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Abstract

Beam Dynamics Challenges in the Muon g − 2 Experiment

Brynn MacCoy

Chair of the Supervisory Committee:

Professor Peter Kammel

Physics

The muon’s anomalous magnetic moment aµ has hinted at physics beyond the standard model for nearly 20

years. The Muon g−2 experiment at Fermilab aims to measure aµ to 140 parts per billion (ppb) precision. The 460

ppb result from its first data run (Run-1), released in 2021, agreed with the previous 2006 Brookhaven Muon g− 2

result. The experimental average stands in tension with the standard model theory aµ prediction by 4.2σ. The result

of Run-2/3 data analysis is set be released in summer 2023, and will improve on the Run-1 precision by a factor of

two. With the data collected in all six runs, the experiment is on track to produce a 140 ppb measurement of aµ.

If the experiment and theory central values are both unchanged, the tension would exceed 5σ. The measurement is

accomplished by injecting muons into a magnetic storage ring and precisely measuring two observable frequencies:

ωa, the muons’ anomalous precession frequency, and ω̃′
p, the precession frequency of protons which determines the

magnetic field strength experienced by the muons. This thesis presents a selection of muon beam dynamics effects

which are critical for reaching the experiment precision goal. A system of detectors assists with the challenging

beam injection into the storage ring, and a measurement of the injected beam provides input for simulating the

stored beam dynamics. A new method is introduced to reduce a critical systemic caused by time dependence in the

stored beam momentum, enabled by a detector which directly profiles the stored beam. Finally the analysis of ω̃′
p,

the muon-weighted magnetic field, for the Run-2/3 result is presented. Systematics of ω̃′
p due to beam effects are

evaluated in detail, and shown to be sub-dominant.
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Glossary

• SM: The standard model theoretical framework of particle physics

• BSM: Beyond the standard model physics
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• BNL: Brookhaven National Laboratory, where the previous Muon g − 2 experiment was located
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• ppb: Parts per billion

• Run: Few-month data collection period, e.g. Run-1; six runs were completed in total.
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• ctags: Decay positron counts in the calorimeters, used for statistics weighting

• IBMS: Inflector Beam Monitoring System detectors, which profile the beam at injection to the storage ring

• SiPM: Silicon photomultiplier, a type of light sensor based on Geiger-mode avalanche photodiodes
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• NMR: Nuclear magnetic resonance; NMR probes are used to map the magnetic field.

• Muon-weighted magnetic field: The magnetic field experienced by the muons, called B̃, or ω̃′
p in terms of

the proton NMR frequency

• FR: Fast rotation, the beam rotation around the ring at the cyclotron frequency. FR analysis is used to

reconstruct the beam momentum distribution.
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magnet, which distorts the FR reconstruction

• MiniSciFi: Minimally Intrusive Scintillating Fiber detector, which directly profiles the stored beam
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• β function: The function which describes the beam envelope

• emittance: The quantity which describes the invariant beam phase space area, also called ϵ
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• dispersion: The function which describes the momentum dependence of the beam trajectory

• momentum offset: A particle’s relative momentum difference from the nominal momentum, also called δ
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Chapter 1

Introduction

The anomalous magnetic moment of the muon aµ is the deviation of the muon’s gyromagnetic ratio from 2,

aµ ≡ gµ − 2

2
. (1.1)

aµ can be predicted by standard model (SM) theory and is an excellent experimental test of the standard model. The

muon magnetic moment has been measured with increasing precision since the 5%-precision measurement at the

Nevis cyclotron in 1957 [1]. Most recently in 2021 the E989 Fermilab (FNAL) Muon g − 2 experiment released a

measurement of aµ to 460 parts per billion (ppb) precision [2] from its first data collection run. Previously, the E821

Brookhaven National Lab (BNL) Muon g − 2 experiment measured aµ to 540 ppb with the final result released

in 2006 [3]. The combined experiment average stands in tension with the current SM-predicted value by 4.2σ, or

4.2 times the uncertainty in the SM calculation and experimental value combined (Figure 1.1 and Table 1.1). This

discrepancy suggests new physics beyond the standard model (BSM), but is not yet at the discovery level of 5σ.

Recent developments in the hadronic contribution to the SM value may reduce this tension (Section 1.2.3); work is

underway in the theory community to understand the discrepancies and evaluate the impact on the SM value.

1



Figure 1.1: The experimental and standard model theory values of aµ are in tension by 4.2σ as of 2021. The
2006 BNL experiment result (blue) and 2021 Fermilab experiment result (red) are combined to give the experiment
average (purple), with inner bars indicating the statistical contributions to the total uncertainties. The SM value is
that recommended by the Muon g − 2 Theory Initiative in 2020 [4]. Reproduced from [2].

value (uncertainty) ×1011 uncertainty [ppb]

BNL experiment aBNL
µ [3] 116 592 080(63) 540

FNAL experiment aFNAL
µ [2] 116 592 040(54) 460

Experiment average aExp
µ [2] 116 592 061(41) 350

Standard Model aSMµ [4] 116 591 810(43) 369

difference (uncertainty) ×1011 significance

∆aµ = aExp
µ − aSMµ [2] 251(59) 4.2σ

Table 1.1: Experimental and standard model (SM) theory values of aµ. The experiment average is the combined
result including the 2021 FNAL and 2006 BNL results. The difference between the experiment and SM values
corresponds to a 4.2σ tension.

The Fermilab Muon g − 2 experiment aims to measure aµ to an unprecedented 140 ppb precision, ∼4× more

precise than the previous BNL measurement. The target precision is split into 100 ppb each for systematic and

statistical uncertainties, and the statistics goal requires 21× the data collected at BNL. The basic method is to

inject polarized muons into a magnetic storage ring and measure their spin precession frequency via the spectrum

of the decay positrons using calorimeter detectors. The experimental result aµ is extracted using a ratio of the

2



measured spin precession frequency to the magnetic field in the storage ring, both of which must be measured to

high precision. The Fermilab experiment re-uses the same well-understood storage ring magnet from BNL, which

required a large-scale effort to transport it from Brookhaven, NY to Batavia, IL. It is nevertheless a completely

independent experiment, featuring entirely new and upgraded major systems including the calorimeter detectors,

magnetic field tracking probes, and polarized muon production beamline (all discussed in detail in Chapter 2). The

Fermilab experiment completed its first production data taking run, called Run-1, in 2018. The final data taking

run, Run-6, is in progress and will finish by summer 2023. The combined datasets collected from Run-1 to Run-6

will allow the experiment to reach its final aµ precision goal. The next result to be released will comprise Run-2

and Run-3 ("Run-2/3") datasets, producing a ∼2× improved precision over the Run-1 result.

The remainder of this chapter presents the magnetic dipole moment interaction with an electromagnetic field,

the SM prediction for the muon anomalous magnetic moment and aspects which are actively developing, and a

selection of BSM scenarios which could explain the observed tension ∆aµ. Chapter 2 describes the Fermilab

Muon g − 2 experiment method and observables, design of the experiment, and procedure for extracting aµ with

corrections for experimental effects. In particular, dynamic motion of the muon beam leads to effects which must

be understood and corrected. This thesis then focuses on the author’s contributions to the Muon g − 2 experiment.

Chapter 3 describes the Inflector Beam Monitoring System (IBMS), a detector system developed to assist with the

challenging injection of the muon beam into the g−2 storage ring magnet. Chapter 4 introduces fundamental beam

dynamics concepts which are applied throughout the subsequent chapters, and describes the characteristic beam

properties in the g − 2 experiment. Chapter 5 discusses an IBMS measurement of the injected beam parameters

which provided a check for complex beamline simulations and delivered realistic conditions for beam injection

modeling in the g − 2 simulation software. Chapter 6 describes the momentum distribution of the muon beam in

the storage ring and a corresponding effect which critically impacts systematics, motivating the development of a

detector to directly measure the stored beam. The measurement strategy to characterize the momentum distribution

is presented along with the analysis outlook. Chapter 7 presents the analysis of the magnetic field experienced by

the muons in the storage ring for the Run-2/3 datasets, which is one of the two necessary observables to extract the

aµ result. This muon-weighted magnetic field was the main contribution from this author for both the Run-1 and

Run-2/3 result. Finally, Chapter 8 concludes with a summary of the impacts of each of these contributions and an

outlook for Muon g − 2.
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1.1 Magnetic dipoles

Quantum mechanical magnetic moments can be broadly understood by analogy to the classical case. Classical

current distributions generate magnetic dipole moments µ⃗, to lowest order in a multipole expansion of the magnetic

vector potential. The magnetic moment from a current J⃗ is defined as [5]

µ⃗ =
1

2

∫
x⃗′ × J⃗(x⃗′)d3x′ . (1.2)

For a current made up of particles with charge q and mass m with total orbital angular momentum L⃗ =
∑

imx⃗i ×

v⃗i, the magnetic moment can be written as

µ⃗ =
q

2m
L⃗ . (1.3)

In an external magnetic field B⃗, the field exerts a torque on the magnetic moment [5]

τ⃗ = µ⃗× B⃗ =
q

2m
L⃗× B⃗ = − q

2m
B⃗ × L⃗ (1.4)

and the Hamiltonian is given by H = −µ⃗ · B⃗. With τ⃗ = dL⃗/dt = ω⃗ × L⃗, the magnetic moment therefore

precesses at the frequency

ω⃗ = − q

2m
B⃗ . (1.5)

In quantum mechanics, a charged particle with spin angular momentum S⃗ has a magnetic moment given by [6]

µ⃗ = g
q

2m
S⃗ , (1.6)

which now includes the dimensionless factor g called the gyromagnetic ratio, with g classically equal to 1 (Eq. 1.3).

The Hamiltonian is then

H = −g q

2m
S⃗ · B⃗ (1.7)

and the precession frequency is ω⃗ = −g q
2mB⃗.

The Dirac equation for a massive spin 1/2 particle with charge e in an electromagnetic field is [7]

(iγµDµ −m)ψ = 0 , (1.8)

using the covariant notation Dµ = ∂µ + ieAµ with electromagnetic potential Aµ. Multiplying the Dirac equation

by (iγµDµ +m) gives
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(
D2

µ +
e

2
Fµνσ

µν +m2
)
ψ = 0 , (1.9)

where the e
2Fµνσ

µν term corresponds to a magnetic moment interacting with the electromagnetic field. This leads

to the Hamiltonian

H =
p⃗2

2m
+ V (r) +

e

2m
B⃗ ·

(
L⃗+ 2S⃗

)
(1.10)

in the non-relativistic limit, with S⃗ = σ⃗/2. Comparing the B⃗ · S⃗ term with Eq. 1.7, the Dirac equation therefore

predicts g = 2 instead of the classical value of 1. Corrections to this prediction arise from interactions which

behave as an Fµνσ
µν term. Experimental hints of a discrepancy with the Dirac-predicted g value came from larger-

than-predicted measurements of the hyperfine splitting of hydrogen in 1947 [8, 9].

In quantum electrodynamics (QED), the tree-level diagram for a charged particle interacting with a photon

(Figure 1.2) corresponds to the matrix element [7]

Mµ
0 = −eū(q2)γµu(q1) = −eū(q2)

[(
qµ1 + qµ2
2m

)
+

i

2m
σµνpν

]
u(q1) , (1.11)

using the Gordon identity for γµ, where q1 and q2 are the initial and final momentum and p is the photon momentum

transfer as in Figure 1.2. The σµνpν term corresponds to the magnetic moment with the coefficient e/2m = ge/4m,

so g = 2 at tree level. In general, corrections to g correspond to loops which modify the σµνpν term through

interactions with virtual particles. The most general parity-conserving Lorentz covariant QED vertex (Figure 1.2)

at any-loop order corresponds to the matrix element [7]

Mµ = −eū(q2)
[
F1

(
p2

m2

)
γµ + F2

(
p2

m2

)
i

2m
σµνpν

]
u(q1) . (1.12)

At tree level, the form factors are F1 = 1 and F2 = 0. With loop contributions, F1 modifies the electric charge and

F2, with its σµνpν structure, modifies the magnetic moment. In the non-relativistic limit with p2/m2 → 0,

g = 2 (F1(0) + F2(0)) ≡ 2 (1 + a) , (1.13)

where F1(0) = 1 and the dimensionless factor a ≡ F2(0) is known as the anomalous magnetic moment.

To first order in the QED coupling constant α, only one 1-loop diagram contributes to F2 (Figure 1.3). In 1948
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Figure 1.2: QED tree-level diagram (left) corresponding to g = 2, and general QED vertex including loops (right)
corresponding to g = 2(1 + a). Reproduced from [7].

Julian Schwinger first calculated this leading-order diagram, known as the Schwinger term [10]:

F2(0) =
α

2π
≈ 0.00116 . (1.14)

This is the dominant contribution to the anomalous magnetic moment a, and it is the same for all leptons because

it only depends on α. This prediction was confirmed with an experimental measurement of the electron g factor

using gallium spectroscopy later that year [11]. Further QED terms contribute at O(α2) and higher.

Figure 1.3: Diagram of the Schwinger term, the only 1-loop diagram which contributed to a with a value α/2π.
Reproduced from [7].

1.2 Anomalous magnetic moment in the standard model

The muon anomalous magnetic moment aµ can be calculated in the standard model (SM) to a precision on par

with the experimental value by including all interactions, categorized as electromagnetic (QED), electroweak, and

hadronic contributions (Figure 1.4),

aSMµ = aQED
µ + aEW

µ + ahadµ . (1.15)
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The QED contribution includes all interactions with leptons and photons, and has been calculated to O(α5). The

dominant contribution is the Schwinger term, α
2π . The electroweak contribution includes weak interactions with

W , Z, and Higgs bosons. The hadronic contribution includes strong interactions with quarks and is further divided

into hadronic vacuum polarization (HVP) and hadronic light-by-light (HLbL) scattering terms.

ahadµ = aHV P
µ + aHLbL

µ (1.16)

Each contribution is discussed further in this section below.

Figure 1.4: Leading-order diagrams for each contribution to aµ in the standard model.

The Muon g − 2 Theory Initiative [4] was formed to evaluate the standard model calculations from various

groups and recommend a single value for aSMµ , in many cases combining different approaches for each contribution.

The recommended values published in 2020 are shown in Table 1.2. The uncertainty on aSMµ is dominated by the

hadronic terms, although their relative contributions are small compared to the dominant QED contribution. Recent

developments in lattice QCD calculations and experimental cross sections present possible discrepancies with the

aHV P
µ calculation (discussed in Section 1.2.3). The Theory Initiative is reviewing these and plans to recommend

an updated value by late 2023 (likely after the Run-2/3 experiment result is released).

contribution value (uncertainty) ×1011 uncertainty [ppb]

aQED
µ 116 584 718.931(104) 0.9

aEW
µ 153.6(1.0) 9

aHV P
µ 6845(40) 343

aHLbL
µ 92(18) 154

Total aSMµ 116 591 810(43) 369

Table 1.2: Contributions to aSMµ recommended by the Muon g − 2 Theory Initiative in 2020 [4].
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1.2.1 Quantum electrodynamic contributions

The QED contribution aQED
µ comprises powers of the QED coupling constant, which is the fine structure constant

α ≡ e2/4π.

aQED
µ =

∑
n

Cn(
α

π
)n (1.17)

aQED
µ has been calculated to O(α5) (10 loops) using perturbation theory, which is possible because α is relatively

small [4]. The first-order Schwinger term with C1 = 1/2 is the same for all leptons, but higher-order terms depend

on the lepton mass. aQED
µ terms ofO(α2) and above include a mass-independent component as well as components

which depend on the mass ratios mµ/me and mµ/mτ from diagrams with closed fermion loops, where me and

mτ are the electron and τ lepton masses.

The 2020 Theory Initiative recommended value (Table 1.2) uses the value of α measured by the Cs atom-

interferometry experiment, α−1(Cs) = 137.035 999 046(27) [12]. Using a value of α determined from Rb recoil

velocity [13] or the electron anomalous magnetic moment [14] does not significantly affect aQED
µ at the calculated

precision. The dominant sources of uncertainty on aQED
µ are the estimate of the next order O(α6) QED term and

the experimental uncertainty on α, but this is negligible compared to the overall uncertainty on aSMµ .

1.2.2 Electroweak contributions

The electroweak (EW) contribution aEW
µ includes loops withW±, Z, and Higgs bosons. aEW

µ is suppressed by the

heavy EW boson masses, and is on the same order as the difference between the experimental and SM aµ values.

The 1-loop contribution is given by [4]

aEW (1)
µ =

GF√
2

m2
µ

8π2

[
5

3
+

1

3

(
1− 4 sin2 θW

)2]
= 194.79(1)× 10−11 (1.18)

where sin2 θW = 1 − M2
W /M

2
Z ≃ 0.223 corresponds to the weak mixing angle, with boson masses MW and

MZ ; GF = g2

4
√
2M2

W

= 1.16637(1) × 10−5GeV−2 is the Fermi constant, with weak coupling constant g. The

factor of 1/M2
W in GF , rather than g itself, causes the weak interaction to be weak relative to QED [15]. It also

means that aEW
µ is suppressed by a factor of m2

µ/M
2
W ≈ 10−6 compared to the QED contribution [4]. Compared

to the EW contribution of the electron anomalous magnetic moment ae, however, aEW
µ is larger by a factor of

m2
µ/m

2
e ≈ 43, 000, and muons are therefore more sensitive to this contribution.

aEW
µ has been calculated to 2 loops; 2-loop diagrams with heavy bosons and a photon are enhanced by a

relatively large factor of log
(
M2

Z/m
2
µ

)
, reducing the total aEW

µ by ∼20% [4]. The estimated 3-loop contribution
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is negligible, of O(10−12) [16], but is included to leading order in the recommended aEW
µ value (Table 1.2). The

dominant source of uncertainty on aEW
µ is hadronic effects from quarks in the 2-loop diagrams [4, 17].

1.2.3 Hadronic contributions

The hadronic contributions aHV P
µ (hadronic vacuum polarization) and aHLbL

µ (hadronic light-by-light scattering)

include all interactions with quarks, and are difficult to calculate directly because perturbation theory cannot be

applied for quantum chromodynamics (QCD) interactions in the dominant low-energy regime. The uncertainty on

the total aSMµ is dominated by the hadronic uncertainties, particularly from aHV P
µ .

Hadronic vacuum polarization

The HVP contribution aHV P
µ is the leading-order (LO) hadronic contribution to aSMµ , contributing at O(α2). The

Theory Initiative recommended a ∼0.6%-precision value for aHV P
µ which combines results from multiple groups

using a data-driven dispersive approach (Table 1.2). However, recent developments in the HVP calculation stand

to significantly impact the standard model value. Lattice QCD calculations approaching a similar precision are in

tension with the data-driven value. Additionally, a new experimental result for the dominant hadronic cross section

used in the data-driven calculation is in tension with all previous experimental measurements. Work and discussion

to understand these results is ongoing, and the discrepancies must be understood and resolved before an updated

aSMµ value can be determined.

Data-driven dispersive: In the more traditional data-driven approach, the LO HVP loop is expressed as a

dispersion integral over the cross section of a virtual photon decaying into hadrons, which is determined from

e+e− annihilation [4].

aHV P,LO
µ =

α2

3π2

∫ ∞

M2
π

K(s)

s
R(s)ds (1.19)

Here s is the center-of-mass energy squared, Mπ is the π0 mass, K(s) ∼ 1/s is a QED kernel function which

weights low energies more strongly [16], and R(s) is a ratio of cross sections [4]:

R(s) =
σ0(e+e− → hadrons)

σpt
(1.20)

where σ0 is the bare cross section (excluding vacuum polarization effects) for e+e− →hadrons, and σpt = 4πα2/3s

is the lowest-order pointlike muon pair cross section. The contributions to R(s) for the different final states are

shown in Figure 1.5. The low-energy weighting from K(s) means that e+e− → π+π− is the dominant cross

section. Measurements of e+e− → hadrons cross sections from many different experiments, for example the

9



e+e− → π+π− measurements shown in Figure 1.6, are combined to obtain the data-driven R(s) input. The

calculated LO contribution is aHV P,LO
µ = 6931(40) × 10−11. Next-to-leading order and next-to-next-to-leading

order (NLO and NNLO) HVP contributions are obtained using similar data-driven dispersion calculations with

double and triple integrations [4].

The dominant source of uncertainty on aHV P
µ is the hadronic cross sections, both the experimental uncertainties

and discrepancies between experiments, particularly the π+π− channel from BaBar and KLOE [18]. Improvements

are expected with in-progress analyses of π+π− and other channels from BaBar, KLOE, SND, and other experi-

ments. If experiment discrepancies are resolved, a ∼2× reduction in the data-driven uncertainty may be possible

by 2025 [19].

Figure 1.5: Contributions to the hadronic cross section ratio R(s) for different final states, with the total shown in
light blue. Reproduced from [18].
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Figure 1.6: e+e− → π+π− cross sections measured by different experiments, with the average used by one group
shown in the green band. Reproduced from [20].

Hadronic cross section: In February 2023 the CMD-3 collaboration released a new result for the measured

e+e− → π+π− cross section which disagrees with previous measurements by other experiments [21]. This was

the combined result from analysis of data collection runs in 2013 and 2018, with a total of 3.4 × 107 π+π−

events in the important low-energy range < 1GeV, representing 10 to 100 times more statistics than the previous-

generation CMD-2 experiment, depending on energy range. The CMD-3 (Cryogenic Magnetic Detector) operates

at the Novosibirsk VEPP-2000 e+e− collider. The experiment scanned over center-of-mass collider energies
√
s in

the range 0.32GeV to 1.2GeV and measured the pion form factor Fπ via the ratio of events Nπ+π−/Ne+e− . The

e+e− → π+π− cross section was determined from a fit to Fπ.

As shown in Figure 1.7, the resulting cross section is generally larger over the measured energy range than

all previous measurements. Individual analyses of the 2013 and 2018 datasets, which were separated by detector

and collider upgrades, are in good agreement with each other and with the combined result. The contribution to

aHV P,LO
µ from e+e− → π+π− was calculated in the energy range 0.6GeV to 0.88GeV, making up > 50% of the

total aHV P,LO
µ integral. This aHV P,LO

µ contribution is also in tension with previous measurements (Figure 1.7); if

confirmed it would bring aSMµ in closer agreement with experiment, possibly within ⪅ 1.5σ.

This surprising result has been the focus of much recent discussion among the experts, for example in the

Scientific seminar and discussion on new CMD-3 result organized by the Theory Initiative [22]. So far no clear

experimental issue or other explanation for the difference has emerged. The SND experiment, which also operates

at the VEPP-2000 collider, is in the process of analyzing new π+π− channel results, which will provide an impor-

tant comparison with the CMD-3 result. Understanding the discrepancy is critical before the impact on aSMµ can
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be determined.

(a) Pion form factor measured by CMD-3 compared with measure-
ments by previous experiments over part of the low-energy range
which is most important for aHV P

µ . The extracted e+e− → π+π−

cross section is larger than previous measurements over the majority
of the range. Reproduced from [22].

(b) Calculated aHV P,LO
µ contribution from e+e− →

π+π− in the energy range 0.6GeV to 0.88GeV. The
CMD-3 result (bottom) is in tension with all previous
measurements. Reproduced from [21].

Figure 1.7

Lattice QCD: Lattice QCD is an independent method to calculate aHV P
µ directly from first principles. The

calculation is performed on a discrete grid in Euclidean time. As of 2020, the lattice QCD results were not at the

required precision to be included in the recommended aHV P
µ value. However, the BMW20 calculation released

in 2021 had sub-percent precision near that of the data-driven calculations [23], and was in tension with the data-

driven value by 2.1σ. It also represents a value of aSMµ which is in closer agreement with the experimental value,

at a tension of only 1.5σ. Figure 1.8 shows the difference between SM and experimental values of aµ for different

values of aHV P
µ from lattice QCD and data-driven dispersion calculations.

Recent lattice QCD calculations consider different Euclidean time regions separately using three windows,

called short distance (SD), intermediate (W), and long distance (LD), to disentangle effects due to different lattice

distances [24] (Figure 1.9). Lattice QCD is most precise in the intermediate window, and this region is used for

initial comparisons. In this window the tension between the BMW20 and data-driven values increases to 3.7σ.

As of May 2023, a comparison of aHV P,W
µ calculations in the W window between several groups showed good

agreement, and a consensus value in this window was established [25]. The data-driven dispersion integral can

also be calculated in this window [26]. Figure 1.9 shows the tension with the corresponding data-driven calculation

of aHV P,W
µ . One possibility for further investigation is to use finer windows in the intermediate region to locate

the discrepancy. SD windows are currently being evaluated. In order to reach a consensus on the full aHV P
µ

contribution, it will be critical to carefully compare different calculations using different lattice spacings. An
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average lattice-QCD-calculated value of aHV P
µ with ∼0.5% precision may be achieved by 2025 if results are

consistent between groups [19].

Figure 1.8: Difference between SM and experimental (orange band) values of aµ if different values of aHV P
µ are

used. The Theory Initiative recommended value (WP20, black) used only the data-driven calculations (red), as
lattice QCD results (blue) were not at a comparable precision. The purple RBC/UKQCD "data/lattice" point is
a hybrid of the two methods, combining a lattice calculation in the intermediate Euclidean time window with a
data-driven calculation in the short-distance and long-distance windows [27]. Results above the lower dashed line
were not used in the 2020 Theory Initiative recommendation. Lattice results above the upper dashed line, including
the BMW20 result, were not yet available in 2020 when the Theory Initiative recommendation was made. If the
average aHV P

µ lattice results (blue band) were used instead of the data-driven results, it would reduce the tension
between aSMµ and aExp

µ . Reproduced from [26].

Hadronic light-by-light scattering

The HLbL contribution aHLbL
µ is on the same order as the next-to-leading-order HVP, O(α3). HLbL scattering

corresponds to a photon interacting with a hadronic blob, which interacts with the muon via three virtual pho-

tons [28]. Similar to the HVP calculation, the HLbL contribution can be calculated using a phenomenological

dispersive approach or from first principles with lattice QCD. Results from the two approaches are in good agree-

ment [4]. The 2020 Theory Initiative recommended value for aHLbL
µ corresponds to a weighted average of results

from both approaches (Figure 1.10), with a precision of ∼20% (Table 1.2). For an overall aSMµ precision matching

the experiment target precision, the required precision for aHLbL
µ would be 10%.

The dispersive calculation is more difficult than the analogous HVP calculation because the HLbL scattering

amplitude is a four-point function, whereas the HVP is a two-point function [4]. The dominant contribution is

calculated with a data-driven and model-independent method. The main sources of uncertainty in the dispersive
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(a) Euclidean time window weight functions used to
separate lattice QCD regimes. Calculations in the in-
termediate window (black) are most precise. Repro-
duced from [24].

(b) Comparison of aHV P,W
µ in the intermediate window shows ten-

sion between lattice QCD (purple) and data-driven (blue) results. Re-
produced from [25].

Figure 1.9

HLbL calculation [4] are model-dependent estimates and short distance constraints for large momenta, which enter

in the sub-dominant contributions. Work is underway to improve these estimates, and the dispersive calculation is

expected to reach the 10% precision target by 2025 [26].

The lattice QCD value has been calculated by two groups using distinct methods, finite volume QED in the

case of the RBC-UKQCD group and infinite volume QED in the case of the Mainz group, which handle the

zero-momentum photon limit differently. Cross-checks and internal consistency checks have demonstrated reli-

ability [4]. Both groups are improving their calculations and working to reduce uncertainty, and RBC-UKQCD

recently calculated a new result using infinite volume QED. The lattice QCD calculation is expected to achieve

10% precision by 2025 [26].

Figure 1.10: HLbL contribution aHLbL
µ from dispersive calculation (red), lattice QCD (blue), and earlier estimates

(orange) not used in the 2020 Theory Initiative recommendation (black). Reproduced from [26].
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1.3 New physics beyond the standard model

The tension ∆aµ between the experimental and SM values currently stands at 4.2σ, suggesting new physics beyond

the standard model (BSM) if the tension persists. Similar to the electroweak contribution (Section 1.2.2), sensitivity

to new physics with energy scale Λ is proportional tom2/Λ2, and muons are therefore more sensitive than electrons

by a factor of m2
µ/m

2
e ≈ 43, 000. With their sensitivity to new physics and their relatively long lifetime of 2.2 µs

compared to the heavier τ lepton, muons are an excellent probe of BSM physics. Figure 1.11 shows general forms

of possible 1-loop BSM physics contributions to aµ.

Figure 1.11: General possible 1-loop diagrams for BSM physics contributions to aµ, with a generic new fermion
F, new scalar S, and new vector field V. Reproduced from [29].

Any contribution to aµ must be CP-conserving, flavor-conserving, and loop induced. Further, the operator

corresponding to aµ in the QFT vertex (e.g. Eq. 1.12) connects left-handed and right-handed muons, so aµ flips the

muon’s chirality [29]. This chirality-flipping requirement leads to several characteristics of possible BSM physics.

The contribution should correspond to ∆aBSM
µ = CBSM ·m2

µ/Λ
2 with a coupling coefficient CBSM . Many BSM

models contribute both to aµ and to the muon massmµ, so the coefficient is related to a shift in the muon mass with

CBSM ∼ ∆mBSM
µ /mµ. For BSM models with no mass shift where the muon mass is induced by BSM loops,

called "radiative muon mass" scenarios, CBSM ∼ O(1) [30]. With the existing ∆aµ tension, this would impose an

upper limit on the BSM mass scale of Λ ⪅ O(2TeV).

Many new possibilities for BSM physics have been proposed, and some remain viable with constraints im-

posed by other experiments. Most models require mass scales Λ ⪅ O(1TeV). One popular class of models is

supersymmetry (SUSY). Because the minimal supersymmetric standard model (MSSM) has two Higgs vacuum
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expectation values (VEVs), vu and vd, whereas the SM has just one Higgs VEV, SUSY candidates contribute to

aµ with an enhancement factor tanβ = vu/vd [29]. Enhancement factors tanβ ≈ 3–40 with SUSY particle mass

100GeV to 500GeV [30] could explain the observed ∆aµ, but this mass scale would be observable at the large

hadron collider (LHC). The lack of BSM physics observed at the LHC and in dark matter searches significantly

constrains the possible parameter space for SUSY and other proposed models.

Many other proposed theories involve extensions to the SM with one or more new fields. The magnitude and

sign of the observed ∆aµ eliminates many single-field extensions. Remaining single-field extensions include the

dark photon, two-Higgs doublet model (2HDM), and leptoquarks. The dark photon model introduces a new massive

gauge boson which would mix with SM photons and therefore interact with SM fermions with a coupling strength

ϵ · e [16]. The simplest dark photon scenarios are excluded by the observed ∆aµ, the measured electron anomalous

magnetic moment ae, and experimental results from several dark photon production channels, but scenarios with

further extensions such as a new dark Z boson are possible in very limited parameter spaces [29]. The 2HDM

introduces a second Higgs doublet with a corresponding tan2 β enhancement [31], but only specific 2HDM variants

with constrained parameter spaces are viable to explain ∆aµ [29]. Scalar leptoquarks, bosons which interact with

SM leptons and quarks, are motivated both by ∆aµ and by quark flavour anomalies. However, the parameter

space for leptoquarks is also tightly constrained by the observed ∆aµ and by the physical muon mass [29]. Simple

three-field models with either two scalars and one fermion or one scalar and two fermions can explain ∆aµ and

accommodate dark matter together in a relatively large parameter space [29].

