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Abstract
The spin-orbit generated Γ interaction is known to induce strong frustration and to be significant
in realistic models of materials. To gain an understanding of the possible phases that can arise from
this interaction, it is of considerable interest to focus on a limited part of parameter space in a quasi
one-dimensional model where high precision numerical results can be obtained. Here we study the
Heisenberg–Gamma (JΓ) ladder, determining the complete zero temperature phase diagram by
analyzing the entanglement spectrum (ES) and energy susceptibility. A total of 11 different phases
can be identified, among them the well known rung-singlet (RS) phase and 5 other phases, FM,
FM-Z, FM-XY, AF and AF-Z, with conventional long-range magnetic order. The 3 ferromagnetic
phases, FM, FM-Z and FM-XY simultaneously have non-zero scalar chirality. Two other phases,
the antiferromagnetic Gamma (AΓ) and ferromagnetic Gamma (FΓ) phases, have previously been
observed in the Kitaev–Gamma ladder, demonstrating that the AΓ-phase is a symmetry protected
topological phase (SPT) protected by TR×Rb symmetry, the product of time-reversal (TR) and π
rotation around the b-axis (Rb), while the FΓ-phase is related to the RS phase through a local
unitary transformation. The 3 remaining phases,Υ, Ω and δ show no conventional order, a
doubling of the ES and for theΥ and Ω-phases a gap is clearly present. The δ-phase has a
significantly smaller gap and displays incommensurate correlations, with a peak in the static
structure factor, S(k) continuously shifting from k/π = 2/3 to k= π. In the Ω-phase we find
pronounced edge-states consistent with a SPT phase protected by the same TR×Rb symmetry as
the AΓ-phase. The precise nature of theΥ and δ-phases is less clear.

1. Introduction

Often when modelling magnetic materials, the interaction terms are assumed not to depend on the direction
of the bond, in the sense that terms that can only be distinguished by their spatial orientation are taken to be
equivalent. Significant interest in models where this is not the case and interactions depend on the direction
of bonds, have arisen with Kitaev’s exact solutions for the ground-state of a simple local Hamiltonian with
bond-directional interactions on a honeycomb lattice, the Kitaev Honeycomb model (KHM) [1].
Bond-directional interactions have previously been considered in the wider context of quantum compass
(Kugel–Khomskii) models [2–5], however, for the KHM a spin liquid ground-states can rigorously be
demonstrated [1]. The bond-directional Kitaev interaction (K) in the KHM is of the Ising type and can be
realized in real materials, as demonstrated by Chaloupka et al [6]. This has established the class of Kitaev
materials [7–11] that are currently being intensely studied. Among the most promising candidate materials is
α-RuCl3 [12–14], a material with two-dimensional honeycomb layers. For α-RuCl3 there is growing
consensus [8, 9, 15, 16] that the Kitaev interaction is ferromagnetic K < 0, however, other interactions are
clearly also present [17, 18] with the Γ-interaction the largest [19, 20]. On a given a bond with a Kitaev
interaction of the form KSγSγ , the Γ-interaction takes the form Γ(SαSβ + SβSα) and it is estimated [8, 9, 15,
16] that Γ> 0 in α-RuCl3. Interaction terms of the usual Heisenberg form with strength J are also believed
to be non-negligible, but smaller than the Γ-interaction. Several other interaction terms, such as Γ ′, J2 and J3
are sometimes also taken into considerations, but they are believed to be even smaller in magnitude for
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α-RuCl3, and we do not discuss them here even though they might crucially influence the phase-diagram
due to the very high degree of frustration. The phase diagram of α-RuCl3 is of significant current interest
due to the experimental observation a magnetically disordered phase under an applied magnetic field [13,
14, 21] which has been interpreted as a spin liquid phase [22, 23]. The precise nature of this phase is
debated [24–27] and a full understanding of the complete phase diagram is lacking. Furthermore, it is clear
that the complete phase-diagram of the K–J–Γmodel of α-RuCl3 in a magnetic field is very complex and
extremely challenging to determine precisely [17, 28–30]. It is therefore very valuable to study the phase
diagram of low dimensional versions of this model in a highly restricted part of parameter space where
almost exact results can be obtained from state of the art numerical calculations, and here we focus on the
Heisenberg Gamma (JΓ) in a ladder geometry.

While the ladder is a highly restrictive geometry, it can still lead to important insights into the possible
phases of the full two-dimensional models, and it includes crucial interactions not present in a purely
one-dimensional model. We also note that classes of ladder materials exists that have been shown to closely
model the ladder geometry [31, 32], so called spin-ladder materials, and one might hope that it will be
possible to find similar materials with bond-directional interactions. The ladder geometry is also very
attractive since almost exact results can be obtained for extremely large systems or directly in the
thermodynamic limit, in stark contrast to the two-dimensional lattice where exact diagonalization results are
limited to very small sizes [17, 33]. Multi-leg models have been studied [34, 35] but systematic studies are
challenging. Kitaev’s [1] solutions of the honeycomb model can be extended to include the ladder [36] but is
not applicable when J ̸= 0 or Γ ̸= 0. The Kitaev–Heisenberg model in a ladder geometry has been studied
using numerical techniques [37–39] finding 6 distinct phases at zero field as the ratio J/K is varied, in
remarkable good agreement with exact diagonalization results for the honeycomb lattice [40]. Likewise, the
Kitaev–Gamma ladder has also been investigated [41–43], and in this case 8 distinct phases can be identified
in zero field versus Γ/K. The Heisenberg–Gamma (JΓ) ladder is relatively less explored, and from the exact
diagonalization results in [17] the line in the phase diagram of the honeycomb lattice corresponding to the
JΓ-model appear to only cross a modest number of phases. Here we show that the phase diagram of the
JΓ-ladder is significant richer, with a total of 11 distinct phases appearing in zero field. In addition to 5
phases, FM, FM-Z, FM-XY, AF and AF-Z, with conventional long-range magnetic order we observe three
previously discussed phases, the RS, FΓ and AΓ-phases, where the RS and FΓ-phases are related by a local
unitary transformation [44]. However, we also find three new potential symmetry protected topological
phase (SPT) phases, that we denoteΥ,Ω and δ. These 2 phases show no conventional order, a doubling of the
entanglement spectrum ES and for theΥ and Ω-phases a relatively clear gap, consistent with SPT behavior.

