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The exact two-dimensional (2D) transport equation (TPE) for galactic cosmic ray (GCR) intensity
in the heliosphere averaged over longitude, derived by averaging the full three-dimensional (3D)
steady-state TPE over longitude is considered. This exact 2D TPE is equal to that with the averaged
3D TPE coefficients but with the “source-term” 𝑄 due to 3D modulation effects. In particular,
𝑄 is equal to the longitude convolution of the longitudinal variances of the coefficients and the
intensity as used in the 3D TPE and as applicable to the modulation of GCR intensity. In previous
work we suggested an expression for 𝑄 without solving the 3D TPE for the simplest case when
the only characteristic heliospheric feature depending on helio-longitude is the polarity of the
heliospheric magnetic field.
The motivation for the estimating and studying the structure of the source-term of the exact 2D
TPE is two-fold: 1) solving 2D instead of 3D TPE for simulating the long-term variations of GCR
intensity looks more easy and logical and 2) studying the structure of the source-term can improve
our understanding of the simulated GCR modulation.
This study is focused on calculating and analizing the same longitude convolution as𝑄 numerically,
solving the steady-state 3D TPE for the above mentioned simplest case. Beside studying the
structure of this calculated source-term, 𝑄1, it is also compared with that estimated without
solving the 3D TPE, 𝑄2.
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The transition from 3D to 2D TPE M.B. Krainev

1. Introduction

Presently it is practice for the description of the long-term modulation of the GCR intensity to solve
the three dimensional (3D) transport equation (TPE) for the phase density (or distribution function)
U(®𝑟, 𝑝) = J (®𝑟, 𝑇)/𝑝2, where 𝑝, 𝑇 and J are the momentum, kinetic energy and intensity of these
particles, respectively. The procedure then is to average U over longitude (𝑈 = 〈U〉𝜑) and the
corresponding intensity is compared with observations averaged over a solar rotation period (≈ 27
days) [14]. Probably, it would be easier to use for this purpose the 2D TPE for the phase density
averaged over longitude. However, when we use for such an equation the exact analogue of the
3D TPE but with all coefficients averaged over longitude, the results of the two approaches are
sometimes rather different, which requires further investigation.

Previously, in [6], an internally justified procedure was suggested for the reduction of the full
3D TPE to the 2D TPE for the longitudinal averaged phase density. This version of the 2D TPE
differs from what was discussed in the previous paragraph by a ’source’ term, for which exact
calculation we need to know the solution of the full 3D TPE. For quite some time we have tried to
estimate this ’source’ term by assuming approximations and at last seem to have succeeded for the
simplest case when the only longitude dependent heliospheric factor is the heliospheric magnetic
field (HMF) polarity (see [7] and references therein). However, there are still some remaining
questions about the procedure used and the generality of this estimation.

The most direct way to study the structure of this term, and to check the procedure of its esti-
mation, is to calculate it from the outcome of a full 3D TPE using an up-to-date and comprehensive
steady-state 3D code [1, 10, 13, 16], which is the purpose of this paper. In section 2 the procedure
for the 3D to 2D TPE reduction is discussed and followed by the calculation of both 3D and 2D
drift velocities in section 3. In section 4 the source term in the 2D TPE is calculated and compared
with both the drift term of the same equation and the estimated value of the source term.

2. Reduction of 3D to 2D TPE

The distribution of the GCR phase density U in the heliosphere with respect to momentum 𝑝 is
described (see [11], [8], [12]) by the 3D TPE in the steady-state approximation in a coordinate
system rotating with the Sun:

∇(K∇U) − ®V𝑠𝑤∗ · ∇U − ®V𝑑𝑟 · ∇U + DV
3

𝑝
𝜕U
𝜕𝑝

= 0, (1)

where K is the diffusion tensor, ®V𝑠𝑤∗ = ®V𝑠𝑤 − ®Ω × ®𝑟 , and ®Ω, ®V𝑑𝑟 , ®V𝑠𝑤 , DV are the angular
rotation velocity of the Sun, particle drift and solar wind velocities and the divergence of the latter,
respectively. This TPE is set in the inner part of the domain and the usual boundary conditions are
specified. As previously done [6], we split the boundary problem for U = 𝑈 + 𝑢 into a set of two
equations for𝑈 and 𝑢 by decomposing the coefficients of (1) into longitudinally averaged ones and
the longitude variances, K = 𝐾 + 𝑘 , ®V𝑠𝑤 = ®𝑉 𝑠𝑤 + ®𝑣𝑠𝑤 , ®V𝑑𝑟 = ®𝑉𝑑𝑟 + ®𝑣𝑑𝑟 , DV = 𝐷𝑉 + 𝑑𝑣, then
averaging (1) over longitude, and obtaining:

∇(𝐾∇𝑈) − ®𝑉 𝑠𝑤 · ∇𝑈 − ®𝑉𝑑𝑟 · ∇𝑈 + 𝐷𝑉
3
𝑝
𝜕𝑈

𝜕𝑝
+𝑄 = 0 (2)
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The source term 𝑄 = −
〈
®𝑣𝑑𝑟 · ∇𝑢

〉
𝜑

in (2) takes into account that the only longitude dependent
heliospheric factor in our model is the HMF polarity, so 𝑘 , ®𝑣𝑠𝑤 , 𝑑𝑣 are all equal to zero and the
only non zero variance of the TPE coefficients is that of the drift velocity.

Subtracting (2) from (1), one gets the 3D TPE for the variance of the phase density, 𝑢, and it
is this 3D TPE for 𝑢, which was studied in our previous efforts to estimate the source term in (2)
without solving (1).

3. The 3D and 2D drift velocities

According to the above mentioned models there is no longitudinal dependence in the solar wind
velocity so that its divergence, the strength and geometry of the HMF, the diffusion coefficients and
TPE coefficients as well as the proton non modulated spectrum (taken as the very local interstellar
spectrum) are not be discussed again here. However, the drift velocity which is the only non-axial-
symmetric TPE coefficient, and its structure and how to proceed with its longitudinal averaging, are
described in some detail.

The particle drift velocity can be expressed as:

®V𝑑𝑟 = 𝐶𝑑𝑟
𝑠𝑐𝑎𝑡 ·

𝑝𝑣

3𝑞

[
∇ × ( ®B/B2)

]
, (3)

where 𝐶𝑑𝑟
𝑠𝑐𝑎𝑡 is a function of rigidity describing drift reduction caused by particle scattering, e.g.

[10]; with 𝑣 and 𝑞 the velocity and charge of particles, and ®B and B the HMF vector and its
magnitude (strength). All the entities in (3) specified in front of the vector product do not depend
on longitude.

The regular HMF can be represented as ®B = F ®B𝑚, where F is the HMF polarity, i.e., a scalar
function positive in the positive sectors and negative in negative sectors, changing sign across the
heliospheric current sheet (HCS) surface, F (𝑟, 𝜗, 𝜑) = 0. By ®B𝑚 we designated the unipolar (or
“monopolar”) magnetic field (with unit vector ®𝑏𝑚) equal to ®B in the positive sectors and having
the reversed polarity in the negative ones. In our case this monopolar HMF does not depend on
longitude and it is a modification of Parker’s HMF according to [15] as implemented by [16].

The first approximation of the HMF polarity can be expressed as F (𝑥) = 𝐴 [2𝐻 (𝑥) − 1], with
𝐴 and 𝐻 (𝑥) being the polarity (the sign of the radial component of the HMF in the high-latitude
N-hemisphere) and the Heaviside function of the distance 𝑥 from the HCS, respectively. The value
of 𝑥 is positive in the N-hemisphere. Then ∇F = 2𝐴𝛿(𝑥)®n𝑐𝑠, where ®n𝑐𝑠 is the unit vector normal
to the HCS surface and directed to the N-hemisphere and ®e𝑑𝑟 =

[
®n𝑐𝑠 × ®𝑏𝑚

]
is the unit vector

in the direction of the HCS drift in the monopolar HMF. However, in the model and code the
more sophisticated model for F is used which allows the smooth transition of polarity between the
negative and positive sectors with the depth of the HCS about four Larmor radii, 𝑟𝐿 , see [3–5] and
references therein.

Next, decomposing the drift velocity into regular ®V𝑑𝑟,𝑟𝑒𝑔 and HCS ®V𝑑𝑟,𝑐𝑠 parts with rather
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different space features, gives:

®V𝑑𝑟,𝑟𝑒𝑔 = 𝐶𝑑𝑟
𝑠𝑐𝑎𝑡 ·

𝑝𝑣

3𝑞
· F

[
∇ ×

®𝐵𝑚

𝐵2

]
, (4)

®V𝑑𝑟,𝑐𝑠 = 𝐶𝑑𝑟
𝑠𝑐𝑎𝑡 ·

𝑝𝑣

3𝑞
·
[
∇F ×

®𝐵𝑚

𝐵2

]
. (5)

These expressions are valid for any HCS surface. In case of the usually used tilted HCS (as the
great circle tilted with respect to the solar equator with a so-called tilt angle 𝛼𝑡 at any 𝑟) the HCS
surface is specified as

