〈a(x+ y), z〉 = a〈x, z〉+ a〈y, z〉. This

is easy to see since a(S1 +S2)S3 = aS1S3 +aS2S3 is a basic property of matrix

multiplication.

3. It must be positive definite, 〈x, x〉 > 0 for x 6= 0. This is not hard to see. If a

matrix is symmetric, then it is diagonalizable, S = PDP ′, where D is a diag-

onal matrix and P is a unitary matrix. Then Tr(S1S1) = Tr(PDP ′PDP ′) =

Tr(PD2P ′) = Tr(D2P ′P ) = Tr(D2) =
∑
λ2i ≥ 0, where we’ve used the

defining property of unitary matrices and the fact that the trace is invariant

under cyclic permutations.

Therefore the trace is a valid inner product. The inner product simultaneously

defines a distance: the distance between two points is simply equal to the length of

the vector between the two points. In other words,

ds2 = Tr(dS2). (2.25)

BBKS calls the quantity ds2 the “metric”.

Next, since S is symmetric, it is always diagonalizable with a unitary matrix,

and we can take S = R†λR where λ is the matrix of eigenvalues after rotation.

Since R is unitary, we must have R†R = I. Differentiating and using the chain

rule, we get:

dR†R +R†dR = 0→ dR† = −R†dRR†. (2.26)

We also have, by differentiating S = R†λR,

dS = dR†λR +R†dλR +R†λdR

= −R†dRR†λR +R†dλR +R†λdR

= R†(dλ+ [λ, dRR†])R.

(2.27)

The square brackets denote the commutator. Note this is different from BBKS’s

expression in their appendix B (below Eq. B2); the BBKS expression contains a

typo.
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Now we can compute the value in Eq. 2.25.

ds2 = Tr[(R†(dλ+ [λ, dRR†])R)2]

= Tr[(R†(dλ+ [λ, dRR†])2R]

= Tr[(dλ+ [λ, dRR†])2].

(2.28)

The second line follows because R†R = I, and the third line follows by invariance

of the trace under cyclic permutation. Expanding the square we get

ds2 = Tr(dλ2 + dλ[λ, dRR†] + [λ, dRR†]dλ+ [λ, dRR†]2). (2.29)

The trace of the middle two terms turns out to be zero, if we exploit 1) the cyclic

property and 2) the fact that λ and dλ commute (because they are both diagonal).

This leaves the first and last terms. The trace of the first term is of course
∑
dλ2i .

For the second term, note that dRR† is a matrix, so its elements can be indexed

by two indices which we can write as (dRR†)ij. It is also antisymmetric: RR† = 1,

and differentiating this shows dRR† = −RdR† (compare Eq. 2.26). Defining

(dRR†)ij ≡ wij for ease of notation, we have the commutator become

[λ, dRR†]ij = (λdRR†)ij − (dRR†λ)ij

=
∑
k

λikwkj −
∑
k′

wik′λk′j

= λiiwij − λjjwij
= (λi − λj)wij.

(2.30)

The third line follow from the fact that λ is diagonal, and because these are no

longer matrix multiplications, therefore they comute. We are interested in the

commutator squared, which leads to

Mij = [λ, dRR†]2ij

=
∑
k

(λi − λk)wik(λk − λj)wkj

=
∑
k

(λi − λk)wik(λj − λk)wjk.

(2.31)
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where the second line follows from matrix multiplication, and the third line uses

the antisymmetric property wik = −wki. We want the trace of this, so we set i = j

and sum over i.
TrM =

∑
i

∑
k

(λi − λk)2w2
ik. (2.32)

Keeping in mind that since w is antisymmetric, it is nonzero only if i 6= k, and we

can write TrM =
∑

i 6=j(λi − λj)2w2
ij. Therefore

ds2 =
∑

(dλi)
2 +

∑
i 6=j

(λi − λj)2w2
ij. (2.33)

Next, we note that there are N(N+1)
2

elements in the above: N of the first term,

and N(N−1)
2

of the second. Therefore we can take the dλ’s and |λi − λj|wij as our

basis vectors, they span our space, and their product is equal to the product of the

dζ’s.

We are almost at Eq. 2.24. For the rest, keep in mind that the w’s are elements

of a rotation matrix. If we have statistical isotropy, then integrating over all angles

yields a constant (which BBKS calls dvol[SO(3)]), and we arrive at Eq. 2.24.

2.1.2 Putting it together

We again reproduce the crucial Eq. 2.9, in the variables we are now using:

Nmin =

∫
dF (dη1dη2 . . . dηN)(dζ11dζ12 . . . dζNN)

δN(ηi)|det(ζij)|θH(λN)
e−Q√

(2π)ndetM
(2.34)

with Q given by Eq. 2.22. As argued in the previous subsection, the η integrals

evaluate to unity. Furthermore, the results of the previous subsection allow us to

write:

Nmin = A

∫
dF (dλ1dλ2 . . . dλN)

∏
i<j

|λi − λj||det(ζij)|θH(λN)
e−Q√

(2π)ndetM

(2.35)
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A few more simplifications are possible. Because have chosen the principal axes

(Sec. 2.1.1), ζij is now nonzero only for i = j, where its value is the eigenvalue

of the Hessian, λi. Therefore det(ζij) =
∏

i λi. Also, so far, no assumptions have

been made about the eigenvalues λi. Without loss of generality, we can order the

eigenvalues such that λ1 ≥ λ2 ≥ λ3 . . . ≥ λN . For minima, we must also have

λN ≥ 0. Because there are N ! possible orderings that could have been chosen

instead, imposing this ordering divides the result by a constant, N !, which we can

absorb into A. Finally, detM is a constant6 and so is 2π, which we can also absorb

into A. The final result for minima is:

Nmin = A

∫ ∞
0

dλ1

∫ λ1

0

dλ2 . . .

∫ λN

0

dλN

∫
dF

∏
i<j

|λi − λj|
∏
i

|λi|e−Q (2.36)

where the integration limits enforce the ordering λ1 ≥ λ2 ≥ . . . ≥ λN > 0, and Q

is given by (compare Eq. 2.22)

2Q = ν2 +
(x1 − γν)2

1− γ2
+

N∑
n=2

N(N + 2)

2n(n− 1)
x2n

= x21 +
(ν − γx1)2

1− γ2
+

N∑
n=2

N(N + 2)

2n(n− 1)
x2n.

(2.37)

We can see eigenvalue repulsion7 in Eq. 2.36: if λi = λj, the integrand becomes

zero. In other words, there are fewer minima as eigenvalues get closer to each other,

and there are no minima for which two eigenvalues are exactly equal.

To modify this equation for saddles, we adapt the integration limits. For

example, if we are interested in 1-saddles, we consider instead the equation:

Nsad = A

∫ ∞
0

dλ1

∫ λ1

0

dλ2 . . .

∫ λN−1

0

dλN−1

∫ 0

−∞
dλN

∫
dF

∏
i<j

|λi−λj|
∏
i

|λi|e−Q.

(2.38)

6Although detM contains variables that depend on the properties of the random Gaussian
field, none of those variables are being integrated over.

7Eigenvalue repulsion was also mentioned in the Introduction of this thesis, in relation to
Aazami & Easther’s [7] and Marsh et al.’s work. [26] It refers to the tendency of eigenvalues of
random matrices to “repel” one another, such that no two eigenvalues are likely to be the same.
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The integration limits now enforce the order λ1 ≥ λ2 ≥ λ3 . . . ≥ λN−1 ≥ 0 ≥ λN .

Note the absolute value signs around the λ’s – these ensure the result is always

positive, even though λN is negative.

Eqs. 2.36 and 2.38 are key equations for answering our research questions.

Because of the unknown constant A in front of the equation, they are not actually

the number density of minima/saddles. The integrands are, however, an unnor-

malized probability density for minima/saddles: if they are relatively large, then

minima/saddles are more likely, and vice versa if they are small. Evaluating these

equations for different limits on the F integral is the focus of much of this thesis.

2.1.3 The role of γ

At this point it is worth noting that the only parameter of the random Gaussian field

remaining in Eqs. 2.36 and 2.38 is γ. In other words, although three parameters

were used in the covariance matrix M (σ0, σ1 and σ2, see Eqs. 2.12 and 2.18),

only the combination σ2
1/σ0σ2 is relevant for the number of minima/saddles. The

intuitive explanation for this is that σ0 is roughly related to the average of the

square of the field value (see Eq. 2.18). Multiplying the field value by a constant

would change σ0 (Fig. 2.1), but it would not change the number of minima/saddles.

Similarly, σ1 is the average of the square of the first derivative. Multiplying the

first derivative by a constant – equivalent to rescaling the axes – would change σ1,

but again doesn’t affect the relative number of minima/saddles in a fixed volume.

Therefore two of the three degrees of freedom do not affect the statistics, and we

are left with only one parameter γ.

It can be shown that 0 ≤ γ ≤ 1. We know γ = σ2
1/σ0σ2 ≥ 0 because the σi are

positive (from their definition, Eq. 2.12, every term in the integrand is positive;

one can also see from Eq. 2.18 that the σ’s correspond to the average of squares,

and must therefore be positive). For the other bound, we know8

∫
(k2 − σ2

1

σ2
0

)2P (k)dk ≥ 0 (2.39)

8This proof is due to Shaun Hotchkiss.
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Figure 2.1: In this 1D realization of a random Gaussian field, multiplying the field
value by 2 (dashed line) changes σ0, but does not affect the number or sign of
minima.
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because the integrand is positive. Expanding the square leads to∫
k4P (k)dk − 2

∫
k2
σ2
1

σ2
0

k2P (k)dk +

∫
σ4
1

σ4
0

P (k)dk

= σ2
2 − 2

σ4
1

σ2
0

+
σ4
1

σ2
0

= σ2
2 −

σ4
1

σ2
0

≥ 0

→ σ2
2σ

2
0 − σ4

1 ≥ 0

→ σ2σ0 ≥ σ2
1

→ 1 ≥ γ.

(2.40)

Q.E.D.

The exact value γ takes depends on the power spectrum. Because the string

landscape is so complicated, there is no canonical answer to the question “what is

the landscape’s power spectrum?” and therefore no canonical value for γ either.

Nonetheless, we will consider two simple power spectra: the Gaussian power

spectrum and the power-law power spectrum, for which we can calculate analytical

results. In the next subsections, we will calculate γ for both these power spectra.

Gaussian power spectrum

The specific form of the Gaussian power spectrum we adopt is P (k) = U2
0 e
−k2/2L2

,

where U0 is the amplitude of the Gaussian and L is the correlation length.9 The

two-point correlation function is a Gaussian (since the Fourier transform of a

Gaussian is another Gaussian), and we can write, by definition (c.f. Eq. 2.11),

U2
0 e
−φ2/2L2

=
1

(2π)N

∫
dNkP (k)eikφcosθ (2.41)

where φ is the Fourier conjugate of k and we have written k · φ as kφ cos θ.

9The correlation length is a rough estimate for the distance at which the correlation function
drops to zero. Its meaning will be discussed in greater detail in Section 5.4.1.
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Differentiate twice w.r.t φ,

U2
0 e
−φ2/2L2 φ2 − L2

L4
=

1

(2π)N

∫
dNk(−k2cos2(θ))P (k)eikφcosθ

= − 1

(2π)N

∫
dk

∫
dθ

∫
dΩ′k2P (k)eikφcosθcos2(θ)sinN−2(θ)ωN−2

(2.42)

where Ω′ is over all non-θ angles, and ω are the non-θ angular terms. ω is obviously

N -dependent, hence the subscript. If we set φ = 0 then this simplifies to

−U
2
0

L2
= − 1

(2π)N
√
π

Γ[N−1
2

]

2Γ[1 + N
2

]

∫
dk

∫
dΩ′k2P (k)ωN−2 (2.43)

where we have evaluated the integral over θ analytically. On the other hand, σ2
1 is

by definition (see Eq. 2.12)

σ2
1 =

1

(2π)N

∫
dk

∫
dθk2P (k)sinN−2(θ)ωN−2

=
1

(2π)N
√
π

Γ[1
2
(N − 1)]

Γ[N
2

]

∫ ∞
0

dkk2P (k)ωN−2.