SPT phases in gapped one-dimensional spin systems can be classified using a projective symmetry
analysis [45–47]. Usually the site symmetries given by D2 = {E,Rx,Ry,Rz} is considered where Rx(Ry,Rz) is a
π rotation about the x(y,z) axis. The projective analysis can be extended to ladders [48–53] where the
additional symmetry σ, arising from interchanging the legs of the ladder is also included, and the group
D2 ×σ is considered. It is important to note that a local unitary transformation, U6 exists [44], that maps the
Kitaev–Gamma (KΓ) ladder to a model with D2 ×σ site symmetry. While σ is not a good symmetry for the
Kitaev–Heisenbergv (KJ) ladder, it does have the D2 symmetry. However, neither D2 nor σ is a good
symmetry for the JΓ-ladder and the U6 transformation is not useful. Instead, the σ symmetry is replaced by a
non-symmorphic symmetry, involving both reflection and translation. In the following, we therefore mainly
focus on the time-reversal (TR) symmetry present in the JΓ-ladder in zero field. It can therefore be argued
that the effect of the Γ-interaction is particularly relevant for the JΓ-ladder that is our focus here, due to the
significant reduction in the symmetry.

The outline of the paper is as follows. In section 2, we introduce the JΓ-ladder, the geometry and the
parametrization. The bulk of our results are obtained using DMRG and iDMRG techniques, and in section 3
we discuss the specifics of our numerical methods along with the conventions used. In section 4 we present
our main results for the phase-diagram of the JΓ-ladder, demonstrating the presence of 11 distinct phases. In
section 5 the magnetically ordered phases are discussed along with the chiral ordering we observe in the
ferromagnetic phases. The RS, AΓ and FΓ-phases are discussed in section 6. Finally, the three new potential
SPT phases,Υ, Ω and δ and their classification are discussed in section 7 where we also discuss the projective
symmetry analysis of the TR symmetry.

2. The JΓ-ladder

Our focus is on the two leg ladder derived from the honeycomb lattice. To get as faithful a representation of
the honeycomb lattice as possible, we consider a small strip of the honeycomb material, shown in figure 1(c),
and create a two leg ladder by ensuring that the bonds that are cut perpendicular to the length of the ladder
are paired together, effectively imposing periodic boundary conditions (PBC) in the perpendicular direction.
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Figure 1. The two clusters of the two leg JΓ-ladder with alternating x and y bonds along the legs of the ladder, connected by z
bonds along the rungs. Here the x, y and z refers to the variation in the Γ-interaction. The dashed lines indicate z bonds arising
from imposing periodic boundary conditions in the perpendicular direction. (a) Cluster A formed from a regular ladder with the
red line indicating a bond cut and the blue line a rung cut, relevant for forming the reduced density matrix. (b) Cluster B formed
from cutting the rungs from cluster. (c) Geometry of the honeycomb ladder extracted from the full two dimensional honeycomb
lattice. The ladder is formed by cutting along the dashed rectangle and pairing the dashed vertical red bonds with one another,
mimicking periodic boundary conditions.

This is illustrated in figure 1 where the dashed bonds arise due to the PBC. We assume these interactions to
be of the same strength as the direct coupling between the legs, shown as the solid rungs in figure 1. On each
bond of the ladder, we introduce an isotropic Heisenberg interaction of strength J. The second interaction is
the Γ-interaction, an asymmetric exchange interaction that crucially varies between bonds and is not the
same for every bond. The corresponding Hamiltonian is then

H=
∑
⟨i,j⟩

JSi · Sj +
∑
⟨i,j⟩γ

Γ
(
Sαi S

β
j + Sβi S

α
j

)
, (1)

where ⟨i, j⟩γ denotes the nearest neighbor bond of type γ. The possible kinds of bonds are γ = x,y,z labeling
the possible values of (α,β) as (y, z), (x, z), and (x, y) respectively. In other words, γ labels the missing spin
component exchange present in Sαi S

β
j .

2.1. Clusters and boundaries
The J-Γ ladder, equation (1), comprises alternating x and y bonds along the both legs, connected by z bonds
along the rungs. The unit cell of the ladder then consists of 4 sites, as shown in figures 1(a) and (b). When
discussing properties of the model derived from the reduced density matrix of a bipartition of the lattice, it is
important to take into account if the partition cuts a rung or only the legs of the ladder. This is illustrated by
the blue and red lines in figure 1(a) showing a rung (blue) and bond (red) cut respectively. When considering
edge-states that may appear in SPT phases, we shall consider finite open segments of the ladder, and it is then
crucial to consider how the open boundary conditions (OBC) are imposed. For the ladder, we consider the
two possibilities shown in figures 1(a) and (b). We refer to the first (regular) cluster as A and the second
(rung cut) cluster as B. The degeneracy of the ground-state in a SPT phase strongly depends on whether open
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or PBCs are applied, however, as we shall see in the following, the degeneracy of the ground-state can also
depend on whether cluster A or B is used.

2.2. Parametrization and connections to knownmodels
The overall scale for the coupling constants, J and Γ are not relevant, and it is therefore convenient to
parameterize them in the following way

J= sin(ϕ) , Γ = cos(ϕ) . (2)

The phase space of the model can then be parameterized by the angle ϕ. Some points in the phase-diagram
correspond to models that have previously been studied in detail. At ϕ= π/2 the JΓ-ladder is simply the
antiferromagnetic (AF) Heisenberg ladder for which it has been established that the ground-state is a
rung-singlet (RS) state with a sizable gap [31, 54, 55]. Similarly, at ϕ= 3π/2 we find the well known
ferromagnetic Heisenberg ladder that we expect to show gapless spin wave excitations.

The model with a pure antiferromagnetic Γ-interactions occurring at ϕ= 0, has previously been studied
in detail [41–43] and it is known that the model is in a SPT phase with a gap. In addition, a string order
parameter has been found [43]. Interestingly, the same antiferromagnetic Γ-model on the two-dimensional
honeycomb lattice is believed to exhibit a gapless spin liquid phase [56] although other scenarios have been
discussed [28, 35, 57].

Finally, at ϕ= π we find the ferromagnetic Γ-ladder. If we at this point apply the local unitary U6

transformation [44], the FΓ-ladder can be mapped to an antiferromagnetic spin ladder with nearest
neighbor interactions only of the type Sxi S

x
j , S

y
i S

y
j and SziS

z
j . Such an AF spin ladder has been shown [42] to be

in the same phase as the isotropic AF spin ladder with isotropic Si · Sj interactions on each bond which is
known to be in the RS phase, as discussed above. The FΓ-phase, of which the ϕ= π is part, can therefore also
be labelled RSU6 since it is related to the RS-phase through the local unitary U6 transformation.