The experimental measurement of aµ motivates and provides important constraints on possible BSM physics,

together with LHC results and dark matter searches. Future Muon g − 2 results with an ultimate precision of 140

ppb will therefore be critical to determine realistic BSM physics scenarios.
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Chapter 2

Fermilab Muon g − 2 Experiment

2.1 Measurement method

The E989 Fermilab Muon g − 2 experiment measures aµ by injecting polarized muons into a magnetic storage

ring. In a uniform vertical magnetic field B⃗, the muons undergo cyclotron motion and orbit around the ring; their

momenta p⃗ precess with angular frequency

ω⃗c =
e

γm
B⃗ (2.1)

in the horizontal plane, where e is the muon charge, m is the muon mass, and γ is the relativistic Lorentz factor.

The injected muons’ spins are initially polarized in the horizontal ring plane, perpendicular to B⃗. The relativis-

tic muons experience Larmor precession (as in Section 1.1) and Thomas precession (the relativistic correction), and

the spins precess with angular frequency [32]

ω⃗s =

[
gµe

2m
− (1− γ)

e

γm

]
B⃗ . (2.2)

If gµ = 2 the spins would precess at the same frequency as the momenta, but because gµ > 2 the spins precess

faster than the momenta (by ∼3% in the Muon g−2 experiment configuration) and ωs > ωc. The difference, called

the anomalous precession frequency ωa, is proportional to the anomalous magnetic moment aµ.

ω⃗a ≡ ω⃗s − ω⃗c = −
(
gµ − 2

2

)
e

m
B⃗ = −aµ

e

m
B⃗ (2.3)

A precise measurement of aµ requires precise measurements of both B and ωa. Eq. 2.3 can be expressed

in terms of precisely known experimental quantities. Using the electron magnetic moment µe = ge (eℏ/4me),
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Figure 2.1: Polarized muons are injected into the g − 2 storage ring, which provides a vertical magnetic dipole
field. Because gµ > 2, their spins precess slightly faster than their momenta. The difference is exaggerated in this
figure; in reality, the spins rotate one extra time for each 29.3 turns around the ring.

the proton magnetic moment µp = gp (eℏ/4mp), and the proton precession frequency ωp = 2µpB/ℏ, aµ can be

expressed as

aµ =
ωa

ω̃′
p(Tr)

µ′p(Tr)

µe(H)

µe(H)

µe

mµ

me

ge
2

(2.4)

where

• µ′p is the magnetic moment of protons in a shielded water sample, measured at reference temperature Tr =

34.7 ◦C,

• ω̃′
p = 2µ′p(Tr)B̃/ℏ is the shielded proton precession frequency at reference temperature Tr, in the magnetic

field averaged over the muon distribution B̃, and
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• µe(H) is the magnetic moment of an electron bound in hydrogen.

The Muon g − 2 experimental observables are ωa and ω̃′
p(Tr). Calorimeters measure ωa via the spectrum of

positrons from muon decay, and nuclear magnetic resonance probes measure ω̃′
p(Tr) via the precession of shielded

protons in the magnetic field. The other terms in Eq. 2.4 are constants which have been measured to high precision

by other experiments, shown in Table 2.1.

quantity source uncertainty [ppb]
ge quantum cyclotron spectroscopy [14] 0.00013
mµ/me muonium spectroscopy [33] 22
µ′p(Tr)/µe(H) hydrogen spectroscopy [34] 10.5
µe(H)/µe bound-state QED calculation [35] 0 (considered exact)
aµ E989 Muon g − 2 goal 140

Table 2.1: Experimental constants and associated uncertainties used to determine aµ

In the g − 2 storage ring, the vertical magnetic field focuses the beam radially, but vertical confinement is also

required. Electrostatic quadrupoles provide the necessary vertical focusing, and the muons undergo vertical and

horizontal betatron motion (Section 4.3). With the presence of an electric field E⃗ and motion which is not only

perpendicular to B⃗, the full expression for ωa is given by the Thomas-Bargmann-Michel-Telegdi (Thomas-BMT)

equation [5],

ω⃗a = − e

m

[
aµB⃗ −

(
aµ − 1

γ2 − 1

)
β⃗ × E⃗

c
− aµ

γ

1 + γ

(
β⃗ · B⃗

)
β⃗

]
(2.5)

The β⃗ × E⃗ term corresponds to the motional magnetic field from the electric quadrupole field. This term

is canceled with the right choice of muon momentum such that aµ − 1
γ2−1

= 0; this "magic momentum" p0 =

3.094GeV/c corresponds to γ = 29.3. However, the muon beam has a finite momentum spread around p0 and

this term does not perfectly cancel for off-momentum muons, requiring an "electric field correction" to ω⃗a. The

β⃗ · B⃗ term corresponds to motion parallel to B⃗, and is zero for motion purely perpendicular to B⃗. Due to the

muons’ vertical betatron motion which introduces a component of β⃗ parallel to B⃗, ω⃗a requires a correction called

the "pitch correction".

2.2 Muon beam

The Fermilab Muon Campus beamline creates a polarized beam of muons with central momentum p0 = 3.094GeV/c

for Muon g− 2 [36,37]. The booster accelerator delivers batches of protons with 8GeV kinetic energy to the recy-
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cler ring, where the protons are separated into four bunches of ∼ 1× 1012 p+ each by a radio frequency (RF) sys-

tem. The bunches are individually extracted into the M1 line, which delivers them to the AP0 target hall where they

strike a pion production target made of Inconel. Secondary particles are collected with a magnetic lithium lens, and

positively-charged particles with central momentum 3.11GeV/c are selected with a pulsed dipole bending magnet.

Nominal-momentum pions with γ = 22.3 have a characteristic lab frame decay length of Lπ = γτπβc = 173.6m.

The pions decay to muons along the 280m ≈ 1.6Lπ M2 and M3 lines, which capture 3.1GeV/c µ+.

Figure 2.2: The muon campus beamline [36], showing the proton beam in black and the secondary beam (after the
pion production target) in red.

Momentum selection produces polarized µ+. The pion decay π+ → µ+νµ is a weak interaction, in which the

µ+ have a definite left-handed (LH) helicity state in the center of mass (CM) frame. Forward-decaying µ+ whose

momenta are parallel to the π+ lab-frame momentum are boosted up in the lab frame. Backward-decaying µ+

whose momenta are anti-parallel to the π+ lab-frame momentum are boosted down in the lab frame, flipping their

momenta which flips their helicity to right-handed (RH). High-momentum µ+ therefore have LH helicity and low-

momentum µ+ have RH helicity, so selecting the high-momentum µ+ in the lab frame produces a LH-polarized
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µ+ beam, with an average polarization of ∼ 95%.

Figure 2.3: Forward-decaying muons are left-hand (LH) polarized and have higher momentum in the lab frame,
and backward-decaying muons are right-hand (RH) polarized and have lower momentum in the lab frame. Selecting
the high-momentum muons produces a LH-polarized muon beam.

The M3 line consists of a "FODO", or focusing-defocusing, arrangement of quadrupole magnets used to trans-

port beam over long distances. The beam is injected from the M3 line into the 505m circumference delivery ring

(DR), which separates the p+ remaining in the beam from the π+ and µ+. Because the protons are heavier than

the muons but have the same momentum p = γmβ, they have a smaller β =
√

p2

p2+m2 and are therefore slower

than the muons. Each turn in the DR, the p+ increasingly lag the µ+. After 4 turns the p+ are kicked out with the

"abort kicker" and essentially all π+ have decayed to µ+. This leaves a beam consisting primarily of polarized µ+

which is extracted from the DR and transported along the 130m M4 and M5 lines to the Muon g − 2 experiment,

located in Muon Campus building 1 (MC-1). The M4 beamline splits out to the Mu2e experiment, such that the

Muon Campus can deliver beam to either g − 2 or Mu2e.

The delivered µ+ beam has a momentum spread of ±1.6% around the central momentum p0, but the g − 2

ring accepts only a ±0.15% bite. A boron carbide momentum cooling wedge was installed just downstream of the

DR in the M5 line during Run-2, with the purpose of reducing the momentum spread and increasing the number

of µ+ with momenta in the range accepted by the ring [38]. The wedge is located in a high-dispersion bend region

of the beamline where the momenta are spatially separated. It is inserted in the high-momentum side of the beam,

cooling the highest momentum µ+ into the accepted range. The result was a few-percent increase in the fraction of

µ+ stored in the ring.

The beam is nominally delivered in 2 groups of 8 bunches every 1.4 s (reduced in Run-6 to 1 group of 8 bunches

every 1.2 s). The time distribution of each ∼ 150 ns-wide bunch has a characteristic "W" shape caused by the RF

proton bunch creation in the recycler, which rotates the beam in longitudinal time-energy phase space to shorten

the bunch in time. The time projection of the distribution has a shape like that shown in Figure 2.4; each of the 8

bunches has a unique variation of the distribution.
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(a) Nominal timing of beam pulses

(b) Example time distribution of a single bunch, which is
∼150 ns wide. Figure courtesy of H. Binney [39].

Figure 2.4: Time structure of the muon beam delivered to Muon g − 2.

2.3 Beam injection

The beam is injected into the storage ring through the "yoke hole" bore in the back leg of the magnet iron. A

superconducting inflector magnet, 1.7m long with an 18mm × 56mm aperture, cancels the ring’s magnetic field

to provide a field-free path for the beam (Figure 2.5). The injection path is offset radially by 77mm from the

nominal ring orbit to avoid interfering with the beam circulating in the ring (Figure 2.6). The narrow inflector

together with magnetic fringe fields make the beam injection a challenging process which is discussed further in

Chapter 5.

Beam entrance detectors along the injection path provide information about the beam at injection; their lo-

cations are indicated in Figure 2.8. The T0 detector consists of a plastic scintillator sheet coupled with optical

waveguides to two photomultiplier tubes (PMTs) [39]. The PMT waveforms provide a profile of the incident beam

intensity over time, as shown in Figure 2.4. The T0 detector defines the start time for each muon measurement

period, called "fills". The Inflector Beam Monitoring System (IBMS) consists of 3 scintillating fiber detectors

which provide spatial profiles of the injected beam, discussed in detail in Chapter 3. IBMS1 is located imme-
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Figure 2.5: The superconducting inflector with 18mm × 56mm aperture provides a field-free path for beam
injection into the ring.

Figure 2.6: The beam is injected at a 77mm radial offset from the nominal orbit. Figure courtesy of D. Rubin [40].

diately downstream of the T0 detector; IBMS2 is located immediately upstream of the inflector; and IBMS3 is

located downstream of the inflector inside the storage ring. Together these entrance detectors monitor and record

the intensity, timing, and spatial distribution of the injected beam for every fill.

2.4 Beam storage in the g − 2 ring

The storage ring magnet provides a highly uniform vertical magnetic dipole field with nominal strength B0 =

1.451T in the toroidal muon storage volume. The so-called "magic field" B0 centers magic momentum (p0 =

3.094GeV/c) muons on the nominal orbit with "magic radius" R = 7112mm. The superferric magnet consists of

a C-shaped iron yoke and pole pieces excited by superconducting coils, shown in Figure 2.7. The field is stabilized
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in time with a feedback system, which adjusts the ∼5170A coil current based on the field measured by a selection

of fixed NMR probes (Section 2.7). The spatial homogeneity of the field was fine-tuned with iron wedge-shaped

shims in the gap between the pole pieces and yoke as well as iron edge shims and iron foil laminations on the

pole surfaces, resulting in a 14 ppm RMS uniformity in the storage volume. Concentric surface correction coils on

the pole surfaces are configured with a current profile to minimize field gradients, providing an azimuth-averaged

uniformity over the transverse storage region of < 1 ppm [41].

Figure 2.7: Cross section of the C-shaped storage ring magnet, which provides a 1.451T vertical dipole field.
Reproduced from [41].

Figure 2.8 shows locations of the systems in the storage ring discussed below.

Because the beam is injected at a 77mm radial offset to the nominal orbit (Figure 2.6), it intersects the nominal

orbit with a ∼77mm/7112mm = 10.8mrad angle at 90◦ from the inflector exit. Three pulsed kicker electromag-

nets located at 90◦ in the ring switch on a vertical magnetic field which provides a ∼10.8mrad radially-outward

kick, shifting the beam to its nominal orbit [43]. An ideal kick would turn on only during the first turn in the ring

with cyclotron period Tc = 149.2 ns, and the field would be constant over the pulse. The real kicker pulse, shown

in Figure 2.9, is time-dependent over Tc and has a ringing tail due to impedance mismatch, such that the muons

receive additional kicks over several turns. The three kickers are individually timed to maximize the muon storage

fraction for each injected beam bunch. The muons’ average orbit radius is called the equilibrium radius. Until

late in Run-3, the kickers did not achieve their intended strength and delivered a weaker-than-nominal kick, which

centered the beam at a higher-than-nominal equilibrium radius re − R ≈ 5mm to 7mm [42]. During Run-3 the

pulser cables were upgraded which allowed an increased kick strength and centered the beam within 1mm of the

nominal radius [44].

The dipole magnetic field focuses the beam horizontally and contains it in the storage region, and the electric
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Figure 2.8: Schematic view of the storage ring systems, reproduced from [42].

(a) Kicker plates positioned radially inward and outward
of the muon storage region provide a pulsed vertical
magnetic field to shift the beam onto its nominal orbit.

(b) The kicker pulse (black) compared with a typical
injected beam pulse (red) shows that the kick strength
varies over the beam injection time, and rings over sev-
eral cyclotron periods (blue). Reproduced from [42].

Figure 2.9
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quadrupole field provides vertical focusing at the expense of horizontal defocusing (Figure 2.10). The electrostatic

quadrupoles consist of four electrode plates on all sides of the storage region, positioned in discrete segments (four

short and four long segments) around the ring. The top and bottom plates are set at a positive voltage +Vq and

the inner and outer plates are set at −Vq, with typical voltages Vq = 18.2 kV or 18.3 kV in Run-2/3. The quad

plates are charged before each muon fill and discharged at the end of the 700 µs fill. The quads are also used to

intentionally scrape the beam by initially charging selected plates to a lower voltage < Vq. This shifts the beam

radially and vertically off-center so that muons moving near the edge of the 90mm diameter storage region are

likely to be lost by scattering on the five collimators positioned in the ring. This scraping is nominally completed

and the beam returns to equilibrium by 30 µs after injection.

(a) Electrostatic quadrupole plates vertically focus the
beam in the storage region, at the expense of horizontal
defocusing.

(b) Equipotential lines of the electric quadrupole field in
the storage region, reproduced from [36].

Figure 2.10

2.5 Straw trackers

Straw tracking detectors at two locations in the ring reconstruct the stored muon distribution by tracking the paths

of the decay positrons, shown schematically in Figure 2.15. Straw tracker stations are located near azimuths 180◦

and 270◦ (shown in Figure 2.8), where stations are numbered 12 and 18 according to the neighboring calorimeters.

The Mylar straws are filled with argon-ethane gas; each straw is a grounded cathode, and a high voltage wire

at the center of each straw is the anode [45]. A decay positron traversing a straw ionizes the gas and induces

a voltage signal in the wire. One tracker station consists of eight modules, and a module includes four stereo-
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oriented layers of 32 straws each. A tracking algorithm extrapolates the positron trajectory to the point of tangency

to reconstruct the muon decay position. The distribution of muon decay positions corresponds to the stored muon

beam distribution in a narrow azimuthal range of σ ≈ 5◦. The tracker-measured muon distribution over the time of

the fill provides beam dynamics information which is necessary for ωa systematics corrections and uncertainties.

The tracker beam profiles also provide input for the muon-weighted magnetic field analysis, discussed in detail in

Chapter 7.

Figure 2.11: The straw tracking detectors reconstruct the muon beam distribution, shown here as an intensity map
in the 90mm diameter storage region, by tracking the decay positrons.
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2.6 Measuring the anomalous precession frequency ωa

The muon decays to a positron and two neutrinos by the dominant process µ+ → e+νeν̄µ (Figure 2.12), with a rest

frame lifetime of ∼ 2.2 µs. Because this decay is a weak interaction which violates parity, the decay e+ energy

is correlated with the direction of the µ+ spin at the time of decay. The e+ count above an energy threshold is

then modulated in time by the anomalous precession frequency ωa. Calorimeters are used to record the energy and

arrival time of the decay e+, from which ωa is extracted.

2.6.1 Decay positron spectrum

In the center of mass (CM) frame, the highest e+ energy configuration occurs when the e+ is emitted back-to-back

with the neutrinos (Figure 2.12). Because the ν has left-handed (LH) helicity and the ν̄ has right-handed (RH)

helicity, their summed spin is zero in this configuration. Spin conservation requires that the initial muon spin s⃗µ is

equal to the final positron spin s⃗e. Because the decay e+ has RH helicity in the weak interaction, its momentum p⃗e

must also be parallel to s⃗µ. Therefore the highest-energy e+ are preferentially emitted along the µ+ spin direction.

(a) The muon dominantly decays to a
positron and two neutrinos

(b) In the highest e+ energy configuration, the decay e+ is emitted in the direction
of the µ+ spin before decay.

Figure 2.12: Muon decay by the weak interaction

This energy-spin correlation is present over the full e+ energy range, with the differential decay distribution in

the CM frame given by [36]
d2P (y, θ)

dy d cos(θ)
∝ Nr(y) [1 +Ar(y)cos(θ)] , (2.6)

where y = E∗/E∗
max is the CM frame energy normalized to the maximum possible energy E∗

max = mµc
2/2 and

θ is the angle between s⃗µ and p⃗e. The number distribution Nr(y) increases with E∗, which means higher-energy

e+ are emitted with an overall greater probability. The asymmetry Ar(y) describes the correlation between s⃗µ and

e+ energy. Ar(y) has its maximum value of 1 for E∗ = E∗
max and decreases to < 0 for E∗ = 0, which means

higher-energy e+ are emitted along the s⃗µ direction with greater probability than lower-energy e+. Figure 2.13

shows the Nr(y) and Ar(y) distributions.
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Figure 2.13: The decay e+ asymmetry and number distributions in the center of mass frame increase for higher e+

energy, so higher-energy e+ are more likely to be emitted along the µ+ spin. Figure courtesy of A. Fienberg [46].

In the lab frame, the energy E of the decay e+ is boosted along the µ+ momentum; E increases for s⃗µ ∥ p⃗µ,

and decreases for s⃗µ ∥ −p⃗µ. The e+ energy spectrum is modulated by the angle α between s⃗µ and p⃗µ, which

changes at the rate ωa, as shown in Figure 2.14. The lab frame decay e+ spectrum is given by the expression [36]

N(E, t) = N(E)e−t/γτµ [1 +A(E) cos(α)] (2.7)

where N(E) and A(E) are the lab frame number and asymmetry functions; γτµ is the lab frame µ+ lifetime; and

α = ωat− ϕ(E) with ϕ(E) the initial s⃗µ phase.

Figure 2.14: The decay e+ energy spectrum in the lab frame is modulated by ωa, the rate of change of the angle
between the muon’s spin and momentum. Figure courtesy of A. Fienberg [46].

The total e+ count above an energy threshold Ethr is then modulated by ωa as shown in Figure 2.17, and is
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described by [36]

N(Ethr, t) = N0(Ethr)e
−t/γτµ [1 +A(Ethr) cos(ωat− ϕ0(Ethr))] (2.8)

which is the basic fit function used to extract ωa from the decay e+ spectrum. N0(Ethr) is the initial beam intensity

above Ethr, A(Ethr) is the asymmetry which decreases for lower Ethr, and ϕ0(Ethr) is the ensemble average

initial spin phase.

2.6.2 Calorimeter detectors

The decay e+ have momenta below the ring momentum acceptance, and drift inward toward the ring center (Fig-

ure 2.15). Their energy spectrum is measured with 24 electromagnetic calorimeters [47] [48] equally spaced around

the inside of the ring, located as shown in Figure 2.8. Each calorimeter consists of a grid of 6 × 9 lead fluoride

(PbF2) crystals (Figure 2.16) which emit Cherenkov radiation proportional to the deposited energy when struck by a

charged particle. Each crystal is coupled to a silicon photomultiplier (SiPM) light sensor read out by programmable

gain amplifier electronics. (See Section 3.2 for more information about SiPMs in a different application.) The sig-

nals from the 1296 calorimeter channels are digitized over the entire time of the fill by 12-bit waveform digitizers

at a rate of 800 MS/s, and recorded by data acquisition (DAQ) frontend software in the main MIDAS-based DAQ

system. A laser system feeds laser pulses directly into each crystal for gain monitoring and correction and timing

synchronization.

Figure 2.15: Example decay e+ trajectories in a top view of a segment of the ring. The e+ drift inward, and a
fraction of them deposit energy in a calorimeter. Higher-energy e+ have larger radii of curvature in the magnetic
field, and travel farther before leaving the ring and striking a calorimeter. Straw tracking detectors are positioned
in front of two of the calorimeters to reconstruct muon decay vertices (Section 2.5).

2.6.3 Extracting ωa

The basic five-parameter fit function in Eq. 2.8 only accounts for the muons’ anomalous precession, but in reality

additional terms are present in the decay e+ spectrum due to beam dynamics effects. The calorimeter acceptance

is spatially nonuniform, so beam motion modulates the e+ count N(t). The dominant oscillating term is caused
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Figure 2.16: Model (left, courtesy of J. Kaspar) and photo (right) of a calorimeter consisting of 54 PbF2 Cherenkov
crystals, each read out by a SiPM.

by the horizontal coherent betatron oscillation (CBO) of the beam; the vertical betatron oscillation of the beam,

as well as interference terms between the beam frequencies and ωa, are also present. These beam oscillations are

discussed further in Chapter 4, particularly Section 4.3.4. Effects which have slow time dependence over the fill,

such as muon loss by mechanisms other than decay, appear as low-frequency terms. Beam dynamics terms must

be included in the fit function to extract an unbiased value of ωa. Characterizing the beam motion with detector

measurements and beam dynamics modeling is necessary to establish a fit function with realistic beam dynamics

terms. The full fit function has the general form

N(t) = N0 · Λ(t) ·Nx(t) ·Ny(t) ·Nx,y(t) · e−t/τ [1 +A(t) cos(ωat− ϕ(t))] , (2.9)

where the function Nx(t) describes horizontal beam motion, Ny(t) describes vertical beam motion, Nx,y(t) de-

scribes interference between horizontal and vertical terms, Λ(t) describes muon loss, τ = γτµ is the muon lifetime,

and A and ϕ are time-dependent due to CBO modulation [39, 48]. The exact functional form of each term varies

among ωa analysis teams, but fit functions include 22 or more fit parameters which correspond to physical beam

dynamics effects. A fast fourier transform (FFT) of the residual difference between the e+ histogram and the fit

shows any beam dynamics frequencies which are not captured in the fit function. A fit function which models all

beam dynamics effects corresponds to a flat FFT with no residual frequencies, as shown in Figure 2.17.

For Run-2/3 analysis, the e+ histogram is fit from time tstart ≈ 30.3 µs [49] in the fill, after time-dependent

beam dynamics effects such as electric quadrupole scraping and the high-intensity beam splash stabilize. The

energy threshold is chosen to optimize ωa statistical precision, balancing increased statistics for lower thresholds

vs. increased asymmetry for higher thresholds. The primary analysis method uses an energy threshold of 1100MeV

and weights the e+ data by the energy-dependent asymmetry for the best statistical sensitivity. A related method
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Figure 2.17: Left: Histogram of e+ counts above an energy threshold over time in the fill (black) and the fit to
extract ωa (red) for an example Run-1 dataset of 4 × 109 e+. Right: FFT of residuals from the fit, for the full fit
function including beam dynamics terms (black) compared with the basic five-parameter fit function (gray) which
does not capture the beam dynamics frequencies. Reproduced from [48].

uses a 1700MeV threshold with uniform weighting. Other approaches include using a ratio of time-shifted e+

data subsets to remove the lifetime, and constructing an energy vs. time histogram from a continuous calorimeter

energy integral [48].

2.7 Measuring the magnetic field via the proton precession frequency ωp

The strength of the magnetic field B in the storage ring is measured with pulsed nuclear magnetic resonance

(NMR) magnetometer probes, which measure the Larmor precession frequency ω′
p(Tr) of shielded protons [41],

where ω′
p ∝ B as in Eq. 2.10. Tr = 34.7 ◦C is the reference temperature, and the prime indicates calibration to a

specific spherical water sample used as the shielded proton sample (Section 2.7.1).

The field strength in terms of ω′
p must be averaged over the muon distribution to represent the field experienced

by the muons, denoted as ω̃′
p. Analysis of the muon-weighted magnetic field in Run-2/3 is discussed in detail in

Chapter 7.

2.7.1 Instrumentation

Each pulsed NMR probe consists of a shielded proton sample inside a radio frequency (RF) coil, which is coupled

to a resonant circuit to read out and drive the coil [50] (Figure 2.18). A fraction of the protons are magnetized in

the field, meaning that their spins are aligned with the vertical magnetic field B⃗. An RF pulse, called a π/2 pulse,

is applied to the coil to rotate the protons’ spins perpendicular to B⃗. The spins then experience Larmor precession
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in the magnetic field with frequency ωp,

ωp =
gpe

2mp
B , (2.10)

and simultaneously relax back to alignment with B⃗. The precession induces a voltage signal, called a free induction

decay (FID) signal (Figure 2.19), in the RF coil, with a frequency proportional to the magnetic field strength

(Eq. 2.10). This method is sensitive only to the field strength and not the direction so it is treated as purely vertical,

i.e. |B| ≈ By, which is a good approximation to O(10 ppb) [41]. The FID signals are digitized with waveform

digitizers and recorded by data acquisition (DAQ) frontend software in a MIDAS-based DAQ system which is

independent and asynchronous from the detector DAQ.

The frequency ωp is determined by extracting the time-dependent phase function from a Hilbert transform

H (f(t)) of the FID signal f(t) [41], which shifts the signal phase in the frequency domain by 90◦ [50].

ϕ(t) = tan−1

[
f(t)

H (f(t))

]
(2.11)

Figure 2.18: NMR probe consisting of the RF coil and holder for the coil and internal proton sample, with a second
coil and cable for readout and driving.

Figure 2.19: Example free induction decay signal, oscillating at the proton precession frequency ωp, measured by
an NMR probe in the storage ring. Reproduced from [41].

The magnetic field in the ring is measured in terms of ω′
p(Tr) in three stages, as follows [41].

A trolley carrying 17 NMR probes (Figure 2.20) maps the field inside the muon storage region every ∼ 3 days.

Each probe measures the precession frequency of protons in a cylindrical petroleum jelly sample. The trolley rides
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around the ring on rails in the vacuum chamber and samples the field at ∼ 8000 azimuthal locations (Figure 2.21).

A transverse map of the field strength is produced at each azimuth.

Figure 2.20: The trolley (left) rides around the ring and produces a map of the field in the muon storage region
(right, example from Run-1). The white circles indicate the positions of the 17 NMR probes in the trolley, and the
field strength is relative to the central probe.

The trolley cannot measure the field during production running when muons are present in the ring because

it would interfere with muon storage. A suite of 378 so-called fixed probes, identical to the trolley probes, are

mounted to the ring vacuum chamber walls above and below the muon storage region. Seventy-two "stations" of

four or six fixed probes each are positioned around the ring (Figure 2.22). The fixed probes track the field over the

time between trolley runs, and the trolley maps are then interpolated over the muon measurement time using the

drift measured by the fixed probes.

A special calibration probe containing a cylindrical water sample calibrates the trolley probes. The calibration

probe is mounted in the ring on a translation stage, which rapidly swaps it to the same position as each trolley

probe to measure the same field during special calibration runs. The calibration probe itself is corrected in terms

of a well-established NMR standard, namely a spherical water sample at temperature Tr = 34.7 ◦C, so that it

calibrates the trolley probes in terms of ω′
p(Tr).

ω′
p(Tr) = ωprobe

[
1 + δprobe(Tr)

]
(2.12)

The general correction δprobe(Tr) accounts for probe-specific effects including probe materials; geometry, magnetic

susceptibility, and diamagnetic shielding of the sample; and measurement temperature. The calibration probes, and

subsequently the trolley probes, are corrected in this way.
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Figure 2.21: Field map vs. azimuth in the ring from a trolley run in Run-1. Relative variation in the frequency ωp

measured by the central trolley probe (top), and relative variation in the dipole (black), normal quadrupole (green),
and normal sextupole (red) moments extracted from the trolley field measurements. Reproduced from [41].

Figure 2.22: The 378 fixed probes are positioned above and below the muon storage region at 72 stations around
the ring, each consisting of 4 or 6 probes. Figure courtesy of M. Smith.
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2.7.2 Multipoles

The magnetic field strength in the transverse plane B(x, y) can be described by a multipole expansion, which

forms a complete basis for a field satisfying Maxwell’s equations and the source-free Laplace equation (assuming

no longitudinal dependence) [41] [51].

B(x, y) = A0 +

N∑
n=1

(
r

r0

)n

(An cos(nΘ) +Bn sin(nΘ)) (2.13)

Here r and Θ are polar coordinates in the transverse (x-y) plane, N is the multipole order truncation, and r0 =

45mm is the reference radius for normalization. The constant term A0 is called the dipole moment, the An terms

are the normal moments, and the Bn terms are the skew moments. The n = 1, 2, 3, &4 moments are respectively

called the quadrupole, sextupole, octupole, and decupole moments; for example, A1 is the normal quadrupole

moment. The expansion can be written more compactly as

B(x, y) =
2N+1∑
i=1

mi · fi(r,Θ) . (2.14)

Multipoles are indexed by i, with multipole coefficients mi and expansion basis functions fi defined as follows.

fi(r,Θ) =


1 for i=1 (dipole)

(r/r0)
i
2 cos ( i2Θ) for i > 1, i even (normal)

(r/r0)
i−1
2 sin ( i−1

2 Θ) for i > 1, i odd (skew)

(2.15)

Multipole moments mi have the same units as B(x, y); the functions fi are unitless. Figure 2.23 shows spatial

representations of each multipole. In the Run-2/3 analysis the multipole expansion is nominally truncated atN = 6,

with the normal 14-pole (m12) the highest-order moment and the skew 14-pole (m13) set to zero.

Table 2.2 shows multipole naming conventions used by the two field analysis teams, called the Bloch and

Purcell teams (Section 2.7.3). For historical reasons the mi naming used by the Purcell team is different from the

index i in Eq. 2.15; both the Bloch and Purcell team naming conventions are referenced throughout this thesis.
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multipole index i Bloch name Purcell name mi multipole name

1 Dip m1 Dipole
2 NQ m2 Normal Quadrupole
3 SQ m3 Skew Quadrupole
4 NS m5 Normal Sextupole
5 SS m4 Skew Sextupole
6 NO m7 Normal Octupole
7 SO m6 Skew Octupole
8 ND m8 Normal Decupole
9 SD m9 Skew Decupole
10 N12 m10 Normal 12-pole
11 S12 m11 Skew 12-pole
12 N14 m12 Normal 14-pole
13 S14 m13 Skew 14-pole

Table 2.2: Multipole index and name conventions used by the so-called Bloch and Purcell field analysis teams

normal moments

skew moments

dipole moment

Figure 2.23: 2D spatial distributions corresponding to the normal and skew multipoles. Figure courtesy of S.
Charity.