(2.44)

Comparing the two equations, we get

U2
0

L2
=

Γ[N−1
2

]

2Γ[1 + N
2

]

Γ[N
2

]

Γ[1
2
(N − 1)]

σ2
1 (2.45)

or

σ2
1 =

2U2
0

L2

Γ[1 + N
2

]

Γ[N
2

]
. (2.46)

This is exactly the same result as Yamada and Vilenkin’s Eq. 2.4 for σ1 [34]. A
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similar calculation yields expressions for σ0 and σ2,

σ2
0 = U2

0

Γ[N
2

]

Γ[N
2

]
= U2

0

σ2
2 =

4U2
0

L4

Γ[2 + N
2

]

Γ[N
2

]

(2.47)

from which we get, after using the expression Γ(N) = (N − 1)!,

γ =

√
N

N + 2
. (2.48)

For N = 100, this evaluates to γ ≈ 0.990.

Power-law power spectrum

The other commonly-used power spectrum is the power-law power spectrum. These

take the form P (k) = Ak−n. They come with either and red or blue cutoff,10 to

avoid infinities. For a red cutoff, P (k) = 0 for k < kcut. The Fourier transform of

this power-law power spectrum is, up to some constant factors:∫ ∞
kcut

kN−n−1(φk)1−N/2JN/2−1(φk)dk (2.49)

where N is the number of dimensions and J is the Bessel function [39]. We can

substitute this into the definition for the σ’s and integrate. Mathematica is able to

evaluate the integrals:

σ2
0 =

(
1

2π

)N ∫ ∞
kcut

kN−1Ak−n;

σ0 =

√
AkN−ncut (2π)−N

n−N
(n > N) (2.50)

10We use ‘red’ and ‘blue’ in the cosmological sense, denoting spectra with more power on large
scales (small k) as red and small scales (large k) as ‘blue’.
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σ2
1 =

(
1

2π

)N ∫ ∞
kcut

k2kN−1Ak−n;

σ1 =

√
Ak2+N−ncut (2π)−N

n−N − 2
(n > N + 2) (2.51)

σ2
2 =

(
1

2π

)N ∫ ∞
kcut

k4kN−1Ak−n;

σ2 =

√
Ak4+N−ncut (2π)−N

n−N − 4
(n > N + 4) (2.52)

Combined, this yields:

γ =

√
(n− 4−N)(n−N)

n−N − 2
(2.53)

This expression is valid only if n > 4 +N .11

Alternatively, we can impose a blue cutoff, P (k) = 0 for k > kcut. The same

analysis holds. The moments of the power spectrum are now

σ0 =
1

(2π)N/2

√
AkN−ncut

N − n
(n < N) , (2.54)

σ1 =
1

(2π)N/2

√
Ak2+N−ncut

N − n+ 2
(n < N + 2) , (2.55)

σ2 =
1

(2π)N/2

√
Ak4+N−ncut

N − n+ 4
(n < N + 4) , (2.56)

And the final expression for γ is:

γ =

√
(n− 4−N)(n−N)

N − n+ 2
(2.57)

valid only if n < N . Note that in both Eq. 2.53 and Eq. 2.57, γ does not depend

on A or kcut. However, this does not mean these parameters are not physically

meaningful. A is related to the root mean square energy of the landscape via

〈FF 〉 = σ2
0 (Eq. 2.18), while we will encounter kcut again in Chapter 5.

11If n < 4 +N , the integral of the power spectrum over all space will not converge.
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Figure 2.2: γ for the power-law power spectrum P (k) = Ak−n as a function of x,
where x is an arbitrary positive number that relates n and N (see text). This result
applies for both a red cutoff and a blue cutoff. γ is very close to 1 for moderate
values of x, but for sufficiently small x it can also be close to 0.

To illustrate how these expressions for γ work, we substitute n = 4 + N + x

in Eq. 2.53 and n + x = N in Eq. 2.57, where x is a positive number. Both

expressions then simplify to γ =
√

4x+ x2/(2 + x). A plot of this expression is

shown in Fig 2.2. It asymptotes to 1 for large x, but small γ is possible for small x.

In other words, the power-law power spectrum is capable of producing all values of

γ for appropriate values of n.

2.2 Implementation details

The results of the previous section hold for all N . However, the complexity of

Eqs. 2.36 and 2.38 rise quickly with N . We are interested in N ∼ O(100), a

number large enough that analytic treatments are very complex, especially for the

N -dimensional variables we study such as the eigenvalue distributions at very rare

saddles. However, it might not be large enough for a large-N limit to be applicable,

either. Consequently, in what follows we will rely heavily on numerical methods.

In performing these analyses, some details turn out to be critical to computational
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performance.

Firstly (and most importantly), Eq. 2.36 and 2.38 are formulated in terms of

λ, the eigenvalues of the Hessian at the point. This turns out to be a bad idea in

practice because the λ’s can be very small, in which case the product and difference

terms make the integrand in Eq. 2.36 and 2.38 infinitesimal, in turn leading to

numerical difficulties.

The solution to this problem is to use the difference of eigenvalues as the

integration variable. We define

y1 = λ1 − λ2
y2 = λ2 − λ3
. . .

yN−1 = λN−1 − λN
yN = λN .

(2.58)

The choice made earlier to order the eigenvalues λ1 ≥ λ2 ≥ λ3 . . . ≥ λN therefore

becomes yi ≥ 0 ∀i (this applies for minima where all λi ≥ 0. For saddles where

some number of λi ≤ 0, the relation for yi is trivial to derive).

Secondly, for some questions, we will be dealing with the single most likely min-

imum/saddle. To find the most likely minimum/saddle, we do not need to perform

the integration in Eq. 2.36 and 2.38. Instead we maximize the integrand (recall that

Eqs. 2.36 and 2.38 are unnormalized probability densities for minima/saddles.)12

To do this, we make use of Mathematica’s FindMaximum command. It turns

out that this command evaluates fastest when there are no constraints on the

integration variables. In other words, Mathematica is slower if we ask it to optimize

yi subject to the constraint that yi ≤ 0. To get around this, we implement another

transform

yi →
1

2N

(
z2i −

√
4 + z2i

)
(2.59)

where N is the number of dimensions. For the case of saddles where yN ≥ 0, we

12There are some subtleties involved with maximizing the integrand instead of performing the
full integration, see Fig. 5.1.
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also use

yN →
1

2N

(
z2N +

√
4 + z2N

)
. (2.60)

These two transforms remove the constraints on yi, since all real values of zi are

acceptable. This leads to a significant speedup.

Finally, FindMaximum requires a starting point to initiate the search. The

one we use is zi =
√
i ∀i, a semi-empirical choice based on the approximate values

of z at the maxima. It is conceivable that a different starting point will lead to

a different optimum; however we checked this for various starting points without

finding a different maximum. We can check the probability distribution for N = 2

graphically, as in Fig. 2.3. The probability distribution is smooth, and there is

clearly only one maximum. This ties in with the Gaussian approximation, a detail

we will encounter in Section 3.4.

2.3 Summary

In this chapter, we have derived the key equations Eq. 2.36 and 2.38 that represent,

up to a constant factor, the number density of minima/saddles in a random Gaussian

landscape. We have shown that, although random Gaussian fields in general depend

on three parameters σ0, σ1 and σ2, only the combination σ2
1/σ0σ2, or γ, matters

for the number density of minima/saddles. We have further calculated γ for two

simple power spectra, the Gaussian power spectrum (Eq. 2.48) and the power-law

power spectrum (Eqs. 2.53 and 2.57). These tools form the foundation for our

analysis of the research questions in the upcoming chapters.
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Figure 2.3: Plot of the logarithm of the probability distribution (the integrand
of Eq. 2.36) for N = 2, γ = 0.9. We see deep troughs at λ2 ≈ λ1, illustrating
eigenvalue repulsion, and at λ2 ≈ 0. As can be seen, the probability distribution is
smooth, and there is only one maximum.
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Chapter 3

Question One: Distribution of

Cosmological Constants in a

Gaussian Landscape

Observations indicate we live in a universe with dark energy. Assuming dark energy

is due to a cosmological constant, then empirically, the cosmological constant is very

small (about 10−123EP , where EP is the Planck energy density, or M4
P in natural

units with c = ~ = 1), but nonzero. Explaining this small value poses a problem for

physics, because it would have been so much simpler for the cosmological constant

to be exactly zero.

From the perspective of string theory, the string landscape can potentially

support a dense discretuum of cosmological constants1 [50]. This allows for an

anthropic explanation of the cosmological constant’s value. However, this still

requires P (Λ), the probability for each individual value of Λ, which has not been

calculated in detail for string landscape proposals.

Our first research question investigates this probability. Mathematically, we are

interested in p(Λ > 0|min).2 It should be clear that this probability can be written

1This means the value of the cosmological constant must take specific values as opposed to
varying continuously.

2Beginning from this point, we use Λ to refer to the value of the field at our minimum. This
notation compares to V , which refers to the more general case of the field value, not necessarily
at our minimum.
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as:

p(Λ > 0|min) =

∫∞
0
dΛNmin∫∞

−∞ dΛNmin

(3.1)

where Nmin is the probability density of minima (Eq. 2.36). If this probability

turns out to be very small, then it is possible that every minimum of the landscape

is “below the waterline”, posing a challenge for landscape explanations of the

cosmological constant. More generally, we can also calculate P (Λ|min) for different

values of Λ, in our trial landscape.

Here we make a technical note: we do not evaluate p(Λ = 10−123EP |min)

because this probability depends on the power spectrum used. Put differently, this

probability is dimensionful while the probability we calculate is dimensionless. This

is because V = νσ0 by definition, and while the machinery of Chapter 2 allows

us to calculate the probability of finding a minimum with a given ν, we cannot

translate ν into an energy density without the power spectrum-dependent quantity

σ0. Nonetheless, ν > 0 if and only if V > 0,3 and hence if p(Λ > 0|min) is small, it

will remain small regardless of what the power spectrum is.

3.1 Expectations

Before we evaluate Eq. 3.1, we briefly discuss what we expect to see, on both

intuitive and mathematical levels.

3.1.1 Variation with Λ

The greater the value of Λ, the higher up the potential we are. The higher up the

potential we are, the more likely the stationary points we encounter will be maxima.

This is intuitive, because if a (rare) stationary point very high up the potential

is not a maximum, then there must be (even rarer) points nearby with higher

Λ.4 Accordingly, we expect that the fraction of minima Nmin/Nmax decreases as Λ

increases.

3By definition, σ0 is always positive since it corresponds to the average of squares, see Eq.
2.18.

4As mentioned in the Introduction, this result was also derived by Bray and Dean [12].
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Mathematically, we can see this from the definition of Q (Eq. 2.37). As ν

increases, Q increases, e−Q decreases, andNmin decreases, as expected. Furthermore,

because x1 is directly proportional to the negative of the sum of eigenvalues, it

is always negative for minima.5 Examining the expression for Q (Eq. 2.37), we

see that it contains the term (ν − γx1)2. For negative x1, this term is zero (i.e. Q

maximal, and by extension Nmin maximal) for a negative value of ν, consistent

with the expectation that there are more minima with negative ν than positive

ν. Comparatively, for maxima, this term is zero for a positive ν. We therefore see

that Nmin/Nmax decreases with ν, as expected.

3.1.2 Variation with N

The number N denotes the dimension of the random Gaussian field, or equivalently,

the number of component fields. The fields are typically assumed to be string

theoretic moduli. Like much of the landscape, the precise value of N is uncertain.

Estimates range from dozens [56] to hundreds of thousands in the most complex

compactifications [3], with the most common value cited as “hundreds”.

It stands to reason that the more fields there are, the less likely all of them

reach a minimum at the same point (which they must, for there to be an overall

minimum). Therefore we expect Nmin to decrease with N relative to the number

of saddles. This is clear also from the definition of Q: as N increases, Q increases,

the exponential term is smaller, and Nmin decreases.