3. Methods

The main tool used in this analysis is the finite density matrix renormalization group (DMRG) [58–63] and
its infinite sized version, the infinite DMRG (iDMRG) [64]. The finite size version will be used to obtain the
ground state and the next 4 excited states with OBC and periodic boundary conditions (PBC). For the OBC,
we mainly use a maximal bond dimension D= 1000 and a precision of ϵ= 10−13, while with PBC we
typically use D= 1200 and ϵ= 10−11. To obtain the ground state in the thermodynamic limit, produce the
phase diagram, and calculate the bulk correlation functions, we use iDMRG with D= 1000 and ϵ= 10−11. In
order to ensure that we detect all possible phases, the maximum resolution we use is∆ϕ/π = 0.001.

To detect the quantum critical points (QCP), we use two measures of the ground state wavefunction, the
first being the susceptibility of the ground state energy per spin e0 with respect to ϕ

χe
ϕ =−∂2e0

∂ϕ2
. (3)

In finite systems, at a QCP, χe has been shown to scale as [65–67]

χe ∼ N2/ν−d−z. (4)

Here ν and z are the correlation and dynamical critical exponents and d is the dimension. Hence, only when
2/ν > d+ z will χe diverge. If we assume that z = 1 and with d= 1 we find that ν < 1 as a condition for a
divergence to occur. In addition, the divergence might be very narrow and could be missed if∆ϕ is not
sufficiently small. In principle, when studying systems in the thermodynamic limit with iDMRG, χe should
be infinite at the QCP but the finite resolution in ϕ will instead show a very sharp spike instead. It is therefore
very useful to have a complementary way of determining the phase diagram, and for quasi one-dimensional
models this can be obtained from the entanglement spectrum. If we cut the ladder across the bond n and
form the reduced density matrix ρn the ES can be obtained from the eigenvalues λi of ρn. The eigenvalues
change slowly away from a QCP but rapidly near a QCP. Sometimes the so-called Schmidt gap [68–71], the
difference between the two largest eigenvalues, is studied, but here we focus on just the leading eigenvalue λ1

which defines the single copy entanglement [72]

SCE=− ln(λ1) . (5)

When the ground state is in a product state, we must have that λ1 = 1 and λn = 0, ∀n> 1 implying that
SCE= 0. On the other hand, if our system is not in a product state, λ1 < 1, we must have SCE> 0. In the

4



New J. Phys. 26 (2024) 013036 S J Avakian and E S Sørensen

Figure 2. Phase diagram of the JΓ-ladder as function of ϕ/π from iDMRG with a unit cell of N = 24 and a resolution
∆ϕ/π = 0.001. The top panel shows χe while the bottom panel the SCE from bond N/2− 1 in a rung cut. The dashed lines
indicates the quantum critical points.

ladder geometry, the only two unique bipartitions are made by either cutting through two leg bonds or
through two leg bonds and a rung, as shown in i figure 1(a). As previously outlined, we shall refer to this as a
‘bond’ cut and a ‘rung’ cut, respectively. While either cut can be used for our purposes, we mainly use the
rung cut, the blue line in figure 1(a), when studying the SCE.

In order to characterize the magnetic ordering of the phases, we study the spin correlation functions
⟨Sαi Sαi+n⟩ as well as the on-site magnetization ⟨Sαi ⟩. In addition, we also study the scalar chirality. For any 3
spins S= σ/2 at sites i, j and k the scalar chirality is defined as follows,

κ= ⟨σi ·
(
σj ×σk

)
⟩. (6)

From this definition it seems likely that a non-zero κ will be accompanied by more conventional magnetic
ordering and in section 5 we discuss the chiral ordering in more detail.

4. Phase diagram

Our main results for the phase diagram are shown in figure 2 where we show iDMRG results for χe in the top
panel along with results for SCE in the bottom panel. The QCP are indicated by the dashed vertical lines. An
astonishingly large number of phases is observed, 11 in total. From left to right we label these phases as, FΓ,
FM, FM-Z,Υ, Ω, FM-XY, AΓ, δ, AF, RS and AF-Z. While most of these phases show some type of magnetic
ordering, the FΓ,Υ, Ω, AΓ, δ and RS phases do not. We discuss all phases in further detail in the subsequent
sections. At most of the QCP we find complete agreement between the divergence in χe and sharp features in
the SCE. One exception is the FM-XY to AΓ transition which do not show a clear divergence in χe, on the
other hand, it is clearly visible in the SCE. This is consistent with a value of the correlation length exponent
ν > 1 at this transition. A similar observation can be made about the RS to AF-Z transition. A summary of
the results from figure 2 can be found in table 1 where the critical values of ϕ are listed for all phases along
with their characteristics.

4.1. Degeneracies
A characteristic feature of SPT phases is that edge-states appear under OBC. A well-known example is the S
= 1 spin chain, where S= 1/2 edge-states appear [73–75] above a four-fold degenerate ground-state with
OBC. Another characteristic is a degeneracy of all eigenvalues in the entanglement spectrum [45, 46, 76, 76,
77]. Such a degeneracy is necessary for non-trivial transformations under the projective symmetry, as we
discuss further in section 7. For the determination of the ground-state degeneracy with OBC it is crucial to
distinguish between the two different clusters from figures 1(a) and (b) and we therefore refer to the resulting
ground-state degeneracies as dOBCA

gs and dOBCB
gs . For the entanglement spectrum, which we obtain from
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Table 1. Summary of the main features of all phases of the JΓ-ladder. The phase symbol and the critical values of ϕ/π for which the
phase exists are listed, as well as the magnetic ordering. The last column indicates the presence of an energy gap in the spectrum in the
thermodynamic limit.

Phase ϕc / π Magnetic ordering Energy gap

AΓ 1.983–0.025 None Yes
δ 0.025–0.077693 None Possibly Gapless
AF 0.077693–0.380 AFM Yes
RS 0.380–0.790 RS Yes
AF-Z 0.790–0.840 AFM-Z Yes
FΓ 0.840–1.110 None Yes
FM 1.110–1.500 FM Yes
FM-Z 1.500–1.775 FM-Z Yes
Υ 1.775–1.820 None Yes
Ω 1.820–1.840 None Yes
FM-XY 1.840–1.983 FM-XY Yes

Table 2. Summary of the main features of the potential SPT phases of the JΓ-ladder. The drung and dbond are the degeneracies in the

spectrum of the reduced density matrix formed on cluster A or B respectively. The dOBCA
gs , dOBCB

gs , and dPBCgs are the ground state

degeneracies in open or periodic boundary conditions with OBCA and OBCB referring to cluster A and B respectively.OA
TR andOB

TR are
the projective phase factors under TR (see section 7.4).

