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Preface

The 16th Conference on the Theory of Quantum Computation, Communication and Crypto-
graphy was hosted by the University of Latvia, and held online from July 5-8, 2021.

Quantum computation, quantum communication, and quantum cryptography are subfields
of quantum information processing, an interdisciplinary field of information science and
quantum mechanics. The TQC conference series focuses on theoretical aspects of these
subfields. The objective of the conference is to bring together researchers so that they can
interact with each other and share problems and recent discoveries.

A list of the previous editions of TQC follows:

TQC 2020, University of Latvia, Latvia

TQC 2019, University of Maryland, USA

TQC 2018, University of Technology Sydney, Australia

TQC 2017, Université Pierre et Marie Curie, France

TQC 2016, Freie Universitat Berlin, Germany

TQC 2015, Université libre de Bruxelles, Brussels, Belgium

TQC 2014, National University of Singapore, Singapore

TQC 2013, University of Guelph, Canada

TQC 2012, University of Tokyo, Japan

TQC 2011, Universidad Complutense de Madrid, Spain

TQC 2010, University of Leeds, UK

TQC 2009, Institute for Quantum Computing, University of Waterloo, Canada

TQC 2008, University of Tokyo, Japan

TQC 2007, Nara Institute of Science and Technology, Nara, Japan

TQC 2006, NTT R&D Center, Atsugi, Kanagawa, Japan

The conference consisted of invited talks, contributed talks, a poster session, and a business
meeting. The invited talks were given by Scott Aaronson (UT Austin), Srinivasan Arunach-
alam (IBM T. J. Watson Research Center), Cécilia Lancien (Institut de Mathématiques de
Toulouse and CNRS), and Kai-Min Chung (Academia Sinica).
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Quantum Time-Space Tradeoff for Finding
Multiple Collision Pairs

Yassine Hamoudi &
Université de Paris, IRIF, CNRS, F-75013 Paris, France

Frédéric Magniez &
Université de Paris, IRIF, CNRS, F-75013 Paris, France

—— Abstract

We study the problem of finding K collision pairs in a random function f : [N] — [N] by using a
quantum computer. We prove that the number of queries to the function in the quantum random
oracle model must increase significantly when the size of the available memory is limited. Namely,
we demonstrate that any algorithm using S qubits of memory must perform a number T" of queries
that satisfies the tradeoff T3S > Q(K?3N). Classically, the same question has only been settled
recently by Dinur [22, Eurocrypt’20], who showed that the Parallel Collision Search algorithm of
van Oorschot and Wiener [32] achieves the optimal time-space tradeoff of T2S = ©(K?N). Our
result limits the extent to which quantum computing may decrease this tradeoff. Our method is
based on a novel application of Zhandry’s recording query technique [41, Crypto’19] for proving
lower bounds in the exponentially small success probability regime. As a second application, we
give a simpler proof of the time-space tradeoff T2S > Q(N?) for sorting N numbers on a quantum
computer, which was first obtained by Klauck, Spalek and de Wolf [29].
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1 Introduction

The efficiency of a cryptographic attack is a hard-to-define concept that must express the
interplay between different computational resources [38, 11, 12]. Arguably, the two most
used criteria are the time complexity, measured for instance as the number of queries to
a random oracle, and the space complexity, which is the memory size needed to perform
the attack. Time-space tradeoffs aim at connecting these two quantities by studying how
much the time increases when the available space decreases. Devising security proofs that
are sensitive to memory constraints is a challenging program. Indeed, very few tools are
available to study the impact of space on the security level of a scheme. A recent line of
work [35, 27, 25] has made some progress for the case of classical attackers with bounded
memory. The development of quantum computing asks the question of whether the access to
quantum operations and quantum memories may lower the security levels. The answer is
unclear when taking space into account. Indeed, many quantum “speed-ups” come at the
cost of a dramatic increase in the space requirement [16, 6, 30]. A central question is whether
a speed-up both in terms of time and space complexities is achievable for such problems?
? Yassine Hamoudi &}nd Frédéric Ma.gniez;
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Quantum Time-Space Tradeoff for Finding Multiple Collision Pairs

The focus of this work is to provide time-space tradeoff lower bounds for the problem of
finding multiple collision pairs in a random function. The search for a single collision pair is
one of the cornerstones of cryptanalysis. Classically, the birthday attack can be achieved
by the mean of a memoryless (i.e. logarithmic-size memory) algorithm using Pollard’s rho
method [33]. On the other hand, the quantum BHT algorithm [16] requires fewer queries to
the random function, but the product of its time and space complexities is higher than that
of the classical attack! In this paper, we address the problem of finding multiple collision
pairs. This task plays a central role in low-memory meet-in-the-middle attacks [32, 22], with
applications to double and triple encryption [32], subset sum [23, 21], k-sum [37], 3-collision
[28], etc. Recently, it was used to attack the post-quantum cryptography candidates NTRU
[36] and SIKE [4]. The Parallel Collision Search algorithm of van Oorschot and Wiener [32]
can find as many collision pairs as desired in a time that depends on the available memory.
The question of whether this algorithm achieves the optimal classical time-space tradeoff
has been settled positively by Chakrabarti and Chen [18] (for the case of 2-to-1 random
functions) and Dinur [22] (for the case of uniformly random functions). In the quantum
setting, no time-space tradeoff was known prior to our work.

We point out that time-space tradeoffs have been studied for a long time in the complexity
community [14, 9, 13, 39, 10, 3, 31]. The few results known in the quantum circuit model
are for the Sorting problem [29], Boolean Matrix-Vector and Matrix-Matrix Multiplication
[29], and Evaluating Solutions to Systems of Linear Inequalities [8]. Apart from our work,
all existing quantum tradeoffs are based on the hardness of Quantum Search. We use the
machinery developed in our paper to give a simpler proof of the tradeoffs obtained in [29].