What is not immediately clear is if p(Λ > 0|min) decreases with N . We can

get a sense of whether it should by examining Eq. 2.36. As N increases, so does

the number of eigenvalues. This, together with the fact that the polynomial term

favors large λ, causes x1 to become more negative for minima.6 This causes the

second term in Eq. 2.37, which contains the term (x1 − γν)2, to favor smaller

values of ν. Accordingly, we expect the probability distribution to move, but its

shape to be unchanged. Since we are interested in the part of the distribution

that is greater than 0 as a proportion of the entire distribution, we must have that

p(Λ > 0|min) decreases with N .

5Keep in mind our convention where minima have positive eigenvalues.
6Recall that x1 is the sum of eigenvalues, see Eq. 2.20.
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Figure 3.1: Two 1D realizations of a random Gaussian field. The field on the left
has smaller γ and is therefore more “turbulent”, with more minima as well as more
minima above zero.

3.1.3 Variation with γ

Intuitively, γ is a measure of how “turbulent” the potential is. A power spectrum

that extends over a narrower range of scales yields a potential with large γ, and

there are fewer minima and maxima for a given region of space (see Fig. 3.1).

However, the number we are actually after is p(Λ > 0|min), and it’s not obvious

how this number varies as Nmin decreases. To get an idea, we again look at the

expression for Q in Eq. 2.37. A larger γ decreases the width of the second term,

which is the only place where ν enters into the expression. Larger γ also drives the

most likely ν to more negative values (bear in mind that x1 is negative for minima).

Therefore, we expect the distribution to both become more sharply peaked and

move to lower ν, which means that there are proportionately fewer minima above

0, and p(Λ > 0|min) decreases.

We will see these heuristics bear out in the upcoming sections.

3.2 ν integral

Before proceeding further, we note that the integrals over ν in Eq. 2.36 can be

performed analytically. The only dependence of the integrand on ν is via the first
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two terms of Q. Consequently, we can write the denominator of Eq. 3.1 as

denom =

∫ ∞
−∞

dν

∫
λ1≥λ2...≥0

dNx
∏
i<j

|λi − λj|
∏
i

|λi| × e−Q

=

∫
dNx f(x1, x2 . . .)

∫ ∞
−∞

dν exp

(
−(ν − γx1)2

2(1− γ2)

)
=

√
2π(1− γ2)

∫
dNx f(x1, x2 . . .) (3.2)

with

f(x1, x2 . . .) =
∏
i<j

|λi − λj|
∏
i

|λi| × exp

(
−x

2
1

2
−

N∑
n=2

N(N + 2)

4n(n− 1)
x2n

)
.

Similarly, we can evaluate the ν integral in the numerator of Eq. 3.1:

numer =

∫ ∞
0

dν

∫
λ1≥λ2...≥0

dNx
∏
i<j

|λi − λj|
∏
i

|λi| × e−Q

=

√
π(1− γ2)

2

∫
dNx f(x1, x2 . . .)×

(
1 + erf

(
γx1
√

1− γ2√
2

))
.(3.3)

The desired integral is then numer/denom.

3.3 Results for 1 < N . 12

For small values of N , up to about N = 12, we can directly evaluate the integrals

Eq. 3.2 and Eq. 3.3 numerically using Mathematica. We first investigate how

p(Λ|min) varies with N and γ, in conjunction with the heuristics above. Figure 3.2

plots the resulting unnormalized probability density against the potential value.

We see that the heuristics are obeyed: larger γ makes the distribution more tightly

peaked as well as shifts most minima to negative values, while larger N moves the

distribution to more negative values but does not affect the shape.

Keep in mind we are interested in the fraction of the curve that is greater than

zero. In other words, if the area under the curve is normalized to 1, the desired

probability is the area under the curve above V = 0. The two figures make it clear
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Figure 3.2: [Left] The unnormalized probability density p(Λ|min) for N = 3, γ =
0.2, 0.5 and 0.8 (blue, orange, green respectively) and [Right] p(Λ|min) for γ =
0.5, N = 3, 5 and 8 (blue, orange, green respectively). The distribution moves
leftward with increasing N and increasing γ. Keep in mind we are interested in
the part of the curve that is greater than zero, so in both figures the green line
represents a smaller p(Λ > 0|min) than the blue line.

that as γ and N increase, p(Λ > 0|min) decreases. A plot of this probability for

three different N ’s is in Fig. 3.3.

3.3.1 Comparison with numerical realization

To get an intuitive feel for the results, one can compare the results for N = 2

with a numerical realization of a random Gaussian field. We create the numerical

realization by summing a Fourier series of arbitrary dimensions, amplitude and

frequency, then searching for stationary points.7 As a very simple illustrative

example, for N = 2, nmax = 2, where N is the number of dimensions and nmax is

the maximum frequency, we can expand the field F as this Fourier series:

F = λ1 cos(x+ y + c1) + λ2 cos(x− y + c2) + λ3 cos(2x+ c3)

+ λ4 cos(2y + c4) + λ5 cos(x+ c5) + λ6 cos(y + c6) (3.4)

7We acknowledge the use of code written by Ali Masoumi.
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Figure 3.3: The probability that a given minimum has Λ > 0 as a function of γ, for
N = 3, 6, 9. We see that both the heuristics are obeyed: the probability decreases
with N , and γ.
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where the λ’s and c’s are random constants, and x, y are the two dimensions.8 We

can then search a given realization for maxima and minima. This method does not

generate a random Gaussian field with a specific γ = σ2
1/σ0σ2, but it yields a field

with calculable γ.

For the realization in Eq. 3.4, σ2
0 = 〈F 2〉 (see Eq. 2.18). There are 36 terms in

F 2, but most of them are zero because the average of the cross terms9 is zero, a

basic property of Fourier series. Of the remaining terms, the average of a cosine

squared is 1/2. Therefore σ2
0 =

∑6
i=1

1
2
λ2i .

The σ1 term is more complicated. In principle, σ2
1 = 〈η2i 〉, where i = x or y.

This indifference to direction is a consequence of the isotropy of the field. However,

the generated random Gaussian field is not generally isotropic – to be isotropic

one would, e.g., need to also include the cos(−x+ y + c) term and ensure that this

term has the same coefficient λ as the cos(x− y + c) term. This anisotropy means

σ1, and by extension γ, are not well-defined. However, for sufficiently large nmax,

the field will still be approximately isotropic, and the calculated γ’s approximately

the same in every direction.

With this caveat aside, we can calculate σ1 using either of σ2
1 ≈ 〈ηxηx〉 ≈ 〈ηyηy〉.

As an illustration, ηx is obviously

ηx = λ1 sin(x + y + c1)− λ2 sin(x− y + c2)− 2λ3 sin(2x + c3)− λ5 sin(x + c5)

(3.5)

from which σ2
1 = N

2
(λ21+λ22+4λ23+λ25), where we have left the number of dimensions

N in the expression (for this 2D field, of course, N = 2).

8Superficially there should be more terms – (2nmax + 1)2 in fact – but many are discarded. In
particular, the cos(c) term is discarded because it’s simply a constant. The cos(2x+ 2y + c) and
similar terms are discarded since the norm of the coefficients,

√
(−2)2 + 22, exceeds the length

of the box (which is nmax, or 2, in this case). This keeps the potential spherically symmetric.
Finally, all terms in which the coefficient of the first frequency is negative (such as cos(−x+y+c))
are discarded because the potential is symmetric if it is multiplied by −1.

9For example, the average of the λ1λ2 cos(x+ y + c1) cos(x− y + c2) term over a full cycle of
x and y is zero.
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Simulated field

γ ∼ 0.870
Number of dimensions 2

Number of stationary points (total) 2251
Number of minima 562

Number of minima above zero 5
P (Λ > 0|min) (Simulated) ∼ 0.0088968
P (Λ > 0|min) (Calculated) 0.0105489

Table 3.1: Comparison of P (Λ > 0|min) between a simulated random Gaussian
field and the probability calculated using Eqs. 3.2 and 3.3. The value of γ is
approximate because the simulated random Gaussian field is not isotropic; however
the calculated γ for the two different directions still agree to three decimal places.

Figure 3.4: A piece of the simulated field in Table 3.1. For this field, nmax = 30.

Similarly,

ζxx = λ1 cos(x+ y+ c1)− λ2 cos(x− y+ c2)− 4λ3 cos(2x+ c3)− λ5 cos(x+ c5)

(3.6)

from which σ2
2 = N(N+2)

2
(λ21 + λ22 + 16λ23 + λ25).

Taken together, these results let us compute γ, and therefore compare the

results from this numerical realization against the theoretical results. We show

a simulated 2D field in Fig. 3.4 and its properties in Table 3.1. The simulated

P (Λ > 0|min) is close to the calculated value.
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This method of comparing against a numerically realized random Gaussian field

scales poorly with nmax and especially with N , restricting its use to simple cases.

3.4 N & 12

For N & 12, direct calculation becomes very resource-intensive. To make progress,

we use the Gaussian approximation. We approximate the integrals Eqs. 3.2 and

3.3 as Gaussian integrals centered on the point of maximum likelihood:

integral ≈ Ip

√
(2π)N

detH
(3.7)

where IP is the value of the integrand at its peak, and H is the Hessian at the

peak. To use this approximation, we first find the x’s that maximize the integrand,

calculate IP using those values, and finally calculate the Hessian with respect to

those x’s using the finite difference method. This is a standard technique.10 The

first-order approximation to a derivative is:

f ′(x) ≈ f(x+ h)− f(x− h)

2h
(3.8)

To second order, the approximation is

f ′(x) ≈ 1

12h
f(x− 2h)− 2

3h
f(x− h) +

2

3h
f(x+ h)− 1

12h
f(x+ 2h) (3.9)

The Hessian is the matrix of second derivatives. There are N directions, so it

is a N ×N matrix. The second order approximation for the Hessian is therefore

f ′′(x, y) ≈
[

1

12h
f(x− 2h, y)− 2

3h
f(x− h, y) +

2

3h
f(x+ h, y)− 1

12h
f(x+ 2h, y)

]
◦[

1

12h
f(x, y − 2k)− 2

3h
f(x, y − k) +

2

3h
f(x, y + k)− 1

12h
f(x, y + 2k)

]

10See e.g. https://geometrictools.com/Documentation/FiniteDifferences.pdf. One could in
principle calculate the analytic Hessian, but it is very complex.
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which results in 16 terms. The first four are:

f(x− 2h, y − 2k)

144h2
− f(x− 2h, y − k)

18h2
+
f(x− 2h, y + k)

18h2

− f(x− 2h, y + 2k)

144h2
(3.10)

which is simply the 1
12h
f(x − 2h, y) term composite with the four terms in the

second brackets. The remaining terms are now straightforward to derive.

In the notation of our problem, the x, y correspond to x1, x2, x3 . . . xN .11 There

are N2 terms in the Hessian, each of which need to be summed. Once done, we can

take the determinant, and calculate the Gaussian integral. The values of h and k

can affect the final value of the approximation. It turns out that the second-order

Hessian allows a relatively large h, k without loss of numerical precision. We

typically take h = k = 0.0001, and verified that changing this value does not

substantially alter the final results.

How good is this approximation? For N < 12, we can compare against the

numerical integrals. An illustrative comparison is in Fig. 3.5. The Gaussian

approximation turns out to be very good: it produces a curve with roughly the

same shape and peak. It slightly overestimates the numerical value of the integral,

but the factor is roughly independent of Λ and close to unity. Given that we are

dealing with numbers on the order of 10−500 and focus on large differences in the

logarithms of the probabilities, this O(1) factor is completely negligible. We also

plot a comparison of P (Λ > 0|min), obtained using the Gaussian approximation

and direct evaluation of the integrals, in Fig. 3.6. The plot only goes up to N = 8

because for 8 < N <∼ 12, although we are still able to numerically calculate the

“exact” value of P (Λ > 0|γ,N,min), for reasonable computational costs the result

is only accurate to within a few % (see Fig. 3.6). Hence, for N > 8 the dominant

error is in the “exact” numerical result as opposed to the Gaussian approximation.

