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ABSTRACT

The use of analog neural networks as part of the DZero muon detector is considered. A
study was made of tracking through a single muon chamber using neural network techniques.
A hardware application based on Intel’s ETANN chip was designed and used in a test beam
at Fermi National Accelerator Laboratory. Plans to implement a neural network trigger in
DZero are also discussed.

1. The DZero Muon System

The DZero detector is a large general purpose detector for proton-antiproton
collisions at Fermilab’s Tevatron. With no central magnetic field, muons are
identified by passage through a magnetized iron toroid as measured by a four-layer
chamber inside the toroid and two three-layer chambers outside the iron. The
momentum of the muon is determined by measuring the angular change in the track
through the toroid.

The muon chambers consist of three or four layers of 24 parallel drift tubes'
(figure 1). The layers of the tubes are offset in the drift direction to help resolve left-
right ambiguities. Pairs of tubes are jumpered together to form a single wire. In
addition to the drift time, the time difference of the pulse along the wire is measured to
give the position of the particle in three dimensions. Each cell has a cathode pad cut
in a repeating diamond pattern, and the ratio of the charge on the inner and outer parts
of the pattern provides a vernier for the measurement along the wire. These pad
signals are also passed through a discriminator and latched to be used for zero-
suppression during readout.

Figure 1. Cross sectional view of a three layer muon chamber with 24 columns of drift cells.
The drift direction is horizontal in this view.
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Figure 2. Efficiency of the muon fine trigger as a function of transverse momentum for a
threshold set at 5 GeV/c (triangles). The background cross section of single muons is shown
for comparison.

The fast muon trigger is based on the pad latches®>. These latch bits are first
passed through single chamber logic chips that generate a bit map consistent with
positions of particle passage through the chamber. The fine granularity trigger bits,
corresponding to a 5 cm half cell width, are logically "or"ed together to form coarse
trigger bits of 60 cm span. The coarse trigger links bits from chambers in each of the
three layers using logic chips within the space of one 3.5 psec period between bunch
crossings. The fine trigger uses look-up memories to compare the addresses of
combinations with patterns of a particular momentum and then makes a cut on that
momentum. When required, the fine trigger takes from 3 psec to 30 psec to form,
during which time the experiment is dead to crossings. With only haif cell resolution,

the trigger is a weak measure of momentum (figure 2).

2. Neural Net Tracking in a Muon Chamber

In 1989 an extensive set of data was recorded with a set of three three-layer
chambers as part of the testing of the muon electronics. These chambers were stacked
on either side of a magnetized toroid with two layers of scintillator as a trigger to
simulate the actual geometry of the DZero muon detector. The data was filtered to
select those events that passed through ail three chambers and had a reconstructed
momentum greater than 5 GeV/c. In this set there were no tracks with an angle
greater than 45 degrees from normal to the chambers. From this set of data 4000
events for training were selected that had good hits as defined by offline tracking in
each of the three layers of a particular chamber.
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Figure 3. Partial coverage of a muon chamber by three neural networks.

The initial network design covered 16 of the 24 columns of drift tubes with three
overlapping nets of six columns each (figure 3). Each of the three networks had 18
input drift times, 20 hidden neurons, and 20 output neurons. The training used 2000
events from the sample for standard back-propagation described elsewhere’. The 20
outputs were divided into 10 bins to measure the slope of the line and 10 bins for the
intercept. Analysis of the remaining 2000 events gave a measurement of the intercept
with ¢ = 15 mm.

A second network design increased the number of hidden neurons to 64 and
increased the number of output neurons to 64. The output neurons were split 32 for
slope and 32 for intercept. Trained and tested in the same manner as the first network,
this network measured the intercept with ¢ = 6.7 mm. Comparison with the existing
trigger cells of 5 cm width based on latches shows the strength of the neural network.

3. Online Muon Tracking

In 1991 a special muon chamber with only two columns was placed in the
Fermilab test beam for study. A network was designed with 12 inputs, 64 hidden
neurons and 64 ouputs®. The inputs were the three drift times and three pad latches
used to break the abiguity between the two cells. The drift times were entered three
times to overcome the maximum weights that would be encountered in the hardware
neural network. The outputs were divided into 32 slope bins and 32 intercept bins. A
monte Carlo simulation of this chamber was used to generate 10000 events with the
expected drift resolution of 500 pm. These events were used to train a simulation of
the Intel ETANN chip® which features 64 inputs and 64 neurons and can be clocked to
give a three-layer network of 64 inputs, 64 hidden neurons and 64 output neurons.
More precise training of the chip proceded with 2000 events in a slow emulator and
600 events using chip-in-the-loop techniques.

To use the network online, a new board was added to the usual front-end
electronics. This board picked up the input signals from the analog buffers on the
chamber and fed them to the trained ETANN chip. When a trigger consisting of two
scintillators and three pad latches was satisfied, the output neurons were clocked, then
digitized along with the regular front-end analog signals. Since the ETANN was able
to process the data in 3 psec, it was ready for digitization by the time the
microprocessor controlling digitization had responded to an interrupt.

Offline the drift times from the chamber were fit using least squares to a straight
line and compared to the output of the network. The difference between the intercepts



had a ¢ = 1.0 mm. When events were selected with least squre fits giving a chi-square
less than 1.0, the resolution improved to ¢ = 0.7 mm. When used to analyze Monte
Carlo data the same chip gave a resolution of ¢ = 0.6 mm. This compares favorably
with the best offline resolution of 6 = 0.4 mm.

4. Application to the Muon Trigger

The major weaknesses in the current DZero muon trigger are the inaccuracy in
momentumn determination due to large trigger cell size and possible long caluclation
times when one of the look up memories in the fine trigger has many inputs due to
high multplicity in a small region of the detector. The analog neural networks may
offer a solution to both problems. It is clear that by using the analog signals
substansially better cell resolutions can be achieved. In addition, the purely parallel
nature of the network should make it immune to bogging down if a section of the
detector has many hits.

A possible architecture for the neural network might follow an architecture simlar
to the current trigger (figure 4). In this design each of the 164 muon chambers would
have three networks covering ail columns in the chamber. Each network would cover
16 input wires and 16 latches, with a final filter stage reducuing the information to a
few analog signals correponding to positions of tracks through the chamber.

The output from chambers that might share parts of a single track would be
brought into one of 16 linking networks in the counting house. These networks would
be required to report a momentum for the track as well as generate a data set for
inclusion in the data stream. The outputs of the linking networks can be counted and
categorized by type and used to generate a table of trigger quantities such as 1 muon,
central region, p, > 5 GeV/c.
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Figure 4. Block diagram of a trigger architecture using neural networks. N represents a
neural network; F represents a filter to reduce the number of signals; D represents data to be
included in the output stream.



Such an upgrade would be part of the planned upgrade to DZero for 19945,
Before this could be implemented a number of detailed designs and studies must be
completed. For the current DZero run in 1992 a single board like that used in the test
beam will be placed on a chamber with moderately high rates and its output will be
digitized and included in the data stream for analysis. It is likely that the large number
of outputs in the present network tests would give rise to too many signals cables to
the next stage, so a scheme of filtering needs to be devised. Up to now, no special
work has been done to take advantage of the repetitive pattern of the tubes, but this
might simplify a local network design. The bigglest concern is how to design a neural
network for the DZero small angle muon system' which has a different tube geometry
and high rates.
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