1.1 Our results

The Collision Pairs Finding problem asks to find a certain number K of disjoint collision
pairs in a random function f : [M] — [N] where M > N. A collision pair (or simply
collision) is a pair of values x1 # o such that f(z1) = f(x2). Two collisions (1, 2z2) and
(z3,24) are disjoint if x1, ..., x4 are all different. We measure the time T of an algorithm
solving this problem as the number of query accesses to f, and the space S as the amount
of memory used. We assume that the output is produced in an online fashion, meaning
that a collision can be output as soon as it is discovered. The length of the output is not
counted toward the space bound and the same collision may be output several times (but it
contributes only once to the total count). The requirement for the collisions to be disjoint
is made to simplify our proofs later on. We note that a random function f : [N] — [N]
contains (1 — 2/e)N disjoint collisions on average [24].

Classically, the single-processor Parallel Collision Search algorithm [32] achieves an optimal
[22] time-space tradeoff of! T28 = O(K2N) for any amount of space S between €2(log N)
and 5(K ). In the quantum setting, the BHT algorithm [16] can find a single collision in time
T= 6(N1/3) and space S = 5(N1/3). In Algorithm 2, we adapt it for finding an arbitrary
number K of collisions at cost T2S < 5(K 2N). This is the same tradeoff as classically,
except that the space parameter S can hold larger values up to 5(K 2/3NY/ 3), hence the
existence of a quantum speed-up when there is no memory constraint.

» Proposition 17 (restated). For any 1 < K < O(N) and Q(log N) < S < O(K*3N1/3),
there exists a bounded-error quantum glgorz'thm that can find K collisions in a random
function f: [N] — [N] by making T = O(K+/N/S) queries and using S qubits of memory.

! The notation " is used to denote the presence of hidden polynomial factors in log(N) or 1/ log(N).
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The BHT algorithm achieves the optimal time complexity for finding one collision [2, 40].
Our first main result is to provide a similar lower bound for the problem of finding K disjoint
collisions. We prove that the optimal time complexity is T > Q(K 2/3 N1/ 3). This bound
is matched by Proposition 17 when S = ©(K?/3N'/3). More precisely, we show that the
optimal success probability decreases at an exponential rate in K below this bound. This
property is of crucial importance for proving our time-space tradeoff next. We note that,
similarly to [40], the bound is independent of the size M of the domain as long as M > N.

» Theorem 9 (restated). The success probability of finding K disjoint collisions in a random
function f : [M] — [N] is at most O(T®/(K2N))5/2 + 2K for any algorithm making T
quantum queries to f and any 1 < K < N/8.

Our second main result is the next time-space tradeoff for the same problem of finding K
collisions in a random function. We summarize the tradeoffs known for this problem in
Table 1. We note that 725 > Q(K2N) is always stronger than 73S > Q(K3N) since T > K.

» Theorem 10 (restated). Any quantum algorithm for finding K disjoint collisions in a
random function [ : [M] — [N] with success probability 2/3 must satisfy a time-space tradeoff
of T3S > Q(K3N), where 1 < K < N/8.

We obtain that 7 > Q(N*/3) quantum queries are needed to find almost all collisions when
S = O(log N), whereas T' = N classical queries are sufficient when there is no space restriction.
We further show that any improvement to this lower bound would imply a breakthrough for
the FElement Distinctness problem, which consists of finding a single collision in a random
function f : [N] — [N?] (or, more generally, deciding if a function contains a collision). It is
a long-standing open question to prove a time-space lower bound for this problem. Although
there is some progress in the classical case [13, 39, 10], no result is known in the quantum
setting. We give a reduction that converts any tradeoff for finding multiple collisions into a
tradeoff for Element Distinctness. We state a particular case of our reduction below.

» Corollary 14 (restated). Suppose that there exists € > 0 such that any quantum algorithm
for finding Q(N) disjoint collisions in a random function f : [ION] — [N] must satisfy a
time-space tradeoff of TS'/? > Q(N4/3+€). Then, any quantum algorithm for solving Element
Distinctness on domain size N must satisfy a time-space tradeoff of TS'/? > Q(N2/3+2€).

We point out that T'S'/? > Q(N?/3) can already be deduced from the query complexity
of Element Distinctness [2] and S > 1. We conjecture that our current tradeoff for finding K
collisions can be improved to T28 > Q(K2N), which would imply 725 > Q(N?) for Element
Distinctness (Corollary 16). This result would be optimal [6].

Finally, we adapt the machinery developed in our paper to study the K-Search problem,
which consists of finding K preimages of 1 in a function f : [M] — {0,1} where f(z) =1
with probability K/N for each z. Several variants of this problem have been considered in
the literature before [29, 7, 34], where it was shown that the success probability must be
exponentially small in K when the number of quantum queries is smaller than O(\/m ).
Our proof is the first one to consider this particular input distribution, and it is arguably
simpler and more intuitive than previous work.

» Theorem 18 (restated). The success probability of finding K < N/8 preimages of 1 in a
random function f : [M] — {0,1} where f(x) =1 with probability K/N for each x € [M] is
at most O(T?/(KN))X/2 + 27K for any algorithm using T quantum queries to f.

As an application, we reprove the quantum time-space tradeoff for sorting N numbers [29].

» Theorem 24 (restated). Any quantum algorithm for sorting a function f : [N] — {0,1,2}
with success probability 2/3 must satisfy a time-space tradeoff of T?S > Q(N3).

1:3
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1:4 Quantum Time-Space Tradeoff for Finding Multiple Collision Pairs

Table 1 Complexity to find K disjoint collisions in a random function f : [M] — [N].

Classical complexity Quantum complexity
Upper bound: 25 < O(K>2N) T25 < O(K>N)
when Q(log N) < S < O(K)  when Q(log N) < S < O(K*3N'/3)
Parallel Collision Search [32] Proposition 17
Lower bound: T%S > Q(K?N) T3S > Q(K3N)
[22] Theorem 10

1.2 Our techniques

Recording Query Technique. We use the recording query framework of Zhandry [41] to
upper bound the success probability of a query-bounded algorithm in finding K collision
pairs. This method intends to reproduce the classical strategy where the queries made by
an algorithm (the attacker) are recorded and answered with on-the-fly simulation of the
oracle. Zhandry brought this technique to the quantum random oracle model by showing
that, for the uniform input distribution, one can record in superposition the queries made by
a quantum algorithm. Our first technical contribution (Section 3) is to simplify the analysis
of Zhandry’s technique and, as a byproduct, to generalize it to any product distribution on
the input. We notice that there has been other independent work on extending Zhandry’s
recording technique [26, 20, 19]. Our approach does not require moving to the Fourier domain
(as in [20] for instance). It is based on defining a “recording query operator” that is specific to
the input distribution under consideration. This operator can replace the standard quantum
query operator without changing the success probability of the algorithm, but with the
effect of “recording” the quantum queries in an additional register. We detail two recording
query operators corresponding to the uniform distribution (Lemma 5) and to the product of
Bernoulli distributions (Lemma 20).