𝜗𝑐𝑠 =
𝜋

2
− arctan

(
tan𝛼𝑡 sin(𝜑 + Ω(𝑟 − 𝑟𝑠𝑠)

𝑉 𝑠𝑤
)
)
, (6)

where 𝑟𝑠𝑠 is the radius of the source surface of the HMF.
When averaged over longitude, the HMF polarity and the drift velocities are:

𝐹 = 〈F 〉𝜑 , (7)

®𝑉𝑑𝑟,𝑟𝑒𝑔 = 𝐶𝑑𝑟
𝑠𝑐𝑎𝑡 ·

𝑝𝑣

3𝑞
· 𝐹

[
∇ ×

®𝐵𝑚

𝐵2

]
, (8)

®𝑉𝑑𝑟,𝑐𝑠 = 𝐶𝑑𝑟
𝑠𝑐𝑎𝑡 ·

𝑝𝑣

3𝑞
·
[
〈∇F 〉𝜑 ×

®𝐵𝑚

𝐵2

]
. (9)

4. Source term for the 2D TPE

The boundary-value problem to be solved is comprised of the 3D TPE (1) and the usual boundary
conditions (see e.g., [13]). For the purpose of this paper it is not important which set of parameters
of the models for the TPE coefficients is used and we proceed by selecting the parameter set for the
second half of 2007, with the HMF polarity indicated as A < 0, and when there was a pronounced
27 day variations in the GCR proton intensity [9]. For the time being the best description of the
observations around sunspot minimum 23/24 is achieved with the models and parameters listed and
described by [1, 2, 14, 16].

Because of space limitations, we illustrate only the structure of the calculated source term
𝑄1(𝑟, 𝜃) and compare it with the drift term, 𝑇𝑑𝑟 = −®𝑉𝑑𝑟 · ∇𝑈, of the 2D TPE (2) and with the
estimated source term𝑄2(𝑟, 𝜃) for a fixed kinetic energy of𝑇 = 1 GeV and calculated by solving the
3D TPE (1). For this energy, we save the intensity and all drift velocities (all three components of the
regular and HCS parts of the velocity) and also the HMF polarity F in all nodes of the numerical
space grid; the numbers of nodes in 𝑟, 𝜃, 𝜙 are 350:181:181. The illustrations of intermediate
characteristics important for understanding how the structures of 𝑄1, 𝑇𝑑𝑟 and 𝑄2 are formed are
collected in the file Kalinin_et_al_ICRC-2021_ID353_Appendix.pdf which is saved as an
additonal file. We refer to these figures using the number of the figure in this file with the capital
letter A (e.g., Fig. 5A).

Since our main task is to demonstrate the general structure of the source term in the global
heliosphere, we use for all figures a 2D formatting and colour presentation of the characteristics of

4
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Figure 1: Spatial distribution of the radial (left panels), co-latitude (central panels) and longitude (right
panels) parts of the calculated source term𝑄1 in (2) caused by regular (upper panels) and current sheet drifts
(lower panels) shown separately. For the general details of all figures (scale, units, white lines) see the text.

interest according to a log (sometimes linear) scale of shades of colour. It means that the difference
between values for successive contours (the boundaries between adjacent shades of color) is one
order of magnitude (for log scale) or constant value (for linear scale). So as to not go deeper into
the units of different characteristics we always use the relative units (r.u.).

The white lines in all figures both here and in Appendix file show the form of HCS and its
latitudinal boundaries (according to (6)) - wavy lines for 𝑓 (𝜙, 𝜆)-figures, and horizontal lines for
𝑓 (𝑟, 𝜆)-figures; the position of the termination shock and a layer near the heliopause (horizontal
lines for 𝑓 (𝜙, 𝑟)-figures and vertical lines for 𝑓 (𝑟, 𝜆)-figures, solid for 𝑟𝑇𝑆 and dotted for layer
before the heliopause).

When discussing the main features of these figures, we do not emphasize the details which can
be seen in the outer heliosphere (near the termination shock and heliopause) and also in the inner
heliosphere, close to the Sun (at 𝑟 < 10 AU), although these details being very interesting.

In Fig. 1 the spatial distribution of the radial, colatitude and longitude parts of the calculated
source term are shown caused by regular drift (upper panels) and HCS drift (lower panels). Ev-
idently, the source term is non zero only in and around the HMF sector zone, in our case (with
𝛼𝑡 = 14.6 deg and 𝑇 = 1 GeV) for |𝜆 | < 20 deg.