We already see hints of this at N = 8: the relative error for N = 8 is much

choppier than for lower dimensions. The plot does indicate that the relative error

increases slowly with N . If we extrapolate to N ∼ 150, it appears that the Gaussian

11Or yi, zi defined in Section 2.2 – it is equivalent to maximize any of the three variables.
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Figure 3.5: Top: A comparison of the unnormalised exact p(Λ) (blue line) with
the Gaussian approximation (orange line), for γ = 0.6 and N = 4. The left and
right plots show the exact result and the Gaussian approximation, on linear and
logarithmic axes. Bottom: the ratio of the two curves. The Gaussian approximation
always over-estimates the integral, but the ratio is roughly independent of Λ and
remains close to unity.
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Figure 3.6: Top: Plot of the relative error in log(P(Λ > 0|γ,N) obtained from
calculating P using the Gaussian approximation versus the exact numerical result.
The error never exceeds 0.3% over the whole range, but see discussion in the
text for expectations when extrapolated out to N ∼ O(100). Bottom: Plot of
log(P(Λ > 0|γ,N) as a function of γ, for N = 12. The values are the “exact” results,
calculated using Mathematica’s NIntegrate command. Although the result is
quite smooth, one can see tiny fluctuations where the “exact” result calculated
by Mathematica is slightly different from the value if the curve is smooth. We
therefore conclude that the “exact” result is accurate to a few %, a conclusion
consistent with the error estimate reported by Mathematica.
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approximation can be off by ∼ 3 in this log plot, or three orders of magnitude.

Although this sounds like a lot, we are dealing with probabilities on the order of

10−500, and three orders of magnitude will have only a small effect on the result.

Therefore, we continue to use the Gaussian approximation even for large N .

We make a final comment here on the Gaussian approximation: if we accept the

Gaussian approximation as sound, then we would expect there to be only one overall

maximum in the likelihood (i.e. the peak of the Gaussian). This non-existence

of other maxima is indirectly supported by the fact that we do not find different

optima when calling FindMaximum with different starting points for the search

(see Section 2.2).

3.5 Results for N > 12

The results for 12 < N < 150, calculated using the Gaussian approximation for

different values of γ, are shown in Fig. 3.7 and Fig. 3.8. For N > 150, the

computations required are expensive, even with the Gaussian approximation.

As can be seen from the figures, as N increases, the probability of a minimum

having Λ > 0 decreases quickly, and for sufficiently large values of γ, it can drop

below 10−500. On its own, this result is not surprising – surely for a sufficiently

smooth random Gaussian field we would expect very few minima, and of those

minima, most of them would be below zero. Therefore, the next question is, what

value of γ is reasonable?

To answer this question, we make use of the results from Section 2.1.3 for the γ

of simple power spectra. The Gaussian power spectrum has γ =
√
N/(N + 2),

or about 0.990 at N = 100. Fro these parameter values, P (Λ > 0|min) evaluates to

10−1197. This probability is so minute that even with 10500 minima in the landscape,

the probability of a single minimum having V > 0 is roughly 10−700, and thereby

poses a challenge for landscape cosmology. Nonetheless, for the high end estimate

of 1027200 vacua (see the introduction and Ref. [3]) there are still more than enough

minima to go round.12

The power-law power spectrum has γ =
√

4x+ x2/(2 + x), where x =

12This last conclusion might fail if N turns out to be much larger than 100. Like many other
things about the string landscape, its exact value is not known.
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Figure 3.7: The probability that a given minimum has Λ > 0, as a function of
N for γ = 0.2, 0.5, 0.8 and 0.9 (top to bottom) calculated using the Gaussian
approximation.
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Figure 3.8: log10(P (Λ > 0|N, γ)) as a function of N and γ. For moderately large
N and γ close to unity, fewer than 1 in 10500 minima have Λ > 0.
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n − 4 − N for a red cutoff or x = N − n for a blue cutoff. This expression

can generate all possible values of γ. It can be shown that in order to have

P (Λ > 0|min) > 10−500 at N = 100, we need γ < ∼ 0.96, corresponding to

x . 5.14 (Fig. 3.8).

3.6 Summary

In this chapter, we have calculated P (Λ > 0|min), thus answering the first research

question. We began with direct integration of Eq. 2.36, which can be efficiently

computed for small N , then introduced the Gaussian approximation to compute

the integrals up to N ∼ 150. The key result is Fig. 3.8, which plots P (Λ > 0|min)

as a function of the two free parameters in the landscape, N and γ. We see that

for much of the parameter space there are comparatively many minima with Λ > 0,

but the fraction decreases with increasing N and γ. For N ∼ 100 and γ close to

unity, this fraction can decrease to the point where fewer than 1 in 10500 minima

have Λ > 0, potentially posing a problem for landscape cosmology.
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Chapter 4

Question two: eigenvalues at

minimum

In the landscape picture of our universe’s history, prior to inflation, the universe was

(loosely speaking) located at a saddle. It inflated out of the saddle and eventually

settled in a minimum, where it is currently located. This makes it desirable to

know the properties of the minimum: it would tell us about the end of inflation,

give some indication of the surrounding potential heights,1 and also help inform

quintessence models. In quintessence, dark energy is not due to a cosmological

constant, but rather a scalar field analogous to the inflaton. The slope of this scalar

field would then tell us about how fast dark energy is changing.

From the perspective of our calculations, what we are trying to find are the

eigenvalues at the most probable minimum, which we will use as a proxy for

‘our’ minimum. To do this, we recall that Eqs. 2.36 and 2.38 are unnormalized

probability densities for the number of minima and saddles. Accordingly, it is easy

to calculate what the most probable eigenvalues are: simply find the values of λi and

Λ that maximize the integrand. We do this using Mathematica’s FindMaximum

function. This yields all N eigenvalues simultaneously.

Before going into the results, we note several things. First, the distribution of

eigenvalues at the most probable Λ is independent of γ. This can be seen from Eq.

2.37. The only place in which γ enters the expression is in the term (ν − γx1)2.
1If the minimum is not the global minimum, this is potentially relevant in quantum tunneling

scenarios where our universe continues its evolution by tunneling out of the current minimum.
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Therefore the most likely Λ (= νσ0 by definition) is the value that minimizes

this term, or γx1σ0. Choosing this Λ eliminates the only γ dependence from Q.

Secondly, the x’s are intimately related to the eigenvalues, but they also include

a factor of σ2 (see Eq. 2.20). Therefore, all the results we derive in this section

are actually for the dimensionless eigenvalues λ/σ2. Thirdly, three parameters in

Eqs. 2.36 and 2.38 need to be input by hand: N , γ and Λ. The first two are

(unknown) properties of the random Gaussian field, but the last can be constrained

from observations: it is the value of the potential at our minimum, which in turn is

related to the observed value of dark energy. This value is about 6.3× 10−27kg/m3

today.2 If we take the natural guess3 that σ0 is approximately the Planck energy

density c5/~G ≈ 5.1550 × 1096kg/m3, then Λ = V/σ0 ≈ O(10−123). This is a

vanishingly small number. Therefore, in the plots to follow, we consider the point

Λ = 0 in addition to the most probable value of Λ.

A final detail is that we want the expected distribution of eigenvalues ρ(λ),

but the method above of maximizing the integrand only finds the most probable

eigenvalues. For any given N there will be N eigenvalues. We turn this into a

distribution ρ(λ) by first considering n(λ), defined as the number of eigenvalues

smaller than λ. This function is related to the desired ρ(λ) – recall that by

definition,
∫ λ1
λ2
ρ(λ)dλ yields the number of eigenvalues between λ2 and λ1. Therefore

n(λ) =
∫ λ1
0
ρ(λ)dλ, or ρ(λ) = dn(λ)/dλ. Our results do not actually produce a

smooth function n(λ) – we only have 100 discrete eigenvalues which we have to

interpolate to get n(λ) for all values of λ. Accordingly, the approximation fails in

any region in which there are few λ: in other words, it will fail to resolve sharp

features in the distribution, and it will not work well in regions which contain

almost no eigenvalues (ρ(λ) ∼ 0).

In Fig. 4.1 we plot the expected distribution of eigenvalues ρ(λ) for N = 100,

at both the peak likelihood when Λ is allowed to vary,4 and at the peak likelihood

assuming Λ = 0, γ = 0.9. With no restrictions whatsoever on λ, the distribution

of eigenvalues is well-known: it is the Wigner semicircle [8, 9]. The eigenvalue

distribution in Fig. 4.1 is different because we have the extra constraint that we

2Calculated using ΩΛ = 0.69, as in the Planck results [40], with H0 = 70km/s/Mpc.
3This guess is based on the idea that the string theory landscape only comes into play at

Planckian energies; at lower energies the Standard Model of Particle Physics works well.
4Recall that this distribution is independent of γ.
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Figure 4.1: The expected distribution of eigenvalues at most likely value of Λ
(numerically calculated to have Λ/σ0 = −15.64, red curve) and at Λ = 0 (blue
curve) for N = 100, γ = 0.9. The horizontal axis corresponds to the eigenvalues at
that point, while the vertical axis is the expected number density of each eigenvalue.
Note the red curve is independent of γ (see text). Compare Figures 8 and 9 in
Yamada and Vilenkin [34].

are at a minimum, i.e. all eigenvalues must be > 0. The result is that, for the

most probable Λ, we see what looks like a Wigner semicircle but with deviations

at small eigenvalues. The deviations occur at larger eigenvalues if we impose the

constraint that Λ = 0.

This shape of ρ(λ) is in broad agreement with the results derived by Yamada

& Vilenkin [34] using a different method. There is some deviation with Yamada &

Vilenkin’s results at the very smallest eigenvalues, where their curve turns around

and goes to zero. The discrepancy arises because we lack the resolution at those

values – we only have a few eigenvalues in that regime which makes the interpolation

miss the sharp feature – which is in turn because we only have N eigenvalues. We

cannot simply increase N , both because of the computational costs and because the

expected turnaround in the eigenvalue distribution decreases with N [34]. We note,

however, that the distribution must go to zero because the value of the integrand
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Figure 4.2: Plot of the unnormalized log-likelihood (vertical axis) against the
dimensionless eigenvalue of the downward direction (horizontal axis), for γ =
0.9, N = 10 and Λ integrated over. The probability increases as λ increases, up
to about λN = −0.15, before decreasing again. From this, we confirm that the
likelihood goes to zero as λN → 0, in agreement with Yamada & Vilenkin’s results.

in Eq. 2.36 goes to zero as the smallest eigenvalue λN goes to zero, a feature we

verified in our code by fixing all eigenvalues except λN and confirming that λN = 0

is excluded (Fig. 4.2).

Some other results for the eigenvalues are in Figs 4.3, 4.4 and 4.5, where we

investigate the variation with γ, the values of the biggest and smallest eigenvalues,

and the ratio of the two smallest eigenvalues. The ratio of the smallest eigenvalues is

especially intriguing, because if each dimension is associated with one quintessence

field, it raises the possibility that more than one quintessence field is active around

a minimum. Another interesting effect is that the smallest eigenvalues decrease as

γ increases (Fig. 4.4). If the refined de Sitter swampland conjecture [62] turns out

to be valid, then there would be no minima with Λ > 0. This would require dark

energy to be explained in some other way, such as quintessence. In this case the

region of parameter space we are interested in is γ ∼ 1,5 and Fig. 4.4 indicates that

5This is the region of parameter space for which most minima have Λ < 0. See Chapter 3.
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Figure 4.3: The expected minimum and maximum eigenvalues of the Hessian at
a local minimum, as a function of N for four values of γ. Dashed lines denote
eigenvalues at the most likely value of Λ; solid lines indicate values at Λ = 0.
The expected values of the smallest eigenvalue decreases as N increases, while the
maximum value is roughly unchanged.

the smallest eigenvalues of the minima with Λ = 0 approach zero in this limit. This

suggests that random Gaussian random functions naturally generate minima with

a very gentle incoming slope which could provide possible quintessence potentials.

We will say more on this in Chapter 6.