Finding collisions with time-bounded algorithms. Our application of the recording tech-
nique to the Collision Pairs Finding problem has two stages. We first bound the probability
that the algorithm has forced the recording of many collisions after 1" queries. Namely, we
show that the norm of the quantum state that records a new collision at the ¢-th query is on
the order of /t/N (Proposition 7). This is related to the probability that a new random
value collides with one of the at most ¢ previously recorded queries. The reason why the
collisions have to be disjoint is to avoid the recording of more than one new collision in one
query. By solving a simple recurrence relation, one gets that the amplitude of the basis states
that have recorded at least K /2 collisions after T' queries is at most O(T%/2/(K+v/N))%/2.
We note that Liu and Zhandry [30, Theorem 5] carried out a similar analysis for the multi-
collision finding problem, where they obtained a similar bound of O(T%/2/v/N)%/2. The
second stage of our proof relates the probability of having recorded many collisions to the
actual success probability of the algorithm. If we used previous approaches (notably [41,
Lemma 5]), this step would degrade the upper bound on the success probability by adding a
term that is polynomial in K/N. We preserve the exponentially small dependence on K by
doing a more careful analysis of the relation between the recording and the standard query
models (Proposition 8). We adopt a similar approach for analyzing the K-Search problem in
Appendix A.
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Finding collisions with time-space bounded algorithms. We convert the above time-only
bound into a time-space tradeoff by using the time-segmentation method [14, 29]. Given a
quantum circuit that solves the Collision Pairs Finding problem in time 7" and space S, we
slice it into T'/(S?/3N'/3) consecutive subcircuits, each of them using S?/2N'/3 queries. If
no slice can output more than Q(S) collisions with high probability then there must be at
least Q(K/S) slices in total, thus proving the desired tradeoff. Our previous lower bound
implies that it is impossible to find Q(S) collisions with probability larger than 4= in time
S2/3N1/3 We must take into account that the initial memory at the beginning of each slice
carries out information from previous stages. As in previous work [1, 29], we can “eliminate”
this memory by replacing it with the completely mixed state while decreasing the success
probability by a factor of 27, Thus, if a slice outputs Q(S) collisions then it can be used to
contradict the lower bound proved before.

Element Distinctness. We connect the Collision Pairs Finding and Element Distinctness
problems by showing how to transform a low-space algorithm for the latter into one for the
former (Proposition 12). If there is a time-T space-S algorithm for Element Distinctness
on domain size VN then we find Q(NN) collisions in a random function f : [N] — [N] by
repeatedly sampling a subset H C [N] of size v/N and using that algorithm on the function f
restricted to the domain H. Among other things, we must ensure that the same collision does
not occur many times and that storing H does not use too much memory (it turns out that
4-wise independence is sufficient for our purpose). We end up with an algorithm with time
T = O(NT) and space S = O(S). Consequently, if the Element Distinctness problem on
domain size v/N can be solved with a time-space tradeoff of T'S'/3 < O(N'/3%€)  then there
is an algorithm for finding Q(IN) collisions that satisfies a tradeoff of T'S1/3 < O(N*/3+¢),

2 Models of computation

We first present the standard model of quantum query complexity in Section 2.1. This
model is used for investigating the time complezity of the Collision Pairs Finding problem in
Section 4, and of the K-Search problem in Appendix A. Then, we describe the more general
circuit model that also captures the space complezity in Section 2.2. It is used in Section 5
and Appendix B for studying time-space tradeoffs.

2.1 Query model

The (standard) model of quantum query complexity [17] measures the number of quantum
queries an algorithm (also called an “attacker”) needs to make on an input f: [M] — [N] to
find an output z satisfying some fixed relation R(f, z). This model is presented below.

Quantum Query Algorithm. A T-query quantum algorithm is specified by a sequence
Uy, ..., Ur of unitary transformations acting on the algorithm’s memory. The state |¢) of
the algorithm is made of three registers Q, P, W where the query register Q holds x € [M],
the phase register P holds p € [N] and the working register YW holds some value w. We
represent a basis state in the corresponding Hilbert space as |z, p, w)gpyw. We may drop the
subscript QPW when it is clear from the context. The state [¢)) of the algorithm after t < T
queries to some input function f : [M] — [N] is

|¢tf> = UtOfUt—l T U10fU0|0>

where the oracle Oy is defined by Of|z, p,w) = wfvf(w)|x,p, w) and wy = e N .

1:5
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The output of the algorithm is written on a substring z of the value w. The success
probability oy of the quantum algorithm on f is the probability that the output value z
obtained by measuring the working register of |1/J{«) in the computational basis satisfies the
relation R(f, z). Thus, if we let II,.. be the projector whose support consists of all basis

succ

states |z, p, w) such that the output substring z of w satisfies R(f, z), then oy = ||H£ucc|1/)§> H2

Oracle’s Register. Here, we describe the variant used in the adversary method [5] and in
Zhandry’s work [41]. Tt is represented as an interaction between an algorithm that aims at
finding a correct output z, and a superposition of oracle’s inputs that respond to the queries
from the algorithm.

The memory of the oracle is made of an input register F holding the description of a
function f : [M] — [N]. This register is divided into M subregisters F7,..., Fay where F,
holds f(z) € [N] for each = € [M]. The basis states in the corresponding Hilbert space are
|/)F = ®uepn|f(2))7,. Given an input distribution D on the set of functions [N]*, the
oracle’s initial state is the state [init)z = > 1o yjar /Pr[f < D]|f).

The query operator O is a unitary transformation acting on the memory of the algorithm
and the oracle. Its action is defined on each basis state by O|z,p, w)|f) = (Oflz,p,w))|f).