In Fig. 2 the space distribution of the drift term 𝑇𝑑𝑟 = −®𝑉𝑑𝑟 · ∇𝑈 of 2D TPE is shown in the
same format and also in the same latitude range even though the drift term 𝑇𝑑𝑟 is non zero in the
higher latitudes as well (see Figs. 27A-29A). The spotty (or fast alternating in sign) structure of the
co-latitude part of the drift term caused by drift along the HCS (Fig. 2, d), is probably the result of
the calculation with finite grid (that is, finite differences in all three directions) and it means that

5
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Figure 2: Spatial distribution of the radial and co-latitude parts of the drift term 𝑇𝑑𝑟 = −®𝑉𝑑𝑟 · ∇𝑈 in (2)
caused by regular and current sheet drifts shown separately. For the general details of all figures (scale, units,
white lines) see the text.

this part is close to zero.

The first impression one gets from a comparison of the Figs. 1 and 2 is that the signs of the
corresponding parts of the𝑄1 and 𝑇𝑑𝑟 are opposite which means that the source effectively reduces
the corresponding components of drift. The intriguing feature of the calculated 𝑄1 is the strong
co-latitude parts due to both the regular (Fig. 1b) and HCS (Fig. 1e) drifts. The formation of the
structure of any part of 𝑄1 can be studied from the figures in the appendix mentioned above. For
instance, the co-latitude part of 𝑄1 due to the HCS drift 𝑄1𝑐𝑠

𝜃
= −〈𝑣𝑑𝑟,𝑐𝑠

𝜃
· ∇𝜃𝑢〉𝜑 shown in Fig. 1e

is formed from the longitude convolution of the variance of the co-latitude component HCS-drift,
𝑣
𝑑𝑟,𝑐𝑠

𝜃
, shown in Fig. 19A of the Appendix (see also Figs. 10A and 14A), with the co-latitude

component of gradient of the longitude variance of intensity, ∇𝜃𝑢, shown in Fig. 25A (see also
Figs. 21A and 23A).

As mentioned above [7] got the approximate expression for the source term as:

𝑄2 = 𝐶𝑑𝑟
𝑠𝑐𝑎𝑡 ·

𝑝𝑣

3𝑞

[
∇ ×Φ

®B
B

2]
· ∇𝑈, (10)

Φ(𝐹) = (1 − 𝐹2)0.5 · arcsin 𝐹, (11)

and its regular and current sheet parts respectively as:

6
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Figure 3: Spatial distribution of the radial and co-latitude parts of the source term 𝑄2 of (2) caused by the
regular and current sheet drifts shown separately as estimated without solving (1). The colatitude part of the
estimated source term 𝑄2 caused by the current sheet drift (panel d) is zero. For the general details of all
figures (scale, units, white lines) see the text.

𝑄2𝑟𝑒𝑔 = 𝐶𝑑𝑟
𝑠𝑐𝑎𝑡 ·

𝑝𝑣

3𝑞
· Φ ·

[
∇ ×

®𝐵𝑚

𝐵2

]
· ∇𝑈, (12)

𝑄2𝑐𝑠 = 𝐶𝑑𝑟
𝑠𝑐𝑎𝑡 ·

𝑝𝑣

3𝑞
·
[
∇Φ ×

®𝐵𝑚

𝐵2

]
· ∇𝑈, , (13)

A comparison of the structures of the estimated source term 𝑄2 in Fig. 3 and of the calculated
source term𝑄1 in Fig. 1, shows that: (1) The absence in𝑄2 of the longitude parts which are present
(although rather small) in 𝑄1; (2) The qualitative similarity between the radial parts (although too
large for 𝑄2𝑐𝑠𝑟 in Fig. 3 (c)); and much smaller for 𝑄2 the co-latitude parts due to both the regular
and HCS drifts.

One possible cause of the descrepancy between 𝑄1 and 𝑄2 could be that in deriving the
estimate (10-11) for 𝑄2 in [7] the approximation of infinitely thin HCS was used discussed in
section 3. Besides, the unexpected features of the calculated 𝑄1 could be taken into account in our
further efforts to improve the estimation of the source term without solving 3D TPE.

5. Conclusions

The structure of the calculated source term of the exact 2D TPE reduced from the 3D TPE
steady-state in the frame rotating with the Sun for the simple case of the HMF polarity as the only

7
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longitude dependent heliospheric factor is rather complex and on the whole should result in some
reduction of drift effects in the solar modulation of GCRs.

A detailed analysis is needed for more precise conclusions since the contribution of the source
term is different for different parts of the drift term (for different components of the drift velocity
caused by both the regular and the current sheet drifts) and for different energies.

On the whole, the structure of the source term of the exact 2D TPE, estimated earlier without
solving the 3D TPE, differs from its structure calculated using the solutions of the 3D TPE,
although there are similar features. Although these calculations assist us in estimating the source
term properly, further study and improvement are required.
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