In this section, we have shown that the most probable eigenvalues at minima of

the landscape can be investigated using Eq. 2.36. We have shown that the single

most-probable minimum, which has V < 0, has eigenvalues that are independent

of γ. Our results are consistent with previous work by Yamada and Vilenkin [34],

but also go further, since we are able to calculate the most probable eigenvalues

for minima with different V or γ. The small eigenvalues we find at rare minima

are especially interesting, with implications for both inflation and quintessence.
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Figure 4.4: A plot of the most probable eigenvalues for γ = 0.9 and N = 100. The
left hand plot shows the most likely value of each of the 100 λi; the right hand
plot shows the smallest eigenvalues on a log scale. The orange points correspond
to the most probable eigenvalues when Λ is allowed to vary, while the blue points
correspond to the most probable eigenvalues with Λ = 0.
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Figure 4.5: The expected ratio of the two smallest eigenvalues as a function of N .
The orange line is the ratio at the most probable point (which does not depend on
γ), while the green and blue lines are for Λ = 0 and γ = 0.5 & 0.9 respectively.

53



Chapter 5

Question three: steepness of

outward slopes for saddles

The final research question is arguably the most exciting, because it relates directly

to inflation. In the landscape picture, before inflation, our universe was presumably

located at a saddle with at least one downhill direction. Our universe then “rolls”

downhill along this direction. If the gradient of the downhill direction is small,

then slow roll inflation results. If we assume that all other directions are upwards,1

then the saddle can be described with Eq. 2.38.

Slow roll inflation is parameterized by the two slow-roll parameters, η and ε

(Eq. 1.1; we have used units c = ~ = 1):

ε =
M2

P

2

(
V ′

V

)2
(5.1)

η = M2
P

∣∣V ′′
V

∣∣ (5.2)

where MP is the Planck mass, V is the inflaton, and V ′ is its derivative.2 Inflation

occurs when these parameters are small.3 The first parameter ε is by definition

zero at saddles, so we are primarily interested in the second parameter, η. We

1This is an intuitive assumption: if a steeper downhill direction existed, the universe would
probably have rolled down that direction instead.

2Here we switch once again (with apologies) to the notation in the Introduction where V is the
inflaton and φ are the parameters of the inflaton. Unfortunately, this notation switch is necessary
to make the upcoming equations more immediately recognizable.

3But see the caveat raised in the Introduction: strictly speaking only ε needs to be small.
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note at once that η depends on V ′′, which in turn is related to the eigenvalues of

the Hessian via λi = ζii/σ2 (see Eq. 2.4; ζii is the second derivative of the field).

Meanwhile, ν = Λ/σ0 by definition. Therefore, we can write:

η = M2
P

∣∣∣∣λσ2νσ0

∣∣∣∣ (5.3)

where λ is the eigenvalue in the downward direction. From here, we can use the

methods we used in the last chapter to calculate the most probable value of λ for

a given ν. Then, we can calculate σ0 and σ2 for a specific power spectrum, and

evaluate η. This yields η for the most probable 1-saddle.

Before we proceed, there is a subtlety worth pointing out: while maximizing

the integrand of Eq. 2.38 yields the properties of the most probable 1-saddle, we

are interested in the properties of typical 1-saddles, and the most probable 1-saddle

might not be representative of typical 1-saddles. It turns out that the ν1 at which

typical saddles are located is not the same as the ν2 for single most probable saddle.

In particular, we find that P (ν|γ, 1-saddle),

P (ν|γ, 1-saddle) =

∫
L(λ1, · · ·λN ; ν, γ)dλ1 · · · dλN∫ −∞

∞ dν
∫
L(λ1, · · ·λN ; ν, γ)dλ1 · · · dλN

(5.4)

where L is the integrand of Eq. 2.38, peaks at a different ν compared to the ν found

by maximizing the integrand without integrating over ν (Fig. 5.1). Physically, this

means that although the single most probable 1-saddle has ν = ν2, there are a lot

of almost-as-probable 1-saddles at a nearby value of ν = ν1, such that collectively

one is more likely to find a 1-saddle at ν1. In principle, ν1 is the value we want – it

is the ν at which 1-saddles are most likely to be located. Nonetheless, ν1 and ν2 are

very similar. We therefore calculate ν2, which is computationally much cheaper.

Here we make another comment: while the results for the first two research

questions only depend on the power spectrum via the parameter γ, this third

research question is different – it depends on the ratio σ2/σ0. Nonetheless, γ

remains relevant because it determines if we are likely to find 1-saddles with V > 0.

In the following sections, we will state as many dimensionless results (meaning power

spectra-independent) as possible for ν and λ first, before dealing with dimensionful

properties later.
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Figure 5.1: The normalized likelihood for the most probable 1-saddle (red) obtained
by maximizing the integrand of Eq. 2.38, and the result after evaluating Eq. 5.4
using the Gaussian approximation (blue). γ = 0.5, N = 20 (right curves) and
γ = 0.5, N = 50 (left curves). The peaks of the red (blue) curve correspond to ν2
(ν1) in the text. The two values of ν are very close to one another, hence we focus
on calculating the much-cheaper ν2.

5.1 The number of 1-saddles

A first estimate for the number of 1-saddles is N ×Nmin [28]. Since the number of

minima in the landscape has variously been estimated as 10500 to 1027200 [3], for

N ∼ O(100), this translates to 10502 to 1027202 1-saddles, which are close enough

to the original value as to be effectively the same. It is a sign of just how large

the numbers involved are that a two-order magnitude of difference has virtually

no impact on the results. It is also worth noting that the intrinsic error in the

Gaussian approximation (Section 3.4), at N = 100, is expected to be greater than

two orders of magnitude.

The first question to ask is if the number of 1-saddles with V > 0 follows the

same relation as minima. This is a straightforward problem to attack using the

same methods as with minima. The short answer is ‘yes’ (Fig. 5.2), 1-saddles with

V > 0 also get rarer as γ increases. This should not be surprising – since they have

only one downhill direction, 1-saddles are ‘almost minima’, and they will be rare in

situations where minima are rare.
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Figure 5.2: The likelihood of 1-saddles as a function of γ and V/Vmax, where Vmax
is the V at which most 1-saddles are located, for N = 50 (top left), 100, 200, and
300 (bottom right). The contours show the log of the likelihood. As can be seen,
1-saddles are more probable for small values of γ, and the fraction that is above 0
decreases with N . This is the same behavior seen for minima (Fig. 3.8).

57



5.2 The value of ν

By definition, ν = V/σ0. In turn, σ0 is closely related to the root mean square

energy of the landscape (σ2
0 = 〈FF 〉, see Eq. 2.18), and is therefore something that

can in principle be fixed experimentally. However, the energies required are so high

that no conceivable experiment will be able to probe them.4 The only experimental

detail available is that the average energy of the landscape is greater than LHC

scale, which still leaves a wide range of possibilities for σ0.

A first guess for σ0 is Planck energy, c5/~G, or M4
P in units where c = ~ =

1.5 Quantum gravity effects are expected around Planck energy, and the string

landscape would presumably have a roughly similar energy range. This guess

implies that ν corresponds to the energy of the pre-inflation saddle in Planck units

– so for example ν = 0.1→ V = 0.1M4
P .

A theoretical issue with this guess for σ0 is that the peak of the likelihood –

the ν at which most minima (maxima) are located – decreases (increases) with

N (see Fig. 3.2). In fact, most of the minima for N = 3 already have ν < −1.

This implies that most of the maxima and minima are not classically accessible.

To avoid this, one could choose a σ0 that decreases with N . Calculations show

that the the most probable ν varies as
√
N (Fig. 5.3), which suggests that we

could choose σ0 = M4
P/
√
N . This sets M4

P to be the energy density at which most

maxima are located, −M4
P to be the equivalent energy density for minima, and the

root mean square energy of the landscape to M4
P/
√
N – a value still far above the

LHC scale for any likely N .

Another question to address is the value of V for typical inflationary saddles. If

we ascribe dark energy to a cosmological constant, then V for our current universe

is about 6.3× 10−27kg/m3.6 The value of V before inflation must be greater than

this, but this value is small enough that it is not much of a constraint.

Surprisingly enough, although our universe is no longer at the saddle of inflation,

4Actually attaining those energies, and thereby potentially moving from one minimum in the
landscape to another, will very likely annihilate us all. This is because it would change the laws
of physics.

5This convention is widely adopted in cosmology, and we will also adopt these units in
subsequent equations throughout this section.

6This number, first encountered in Section 4, was calculated using ΩΛ = 0.69 [40] with
H0 = 70km/s/Mpc.
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Figure 5.3: (Left) The value of V at the point of maximum likelihood for maxima
as a function of N , for (from bottom to top) γ = 0.25, 0.5 and 0.95. The results
have been divided by

√
N to illustrate their scaling behaviour.

the inflationary V is potentially observable. Inflation takes the quantum fluctuations

in matter density in the early universe and blows them up to cosmological scales.

These fluctuations are small perturbations to the metric and fields, and are of two

kinds: scalar perturbations and tensor perturbations. Tensor perturbations are

especially interesting for our purposes, because inflation predicts a power spectrum

for them ([41], Eq. 7.147):

Ph '
2

M2
p

(
H

2π

)2

|k=aH (5.5)

where H is the Hubble parameter when the mode in question leaves the horizon.

Since the Hubble parameter is related to the potential of the field by ([41], Eq. 3.7)

H2 ' V (φ)

3M2
P

(5.6)
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a detection of tensor mode perturbations would also fix V , and by extension ν.

In practice, results are expressed in terms of the tensor-to-scalar ratio r, which

is related to the energy scale of the inflationary saddle by

V ∼ r

0.7
×
(
1.8× 1016GeV

)4 ∼ r

0.7
× (0.0014MP )4 (5.7)

(see [42] Eq. 5). Measuring a nonzero tensor-to-scalar ratio would be evidence of

physics at an energy scale only a few orders of magnitude below the Planck scale.

The only problem with this is that tensor mode perturbations have not been

detected. The best current constraints place the maximum value of r at about

∼ 0.044 [57], which puts the energy scale of the inflationary saddle at not more

than about (0.0007MP )4.

If we take σ0 ≈ M4
P , then the non-detection of tensor mode perturbations

implies ν is at most 0.00144 × 0.63 ∼ 2.4× 10−13. If we take σ0 ≈M4
P/
√
N , then

ν is at most ∼ 2.4× 10−12 for N = 100. Accordingly, for our calculations of η, we

take ν = 1× 10−12; the results are virtually identical for either value of ν.

5.3 The dimensionless eigenvalue λ

By definition, λ = V ′′/σ2. Its position in the numerator of Eq. 5.3 indicates that

inflation is more probable with small λ. Figure 5.4 shows how the value of λ varies

with N , both at the overall peak (which has ν < 0) and at the cosmologically

relevant energy density ν = 10−12. The most probable λ decreases as N increases or

γ decreases. This result does not mean the dimensionful eigenvalue, λσ2, exhibits

the same behavior with N and γ, since that depends on the power spectrum used.

However, calculations show that the dimensionless downhill eigenvalue decreases

when compared to the dimensionless uphill eigenvalues as N increases or γ decreases

(Fig. 5.5). In other words, the downhill direction is quite gentle when compared to

the uphill directions, and it gets gentler for large N and small γ.

This result suggests that the random Gaussian landscape might offer a natural

solution to the so-called η problem: inflation needs |η| ≈ 0.01, but its natural

value is closer to unity. In random Gaussian landscapes, one naturally gets a small

downhill direction relative to the uphill directions. This does not imply a small
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Figure 5.4: A plot of the most probable downward dimensionless eigenvalue for
γ = 0.1. The left hand plot is for the overall peak (which has V < 0), while
the right hand plot is at ν = 10−12. The most probable downward dimensionless
eigenvalue decreases with N ,

η – that again depends on the power spectrum – but it does mean that random

Gaussian landscapes might be able to soften the η problem independently of how

the landscape is constructed. In Fig. 5.6 we plot the most probable distribution

of eigenvalues for 1-saddles at various ν, illustrating its size relative to the other

eigenvalues.

The variation with γ is also notable: small γ corresponds to the region of

parameter space for which large numbers of 1-saddles have V > 0 (see Fig. 5.2).

If our universe is but one of many possible universes with a positive cosmological

constant, this would be the region to look at.