The joint state |i;) of the algorithm and the oracle after ¢ queries is equal to |¢);) =
UiOUi—1 -+ - UrOUo(|0)[init)) = 3° ¢ nyar /Pr[f D]|4b{)|f), where the unitaries U; have
been extended to act as the identity on F. The success probability o of a quantum algorithm
on an input distribution D is the probability that the output value z and the input f obtained
by measuring the working and input registers of the final state |1)r) satisfy the relation R(f, z).
In other words, if we let Ilg,.. be the projector whose support consists of all basis states
|z, p, w)|f) such that the output substring z of w satisfies R(f, z), then o = ||[Tguec|to7) |-

2.2 Space-bounded model

Our model of space-bounded computation is identical to the one described in [29, 8]. We use
the quantum circuit model augmented with the oracle gates of the query model defined in the
previous section. The time complexity, denoted by T', is the number of gates in the circuit.
In practice, we lower bound it by the number of oracle gates only. The space complexity,
denoted by S, is the number of qubits on which the circuit is operating. The result of the
computation is written on some dedicated output qubits that may not be used later on,
and that are not counted toward the space bound. In particular, the size of the output can
be larger than S. Furthermore, we assume that the output qubits are updated at some
predefined output gates in the circuit.

We notice that, by the deferred measurement principle, any space-bounded computation
that uses T queries can be transformed into a T-query unitary algorithm as defined in
Section 2.1. Thus, any lower bound on the query complexity of a problem is also a lower
bound on the time complexity of that problem in the space-bounded model. This explains
our use of the query model in Section 4 and Appendix A.

3 Recording model

The quantum recording query model is a modification of the standard query model defined
in Section 2.1 that is unnoticeable by the algorithm, but that allows us to track more easily
the progress made toward solving the problem under consideration. The original recording
model was formulated by Zhandry in [41]. Here, we propose a simplified and more general
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version of this framework that only requires the initial oracle’s state [init) = to be a product
state ®,eqar[init,)F, (instead of the uniform distribution over all basis states as in [41]).

Construction. The range [N] is augmented with a new symbol L. The input register F of
the oracle can now contain f : [M] — [N]U{L}, where f(z) = L represents the absence of
knowledge from the algorithm about the image of . Unlike in the standard query model,
the oracle’s initial state is independent of the input distribution and is fixed to be | L)
(which represents the fact that the algorithm knows nothing about the input initially). We
extend the query operator O defined in the standard query model by setting

Olz, p,w)|f) = |z, p,w)|f)  when f(z) = L.

Given a product input distribution D = D; ® -+ ® Djs on the set [N], the or-
acle’s initial state in the standard query model can be decomposed as the product state
linit) 7 = ®ue(arlinits)x, where [inity)r, = >, (v VPrly < Dally)F,. The “recording
query operator” R is defined with respect to a family (S, ),eas of unitary operators satisfying
S:|L)x, = |init,) £, for all x as follows.

» Definition 1. Given M wunitary operators Sy, ...,Sy acting on Fi, ..., Far respectively,
consider the operator S acting on all the registers QPWJF such that,

S= Z lz)(zlo @ Ipwr,.. 7oy ®Se @ IF, . Fu-
z€[M]

Then, the recording query operator R with respect to (Se)zeqn) s defined as R = StosS.

Later in this paper, we describe two recording query operators related to the uniform
distribution (Lemma 5) and to the product of Bernoulli distributions (Lemma 20).

Indistinguishability. The joint state of the algorithm and the oracle after ¢t queries in the
recording query model is defined as |¢;) = UyRU;_1 - - - UyRUy(|0)| LM)). Notice that the
query operator R can only change the value of f(2’) (contained in the register F, ) when it
is applied to a state |z, p,w)|f) such that = 2. As a result, we have the following fact.

» Fact 2. The state |¢p:) is a linear combination of basis states |x,p, w)|f) where f contains
at most t entries different from 1.

The entries of f that are different from L represent what the oracle has learned (or
“recorded”) from the algorithm’s queries so far. In the next theorem, we show that |¢;)
is related to the state |¢;) (defined in Section 2.1) by |[¢¢) = (Iopw @ueim] Sz)|¢e). In
particular, the states |¢;) and |¢;) cannot be distinguished by the algorithm since the reduced
states on the algorithm’s registers are identical.

» Theorem 3. Let (Uy,...,Ur) be a T-query quantum algorithm. Given M wunitary
operators Si,...,Sy acting on the oracle’s registers Fi,...,Fy respectively, let R de-
note the recording query operator associated with (Sz)zeqn), and define the initial state
|init) 7 = (®ze(anSa)|LM). Then, the states

|1/)t> =U,0U;_4--- U10U0(|0>|init>)

|pe) = URUp—q - UlRU0(|O>\J_M>)

after t <T queries in the standard and recording query models respectively satisfy

|Y¢) = Tlde) where T = Iopw ® Sz

z€[M)]
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Proof. We start by introducing the intermediate operator R = 7TOT. Observe that for any
basis state |2, p, w)|f) the operators R and R act the same way on the registers QPF, and
they do not depend on the other registers. Thus, we have R = R. We also observe that U;
and 7 commute for all ¢ since they depend on disjoint registers. Consequently, we have that

i) = U, QU1 0 -+ - U100, - T (|0)| LM)) since 7 (|0)| L)) = |0)|init)
=TT'UO - TTU 1O TTU,O - TT Uy - T(|0)| LM)) since TTT =1
=7U7t 0. TU_TT-O---TUTH-O- TU0(|O>|J_M>) by commutation
=TURU;_q --- UlﬁU0(|O>|LM)) by definition of R
= TURU;—1 - - URUy(|0)| L)) since R =R
=Tlo¢) by definition of |¢;).

|

4 Time lower bound for Collision Pairs Finding

In this section, we upper bound the success probability of finding K disjoint collisions in the
query-bounded model of Section 2.1. The proof uses the recording model of Section 3. We
first describe in Section 4.1 the recording query framework associated with this problem. In
Section 4.2, we study the probability that an algorithm has recorded at least k£ < K collisions
after t < T queries. We prove by induction on ¢ and k that this quantity is exponentially
small in k& when ¢t < O(k*/3N'/3) (Proposition 7). Finally, in Section 4.3, we relate this
progress measure to the actual success probability (Proposition 8), and we conclude that the
latter quantity is exponentially small in K after T < O(K?/3N'/3) queries (Theorem 9).