2.7.3 Analysis

The field drift tracked by the fixed probes is used to interpolate the trolley maps over the time between trolley

runs; this interval between a pair of trolley runs is known as a trolley pair. The dipole, quadrupole, and sextupole

moments (m1-m5) at each of the 72 fixed probe stations are predicted using geometrical combinations of the fixed

37



probe measurements. These fixed probe moments are synchronized within a trolley pair to match the bounding

trolley runs, then interpolated to 2 s intervals. The synchronization correction includes a linear time-dependent

slope between trolley runs due to the field drift over time. This synchronization ties the moments in each fixed

probe station to the two trolley runs, and the remaining non-linear drift component is a source of uncertainty in the

field tracking. The higher-order multipole moments (m6 and above) are simply linearly interpolated between the

two trolley runs, as they cannot be tracked due to the geometrical arrangement of the fixed probes.

Figure 2.24: Relative drift in the dipole moment tracked by a fixed probe station over a trolley period in Run-1.
The trolley run values at the corresponding location are shown in red and green. The fixed probe values (orange)
are corrected to synchronize (blue) with the ending trolley run. The corrected fixed-probe-measured field drift is
then used to interpolate the trolley field maps over time. Reproduced from [41].

The Bloch and Purcell analysis teams independently perform the field interpolation analysis. Careful cross-

checks between the teams build confidence in the analysis results. Both approaches are introduced here, but the

muon-weighted field analysis presented in detail in Chapter 7 focuses on field maps produced by the Bloch team.

The field drift between fixed probe stations is tracked by a superposition of measurements from different sta-

tions. For a moment mi measured by the trolley at azimuth θk and time tk, the mi at time t between trolley runs is

given by [51]

mi(θk, t) = mi(θk, tk) +
∑
st

wst(θk) ·∆mi,st(t, tk) , (2.16)

where ∆mi,st(t, tk) is the drift of mi at the station from time tk to t (after the above synchronization correction),

and wst is the weight of the station in the superposition. The Bloch team uses weights wst which decrease linearly

with distance, from 1 at the station position to 0 at the next station, so that mi(θk) is given by a linear superposition

of the drift from neighboring stations. The Purcell team uses wst = 1 for the nearest station and 0 for all others,

so that mi(θk) is given by the drift of only one nearest station. This is not the only difference between the analysis
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teams, but it is the main difference for the purpose of this discussion.

The field mapsmi(θ, t) produced by the Bloch team are called virtual trolley maps. As discussed in Section 7.2,

virtual trolley maps are produced in few-hour time intervals Tinterval using fixed probe moments mi,st averaged

over Tinterval with decay positron count ("ctag") weighting. This was an update in the Run-2/3 Bloch analysis; the

Run-1 analysis produced azimuth-averaged field maps.

2.7.4 Units

The nominal field strength B0 = 1.451T corresponds to an NMR frequency ωp = 61.79MHz. The NMR FID

signals are mixed down to ∼ 50 kHz before digitization. The field strength measured by the NMR probes, as well

as the field multipole moments, are typically reported either in Hz relative to the mixing frequency 61.74MHz,

or in ppm of 61.79MHz. Therefore, a field of strength B = B0 would be reported as 50 kHz, or in ppm as

50 kHz/61.79MHz ≈ 809.2 ppm. A field of strength B = B0(1 + δB ppm) would be reported as (809.2 + δB)

ppm.

2.8 Extracting aµ from the measured frequencies

The anomalous magnetic moment aµ is extracted from the ratio of observable frequencies R′
µ ≡ ωa/ω̃

′
p(Tr) ac-

cording to Eq. 2.4. The measured frequencies must be corrected for experimental effects caused by beam dynamics

and time-dependent fields. Including corrections, the ratio R′
µ can be written

R′
µ =

fclock ω
m
a (1 + Ce + Cp + Cml + Cpa + Cdd)

fcalib ⟨ωp(x, y, θ)×M(x, y, θ)⟩ (1 +Bk +Bq)
. (2.17)

In the numerator, ωm
a is the measured anomalous precession frequency, fclock is the master clock unblinding factor,

and the Ci factors are beam dynamics corrections to ωm
a . Characterizing the beam with detector measurements

and beam dynamics modeling is critical for calculating these Ci corrections. In the denominator, ω̃′
p(Tr) is ex-

pressed in terms of the absolute NMR calibration factor fcalib and the muon-weighted proton NMR frequency

ω̃p = ⟨ωp(x, y, θ) × M(x, y, θ)⟩, where M is the stored muon distribution (discussed in detail in Chapter 7).

The Bi factors are corrections to ω̃′
p for transient field effects which change over time in the fill relative to the

NMR-measured ω′
p.

Figure 2.25 shows a breakdown of the Run-1 values of these corrections, as well as uncertainties on the correc-

tions and on the frequencies themselves. The corrections are described below, along with highlights of uncertainties

which are significantly improved in Run-2/3 compared to Run-1.
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Figure 2.25: Run-1 corrections from Eq. 2.17 (orange) and uncertainties (blue), with total uncertainty in black
showing that the Run-1 uncertainty was statistics dominated. For comparison, the target final uncertainty from the
Technical Design Report [36] (TDR) is shown in green. Figure courtesy of J. LaBounty.

2.8.1 Corrections to ωa

fclock: The frequency ωa is measured with a blinding factor to allow an unbiased analysis. The result is only un-

blinded with collaboration consensus that the analysis is complete, following a rigorous series of cross-checks.

The calorimeter digitization clock with nominal frequency 40MHz is detuned to a secret value in the range

39.997MHz to 39.999MHz [52] by Fermilab affiliates external to the collaboration. The unblinding factor fclock

converts ωm
a back to its true frequency.

Ce: The electric field correction Ce corrects for the E⃗ field term in Eq. 2.5, which is not perfectly canceled

due to the finite spread of muon momenta. The momentum distribution is reconstructed from the so-called "fast

rotation" Fourier analysis of the cyclotron frequencies observed by the calorimeters (Figure 2.26). This analysis

reconstructs the muons’ equilibrium radii relative to the nominal radius, xe = re − R, related to the momenta by

xe = ∆p/p0 ·R/(1− n) (Section 4.3.1), where ∆p is the momentum deviation from p0 and n is the effective field

index for the focusing electric and magnetic fields (Section 4.3.1). The electric quadrupole field centered at radius

R increases linearly in strength with distance from R. The electric field correction is given by [42]

Ce = 2n(1− n)β2
σ2xe

+ ⟨xe⟩2

R2
(2.18)

where σxe is the width and ⟨xe⟩ is the mean of the distribution of equilibrium radii, and β is the relative velocity of

magic momentum muons. The uncertainty on Ce is dominated by the time-varying kick strength, which causes a
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correlation between injection time and momentum of the stored muons and distorts the momentum reconstruction.

This was a significant ωa systematic uncertainty in Run-1; the Run-2/3 evaluation is in progress, but improved

reconstruction methods and simulations are expected to reduce the uncertainty.

Cp: The pitch correctionCp corrects for the muons’ vertical betatron motion which leads to a nonzero β⃗·B⃗ term

in Eq. 2.5 1. The distribution of vertical betatron amplitudes Ay is reconstructed from the trackers (Figure 2.26).

The pitch correction is calculated directly from this distribution by [42]

Cp =
n⟨A2

y⟩
4R2

. (2.19)

(a) Equilibrium radius reconstruction used to cal-
culate the electric field correction Ce for datasets
in Run-1. Reproduced from [42].

(b) Vertical betatron amplitude reconstruction used
to calculate the pitch correction Cp for an example
dataset in Run-1. Reproduced from [42].

Figure 2.26

Cml: The muon loss correction Cml corresponds to a time-dependent average phase which pulls the ωa fit

in Eq. 2.9. Muons which are lost from storage by non-decay mechanisms can cause a net drift in the remaining

ensemble-averaged phase ϕ0 over the time of the fill, biasing ωa and requiring a correction Cml = −∆ωa/ωa.

The time dependence comes from a momentum-dependent muon loss rate together with an upstream correlation

between momentum and phase [42], and the ωa shift is

∆ωa ≈ dϕ0
dt

=
dϕ0
d⟨p⟩

d⟨p⟩
dt

. (2.20)

The phase-momentum correlation dϕ0/d⟨p⟩ was determined from beamline simulation and systematic spin pre-

cession data. The rate of change of the ensemble momentum d⟨p⟩/dt was measured with a systematic bias in the

injected muon momentum. Due to reduced muon losses, the correction is irrelevant after Run-1 [39, 54].
1This conceptual explanation leads to the correct expression for the correction, but the electric field also contributes to the effect. A more

complete and accurate discussion is given in [53].
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Cpa: The phase-acceptance correction Cpa corresponds to another time-dependent average phase effect. The

calorimeter acceptance, and therefore the detected phase ϕ0, depends on the muon decay position (Figure 2.27).

Any time dependence of the transverse beam distribution over the fill couples with the detector acceptance and leads

to a time-dependent detected phase dϕ0/dt. The beam distribution time dependence is measured by the trackers,

and the detector acceptance and resulting time dependence of the phase was determined from simulation. In Run-

1, damaged charging resistors in two electric quadrupole plates caused a time-changing beam distribution which

dominated the correction [42]. The uncertainty on Cpa was the dominant ωa systematic uncertainty in Run-1. The

resistors were replaced after Run-1, and both the correction and uncertainty are significantly reduced for Run-2/3

but still relevant due to muon losses which cause time dependence of the beam [55, 56].

(a) Due to calorimeter acceptance, the detected
spin phase depends on the transverse muon decay
position (determined here from simulation). Re-
produced from [42].

(b) The beam was significantly more stable over time
in the fill post-Run-1, after replacing the damaged
quadrupole resistors. The vertical beam width (shown
here for example datasets in Run-1 and Run-2) domi-
nates the phase-acceptance effect. Figure courtesy of
J. Mott [57].

Figure 2.27

Cdd: The differential decay correction Cdd corresponds to another effect from a time-dependent average

phase. The muons have a finite momentum spread and a corresponding spread in lab frame lifetimes γτµ. High-

momentum muons therefore decay slower than low-momentum muons, causing a momentum-dependent muon loss

rate d⟨p⟩/dt. As with the Cml calculation, phase-momentum correlations of the form ∂ϕ0/∂a · ∂a/∂p with any

momentum-dependent quantity a would then lead to a bias in ωa. Correlations with the initial horizontal phase

space, the injection time due to the time-dependent kick, and the same phase-momentum correlation in the Cml

term contribute to Cdd. This correction was not included in Run-1, but will be O(15 ppb) for Run-2/3 [58].
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2.8.2 Corrections to ωp

fcalib: The proton NMR frequency is calibrated to the NMR standard of a spherical water sample at temperature

Tr = 34.7 ◦C as described in Section 2.7.1. The calibration factor fcalib relates the measured frequency ωp to

ω′
p(Tr).

Bk: The kicker transient correctionBk corresponds to a magnetic field perturbation caused by the kickers. The

kicker pulse induces eddy currents in the vacuum chamber, generating a magnetic field which decays over the fill.

This transient field was measured with two independent magnetometers which use the Faraday-rotated polarization

of laser light to sense the field [41]. The correctionBk is given by weighting the magnetic field in time by the muon

decay rate, and in azimuth by the extent of the kickers. The uncertainty on Bk is reduced in Run-2/3 compared to

Run-1 due to improved magnetometer measurements.

Bq: The quad transient correction Bq corresponds to another magnetic field perturbation caused by the electric

quadrupoles. Charging the quadrupoles at the start of each fill induces mechanical vibrations in the plates which

generates a time-varying magnetic field. Dedicated NMR probes made of non-conductive materials to avoid skin

depth effects measured this transient field inside the storage volume [41]. The correction Bq is given by weighting

the magnetic field in time by the muon decay rate, and in azimuth by the extent of the quadrupoles. The uncertainty

on Bq was the dominant ωp systematic uncertainty in Run-1, mainly due to incomplete mapping of the effect. The

Run-2/3 uncertainty is significantly reduced with a full-ring map of the quad transient field.

(a) Relative time-dependent magnetic field caused
by kicker-induced eddy currents, fitted with an ex-
ponential decay over the muon measurement time.
Reproduced from [41].

(b) Relative time-dependent magnetic field in-
duced by the charging quadrupoles, shown here
for eight quadrupole charging sequences. Gray
lines indicate the corresponding muon fill times.
Reproduced from [41].

Figure 2.28
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2.9 Status of the experiment

Run-6, the final data taking run, is underway and set to finish by summer 2023. The overall statistics goal of

21× more decay positrons than the previous Brookhaven g − 2 experiment was exceeded in February 2023. The

remainder of Run-6 has been focused on studies to characterize and reduce systematic uncertainties, particularly

the injection time vs. stored momentum correlation caused by the kicker which dominates the uncertainty on the

electric field correction. Analysis of the data collected in Run-2 and Run-3 ("Run-2/3") is nearly complete and

will be the next released result. Run-2/3 represents ∼4× more statistics than Run-1 and will reduce the statistics-

dominated uncertainty by ∼2×. Several dominant sources of systematic uncertainty have also been improved since

Run-1, highlighted in Section 2.8.

Figure 2.29: Decay positron statistics ("ctags") collected over all data taking runs. The goal of 21× BNL statistics
was exceeded during Run-6.
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Chapter 3

The Inflector Beam Monitoring System

Because muon storage efficiency is highly sensitive to the characteristics of the incident beam, optimum beam

injection is critical to meet the experiment’s statistics goals. The Inflector Beam Monitoring System (IBMS) was

developed to measure the spatial beam profile along the injection path. Because this development was a major

contribution from the author, it is described in detail in this chapter. The IBMS is a tool to assist with beam tuning

and injection modeling, and to continuously monitor 1 the beam profile at injection.

The system comprises three detector modules, shown in Figure 3.1. IBMS1 is the upstream-most IBMS mod-

ule, positioned just outside the magnet yoke hole. IBMS2 is positioned ∼2m into the 100mm diameter yoke hole

bore, just upstream of the inflector entrance. IBMS3 is the downstream-most module, positioned ∼1m downstream

of the injection point (inflector exit) inside the storage ring vacuum chamber. IBMS3 is inserted for dedicated beam

studies and retracted for normal production running.

Each module consists of a grid of scintillating fibers (SciFis) which emit light in response to incident muons.

Each 0.5mm diameter fiber is coupled to a 1mm2 silicon photomultiplier (SiPM) light sensor. IBMS1 and IBMS2

consist of two planes of 16 SciFis each, oriented in the horizontal and vertical directions. The horizontal (vertical)

fiber plane records the vertical "Y" (horizontal "X") beam profile. IBMS3 consists of just one plane of 16 vertical

SciFis to record the horizontal beam profile, which is most critical for the injected beam.

Figure 3.2 shows typical beam profiles recorded by each IBMS detector, corresponding to the time-integrated

beam intensity recorded by each fiber shown in Figure 3.3.

1periodically checked by shifters every hour over several years of experiment running time
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Figure 3.1: IBMS detector modules (top, engineering drawings and assembled detectors) and locations along the
injection path (bottom)
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Figure 3.2: Typical IBMS beam profiles in Run-3, corresponding to the time-integrated beam intensity recorded
by each fiber. +x is radially in and +y is up.
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Figure 3.3: Typical IBMS fiber beam traces in Run-3, for injected beam bunch 0. (Fiber numbering starts on the
radially outward side for the X planes, and on the top side for the Y planes.) Time-integrated beam traces give the
IBMS beam profiles.
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3.1 Mechanical design and geometry

The geometry of each detector was optimized for the expected beam profile at each position, as shown in Figure 3.1

and Table 3.1. All three detectors have air gaps set by spacers between the SiPMs and the fiber faces so that the

light cone from the fiber fills the SiPM active area.

X pitch [mm] Y pitch [mm] X×Y active area [mm×mm] SiPM air gap [mm]

IBMS1 5.5 2.7 88.0×43.2 1.0
IBMS2 3.25 3.25 52.0×52.0 0.5
IBMS3 3.0 - 48.0 1.0

Table 3.1: IBMS X and Y fiber geometry

3.1.1 IBMS1

The IBMS1 location outside the magnet yoke hole in open air allowed some flexibility in its positioning and

design. The module is housed in an aluminum enclosure for noise shielding, with an opening for the active area.

The amplifier electronics are also thermally coupled to the enclosure for heat dissipation. The active SciFi and

SiPM area is wrapped in black Tedlar film for light-tightness. The assembly is mounted on a remote-controlled

linear X-Y translation stage for repeatable positioning and in-beam fiber calibration. The space also allowed a more

modular design for the readout electronics than was possible for IBMS2 (Section 3.2).

3.1.2 IBMS2

The IBMS2 location inside the yoke hole imposed strict space constraints. The module is mounted on an aluminum

cart, which also provides noise shielding and thermal coupling for the amplifier electronics. The whole assembly is

mounted on a linear rail and carriage system installed inside the 100mm diameter bore, which carries the detector

∼2m downstream to its operating position. Like IBMS1, the active area is wrapped in black Tedlar for light-

tightness. The confined space presented an additional challenge in managing heat generated by the amplifier

electronics; a fan and split duct connected to the yoke hole allowed operation at ≲ 40 ◦C, a safe temperature

for the plastic SciFis and optical glue joints.

3.1.3 IBMS3

The IBMS3 location inside the storage ring vacuum chamber and in the ring field presented several unique con-

straints. The detector is installed in a port originally intended for a third straw tracker module, and the assembly is
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built with a modified tracker port flange. The SiPM board is mounted directly to the fiber frame in the vacuum, and

signals cables connect via vacuum feedthrough to an amplifier board on the air side. The amplifier board is housed

in an aluminum enclosure for noise shielding and thermal coupling.

The entire assembly had to be non-magnetic to avoid perturbing the field above the few-ppm level. To verify

this, the full assembly was transported to Argonne National Lab (ANL) to measure the field perturbation on a

1.45T magnet test stand with an NMR probe, with support from the ANL team. The largest measured perturbation

was 3.5 ppm, well within safe limits.

All in-vacuum components had to be low outgassing for the < 1× 10−6 torr storage ring vacuum. The rate of

rise (ROR) of all in-vacuum components was measured in a vacuum test chamber, and all components had ROR

well below the reference specification for straw trackers.

The detector is mounted on a vacuum feedthrough linear micrometer which allows manual insertion into the

injected beam for dedicated beam measurements, and retraction out of the storage region for production physics

running and trolley runs. The simulation team incorporated the detailed IBMS3 model into the gm2ringsim Geant4-

based Monte Carlo software and verified there was no significant effect on calorimeter e+ hits.

3.1.4 Surveyed positions

To establish the precise locations where the beam is profiled, each detector position was measured in the coordinate

system of the ring. Surveyed positions in Table 3.2 are defined relative to the nominal beamline (at a 1.25 deg

horizontal angle to the tangent line and vertically centered on the ring), the injection point (nominal inflector exit,

12.35 deg downstream of the 12 o’clock on the ring at a radius rinj = 7112 + 77mm = 7189mm), and the

nominal orbit (R = 7112mm). Positions relative to the ring are shown in Figure 3.4.

x [mm]
relative to NBL
(+x radially in)

y [mm]
relative to NBL

(+y up)

z [mm]
along NBL from injection point

(+z upstream)

IBMS1 0 0 +4397.0
IBMS2 -2.6 +0.9 +1950.5

r [mm]
from ring center

θ [deg]
relative to injection point

(+θ clockwise)

IBMS3 (Run-2) 7183.2 8.160
IBMS3 (Run-3+) 7181.2 8.175

Table 3.2: Surveyed IBMS center positions, where NBL is the nominal beamline. Two positions are given for
IBMS3 because its mounting hardware was reconfigured between Run-2 and Run-3.
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• IBMS1: The IBMS1 was vertically aligned with the ring center plane and horizontally aligned with the

nominal beamline to better than 1mm using fiducial marks. The longitudinal position was estimated using a

manual measurement combined with design dimensions.

• IBMS2: The position of IBMS2 was surveyed to better than 0.5mm using a laser scanner, with reflectors

mounted on the IBMS2 assembly. A laser distance meter was used to ensure repeatable positioning.

• IBMS3: The IBMS3 internal geometry was measured with a laser scannner at the Fermilab metrology shop,

and registered in the ring using external laser fiducials. This survey provided the position of IBMS3 to better

than 0.5mm, with better than 50 µm repeatability provided by limit switches.

Figure 3.4: IBMS positions in an engineering model of the ring. (IBMS1&2 positions are from the survey;
IBMS3 position is from a preliminary measurement, not the final survey.) Note: Q023 is one of the M5 final focus
quadrupole magnets, positioned along the nominal beamline.
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3.2 Electronics and readout

SiPM light sensors generate a current in response to detected light, and can operate safely in strong magnetic

fields. The S12571-010P SiPMs from Hamamatsu were selected for their large dynamic range (10,000 pixels in a

1mm2 area) and fast pixel recovery time. Their typical operating voltage is 69.5V. The SiPMs were soldered onto

16-channel boards which fit onto each 16-fiber detector plane. Low-noise programmable gain amplifiers (PGAs),

configurable with 0-18 dB gain in 3 dB increments, convert SiPM currents to voltage signals. The signal voltage

gain per SiPM current is determined by the amplifier shunt resistor value, the PGA setting, and the gain of the line

drivers which transmit the output signals. The maximum signal gain (with PGA set to 18 dB) is 320mV/mA for

IBMS1&2 and 1056mV/mA for IBMS3. Each amplifier board also includes a temperature sensor. A BeagleBone

microcontroller handles control and communication with the amplifier electronics. The amplified analog signals

are transported by micro-coax cable to the receiving 12-bit waveform digitizers (CAEN V1742); all 80 channels

are digitized for 1 µs per beam pulse at a rate of 1 GS/s, as shown in Figure 3.6, and recorded for every beam pulse.

Each detector has functionally similar electronics with slightly different configurations.

• IBMS1: SiPM and amplifier electronics placed on separate boards joined with a right-angle card edge con-

nector.

• IBMS2: SiPM and amplifier electronics are combined on one board per fiber plane for efficient use of the

confined space in the yoke hole.

• IBMS3: SiPM and amplifier boards are separate, similar to the IBMS1 configuration. The SiPM board is

mounted directly to the fiber frame in the vacuum; coax signal cables connect the SiPM board via vacuum

feedthrough to an amplifier board on the air side.

One challenge during IBMS3 electronics testing was noise pickup on the SiPM signal cables. Possible effects

from the pulsed kicker and quadrupoles combined with RF shielding from the vacuum chamber was unknown. The

noise performance was better than expected, however, with ∼1mV noise on a < 0.8V full-scale signal.

3.2.1 Stability monitoring

Electronic test pulses injected directly to the amplifier inputs are used to check the amplifier response and monitor

stability. The ∼100 ns square pulses are timed to a few hundred ns after each beam pulse, and the rising edge is

used for timing jitter correction in the digitized signals.

The IBMS1&2 detectors include a light injection system which directs pulsed LED light into each SciFi, pro-

viding a repeatable measure of the detector response and real-time stability monitoring during operation. Surface-
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Figure 3.5: The IBMS readout electronics consist of SiPMs read out by a programmable gain amplifier. Each
detector’s electronics are configured slightly differently depending on mechanical requirements.
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Figure 3.6: Example digitized time-averaged IBMS traces, after subtracting the baseline and correcting timing
jitter. The waveform digitizers are triggered just before beam arrival, with the beam pulse appearing between 0 and
500 ns. IBMS1&2 have electronic pulses injected to the amplifier at ∼600 ns and LED light pulses after 700 ns.
IBMS3 has an electronic pulse at ∼700 ns, and no LED pulse.

mount LEDs are coupled into notched optical fibers which direct a portion of the LED light into each SciFi. The

∼200 ns LED pulses are timed after the beam pulses and electronic pulses. This arrangement allows relative gain

monitoring with a single source per detector plane.

3.3 SiPM light sensors

SiPMs are solid-state sensors which can detect single photons [59,60]. Each SiPM pixel is a Geiger mode reverse-

biased avalanche photodiode in series with a quenching resistor, with the bias voltage set above the avalanche

breakdown voltage. A photon striking a pixel produces an electron avalanche (with a probability given by the

photon detection efficiency, or PDE), increasing the voltage across the resistor and reducing the voltage on the

pixel until the current is quenched. The resulting pulse has a ∼1 ns rise and ∼40 ns decay time (in the case of the

S12571-010P SiPMs).

In this Geiger mode, one or more photons generate the same current pulse in a single pixel, but photons striking

separate pixels produce a combined SiPM current proportional to the number of pixels fired. The probability of a

pixel firing in response to an incident photon is given by the PDE times the probability of hitting an unfired pixel.
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The number of fired pixels Nf is then given by

Nf = N
(
1− e−Nγ ·PDE/N

)
(3.1)

for Nγ incident photons and N total pixels. For Nγ ·PDE ≪ N , Nf ≈ N and the SiPM response is appoximately

linear. The response becomes increasingly nonlinear with light intensity, as shown in Figure 3.7. The desired

operating mode is the linear SiPM response range.

3.4 Characterization

3.4.1 SiPM response

The SiPM current response as a function of light intensity was measured with LED light, which was repeatably

aligned with the LED light injection assembly (Section 3.2.1). The light intensity was varied by adjusting the LED

supply current, and by placing neutral density foils in front of the LED. The LED light intensity vs. current was

separately measured with a photomultiplier tube. Figure 3.7 shows that SiPM currents can exceed 20mA, and the

response is most linear below ∼5mA. The desired maximum SiPM current was therefore defined as 5mA.

The SiPM signal current is proportional to the number of firing pixels, and individual pixels can be fired by

single photoelectrons (pe). SiPM signals are superpositions of single pe (Figure 3.7). Single pe signals can be

resolved when operating with sufficient gain, providing a natural self-calibration of the SiPM signal in terms of pe.

(a) Example SiPM saturation curve shows linear response below
∼5mA.

(b) SiPM signals separated into 1-, 2-, and 3-
photoelectron pulses, seen here with the high-gain cal-
ibration amplifier board.

Figure 3.7: SiPM saturation and single photoelectrons
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3.4.2 MIPs response

Scintillators are materials which emit light when charged particles pass through the material and excite its atoms

and molecules [61]. In the case of organic scintillators such as the polystyrene of the IBMS SciFis, scintillation

light is emitted when the molecules’ free valence electrons absorb ionizing radiation and produce a flash of light

within a few nanoseconds. The scintillator light output is related to the energy the particle deposits by

dL

dx
=

AdE
dx

1 + kB dE
dx

(3.2)

where dx is the unit path length, and A and kB are parameters of the scintillator (A is the absolute scintillation

efficiency; kB relates the density of ionization centers to dE/dx). For small dE/dx, Eq. 3.2 becomes approx-

imately linear with dL/dx ∝ dE/dx. Relativistic particles such as the injected muons are minimum ionizing

particles (MIPs) [62], particles which deposit the minimum energy per unit length in the scintillator and produce a

well-defined light output.

A collimated Strontium-90 beta electron source was used to characterize the detector response to MIPs. The

source was positioned within a few centimeters of the SciFis of interest, with a scintillation counter on the opposite

side of the fiber providing coincidence triggers. The detector was positioned with a linear stage relative to the fixed

source and coincidence counter. A special high-gain configuration of the amplifier electronics (with larger-than-

nominal shunt resistors) was required to resolve single MIPs signals, which are typically a few pe. For maximum

efficiency, the SiPMs were coupled flush to the fiber faces with optical grease.

A histogram of the time integrals of individual SiPM pulses shows single pe peaks in the envelope of a Landau

distribution according to the energy deposited in the scintillator (Figure 3.8). The mean response was ∼4 pe/MIP

for IBMS1&2 and ∼7 pe/MIP for IBMS3. This difference is due to different mounting configurations of the

reflective Mylar film on the fiber ends opposite the SiPMs which increases light collection efficiency. Because

the calibration procedure required a different detector configuration from the final assembly, the calibration was

“transferred” to the final configuration with relative attenuation factors measured with injected LED light in each

configuration. These transfer factors had significant channel-to-channel variation and were only consistent to within

∼30%, which was still sufficient to predict approximate IBMS signals in the beam.

For IBMS1&2, neutral density (ND) filters were placed in front of the SiPMs to set the detector response within

the linear SiPM operating range for the expected 7× 105 muons [36] per ∼150 ns injected beam bunch. The actual

beam intensity was lower than expected, estimated very roughly at ∼5 × 105 from IBMS and T0 detectors. The

selected ND filters are shown in Table 3.3, along with maximum measured SiPM currents in the beam from a
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Figure 3.8: Left: The distribution of SiPM pulse integrals from the IBMS3 MIPs response shows single pe peaks,
each fitted with a Gaussian. Right: A simple Poisson distribution fitted to the pe peaks gives the mean pe/MIP for
each detector channel (∼6.5 pe/MIP in this example).

typical run. All channels were well below the 5mA desired maximum SiPM current.

ND optical density (log10(transmission)) ND measured transmission peak SiPM current [mA]

IBMS1
0.15 (X)
0.6 (Y)

0.75 (X)
0.25 (Y)

0.6

IBMS2 0.6 0.25 0.9
IBMS3 0.15 0.68 2.2

Table 3.3: Selected ND filters and transmissions (measured with LED), and maximum measured SiPM current
(from typical beam traces in Run-3).

3.4.3 Relative fiber efficiency calibration

For IBMS1 and IBMS3, the relative fiber efficiencies were calibrated directly in the beam. IBMS1 is mounted on a

linear stage and IBMS3 is mounted on a linear micrometer, allowing each detector’s transverse position in the beam

to be repeatably adjusted. Each detector is displaced by one fiber pitch, and the relative efficiency between two

fibers is given by the ratio of beam intensities measured by each fiber at the same position in the beam (Figure 3.9).

The beam profiles recorded during production running are corrected by dividing out the measured relative fiber

efficiencies (Figure 3.10). Relative efficiencies show excellent fiber uniformity of better than 12% within each

detector.

The IBMS2 transverse position cannot be adjusted, so this relative efficiency calibration method was not pos-

sible. However, a similar approach could be employed with the detector removed from the yoke hole.
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(b) Relative fiber efficiencies are extracted from the ratios
of different fibers at the same position. Efficiencies cal-
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< 1%, and fibers are uniform within 12%.

Figure 3.9: Relative fiber efficiency calibration procedure for IBMS1X

-2 0 2 4 6 8 10 12 14 16
fiber

0

10000

20000

30000

40000

in
te

gr
al

 [a
rb

. u
.]

corrected profiles, shifted to same position
+1 fiber step
+0 fiber step
-1 fiber step

Figure 3.10: Corrected IBMS1X beam profiles (vs. fiber number) with relative fiber efficiencies divided out. Here
the displaced profiles are shifted to the same reference position, then overlaid to demonstrate that the method is
consistent for steps in either direction.