Phase drung dleg dOBCA
gs dOBCB

gs dPBCgs OA
TR OB

TR

AΓ 1 2 4 1 1 −1 1
δ 2 1 1 4 1 1 −1
Υ 2 1 1 4 1 1 −1
Ω 1 2 4 1 1 −1 1

iDMRG calculations, it is important to distinguish between the rung cut and bond cut discussed above and
shown as the blue and red line in figure 1(a). Our results for these degeneracies for all the potential SPT
phases are listed in table 2. We find in all cases a 4-fold degeneracy of the ground-state using A or B cluster. If
the degeneracy is on the A(B) cluster, the ground-state on the B(A) cluster is non-degenerate. Furthermore, if
the 4-fold degeneracy is present on the A(B) cluster, the ES show degeneracy on the bond cut (rung cut) and
no degeneracy on the alternate cut. For completeness, we also list the degeneracy under PBC in table 2. These
observations are consistent with the presence of SPT phases. Of these 5 phases, the AΓ and FΓ-phases have
been studied elsewhere [41–43] but before analyzing the remaining 3 potential SPT phases,Υ, Ω and δ, we
turn to a discussion of the magnetically ordered phases.

5. Magnetically ordered phases

5.1. AF phases
There are two phases with clear long-range AF magnetic ordering, the AF and AF-Z-phases. In figures 3(b)
and (c) we show results for the spin correlations for each phase.

• AF-phase: For ϕ/π ∈ (0.077693,0.380), we have the AF-phase. As can be seen in figure 3(b) the spin cor-
relations are clearly long-range and isotropic between the x, y and z components. The Γ-term is non-zero
throughout the AF-phase, and contrary to what one might expect, the AF-phase is not gapped. In fact, as
we discuss in section 7, the correlation length in this phase is rather short, indicating the presence of a well-
defined gap.

• AF-Z-phase: Forϕ/π ∈ (0.79,0.84), the spin correlations look similar to those of the AF phase and are again
long-range. However, in this phase the Sz1S

z
n correlations are larger than the S

x
1S

x
n and S

y
1S

y
n correlations, which

are equal, as can be seen from our iDMRG results shown in figure 3(d) and a sketch of the ordering is shown
the inset. We denote this phase the AF-Z-phase. The correlation length is finite, indicating a well-defined
gap.

5.2. FM phases and chiral ordering
Three of the phases, FM, FM-Z and FM-XY, have long-range ferromagnetic correlations, as can be seen from
the results for the spin correlation functions ⟨Sα1 Sα1+n⟩ shown in figure 4.

• FM-phase: For ϕ/π ∈ (1.110,1.500) the spin correlations shown in figure 4(b) show clear long-range fer-
romagnetic order. Furthermore, all three spin correlation functions appear identical and the phase can be

6



New J. Phys. 26 (2024) 013036 S J Avakian and E S Sørensen

Figure 3. Spin correlation functions ⟨Sα1 Sα1+n⟩ along the lower leg of the ladder from n= 3 to n= 199, as obtained from iDMRG.
Here, n is the site index from figure 1. The AΓ-phase at ϕ = 0.064π. (b) The AF-phase at ϕ= 0.249π. (c) The RS-phase at
ϕ= 0.499π. (d) The AF-Z-phase at ϕ= 0.799π. The inset in panel (d) is a plot of magnetization ⟨Sαi ⟩ in the unit cell, where the
horizontal axis is the+x direction and the vertical axis is the+z direction.

identified as an isotropic ferromagnetic phase. As was the case for the AF phases, the FM-phase is gapped, a
fact that we infer from the presence of a relatively short correlation length.

• FM-Z-phase: Neighboring the FM-phase is the FM-Z-phase for ϕ/π ∈ (1.500,1.775), This phase is similar
to the FM-phase but in the FM-Z-phase the Sz1S

z
n correlations are larger than the Sx1S

x
n and Sy1S

y
n, which are

equal, as illustrated in figure 4(c). A sketch of the ordering is shown in the inset in figure 4(c). We therefore
denote the phase FM-Z. Similar to the FM-phase, the FM-Z-phase has a finite correlation length and a gap.

• FM-XY-phase: The last ferromagnetic phase is the FM-XY-phase appearing for ϕ/π ∈ (1.840,1.983) where
we show results in figure 4(d). Depending on which leg of the ladder is analyzed, the spin correlations have
either the Sx1S

x
n or Sy1S

y
n correlation marginally larger than the other at small n and then finally equalling

each other at larger n. Along both legs, the Sz1S
z
n correlations are smaller than the other two and non-zero.

However, along one leg of the ladder the local magnetization is aligned in the opposite direction of the other
leg. A sketch of the ordering is shown in the inset in figure 4(d). We denote the phase FM-XY. Correlations
in the FM-XY-phase are characterized by a sizable, but still finite correlation length and therefore a finite
gap.

It is interesting to note that precisely at ϕ/π = 3/2 the JΓ-ladder is simply a ferromagnetic Heisenberg ladder,
since Γ = 0. For the FM Heisenberg ladder we would expect gapless spin-wave excitations and an infinite
correlation length. This is indeed the case, since for the JΓ-ladder this point corresponds to the transition
between the FM and FM-Z phases. However, both the FM and FM-Z-phases are gapped, demonstrating the
strong effect of the Γ-interaction.

From the structure of the Γ term, it is plausible that it will favor chiral ordering. Such ordering can
accompany conventional magnetic ordering but is sometimes observed even in the absence of magnetic
ordering if three or four-spin interaction terms are present [78, 79]. Since we are considering a ladder, we
have to be careful about the handedness of the 3 spins used to measure the chirality if we want to have a
consistent sign convention. If we label the ith spin on two-legs of the ladder as Si,1 and Si,2 where 1 and 2
refer to the bottom-leg and top-leg, respectively, we can then define the scalar chirality by going around
clockwise as follows.