5.4 Gaussian power spectrum

We now proceed to results for explicit power spectra. As a reminder, the specific

form of the Gaussian power spectrum we adopt is P (k) = U2
0 e
−k2/2L2

. A caveat for

all the Gaussian power spectrum results in this section is that, if the number of

vacua in the landscape is ∼ 10500, the Gaussian power spectrum probably does not

yield any 1-saddles above zero (see Section 2.1.3).

If we nonetheless have a 1-saddle above zero (with ∼ 10502 1-saddles, the odds

of this for a 100-dimensional landscape are roughly 1-in-10700), then we have that

γ =
√
N/(N + 2) as derived in section 2.1.3, while σ2/σ0 can be calculated using
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Figure 5.5: The ratio of the downhill eigenvalue to the average of the uphill
eigenvalues, as a function of N and γ, for the most probable 1-saddle. (Left) The
plot for V = 0. (Right) The plot for V = Vmax, where Vmax is the value of V at
which most 1-saddles are located. For small γ and large N , the downhill slope gets
gentler relative to the uphill slopes.

Eq. 2.47:
σ2
σ0

=
1

L2

√
N(2 +N) (5.8)

We can immediately plot η as a function of N using Eq. 5.3. There is only one

detail: the σ2/σ0 ratio involves the unknown L, whose values need to be input by

hand. We will briefly discuss the physical interpretation of this parameter now.

5.4.1 The correlation length L

In these equations, L is the correlation length. It is closely related to the two-point

correlation function, first mentioned in the text above Eq. 2.10. By definition, the

two-point correlation function is the Fourier transform of the power spectrum:

F (|φ1 − φ2|) =
1

(2π)N

∫
dNkP (k)eik·(φ1−φ2) (5.9)
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Figure 5.6: The most probable eigenvalue distributions for 1-saddles for various
parameters. The most probable downhill eigenvalue is generally quite small relative
to the uphill ones. Compare Fig. 4.1, which is the corresponding eigenvalue
distribution for minima.

where we have used F (|φ1 − φ2|) as shorthand for 〈F (~x)F (~y)〉, with φ1 being the

value of the potential at ~x and φ2 being the value of the potential at ~y.

The two-point correlation function is a measure of how much knowledge at one

point in the potential tells us about neighbouring points. Broadly speaking, given

knowledge of the potential at our current location, we are able to make statements

about the value of the potential at a point up to L away. A large correlation length

therefore implies that the potential is more predictable.

A large correlation length L� 1/MP also implies correlation drops more slowly.

This is undesirable from a theoretical perspective, for two reasons:

• The very existence of correlation implies the presence of predictive power.

In turn, predictive power implies that some kind of underlying physics,

presumably string theory, is producing the correlation. It would then be
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necessary for multiple short-range (∼ Planck length) terms to add up to

long-range correlations, which is unlikely.

• If the correlation drops slowly, the potential has a similar value at long

distances from the original point. Accordingly, a large L makes small η trivial.

Mathematically, it is clear that σ2
0 = F (0), or the peak of the correlation

function. Differentiating this equation with respect to φ, we also have that

σ2
1 ∝ −d2F/dφ2. A correlation function that decreases quickly (corresponding

to larger d2F/dφ2, or smaller σ1) would also have a shorter correlation length.

Because γ = σ2
1/σ0σ2 < 1, for fixed γ, a smaller σ1 necessarily implies a

smaller σ2.
7 By extension this also leads to a smaller η, since η is directly

proportional to σ2 (Eq. 5.3).

Note this is not a necessary conclusion: conceivably, the correlation function

could dip slightly before increasing, and the correlation length might not

be related to d2F/dφ2 at the origin. However, such correlation functions

would be highly contrived, and we can in general expect η to decrease as L is

increased.

The upshot is: we want a small η at small ν, but not large L.

5.4.2 Results

After accounting for L above, the resulting η for ν = 0.1, 0.5 and 0.9 is shown in

Fig. 5.7. We do not plot the curve for ν = 10−12 because it is “off the charts” –

the calculated downhill eigenvalue λ decreases only slightly with increasing ν, and

cannot compensate for the factor of ν in the denominator of Eq, 5.3. Note that

ηL2/M2
P is much greater than 1 unless L�MP – exactly the type of correlation

length we do not want. Furthermore, ηL2/M2
P increases with N for constant L,

which means the most probable minima of landscapes with more than ∼ 100 moduli

are still not likely to support slow-roll inflation.

It is in principle possible that a less-probable minimum will have a smaller η.

Therefore we would like to calculate exactly how much less probable this scenario

7σ0 cannot vary by much because it is fixed to the root mean square energy of the landscape.
See Section 5.2.
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Figure 5.7: The value of the slow-roll inflation parameter ηL2/M2
P , where L is

the correlation length and MP is the Planck mass, as a function of the number
of dimensions N for a Gaussian power spectrum, at the most probable 1-saddle.
From top to bottom, ν = 0.1, 0.5 and 0.9. It can be seen that for these parameters,
η is greater than 1 unless L > MP . η also increases with N , which does not bode
well for inflation.

is. We can do this by examining how the likelihood (the integrand of Eq. 2.38)

varies as the downhill eigenvalue is varied. This likelihood is plotted in Fig. 5.8. It

can be inferred from Fig. 5.7 and Eq. 5.3 that, for ν ∼ 10−12, we need a downhill

eigenvalue that is ∼ 10−15 to get η ∼ 0.01. From Fig. 5.8, we see that this is roughly

60 orders of magnitude less probable than the most probable downhill eigenvalue

at this value of ν, which is about ∼ 0.1. If we take the number of minima in the

landscape as 10500, then with the probability of even having a 1-saddle with V > 0

in the first place already roughly 10−700,8 this makes the probability of having a

viable slow-roll inflation saddle roughly 10−760. Note this is not a precise estimate,

because we have not calculated the probability that this 1-saddle with V > 0 also

has ν ∼ 10−12. Nonetheless, it is likely to be fairly close, because the scarcity of

8See Section 3.5.

65



-14 -12 -10 -8 -6 -4 -2
Log( 100)

-140

-120

-100

-80

-60

-40

-20

Figure 5.8: The likelihood of a 1-saddle with fixed downward eigenvalue for
ν = 10−12, γ = 0.990, N = 100. On the horizontal axis is log(λ100), the log of the
downhill eigenvalue in dimensionless units. On the vertical axis is the likelihood with
the most probable eigenvalue normalized to 0. The most probable dimensionless
downhill eigenvalue is about 0.1, while a downhill eigenvalue of 10−15 is about 60
orders of magnitude less probable.

1-saddles with V > 0 implies that any 1-saddle “above the waterline” will almost

surely have very small ν. This minute probability makes it very improbable that

slow-roll inflation can occure in a landscape with 10500 minima. On the other

hand, the high-end estimate of 10272000 minima still has more than enough vacua

to support slow-roll inflation.

5.5 Power-law power spectrum

We next consider the power-law power spectrum. We will start by considering a

power spectrum with a red cutoff. In this case the power spectrum is P (k) = Ak−n

for k > kcut, and 0 otherwise. As shown earlier, the σi’s for this power spectrum

are of the form Eq. 2.50–2.52. σ2/σ0 is

σ2
σ0

= k2cut

√
1− 4

4− n+N
(5.10)
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valid only if n > 4 +N . After using the substitution n = 4 +N + x as in the text

below Eq. 2.1.3, we get

η = M2
P

λ

ν
k2cut

√
4 + x

x
. (5.11)

To proceed, we must 1) choose a value for x, and by extension a value for γ;

2) choose a value of ν, corresponding to the energy density of the pre-inflation

saddle, and 3) compute the most probable λ. First, however, we will investigate the

parameter kcut. As will be shown, this parameter controls the correlation length in

the landscape.

The correlation function for the power-law power spectrum is (Eq. 2.49 with

different limits on the integral):

F (|φ1|) =
A

(2π)N

∫ ∞
kcut

dkkN−n−1(φ1k)1−N/2JN/2−1(φ1k) (5.12)

where J is the Bessel function of the first kind, and we have set φ2 = 0 for simplicity.

This integral can now be evaluated analytically,

F (|φ|) =
A

(2π)N
1

Γ[n/2]
2−n−N/2k−ncutφ

−NΓ

[
N − n

2

]
(2N(kcutφ)n − 2n(kcutφ)N×

Γ[n/2]1F̃2

[
N − n

2
,
N − n+ 2

2
,−1

4
k2cutφ

2

]
(5.13)

where 1F̃2 is the regularized generalized hypergeometric function [60].

A plot of this function for representative parameter values is given in Fig. 5.9.

The normalized correlation function is plotted on the y-axis, while the horizontal

axis is φ, which can be loosely interpreted as the “distance” in the landscape. From

the left-hand figure, if we hold kcut constant, then the correlation function drops

off more slowly with large N , corresponding to a correlation length that increases

with N . On the other hand, if we adopt kcut =
√
N , then the correlation function

asymptotes, and there is a maximum correlation length in the landscape that is

independent of N . Hence, we will adopt kcut =
√
N . Note that this choice adds

a factor of N to η (Eq. 5.11), a manifestation of the result in Section 5.4.1 that

decreasing the correlation length increases η. Nonetheless, this factor of N alone is
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Figure 5.9: The value of the normalized correlation function (y-axis) as a function of
φ, for four different numbers of dimension N : from bottom to top, N = 3, 5, 10, 20
respectively. The plots are for x = 0.1. Left: the normalized correlation function
with kmin = 1. Right: the normalized correlation function with kmin =

√
N .

not fatal for small η – it is possible the downhill eigenvalue decreases faster than

N .

Figure 5.10 shows the values of η calculated using Eq. 5.11 for a red cutoff, at

different values of ν, γ, and N . As can be seen, η is much greater than 1 when ν is

small – the downward eigenvalue does not decrease fast enough to compensate for

the 1/ν factor in η. In the ν = 1 case, η changes relatively quickly with N for small

N , but for N > ∼ 20 it is virtually constant with N – any variations are at the

sub-% level. Also plotted are the regions of parameter space where the likelihood

of finding a 1-saddle is 10−250 and 10−500 relative to the likelihood at ν = −
√
N .9

The regions above the dotted lines are not likely to have any 1-saddles in the first

place.

The analysis for a blue cutoff, where P (k) = Ak−n for k < kcut and P (k) = 0

otherwise, is very similar but less satisfactory. This is because the power spectrum

imposes long-range correlations in the landscape for small γ.10 In this case σ2/σ0

is (see Eqs. 2.54) the same as in the red case,

σ2
σ0

= k2cut

√
1− 4

4− n+N
(5.14)

9ν = −
√
N is the approximate peak likelihood, i.e. the value of ν at which most saddles are

located. See Section 5.2.
10Keep in mind that k is the conjugate variable of φ, and φ measures the ‘distance’ in the

landscape.
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Figure 5.10: Most likely values of η with ν = 1 and ν =
√
N (top), and ν = 10−12

(bottom) for a power-law power spectrum with a red cutoff. The light and heavy
dashed lines correspond to regions above which the likelihood of finding a 1-saddle
is 1 in 10250 and 1 in 10500 relative to the likelihood for ν = −

√
N . Above these

dashed lines, there are not likely to be any 1-saddles with V > 0. Note the slightly
different contours in the ν = 1 plot, necessary to show the same feature as in the
ν = 10−12 plot.

69



except this equation is valid only if n < N . As with the red cutoff, we substitute

n→ N − δ, which yields γ =
√
δ(4 + δ)/(δ + 2), where δ > 0. This is exactly the

same as for the red cutoff. Putting in the expressions for the moments, η becomes

η = M2
P

λ

ν
k2cut

√
δ

4 + δ
. (5.15)

The correlation function is

F (|φ|) =
A

(2π)N
2−N/2kN−ncut Γ

[
N − n

2

]
1F̃2

(
N − n

2
;
N − n

2
+ 1,

N

2
;−1

4
k2cutφ

2

)
.

(5.16)

This correlation function is plotted in Fig. 5.11. We again set kcut =
√
N/MP , as

the correlation function shows the same scaling behaviour with N as the red case.