3.5 Summary

The Inflector Beam Monitoring System (IBMS), consisting of three scintillating fiber detector modules, was de-

veloped to profile the injected beam. Optimizing the beam injection is essential for muon storage efficiency, and

the IBMS provides a tool to assist with beam tuning, injection modeling, and real-time beam monitoring. Each

detector had its own challenges and constraints imposed by the operating environment, leading to a unique design

for each module. The detector response was characterized using a radioactive source, and the dynamic range was

set with neutral density filters to ensure a linear SiPM response. Relative fiber efficiencies were calibrated directly

in the beam. The IBMS detectors have performed reliably and provided feedback about the injected beam over the

several years of experiment running time.
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Chapter 4

Beam Dynamics Introduction

Understanding the dynamics of the muon beam is necessary to understand why injecting the beam into the g − 2

ring is a challenging process, how to characterize and measure the injected beam for improved modeling (discussed

in Section 5.1), and how to model and reconstruct the stored beam distribution around the ring, for example to

calculate the average magnetic field experienced by the muons circulating in the ring (discussed in Chapter 7). This

chapter introduces a selection of fundamental beam dynamics concepts which are referenced throughout this thesis.

References [63–66] are used throughout the chapter.

4.1 Transverse linear motion

A charged particle moving in electric E and magnetic B fields experiences the Lorentz force.

d

dt
(γmṙ) = e (E + ṙ ×B) (4.1)

In a beamline with E and B fields perpendicular to the particle’s trajectory, the beam motion can be described

in a coordinate system moving along the trajectory. Assuming the fields are linear in the transverse coordinates

(x, y), consider vertical dipole and transverse quadrupole magnetic fields,

By(s) = By0(s) +
dBy(s)

dx
x (4.2)

Bx(s) =
dBx(s)

dy
y . (4.3)

The dipole fieldBy0 steers the beam with bend radiusR(s) = e
p0
By0(s). The quadrupole field with strength k(s) =

− e
p0

dBy(s)
dx = − e

p0

dBx(s)
dy focuses the beam if k < 0 or defocuses the beam if k > 0. After some simplification and
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using the approximation that the transverse beam motion is small relative to the nominal trajectory, i.e. x, y << R,

the equations of motion in (x, y) relative to the nominal trajectory become

x′′(s) +Kx(s)x(s) =
1

R(s)
δ (4.4)

y′′(s) +Ky(s)y(s) = 0 (4.5)

with

Kx(s) ≡
(

1

R2(s)
− k(s)

)
(4.6)

Ky(s) ≡ k(s), (4.7)

where s is the path length along the nominal trajectory, derivatives are taken with respect to s, and δ = ∆p
p0

is the

momentum deviation. Figure 4.1 shows the coordinate system moving along the trajectory.

Figure 4.1: Coordinate system moving along the trajectory, with longitudinal coordinate s and transverse coordi-
nates (x, y).

Eqs. 4.4 and 4.5 are known as Hill’s equations. The closed form solution to the homogeneous equation with

constant Kx > 0 has the familiar form of a harmonic oscillator. The general solution has the form

x(s) =
√
ϵ
√
β(s) cos[Ψ(s)] , (4.8)

with the constants ϵ and Ψ(0) = Ψ0 determined by the initial conditions. ϵ is called the emittance and β(s), known

as the beta function, determines the beam envelope
√
ϵβ(s).
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Substituting β(s) ≡ u2(s) and separating variables u and Ψ,

Ψ(s) =

∫ s

0

dσ

β(σ)
(4.9)

u′′ − 1

u3
+Ku = 0 (4.10)

or equivalently

2ββ′′ − β′2 + 4Kβ2 = 4. (4.11)

From Eq. 4.9, dΨ
ds = 1

β . Then the β function is not only a measure of the transverse beam size, but also the

wavelength of the betatron oscillation λ = 2πβ; it relates beam size, phase advance, and betatron wavelength.

The derivative of x(s) gives the divergence angle

x′(s) = −
√

ϵ

β(s)
[α(s) cos[Ψ(s)] + sin[Ψ(s)]] (4.12)

where α(s) ≡ −β′(s)/2. The trajectory x(s) in Eq. 4.8 can then be expressed in terms of initial conditions

x0 = x(0), β0 = β(0), x′0 = x′(0), and α0 = α(0).

xβ(s) =

√
β(s)

β0

[
x0 (cos[Ψ(s)] + α0 sin[Ψ(s)]) + x′0β0 sin[Ψ(s)]

]
(4.13)

Figure 4.2: Particle trajectories x(s) within an envelope described by the emittance ϵ and the β(s) amplitude
function. Reproduced from [67].
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Piecewise solution and transfer matrices

The trajectory equations Eqs. 4.8 and 4.12 can be written in matrix form. Simple transfer matrices can often

describe piecewise solutions for elements with constant k and R, and a full beam lattice structure can be evaluated

by multiplying the individual transfer matrices. The evolution of the trajectory is given by

 x(s)

x′(s)

 = M(s)

 x0

x′0

 . (4.14)

Explicit forms of transfer matrices for a constant dipole field, constant quadrupole field, and field-free drift

section are given in Appendix A.

4.1.1 Phase space ellipse

Eqs. 4.8 and 4.12 describe the single particle trajectory in x-x′ phase space. The particle’s motion in the x-x′

plane can be described by an ellipse, shown in Figure 4.3. Eliminating Ψ(s) and introducing γ(s) ≡ 1+α2(s)
β(s) , the

equation of the ellipse is

γ(s)x2(s) + 2α(s)x(s)x′(s) + β(s)x′2(s) = ϵ . (4.15)

The parameters α, β, γ, and ϵ are called Twiss parameters. The emittance ϵ defines the area of the ellipse, A = πϵ.

Figure 4.3: Phase space ellipse describing particle motion in x-x′. Figure courtesy of M. Syphers [65].

The ensemble beam distribution in x-x′ phase space is equivalently described by the beam matrix σ,
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σ =

 σ2x σxx′

σxx′ σ2x′

 = ϵ

 β −α

−α γ

 . (4.16)

Here σx and σx′ are the RMS beam widths in x and x′ and σxx′ is the x-x′ covariance. The beam can be transported

using the same transfer matrices in Section 4.1, with σs = σ(s) and σ0 = σ(0).

σs = M σ0M
T (4.17)

4.1.2 Dispersion

To solve the inhomogeneous form of Eq. 4.4 with the nonzero driving term on the right-hand side, a particular

solution is added to the homogeneous solution. Define a special trajectory D(s), called the dispersion function,

with momentum deviation δ = 1. Eq. 4.4 becomes

D′′(s) +Kx(s)D(s) =
1

R(s)
. (4.18)

The full solution for the x trajectory is then

x(s) = xβ(s) + δD(s) . (4.19)

Off-momentum particles have a momentum-dependent trajectory described by the dispersion, separating the

particles in x as shown in Figure 4.4. For the simple case of a constant dipole field with Kx = 1
R2 , D = R is a

solution.

The dispersion D(s) can be described in matrix form using a 3 × 3 transfer matrix, which generally includes

the elements of the corresponding 2× 2 matrix in Section 4.1.


D(s)

D′(s)

1

 = M(s)


D0

D′
0

1

 (4.20)

The full trajectory (Eq. 4.19) is described with the same 3 × 3 matrix which describes the dispersion. Ex-

plicit transfer matrices for a constant dipole field and combined constant dipole and quadrupole fields are given in

Appendix A.
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Figure 4.4: Dispersion separates off-momentum particles in x with an offset proportional to their momentum devi-
ation, shown here in x-x′ phase space with colors indicating different momenta. Figure courtesy of M. Syphers [65].


x(s)

x′(s)

δ

 = M(s)


x0

x′0

δ

 (4.21)

4.2 Injecting the beam into the Muon g − 2 ring

Muon beam injection into the g − 2 storage ring is a challenging and critical step for muon storage [36] [68].

The last stage in transporting the muon beam to the ring is the M5 final focus beamline segment, consisting of 4

magnetic dipole and 6 magnetic quadrupole elements to steer and focus the beam (Section 2.2). Downstream of

the M5 line, the beam travels more than 3m with no beam elements before injection to the ring, and experiences

strong deflecting and focusing forces from the magnetic fringe fields of the ring. As discussed in Section 2.3, the

beam enters the ring through the narrow 18mm× 56mm aperture of the inflector magnet. The beam is injected at

a 77mm horizontal offset to the nominal orbit, and at a 1.25◦ horizontal angle to the nominal orbit’s tangent line to

compensate for magnetic fringe fields which are not perfectly canceled by the inflector. The inflector is positioned

along this "nominal beamline".

Because the incident beam optics are designed to optimize transmission by focusing through the narrow inflec-

tor, the injected beam phase space is mismatched with the accepted phase space of the ring (shown in Table 4.1);

matching the ring acceptance would significantly reduce transmission. As discussed in Section 2.4, the pulsed

kicker was weaker than expected, particularly before late in Run-3, and did not properly compensate the horizontal

offset of the injected beam. These mismatches in the beam phase space, particularly the horizontal phase space,

lead to oscillations in the stored beam as described in Section 4.3.4. The ring also accepts a narrow bite of the
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Figure 4.5: The M5 final focus is the final beamline segment which transports the beam to the g − 2 ring [69].

Figure 4.6: The beam is injected through the inflector into the ring at a 1.25◦ angle to the tangent line, and at a
77mm horizontal offset to the nominal 7112mm orbit. The angled injection path is called the "nominal beamline".

1.6% momentum width of the incident beam; a width of only ∼0.15% is stored. These factors result in a low muon

storage fraction Nstored/Nincident which is highly sensitive to the phase space parameters of the incident beam.

Parameter Inflector (design optics) [40] Ring lattice (n = 0.108)

horizontal dispersion Dx 0m R/(1− n) = 8.1m
horizontal βx 1.5m R/

√
1− n = 7.5m

verical βy 10.0m R/
√
n = 21.6m

Table 4.1: Values of beam optical functions in the inflector vs. ring lattice (using the expressions in Section 4.3.1).
The mismatch in beam phase space is the trade-off for optimizing transmission through the inflector.
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Figure 4.7: Left: Horizontal injection trajectory relative to the inflector center axis. The longitudinal s origin is
30 cm upstream of the magnet yoke hole. IBMS detectors shown at original planned locations, which were later
adjusted. Right: β functions and transverse beam size (calculated with emittance ϵ90% = 40mm–mrad) along the
injection trajectory. Figures courtesy of D. Rubin.

4.3 The Muon g − 2 ring

In a circular ring, the particles’ trajectory is described by the equations in Section 4.1 with the condition that Kx(s)

and Ky(s) are periodic in the ring circumference. In the g − 2 ring, the vertical magnetic dipole field provides

a bending radius. The electrostatic quadrupoles vertically focus and horizontally defocus the beam, and electric

quadrupole fields replace the magnetic quadrupole fields in Eqs. 4.2 and 4.3.

The lattice configuration of a quarter arc of the ring is [ BBQQBS BS QQQQBB ] with long bend-

only segment B, short bend-only segment BS, and combined bend/quad segment Q (also shown in Figure 4.9).

Parameters of the ring and the muon beam are shown in Table 4.2.

quantity symbol value unit
Lorentz factor Eµ/mµ γ 29.3

muon mass mµ 0.10566 GeV/c2

nominal muon momentum p0 3.094 GeV/c
nominal muon energy E 3.096 GeV

nominal muon velocity v0 0.999417 c
ring radius R 7.112 m
bend field B0 1.45 T

quad aperture aq 0.05 m
length of long bend-only segment sB 1.4580 m
length of short bend-only segment sBS 0.2481 m

length of segment w/ quad sQ 0.8066 m

Table 4.2: g − 2 ring parameters
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4.3.1 Smooth quad approximation

Treating the fields as constant in s and the discrete quadrupoles as continuous ("smooth quad approximation"), the

fields have the form

B = (0, B0, 0) (4.22)

E = κ (x,−y, 0) . (4.23)

The quadrupole strength is k = κ/v0B0R and the dipole bend radius isR = p0/B0, where natural units with e = 1

are now used. The field index n ≡ kR2 describes the combined fields. R is the nominal orbit "magic radius", B0

is the magic magnetic field, p0 is the magic momentum, and v0 is the nominal velocity.

Figure 4.8 shows the ring coordinate system.

Figure 4.8: The coordinate system now moves along the ring orbit, with longitudinal coordinate s and transverse
coordinates (x, y).

The focusing functions are then constant,

Kx =
1− n

R2
Ky =

n

R2
, (4.24)

and the homogeneous Hill’s equations become

x′′ +
1− n

R2
x = 0 y′′ +

n

R2
y = 0 . (4.25)

The horizontal focusing provided only by the magnet bend R is known as "weak focusing". Stable focusing in

both planes requires 0 ≤ n ≤ 1.

65



With constant K, β = 1√
K

is constant (Eq. 4.11). Defining the tune ν as the phase advance (Eq. 4.9) over one

turn around the ring,

ν =
1

2π

∮
ds

β
=
R

β
. (4.26)

The horizontal and vertical trajectories describe betatron oscillation about an equilibrium position,

x = xe +
√
ϵxβx cos[νx

s

R
+ ϕx] y = ye +

√
ϵyβy cos[νy

s

R
+ ϕy] , (4.27)

with horizontal and vertical tunes

νx =
√
1− n νy =

√
n . (4.28)

The tunes correspond to frequencies of the betatron oscillations, which are slower than the cyclotron frequency by

ωx =
√
1− nωc and ωy =

√
nωc. The dispersion Dx = R

1−n (Eq. 4.18) is also constant with constant Kx. The

equilibrium radius is given by the dispersion, xe = δDx = δ R
1−n . The vertical equilibrium position is ye = 0 in

the absence of a vertical dispersion.

The matrix forms of these solutions are given by the 3× 3 focusing matrix with dispersion for x (Eq. A.5) and

the 2× 2 focusing matrix for y (Eq. A.2), with Kx = 1−n
R2 and Ky = n

R2 .

4.3.2 Discrete quadrupoles

The beam dynamics functions corresponding to the discrete quadrupole structure can be calculated with the transfer

matrix formalism (Section 4.1), but the exact solutions with precisely-measured field multipoles must be calculated

with a numerical model. In general, the four-fold symmetry of the quadrupole segments leads to beam functions

which vary in azimuth with a four-fold symmetry, causing the ensemble beam distribution to vary with azimuth. Re-

alistic beam functions are necessary for full beam profile reconstructions, for example to calculate beam dynamics

ωa corrections (Section 2.8) and the muon-weighted magnetic field (Chapter 7).

Figure 4.9 shows beam dynamics functions extracted from a COSY-based model of the g − 2 ring fields,

which calculates optical beam transfer maps from the differential equations of motion (D. Tarazona [70]). Here

the model was configured with a magnetic field map from an example Run-2 trolley map (dipole field shown in

Figure 4.10, as well as higher-order multipoles) and discrete electric quadrupole fields with Run-2 quad voltages.

The azimuthal variation in the magnetic field leads to slight azimuthal asymmetries in the beam functions. Magnetic
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field multipoles also affect the field index and cause the average beam functions to slightly deviate from the smooth

quad approximation.
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Figure 4.9: Beam functions (horizontal βx, vertical βy, and horizontal dispersionDx) from COSY beam dynamics
model which includes realistic ring fields. The model constructs the electric field from the discrete quadrupoles
(shown in gray), and the magnetic field from a field map measured by the trolley. The fields used here correspond
to an example Run-2 configuration. The red horizontal lines show the smooth quad approximation values of each
function for a typical field index n = 0.108. The COSY azimuthal coordinates reference the upstream edge of
quad Q1S (Section 7.3.5).
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4.3.3 Closed orbit distortion

The equilibrium position about which betatron oscillations occur is known as the closed orbit. Dipole and quadrupole

field errors cause the closed orbit to deviate away from the equilibrium position, corresponding to an azimuth-

dependent offset in the beam mean position. The beam position around the ring is necessary for full beam profile

reconstructions, for example to calculate beam dynamics ωa corrections (Section 2.8) and the muon-weighted mag-

netic field (Chapter 7). One source of closed orbit distortions (COD) is azimuthal variation in the magnetic dipole

field; variation in the vertical field causes a COD in x, and a varying radial field causes a COD in y.

x(θ) = xe(θ) + xCOD(θ) + xβ(θ) y(θ) = yCOD(θ) + yβ(θ) (4.29)

where θ = s/R is the ring azimuth, and the vertical equilibrium position is zero (with zero average radial mag-

netic field). Allowing azimuthally-varying vertical and radial magnetic dipole fields B = (Bx(θ), By(θ), 0), the

equations of motion with the smooth quad approximation become [71]

∂2x

∂θ2
+ (1− n)x = −RBy(θ)

B0

∂2y

∂θ2
+ ny = R

Bx(θ)

B0
. (4.30)

The magnetic field components can be expanded in a Fourier series with respect to the azimuth

 By(θ)

Bx(θ)

 =
∞∑

N=0

 bN

rN

 cos[Nθ + θN ] (4.31)

with amplitudes bN , rN (corresponding to theBy, Bx field) and phase θN for each Fourier harmonicN . Replacing

the magnetic field terms in the equations of motion, the solutions have the form of Eq. 4.29 with xCOD and yCOD

given by

xCOD(θ) = −R
∞∑

N=0

cos[Nθ + θN ]

ν2x −N2

bN
B0

yCOD(θ) = R
∞∑

N=0

cos[Nθ + θN ]

ν2y −N2

rN
B0

. (4.32)

where νx =
√
1− n and νy =

√
n. For xCOD in particular, νx ≲ 1 so the N = 1 Fourier term is most significant

and the N > 1 terms vanish quickly.
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Figure 4.10: Top: Example dipole field map around the ring from Run-2 (blue) and lowest-order Fourier terms
extracted from the field map (orange); N = 0 is the average offset and N = 1 is the first harmonic. Bottom: xCOD

from COSY beam dynamics model using the above field map (blue), and xCOD calculated from Eq. 4.32 with only
the N = 1 term (orange). The close agreement shows that the N = 1 term is dominant for xCOD. The COSY
azimuthal coordinates reference the upstream edge of quad Q1S (Section 7.3.5).
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4.3.4 Characteristic frequencies of the stored beam

Because the injected beam phase space does not uniformly fill the ring acceptance, the stored beam experiences

oscillations which are characterized by several frequencies related to the cyclotron frequency ωc and the betatron

frequencies ωx and ωy [42]. The beam coherently oscillates at the horizontal betatron frequency ωx due to the

horizontal injection offset and the weak kick. Because ωc > ωx > ωc/2, a detector at a fixed azimuth observes an

aliased frequency known as the coherent betatron oscillation (CBO), ωCBO = ωc − ωx. The horizontal centroid

oscillates at ωCBO, and the horizontal width oscillates at 2ωCBO and at ωCBO if the stored beam is not centered at

R. The vertical betatron frequency ωy < ωc/2 is not aliased, and vertical centroid oscillations are small because

the beam is injected close to vertical center. The vertical width oscillates at 2ωy, and the aliased observed frequency

is known as the vertical waist ωVW = ωc − 2ωy.

Frequencies in Table 4.3 are calculated for a typical field index n = 0.108 with parameters in Table 4.2, using

the smooth quad approximation.

quantity equation ω [rad/µs] f [MHz] T [µs]

ωc
eB0
mµγ

= v
R 42.15 6.71 0.149

ωx

√
1− nωc 39.81 6.34 0.158

ωy
√
nωc 13.85 2.20 0.454

horizontal CBO ωCBO ωc − ωx 2.34 0.37 2.684
vertical waist ωVW fc − 2fy 14.45 2.30 0.435

ωa
eaµB0

mµ
1.44 0.23 4.366

Table 4.3: g − 2 ring frequencies with f = ω/2π and T = 1/f for field index n = 0.108
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Chapter 5

Characterization of the Injected Beam

The beam dynamics of the stored muon beam depend on both the parameters of the injected beam and the fields

and geometry of the storage ring. Several different software packages are used within the g − 2 collaboration for

beam dynamics modeling and simulation. In Run-1, some inconsistencies were apparent among the different beam

dynamics models. In particular, the models disagreed about the time-momentum correlation introduced by the

kicker, which dominated the uncertainty on the ωa electric field correction (discussed in Chapter 6).

The experiment’s primary Monte Carlo simulation for modeling realistic physics running conditions is gm2ringsim [68].

This software, based in Geant4, models the fields, materials, and geometries of the ring, and tracks circulating

particles and their interactions. The simulation starts with beam injection from a point upstream of the ring (Sec-

tion 5.2.2). For Run-1 simulations, the injected beam phase space was taken from a particle distribution produced

by a Monte Carlo simulation of the full beamline starting at the pion production target ("end-to-end" simulation

from E. Valetov [72]), combined with Run-1 beam parameter measurements (N. Froemming [68]). However, the

end-to-end simulation lacks realistic verification along the beamline.

Run-1 simulation inconsistencies as well as changes in the beamline motivated this author to measure the in-

jected beam parameters in the final beamline configuration for Muon g− 2 production running. This measurement

provides verification for the complex end-to-end simulation at injection, the most critical location for the experi-

ment. Further, it provides realistic input for beam injection modeling. The injected beam parameters were updated

in gm2ringsim using this measurement, which built confidence in the simulation.
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5.1 Injected beam phase space measurement

This section presents a direct measurement of the transverse horizontal beam phase space at the end of the M5

beamline, the final focusing segment before injection into the ring (Section 4.2). Because the ring bend lies in the

horizontal plane, the horizontal phase space is more important than the vertical. The beam phase space is derived

with uncertainty estimates, with the goal of providing verified input for realistic beam injection modeling.

5.1.1 Approach

The measurement approach, known as the quadrupole scan method, is a well-known method for characterizing

accelerator beams. The basic strategy [73,74] is to vary the focusing strength of a beamline quadrupole magnet and

measure the horizontal beam width at a downstream screen. Then the data can be fit using an expression for the

beam width as a function of quadrupole strength (Eq. 5.1) to extract the beam Twiss parameters. The quadrupole

used for this measurement is Q023 in the M5 line (Figures 4.5 and 5.1) and the screen is the IBMS1 detector

(Chapter 3). The analysis uses the beam transfer matrix formalism introduced in Section 4.1.

Figure 5.1: M5 final focus beamline elements [69]

This approach is illustrated for three different Q023 current setpoints in Figures 5.2 and 5.3, which shows

horizontal and vertical RMS beam envelopes from a beam transport model. Higher Q023 currents produce stronger

horizontal focusing and vertical defocusing fields.

As defined in Section 4.1, the ensemble beam distribution in x-x′ phase space at location s can be described

by a beam matrix σ(s) (Eq. 4.16). The initial beam σ0 = σ(0) at the upstream end of the quadrupole can be

transported to a downstream location s using the transport matrix M = DQ, where Q is the transfer matrix for

a focusing quadrupole and D is the drift transfer matrix from the downstream end of the quadrupole to location s

(Section 4.1). Transporting the beam from the upstream end of the quadrupole to location s, the matrix element
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Figure 5.2: The measurement approach was to vary the focusing strength of quadrupole Q023 by varying its
current, and measure the horizontal beam width at the IBMS1 detector. Here the horizontal beam envelope is
illustrated for three current setpoints.

σ2x,s gives an expression for the beam width as a function of the quadrupole strength k in terms of the initial phase

space.

σ2x,s = γ0ϵ0m
2
12 + β0ϵ0m

2
11 − 2α0ϵ0m11m12 (5.1)

Here α0, β0, γ0, and ϵ0 are the initial Twiss parameters and m11, m12 are the corresponding elements of the trans-

port matrix M in terms of k, the quadrupole length L, and the drift distance d from the downstream end of the

quadrupole to s.

m11 = cos
(√

kL
)
− d

√
k sin

(√
kL

)
m12 = d cos

(√
kL

)
+

1√
k
sin

(√
kL

)
(5.2)

The beam width σx,s was measured at the screen while the quadrupole current was scanned (as illustrated in

Figure 5.3). Then Eq. 5.1 was fit to the σx,s points with fit parameters α0, β0, and ϵ0. The measurements were

performed with two different screen devices, the IBMS1 detector and proportional wire chamber PWC025 located

upstream of IBMS1. This analysis primarily uses the IBMS1 measurements. Performance issues were apparent in

the PWC025 data, so these measurements are included for comparison only.
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Figure 5.3: Beam envelopes for three Q023 current setpoints illustrate the quadrupole scan approach. Horizontal
(σx, bottom) and vertical (σy, top) beam envelopes were generated from a beam transport model along the M5 line
(Section 5.1.5). Quadrupoles Q023, Q024, & Q025 are shown as red boxes. The IBMS1 detector and the upstream
proportional wire chamber PWC025 are shown as black arrows (indicating the actual detector areas). Q024 &
Q025 are turned off, as they were during the actual measurement.

5.1.2 Procedure

The quadrupole current scan range was chosen to ensure coverage around the waist (minimum horizontal beam

width) at the detector. The beam width (Eq. 5.1) is nearly quadratic as a function of quadrupole strength, and data

points near the waist are most important for the fit. The quadrupole current adjustments were handled remotely

by Accelerator Division experts B. Drendel and J. Morgan. These measurements were made in June 2021 during

Run-4.

Quadrupoles Q024 & Q025, the quadrupoles downstream of Q023, were turned off for the scan. First the Q023

current was scanned over 29 points chosen to cover the waist at PWC025, with finer steps near the waist. Then

to increase the IBMS1 spatial resolution, IBMS1 was translated along x in three steps of 1/3 fiber pitch using

its remote-controllable translation stage. The Q023 scan was repeated in this high-resolution configuration with 7

points to cover the waist at IBMS1. High-resolution profiles were constructed by stitching together the IBMS1X
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profiles from the three scans. The high-resolution x scan was repeated with Q023 at a fixed setpoint to verify that

the method was not affected by hysteresis between scans.

5.1.3 Beam profile analysis

Horizontal beam widths and mean positions were extracted from the recorded beam profiles as described below.
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Figure 5.4: Horizontal beam widths σx and mean positions from IBMS1X (nominal resolution and high resolution)
and PWC025 profiles.

Each PWC025 plane has 48 wires with a 2mm pitch, sufficient to resolve the σx < 3mm beam waist. IBMS1

with its 5.5mm fiber pitch was not expected to resolve the beam waist during the first scan, which motivated

the second scan to construct high-resolution IBMS1X profiles. However, as shown in Figure 5.4, the nominal-

resolution IBMS1X widths and means closely match the high-resolution widths and means over all but a small part

of the scan range. In this range, the profile was distorted by the narrow beam being steered between two fibers.

The nominal-resolution IBMS1X measurements in this range (Q023 currents 675A to 710A) were therefore not

included in the Twiss parameter extraction (Section 5.1.4). The beam mean position varies with current because the

horizontal beam trajectory, set by dipole magnets in the M5 line, enters Q023 off-center. This results in unintended

beam steering during the scan.

The beam waist measured by PWC025 was slightly larger than the waist measured by IBMS1X, but the waist

at PWC025 should be smaller as it is closer to Q023. This suggests a PWC025-specific issue with measuring the

beam width. PWC025 measurements are therefore not included in the main analysis and are shown for reference

only. The main analysis uses the IBMS1 measurements.

High-resolution IBMS1X profiles were constructed for each Q023 setpoint by stitching together the profiles

recorded in the three x steps. Each profile was normalized to the beam intensity recorded by the T0 entrance

detector. This method worked very well, as demonstrated by the smooth profiles in Figure 5.5.
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A Gaussian was fitted to each IBMS1X profile to extract the beam width σx and the mean position at each

setpoint. For the high-resolution profiles, the fits included points above a 5% intensity threshold to reduce the

effect of asymmetric tails. No threshold was applied in the nominal-resolution profile fits as only a few fibers were

illuminated near the waist. The stitched profiles in Figure 5.5 reveal how the nominal-resolution profiles can be

distorted when the beam is narrow, as seen in Figure 5.4. If only one profile (e.g. only the green profile) is recorded,

the Gaussian fit could miss the profile peak and extract an incorrect width.

To verify that the method was not affected by hysteresis effects when stitching together multiple Q023 scans,

a high-resolution profile was recorded with the Q023 current fixed. The fixed-current profile closely matched the

profile stitched together from different Q023 scans, demonstrating consistency in the stitching method.
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Figure 5.5: High-resolution stitched IBMS1X profiles at Q023 currents 550A and 650A (near the IBMS1 waist).
Left: Overlayed IBMS1X profiles from each x-step of 1/3 fiber pitch. Right: x-step profiles stitched together into
high-resolution profiles, with Gaussian fits. Circle markers indicate the fibers which enter the fit.

Quadrupole strength k

The quadrupole strength k is defined as in Section 4.1 as

k =
e

p0

∂By

∂x
≡ e

p0
g, (5.3)
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where p0 is the nominal magic momentum and g parameterizes the quadrupole strength per unit length. Transfer

functions for g(I) as a function of current I were provided by the magnet manufacturer. The Q023 strength k

for each current step was then calculated according to Eq. 5.3. For the nominal Q023 current, k(643.7A) =

0.465m−2.

5.1.4 Twiss parameter extraction

The Twiss parameters α0, β0, and ϵ0 at the upstream end of Q023 were extracted by fitting the square of the

measured beam widths σ2x vs. quadrupole strength k with the expression in Eq. (5.1), with IBMS1 screen distance

dibms1 = 5.043m. The errors were scaled such that the reduced χ2 = 1. This was a simple assumption to allow an

estimate of the parameter variance, as uncertainties on the beam profiles are not explicitly evaluated.

The nominal-resolution and high-resolution IBMS1 measurements were fit separately, as shown in Figure 5.6.

Extracted Twiss parameters and their corresponding fit uncertainties are shown in Table 5.1. The IBMS1X high-

resolution and nominal-resolution parameters agree with each other within uncertainties; the IBMS1X high-resolution

parameters provide the primary result.

Scan α0 β0[m] ϵ0 [mm ·mrad]

IBMS1X high-res −9.9± 0.1 44.4± 0.4 9.3± 0.1
IBMS1X nominal-res −10.0± 0.6 44.8± 2.6 8.9± 0.4

Table 5.1: Extracted Twiss parameters and their fit uncertainties at the upstream end of Q023 from fitted IBMS1
beam widths.

0.35 0.40 0.45 0.50 0.55 0.60
k [m 2]

0

25

50

75

100

125

150

175

200

2 x
 [m

m
2 ]

x = 9.9 ± 0.1
x = 44.4 ± 0.4 m

x = 9.3 ± 0.1 mm mr

IBMS1X, high res
fit

0.35 0.40 0.45 0.50 0.55 0.60
k [m 2]

0

25

50

75

100

125

150

175

2 x
 [m

m
2 ]

x = 10.0 ± 0.6
x = 44.8 ± 2.6 m

x = 8.9 ± 0.4 mm mr

IBMS1X, nominal res
fit

Figure 5.6: Measured points σ2x vs. quadrupole strength k and corresponding functional fits with fitted Twiss
parameters for IBMS1 high-resolution (top) and IBMS1 nominal-resolution (bottom) profiles. The nominal-
resolution IBMS1X points with distorted profile widths were excluded from the fit.
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5.1.5 Results

The phase space parameters are extracted at two positions of interest. The phase space at the upstream end of Q023,

presented in Section 5.1.4, is directly measured in the quadrupole scan. This provides a direct point of comparison

for end-to-end beamline simulations. The distribution must then be transported downstream from Q023 to the end

of the M5 line (5.1), which is the typical starting point for modeling beam injection into the ring. The primary

results for the remainder of this section use the IBMS1X high-resolution parameters from Table 5.1.