κ= ⟨σi,1 · (σi,2 ×σi+1,1)⟩. (7)
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Figure 4. Spin correlation functions ⟨Sα1 Sα1+n⟩ as obtained from iDMRG along the lower leg (odd numbered sites) of the ladder
starting at n= 3 and ending at n= 199. Here, n is the site index from figure 1. (a) The FΓ-phase at ϕ/π = 0.899. (b) The
FM-phase at ϕ/π = 1.299. (c) The FM-Z-phase at ϕ/π = 1.649. (d) The FM-XY-phase at ϕ/π = 1.849. The insets in panel (c)
and (d) are the magnetization ⟨Sαi ⟩ in the unit cell, where the horizontal axis is the+x direction and the vertical axis is the+z
direction.

Figure 5. Scalar chirality in the FM-XY-phase. Top panel: The scalar chirality |κ| versus ϕ/π. Lower panel: An example of the
staggered pattern of chirality in the FM-XY-phase at ϕ = 1.9π. Each triangle has |κ|= 0.133. The scalar chirality in the FM and
FM-Z-phases displays an identical staggering, but |κ| is an order of magnitude weaker.

We get a consistent sign by always going around clockwise. For example, for the upper triangles where we get
κ= ⟨σi,2 · (σi+1,2 ×σi+1,1)⟩. For a pictorial representation, if the κ is positive (negative), we assign blue (red)
arrows i→ j→ k for κ= ⟨σi ·

(
σj ×σk

)
⟩ and all even permutations of i, j,k, with clockwise (anti-clockwise)

circulation.
The scalar chirality is non-zero in all three ferromagnetic phases, as can be seen from the top panel of

figure 5. It is largest in the FM-XY-phase, where a staggered pattern of chirality is observed, alternating in sign
between neighboring plaquettes. A sketch of the staggered pattern is shown in the lower panel of figure 5. At
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ϕ= 1.9π in the FM-XY-phase we find |κ|= 0.133 with |κ| going to zero at the QCP of the FM-XY-phase as
shown in the top panel of figure 5. The same staggered pattern of the chirality is also observed in the FM and
FM-Z-phases, but the overall magnitude of |κ| is about an order of magnitude weaker.

6. AΓ, FΓ and RS-phases

As already discussed briefly in section 2, the points ϕ= 0, π/2 and π within the AΓ, RS and FΓ phases
respectively, (see figure 2), have previously been studied for ladder systems. Below, we list the corresponding
phases and their associated properties.

• RS-phase: For ϕ/π ∈ (0.380,0.790), we find a RS phase. This follows from the fact that the phase contains
the point ϕ= π/2, where J = 1 and Γ = 0, corresponding to the AF Heisenberg ladder. Its ground state
is known to be in a disordered rung singlet phase [54, 55], where the spins on each rung of the ladder are
coupled into a spin singlet. This can be confirmed by increasing the Heisenberg coupling of the rungs of the
ladder, approaching the product state of RSs. The spin correlations for this phase are shown in figure 3(c)
and do not show any long-range magnetic ordering as one would expect. The RS-phase is gapped, and it
has been classified as a trivial SPT phase [48].

• FΓ-phase: This phase extends over the region ϕ/π ∈ (0.840,1.110) and includes the point ϕ = π corres-
ponding to the pure ferromagnetic Γ point with J = 0, Γ= -1. A local unitary transformation,U6, has been
found [44] that maps the ferromagnetic Γ-ladder to a model with AF anisotropic Heisenberg couplings,
which is known [41, 42] to be in the same phase as the isotropic AF Heisenberg ladder known to be in the
RS-phase. Counterintuitively, the FΓ-phase is then simply related to the RS-phase through the U6, a phase
that is usually associated with AF interactions, and the FΓ-phase is therefore often labelled RSU6 . As to be
expected, spin correlations in the FΓ-phase do not show long-range order, as shown in figure 4(a). The FΓ-
phase is gapped, with a finite correlation length. Since the FΓ-phase is related to the RS-phase through the
local unitary U6 transformation, the FΓ-phase is also a trivial SPT [48].

• AΓ-phase: This phase extends over only a small region ϕ/π ∈ (1.983,0.025) and the pure AF Γ point at
ϕ = 0, with J = 0 and Γ = 1, has previously been studied in detail [41, 42]. Spin correlations are shown in
figure 3(a) show no long-range magnetic order but a characteristic period 3 variation along the leg of the
ladder. The phase has a small gap and a sizeable correlation length, with ξ ∼ 41a at the pure AF Γ point.
The AΓ-phase is a SPT phase protected by TR×Rb symmetry, the product of TR and π rotation around the
b-axis (Rb) and a string-order parameter has been found [43].

Above, we have briefly discussed the 5 magnetically ordered phases, AF, AF-Z, FM, FM-Z and FM-XY along
with the 3 previously known phases, RS, FΓ and AΓ. We now turn to a discussion of the 3 remaining phases,
Υ, Ω and δ, all of which show no long-range magnetic order and can be considered as potential SPT phases.

7. Potential new SPT phases

7.1. Correlation length
As is often the case, the most complex part of the phase diagram in figure 2 is the proliferation of phases
around the antiferromagnetic Γ-point, with ϕ= π. We therefore study part of this phase diagram in more
detail by explicitly calculating the correlation length. For translationally invariant matrix product states
(MPS), obtained from iDMRG calculations, the transfer matrix can be defined. For normalized states, the
largest eigenvalue of the transfer matrix must be unity, and the second-largest eigenvalue determines the
correlation length through the relation ξ =−Nc/ ln(|λ2|). Here, Nc is the number of sites in the unit cell
used to define the transfer matrix. For quasi one-dimensional systems, the correlation length is related to the
gap,∆, through the relation ξ = v/∆ [80], with v a characteristic velocity, expected to beO(1). If the MPS is
obtained with a bond dimension D, the transfer matrix is a D2 ×D2 matrix, hindering calculations of ξ with
a very larger bond dimension. However, a significant advantage is that an estimate of the correlation length
can be obtained without explicit calculations of correlation functions.

In figure 6 we show results for the correlation length in the region ϕ/π ∈ [−0.25,0.1] from iDMRG
calculations with a bond dimension of D= 120, 200 and 300. We first note that ξ shows a divergence at all
previously noted QCP. Secondly, all phases shown, FM-Z,Υ, Ω, FM-XY, AΓ, δ and AF, have finite correlation
lengths corresponding to a gapped phase. At the mid-point of the potential new SPT phases, we find
approximatively ξΥ ∼ 21a for theΥ-phase, ξΩ ∼ 30a for the Ω-phase and ξδ ∼ 57a for the δ-phase, with a
the lattice spacing. Note that, the spin correlation functions shown in figures 3, 4 and 8 are shown along a
single leg of the ladder but versus the site index n from figure 1. As a function of n, they should therefore
decay on a length scale that is given by the correlation length in figure 6, obtained from the transfer matrix.