4.1 Recording query operator

We describe a recording operator that corresponds to the uniform distribution on the set
of functions f : [M] — [N]. In the standard query model, the oracle’s initial state is
|init) 7 = @zean (ﬁ Zye[N] \y);@). Consequently, in the recording model, we choose the
unitary transformations Sy, - -+, Sy to be defined as follows.

» Definition 4. For any x € [M], we define the unitary S, acting on the register F, to be

|-L) . — \/% > yern V) 7.
Sy ¢ \/% 2 pen V)7 — L) 7,

T e W W E g e Wi W E forp=1,...,N -1

These unitaries verify 7| L) = [init) where T = ®@ze[m]Se, as required by Theorem 3.
The recording query operator is R = SOS (Definition 1) since St = S. The next lemma
gives an explicit characterization of the action of R on a basis state.

» Lemma 5. If the recording query operator R associated with Definition 4 is applied to a
basis state |x,p,w)|f) where p # 0 then the register | f(x))r, is mapped to

py

e V) if fl)=1
wpf(r) 1+ pf(x) N _o 1— py_wpf(w) .
NN ‘J_> + i N( )|f(x)> + ZyE[N]\{f(L)} W]v%|y> otherwzse

and the other registers are unchanged. If p =0 then none of the registers are changed.
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Proof. By definition, the unitary S, maps | L)z, — ﬁ >yenly) and [y) 7, = ﬁu> +

ﬁ Dpenioy W UIp) where y € [N] and [p') := ﬁ > yein Wi’ [y). Thus, the action on
the register F, is:

If f(z) = L then [f(2)) 5, ™ = & 1) e & ol Ao 5 oy,

yE[N] y€[N] y€[N]
If f(x) € [N] then |f(x))r, = ﬁp/g{:}\]] oJRIP'J”(I) ) S, Tlﬁlj‘> + ﬁp,e[%\{o} w;]p’f(z)
) ¥ elL) + PO w1 p) = oLy + A N w1
. %ye[mm i vaj;) e w”y“ﬁ” pfe[Nz]%{o,p}wl_Vp/f(z) v) = wfvzfv(w) |L) + lepvf(;v)wﬂ)
)+ R «

ye[N\{f (=)}

We note that the recording operator R is close to the mapping [ L)F, = >_, ¢y i}/—pN%|y>
and |f(z)) 7, — W@\ f(2)) (f f(x) # L) up to lower-order terms of amplitude O(1/N).

This is analogous to a “lazy” classical oracle that would choose the value of f(z) uniformly
at random the first time it is queried.

4.2 Analysis of the recording progress

We define a measure of progress based on the number of disjoint collisions contained in the
oracle’s register of the recording model. We first give some projectors related to this quantity.

» Definition 6. We define the following projectors by giving the basis states on which they
project:
<y, =y and I>y: all basis states |x,p, w)|f) such that f contains respectively at
most, exactly or at least k disjoint collisions (the entries with L are not considered as
collisions).
Iy 1 and =y, fory € [N]: all basis states |z, p, w)|f) such that (1) f contains exactly
k disjoint collisions, (2) the phase multiplier p is nonzero and (3) f(x) = L or f(z) =y
respectively.

We can now define the measure of progress g for ¢ queries and £ collisions as

Gr.k = [T>[e) | (1)

where |¢;) is the state after ¢ queries in the recording model. The main result of this section
is the following bound on the growth of g .

k
» Proposition 7. For allt and k, we have that g5, < (}) (%) .

Proof. First, goo = 1 and g = 0 for all k > 1 since the initial state is |¢o) = |0)|LM).
Then, we prove that ¢ satisfies the following recurrence relation

t
Qe1k+1 < Gehr1 + 44 ke (2)

E
From this result, it is trivial to conclude that g ; < (,i) (‘f/‘—/ﬁt . In order to prove Equation (2),

we first observe that gi41 x+1 = |I>k+1Ui+1R|Pe) || = |II>k+1R|@¢)|| since the unitary Uyiq

1:9
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applied by the algorithm at time ¢ 4+ 1 does not modify the oracle’s memory. Then, on any
basis state |z, p, w)|f), the recording query operator R acts as the identity on the registers F,
for ' # x. Consequently, the basis states |x,p,w)|f) in |¢;) that may contribute to ¢i4+1 k+1
must either already contain k + 1 disjoint collisions in f, or exactly k disjoint collisions in f
and p # 0. This implies that

Ge+10+1 < et + Mo RIzg 1 ée) || + D Mo pi RIzg [0 .
yE[N]

We first bound the term ||II>,4+1RII=k i |¢¢)|. Consider any basis state |z, p,w)|f) in the

support of IT—; | and |¢;). The function f must contain at most ¢ entries different from L
py

by Fact 2. By Lemma 5, we have Rlz, p, w)|f) = >_, c(n] %\x,nw)\wh Qural [ (@) F,, -
Since there are at most ¢ entries in f that can collide with the value contained in the register F,
we have ||II>,11R|x, p, w)|f)]| < +/t/N. Finally, since any two basis states in the support of
II_j | remain orthogonal after II>;11R is applied, we obtain that ||II>,11RI—k 1 |d¢)| <
VN Ty, 160 | < V/E/Ngs i

We now consider the term ||II> 11 RII—k 4 |¢¢ )| for any y € [N]. Again, we consider any
basis state |z, p,w)|f) in the support of II_j , where f has at most ¢ entries different from L.