The measurement result is compared throughout this section with two beamline model configurations. The M4

and M5 beamline optics can be described by an optical lattice from a MAD model 1 with corresponding Twiss

parameters [75]. The two configurations are the operational optics, which describe the actual magnet settings used

in Run-3 and beyond, and the TDR optics, which describe the as-designed magnet settings from the Muon g − 2

Technical Design Report (TDR) [36]. The Run-1 end-to-end beamline simulation [72] used the TDR optics; this

end-to-end simulation provided the input distribution for Run-1 gm2ringsim simulations.

As discussed in Section 4.1.1, the Twiss parameters describe the 1σ x-x′ phase space distribution according

to Eq. 4.15. Phase space ellipses will be used in the following sections to visually compare different phase space

distributions.

Upstream end of Q023

Figure 5.7 shows the measured phase space ellipse at the upstream end of Q023, compared with ellipses defined

by the operational and TDR model configurations. The model provides α andβ parameters but not emittance ϵ,

so the measured emittance is used to define the corresponding phase space ellipse. As expected, the measurement

resembles the operational settings more closely than the TDR settings.

1Methodical Accelerator Design (MAD) is an accelerator beam modeling software tool.
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Figure 5.7: Phase space ellipse at the upstream end of Q023 defined by measured Twiss parameters (blue) com-
pared with operational (black) and TDR (dashed) Twiss parameters (with measured emittance).

End of M5

The transfer matrix formalism described in Section 5.1.1 can be used to transport the beam downstream of Q023.

As a self-consistency check of this formalism, transporting the beam to the IBMS1 location with k corresponding

to the Q023 current at which the waist was observed reproduces the measured waist width.

To produce a distribution which represents the injected beam, the beam must be transported from Q023 to the

end of M5 under normal operating conditions, with Q024 and Q025 at their nominal settings. In this case, the

matrix M would include a Q matrix for each quadrupole and a D matrix for each drift. A simple program was

created using the Graphic Transport Framework from Paul Scherrer Institute (PSI) to handle beam transport from

Q023 through Q024, Q025, and the end of M5. The user defines the initial beam widths σx, σx′ and momentum p0

at Q023, as well as the quadrupole fields, positions, and dimensions of Q023-25. The program handles the matrix

transformations and returns the beam widths and Twiss parameters at each point. Nominal fields and dimensions

for Q023-25 were taken from reference [76] with nominal operating currents, and positions of Q023-25 were taken

from the MAD model. Table 5.2 shows the beamline elements and their longitudinal lengths defined in the transport

program. The transport program output was shown to be consistent with the MAD model output.
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Type ("card") Label z length [m]

*BEAM* muon 0.0
*QUAD* Q023 0.870
*DRIFT* 1.346
*QUAD* Q024 0.870
*DRIFT* 1.270
*QUAD* Q025 0.647
*DRIFT* 0.337
*SLIT* PWC 0.000
*DRIFT* 0.572
*SLIT* IBMS 0.000
*DRIFT* End5 0.035

*LENGTH* 5.947

Table 5.2: Beamline elements and their lengths in z defined in the transport program.

The initial beam defined by the measured phase space can then be transported through to the end of M5.

Figures 5.8 and 5.9 show the resulting beam envelope and phase space ellipse. The IBMS1 width measured under

nominal conditions is marked for comparison; the transported envelope closely reproduces the nominal measured

IBMS1 width. Table 5.3 shows the Twiss parameters and corresponding beam σ matrix elements (Eq. 4.16) at the

end of M5, corresponding to the ellipse in Figure 5.9.
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Figure 5.8: Beam envelope σx from transport program starting with measured (blue) initial beam conditions
(corresponding to ellipse shown in Figure 5.7), compared with operational settings (black). The red vertical lines
mark Q023, 24, & 25; the gray line marks IBMS1; and the black line marks the end of M5. For comparison, the
measured IBMS1 width under nominal conditions is indicated with the red X.
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Figure 5.9: Phase space ellipses at the end of M5 from transport program outputs starting from measured parame-
ters (blue, corresponding to Figure 5.8) and from operational settings (black) and TDR settings (dashed).

Twiss σ

Initial conditions αs βs[m] σx[mm] σx′ [mrad] σxx′ [mm ·mrad]

operational 7.9 27.1 15.90 4.70 −74.18
IBMS1 6.8 23.7 14.88 4.30 −63.28

Table 5.3: Twiss parameters and beam matrix elements at the end of M5 for initial beam given by operational
optics parameters and measured parameters, corresponding to ellipses in Figure 5.9.

End of M5 results compared with previous simulations and measurements

The end-to-end beamline simulation [72] for Run-1 used the TDR M4/M5 beamline optics. The muon distribution

produced by the simulation at the end of M5 is consistent with the TDR parameters, as expected. End-to-end

simulations using the operational optics have not yet been completed.

During Run-1 before the upstream momentum cooling wedge was implemented (described in Section 2.2),

Nathan Froemming made a quadrupole scan measurement of the beam parameters with Q020 and wire chamber

PWC021 (upstream of Q023) [77] [68]. In a comparison at the end of M5, this measurement resembled the

operational parameters. The gm2ringsim injection input for Run-1 was constructed from this measured α and β,

a larger ϵ from a previous beamline simulation, and a normalized version of the end-to-end simulated distribution

transformed to match the defined parameters. Diktys Stratakis et al. also previously measured the emittance using
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several M4/M5 quadrupoles and wire chambers [73] and [69], also before the wedge was implemented.

Table 5.4 shows the Twiss parameters from the end-to-end simulated distribution, previous measurements,

gm2ringsim input definition, and IBMS1 measurement. The IBMS1-measured emittance is similar to Nathan’s

measurement and smaller than the values from simulation and Diktys’ measurement.

Initial conditions α β[m] ϵ[mm ·mrad]

End-to-end simulation (TDR settings) 14.8 52.4 10.8
Previous measurement, Diktys [69] - - 12
Previous measurement, Nathan [68] 8.5 28 9
gm2ringsim input 8.5 28 14

IBMS1 measurement 6.8 23.7 9.3

Table 5.4: Twiss parameters at the end of M5 from end-to-end simulation, previous measurements, and gm2ringsim
input definitions, compared with IBMS1 measurement (Table 5.3).

Asymmetric profiles and effect of upstream wedge

The recorded beam profiles are asymmetric, both in the Q023 scan (e.g. Figure 5.5) and with all quadrupoles at

nominal settings. This asymmetry is a possible source of uncertainty (also discussed in Section 5.1.6), as the beam

transport formalism (Section 5.1.1) describes a symmetric beam and does not account for the observed asymme-

tries. The primary analysis and results presented here focus on the symmetric Gaussian part of the beam profiles

and ignore the asymmetric part. A Monte Carlo study of realistic beam profiles would be required to verify the

asymmetric behavior and reduce the associated uncertainty.

The upstream cooling wedge affects the beam profile asymmetry, as shown by the IBMS1X profiles in Fig-

ure 5.10. For a more realistic input to gm2ringsim, an end-of-M5 phase space distribution can be constructed by

scaling the symmetric phase space in x to match the asymmetric measured x profile. The scale function (Fig-

ure 5.11 is determined from a two-Gaussian fit to the measured IBMS1X profile (Figure 5.10). The symmetric

distribution was used for Run-2/3 gm2ringsim simulations; in the future, the asymmetric scaling can be applied if

end-to-end beamline simulations do not reproduce the measured profiles.
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at their nominal settings.
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Figure 5.11: The scale function f(x) (bottom) is the ratio of the fitted double gaussian to the symmetric x distri-
bution (top).
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5.1.6 Uncertainties

Several possible sources of uncertainty were analyzed and are summarized here. Table 5.5 reports the uncertainties

in terms of the x-x′ phase space σ matrix elements. Additional details about the uncertainty analysis are given in

Appendix B.

• The fit uncertainties on the Twiss parameters (Section 5.1.3) were propagated using the fit covariance matrix.

• The effect of possible remanent magnetic fields in the downstream quadrupoles during the measurement was

evaluated in the beam transport program.

• The effect of a possible nonzero dispersion originating from upstream of Q023 was determined by includ-

ing dispersion in the Twiss parameters fit expression. This affects the Twiss parameters but not the x-x′

distribution.

• The uncertainty on the beam width was determined by varying the contribution of the asymmetric tails in

the Gaussian fit. This effect is not included in the total uncertainty, as the asymmetry is not included in this

analysis and can be characterized with future beamline simulation studies (Section 5.1.5).

The central-value phase space parameters were used as input for the Run-2/3 gm2ringsim simulations. A

gm2ringsim evaluation of the uncertainty is recommended, which would entail varying the input phase space dis-

tribution within uncertainties and evaluating the effect on stored beam properties. Depending on the size of the

downstream effects, the measurement uncertainties may be further improved by studying the asymmetric beam

profiles in the beamline simulation.

Uncertainty ∆σx[mm] ∆σx′ [mrad] ∆σxx′ [mm ·mrad] ∆ϵ [mm ·mrad]

Twiss parameter fit ±0.03 ±0.4 ±1.7 ±0.1
Remanent fields in Q024 & Q025 +0.4 +0.1 −3.2 +0.4
Nonzero dispersion 0 0 0 −1.8
Gaussian profile fit +1.0/− 0.1 +0.4/− 0.1 +1.3/− 10.7 +1.5/− 0.4

Total (with Gaussian profile fit) +1.1/− 0.1 +0.6/− 0.4 +2.1/− 11.3 +1.6/− 1.8
Total (without Gaussian profile fit) +0.40/− 0.03 +0.4/− 0.4 +1.7/− 3.6 +0.4/− 1.8

Table 5.5: Uncertainties on end-of-M5 beam matrix elements and emittance. Totals are added in quadrature. The
recommended total uncertainty is the total (without Gaussian profile fit); the total (with Gaussian profile fit) is
also shown for reference.

5.1.7 Summary

The transverse horizontal beam phase space at the end of the M5 beamline was measured using the quadrupole

scan method described in Section 5.1.1. The approach was to vary the Q023 current, measure the beam width

84



at IBMS1, and fit the data to extract the Twiss parameters at Q023 (Section 5.1.3). The extracted phase space

was then transported from Q023 to the end of M5 using a beam transport program with nominal M5 quadrupole

settings (Section 5.1.5). End-of-M5 results (Table 5.6) are given in terms of x-x′ beam parameters as well as Twiss

parameters. Sources of uncertainty are presented in Section 5.1.6.

Twiss σ

Measurement αs βs[m] ϵ [mm ·mrad] σx[mm] σx′ [mrad] σxx′ [mm ·mrad]

IBMS1 6.8 23.7 9.3 14.88 4.30 −63.28

Table 5.6: End-of-M5 horizontal Twiss parameters and beam matrix elements from IBMS1 measurement (from
Table 5.3).

The measurement results are much more consistent with the operational beamline settings than the TDR beam-

line settings (Sections 5.1.5 and 5.1.5). The Run-1 end-to-end simulation, which provides input for gm2ringsim

simulations, used the TDR settings and is inconsistent with the measured phase space. The operational settings

need to be implemented in the end-to-end simulation to produce a more realistic output.

The symmetric distribution parameterized here was used for Run-2/3 gm2ringsim simulations, with an initial

offset and angle optimized to match measured IBMS profiles (discussed in Section 5.2). The observed beam profiles

are asymmetric, but this analysis focuses on the dominant symmetric part which is described by the beam transport

formalism. A simple method to scale the distribution asymmetrically for future gm2ringsim simulations is laid out

in Section 5.1.5.

5.2 Optimizing beam injection in gm2ringsim

The simulation team (A. Driutti and R. Fatemi) optimized the horizontal beam injection parameters in gm2ringsim

for Run-2/3 simulations to match measured IBMS beam profiles. This required updating the IBMS detector posi-

tions, implementing the measured phase space from Section 5.1, and adjusting the injection trajectory and inflector

field. After this optimization, the gm2ringsim storage fractionNstored/Nincident increased from 1.2% to 1.7%. The

goal is to match experiment running conditions in gm2ringsim; beam injection parameters are tuned to optimize

storage fraction in the experiment, so increasing storage fraction builds confidence in the simulation. Realistic

beam injection modeling is critical for simulating realistic stored beam dynamics in gm2ringsim.
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5.2.1 IBMS detector positions

For Run-1 simulations, IBMS detectors in gm2ringsim were positioned at initially-planned locations which were

somewhat different from the final installed locations. For Run-2/3 simulations, the IBMS detector positions were

updated to match the surveyed positions in Section 3.1.4. IBMS1, 2, and 3 had to be moved respectively 196mm,

49mm, and 274mm upstream in gm2ringsim from their Run-1 positions. Verifying and updating the IBMS posi-

tions was important for comparing simulated and measured IBMS profiles (Section 5.2.3).

5.2.2 Injection location and beam phase space

Injected beam parameters and starting location in gm2ringsim are defined by a tool called "the beam gun" [68]. For

Run-1 simulations, the beam gun position was defined at the nominal end-of-M5 location. 2. After updating the

IBMS detector positions for Run-2/3 simulations, IBMS1 was located upstream of the beam gun position. In order

to include IBMS1 and the T0 detector in the simulation, the beam gun position was moved 139mm upstream of the

end of M5. From the surveyed positions of IBMS1 and the M5 quadrupole magnets, this corresponds to a distance

5376mm downstream of Q023 center. The horizontal beam phase space measured with IBMS1 in Section 5.1 was

then transported to this position as in Section 5.1.5. The Twiss parameters at the new beam gun position (Table 5.7)

defined the horizontal phase space of the injected beam for Run-2/3 gm2ringsim simulations.

Twiss parameter αx βx[m] ϵx [mm ·mrad]

gm2ringsim new beam gun position 7.0 25.6 9.3
End of M5 6.8 23.7 9.3

Table 5.7: Measured horizontal Twiss parameters transported to end of M5 (from Table 5.6) and to the gm2ringsim
new beam gun position.

5.2.3 Injection trajectory parameters and matching IBMS data

The gm2ringsim beam gun also defines initial beam injection angle and offset. With the updated Twiss parameters

from Table 5.7, the horizontal offset x0 was adjusted to match the measured IBMS1X profile (Figure 5.12) and

horizontal angle x′0 was adjusted to match the measured IBMS2X profile (Figure 5.13). The beam gun defines +x

radially out, so the x0 and x′0 reported here follow that convention; this is the opposite of the IBMS convention.

Finally, the inflector magnetic field was adjusted to match the measured IBMS3X profile (Figure 5.14). Optimized

parameters are shown in Table 5.8.

2The Run-1 beam gun position was 4300mm upstream of the ring injection point (inflector exit) [68]
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offset angle inflector field
x0 [mm] x′0 [mrad] Binf [T]

gm2ringsim Run-2/3 -15.2 +4.0 -1.44
gm2ringsim Run-1 -7.5 +1.75 -1.46

Table 5.8: gm2ringsim beam gun horizontal offset x0 and angle x′0 and inflector fieldBinf before and after updating
to match measured IBMS profiles. The beam gun defines +x radially out relative to the nominal beamline.

Figure 5.12: Measured IBMS1X profile (dark blue) compared with gm2ringsim profiles: Run-1 Twiss parameters
and offset (light blue), updated Run-2/3 Twiss parameters with Run-1 offset (red), and updated Run-2/3 Twiss
parameters and offset (dashed black). The updated offset x0 = −15.2mm gave the best match to the measured
profile. Figure courtesy of A. Driutti [78].

.

Figure 5.13: Adjusting beam gun injection angle x′0 to match the measured IBMS2X profile (dark blue in each
plot). The angle x′0 = +4mrad gave the best match. Figure courtesy of A. Driutti [78].
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Figure 5.14: Adjusting gm2ringsim inflector field to match the measured IBMS3X profile (dark blue in each plot).
Inflector field Binf = −1.44T gave the best match. Figure courtesy of A. Driutti [78].

5.3 Summary

Simulation inconsistencies and changes in the beamline configuration motivated a measurement of the injected

beam parameters. The horizontal phase space of the injected beam was measured with the IBMS1 detector using

the quadrupole scan method. This measurement provides a realistic check of the end-to-end beamline simulation,

which provides the initial distribution for injection in gm2ringsim. The end-to-end simulation used beamline set-

tings corresponding to the design configuration rather than the final operational configuration, and is inconsistent

with the measurement, demonstrating the need for an updated simulation with operational settings.

The measured phase space distribution provided verified input for beam injection modeling in gm2ringsim.

Based on this measurement, the horizontal injection parameters in Run-2/3 simulations were updated to match the

measured IBMS beam profiles. This verification builds confidence in the stored beam properties simulated with

gm2ringsim.
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Chapter 6

Momentum Distribution of the Stored Beam

The beam dynamics corrections to ωa (Section 2.8.1) depend on characterizations of the stored beam. In particular,

the electric field correction Ce is calculated from the momentum distribution, which is reconstructed from the

Fourier fast rotation (FR) analysis. The 53 ppb uncertainty on Ce from the FR reconstruction was a significant

ωa systematic in Run-1. The uncertainty is dominated by the so-called time-momentum correlation effect, which

is caused by the time-varying kick strength and leads to a distortion in the FR momentum reconstruction. This

time-momentum correlation is an ongoing issue being studied in the Run-2/3 analysis, and multiple weeks of beam

time in Run-6 have been dedicated to studying this effect. Understanding this correlation is critical to reduce the

uncertainty on Ce to 25 ppb target uncertainty.

As the FR analysis is an indirect momentum reconstruction which provides essential input for the aµ mea-

surement, an independent direct beam measurement is well motivated. Based on the reliable and well-established

IBMS detectors (Chapter 3), the MiniSciFi (Minimally Intrusive Scintillating Fiber) detector was conceived to

directly measure and characterize the momentum distribution and the time-momentum correlation, in addition to

other properties of the stored beam. The MiniSciFi detector was installed and a first measurement campaign was

completed during Run-5. The configuration was modified for further measurements during Run-6. This author

contributed to the detector implementation and developed the measurement concept discussed in Section 6.3.

6.1 Fast rotation momentum reconstruction

The beam rotation around the ring at the cyclotron frequency is called "fast rotation". The Fourier fast rotation

(FR) analysis reconstructs the momentum distribution via a Fourier decomposition of the cyclotron frequencies

observed by the calorimeters. The muons’ velocity is given by v = βc, where β =
√

1− 1/γ2 ≈ 0.9994 at the
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nominal magic momentum p0 with γ = 29.3. A muon’s orbital equilibrium radius relative to the nominal radius,

xe = re −R, is related to the momentum by

xe =
∆p

p0

R

1− n
, (6.1)

where ∆p is the momentum deviation from p0 and n is the effective field index (Section 4.3.1). The incident muon

beam has a finite momentum spread, and higher-momentum muons have a higher equilibrium radius in the storage

ring. Because high-momentum and low-momentum muons have approximately the same relativistic velocity within

the 45mm radius aperture of the storage region, the higher-momentum muons have a slower cyclotron frequency

than the lower-momentum muons, where the frequency is given by

ωc =
eB0

mµγ
=

v

R+ xe
. (6.2)

The nominal cyclotron frequency for magic momentum muons is fc = ωc/2π = 6705 kHz. As the beam circulates

around the ring, the higher-frequency (lower-momentum) muons eventually overtake the lower-frequency (higher-

momentum) muons, and the beam gradually debunches.

The calorimeters record the decay positron counts over time in the fill. The counts above the ωa energy threshold

correspond to an intensity which oscillates at ωc as the beam circulates around the ring, as well as oscillating at the

anomalous precession frequency ωa and the other beam dynamics frequencies described in Section 4.3.4, within

a decaying envelope corresponding to the muon lifetime. To extract the FR signal, an ωa fit function (described

in Section 2.6.3) including the muon lifetime, ωa oscillation, and coherent betatron oscillation (CBO) is divided

out from the calorimeter signal; the remainder is the FR signal, shown in Figure 6.1. For a muon beam ensemble

with an initial distribution ρ(ω, τ) of momentum-dependent cyclotron frequencies ω and injection times τ , the time

structure of the FR signal S(t) can be written as

S(t) =

∫ ∞

−∞

∫ ∞

−∞

[ ∞∑
N=−∞

δ

[
t−

(
2πN

ω
+ τ

)]]
ρ(ω, τ) dω dτ , (6.3)

as described by T. Barret [44]. The δ function describes a single muon circulating with frequency ω over turns N

from −∞ to ∞ seen by a fixed detector, and the overall signal is given by the ensemble integral.

The real part of a complex Fourier transform, called a cosine transform, is then used to recover the frequency

distribution. For an ideal beam pulse which extends infinitely in time and is symmetric about time t0 in the first
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Figure 6.1: Fast rotation signal extracted from calorimeter decay positron counts by dividing out the ωa fit function.
The signal decoheres as the beam debunches (left). On a shorter timescale (right), the signal oscillates with the
149.1 ns cyclotron period. Figures courtesy of T. Barret [79].

turn, the cosine transform is given by

Ŝ(ω) = 2

∫ ∞

t0

S(t) cos (ω(t− t0)) dt . (6.4)

In reality, the signal is integrated over a finite time from ts ≈ 4 µs, after the calorimeters stabilize from the initial

high-intensity beam flash and later than t0, to te ≈ 250 µs. Following the derivation from [44], the cosine transform

with finite integration time can be written as

Ŝ(ω) = πAρ(ω)−Aρ(ω) ∗ sin (ω(ts − t0))

ω
, (6.5)

if te is sufficiently large (longer than typical debunching time) and ω and τ are uncorrelated in ρ(ω, τ). Here A is

a constant scale factor and ρ(ω) =
∫∞
−∞ ρ(ω, τ)dτ is the true frequency distribution. The convolution term, called

the "background term", is the result of the finite time window. In practice, the background term is fitted by tuning

t0 and then subtracted out, leaving only the true ρ(ω) (up to an overall scale factor). Figure 6.2 shows example

FR-reconstructed distributions.

6.1.1 Time-momentum correlation

If ω and τ are correlated, the cosine transform expression is more complicated. In this case, the correlation leads to

frequency-dependent weight functions which distort the true frequency distribution ρ(ω). The time-varying kicker

strength causes different momenta to be stored for different times in the injected beam bunch, corresponding to a

correlation between the momentum-dependent frequency ω and injection time τ . The baseline Fourier FR analysis
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Figure 6.2: Fourier fast rotation distributions resulting from the cosine transform, in terms of equilibrium radius
(Eq. 6.2), for Run-2 (left) and Run-3b (right). The Run-3b distribution corresponds to the later part of Run-3 after
the kicker strength was increased and the beam was shifted closer to center (xe = 0). Figures courtesy of T.
Barret [44].

uses Eq. 6.5 and does not account for this distortion of the frequency reconstruction, leading to an uncertainty in

the reconstructed distribution. If the time-momentum (τ -p) correlation were known via the ρ(ω, τ) distribution, the

weight functions could be analytically calculated and corrected to recover the true frequency distribution. Figure 6.3

shows an example simulated correlation.

The τ -p correlation was the dominant source of uncertainty on the electric field correction Ce and a signifi-

cant ωa systematic in Run-1. The uncertainty in Run-1 was determined from simulation by taking the difference

between the truth momentum distribution and the FR reconstructed distribution, which is distorted by the correla-

tion. Distributions from two simulations, the Geant4-based gm2ringsim program and a BMAD-based spin tracking

program, disagreed on the difference between truth and reconstructed distributions. The τ -p correlation from these

simulations was therefore not reliable enough to determine a correction for the FR reconstruction. In the Run-

2/3 analysis, several methods to determine the correlation from data and simulation are being explored with the

goal of correcting the distortion and reducing the corresponding uncertainty on Ce. Discrepancies are apparent

among these methods, and a major effort is underway to characterize the correlation and resolve the discrepancies.

Section 6.3 describes a method to characterize the correlation using the MiniSciFi detector.

6.2 MiniSciFi detector

The MiniSciFi (Minimally Intrusive Scintillating Fiber) detector was conceived to directly measure the properties

of the stored beam. Its design was based on the proven IBMS detectors, particularly the IBMS3 which profiles
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Figure 6.3: The momentum offset from p0 as a function of injection time, simulated here from the BMAD program
under Run-1 conditions, shows the τ -p correlation arising from the time-dependent kick strength. Figure courtesy
of T. Barret [79].

the injected beam inside the storage ring. The detector operates in the storage ring vacuum chamber and magnetic

field, which imposes design requirements similar to those for IBMS3. The MiniSciFi consists of three scintillat-

ing fibers (SciFis) spaced at 26mm in one of two different orientations to characterize different beam properties

(discussed in Sections 6.2.1 and 6.2.1 and shown in Figure 6.4). The design is optimized for a high-statistics beam

measurement with minimal beam disturbance, which is achieved by minimizing the scattering material in the beam.

The MiniSciFi has fewer and thinner SciFis than the IBMS, and the frame does not intersect the beam in the mea-

suring position. Each 0.25mm diameter SciFi 1 is coupled to a 1.3mm2 silicon photomultiplier (SiPM) 2 in an

arrangement similar to IBMS3. UW postdoctoral scholar C. Claessens led the MiniSciFi development program.

Previously, fiber harp detectors were used to profile the stored beam, but the fibers disturbed the beam too

much for a reliable measurement over the time of the fill. One fiber harp inserted in the stored beam reduces the

beam lifetime by ∼15% relative to the muon decay time alone [80]. The mechanical system from one fiber harp

was adapted for the new MiniSciFi detector, allowing it to be remotely inserted in the stored beam for dedicated

measurements with < 0.1mm precision radial positioning, and retracted for nominal running conditions. 3 Two

fiber frame assemblies corresponding to each fiber orientation were constructed for interchangeable mounting on

the same mechanical system. Figure 6.5 shows the MiniSciFi system before it was installed in the ring.

The SiPMs were selected for their detection efficiency, which is ∼3× higher than the IBMS SiPMs, to enable

sensitivity to single fiber hits. Each SiPM has 7,300 pixels, providing enough dynamic range to cover the intensity

1Manufacturer Kuraray
2Hamamatsu S14160-1315PS
3The system was upgraded with a lead screw and a piezoelectric motor identical to the motor used in the field mapping trolley system,

which was known to be nonmagnetic to avoid perturbing the field. This motor was provided by the Argonne Lab group.
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Figure 6.4: The MiniSciFi detector with scintillating fibers in vertical (left) and horizontal (right) orientations. The
detector directly measures the stored beam, shown here as a transverse intensity map. CAD models courtesy of R.
Roehnelt.

Figure 6.5: The MiniSciFi mechanical system, repurposed and upgraded from one of the fiber harps. The system is
installed in the ring with the circular flange mounted on a port of the ring vacuum chamber. The detector (left side)
is mounted on an arm to insert into the stored beam for dedicated measurements. Photo courtesy of C. Claessens.

variation over the fill. Four SiPMs are soldered to two boards which each fit on one side of the MiniSciFi fiber

frame. The central fiber is coupled to SiPMs at both ends to enable higher-statistics summed signals. The other

two fibers are coupled to a single SiPM at one end with reflective Mylar at the other end to increase light collection

efficiency. Coax signal cables connect the SiPMs via vacuum feedthrough to readout electronics on the air side. A

fifth SiPM on the air side is coupled by an optical fiber to a laser, which allows synchronization with the injected

beam pulses and fill-to-fill jitter correction. The MiniSciFi signals are digitized over the time of each fill by a 12-bit

waveform digitizer.

The initial electronics design in Run-5 replicated the IBMS3 amplifier electronics, which have a relatively

slow response time and are capacitively coupled, causing an "undershoot" in the signal baseline over the ∼100 µs
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timescale of the fill. These effects were characterized to allow for correction in the offline data analysis. In Run-6,

the electronics were upgraded to avoid these issues with a faster response time and DC coupling.

6.2.1 Horizontal fibers

The horizontal fiber orientation (Figure 6.4) is designed to measure the stored beam momentum distribution. Each

horizontal fiber samples the fast rotation of the beam, and is insensitive to radial beam motion to the extent that the

response is uniform along the fiber length. The FR signal produced by each fiber can then be analyzed using the

Fourier FR method to reconstruct the momentum distribution. This reconstruction corresponds to a direct measure-

ment of the muon beam distribution, rather than an indirect measurement via the decay positrons. Additionally, the

impact of the spatial calorimeter acceptance on the FR reconstruction is not well understood. Directly sampling the

beam with a horizontal fiber avoids this complication and provides a cross-check with the calorimeter-measured

distribution. The horizontal MiniSciFi was installed at the 270◦ fiber harp location during Run-5, and was moved

to the 180◦ location later in Run-6 (near the corresponding tracker locations indicated in Figure 2.8).

Simulations using the experiment’s gm2ringsim Geant4-based software predicted that each stored muon would

cross the central fiber ∼2.8 times [80], resulting in a ∼30× higher hit rate than the calorimeters. The simulations

also predicted a beam lifetime reduction of < 2% and a relative beam energy loss of < 10−4/100 µs in the fill,

corresponding to a radial drift of 0.5mm/100 µs; this should have negligible effect given the insensitivity to radial

beam motion. The standard FR analysis with calorimeter signals requires ∼2 × 107 decay positrons for suffi-

cient statistics, which takes ∼1 h to acquire under normal running conditions. With the more efficient MiniSciFi

measurement, comparable statistics can be collected in ∼2min. It also enables systematic measurements under

lower-efficiency experimental configurations to be realized in a reasonable time, such as the program to character-

ize the time-momentum correlation described in Section 6.3.

6.2.2 Vertical fibers

The vertical fiber orientation (Figure 6.4) is designed to directly measure the radial profile of the stored beam

with high efficiency. Each vertical fiber samples a radial slice of the beam, and the full stored beam distribution

is sampled by positioning the detector in radial steps across the beam. This method enables a beam profile mea-

surement with a minimal number of fibers to minimize beam disturbance. The measured beam profile provides a

comparison with the trackers, which reconstruct the beam profile indirectly via decay positron tracks (Section 2.5).

The tracker profiles include corrections for resolution, spatial acceptance, and mechanical alignment, which can

be cross-checked by comparing with the direct beam profile measurement. The measurement program in Run-6
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included a series of measurements under different running conditions which affect the radial beam distribution, e.g.

kicker strengths and inflector field strengths, for comparison with simulation. The vertical fibers were also used

to characterize a possible upstream time-momentum correlation effect by selecting different momenta at different

radial positions, described in Section 6.3.2.

The relative fiber efficiencies are calibrated from the ratio of beam intensities measured by different fibers at

the same position in the beam and corrected in the analysis to eliminate acceptance effects, similar to the IBMS

calibration procedure. Simulations predicted a relative beam energy loss and corresponding radial drift similar

to the horizontal MiniSciFi; this drift requires correction in the analysis. The vertical MiniSciFi was installed in

Run-6 at the 180◦ location and later moved to the 270◦ location.

6.3 Characterizing the correlation in time slices

One strategy to characterize the time-momentum (τ -p) correlation is to measure the stored momentum distribution

in narrow time slices, effectively breaking the correlation along the injection time axis. A measurement program

following this "time-slice" approach was carried out with the horizontal MiniSciFi in Run-5, and the program was

expanded in Run-6 with a wider variety of running configurations.

The stored momentum distribution can be expressed in terms of the distribution of injected muons ρ0(p, τ) and

their ring storage acceptance ϵ(p, τ), where both are functions of injection time τ and momentum p.