9



New J. Phys. 26 (2024) 013036 S J Avakian and E S Sørensen

Figure 6. The correlation length, ξ, versus ϕ/π for ϕ/π ∈ [−0.25,0.1] as obtained from the transfer matrix with bond dimension
D= 120200300. The inset shows a close up of the δ-AF transition. The dotted lines correspond to the transitions listed in table 1.

Figure 7. Energy gaps of the δ-phase at ϕ= 0.064π, theΥ-pase at ϕ= 1.799π and theΩ-phase at ϕ= 1.829π between the
ground state and the first excited state obtained through finite DMRG with a maximal bond dimension D= 1200 and periodic
boundary conditions. The system sizes shown correspond to N = 12 sites to N = 48 in increments of 4 sites.

7.2. Spin gap
To confirm the presence of a spin gap in theΥ, Ω and δ phases, we have explicitly evaluated the gap using
exact diagonalization on small systems, and finite size DMRG calculations with periodic boundary
conditions (PBC) on somewhat larger systems. Our results are shown in figure 7. The dependence on the
system size N is not smooth, as one might have expected from the high degree of frustration present in the
systems. However, it seems clear that the results for theΥ and δ-phases will converge to a finite small value in
the thermodynamic limit, with the gap in theΥ-phase slightly larger than in the Ω-phase. This is consistent
with our results for ξ that indicate a smaller ξ in theΥ-phase and therefore likely also a larger gap, when
compared to the Ω-phase if the velocities are assumed the same. The results for the δ-phase are more
ambiguous, and it seems possible that the gap will tend to zero as N→∞. However, our results for the ξ in
the δ-phase close to the δ-AF transition are very stable and only show a small dependence on the bond
dimension D. At ϕ= 0.077π we have the previously quoted value of ξ ∼ 57a obtained with D= 300, ξ ∼ 53a
(D= 200) and ξ ∼ 48a (D= 120). Although these result indicate a sizable correlation length of ξ ∼ 62a as
D→∞, the calculations are very stable, excluding the possibility of a correlation length diverging with D
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Figure 8. Spin correlation functions, ⟨Sα1 Sα1+n⟩ of the potential SPT phases versus n, the site index from figure 1. Results are for
the (a) δ-phase at ϕ= 0.064π, (b) theΥ-phase at ϕ= 1.799π and (c) theΩ-phase at ϕ= 1.829π as obtained from iDMRG.
Results are shown for correlations along the first leg of the ladder, starting at n= 3 and ending at n= 199.

and lending strong support to the presence of a small but finite gap in the δ-phase. It would be interesting to
explore the alternative scenario of a gapless δ phase by studying the spin stiffness [81] in this phase.

7.3. Spin correlation functions
The spin correlation functions for the three phases,Υ, Ω and δ are shown in figure 8 as obtained from
iDMRG calculations. While theΥ and Ω-phases show largely ferromagnetic correlations, the δ-phase
correlations are intermittently negative, showing a more AF nature. However, in all 3 phases, the spin
correlation functions quickly approach zero. No long range magnetic order is observed. As can be seen in
figure 5 there are no chiral correlations in theΥ and Ω phases, and we have verified that the same is the case
for the δ phase. The three phases therefore appear to have no discernible order, consistent with the phases
being gapped SPT phases.

7.4. Projective symmetry analysis of time reversal
While the usual Landau classification of phases do not distinguish between SPT phases, it is possible to
develop a classification of such phases based on a projective symmetry analysis [46, 47, 82–85]. This
classification takes it starting point in the MPS form of the wave functions for gapped SPT phases where a
crucial degeneracy of the entire ES was noted [45, 77].

To proceed, one writes the MPS wavefunction in its canonical form [86–89]:

|Ψ⟩=
∑

j1,...,jN

Γ
[1]
j1
Λ[2]Γ

[2]
j2
. . .Λ[N]Γ

[N]
jN

|j1, . . . , jN⟩, (8)

where the Γ[n]
jn

are complex matrices and the Γ[n], real, positive, square diagonal matrices. If we consider
infinite systems with translational symmetry from the perspective of iDMRG, the set of matrices on any unit

cell becomes the same Γ[n]
j = Γj, Γ[n] = Γ for all n, although they may vary within the unit cell. We now

consider a site symmetry operation g. In the spin basis this symmetry operation will be represented by a
unitary matrix, Σjj ′(g). One can then establish [45, 90] that the Γj matrices of bond dimension D, must
transform as [45, 76]:
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Figure 9. The time-reversal phase factor |λ|OTR versus ϕ/π as obtained from iDMRG, with |λ| the leading eigenvalue of the
generalized transfer matrix (10). The red circles correspond to cluster A from figure 1(a) and the blue triangles to cluster B from
figure 1(b).

∑
j ′

Σjj ′ (g)Γj ′ = eiθU† (g)ΓjU(g) . (9)

Here, eiθ is a phase factor, and the unitary matrices U(g) commute with the Γmatrices, and form a
D-dimensional projective representation of the symmetry group of the wave-function. Exploiting the full
machinery of the MPS formulation, one can show that the U(g) matrices be determined from the unique
eigenvector of the generalized transfer matrix with eigenvalue |λ|= 1 [45, 76]. The generalized transfer
matrix is here defined as:

TΣ
αα ′;ββ ′ =

∑
j

∑
j ′

Σjj ′Γj ′,αβ

(
Γj,α ′β ′

)∗
ΛβΛβ ′ , (10)

and it is therefore possible to determine the U(g) matrices numerically once the ground-state wavefunction
has been determined in a translationally invariant MPS form. The projective representation is reflected in the
fact that if Σ(g)Σ(h) = Σ(gh), then

U(g)U(h) = eiϕ(g,h)U(gh) , (11)

where the phases ϕ(g,h) are characteristic of the topological phase.
For the JΓ-ladder there are few site symmetries and the ladder does not satisfy D2 symmetry, nor is it

symmetric with respect to interchanging the legs, σ. We therefore focus only on R, defined by
Γj →

∑
j ′
[
eiπ Sy

]
jj ′
Γ⋆
j ′ , with ⋆ denoting complex conjugation. In this case, it can be established that [45]

UTRU⋆
TR = eiϕ(TR,TR)1 from which it follows that ϕ(TR,TR) = 0 or π. If ϕ(TR,TR) = π we see that UTR is an

antisymmetric matrix and one can then show [45] that this is only possible if all eigenvalues of the ES have
even multiplicity, thereby linking the non-trivial value of eiϕ(TR,TR) =−1 to the degeneracy of the
entanglement spectrum. Furthermore, if the largest eigenvalue of the generalized transfer matrix is smaller
than one, |λ|< 1, then TR is not a good symmetry of the MPS representing the phase.