According to Lemma 5, we have R|z, p, w = Wi/ 1)+ Lo/ (N-2) z)) + /
N N y'#f(x)

_ oy _ pf(®)
%\x,n w)|y') F, @z 22|f(2"))7,,. As before, there are at most ¢ terms in this sum

that can be in the support of IIsj41. Consequently, ||Isy1R|2, p, w)|f)| < 3vt/N and
T2 41 RIT—g y @) || < BvE/N [Ty |2
We conclude that gii1641 < qepr1 + VE/Naew + 2, e 3VE/N|Tzg o) || < g1 +

VE/Nai + 3\/t/N\/ZyE[N]|\H:k7y|¢t>||2 < Grps1 + VE/Nak + 3v/4/Ngy, where the

second step is by Cauchy-Schwarz’ inequality. <

4.3 From the recording progress to the success probability

We connect the success probability o = ||[Iguec|to7)|| in the standard query model to the
final progress g7 in the recording model after T' queries. We show that if the algorithm has
made no significant progress for recording k > K/2 collisions then it needs to “guess” the
positions of K — k other collisions. Classically, the probability to find the values of K — k
collisions that have not been queried is at most (1/N2)X~*_ Here, we show similarly that if a
unit state contains at most k collisions in the recording model, then after mapping it to the
standard query model (by applying the operator 7 of Theorem 3) the probability that the
output register contains the correct positions of K collisions is at most N2(4K?2/N?)K—Fk,

» Proposition 8. For any state |¢), we have ||TaeeTT<k]6)] < N(Z£) " T1<k]6)]-

Proof. We assume that the output of the algorithm also contains the image of each collision
pair under f. Namely, the output z is represented as a list of K triples (z1,x2,%1),---,
(Tak—1, T2k, Yk ) € [M]? x ([NJU{L}). It is correct if the input function f : [M] — [N]
(in the standard query model) satisfies f(x2;—1) = f(x9;) = y; # L for all 1 <i < K, and
the values x1, o, ..., ok are all different. By definition, the support of Ilg,.. consists of all
basis states |z, p,w)|f) such that the output substring z of w satisfies these conditions.
We define a new family of projectors ﬁa,ba where 0 < a + b < 2K, whose supports consist
of all basis states |z, p, w)|f) satisfying the following conditions:
(A) The output substring z is made of K triples (z1,22,y1),-- -, (Tax—1, %2k, yx ) Where
the x; are all different.
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(B) There are exactly a indices ¢ € [2K] such that f(z;) = L.
(C) There are exactly b indices 7 € [2K] such that f(x;) # L and f(x;) # yri/2-

For any state |z, p,w)|f) in the support of 1:[,175,, we claim that

Ml 1< () (5) ®)

Indeed, we have T = ®,/¢(n)Ser and by Definition 4 the action of S, on the register
@)z, 18 11 @) = e S epl) B £(ws) = Ly and |f(@) = kel 1)+ (1= ) (w2)) -
+ Zye[N]\f(xl)|y> otherwise. The projector Ilsucc only keeps the term |yp; /1) in these sums,
which implies Equation (3).

Let us now consider any lineaNr combination [p) =37, s pw flz,p,w)|f) of basis
states that are in the support of II, ;. We claim that

Mo < (y25) e )

First, given two basis states |z, p,w)|f) and |z, p, w)|f) where z = ((x1,29,91),- .., (Tax 1,
Zok, YK )) is the output substring of w, if the tuples (x,p,w,(f(a:’))ng{xl’,___’zw}) and
(50,}5,1?}, (f(:c’))mfg{zl ,,,,, mK}) are different then Iz, 7|z, p, w)|f) must be orthogonal to
sy T)Z, p, w)|f). Moreover, for any z = ((z1,22,y1), ..., (T2ax—1, T2k, yx)) that satis-
fies condition (A), there are (25() (ZKZ;‘I)(N —1)® < (2K)**t*N? different ways to choose
(f())ier2x) that satisfy conditions (B) and (C). Let us write wg = {z1,..., 22k} when the
output substring z of w contains x1, ..., x2x. Then, by using the Cauchy-Schwarz inequality
and Equation (3), we get that

M7= Y | X avpusTaeTlpulp|

z,p,w,(F(&) e/ gy (F(@') s oy

> (x |ax,p,w,f|2)((ﬂz M Tl ) 1)1

2w, (F @) at gy @) 0t )y

e et (1) ()
- (2 o,

which proves Equation (4). The support of II<j is contained into the union of the sup-
ports of II, ; for a + b > 2(K — k). Thus, by the triangle inequality, ||Isucc7 H<k|®)|| <

. atb
Za+b22(;{_k)||HsuccTHa,bH§k|¢>”' This is at most Za+b22(K—k)(\/ %) ”Ha,bH§k|¢>”
by Equation (4). Finally, by the Cauchy-Schwarz inequality and the fact that the supports of
the projectors f[ai, are disjoint, we obtain that ||IIguecTI<k|@)|| < \/Za+b>2(K_k) (2K

IN

IN

+b
%)

Vel T k|0 < N ()57 Ty 6)]. “

We can now conclude the proof of the main result of this section.

» Theorem 9. The success probability of finding K disjoint collisions in a random function
f: [M] — [N] is at most O(T3/(K2N))X/2 4 2=K for any algorithm making T quantum
queries to f and any 1 < K < N/8.
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Proof. Let |¢7) (resp. |ér)) denote the state of the algorithm after T queries in the
standard (resp. recording) query model. We recall that [¢r) = T|ér) (Theorem 3).
Thus, by the triangle inequality, the success probability o = ||succ|tr)||? satisfies /o <
Msuce THx g p2l o) + [Hsuce TH< /2| | < Uk p2|¢T) || + [Hsuce TI< i /2|¢7) || Using
Proposition 7 and Proposition 8, we have that /o < (KT/Q) (4/T/N) Kz N(2K/N)K/2 <
O(T?/? J(K+/N))¥/2 4-2-K/2=1_ Finally, the upper bound on ¢ is derived from the standard
inequality (u+ v)? < 2u? + 202 <

5 Time-space tradeoff for Collision Pairs Finding

We use the time lower bound obtained in Section 4 to derive a new time-space tradeoff for
the problem of finding K disjoint collisions in a random function f : [M] — [N]. We recall
that the output is produced in an online fashion (Section 2.2), meaning that a collision can
be output as soon as it is discovered. The length of the output is not counted toward the
space bound. We allow the same collision to be output several times, but it contributes only
once to the total count.

» Theorem 10. Any quantum algorithm for finding K disjoint collisions in a random
function f : [M] — [N] with success probability 2/3 must satisfy a time-space tradeoff of
T3S > Q(K3N), where 1 < K < N/8.