ρ(p) =

∫
ρ0(p, τ)ϵ(p, τ) dτ (6.6)

The momentum storage acceptance is determined by the time-dependent kick strength and encodes the τ -p cor-

relation for any injected muon distribution. This acceptance can be probed by scanning through kicker delays,

as described below. The injected muons’ τ and p are uncorrelated to good approximation 4, so ρ0(p, τ) can be

separated as ρ0(p)ρ0(τ). The injected momentum distribution is much wider than the stored momentum width, as

discussed at the beginning of Chapter 5, so ρ0(p) can be considered flat in the ring-accepted region. The injected

distribution can then be reduced to ρ0(τ), up to a scale factor.

The acceptance function ϵ for a muon is determined by the kick at the muon’s arrival time τ relative to the

4Technically the delivery ring (Section 2.2) introduces a momentum-dependent path length difference due to its dispersion, but this
corresponds to a time of flight difference of only ∼1 ns per percent δ, much less than the bunch width.
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kicker time. For a relative kicker delay time tk, the stored momentum distribution can be expressed as

ρ(p, tk) =

∫
ρ0(τ)ϵ(p, τ, tk) dτ . (6.7)

A muon arriving at time τ with zero kicker delay receives the same kick as a muon arriving at τ + tk with kicker

delay tk, so ϵ(p, τ, 0) = ϵ(p, τ + tk, tk). The stored distribution can then be equivalently expressed as

ρ(p, tk) =

∫
ρ0(τ + tk)ϵ(p, τ, 0) dτ . (6.8)

This is a convolution integral, and it shows that a kick delayed by tk is equivalent to a muon arriving at time τ + tk

with the original kick time. The acceptance function ϵ(p, τ) ≡ ϵ(p, τ, 0) can therefore be characterized by scanning

through kicker delays. Ideally the injection time distribution would be a delta function, ρ0(τ + tk) = δ(τ + tk),

and the convolution would directly yield the acceptance function,

ρ(p, tk) = ϵ(p,−tk, 0) dτ . (6.9)

While a delta function is not possible in reality, the stored distribution most closely recovers the acceptance func-

tion with a narrow injection time distribution and is smeared out with wider time distributions. Under nominal

conditions, the injection time width is on the same order as the kicker pulse width, as seen in Figure 2.9. Therefore

for this measurement approach, the injected beam bunch must be shortened in time, as described in Section 6.3.1.

The time-slice approach for measuring the momentum acceptance can be summarized as follows. First, the

injected beam bunches must be shortened in time. The kicker timing is scanned through a range of delays covering

the width of the kicker pulse. The stored momentum distribution for each kicker delay tk can be determined

using the FR reconstruction and used to construct the two-dimensional distribution ρ(p, tk). This is equivalent to

convolving the injected distribution with the acceptance function per Eq. 6.8, so the injected bunch ρ0(τ) must be

deconvolved from ρ(p, tk) to recover ϵ(p, τ). Figure 6.6 shows a gm2ringsim-simulated acceptance function and

corresponding stored momentum distribution which would be measured in this scan.
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Figure 6.6: Left: Simulated momentum storage acceptance ϵ(δ, τ) determined from the truth storage efficency
for each momentum offset δ and injection time τ . Right: Stored momentum distribution ρ(δ, tk) constructed by
convolving a shortened injected bunch from Figure 6.8 with the simulated acceptance. This is the distribution
which would be measured in the kicker timing scan, and the goal is to recover the acceptance by deconvolving the
injected bunch.

6.3.1 Creating short bunches

The injected beam bunches are shortened in time by "shaving" away part of the bunch using the abort kicker magnet

in the delivery ring (DR), which is typically used to remove protons from the beam (Section 2.2). The delay of this

DR abort kicker is reduced so that the kicker pulse partially overlaps the muon bunch, kicking out that part of the

bunch (as well as the protons). This reduces the time width of the bunch at the expense of beam intensity. The

DR abort kicker has a finite rise time of ∼180 ns, which limits the width reduction that can be achieved with this

method.

Figure 6.8 shows the short bunches created with this method in Run-6, as recorded by the T0 entrance detector

(Section 2.3). The shortest and sharpest distributions are achieved for bunches which have faster rise times and

less structure on the early (left) side of the bunch. For these bunches the full-width-half-maximum (FWHM) was

reduced from ∼80 ns to ∼40 ns, depending on the bunch, and the intensity was correspondingly reduced to ∼0.2×

the original intensity. This intensity reduction increases the time to collect the required statistics, particularly if only

the sharpest bunches are selected in the analysis, but the high-efficiency direct MiniSciFi measurements make this

possible on a reasonable few-hour timescale. In addition to minimizing the smearing of the acceptance function,

the short bunches reduce the τ -p distortion in the FR reconstruction as they sample less of the time-varying g − 2

kicker pulse than the nominal bunches.
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Figure 6.7: The DR abort kicker (blue pulse) is typically used to remove protons from the beam. The nominal
delay configuration kicks out the proton bunch (dark green) and does not interact with the muon bunch (light green).
Figure courtesy of J. Morgan.
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Figure 6.8: Injection time distributions in Run-6 recorded by the T0 detector for nominal bunches (blue) and short
bunches (orange) created by shaving with the DR kicker.
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6.3.2 Momentum dependence in short bunches

The time slice measurement approach relies on the short bunches having the same phase space and momentum

properties as the nominal bunches. The DR abort kicker provides a vertical kick which affects the vertical phase

space of the short bunches and does not affect the horizontal phase space. The vertical kick introduces a time

dependence that can lead to a τ -p correlation-like effect in the short bunches which is not present in the nominal

bunches. If this effect is present, it would require a correction to the acceptance which is measured with the time

slice method.

The rising DR kicker edge (Figure 6.7) causes a time-dependent vertical kick when it overlaps the muon bunch,

and the kick angle depends on momentum,

∆y′(t) ∝ B(t)

p
≈ B(t)

(1− δ)

p0
, (6.10)

where δ = ∆p/p0 is the momentum offset. Low-momentum muons are then kicked out of the beam aperture

earlier than high-momentum muons. In particular, a magnetic septum in the DR acts as a collimator with a 41mm

vertical aperture [36]. Lower-momentum muons would therefore have shorter bunches, which would appear as a

τ -p correlation in the short bunches at injection. Additionally, any phase space correlation between momentum and

y would affect the momentum dependence of the bunch length. This was expected to be a relatively small few-ns

effect over the accepted momentum width, but it had to be measured to determine the impact on the acceptance

measurement.

This effect was measured in Run-6 with the vertical MiniSciFi by using the g − 2 ring as a spectrometer. With

the kicker and quadrupoles turned off, the injected beam is dispersively focused at 180◦ by the magnetic dipole

field. Figure 6.9 illustrates the concept with trajectories calculated as follows. Using Eqs. 4.13 and 4.27, the radial

trajectory as a function of azimuth θ can be expressed as

x(θ) = Rδ + x0 cos(θ) + x′0R sin(θ) (6.11)

where the horizontal tune is νx = 1 with the quadrupoles turned off, ω is the cyclotron frequency, R is the magic

radius, and x0 and x′0 are the initial injection offset and angle. The x0 distribution is narrow due to the constraint

from the inflector aperture. At 180◦ each momentum is focused to a unique radius independent of x′0, and the

momenta can be selected by the vertical MiniSciFi fibers at the corresponding radial positions. The beam pulse

shape in the first turn can be compared for each selected momentum to determine any momentum dependence of
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the injected bunch shape. The beam cannot be stored in this configuration, so only the first turn can be measured.

Figure 6.9: Horizontal trajectories (exaggerated 10×) for muons with different momenta injected at the same initial
position with zero initial angle, with the ring configured at a spectrometer by turning off the kicker and quadrupoles.
The blue, orange, and red trajectories correspond to momentum offsets of 0, 0.54%, and 1%, respectively. In this
configuration, each momentum is focused to a unique radial position at 180◦.

Figure 6.10 shows the gm2ringsim-simulated momentum p vs. radius r on a plane at 180◦ under these condi-

tions. The momenta are well-separated by radius, meaning that momentum slices can be cleanly selected by radial

position. With the nominal magic magnetic fieldB0, the accepted momentum is offset by ∼+0.5% from the magic

momentum p0, with a width of ∼ ± 0.4% momentum offset. This measurement should select momenta near p0

which are stored in nominal conditions, so the magnetic field must be correspondingly reduced by 0.5% to center

p0 near the magic radius as shown in Figure 6.10.
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(a) Nominal magnetic field B0
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(b) Magnetic field reduced by 0.5% from B0

Figure 6.10: Simulated momentum p vs. radial position r on a plane at 180◦, where the ring is configured as a
spectrometer with kicker and quadrupoles turned off. At 180◦ the momenta can be selected by radius. To accept the
magic momentum p0, the magnetic field needs to be reduced from nominal (left) by 0.5% (right). The horizontal
white line marks p0, horizontal red lines mark ±1% momentum offset for reference, vertical white line marks the
magic radius, and vertical red lines mark the 90mm storage region aperture.
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Simulations also showed scattering from material outside the storage region, such as the kicker and quad plate

supports. High-momentum muons scattering on material at high radii lose energy and drift inward, smearing the

p-r distribution and broadening the momenta at each radius. This scattering can be reduced with an inward x′

injection angle so that the beam avoids much of the material at high radii. Turning the injection angle more inward

by ∼5mrad significantly reduced the scattering in simulations; this angle can be achieved by reducing the inflector

field 2.67% from nominal. The injection angle does not change the dispersive focus, as the x′0 term in Eq. 6.11 is

zero at 180◦.

The vertical MiniSciFi was scanned over 104mm around the magic radius (slightly past the 90mm storage

region edges) in three or five steps. Five 13mm steps provide nine unique fiber positions, and three 26mm steps

provide five fiber positions. Higher-than-nominal momenta were measured with the ring field at nominal B0, and

the magic momentum p0 was measured by reducing the field 0.5% from nominal.

The inflector field was reduced by 2.67% for an inward x′ and further reduced by 0.5% when the main field

was reduced. The primary purpose was to measure the momentum-selected short bunches; the nominal bunches,

which should have no momentum dependence, were measured for comparison.

The following figures show the momentum-selected bunch traces for each fiber at each radial position, with

colors corresponding to radius. High (low) momenta correspond to high (low) radii, respectively. The nominal

bunches shown in Figure 6.11 have the same pulse width for all momenta, confirming that no momentum depen-

dence is present. Figure 6.12 shows the same comparison for the short bunches, centered at p0 (with reduced

magnetic field) and high momentum (with nominal field). All momenta have essentially the same pulse widths to

within < 5 ns, meaning that no significant momentum-time dependence is introduced by the DR abort kicker. Two

conclusions can be drawn from these results. First, under nominal running conditions the τ -p correlation is purely

caused by the g − 2 kicker and is not present in the nominal injected bunches. Second, the short bunch shaving

method does not seem to introduce any correlation which would affect the acceptance measured with the short

bunches.

There is, however, a possible additional effect from the ring acceptance which would not be captured by this

measurement. The DR kicker causes a vertical betatron oscillation corresponding to a time-dependent y-y′ per-

turbation in the transmitted beam. Muons which are accepted by the DR aperture may not fit into the vertical

acceptance of the ring aperture, which could cause an additional correlation between momentum and pulse width

in the stored beam. Because the spectrometer configuration only measures the beam in the first turn and does not

allow the beam to be stored, the effect would not be apparent in this measurement and must be simulated. The beam

phase space distribution as a function of DR kicker strength must be generated from realistic beamline simulations,

103



130.60 130.65 130.70 130.75 130.80 130.85 130.90
time [us]

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

0.016
normalized to integral

fiber1 -52.0mm
fiber2 -26.0mm
fiber3 0.0mm
fiber1 -26.0mm
fiber2 0.0mm
fiber3 26.0mm
fiber1 0.0mm
fiber2 26.0mm
fiber3 52.0mm

bunch 0

Figure 6.11: Momentum-selected nominal bunch, here showing bunch 0 in the 8-bunch sequence. Traces are
measured by each fiber at each radial position and normalized by integral. The accepted momentum is centered at
p0. Red corresponds to low momentum (δ = −0.4%) and blue corresponds to high momentum (δ = +0.4%).
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(a) Nominal momentum bite centered at p0, with δ = −0.4% in red and δ = +0.4% in blue.
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(b) High momentum bite centered at +0.5% offset, with δ = +0.1% in red and δ = +0.9% in blue.

Figure 6.12: Momentum-selected short bunch, here showing bunch 0. Fiber traces are normalized by integral. Red
corresponds to low momentum and blue corresponds to high momentum.
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which can be calibrated against vertical beam profiles at injection measured by the IBMS. The effect on the stored

beam can then be simulated in gm2ringsim using the beamline simulation output as the initial distribution.

6.3.3 Momentum acceptance measurements

The program to measure the time-sliced momentum acceptance with the horizontal MiniSciFi in Run-5 and Run-6

included different kicker strengths and quadrupole configurations to replicate different running configurations be-

tween Run-2 and Run-6. The program also included direct measurements of the nominal fast rotation with nominal

beam bunches. Analysis of both the Run-5 and Run-6 measurements is in progress, and selected preliminary results

are shown below.

Nominal bunch measurement

Figure 6.13 shows the nominal FR distribution (with nominal bunches and nominal running conditions) measured

in Run-5. The signal recorded by the central fiber was corrected by unfolding the measured electronics response,

and the FR signals were extracted by dividing out an exponential decay corresponding to the muon lifetime. The

FR distribution in terms of the cyclotron frequency was then produced using the standard Fourier FR method

(Section 6.1). This nominal measurement establishes a baseline for comparison with calorimeter-measured FR

distributions and with the time-slice measurements.

Figure 6.13: Nominal fast rotation measurement with the horizontal MiniSciFi. Left: Response-corrected MiniS-
ciFi signal from which the FR signal is extracted. The 300 µs scale shows the amplitude decaying with muon
lifetime, and the shorter 5 µs scale shows the signal oscillating at the cyclotron frequency. Right: Reconstructed FR
distribution in terms of momentum offset δ. Preliminary analysis by C. Claessens.
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Time-sliced short bunch measurements

The time-sliced acceptance measurements were made by scanning through a range of kicker 5 delays (nominally

11 delays), illustrated in Figure 6.14, and recording MiniSciFi data for ∼1 h per delay. The short bunches are

selectively shaved on one side, which changes the mean time of the bunch and the corresponding optimum kicker

delay time. The central zero delay point tk = 0 is then defined as the kicker delay which maximizes storage in

terms of decay positron counts ("ctags"). The delay scan range was chosen to cover the kicker pulse width by

selecting extrema corresponding to ∼10% of the maximum ctags, as shown in Figure 6.14.

(a) The momentum acceptance due to the kicker is probed
with short bunches by scanning through kicker delays (black
points, for example). The kicker pulse is shown in black,
nominal beam bunch in pink, and short shaved beam bunch
in red. The short bunches are necessary to minimize smearing
of the kicker response, as the nominal bunch width is on the
same order as the kicker pulse width.
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(b) Estimated decay positron counts ("ctags") per fill over a
kicker delay scan with short bunches. Because the storage
efficiency is a function of the kick strength, the shape follows
that of the kicker pulse.

Figure 6.14

Figure 6.15 shows selected preliminary results from the Run-6 time-slice acceptance measurement under nomi-

nal Run-6 running conditions for several kicker delays. Each FR distribution corresponds to a tk slice of the ρ(p, tk)

distribution. The central kicker delay measurement at tk = 0 resembles the nominal measurement in Figure 6.13,

with differences which can be attributed to the short bunches reducing the distortion from the τ -p correlation.

The overall shift and change in shape over tk shows how the momentum acceptance changes as a result of the

time-varying kick.

Moving forward, this analysis looks promising. For each acceptance measurement, the full stored momentum

distribution ρ(p, tk) will be constructed from the FR distributions for all delay points. The acceptance function

ϵ(p, τ) will be extracted by unfolding the finite-width injection time distribution ρ0(τ) from ρ(p, tk) as discussed

5"Kicker" refers to the g − 2 kicker and not the DR abort kicker.
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Figure 6.15: FR distributions (in terms of momentum offset δ) measured with short bunches at several kicker delay
points. Each distribution corresponds to a tk slice of the full ρ(p, tk) distribution. tk = 0 is the central kicker delay
and tk < 0 probes the right side of the kicker pulse. Preliminary analysis by C. Claessens.

in Section 6.3. Because each bunch in the sequence of eight bunches has a distinct time distribution (as seen in

Figure 6.8), the ρ(p, tk) reconstruction and unfolding must be done separately for each of the bunches. Future

development will include well-known strategies to reduce sensitivity to statistical fluctuations in this unfolding

step, which was an apparent challenge in initial simulation studies. Ultimately the extracted acceptance ϵ(p, τ)

for each measurement configuration can be used to determine the corresponding τ -p correlation, which can be

corrected in the standard Fourier FR analysis as discussed in Section 6.1.1.

6.4 Summary

The electric field correction Ce is calculated from the fast rotation (FR) momentum reconstruction, which is an

indirect reconstruction from decay positrons in the calorimeters. The uncertainty on Ce is dominated by the time-

momentum (τ -p) correlation effect, which is caused by the time-varying kick strength and leads to a distortion in

the reconstructed momentum distribution. This was a significant ωa systematic in Run-1, and efforts are ongoing

to reduce this uncertainty.

The MiniSciFi detector directly measures the stored beam properties with minimal disturbance and high ef-

ficiency, providing a method to cross-check the FR momentum reconstruction as well as the beam distribution

reconstructed by the trackers. The MiniSciFi was installed during Run-5, and reconfigured and reinstalled for fur-

ther measurements in Run-6. One approach to characterize the τ -p correlation uses short injected muon bunches to

probe the momentum storage acceptance in time slices, scanning through kicker delay times and directly measuring
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the beam fast rotation with the horizontal MiniSciFi. An extensive program to measure the correlation with this

method was carried out in Run-5 and Run-6, with significant beam time dedicated to these measurements. The

analysis is in progress, but preliminary results show that the stored momentum clearly changes with kick strength.

The author plans to continue assisting with this analysis after graduation.

The method to create short bunches by "shaving" with the delivery ring (DR) abort kicker may introduce an

effect which would appear like an additional τ -p correlation in the short bunches. This effect was measured with

the vertical MiniSciFi by selecting different momenta at different radial positions and comparing their injection

time distributions. The DR abort kicker does not seem to introduce correlation in the short bunches which would

affect the time-slice correlation measurements. However, a measurement-calibrated simulation is required to verify

that this result holds for the stored beam.

The momentum storage acceptance measured with the time-slice method can be used to determine the τ -p

correlation. The correlation can then be corrected in the Fourier FR momentum reconstruction, which would sig-

nificantly reduce the uncertainty on Ce. Characterizing this correlation is critical to reduce this lingering systematic

contribution.
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Chapter 7

The Muon-Weighted Magnetic Field

The anomalous magnetic moment aµ is determined as in Eq. 2.17 from the ratio of the muons’ anomalous preces-

sion frequency ωa and the NMR proton precession frequency ω̃p in the magnetic field experienced by the muons.

With this field B̃ ∝ ω̃p, aµ can be expressed as 1

aµ ∝ ωa

B̃
=

ωa

⟨B(x, y, θ)×M(x, y, θ)⟩
. (7.1)

The inputs for the muon-weighted magnetic field B̃ are the magnetic field maps (Section 7.2) and the muon beam

distributions (Section 7.3), as shown in Figure 7.1. B̃ is calculated by weighting the field multipole moments

by the corresponding beam multipole projections (Section 7.4). Systematic uncertainties and corrections in the

muon-weighting analysis are discussed in Section 7.5. This chapter presents the muon-weighted field analysis for

Run-2/3, with input field maps produced by the Bloch field analysis team. 2 This author analyzed the muon-

weighted magnetic field for Run-1 [81] as well as for Run-2/3 [82], but the Run-2/3 analysis is the focus of this

chapter.

7.1 Magnetic field experienced by the muons

A single muon following the trajectory X⃗(t) will acquire a spin phase ϕ (relative to the initial phase ϕ(t0)) until its

decay at time t. Defining the time-dependent instantaneous anomalous precession frequency ωa(t
′) from Eq. 7.1,

ϕ(t) ∝ aµ

∫ t

t0

B(X⃗(t′))dt′ , (7.2)

1The proportionality factor comprises the corrections in the denominator of Eq. 2.17, and the factors relating ωp to the magnetic field
strength B in Eq. 2.10.

2The calculated quantity is called B̃ here, and may be straightforwardly converted to ω̃p as described in Section 2.7.4.
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Figure 7.1: The muon-weighted magnetic field B̃ is the average magnetic field weighted by the muon beam
distribution. The contours show a typical relative variation of the field strength and the color scale shows a typical
distribution of the muon beam intensity in the transverse muon storage region.

where B(X⃗(t′)) is the magnetic field at the muon’s position X⃗(t′). Equivalently, ϕ(t) can be expressed as an

integral over the storage ring volume V .

ϕ(t) ∝ aµ

∫ t

t0

∫
V
B(x⃗)δ(x⃗− X⃗(t))dt′d3x . (7.3)

A single muon will sample the magnetic field in the ring over many turns in the fill. Averaging over time in the fill

and over the stored muon population, the delta function describing the single muon’s trajectory can be replaced by

a probability density. The ensemble-averaged phase is then

⟨ϕ(t)⟩ ∝ aµ

∫ t

t0

∫
V
B(x, y, θ)M(x, y, θ, t)dx dy dθ dt′ . (7.4)

Here the muon position is expressed in the ring coordinates (x, y, θ), with radial coordinate R + x, vertical

coordinate y, and ring azimuth θ. R = 7112mm is the nominal orbit radius (called the "magic radius") and y = 0

defines the vertical midplane of the ring. M(x, y, θ, t) is the probability density of the muon ensemble in these

coordinates.
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With M and B independent of time in the fill, ωa can then be expressed

ωa ≡ d⟨ϕ(t)⟩
dt

∝ aµ

∫
V
B(x, y, θ)M(x, y, θ)dx dy dθ = aµB̃ , (7.5)

where B̃ is the muon-weighted magnetic field as in Eq. 7.1. The effect of a possible in-fill time dependence of M

is considered as a systematic (Section 7.5).

7.2 Magnetic field

The Run-2/3 Bloch team field analysis produces time-interpolated azimuthal field maps called virtual trolley maps,

as described in Section 2.7.3. A virtual trolley map is produced for each few-hour time interval Tinterval corre-

sponding to the muon beam distributions (Section 7.3), using the fixed probe information corresponding only to

times with ωa data passing data quality cuts 3 and averaged over Tinterval with decay positron ("ctag") weighting.

The map is interpolated to an equally-spaced azimuthal grid using a spline. Results vary slighty depending

on the spline order, so maps are produced from splines of order 1 (linear), 2 (quadratic), and 3 (cubic), shown in

Figure 7.2. This variance leads to a few-ppb uncertainty on the muon-weighted field.

Figure 7.2: Left: Dipole moment virtual trolley map with splines of order 1 (linear), 2 (quadratic), and 3 (cubic).
Right: Differences between spline orders. This example shows a region where the spline orders are significantly
different, but the difference in the azimuth-average muon-weighted field is only a few ppb. Figure courtesy of S.
Charity [83].

As described in Section 2.7.2, field maps are represented in the multipole basis. Table 2.2 shows multipole

naming conventions, and Figure 2.23 shows spatial representations of each multipole.

3Data quality cuts for the ωa analysis are determined at the subrun level, where subruns are DAQ time intervals of O(10 s).
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7.3 Muon beam distribution

The muon beam distribution varies with azimuth. Muon beam distributions M(x, y, θ) as a function of transverse

coordinates x, y and azimuth θ are reconstructed by extrapolating the tracker profiles around the ring. Tracker

distributions are accumulated in time intervals Tinterval ≈ 2 h to 3 h and corrected for detector resolution and

acceptance. Each Tinterval is chosen for sufficient tracker statistics 4 and avoids multiple-hour gaps in the data. Only

positrons with decay times between the ωa analysis start time tstart = 30.2876 µs and end time tend = 650.0644 µs

[49] enter the tracker profiles.

Tracker profiles are extrapolated around the ring according to the following expressions. The extrapolation

procedure described in Section 7.3.3 fixes the beam RMS widths and means to the tracker measurements at the

corresponding azimuthal locations (Section 7.3.5). Examples are shown in Section 7.3.4. The relationship between

the beam widths and means and the multipoles is discussed in Sections 7.4.1 and 7.4.2.

7.3.1 Beam width

The width of the beam distribution varies with azimuth due to betatron oscillations and dispersion (Section 4.3).

The average RMS width is the quadrature sum of the betatron amplitude and dispersion.

xrms(θ) =
√
ϵxβx(θ) +D2

x(θ)δ
2
rms (7.6)

yrms(θ) =
√
ϵyβy(θ) (7.7)

The beta functions βx(θ), βy(θ) and dispersion Dx(θ) come from the COSY beam dynamics model with repre-

sentative magnetic and electric storage ring fields. These functions vary with azimuth due to the discrete electric

quadrupoles. The momentum deviation δ = ∆p/p0 is determined from the reconstructed momentum distributions

from the Fourier fast rotation analysis described in Section 6.1 (with mean and RMS deviation ⟨δ⟩ and δrms, shown

in Table 7.1). Uncertainties on δ from the fast rotation analysis are considered in Section 7.5.5.

The emittances ϵx, ϵy are calculated from the measured tracker profile widths xrms(θtkr), yrms(θtkr).

ϵx =
1

βx(θtkr)

(
x2rms(θtkr)−D2

x(θtkr)δ
2
rms

)
(7.8)

ϵy =
1

βy(θtkr)

(
y2rms(θtkr)

)
(7.9)

4≥ 6× 105 total tracks, more than sufficient to minimize statistical uncertainty
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7.3.2 Beam mean

The beam mean position varies with azimuth due to closed orbit distortions and dispersion.

xmean(θ) = xCOD(θ) +Dx(θ)⟨δ⟩ (7.10)

ymean(θ) = 0 (7.11)

The equilibrium radius xeq(θ) = Dx(θ)⟨δ⟩ is offset from the magic radius due to the mean momentum deviation

⟨δ⟩, and varies with azimuth due to the variation of the dispersion. Closed orbit distortions (COD) shift the closed

orbit away from the equilibrium position. Azimuthal variation in the magnetic dipole field causes a radial COD

(Section 4.3.3), which can be written as the dominant N = 1 term of a Fourier series.

xCOD(θ) ≈ − R

ν2x − 1

b1(m1)

B0
cos(θ + θ1(m1)) (7.12)

Here R = 7112mm is the magic radius and B0 is the nominal field. νx =
√
1− n is the horizontal tune for

an effective field index n (shown in Table 7.1). b1(m1) and θ1(m1) are the Fourier amplitude and phase of the

magnetic dipole m1 vs. azimuth. The Fourier components are extracted with a fast Fourier transform (FFT) from

field maps in each Tinterval, and xCOD is calculated for each individual Tinterval. The FFT treats samples as

equally-spaced, and uses field maps which are spline-interpolated (Section 7.2) to 12k equally-spaced azimuthal

points.

Run-2 Run-3a Run-3b

mean momentum deviation ⟨δ⟩ 0.00069 0.00060 0.00008
RMS momentum deviation δrms 0.00109 0.00112 0.00124
effective field index n 0.10801 0.10749 0.10762

Table 7.1: Average momentum deviation (mean and RMS) and effective field index n in each run, provided from
the fast rotation analysis. (n values are taken from coherent betatron oscillation fits in the analysis.)

An azimuthally-varying radial magnetic dipole field would cause a vertical COD. Because the radial field

dependence on azimuth is not measured during the experiment, yCOD is set to zero and considered separately as a

systematic (Section 7.5.4).

Misalignments of the electric quadrupole plates also cause radial and vertical CODs by steering the beam.

These are considered separately as a systematic (Section 7.5.4).
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7.3.3 Beam profile reconstruction

Muon beam distributions M(x, y, θ) are reconstructed by shifting and scaling the tracker profiles to account for the

azimuthal dependence of the transverse beam profile. Beam RMS widths and means are fixed to the tracker mea-

surements at the corresponding azimuthal locations (defined in Section 7.3.5). Each tracker station is extrapolated

separately, then the reconstructed distributions from both stations are summed to get the nominal beam distribution.

Profiles are shifted by the xmean(θ) and ymean(θ) defined in Eq. 7.10, and scaled by width factors κx, κy

calculated from the xrms and yrms defined in Eq. 7.6. For each tracker station,

κtkrx (θ) =
xRMS(θ)

xRMS(θtkr)
(7.13)

κtkry (θ) =
yRMS(θ)

yRMS(θtkr)
(7.14)

The beam profile as a function of azimuth is reconstructed in seventy-two 5◦ bins centered at θj . Beam pro-

files consist of a 2D histogram for each θj bin. The 2D tracker profile histograms Mtkr(x, y) are transformed

to Mtkr (x(θ), y(θ), θ) by shifting and scaling in x , y using a linear interpolation method. The measured tracker

profile means x̄mean and ȳmean are subtracted from x and y before scaling with the width factors in Eqs. 7.13 and

7.14. Then the x profile is shifted relative to x̄mean by xmean(θ), and the y profile is shifted back to ȳmean.

x(θj) = κtkrx (θj) (x− x̄mean(θtkr)) + x̄mean(θtkr) + xmean(θj)− xmean(θtkr)︸ ︷︷ ︸
xCOD(θj) +Dx(θj)⟨δ⟩

−xCOD(θtkr)−Dx(θtkr)⟨δ⟩

(7.15)

y(θj) = κtkry (θj) (y − ȳmean(θtkr)) + ȳmean(θtkr) (7.16)

The nominal beam profile is the sum of the profiles from both stations.

M(x, y, θj) ≡M12(x, y, θj) +M18(x, y, θj) (7.17)

7.3.4 Example beam profiles

Figure 7.3 shows example tracker profiles and projections and Figure 7.4 shows example reconstructed beam pro-

files from each run. The closed orbit distortion (COD), and corresponding variation in xmean(θ), was reduced in

Run-3 compared to Run-2 due to reduced azimuthal variation of the dipole field from magnet shimming. The COD
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variation over time was also reduced in Run-3 due to improved temperature stability from hall cooling. In Run-

3b, the overall xmean and the oscillation due to dispersion are reduced due to the increased kick strength, which

reduced the momentum deviation ⟨δ⟩.
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Figure 7.3: Tracker profiles from station 12 and x, y projections for example time intervals in Run-2, Run-3a, and
Run-3b.
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(a) Run-2 (from dataset DS-2E)
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(b) Run-3a (from dataset DS-3B)
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(c) Run-3b (from dataset DS-3O)

Figure 7.4: Reconstructed beam profiles for example time intervals in Run-2, Run-3a, and Run-3b. The red points
show tracker measurements (with statistical error bars) used to reconstruct the azimuthal profiles. The cyan error
bars on the means show the 0.6mm tracker alignment uncertainty. The profiles in blue are the sum of those
reconstructed from each tracker, which would each match the corresponding red measurement. The agreement
of the means between stations is well within the tracker alignment uncertainty. The xmean(θ) variation due to the
closed orbit distortion caused by dipole field variation is reduced in Run-3 compared to Run-2. The overall xmean is
reduced in Run-3b with the increased kick strength. ymean is treated as constant; the vertical closed orbit distortion
is set to zero and treated as an uncertainty.
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7.3.5 Azimuthal coordinate system

The field azimuthal coordinate system references the ring 12 o’clock position at the center of yoke A (see Fig-

ures 2.8 and 4.6). The COSY model and beam dynamics functions reference the upstream edge of the electric

quadrupole Q1S, which is 33.35◦ downstream of the field reference. Beam distributions are reconstructed in the

COSY θ coordinates; beam multipole projections are converted to field θ coordinates for the muon weighting

analysis. Unless otherwise noted, all θ positions are in field coordinates.