However, it does not necessarily asymptote to zero – the terminal value shows a

significant dependence on δ, and becomes arbitrarily close to unity as δ approaches

zero. This is because small values of δ imply more power at very small k (bear in

mind P (k) = Ak−N+δ), introducing long-range coherence into the landscape. To

get a meaningful correlation function, we need to either impose a second cutoff at

small k, which yields similar results to the red case; increase kcut as δ increases,

which increases η per Eq. 5.15;11 or simply exclude scenarios where δ is small. In

the last case, Fig. 5.11 suggests taking δ & 2, corresponding to γ &
√

3/2 ≈ 0.866.

The resulting raw η plots are in Fig. 5.12. The dotted lines again indicate

the regions of parameter space where one does not expect to find a 1-saddle with

V > 0. The regions with γ .
√

3/2 are greyed out, indicating the zone that is

excluded if one takes δ > 2. Excluding these zones also excludes the regions where

the most probable 1-saddle has η < 1.

Similar to the Gaussian power spectrum, the values of η at ν = 10−12 for the

most probable 1-saddle are very large for both the infrared and the ultraviolet

cutoff. However, it is possible that a less probable 1-saddle will have η ∼ 0.01.

Again similar to the Gaussian power spectrum, we calculate how the integrand

of Eq. 2.38 varies as the downhill eigenvalue is varied. This likelihood is plotted

in Fig. 5.13 for ν = 10−12, γ = 0.1, N = 100. The general shape of the plot is

roughly independent of these parameters, but the probability drops off more quickly

11Note again the inverse relationship between the correlation length and η.
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Figure 5.11: The correlation function for a power-law power spectrum with a blue
cutoff. N = 50 and (from top) δ = 0.5, 1, 2, 4 and 10, with kcut =

√
50. For small δ

the correlation function does not asymptote to zero, yielding an arbitrarily-large
correlation length, but it does go to zero for sufficiently large δ.

for large γ. We can see from the two bottom plots of Fig. 5.10 and 5.12 that in

order to get η ∼ 0.01 for a cosmologically interesting 1-saddle we need a downhill

λN < ≈ 10−14. Figure 5.13 indicates that such a downhill eigenvalue is ∼ 15

orders of magnitude less probable than the most probable downhill eigenvalue,

which is of order 0.01. This is clearly not ideal – our inflationary 1-saddle is ∼ 1015

times less probable than the most probable 1-saddle. On the other hand, γ = 0.1

is also in the region of parameter space for which a significant fraction of 1-saddles

have V > 0 (see Fig. 5.2). With ∼ 10500 minima total in the landscape, this 1015

difference is insignificant, and there will be plenty of viable 1-saddles.

Comparing the left hand figure of Fig. 5.13 with Fig. 5.8, the rate at which

the probability decreases clearly depends on γ. This dependence on γ is shown in

the right hand figure of Fig. 5.13. The probability of anomalously small downhill

directions decreases with γ, further emphasizing that the region of parameter space

with small γ is also the region most able to support inflationary 1-saddles.

5.6 Summary

In this chapter, we have investigated how the downhill eigenvalue of 1-saddles

vary as N, γ and ν are varied. We see that the downhill eigenvalue is naturally

much smaller than most uphill eigenvalues, and it gets smaller for large N or
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Figure 5.12: Most likely values of η with ν = 1 and ν =
√
N (top), and ν = 10−12

(bottom) for a power-law power spectrum with a blue cutoff. The light and heavy
dashed lines correspond to regions above which the likelihood of finding a 1-saddle
is 1 in 10250 and 1 in 10500 relative to the likelihood for ν = −

√
N . Above these

dashed lines, there are not likely to be any 1-saddles. The regions with γ <
√

3/2
are greyed out: for these values of γ, the correlation length is unbounded.
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Figure 5.13: (Left) The likelihood of a 1-saddle with fixed eigenvalue for ν =
10−12, γ = 0.1, N = 100. On the vertical axis is the log-likelihood with the most
probable eigenvalue normalized to 0. On the horizontal axis is log(λ100), the log
of the downhill eigenvalue in dimensionless units. We can see that a very small
eigenvalue of 10−15, sufficient for η ∼ 0.01, is still only ∼ 14 orders of magnitude
less likely than the most probable 1-saddle. (Right) The log-likelihood of a 1-saddle
with λ = 10−15 relative to the most probable λ, as a function of γ and with N = 100,
ν = 10−12. For γ = 0.1, the log-likelihood is 10−14, corresponding to the result in
the left-hand figure.

small γ. This suggests that random Gaussian landscapes can naturally solve the

η problem by providing a small negative mass term compared to the average

mass. We also investigated the inflationary slow-roll parameter η for the power-law

power spectrum and the Gaussian power spectrum. We find that η depends on the

correlation length, and we investigated how η varies with the correlation length. We

find that the Gaussian power spectrum is very unlikely to produce a single viable

inflationary 1-saddle unless there are more than ∼ 101400 vacua in the landscape, or

unless the correlation length is very large. The power-law power spectrum, however,

is capable of producing slow-roll inflation while bounding the correlation length,

for appropriate choices of its free parameters kcut and n.
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Chapter 6

Conclusions and Future Work

In this thesis, we have used the random Gaussian field approach to investigate the

string landscape. We derived the number density of minima (Eq. 2.36) and saddles

(Eq. 2.38) from first principles. We evaluated these integrals directly (Section 3.3)

for N ≤ 12, then adopted the Gaussian approximation for large N (Section 3.4).

These methods form the foundation of all our results. Using this machinery, we

reached the following key conclusions:

1. The random Gaussian field has as its parameters the number of dimensions

N , and the three moments of the power spectrum σ0, σ1, σ2. For the number

density of minima and saddles, however, only N and the combination σ2
1/σ0σ2,

i.e. γ, matters. We showed γ is necessarily between 0 and 1, and roughly

measures how turbulent the landscape is – small γ corresponds to a more

turbulent landscape, while large γ corresponds to a smoother landscape.

2. For γ & 0.96, the probability of having a minimum with positive energy

density (V > 0) at N = 100 drops below 10−500. A Gaussian power spectrum

(and by extension, a Gaussian correlation function) yields γ =
√
N/(N + 2),

which for N ∼ 100 evaluates to γ ≈ 0.990, a number firmly in the regime

where minima with positive energy densities are an extreme rarity. Conversely,

a power-law power spectrum can be configured to yield a landscape with any

value of γ. These results are in Section 2.1.3 and Chapter 3.

3. The slopes of the single most probable minimum/saddle are independent of γ.
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The eigenvalues resemble a Wigner semicircle with deviations at very small

eigenvalues. The slopes of a minimum/saddle with other energy densities

depend on γ. These and other results are in Chapter 4.

4. For saddles with one downhill direction (1-saddles), we can directly calculate

the expected inflationary slow-roll parameter η for a given power spectrum.

For a Gaussian power spectrum, the probability of a 1-saddle with V > 0

and η ∼ 0.01 is about 10−1400 at N = 100, rendering multiverse cosmology

highly improbable for landscapes with ∼ 10500 minima. A power-law power

spectrum cannot simultaneously produce a bounded correlation length and a

most-probable 1-saddle with η < ∼ 0.01, but it is possible for a less-probable

1-saddle to have η ∼ 0.01. With ∼ 10500 minima in the landscape, there is a

region of parameter space in which one can bound the correlation length and

still find plenty of 1-saddles with V > 0, η < 0.01. These and other results

are in Chapter 5.

5. We find that for saddles with one downhill direction, the eigenvalue of the

downward direction is small relative to the uphill directions, and it gets

smaller for large N and small γ. This conclusion is independent of the power

spectrum, and suggests that the inflationary η-problem may be naturally

softened in some landscape scenarios. More details for this result are in

Section 5.3.

Our results show that it is possible to extract quantitative predictions for the

landscape using the random Gaussian approximation. We now briefly touch on

two questions: 1) what could invalidate the above conclusions, and 2) where do we

go from here?

6.1 What could go wrong?

We made no approximations when deriving they key equations Eqs. 2.36 and 2.38.

However, we did use the Gaussian approximation in calculating our results. If

numerical errors exist, this is the most probable source. There are two possibilities:

the extrapolation to large N , and the intrinsic error of the Gaussian approximation
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itself (Fig. 3.6). This possibility is studied in Section 3.4. We do not expect the

approximation to fail, but we have not rigorously proved that it doesn’t.

Another possible source of error is if there are multiple maxima in the likelihood.

In this scenario, the “most probable” peak we identify is a local maximum as

opposed to global maximum. We investigated this in Section 2.2 and found no

such behavior for low N . It also seems unlikely there are multiple maxima in the

likelihood based on the form of the integrand.

A further, key caveat that applies to all our results is that they are based on

the random Gaussian approximation, which only sets the baseline expectation. In

other words, the actual string theory landscape can (and almost surely will) have

different properties from the system we examine here.

6.2 What next?

The random Gaussian field approach makes minimal assumptions, yet allows us

to make quantitative calculations. This makes it an attractive tool to further

investigate various questions about landscape cosmology. We briefly outline several

such topics.

6.2.1 Topological inflation

Topological inflation was first proposed by Alexander Vilenkin in 1994 [58]. It is

distinct from slow-roll inflation in that there is a central peak in the potential which

falls off on both sides, which supports a stable field configuration. An example

potential is, as originally proposed by Vilenkin,

V (φ) =
1

4
λ(φ2 − η2)2 (6.1)

where λ and η are constants.1 In this case there are two minima at φ = ±η, while

φ = 0 is a local maximum. The central peak drives eternal inflation, and there is a

domain wall separating the two minima at ±η.

1These are not eigenvalues λ, the Fourier conjugate variable φ, or the slow-roll inflation
parameter η. The notation is the one used by Vilenkin, but the conflict in notation with the rest
of this thesis is unfortunate.
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In the terminology of this thesis, the φ = 0 point can be viewed as a 1-saddle.2

It is therefore possible to investigate the properties of the 1-saddle using Eq. 2.38.

To do this, we first need to derive the constraints on λ and ν required for topological

inflation. We start by considering the Taylor expansion about the central saddle,

V (φ) = V0 −
V ′′0 φ

2

2
(6.2)

where V ′′0 is the second derivative of the field at the origin. The value of φ for which

the potential drops to zero is φ = ±
√

2V0/V ′′0 . Meanwhile, the wall’s boundaries

are where the gradient energy balances the potential energy,(
∂φ

∂x

)2

∼ V0. (6.3)

To calculate the gradient energy, we note that the coordinate φ changed by ∼√
2V0/V ′′0 over a ‘distance’ that is the width δ of the domain wall. Therefore

∂φ

∂x
∼
√

2V0/V ′′0
δ

, (6.4)

and using Eq. 6.2 we get

δ ∼

√
2

V ′′0
. (6.5)

For topological inflation to occur, we need δ > H−10 , where H−10 is the horizon

size of the vacuum energy within the wall [58]. This leads to:√
2

V ′′0
>

1

H0

= mP

√
3

8πV0

⇒ V ′′0 ≤
2V0

3M2
P

where mp,MP are the Planck mass and reduced Planck mass respectively. Here

V ′′0 and V0 are physical quantities. Substituting V ′′0 → λσ2 and V0 → ν0σ0, we

2Although there looks like two downhill directions, one towards the minimum at +η and the
other towards the minimum at −η, there is only one parameter φ varying. There is also only one
eigenvalue for the same reason (recall that the eigenvalue is the second derivative of the Hessian).
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see that topological inflation requires practically the same condition as slow-roll

inflation. The only difference is that the bound on the slow-roll parameter η is

slightly different: η < ∼ 2/3. Accordingly, the results from Section 5 carry over

smoothly, and within the same region of parameter space where we expect typical

1-saddles to support slow-roll inflation, we can also expect typical 1-saddles with

V ∼M4
P to support topological inflation.

6.2.2 Quintessence

Quintessence has already been mentioned a few times in this Thesis. It is a scalar

field(s) similar to the inflaton that drives the accelerating expansion of the universe,

except that 1) non-relativistic matter needs to be included in the dynamics, and

2) it is at much lower energy than inflation. [59] Compared to the cosmological

constant, it is dynamic; its energy density changes over time. This leads to a dark

energy equation of state that also varies with time.