For time reversal, the phase factor eiϕ(TR,TR) can be extracted by defining [76]:

OTR ≡
1

D
Tr(UTRU

⋆
TR) , (12)

with the D×Dmatrices UTR extracted numerically from the generalized transfer matrix (10). For instance,
for the S= 1 spin chain in the Haldane phase, one findsOTR =−1 [45, 77]. In figure 9 we show results for
|λ|OTR versus ϕ/π for the two different clusters A and B from figure 1. We multiply with |λ|, the leading
eigenvalue of the generalized transfer matrix so that one may immediately see when a phase does not respect
the TR symmetry which should be the case for the magnetically ordered phases. This is clearly the case for
the FM-Z, FM-XY and AF phases in figure 9 where |λ|OTR quickly deviates from±1. In section 4.1 we
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discussed the degeneracy of the ES in the different phases for both cluster A and B. As is clear from figure 9,
the non-trivial phase factorOTR =−1 follows the ES degeneracy and jumps between cluster A and B
precisely at the QCP. A summary of the results forOA,B

TR for the different phases are included in table 2.
Figure 9 shows that if the corresponding cluster is selected, theΥ, Ω, and δ phases all transform non-trivially
under TR, as a non-trivial SPT phase. However, we also note that the RS-phase hasOA

TR = 1 andOB
TR =−1,

and this phase is known to be a trivial SPT phase [48]. For a definite classification of theΥ, Ω, and δ phases
as non-trivial SPT phases, a further analysis is therefore needed.

For a more complete picture, it is therefore interesting to study the non-symmorphic symmetry,
σ× tr(1) where σ is the aforementioned operator that interchanges the legs of the ladder while tr(1) is a
translation by 1 lattice spacing in the direction along the leg of the ladder. This is a symmetry of the
Hamiltonian, equation (1), but, as far as we can tell, not a symmetry of any of theΥ, Ω, and δ phases. Still,
these phases could be protected by other symmetries that we have not been able to analyze.

7.5. Uniform field as an active operator
Each of the three phases,Υ, Ω, and δ show a 4-fold degenerate ground-state. It is of considerable interest to
determine what perturbations will split the degeneracy between these four states, the so-called active
operators [47, 48, 83, 84]. The JΓ-ladder does not have the usual site symmetries associated with 180◦

rotation about the x(y,z) axis. However, it does possess the previously mentioned σ× tr(1) symmetry. To
study the active operators, we therefore first consider the behavior of the operator STα=

∑
i S

α
i within the

manifold of the 4 ground-states that we label |1⟩, |2⟩, |3⟩ and |4⟩. We note that these operators do not break
the σ× tr(1) symmetry. We must have ⟨i|STα|i⟩= 0 ∀i, since theΥ, Ω, and δ phases are not magnetically
ordered. However, [STα,H] ̸= 0 so we can diagonalize the matrix ⟨i|STα|j⟩ and study the eigenvalues. A
non-zero sα indicates that the STα operator is active, splitting the states. In the present case, with α= x,y,z, all
4 eigenvalues are sometimes non-zero, which is difficult to interpret. However, given the underlying
honeycomb lattice, it is natural to instead study the eigenvalues of STα with α= a,b, c, the axis of the
honeycomb lattice. Here, a is a unit vector in the [112̄] direction, b in the [11̄0] direction and c in the [111]
direction. In this case, the results are of the much simpler form (sα,−sα,0,0), closely resembling what one
finds for the S= 1 spin chain in the Haldane phase where the 4 ground-states correspond to two free S= 1/2
excitations at each end, yielding (1,−1,0,0) for STx,y,z. Results for sα with α= a,b, c versus system size, N, for
theΥ, Ω, and δ phases are shown in figure 10, in each case with cluster A or B from figure 1 yielding the 4
degenerate ground-states. For finite systems, the 4 states are not completely degenerate but split by a small
amount, decreasing with N. Some variation with N is therefore to be expected. In addition, given the results
from figure 6, showing a large correlation length in all three phases, it is natural to expect that rather large
system sizes are needed to see a clear separation of any states localized at the end of the open segments. From
studies of the edge excitations in the S= 1 chains it is known that these excitations fall off as exp(−x/ξ) from
the end of the chain, with ξ the bulk correlation length [91], extending far into the chain as the borders of the
Haldane phase are approached [92]. The clearest results are obtained for the Ω phase, where the results in
figure 10(c) show that there is no response to a field in the a and c directions. Furthermore, sb seems to
stabilize around a value sb ∼ 3–4, consistent with well-defined edge states. This is the same behavior observed
in the AΓ phase which was interpreted as a SPT phase protected by TR×Rb symmetry, the product of TR
and π rotation around the b-axis (Rb) [43].

The results for the δ phase, shown in figure 10(a) are more difficult to interpret. With the limited size
available, it seems possible that all sα could attain a finite small value as N→∞, or sa and sc could reach zero
with sb finite, or all could go to zero. The δ phase has the largest correlation length of the three phases, and
values of N beyond what we have been able to reach are needed to resolve this.

For theΥ phase, shown in figure 10(b), sc quickly reach a small finite value sc ∼ 0.5, consistent with STc
being an active operator. However, surprisingly, sa and sb increase with N out to the largest value of N. This is
not consistent with STa and STb being active operators. We now turn to a brief description of some specific
results for the three potential SPT phases.