The tracker stations (12, 18) have mean sensitivity at (θ12 ≈ 192.3◦, θ18 ≈ 282.4◦) in field coordinates. The

trackers have narrow RMS azimuthal sensitivity (σ12 ≈ 4.9◦, σ18 ≈ 4.8◦), so the distributions are treated as

localized at (θ12, θ18).
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7.4 Muon weighting

The muon-weighted field B̃ is defined as the field map weighted by the muon distribution. Because the Run-2/3

Bloch team field analysis produces azimuthal field maps, the baseline muon weighting procedure is defined as a

function of azimuth. 5

B̃ = ⟨MB⟩θ =
∫
A dx dy

∫
2π dθM(x, y, θ)B(x, y, θ)∫

A dx dy
∫
2π dθM(x, y, θ)

≈ ⟨B̃2D(θj)⟩θ (7.18)

where A is the 45mm radius transverse muon storage region, x, y are the transverse coordinates, θ is the azimuth,

M(x, y, θ) is the reconstructed muon distribution, and B(x, y, θ) is the azimuthal field map. B̃ is calculated in

each time interval Tinterval using M and B in the same Tinterval. (Tinterval is implicit in the following references

to M and B.)

B̃ is approximated as the average of the 2D weighted field B̃2D over the azimuthal bins θj defined by the

reconstructed beam distribution. In the following expressions, M(x, y) and B(x, y) are implicitly defined in a

given θj bin (but θj is left out for simplicity.)

B̃2D =

∫
AM(x, y)B(x, y) dx dy∫

AM(x, y) dx dy
(7.19)

Replacing B(x, y) with the multipole expansion in Section 2.7.2 and rearranging,

B̃2D =

∑Nmax
i=1 mi

∫
AM(x, y)fi(x, y) dx dy∫

AM(x, y) dx dy
≡

Nmax∑
i=1

miki , (7.20)

where the polar coordinates r, Θ have been converted to x, y in fi(x, y). Nmax is the maximum multipole order

included in the sum, nominally Nmax = 12.6 Then B̃ is determined by averaging B̃2D over the azimuthal bins.

B̃ = ⟨
Nmax∑
i=1

mi(θj)ki(θj)⟩θ (7.21)

The coefficients ki are multipole projections of the muon distribution. The ki give the fractional contribution of

5This was an update from Run-1 analysis, which produced azimuth-averaged field maps. In Run-1, the azimuthal interference effects
had to be evaluated separately.

6This was an update from Run-1 analysis which used Nmax = 9; trolley multipole fitting residuals were found to be minimized by
including higher-order moments up to Nmax = 12. The S14 moment (m13) is set to zero. [51].
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each field moment to the total weighted field B̃.

ki ≡
∫
AM(x, y)fi(x, y)dx dy∫

AM(x, y)dx dy
(7.22)

In each 5◦ bin centered at θj , multipole projections ki(θj) are extracted from the beam profile as in Eq.(7.22).

The dipole moment weight k1 is equal to 1 by definition. In practice the ki integration range is −45mm to 45mm

in x and y.

Each virtual trolley moment mi is averaged in bins θj by sampling the spline function (Section 7.2) with 100k

samples per bin (effectively integrating the function), then averaging over the bin. This process is repeated for

splines of order 1, 2, and 3, representing different possible field distributions between trolley samples. The central

B̃ value is calculated from the average result over the spline orders, and the variance in spline orders is assigned as

an uncertainty from azimuthal averaging (Section 7.5.1).

Figure 7.5 shows the procedure to calculate B̃ described by Eq. 7.21. Features of the beam projections are

discussed in Sections 7.4.1 and 7.4.2.
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Figure 7.5: Muon weighting procedure for an example time interval in Run-2. The dominant contributions to the
total weighted field (Dip, NQ, and NS moments) are shown. Top: The virtual trolley map (blue) is averaged in
bins θj to get mi(θ) (orange). Center: Beam projections ki(θ) in the same θj bins. Bottom: The muon-weighted
moment is the product of mi(θ) and ki(θ), which is then averaged in θ (red line).
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7.4.1 Results

Figures 7.6 and 7.7 show the B̃ results for Run-2 and Run-3, with a breakdown of the individual multipole moment

contributions and beam multipole projections. Table 7.2 shows run-average beam multipole projections. All run-

averaged values are ctag-weighted averages, calculated with decay positrons ("ctags") in each time interval as

weights. The NQ projection (k2) couples mainly to the beam xmean, and the NS projection (k5) couples to both the

beam xrms and xmean. These beam projections are dominant due to the radial asymmetry of the beam, and the NQ

and NS moments are therefore the dominant multipole contributions to the muon-weighted field. In Run-3b when

the beam is more radially centered, the NQ and NS beam projections are reduced.

Run-2 Run-3a Run-3b

Dip (k1) 1.000 1.000 1.000
NQ (k2) 0.139 0.136 0.073
SQ (k3) -0.001 -0.006 -0.005
SS (k4) 0.001 -0.001 0.000
NS (k5) 0.081 0.076 0.046
SO (k6) 0.000 -0.001 0.000
NO (k7) -0.001 -0.001 -0.006
ND (k8) -0.002 -0.001 0.003
SD (k9) 0.001 0.001 0.000
N12 (k10) -0.004 -0.003 0.001
S12 (k11) 0.000 0.000 0.000
N14 (k12) -0.001 -0.001 0.001
S14 (k13) 0.000 0.000 0.000

Table 7.2: Average beam multipole projections in each run (averaged over the run with ctag weighting). Projections
are normalized to beam profile intensity and are unitless.

Table 7.3 shows run-average multipole contributions to the total muon-weighted field B̃. The weighted NQ

moment is dominant in each run. In Run-2 the NQ and NS moments have opposite signs but the weighted NQ

contribution is larger and dominates the total multipole contribution. In Run-3 the magnet temperature was better

controlled due to improved cooling in the experimental hall, reducing variation of the field moments over time. In

Run-3a the NQ and NS moments have opposite signs and reduced magnitudes from Run-2. In Run-3b, the NQ and

NS moments have the same signs as in Run-2, and the muon-weighted contributions are further reduced both due

to the reduced field moments and the better-centered beam.
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Run-2 Run-3a Run-3b

Total contribution from all multipoles (ppb) 47.4 -6.9 2.6

NQ (k2m2) (ppb) 66.1 -10.2 4.0
SQ (k3m3) (ppb) -0.2 0 0.2
SS (k4m4) (ppb) 0.5 0 0.1
NS (k5m5) (ppb) -24.5 0.7 -0.4
SO (k6m6) (ppb) 0.1 -0.1 -0.1
NO (k7m7) (ppb) 1.5 0.1 0.2
ND (k8m8) (ppb) -0.4 -0.4 -0.3
SD (k9m9) (ppb) 0 0 0
N12 (k10m10) (ppb) 3.0 2.3 -0.4
S12 (k11m11) (ppb) 0 0 0.1
N14 (k12m12) (ppb) 1.4 0.6 -0.7
S14 (k13m13) (ppb) 0 0 0

Table 7.3: Muon-weighted multipole contributions to B̃ in each run (averaged over the run with ctag weighting),
with kimi as shorthand for ⟨ki(θj)mi(θj)⟩θ. The sum of all multipole contributions is shown at the top. Contribu-
tions of < 0.05 ppb are shown as zero.
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Figure 7.6: Baseline muon-weighted field results for Run-2. Colored bands indicate datasets. Top plot: Azimuth-
average dipole moment (blue) and total weighted field including contributions from muon-weighted multipole mo-
ments (orange). Second plot: Individual muon-weighted multipole moment contributions, ⟨ki(θj)mi(θj)⟩θ. Third
plot: Unweighted azimuth-average field multipole moments mi. Bottom plot: Azimuth-average beam multipole
projections ki. The time variation of the muon-weighted moments is mainly due to variation of the field; the beam
projections are relatively stable.
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Figure 7.7: Baseline muon-weighted field results for Run-3. Colored bands indicate datasets. Top plot: Azimuth-
average dipole moment (blue) and total weighted field including contributions from muon-weighted multipole mo-
ments (orange). Second plot: Individual muon-weighted multipole moment contributions, ⟨ki(θj)mi(θj)⟩θ. Third
plot: Unweighted azimuth-average field multipole moments mi. Bottom plot: Azimuth-average beam multipole
projections ki. The time variation of the muon-weighted moments is mainly due to variation of the field, although
the variation is less than in Run-2. The beam projections are relatively stable, except for the reduction in Run-3b
due to the stronger kick.
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7.4.2 Azimuthal effects

Figure 7.8 shows dominant beam projections corresponding to the beam profiles in Figure 7.4. The NQ projection

(k2) couples mainly to the beam xmean, and the θ dependence is dominated by the closed orbit distortion. Azimuthal

variation in k2 is reduced in Run-3 compared to Run-2 due to the reduced COD, and the oscillation due to dispersion

is reduced in Run-3b. The NS projection (k5) couples to both the beam xrms and xmean, and the θ dependence

shows features of both.
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(b) Run-3a (from dataset DS-3B)
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Figure 7.8: NQ and NS beam projections (k2 and k5) vs. azimuth for example time intervals in Run-2, Run-3a,
and Run-3b.

The azimuthal interference between the beam projections ki(θ) and field momentsmi(θ) affects the total muon-

weighted field B̃ given by Eq. 7.21. This effect is seen in Figure 7.9 by comparing the standard B̃ = ⟨MB⟩θ ("3D")

with B̃ calculated from azimuth-averaged beam projections and field moments, ⟨M⟩θ⟨B⟩θ ("2D average"). The

effect is driven by the closed orbit distortion (COD) amplitude and phase, shown in Figure 7.10. In Run-2 the

difference is 6 to 30 ppb; in Run-3 when the COD amplitude is reduced, the difference is only 2 to 8 ppb.
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Figure 7.9: Standard "3D" muon-weighted field compared with "2D average" calculated with azimuth-averaged
beam projections and field moments, for Run-2 and Run-3. Colored bands indicate datasets. Top plots show B̃
values and bottom plots show differences between "3D" and "2D average", with a breakdown of the difference in
each moment.
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Figure 7.10: Closed orbit distortion amplitude (top) and phase (bottom) for Run-2 and Run-3. Colored bands
indicate datasets. The COD amplitude is smaller and varies less in Run-3 compared with Run-2.
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7.5 Corrections and Uncertainties

Uncertainties in the field and the beam contribute to the overall uncertainty on B̃. Using B̃ =
∑

i kimi as shorthand

for Eq. 7.21, the uncertainty is propagated using the covariance Kij between variables,

δB̃2 =
∑
a,b

∑
i,j

∂B

∂ai
Kij(ai, bj)

∂B

∂bj
, (7.23)

where the variables a and b represent k or m. The field moments mi are correlated with each other [51], but the

beam projections ki are uncorrelated and their covariance is diagonal. The ki and mi are uncorrelated in general,

so the cross term does not contribute. The uncertainty on B̃ is then

δB̃2 = δB̃2
field + (mi δki)

2 . (7.24)

The field uncertainties δB̃field include correlations between moments, and are discussed below in Section 7.5.1.

Beam uncertainties cause uncertainties δki in the beam projections; these and the corresponding δB̃ contributions

are discussed in the subsequent sections. The uncertainties from the beam which enter in the muon weighting are

the focus of this uncertainty analysis.

7.5.1 Field uncertainties

Uncertainties on the field multipole moments are propagated using the beam projections as weights. The combined

uncertainty includes correlations between moments.

δB̃2
field =

∑
i,j

kiKij(mi,mj)kj ≡
∑
i

k2i δm2
i +

∑
j>i

2r(i, j)(kikj)δmiδmj

 (7.25)

where i, j run over all moments, Kij is the covariance matrix between moments, δmi is the uncertainty for moment

mi, and r(i, j) is the correlation coefficient between moments.

Except for the azimuthal averaging uncertainty below, field-specific uncertainties are not the subject of the

muon-weighted field analysis. Field uncertainties are separated into uncorrelated and correlated uncertainties,

discussed here briefly. Preliminary total uncertainties of each type for Run-2/3 are shown in Table 7.4 for reference.
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Run-2 Run-3a Run-3b

δB̃ (ppb) from uncorrelated field tracking uncertainties 15.4 10.7 16.0
δB̃ (ppb) from correlated field uncertainties 45.4 46.2 44.7

Table 7.4: Preliminary uncorrelated and correlated total uncertainty on B̃, combined (with ctag weighting) for
trolley pairs in each run.

Uncorrelated

Uncorrelated uncertainties are independent between trolley pairs and are therefore reduced by averaging multiple

trolley pairs. These uncertainties come from tracking the field drift over time between trolley runs. The dominant

source of tracking uncertainty is the non-linear drift remaining after tying the fixed probe measurements to the

trolley runs, as described in Section 2.7.3.

This remaining drift between trolley runs is treated as a Brownian bridge, and the uncertainty is estimated by

a model of possible random walks with rate-of-change parameter M . Tracking uncertainties are zero at the trolley

runs and maximum at the midpoint between trolley runs. For intervals with just one starting or ending trolley run,

the drift is treated as a random walk fixed at the single trolley run, and uncertainty is maximum at the other end of

the interval. Uncorrelated uncertainties are combined within each trolley pair using a covariance matrix to account

for the correlation between measurements in the time interval. For each multipole moment i, the covariance matrix

between times tm ≤ tn in an interval 0, T is given by [41]

Ki
m,n =Mi

tm(T − tn)

T
, Brownian bridge (two bounding trolley runs) (7.26)

Ki
m,n =Mitm , random walk (one bounding trolley run) . (7.27)

Mi is the RMS of time-normalized azimuth-average sync offsets (difference between fixed probes and ending

trolley run after tying), with units of ppb/
√

hour.

The overall uncertainty for each multipole moment i for the trolley pair interval, accounting for the correlation

between measurements, is propagated with decay positron count ("ctag") weights cm at time tm

δmi =
√
cmKi

mncn . (7.28)

The δmi are then combined to δB̃uncorr by weighting with the beam projections as in Eq. 7.25. For a dataset with
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N trolley pairs and ctp ctag weights in each pair, the uncorrelated field uncertainty is given by

δB̃uncorr =

√√√√√√
∑N

tp=0

(
ctpδB̃uncorr

tp

)2

(∑N
tp=0 ctp

)2 . (7.29)

Correlated

Correlated uncertainties are common to all trolley pairs and are not reduced by averaging multiple trolley pairs. The

largest source of correlated uncertainty in the field measurement is systematics from extracting multipole moment

maps from the NMR frequencies measured by the trolley probes. These systematics include extraction of the NMR

frequency from the free induction decay signals, eddy currents induced by trolley motion in the magnetic field, and

different experiment configurations between the trolley field measurement and ωa measurement periods.

Azimuthal averaging

B̃ is calculated with virtual trolley maps which are sampled from splines of order 1, 2, and 3 and averaged in

azimuthal bins (described in Section 7.4). The central B̃ value is taken from the average of the spline orders. The

truth distribution between trolley samples is unknown, so the variance in B̃ calculated from the different spline

orders is assigned as an uncertainty in the azimuthal averaging. This uncertainty is correlated between trolley pairs.

B̃avg =
1

3

3∑
n=1

B̃n (7.30)

δB̃2 =
1

3

3∑
n=1

(B̃n − B̃avg)
2 (7.31)

B̃avg gives the central value of B̃. B̃n is calculated as in Eq. 7.21, with order n splines used to average the moments

mi in azimuthal bins θj . The variance of B̃ implicitly includes the correlations between moments in Eq. 7.25.

Figure 7.11 shows the uncertainty on B̃ from the azimuthal averaging. Table 7.5 shows the run-averaged

uncertainties, which are ≦ 2 ppb.

Run-2 Run-3a Run-3b

δB̃ (ppb) from azimuthal averaging 0.8 1.4 1.7

Table 7.5: Uncertainty on B̃ from azimuthal averaging with different spline orders, averaged (with ctag weighting)
for datasets in each run.
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Figure 7.11: Uncertainty on B̃ from azimuthal averaging, calculated as the variance from spline orders. Top: Total
uncertainty (orange) and contribution from dipole moment (blue), which is the majority of the total uncertainty.
Bottom: Uncertainty from weighted multipole moments, which contribute according to beam projection weights.
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7.5.2 Tracker uncertainty

Tracker-specific systematics cause uncertainties in the beam distribution, which lead to uncertainties in B̃. The

relevant uncertainties for muon weighting are tracker resolution, acceptance, and alignment. These systematics

were evaluated by varying each parameter and producing corresponding beam distributions in the usual time in-

tervals Tinterval, then evaluating the effect on B̃. In general, the parameters were varied symmetrically by the 1σ

uncertainty on each parameter (for example, tracker position was varied by ±0.6mm in each direction); the corre-

sponding effects on B̃ were approximately symmetric. The uncertainty on B̃ was taken as the absolute change in

B̃ due to each varied parameter, averaged over each dataset.

In Run-1, the tracker acceptance and resolution uncertainties were ≦ 2 ppb and < 1 ppb, respectively. For

Run-2/3, these uncertainties were evaluated for a few selected datasets to verify they are still insignificant. Since

the tracker corrections affect the beam mean and width, datasets with large field multipole moments were selected

to represent worst-case effects 7. The tracker alignment uncertainty was significant in Run-1, so it was evaluated

for all Run-2/3 datasets.

Tracker acceptance

The tracker profiles are corrected for detector acceptance by re-weighting tracker vertex positions by a spatial ac-

ceptance function. The acceptance correction changes the profile width as well as the radial mean due to asymmetry

of the acceptance function. The acceptance systematic was evaluated by rescaling the radial and vertical acceptance

functions simultaneously by ±20% relative to the peak acceptance, effectively bending the acceptance at the edges.

Figure 7.12 shows the acceptance correction functions and the rescaling variation.

(a) Tracker acceptance correction functions (b) Varying the vertical acceptance

Figure 7.12: Radial and vertical tracker acceptance functions (left) used for the nominal acceptance correction [84].
The radial (not shown) and vertical (shown here, right) acceptance are rescaled by ±20%, which bends the accep-
tance at the edges relative to the maximum [85]. Figures courtesy of J. Mott and J. Price.

7Dataset DS-2E has large NQ, NS, SQ, and SS moments; DS-3B has large NQ and NS moments; and DS-3O represents the better-
centered beam, although the multipole moments are not the largest.
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Figure 7.13 shows the effect on B̃ for the selected datasets, all ≦ 2 ppb. The effect of varying the acceptance

dominantly couples to the NQ moment due to the change in radial mean, and is driven by the NQ field moment

magnitude. The effect on the selected dataset in each run is taken as the uncertainty for the run, shown in Table 7.6.

Run-2 Run-3a Run-3b

δB̃ (ppb) due to tracker acceptance 2.1 1.1 0.1

Table 7.6: Uncertainty on B̃ due to tracker acceptance, averaged (with ctag weighting) for the selected dataset in
each run.
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Figure 7.13: Effect on B̃ of varying the tracker acceptance (top), and a breakdown of the contribution of each
weighted field moment (center) and beam projection (bottom).
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Tracker resolution

The measured tracker profiles are wider than the actual beam distribution due to the resolution of the trackers, so

the resolution correction narrows the tracker profiles. The nominal resolution is approximately (3.3 ± 0.5)mm

(radial) and (2.7 ± 0.5)mm (vertical) [84]. The resolution systematic was evaluated by varying the radial and

vertical resolution simultaneously by ±0.5mm.

Figure 7.14 shows the effect on B̃ for the selected datasets; the effect is ∼0.1 ppb. Varying the resolution

dominantly changes the ND (k8) beam projection, but this change and the ND field moment are both small. The

effect on the selected dataset in each run is taken as the uncertainty for the run, shown in Table 7.7.

Run-2 Run-3a Run-3b

δB̃ (ppb) due to tracker resolution 0.1 0.1 0.1

Table 7.7: Uncertainty on B̃ due to tracker resolution.
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Figure 7.14: Effect on B̃ of varying the tracker resolution (top), and a breakdown of the contribution of each
weighted field moment (center) and beam projection (bottom).
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Tracker alignment

The uncertainty in the tracker profile position due to tracker alignment is ±0.6mm in x and y. In the Run-1

analysis [81], it was determined that the largest change in the total summed beam profile and the largest effect on

B̃ occurs when both tracker stations are misaligned in the same direction. In Run-2/3, the alignment systematic

was conservatively evaluated by shifting the tracker profiles in x or y by ±0.6mm (in the same direction) before

correcting for resolution and acceptance and reconstructing the azimuthal beam profiles.

Figure 7.15 shows the effect of misalignment on B̃. The magnitude and sign of the effect are driven by the

magnitude and sign of the corresponding quadrupole moment (NQ or SQ moments for x or y misalignments,

respectively), with sub-dominant contributions from the corresponding sextupole (NS or SS) and octupole (NO or

SO) moments. In Run-2, the effect of the y misalignment is larger than that of the x misalignment, and both are

on the order of the Run-1 effects due to the NQ and SQ field moments. In Run-3, the effects of both are generally

reduced because the NQ and SQ moments are reduced. Table 7.8 shows run-averaged uncertainties due to each

misalignment.

Run-2 Run-3a Run-3b

δB̃ (ppb) due to tracker y alignment 10.7 0.6 0.4
δB̃ (ppb) due to tracker x alignment 4.5 1.3 0.3

Table 7.8: Uncertainty on B̃ due to tracker alignment, averaged (with ctag weighting) for datasets in each run.
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Figure 7.15: Effect on B̃ of varying the tracker alignment by ±0.6mm (top), and a breakdown of the contribution
of each weighted field moment (center) and beam projection (bottom).
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Tracker statistical uncertainty

The uncertainty on B̃ due to tracker profile statistics is insignificant. Typical statistical uncertainties on tracker

profiles in each Tinterval are ∼(30 µm, 20 µm) for (xmean, ymean) and ∼(20 µm, 15 µm) for (xrms, yrms). For the

means, this corresponds to ≦ 5% of the 0.6mm tracker alignment uncertainty. For the RMS, this corresponds to

∼0.1% of the typical xrms and yrms. Both contributions would be well below 1 ppb. Similarly, a Run-1 study [86]

by A. Tewsley-Booth showed a < 1 ppb effect from tracker statistical uncertainty.
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7.5.3 Calorimeter acceptance

The muon-weighted field B̃ should represent the field experienced by the muons whose decay positrons enter the

ωa analysis. Up to this point, this distribution was approximated by the full beam distribution in the ring. The

beam profiles should therefore be corrected for calorimeter acceptance to represent the distribution detected by the

calorimeters. The Run-1 calorimeter acceptance correction was used to estimate the effect on B̃ in Run-2/3. In

Run-1 [81], the calorimeter acceptance correction was applied for one dataset, and the resulting ∼3 ppb change in

B̃ was taken as an uncertainty.

The acceptance correction is more than a simple spatial weighting function. Because each muon circulates

around the ring hundreds of times and can decay at any position, its probability distribution must be included in

the correction. This probability depends on the muon’s betatron amplitudes Ax, Ay and equilibrium radius xeq.

The correction procedure developed by J. Mott [85] was to deconvolve the (x, y) tracker profiles to obtain a distri-

bution of (Ax, Ay, xeq), calculate the total acceptance probability for each (Ax, Ay, xeq) using acceptance maps

from simulation, and construct the corrected (x, y) distribution using the acceptance probabilities as weights. The

correction de-weights muons not detected by the calorimeters, as seen from the ratio of corrected and uncorrected

profiles in Figure 7.16.

Figure 7.16: Ratio of azimuth-averaged calorimeter-acceptance-corrected and uncorrected muon distributions from
Run-1.

The change in beam projections ∆ki from the Run-1 beam profiles was used as a rough estimate for Run-2/3.

The acceptance correction dominantly affects the NQ and NS projections, shown in Table 7.9. The uncertainty was

estimated as the change in B̃ (Table 7.10) calculated from ∆ki(θj) and ctag-weighted run-averaged field moments

mi(θj). The effect is ≤ 1 ppb, reduced from Run-1 due to reduced NQ and NS field moments. The full calorimeter

acceptance correction was therefore not repeated in Run-2/3.
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∆ki

NQ (k2) -0.0019
NS (k5) 0.0015

Table 7.9: Dominant average beam projection changes due to calorimeter acceptance correction in Run-1.

Run-2 Run-3

δB̃ (ppb) due to calo acceptance -1.0 0.2

Table 7.10: Change in B̃ due to Run-1 calorimeter acceptance correction, taken as an estimate of the uncertainty
on B̃ in Run-2/3. Signs correspond to the sign of the change, but uncertainties are taken as the absolute value.

7.5.4 Closed orbit distortions

The nominal reconstructed beam distributions include the radial closed orbit distortion xCOD due to the magnetic

dipole field and zero vertical closed orbit distortion yCOD. Systematic effects include yCOD due to a radial magnetic

field, and xCOD and yCOD due to misalignment of the electric quadrupole plates.

COD systematics were evaluated by linearly scaling a unit beam displacement and determining the corre-

sponding change in the beam projections ∆ki as a function of azimuth, illustrated in Figure 7.17. Typical COD

amplitudes are sufficiently small that the beam projection change is approximately linear and can be expressed as

∆ki ≈ dki
dx ∆x. The effect on the weighted field due to a closed orbit distortion ∆x(θ) is then

∆B̃ = ⟨
∑
i

dki(θj)

dx
∆x(θj) ·mi(θj)⟩θ , (7.32)

and similar for ∆y(θ). In the following sections, the ∆x(θ) and ∆y(θ) are replaced with xCOD and yCOD. The

COD effects were evaluated at the dataset level with dataset-average field moments and beam distributions.
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Figure 7.17: Beam projections and polynomial terms for x (top) and y (bottom) steps in an example θ bin, for
dataset DS-2B.

Radial magnetic field

An azimuthally-varying radial magnetic dipole field would cause a vertical closed orbit distortion yCOD. Such a

COD can be expanded in a Fourier series as in Section 4.3.3. The radial field is not measured or tracked during

production running, but it was measured by R. Osofsky before Run-1 and corresponding yCOD Fourier components

were extracted [50]. The systematic due to a yCOD caused by a radial field was conservatively estimated with a

FourierN = 1 amplitude of 0.5mm, approximately double theN = 1 amplitude from the pre-Run-1 measurement.

The effect of yCOD on B̃ was evaluated as described above (Section 7.5.4). The worst case of phases ranging from

0 to 2π was taken as the uncertainty, as shown in Figure 7.18. The magnitude of the effect is driven by the azimuthal

interference between yCOD and the skew field moments. Uncertainties for each dataset are shown in Figure 7.20.

Run-averaged uncertainties are shown in Table 7.11.

For comparison, the effect of the pre-Run-1-measured yCOD was also evaluated. This yCOD is provided by

the COSY model using the pre-Run-1 radial field map (Figure 7.19). The effect on B̃ is ≤ 1 ppb (shown in

Figure 7.20), and well within the uncertainty determined above.
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(b) Change in B̃ due to each yCOD in Figure 7.18a. The
worst-case effect is ±1.4 ppb, which is taken as the uncer-
tainty for this dataset.

Figure 7.18: Example yCOD uncertainty estimation in Run-2 (dataset DS-2F)
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Figure 7.19: yCOD from the pre-Run-1 radial field measurement, provided by the COSY model

Run-2 Run-3a Run-3b

δB̃ (ppb) due to yCOD from radial B 1.8 3.7 2.9

Table 7.11: Uncertainty on B̃ due to a vertical COD caused by a radial field, averaged (with ctag weighting) for
datasets in each run.
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Figure 7.20: Uncertainty on B̃ per dataset due to a vertical COD caused by a radial field (blue), with the effect of
the pre-Run-1-measured yCOD for comparison (orange).

Electric quadrupole misalignment

Misalignments of the electric quadrupole plates cause an xCOD or yCOD by steering the beam. Quadrupole plates

were surveyed in Run-1 [87], and M. Syphers calculated the expected CODs [88] due to measured displacements

of the quad centroids (Table 7.12) using a model based on the transport matrix formalism introduced in Section 4.1.

Survey uncertainties cause uncertainties on the CODs. The effect on B̃ was estimated from a distribution of CODs

caused by quad centroid displacements with random uncertainties.

quad dx [mm] dy [mm]
Q1S −0.490 (0.700) 2.235 (0.354)
Q1L −0.245 (0.492) −0.980 (0.350)
Q2S −0.995 (0.430) −0.675 (0.354)
Q2L −0.035 (0.458) 0.380 (0.350)
Q3S −0.200 (0.480) 0.750 (0.350)
Q3L 0.115 (0.437) −1.965 (0.354)
Q4S −0.345 (0.700) −1.315 (0.354)
Q4L 0.085 (0.522) −0.220 (0.350)

Table 7.12: Measured electric quadrupole centroid displacements and corresponding uncertainties.

The total COD due to quad displacements is a linear combination of CODs from individual quad displacements,

and the COD scales linearly with the displacement. x and y CODs for individual quad centroid displacements were

calculated from M. Syphers’ model [88] with 18.3 kV quad voltage 8, then scaled by displacements generated

in a Monte Carlo. Displacements in the Monte Carlo were randomly sampled from a distribution defined by the

survey central values and uncertainties. To check effects of possible correlations between quads, CODs were also

generated for all 6561 combinations of 0, ±1σ centroid displacements ("corner cases").

8Actual quad voltages were 18.3 kV in Run-2 and 18.2 kV in Run-3, but the corresponding difference in the calculated CODs was only
a few µm. The 18.3 kV CODs were therefore used in this study for both runs.
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The CODs due to the central measured displacements were fixed to the measured tracker mean positions, as

they would be in the beam reconstruction procedure. (Unlike the radial field case, the quad displacements have a

central measurement which is treated here as a correction.) All Monte Carlo CODs were fixed to the same offset

and vary relative to the central CODs.

Effects of the CODs on B̃ were evaluated as described in Section 7.5.4. Figure 7.21 shows the CODs from the

Monte Carlo and the corner cases; Figure 7.22 shows the distribution of corresponding changes in B̃ for an example

dataset. The effect of the central COD corresponds to the mean of the B̃ distribution, which gives the correction to

B̃. The RMS of the Monte Carlo distribution gives the uncertainty on B̃. The corner cases show that correlations

between quads would not have a larger effect than the random alignment errors in the Monte Carlo. Corrections

and uncertainties for each dataset are shown in Figure 7.23. Run-averaged corrections and uncertainties are shown

in Table 7.13.

(a) Monte Carlo distribution of x (top) and y (bot-
tom) CODs caused by random alignment errors rela-
tive to measured quad displacements. The black "cen-
tral CODs" are caused by the central measured quad dis-
placements.