In the same way that inflation occurs when the inflaton is nearly flat, accelerated

expansion also requires the quintessence field to be nearly flat. This is hinted at in

our results – for minima that have Λ > 0, the smallest eigenvalues are naturally

very close to zero. If each eigenvalue corresponds to one quintessence field, then

the slope of the potential in a direction is related to the mass squared of that field

by m2
i = σ2λi. The closeness of the eigenvalues then implies that the masses of the

fields are similar, but also that no two masses can be exactly equal, because of

eigenvalue repulsion. It also raises the possibility that more than one quintessence

field might be active near an extremum even if the evolution is dominated by a

single field at greater distances. It might be possible to investigate the consequences

of this with the relative sizes of the slopes of the scalar fields (Fig. 4.5).

6.2.3 Other properties of the landscape

We have calculated η for several power spectra as well as P (V > 0|min) as a

function of γ, but there are other interesting questions to ask of the landscape:

• How far is it to the next minimum? This affects the rates of quantum

tunneling between minima. The first step to approaching this problem would
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be investigating the constant A in Eqs. 2.36 and 2.38 to get an actual number

of minima/saddles in a unit volume.

• How probable is it to have > 60 e-folds of inflation? This depends on the

downhill eigenvalue starting small and staying small.

• What does a typical evolutionary track look like? As discussed in the

Introduction, there have already been efforts to calculate this [26, 27], but the

method used has theoretical problems [27, 28]. It remains a worthy question,

however, whose solution will tell us about what to expect during inflation.

• Is it possible to construct a power spectrum for the landscape such that

inflation gets more probable with N? This question stems from the fact that

the dimensionless downward eigenvalue, λN , already decreases as N increases.

The ‘reason’ η does not always decrease with N is because the moments of

the power spectrum, σ2/σ0 (see Eq. 5.3), increases with N more quickly

than λN decreases. It is relatively simple to construct a power spectrum

such that σ2/σ0 does not increase with N (a power-law power spectrum with

kcut = 1/
√
N will do it), but constructing such a power spectrum that also

has a bounded correlation length is much harder. In Section 5.4.1 we provided

general arguments to believe such a power spectrum should not exist unless

highly contrived, but this is not a hard no-go theorem. In this case, the ‘ideal’

power spectrum for multiverse cosmology will have both η and the correlation

length decreasing with N .

• How probable (or improbable) are various swampland conjectures? If the

conjectures involve some function of V, V ′ or V ′′, it might be possible to

investigate them with the random Gaussian approximation. The lack of

success at constructing a de Sitter vacua (i.e., a minimum with V > 0) in

string theory has led some to a conjecture that string theory admits no de

Sitter vacua [61] or that de Sitter vacua are in the swampland [19]. If this

turns out to be the case, then the corresponding region of parameter space

in the random Gaussian approximation is γ ≈ 1.

Another conjecture is that either |V ′| ≥ O(1)V , or min(V ′′) ≤ −O(1)V ,

where min(V ′′) is the smallest eigenvalue [62]. The conjecture is designed
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Figure 6.1: A contour plot of the ratio λ1/ν for maxima, at the most probable ν
as a function of N (left), and at fixed ν with N = 100 (right). The ratio is O(1).
Since σ2/σ0 is O(100) for both the Gaussian power spectrum and the power-law
power spectrum for typical choices of the correlation length and N ∼ 100, this
implies the second condition is usually satisfied for maxima with V > 0.

to prohibit de Sitter vacua – it is trivially satisfied for V < 0 since the first

condition is always true. We can investigate this conjecture by examining

maxima with V > 0.3 At these maxima, V ′ = 0, so the first condition is never

satisfied; therefore for the conjecture to be true, the second condition must

be always satisfied. We can investigate if it is always satisfied using Eq. 2.36.

In the notation of this thesis, the second condition is −λ1σ2 ≤ O(1)νσ0.
4

A contour plot of the ratio −λ1/ν is in Fig. 6.1. Whether the constraint

is satisfied depends on the power spectrum, of course, but the results are

encouraging for the conjecture: for N = 100, σ2/σ0 is O(100) for both the

Gaussian power spectrum and the power-law power spectrum (Eq. 5.8 and

Eq. 5.10), given typical choices for the correlation length. This implies the

conjecture is indeed satisfied for maxima with V > 0.

3This is equivalent to examining minima with V < 0; see footnote 2 on Page 11.
4This formula is written for minima, where λ1 is positive and ν is negative. Note that we are

considering λ1, which in this thesis is the largest eigenvalue.
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Chapter 7

Appendix

7.1 Derivation of BBKS Equation A1

In this section we adopt the notation of BBKS’s [54] Appendix A.

The two equations of interest are:

〈ηiηj〉 =
σ2
1

3
δij (7.1)

〈ζijζkl〉 =
σ2
2

15
(δijδkl + δikδjl + δilδjk) (7.2)

BBKS gave these for 3 dimensions, and we want to derive the corresponding

expressions in N dimensions. The first equation is relatively easy to derive. By

definition,

〈(∇F )2〉 = σ2
1 (7.3)

This is not in BBKS, but is sensible given Eq. 4.6c in the paper. Each gradient

adds a factor of ik in Fourier space, and the power spectrum is proportional to the

absolute square of the Fourier coefficients. Adding a factor of k2 in the integral
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then is equivalent to taking the gradient. Then

σ2
1 =

〈[(
∂F

∂x

)
x̂+

(
∂F

∂y

)
ŷ +

(
∂F

∂z

)
ẑ

]2〉
=

〈(
∂F

∂x

)2

+

(
∂F

∂y

)2

+

(
∂F

∂z

)2〉
=

〈
3

(
∂F

∂x

)2〉
= 3〈η2x〉

where the third line follows by isotropy. The correspondence with Eq. 7.1 is now

obvious. There are no cross terms, hence the delta function.

The second equation is harder. From the definition,

〈(∇2F )2〉 = σ2
2 (7.4)

The LHS is (in 3D)

(∇2F )2 =

〈(
∂2F

∂x2

)2

+

(
∂2F

∂y2

)2

+

(
∂2F

∂z2

)2〉
+

〈
2
∂2F

∂x2
∂2F

∂y2
+ 2

∂2F

∂x2
∂2F

∂z2
+ 2

∂2F

∂y2
∂2F

∂z2

〉
(7.5)

i.e. there are nine terms, reducible to six since products commute. Now we claim

that 〈(
∂2F

∂x2

)2〉
= 3

〈
∂2F

∂x2
∂2F

∂y2

〉
(7.6)

To prove this, we define a new direction û = (x̂+ ŷ) 1√
2
. Shifting into Fourier space,

ku = (kx + ky)/
√

2. Taking the fourth power,

4k4u = k4x + k4y + 4(kxk
3
y) + 4(kyk

3
x) + 6(k2xk

2
y) (7.7)

Taking the expectation value of this, the two terms in the middle disappear

because the k’s are odd functions, leaving

〈4k4u〉 = 〈k4x〉+ 〈k4y〉+ 〈6(k2xk
2
y)〉 (7.8)
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Remembering that in Fourier space, taking the derivative is equal to multiplying

by k, this is

4

〈(
∂2F

∂u2

)2〉
=

〈(
∂2F

∂x2

)2〉
+

〈(
∂2F

∂y2

)2〉
+ 6

〈
∂2F

∂x2
∂2F

∂y2

〉
(7.9)

We must have 〈(∂2F
∂u2

)2〉 = 〈(∂2F
∂x2

)2〉 = 〈(∂2F
∂y2

)2〉 by isotropy, so

〈(
∂2F

∂x2

)2〉
= 3

〈
∂2F

∂x2
∂2F

∂y2

〉
(7.10)

which is the desired result. Now we are almost done. From Eq. 7.5, we see there

are N squared terms and 2NC2 cross terms. This means that

σ2
2 =

(
N +

N(N − 1)

3

)〈(
∂2F

∂x2

)2〉
= N(N + 2)

〈
∂2F

∂x2
∂2F

∂y2

〉
(x 6= y)

Note there’s nothing special about the x’s and y’s, and they could equally have

been any other dimension.

7.2 Proof of Eq. 2.20

We reproduce the original correlations, Eq. 2.18.

〈FF 〉 = σ2
0

〈ηiηj〉 =
1

N
δijσ

2
1

〈Fζij〉 = − 1

N
δijσ

2
1

〈ζijζlm〉 =
1

N(N + 2)
σ2
2(δijδlm + δilδjm + δimδjl)
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as well as the basis transform Eq. 2.20,

x1 = − 1

σ2

∑
i

ζii

xn = − 1

σ2

n−1∑
i=1

(ζii − ζnn) , (2 ≤ n ≤ N)

We wish to derive Eq. 2.21,

〈ν2〉 = 1

〈x21〉 = 1

〈νx1〉 = γ

〈x2n〉 =
2n(n− 1)

N(N + 2)
, (2 ≤ n ≤ N)

(7.11)

The first of these four equations is trivial because ν ≡ F/σ0 by definition. For

the second,

〈x1x1〉 =
1

σ2
2

(∑
i

〈ζiiζii〉+ 2
∑
i 6=j

〈ζiiζjj〉

)

=
1

σ2
2

(
1

N(N + 2)
σ2
2(3)×N +

2

N(N + 2)
σ2
2(1)×N C2

)
=

1

N(N + 2)
(3N +N(N − 1))

= 1

(7.12)

as desired. The second line follows from the fact that there are N 〈ζiiζii〉 terms

and NC2 〈ζiiζjj〉 terms. Similarly, for the third equation,

〈νx1〉 = − 1

σ0σ2

(∑
i

〈Fζii〉

)
=

1

σ0σ2

1

N
σ2
1 ×N

≡ γ

(7.13)
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Finally, for the fourth equation,

〈xnxn〉 =
1

σ2
2

〈

(
n−1∑
i=1

(ζii − ζnn)

)2

〉 (7.14)

Bear in mind that n is not a dummy index – it is also in xn on the left hand side of

the equation. We need to handle the square of a sum, which is tricky. The easiest

way to approach it is to write out some examples for low n. If n = 3, then the

term in the brackets is [(ζ11 − ζ33) + (ζ22 − ζ33)]2, which evaluates to

(ζ11 − ζ33)2 + (ζ22 − ζ33)2 + 2(ζ11 − ζ33)(ζ22 − ζ33)

Similarly, for n = 4, we get three terms (ζ11− ζ44)2 + (ζ22− ζ44)2 + (ζ33− ζ44)2 and

the cross terms 2(ζ11−ζ44)(ζ22−ζ44)+2(ζ11−ζ44)(ζ33−ζ44)+2(ζ22−ζ44)(ζ33−ζ44).
This is indicative of what the general formula might look like,(

n−1∑
i=1

(ζii − ζnn)

)2

=
n−1∑
i=1

(ζii − ζnn)2 +
n−1∑
i,j;i 6=j

(ζii − ζnn)(ζjj − ζnn)

=
n−1∑
i=1

(ζ2ii − 2ζiiζnn + ζ2nn) +
n−1∑
i,j;i 6=j

(ζiiζjj − ζiiζnn − ζjjζnn + ζ2nn)

(7.15)

Applying Eq. 2.18,

〈xnxn〉 =
1

σ2
2

× (n− 1)

(
1

N(N + 2)
σ2
2(3)× 2− 2

N(N + 2)
σ2
2(1)

)
+

1

σ2
2

× 2×n−1 C2

(
− 1

N(N + 2)
σ2
2(1) +

1

N(N + 2)
σ2
2(3)

) (7.16)

where the first line corresponds to the first sum, and the second line corresponds

to the second sum. Note the total number of terms in the second sum is 2×n−1 C2,

since there are n−1C2 ways to choose two values for i, j, but any choice for i, j is
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equivalent to making the same choice for j, i. Simplifying this equation yields.

〈xnxn〉 = (n− 1)

(
4

N(N + 2)

)
+ (n− 1)(n− 2)

(
2

N(N + 2)

)
=

2n(n− 1)

N(N + 2)

(7.17)

as desired.
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