Proof. Our proof relies on the time-segmentation method for large-output problems used in
[14, 29] for instance. Fix any quantum circuit C in the space-bounded model of Section 2.2
running in time T and using S > Q(log N) qubits of memory. The circuit C is partitioned
into L = T/T" consecutive sub-circuits Cy || Co || - - - || Cr. each running in time 7" = S?/3N1/3,
where C; takes as input the output memory of C;_; for each j € [L]. Define X; to be the
random variable that counts the number of (mutually) disjoint collisions that C outputs
between time (j — 1)7” and jT” (i.e. in the sub-circuit C;) when the input is a random
function f : [M] — [N]. The algorithm must satisfy Zle E[X;] > Q(K) to be correct.
We claim that the algorithm outputs at most 35S collisions in expectation in each segment
of the computation. Assume by contradiction that E[X;] > 35 for some j. Since X; is
bounded between 0 and N we have Pr[X; > 25] > S/N. Consequently, by running C; on the
completely mixed state on S qubits we obtain 25 disjoint collisions with probability at least
S/N -275 in time T’ (this is akin to a union-bound argument). However, by Theorem 9,
no quantum algorithm can find more than 2S disjoint collisions in time 77 = S2/3N1/3
with success probability larger than 4~5*!. This contradiction implies that E[X;] < 35
for all j. Consequently, there must be at least L > Q(K/S) sub-circuits in order to have
Zle E[X,] > Q(K). Since each sub-circuit runs in time $?/3N'/3 the running time of C is

T > Q(L-S?3NY3) > Q(KN/3/81/3), <

As an illustration of the above result, we obtain that any quantum algorithm for finding
N/8 disjoint collisions in a random function must satisfy a time-space tradeoff of T'S /3 >
Q(N*/3). We prove that any improvement to this lower bound would imply a breakthrough
for the Element Distinctness problem.

» Definition 11. The FElement Distinctness problem EDy on domain size N consists of
finding a collision in a random function f: [N] — [N?].

It is well-known that the query complexity of Element Distinctness is T' = O(N?/3) [2, 6].
However, it is a long-standing open problem to find any quantum time-space lower bound
(even classically the question is not completely settled yet [39, 10]). Here, we show that
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any improvement to Theorem 10 would imply a non-trivial time-space tradeoff for Element
Distinctness. This result relies on a reduction presented in Algorithm 1 and analyzed in
Proposition 12 (the constants cg, c1, c2 are chosen in the proof).

Algorithm 1 Finding collisions by using ED .

Input: a function f : [N] — [N] containing at least ¢oN collisions.
Output: at least ¢; N collisions in f (not necessarily disjoint).

1. Repeat coN times:
a. Sample a 4-wise independent hash function % : [v/N] — [N] and store it in
memory.
b. Run an algorithm for ED_ /5 on input foh: [V/N] — [N]. If it finds a collision
(foh(i), foh(j)) check if h(i) # h(j) and output the collision (h(i),h(j)) in
this case.

» Proposition 12. Let N be a square number. If there is an algorithm solving EDy in
time Ty and space Sy then Algorithm 1 runs in time O(NT ) and space O(S\/ﬁ), and it
finds 1 N collisions in any function f : [N] — [N] containing at least coN collisions.

Proof. We choose ¢y = 40, ¢; = 1/10* and ¢, = 8. We study the probabilities of the following
events to occur in a fixed round of Algorithm 1:

Event A: The hash function h is collision free (i.e. h(i) # h(j) for all i # j).

Event B: None of the collisions output during the previous rounds is present in the

image of h.

Event C: The function f o h: [v/N] — [N] contains a collision.

Event D: The algorithm for ED 5 finds a collision at step 2.b.
Algorithm 1 succeeds if and only if the event A A B A C' A D occurs during at least ¢y N
rounds. We now lower bound the probability of this event happening.

For event A, let us consider the random variable X = Zi#je[\/ﬁ] 1h@@)=h(j)- Using

VN

5 )% < 3. Thus, by Markov’s inequality,

that h is pairwise independent, we have E[X] = (
Pr[A] =1-Pr[X > 1] > 1.

For event B, let us assume that k¥ < ¢;N collisions (z1,x2),..., (Tar—1,z2r) have
been output so far. For any i € [k], the probability that both zg;_1 and z9; belong to
{h(1),...,h(v/N)} is at most (\/Qﬁ)% < + since h is pairwise independent. By a union
bound, Pr[B] > 1— £ >1—¢;.

For event C, let us consider the binary random variables Y;; = 1op(i)=fon(s) for
i#j€[vVN], andlet Y = >_iz; Yi,; be twice the number of collisions in f o h. Note that we
may have Y; ; = 1 because h(i) = h(j) (this is taken care of in event A). For each y € [N],
let Ny = |{z : f(z) = y}| denote the number of elements that are mapped to y by f. Using
that h is 4-wise independent, for any i # j # k # ¢ we have,

Zye[N] Ng

Pr[Yi,j = 1] = N2

ZyE[N] N;

PrYi; = 1A Yig = 1] = 225

PrlY;; =1AYy, =1 =Pr[Y; ; =1] - Pr[Ys, = 1].

1:13
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N2
Consequently, E[Y] = (\gﬁ)% and

Var[Y’ Z VarlY; ;| + Z Cov|Y;;, Yixl + Z CovlY; j, Yi el
{i.5} {i,5}#{i,k} {i.grn{k,(}=2
<Y BN+ > E[Yi,Vigl
{i,5} {i,5}#{i,k}
(VN Zyen Ny +3 VN Zyemn Ny
S\ 2 N2 3 N3

where we have used that Y; ; and Y} ¢ are independent when i # j # k # £. The term
2 yelN] N is equal to the number of pairs (z,2') € [N]? such that f(z) = f(«'). Each
collision in f gives two such pairs, and we must also count the pairs (z, z). Thus, Zye[ N Ng >

(1 +2co)N. Moreover, > N < (Cyem N, )3/2 Consequently,

o)
<

Var[Y] 41+ 1+ 2¢p)
BV (W)M a 1+2c9
2 N?