(b) Distribution of x (top) and y (bottom) CODs for
all "corner case" combinations of 0, ±1σ alignment er-
rors relative to measured quad displacements. The black
"central CODs" are caused by the central measured quad
displacements.

Figure 7.21: CODs due to quad misalignments
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Figure 7.22: Distribution of change in B̃ due to x (top) and y (bottom) CODs from Monte Carlo (blue) and corner
cases (orange) for DS-2F. The mean and RMS of the Monte Carlo distribution give the correction and uncertainty
to B̃.

Run-2 Run-3a Run-3b
correction ∆B̃ (uncertainty δB̃)

xCOD quad misalignment (ppb) +1.3(5.9) +2.7(6.7) +2.5(6.3)
yCOD quad misalignment (ppb) −0.9(0.1) −0.5(0.2) −0.3(0.2)

Table 7.13: Correction and uncertainty to B̃ due to CODs caused by electric quadrupole misalignments, averaged
(with ctag weighting) for datasets in each run.
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Figure 7.23: Correction and uncertainty to B̃ per dataset due to CODs caused by electric quadrupole misalign-
ments.

7.5.5 Momentum deviation

The momentum deviation δ used in the beam reconstruction procedure (Section 7.3) is determined from the Fourier

fast rotation analysis (Section 6.1). The mean deviation ⟨δ⟩ is an input to xmean(θ) (Eq. 7.10), and the RMS devi-

ation δrms is an input to xrms(θ) (Eq. 7.6). The uncertainty on δ is dominated by the momentum-time correlation

systematic. The shift in δ caused by the correlation was estimated by comparing the Fourier fast rotation results

with results from a new analysis method in Run-2/3 which handles the correlation systematic differently [89].

Typical differences in ⟨δ⟩ and δrms are O(0.0001).

Similar to the tracker systematics (Section 7.5.2), ⟨δ⟩ and δrms were varied and corresponding beam distri-

butions were produced, then the effect on B̃ was evaluated. The effect was studied for selected datasets 9 with

relatively large N=4 Fourier amplitudes in the NQ and NS moments, since the δ factors multiply Dx(θ) which

contributes an N=4 component to xmean(θ) and xrms(θ).

Figure 7.24 and Figure 7.25 show the approximately linear effect on B̃ of individually varying ⟨δ⟩ and δrms

by ±0.0001 for the selected datasets (with both parameters required to be ≥ 0). ⟨δ⟩ + 0.0003 was included as an

additional check. The δrms effect is < 0.1 ppb, so the uncertainty is effectively zero. The ⟨δ⟩ effect is sub-ppb, but

9datasets DS-2E and DS-3F, as well as DS-3O to represent the better-centered beam in Run-3b
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is taken as an uncertainty (Table 7.14) (with values < 0.1 ppb rounded to zero).

Run-2 Run-3a Run-3b

δB̃ (ppb) due to mean momentum offset ⟨δ⟩ 0.2 0 0

Table 7.14: Uncertainty on B̃ due to a ±0.0001 uncertainty in ⟨δ⟩, averaged (with ctag weighting) for the selected
dataset in each run.
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Figure 7.24: Effect on B̃ of varying the mean momentum offset ⟨δ⟩ (top), and a breakdown of the contribution of
each weighted field moment (center) and beam projection (bottom).
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Figure 7.25: Effect on B̃ of varying the RMS momentum offset δrms (top), and a breakdown of the contribution
of each weighted field moment (center) and beam projection (bottom).
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7.5.6 In-fill time dependence

In Run-1 the damaged electric quadrupole resistors caused the muon distribution to change over time in the fill,

leading to an in-fill time dependence of B̃ which had to be corrected (discussed in Section 2.8). The resistors were

replaced before Run-2/3, but some time dependence of the beam remains due to muon losses [55, 56].

A time-dependent field B̃(t) causes a time-dependent ωa(t) which shifts the extracted ωa; this requires a

correction to B̃. For a field with linear time dependence dB̃
dt , the correction relative to B̃(tstart) at the analysis start

time is dB̃
dt × 2τµ where τµ is the lab-frame muon lifetime [90]. However, the standard B̃ corresponds to the time

tstart + τµ, the weighted mean time for an exponentially-decaying muon population. The required correction is

therefore ∆B̃ = dB̃
dt × τµ.

The time-dependent muon distribution effect was estimated with tracker profiles over time in the fill. E. Bot-

talico provided the time-binned tracker profiles integrated over each run from the phase-acceptance correction

analysis [55,56]. The time was randomized before binning to average out beam dynamics frequencies and preserve

early-to-late time dependence. Figure 7.26 shows the tracker profile means and widths over time.

The weighted field was calculated for each tracker profile in each time bin, using field moments averaged (with

ctag weighting) over the run. Figure 7.27 shows the relative change in B̃ over time in the fill. dB̃
dt was estimated

with a linear fit between 30 µs and 150 µs, although the fit would overestimate the change at late times.

The largest time dependence is seen in tracker station 12 in Run-2, with dB̃
dt = 0.007 ppb/µs. The corresponding

correction would be ∆B̃ = dB̃
dt ×τµ = 0.4 ppb. Because this effect was roughly estimated at only the run-averaged

level and found to be sub-ppb and thus insignificant, the in-fill time dependence correction is taken as zero for

Run-2/3.

Transient fields

Magnetic field transient effects from the electric quadrupoles and kicker eddy currents could cause a time-dependent

closed orbit distortion. In the Run-1 muon-weighted field analysis [81] these were estimated to affect the xCOD

amplitude by < 20 µm, corresponding to a few-percent or sub-ppb effect.
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Figure 7.26: Tracker profile in-fill-time dependence (E. Bottalico [56]) from the analysis start time of 30 µs in
Run-2, Run-3a, and Run-3b.
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Figure 7.27: B̃ relative change over time in fill in Run-2, Run-3a, and Run-3b
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7.6 Summary

The magnetic field experienced by the muons is one of the two experimental observables required to extract aµ.

This muon-weighted magnetic field B̃ is calculated by weighting the magnetic field by the muon beam distribution.

Muon beam distributions are reconstructed in intervals Tinterval ≈ 2 h to 3 h by extrapolating the tracker

profiles around the ring using beam dynamics functions (Section 7.3). The beam width varies with azimuth due to

betatron oscillations and dispersion, and the beam mean varies due to closed orbit distortions and dispersion.

The Bloch team field analysis for Run-2/3 produced time-interpolated azimuthal field maps called "virtual

trolley maps" in each Tinterval (Section 7.2). The baseline muon weighting procedure for Run-2/3 (Section 7.4) is

defined as a function of azimuth. B̃ is calculated by weighting the field multipole moments by the corresponding

beam multipole projections in each Tinterval.

Corrections and uncertainties on B̃, described in Section 7.5, are summarized in Table 7.15. The dominant

uncertainties are from the tracker y alignment in Run-2, which was reduced in Run-3 due to the smaller SQ field

moment, and the x closed orbit distortion due to electric quadrupole misalignments.

correction ∆B̃ (ppb) uncertainty δB̃ (ppb)
Run-2 Run-3a Run-3b Run-2 Run-3a Run-3b

Field specific
Azimuthal averaging 0.8 1.4 1.7

Detector effects
Tracker acceptance - 2.1 1.1 0.1
Tracker resolution - 0.1 0.1 0.1
Tracker y alignment - 10.7 0.6 0.4
Tracker x alignment - 4.5 1.3 0.3
Calo acceptance - 1.0 0.2 0.2

Closed orbit distortion and azimuthal effects
yCOD from radial B - 1.8 3.7 2.9
xCOD from quad misalignment +1.3 +2.7 +2.5 5.9 6.7 6.3
yCOD from quad misalignment −0.9 −0.5 −0.3 0.1 0.2 0.2
Mean momentum offset ⟨δ⟩ - 0.2 0 0

Other effects
In-fill time dependence 0 0

Total +0.4 +2.3 +2.2 13.6 8.3 7.1

Table 7.15: Corrections and uncertainties on B̃ in each run. Uncertainties are added in quadrature.
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Chapter 8

Conclusions

This thesis presents a variety of challenging beam dynamics effects in the Muon g−2 experiment which are critical

for meeting the experiment’s 140 ppb precision goal, and contributions by the author of this thesis toward reaching

this goal.

The Inflector Beam Monitoring System (IBMS) detectors, described in Chapter 3, were developed to support

muon beam injection into the storage ring. Muon storage efficiency is highly sensitive to beam injection, making

it essential for meeting the experimental goal of 21× BNL statistics. The IBMS assists with beam tuning, injec-

tion modeling, and continuous beam monitoring. A measurement of the horizontal beam injection parameters,

discussed in Chapter 5, was motivated by simulation inconsistencies and changes in the beamline configuration.

This measurement provides a point of verification for complex beamline simulations, and delivers realistic input

for beam injection modeling which is an important prerequisite for simulation of the stored beam.

The electric field correction to ωa is calculated from the fast rotation momentum reconstruction, and its un-

certainty is dominated by the time-momentum (τ -p) correlation effect introduced by the time-varying kicker, as

discussed in Chapter 6. This correlation is a significant systematic which is the subject of ongoing efforts. Based

on the successful IBMS detector design, the MiniSciFi (Minimally Intrusive Scintillating Fiber) detector was de-

veloped to directly profile the stored beam and characterize the τ -p correlation. Multiple weeks of beam time have

been dedicated to measuring the correlation using shortened muon bunches. One challenge in the analysis will be

unfolding the injected muon bunch shape from the measured momentum distribution. The final result will provide

input to correct the τ -p correlation in the fast rotation reconstruction, which is critical to reduce the uncertainty in

this remaining significant systematic.

Characterizing the beam dynamics of the stored beam is also important for calculating the muon-weighted

magnetic field, one of the two experimental observables required to determine aµ. The muon-weighted magnetic
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field analysis for Run-2/3 is presented in Chapter 7. A host of possible uncertainties was evaluated, with the

most notable contributions caused by alignment uncertainties of both the tracker detectors and the electric focusing

quadrupoles. This analysis demonstrated that the relevant systematics are well-controlled, and the corresponding

uncertainties are sub-dominant in the overall magnetic field uncertainty.

8.1 Outlook

With the Run-2/3 result set to reduce the statistics-dominated uncertainty by a factor of two, significant improve-

ments in nearly all the dominant systematics, and the 21× BNL statistics goal achieved in Run-6, the Muon g − 2

experiment is poised to deliver an experimental measurement of aµ to 140 ppb precision. The anticipated exper-

imental precision strongly motivates ongoing efforts in the theory community to achieve comparable precision in

the standard model prediction of aµ, and to resolve discrepancies in the hadronic contributions.

8.1.1 Run-2/3

The Run-2/3 result is planned for upcoming release, with an expected net uncertainty of ⪅ 230 ppb. The imminent

ωa unblinding will reveal the aµ result.

Recently the ωa results from seven different analysis groups were relatively unblinded, leaving a common

overall blinding factor. Cross-checks and consistency tests between groups are underway. For example, the groups

are ensuring consistent treatment in the ωa fit of the radial coherent betatron oscillation (CBO) decoherence over

the fill, caused by the momentum-dependent spread in betatron frequencies. This will likely remain one of the

larger ωa systematics in Run-2/3, of O(30ppb). The systematic and statistical uncertainties on ωa are expected to

be ∼40 ppb and ∼200 ppb, respectively.

Of the beam dynamics corrections to ωa discussed in Section 2.8.1, the dominant Run-1 uncertainty on the

phase-acceptance correction is reduced from 75 ppb to ∼20 ppb after replacing the damaged quadrupole resistors.

The 53 ppb uncertainty on the electric field correction due to the τ -p correlation was also significant in Run-1, and

remains one of the highest priorities for the analysis of Run-2/3 and beyond. Two new methods are being used to

analyze the correlation; one involves a multi-parameter fit to the calorimeter fast rotation signals [89], and another

involves a beam matrix transformation of the tracker radial beam profile [91]. Active progress is being made toward

consistency between the methods, but more work is needed to fully characterize the effect. Areas which need to be

better understood include the methods’ sensitivity to differences in the correlation, effects of the different injected

muon bunch shapes, and the evolution of the correlation over the runs. The Run-2/3 uncertainty on the electric field
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correction is still being determined; it will likely be reduced from Run-1, but may not yet reach the 25 ppb target.

The total uncertainty on ω̃′
p is expected to be ∼50 ppb, well below the design goal of 70 ppb. This is largely

thanks to an improved measurement of the quadrupole-induced transient magnetic field (Section 2.8.2), which

reduced the corresponding uncertainty from 92 ppb in Run-1 to ∼20 ppb.

8.1.2 Run-4/5/6

After the Run-2/3 result is released, the remaining data collected in Runs 4, 5, & 6 ("Run-4/5/6") will be analyzed

and released together. A non-exhaustive selection of prospects for Run-4/5/6 analysis is given below.

The muon-weighted magnetic field will likely have similar characteristics to Run-3b, in which the muon weight-

ing had an effect of only < 3 ppb. This was due to improved transverse uniformity of the magnetic field which

significantly reduced the field multipole moments, and the improved kick strength which moved the beam closer to

radial center. Additionally, improved thermal stability in the experimental hall reduced variation of the field mo-

ments over time in Run-3. With similar field uniformity and stability in Run-4/5/6, the analysis could potentially

be simplified by performing the muon weighting at the dataset timescale of O(2 weeks) rather than the few-hour

timescale. This should first be studied in a dataset with worst-case field moments and variation. Many of the muon

weighting systematics were reduced to < 1 ppb in Run-3b due to the reduced field moments, and can likely be

spot-checked in Run-4/5/6 rather than evaluating them in detail.

As muon weighting systematics are sub-dominant, efforts are better spent to reduce more dominant field sys-

tematics. Along these lines, the ∼20 ppb uncertainty due to experiment configuration differences between trol-

ley field measurement periods and ωa measurement periods will likely be reduced in Run-4/5/6 by a dedicated

measurement, and the ∼15 ppb uncertainty from the kicker-induced transient magnetic field will benefit from an

independent magnetometer measurement which is currently being analyzed.

The MiniSciFi measurements of the radial stored beam distribution (Section 6.2.2) observe the CBO and its

decoherence, and will provide information complementary to the trackers for reducing this systematic in the ωa

fit. Analysis of the MiniSciFi τ -p correlation measurements will provide an independent characterization of the

effect, hopefully helping to resolve some of the outstanding issues in the Run-2/3 methods and further reduce the

uncertainty.

One important area with opportunities for improvement is simulation of the full beamline (discussed in Chap-

ter 5), which produces a beam phase space distribution before injection into the storage ring. Previous simulations

captured the design beamline configuration, but the operating configuration is significantly different. For exam-

ple, the momentum-cooling wedge (Section 2.2) is not included in the simulation, but it is known to impact the
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horizontal beam phase space as well as correlations between spin phase and momentum which enter in ωa beam

dynamics corrections [92]. Verifying with real beam measurements, at the ring injection location and along the

beamline where possible, is essential to establish realistic conditions. And updated beamline simulation would

improve understanding of the input for simulating the stored beam dynamics, which could assist with a variety of

outstanding beam dynamics effects.

8.1.3 Standard model prediction

The current standard model (SM) theory prediction aSMµ is that recommended by the Muon g− 2 Theory Initiative

in 2020 (Section 1.2). The 369 ppb uncertainty is dominated by the hadronic contributions, especially the hadronic

vacuum polarization (HVP). Theory groups aim to reduce these uncertainties by 2025 for an aSMµ prediction with

similar precision to the 140 ppb experiment goal [26]. The HVP contribution in particular has the potential to

significantly affect the SM value, with the theory community working to understand recent discrepancies in the

calculation (Section 1.2.3).

The 2020 recommended aHV P
µ value was calculated from a dispersion integral of experimental e+e− →

hadrons cross sections, which is dominated by the low-energy π+π− channel. Lattice QCD calculations of aHV P
µ

are approaching a precision similar to the data-driven method; of particular note, the BMW20 result in 2021 cor-

responds to an SM value which would reduce the tension with experiment to 1.5σ. Lattice groups are working to

rigorously cross-check this result. While a discrepancy between dispersion and lattice calculations would constitute

a major puzzle if it persists, another mystery has developed in the dispersion approach. The π+π− cross section

measurement by CMD-3 released in 2023 disagrees with all previous measurements, and would correspond to an

SM prediction closer to the experiment value, potentially within 1.5σ. No immediate explanation for the difference

is apparent, and future measurements of this cross section will be essential to understand the discrepancy. The

Theory Initiative plans to address these HVP issues and recommend an updated aSMµ value by late 2023.

With the current ambiguity in the SM prediction, the 4.2σ tension between experiment and theory stands to be

either reduced or reinforced following the updated prediction and the Run-2/3 release. The final 140 ppb precision

aµ measurement will be crucial to interpret whether aµ is revealing new physics beyond the standard model (BSM),

which would guide future BSM physics searches.
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Appendix A

Beam Transfer Matrices

Chapter 4 introduces some fundamental beam dynamics concepts. Beam trajectory solutions can be obtained by

a piecewise transfer matrix calculation, as discussed in Section 4.1. Here the standard transfer matrix forms are

given explicitly.

For a constant dipole field with Kx = 1
R2 and Ψ = s

R :

M(s) =

 cos
(
s
R

)
R sin

(
s
R

)
− 1

R sin
(
s
R

)
cos

(
s
R

)
 (A.1)

For a constant quadrupole field with Kx = −k and Ψ =
√
ks:

M(s) =


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ks
)
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k
sin

(√
ks

)
−
√
k sin

(√
ks

)
cos

(√
ks

)
 Kx > 0,Focusing Quad

 cosh
(√

ks
)

1√
k
sinh

(√
ks

)
√
k sinh

(√
ks

)
cosh

(√
ks

)
 Kx < 0,Defocusing Quad

(A.2)

For a field-free drift section:

M(s) =

 1 s

0 1

 (A.3)

Section 4.1.2 introduces the 3 × 3 transfer matrix for trajectories with dispersion D(s). For a constant dipole
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field with Ψ = s
R :

M(s) =


cos(Ψ) R sin(Ψ) R(1− cos(Ψ))

− sin(Ψ)/R cos(Ψ) sin(Ψ)

0 0 1

 (A.4)

For a combined-function magnet such as the g−2 ring (Section 4.3) with constant dipole and quadrupole fields,

a focusing quadrupole/bend section with Kx =
(

1
R2 − k

)
> 0 and Ψ =

√
Kxs can be expressed as:

M(s) =


m11 m12 m13

m21 m22 m23

0 0 1

 =


cos(Ψ) 1√

Kx
sin(Ψ) 1

RKx
(1− cos(Ψ))

−
√
Kx sin(Ψ) cos(Ψ) 1

R
√
Kx

sin(Ψ)

0 0 1

 (A.5)

Here mij are the corresponding 2 × 2 matrix elements. The matrix can equivalently be written in terms of the

dispersion Dx and the 2× 2 matrix elements:

M(s) =


m11 m12 Dx(s)

m21 m22 D′
x(s)

0 0 1

 (A.6)
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Appendix B

Injected Beam Phase Space Uncertainty

Analysis

Section 5.1 presented a measurement of the horizontal phase space of the injected beam. The uncertainty analysis

summarized in Section 5.1.6 is detailed here.

In addition to the uncertainty on the Twiss parameters from the fit to data (Section 5.1.3), several other sources

of uncertainty were considered. These include the Gaussian fit to the beam profiles measured at PWC025 and

IBMS1, possible issues with the PWC025 detector performance, remanent magnetic fields in the downstream

quadrupoles (Q024 & Q025) during the measurement, a possible nonzero dispersion originating upstream of Q023,

and an offset in the beam upstream of Q023 causing the optics to be off-axis. Another possible source of uncertainty

is the asymmetric observed beam profiles not described by the beam transport formalism, discussed in Section 5.1.5.

Uncertainties are reported in terms of the x-x′ phase space σ matrix elements.

B.1 Q023 Twiss parameters

The covariance matrix V for the extracted Q023 Twiss parameters was produced as described in Section 5.1.4.

The corresponding covariance matrix U for the beam widths and correlation coefficients at the end of M5 was

calculated with the standard error propagation procedure, as follows.

U = AV AT , with Aij =
∂σi
∂tj

(B.1)

where σ =

(
σ2x σxx′ σ2x′

)
is defined at the end of M5 and t =

(
α0 β0 ϵ0

)
is defined at Q023.
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As usual, the diagonal covariance matrix elements Uii are equal to the variances δσ2i . Table B.1 shows the

resulting uncertainties on the end-of-M5 beam widths and correlation coefficients for the IBMS1X high-resolution

scan (Q023 Twiss parameters in Table 5.1).

δσx δσx′ δσxx′

[mm] [mrad] [mm ·mrad]

±0.03 ±0.4 ±1.7

Table B.1: Propagated uncertainties on the end-of-M5 beam widths and correlation coefficients from extracted
Q023 Twiss parameter uncertainties.

For reference, the numerical covariance matrices V (for α0, β0 [m], ϵ0 [m ·rad]) and U (for σ2x [m
2], σxx′ [m ·

rad], σ2x′ [rad2]) are as follows.

V =


7.75× 10−3 −3.48× 10−2 4.51× 10−9

−3.48× 10−2 1.57× 10−1 −1.91× 10−8

4.51× 10−9 −1.91× 10−8 4.51× 10−15

 , U =


1.01× 10−12 1.75× 10−12 3.04× 10−12

1.75× 10−12 3.05× 10−12 5.29× 10−12

3.04× 10−12 5.29× 10−12 9.18× 10−12


(B.2)

B.2 Gaussian beam profile fit

A Gaussian fit was used to extract the width σx of each beam profile (described in Section 5.1.3). Specific choices

in this approach can produce slightly different σx values, especially in the case of an asymmetric beam profile.

To determine the effect of the width extraction on the fitted Twiss parameters, the width method was varied and

new Twiss parameters were extracted for each variation. Then the initial beam defined by each new set of Twiss

parameters was transported to the end of M5 (using the combined transfer matrix given by the transport program),

and the uncertainty was determined from the resulting variation.

Because the IBMS1X high-resolution measurement provides the primary results, this uncertainty was only eval-

uated for the IBMS1X high-resolution profiles. Nominally, a Gaussian fit with a 5% minimum intensity threshold

was used to extract the width. The method was varied in two ways:

1. Varied the threshold for the Gaussian fit from 0 (all fibers included) to 25%, which varies how much the tails

contribute to the fit.

2. Calculated the standard deviation directly (no Gaussian fit) with a threshold of 3% or 5%.
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Figure B.1: Left: IBMS1X high-resolution profile with intensity threshold varied from 0 to 25%, shown here for
Q023 current 550A. Right: Spread of extracted widths with the two varied width methods (orange and blue bars),
compared with nominal width (black points).

With the maximum and minimum widths from each method variation (upper and lower error bars in Figure B.1),

Twiss parameters at Q023 were extracted and transported to the end of M5. Table B.2 shows the resulting maximum

variation in the Twiss parameters and the end-of-M5 beam widths and correlation coefficients.

Q023 End of M5

∆α0 ∆β0 ∆ϵ0 ∆σx ∆σx′ ∆σxx′

[m] [mm ·mrad] [mm] [mrad] [mm ·mrad]

−1.4 −4.1 −0.4 −0.1 −0.1 −10.7
+1.0 +7.0 +1.5 +1.0 +0.4 +1.3

Table B.2: Maximum variation (difference from nominal) of Q023 Twiss parameters and end-of-M5 beam widths
and correlation coefficients, due to varying the profile fit and width extraction method.

The profile fit uncertainty is largely due to the asymmetric beam profiles (discussed further in Section 5.1.5).

This uncertainty describes effects which are not included in the present analysis, and which can be reduced by

modeling more realistic asymmetric beam profiles as a function of Q023 current; further Monte Carlo studies

should reduce the uncertainty. This uncertainty is therefore a conservative estimate which is included for reference,

but is not a true source of uncertainty for this analysis as it corresponds to the asymmetric profiles not fully described

by the beam transport formalism.

B.3 Remanent field in downstream quadrupoles

Possible remanent magnetic fields in Q024 & Q025 after they were turned off would affect beam widths measured

during the Q023 current scans. The effect was checked in the transport program (Section 5.1.5) by defining nonzero

magnetic fields in Q024 & Q025, and comparing σx at IBMS1 with the case of zero field in Q024 & Q025.
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Quadrupole strengths k in the remanent field case were calculated as in Section 5.1.3, using the "Down-Ramp"

measurements for Q024 & Q025 with I = 0. Table B.3 shows k(I = 0) for Q024 & Q025. Quadrupole fields were

defined as positive (horizontally focusing) in the transport program, representing the most extreme effect where

Q024 & Q025 remanent fields have the same sign as Q023.

Quadrupole k(I = 0)[m−2]

Q024 0.0035
Q025 0.0096

Table B.3: Quadrupole strengths with zero current k(I = 0) for Q024 & Q025.

Figure B.2 shows the difference in σx at IBMS1 due to remanent fields in Q024 & Q025 for three Q023 current

settings, with a linear fit to estimate the effect at intermediate currents. To evaluate the corresponding effect on the

fitted Twiss parameters, the measured σx points were shifted by subtracting the fit line as a function of current to

correct for a possible remanent field effect. As in Section B.2, new Twiss parameters were extracted from the shifted

points, the corresponding initial beam was transported to the end of M5, and the uncertainty was determined from

the resulting variation at the end of M5. Table B.4 shows the variation of the Twiss parameters and the end-of-M5

beam widths and correlation coefficients.

550 600 650 700 750
Q023 current [A]

0.25

0.20

0.15

0.10

0.05

0.00

0.05

0.10

x
[m

m
]

IBMS1 (Q024&5 remanent - zero)
fit line

Figure B.2: Difference in σx at IBMS1 due to remanent fields in Q024 & Q025, and a linear fit used to estimate
the effect for intermediate Q023 current settings. The difference ∆σx = σx(remanent fields)− σx(zero fields).
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Q023 End of M5

∆α0 ∆β0 ∆ϵ0 ∆σx ∆σx′ ∆σxx′

[m] [mm ·mrad] [mm] [mrad] [mm ·mrad]

−0.01 −0.1 +0.4 +0.4 +0.1 −3.2

Table B.4: Variation (difference from nominal) of Q023 Twiss parameters and end-of-M5 beam widths and corre-
lation coefficients due to possible remanent fields in Q024 & Q025.

B.4 Dispersion

Dispersion is the momentum-dependent component of the beam trajectory (Section 4.1.2). The TDR lattice has

zero dispersion at the end of M5, but the operational lattice has a nonzero dispersion at the end of M5. Up to

this point, the expression for the beam width (Eq. 5.1) used to extract the Twiss parameters at Q023 assumed zero

dispersion. In the case of a nonzero dispersion, a more convenient form of the matrix transport equation from

Section 5.1.1 can be written.


xs

x′s

δ

 = M


x0

x′0

δ

 , M =


m11 m12 Dx,s

m21 m22 D′
x,s

0 0 1

 (B.3)

Here δ = ∆p
p0

is the momentum offset, and M is the 3× 3 matrix (Section 4.1.2) which includes the dispersion

Dx at location s and the elements mij of the original 2× 2 transport matrix from Section 5.1.1.

Dx is a trajectory defined for δ = 1, and the dispersion Dx,0 at the upstream end of Q023 can be transported to

location s.


Dx,s

D′
x,s

1

 =


m11 m12 0

m21 m22 0

0 0 1




Dx,0

D′
x,0

1

 (B.4)

The new expression for the beam width including a nonzero dispersion is then

σ2x,s = ϵsβs + σ2δD
2
x,s = γ0ϵ0m

2
12 + β0ϵ0m

2
11 − 2α0ϵ0m11m12 + σ2δ

(
m11Dx,0 +m12D

′
x,0

)2
, (B.5)
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assuming an axisymmetric beam profile (mean x = 0). (In reality the measured beam profiles were not ax-

isymmetric due to the off-axis optics discussed in Section B.5.) To determine the effect of a nonzero dispersion

on the extracted Twiss parameters and corresponding end-of-M5 phase space, the fitting procedure in Section 5.1.4

was repeated using Eq. B.5 as the fit function. The RMS momentum offset was taken as σδ = 1.6% [42], and Dx,0

and D′
x,0 at Q023 were taken from the operational MAD lattice. Table B.5 shows the resulting Twiss parameters

extracted from the IBMS1X high-resolution and PWC025 scans.

Scan α0 β0[m] ϵ0 [mm ·mrad]

with Dx
IBMS1 −8.0± 0.1 35.5± 0.4 7.5± 0.1
PWC025 −7.1± 0.4 32.3± 1.9 13.0± 0.5

zero Dx
IBMS1 −9.9± 0.1 44.4± 0.4 9.3± 0.1
PWC025 −8.3± 0.4 37.6± 2.0 15.1± 0.6

Table B.5: Extracted Twiss parameters (shown with their fit uncertainties) at the upstream end of Q023 from
IBMS1X high-resolution and PWC025 scans, including the effect of a nonzero dispersion. For comparison, zero-
dispersion results from Table 5.3 are also shown.

As in Section 5.1.5, the initial beam at Q023 defined by the Twiss parameters in Table B.5 was transported to the

end of M5 using the transport program, including initial dispersion Dx,0 and D′
x,0 from the operational MAD file

and σδ = 1.6% (as was used in the fit function). Figure B.3 shows that the resulting beam widths and correlation

coefficients are equivalent in the zero-dispersion and nonzero-dispersion cases. The Dx and D′
x widen the beam

and reduce the extracted β and ϵ at Q023, but the beam distribution is not affected. The same overall phase space

can be described without or with dispersion (left and right sides of Eq. B.6, respectively), and is transported with the

same matrix. The variation in beam widths and correlation coefficients between the two cases is zero (Table B.6).

 x

x′


zero disp

=

 x+ δDx

x′ + δD′
x


with disp

(B.6)

∆σx ∆σx′ ∆σxx′

[mm] [mrad] [mm ·mrad]

0 0 0

Table B.6: Variation (difference from nominal) in end-of-M5 beam widths and correlation coefficients due to a
nonzero dispersion. The beam distribution is unaffected by a nonzero dispersion, so the variation is zero.
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Figure B.3: Top: Dispersion Dx and D′
x from transport program with operational settings (green) and from op-

erational MAD lattice (gray). Bottom: Beam widths σx and σx′ and correlation coefficient σxx′ from transport
program including dispersion. Blue and orange correspond to IBMS1 and PWC025 initial beam conditions, re-
spectively. Circles and stars correspond to zero dispersion and nonzero dispersion, respectively. The red vertical
lines mark Q023, 24, & 25; the gray lines mark PWC025 and IBMS1; and the black line marks the end of M5.
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B.5 Off-axis optics

Horizontal dipole magnets HT020 and HT024 steer the beam horizontally (Figure 5.1). HT020 is upstream of

Q023 and causes the beam to enter Q023 off-axis in x and x′. The beam transport formalism (Section 5.1.1)

describes a beam which is symmetric about the optical axis, and does not capture any possible effects of off-axis

optics. Likewise, the transport program transports the beam along the optical axis using first-order transfer matrix

multiplication. Because the dipoles were at their nominal setpoints during the Q023 scan measurements, the off-

axis optics are a possible source of uncertainty. A Monte Carlo study using a phase space distribution representing

the actual angle and offset of the beam entering Q023 would be required to determine if the effect is significant.
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