7.6.Ω phase
The most promising SPT candidate is the Ω phase, where we have shown that STb is an active operator. It is
then interesting to explicit demonstrate the appearance of the edge states by applying a small field term of
form−hbSTb to the ladder. However, since the states are not eigenstates of S

T
b , this coupling is not simply a

Zeeman term, although for small enough hb the change in energy should be linear in hb. Hence, such a linear
regime has to be located, and the field carefully applied within the linear regime. We select a field term of
hb = 10−5, small enough that for N = 200 the change in energy is significantly smaller than the gap in the
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Figure 10. Leading eigenvalue sα of the total magnetization STα along axis α, with α= a,b, c, versus cluster size N. (a) δ-phase at
ϕ = 0.064π with cluster B. (b)Υ-phase at ϕ = 1.799π with cluster B. (c)Ω-phase at ϕ = 1.829π with cluster A. For all size until
N= 28, s is obtained with exact diagonalization (in blue, orange, and green) while the remaining larger sizes are obtained with
finite DMRG (red, purple, and brown).

Figure 11.Magnetization ⟨Sbn⟩ from finite DMRG calculations along the b= [11̄0] direction with a uniform field of hb = 10−5

applied in the b direction at every site. Results are shown for a N= 200 ladder in the Ω phase with ϕ= 1.829π. The
magnetization on each leg is almost identical.

system. Yet, this field is large enough that the very small finite splitting of the four states is irrelevant. The
resulting edge states are shown in figure 11 as obtained from finite DMRG calculations with OBC using
cluster A from figure 1. Here n corresponds to the site index, with odd n for the lower leg of the ladder and
even n for the upper. Evidently, ⟨Sbn⟩ is the same for both legs. Furthermore, the peak in ⟨Sbn⟩ is not at sites 1, 2
but instead occurs for sites n= 5,6. The decay of the amplitude of ⟨Sbn⟩ is consistent with the previous
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Figure 12.Magnetization ⟨Scn⟩ from finite DMRG calculations along the c= [111] direction with a uniform field of |hc|=
3×10−4 applied in the [111] direction at every site. Results are shown for a N= 202 ladder on cluster B with OBC, in theΥ phase
with ϕ= 1.799π.

estimate of the bulk correlation length of ξΩ ∼30a, and we note that with the small field applied we find
⟨STb ⟩ ∼3, slightly below the value of 3–4 estimated from the results in figure 10 from much smaller systems
with hb = 0.

7.7.Υ phase
In a manner similar to the Ω phase, we can study the edge-states appearing in theΥ phase when the four
degenerate ground-states are split by a small field hc, along the c direction, [111]. We use a field strength of
|hc|= 3×10−4 in the linear regime of the field. The results are shown in figure 12 as obtained from finite
DMRG calculations with OBC using cluster B from figure 1. Edge states at either end of the ladder are clearly
visible. In contrast to the results for the Ω phase, the two legs of the ladder do not show identical behavior. In
fact, due to the shape of cluster B, ⟨Scn⟩ on the upper leg at the left half of the ladder is identical to the results
on the lower leg on the right half of the ladder. As expected, the results in figure 12 show STc ∼ 0.52,
consistent with our finding of sc ∼ 0.5 in theΥ phase.

7.8. δ phase
For the δ phase, we have not been able to obtain a clear picture of any eventual edge states. One reason for
this is likely the very large correlation length, in excess of ξδ ∼ 57a throughout the phase. However, another
important effect is the appearance of pronounced incommensurate correlations, as we shall now discuss. The
first thing we note is that from the results presented in figures 2 and 6, it is clear that the correlation length
diverges and the gap goes to zero at either end of the δ phase. The δ phase is then a well-defined phase and
not simply a part of either the AΓ or AF phases marked by the onset of incommensurate correlations. We can
analyze the correlations by Fourier transforming the ⟨Szi Szi+n⟩ correlation functions along the first leg of the
ladder. The resulting structure factors Szz(k) are shown in figure 13 for values of ϕ/π starting in the AΓ phase
and ending in the AF phase. In the AΓ phase at ϕ= 0 the correlations along a leg has a simple periodicity of
3, corresponding to a peak in the structure factor at k= 2/3π. On the other hand, in the AF phase, the peak
Szz(k)must be at k= π. However, inside the δ phase, the peak in Szz(k)moves continuously from k= 2/3π to
k= π. Close to the δ-AF transition we show in the inset of figure 13 higher precision results for the behavior
of Szz(k). To within our numerical precision, it appears that the peak value of Szz(k) does not jump at the
QCP, but indeed moves continuously between the two limits.
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Figure 13. Structure factor Szz(k) from the ⟨Szi Szi+r⟩ correlation functions of the AF-Γ, δ and AF phases obtained from iDMRG
along the first leg of the ladder, with r is measured along the leg. The red color indicates where Szz(k) is in the AF-Γ phase,
transitioning to the δ phase in blue, and ending in the AF phase in green. Szz(k) at ϕ= 0 is pointed out as having two peaks, one
at k= 0 and at k≈ 2/3. The last point in the δ phase in this sweep is also pointed out at ϕ = 0.077π before the transition to the
AF phase occurs. The inset is a higher precision calculation of Szz(k) near the δ-AF transition. Starting at ϕ = 0.077314π in the δ
phase in blue, ϕ is increased to a maximum value of ϕ = 0.077716π in green in the AF phase. The last value in the δ phase occurs
at ϕ = 0.077675π while the first value in the AF occurs at ϕ = 0.077695π, both centered around k= 1.

8. Conclusion

The observation of eleven well-defined phases for the zero field phase diagram of the JΓ-ladder is remarkable.
The proliferation of phases is due to the presence of the Γ interaction term, which lowers the symmetry of
the model, allowing for a finely tuned competition between the various phases. It would be of considerable
interest to identify low-dimensional materials representative of this model. Presently, we are not aware of any
clear candidates. However, the class of Kitaev materials is rapidly expanding, and it is thus plausible that
materials with dominant AF Heisenberg interactions and sub dominant Γ-interactions can be found.

Among the eleven phases we have identified three new phases, theΥ, Ω and δ phases which do not show
signs of any ordinary long-range magnetic order and could potentially be SPT phases. We have also not
found any indication of valence bond ordering. However, we cannot rigorously rule out that the states can be
reduced to trivial product states on a large enough length scale. However, such a length scale would have to
be sizable, and this scenario seems unlikely. Among the three phases, the Ω phase appears as the most likely
SPT phase and clear edge states are observed when a magnetic field is applied along the [11̄0] direction.
Similarly, for theΥ phase, the application of a field along the [111] direction induces clear edge states.

In future work, it would be fascinating to investigate the phase diagram of the JΓ ladder in the presence of
an applied field, which we expect to show an abundance of new and intriguing phases.
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