Finally, according to Chebyshev’s inequality, Pr[Y = 0] < Pr[|Y — E[Y]| > E[Y]] < Y2l

B[Y]?
Thus, Pr[C] =1 — Pr[y = 0] > 1 — 205/ 420)

For event D, we have Pr[D | AA B A C| > 2/3 assuming the bounded-error algorithm
for solving ED_ 5 succeeds with probability 2/3.

The probability of the four events happening together is Pr[AABACA D] = Pr[D|AABA

C]-Pr[AABAC] > Pr[D|AABAC]-(Pr[A]+Pr[B]+Pr[C]—2) > 2 (l — ¢ — dyIEo0) >)

1/250. Let 7 be the number of rounds after which ¢V colhslons have been found (i.e.
AN BAC A D has occurred ¢y N times). We have E[7] < 8¢; N, and by Markov’s inequality
Pr[r > ¢aN] < 250¢;/¢2 < 1/3. Thus, with probability at least 2/3, Algorithm 1 outputs at

least ¢1 IV collisions in f. <

We use the above reduction to transform any low-space algorithm for Element Distinctness
into one for finding Q(N/log N) disjoint collisions in a random function. Observe that
Algorithm 1 does not necessarily output collisions that are mutually disjoint. Nevertheless,
there is a small probability that a random function f : [M] — [N] contains multi-collisions
of size larger than log N when M =~ N [24]. Thus, there is only a log N loss in the analysis.

» Proposition 13. Suppose that there exists a bounded-error quantum algorithm for solving
Element Distinctness on domain size N that satisfies a time-space tradeoff of T*SP <
5(N2(7*0‘)) for some constants o, B,7. Then, there exists a bounded-error quantum algorithm
for finding Q(N/log N) disjoint collisions in a random function f : [LON] — [N] that satisfies
a time-space tradeoff of T*SP < 5(N7).

Proof. We use the constants cg, ¢, co specified in the proof of Proposition 12. First, we note
that a random function f : [LON] — [N] contains ¢gN collisions and no multi-collisions of
size larger than log(IN) with large probability [24]. Consequently, any set of ¢; N collisions
must contain at least ¢; N/log N mutually disjoint collisions with large probability. Assume
now that there exists an algorithm solving ED /5 in time T 455 and space S g5 such
that (Tm)as\ﬁ/m < (NZ(N“Y*O“). Then, by plugging it into Algorithm 1, one can find
¢1N/log N disjoint collisions in a random function f : [ION] — [N] in time T = O(NT\/W)
and space S = O(S_i55)- We derive from the above tradeoff that 7*S% < O(N7). <
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As an application of Proposition 13, we obtain the following result regarding the hardness
of finding Q(N) collisions.

» Corollary 14. Suppose that there exists ¢ > 0 such that any quantum algorithm for
finding Q(N) disjoint collisions in a random function f : [ION] — [N] must satisfy a time-
space tradeoff of TSY/3 > Q(N4/3+6), Then, any quantum algorithm for solving Element
Distinctness on domain size N must satisfy a time-space tradeoff of TS'/? > Q(N2/3+26).

We conjecture that the optimal tradeoff for finding K collisions is T' 2S = ©(K?2N), which
would imply an optimal time-space tradeoff of 725 > Q(N?) for Element Distinctness.

» Conjecture 15. Any quantum algorithm for finding K disjoint collisions in a random
function f : [M] — [N] with success probability 2/3 must satisfy a time-space tradeoff
of T?S > Q(K2N).

» Corollary 16. If Conjecture 15 is true, then any quantum algorithm for solving the
Element Distinctness problem with success probability 2/3 must satisfy a time-space tradeoff

of T2S > Q(N?).

We describe a quantum algorithm that achieves the tradeoff of 725 < O(K2N). In order
to simplify the analysis, we do not require the collisions to be disjoint.

Algorithm 2 Finding K collision pairs in f : [N] — [N] using a memory of size S.

1. Repeat O(K/S) times:

a. Sample a subset G C [N] of size S uniformly at random.

b. Construct a table containing all pairs (z, f(z)) for x € G. Sort the table
according to the second entry of each pair.

c. Define the function g : [N]\ G — {0,1} where g(z) = 1 iff there exists 2’ € G
such that f(z) = f(z'). Run the Grover search algorithm [15] on g, by using
the table computed at step 1.b, to find all pairs (z,2') € G x ([N]\ G) such
that f(z) = f(2’). Output all of these pairs.

» Proposition 17. For any 1 < K < O(N) and Q(logN) < S < O(K2/3N/3), there
exists a bounded-error quantum algorithm that can find K collisions in a random function
f:[N]— [N] by making T = O(K+/N/S) queries and using S qubits of memory.

Proof. We prove that Algorithm 2 satisfies the statement of the proposition. For simplicity,
we do not try to tune the hidden factors in the big O notations.

The probability that a fixed pair (x,z’) satisfies (z,2') € G x ([N]\ G) for at least
one iteration of step 1 is Q(K/S-S/N - (1 —-S/N)) = Q(K/N). Since a random function
f: [N] = [N] contains Q(N) collisions with high probability, the algorithm encounters Q(K)
collisions in total. Thus, if the Grover search algorithm never fails we obtain the desired
number of collisions.

The expected number of pre-images of 1 under g is O(S). Consequently, the complexity of
Grover’s search at step 1.c is O(v/SN). The overall query complexity is T = O(K/S-v/SN) =
O(K/N/S), and the space complexity is O(S). <
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A Time lower bound for K-Search

In this section, we illustrate the use of the recording model to upper bound the success
probability of a query-bounded algorithm on a non-uniform input distribution.

» Theorem 18. The success probability of finding K < N/8 preimages of 1 in a random
function f: [M] — {0,1} where f(x) =1 with probability K/N for each x € [M] is at most
O(T?/(KN))X/2 4 2=K for any algorithm using T quantum queries to f.

We show that, similarly to the classical setting where a query can reveal a 1 with
probability K/N, the amplitude of the basis states that record a new 1 increases by a factor
of y/K/N after each query (Proposition 22). Thus, the amplitude of the basis states that
have recorded at least K /2 ones after T' queries is at most O(7T/v/K N)%/2. This implies that
any algorithm with 7" < O(v/ K N) queries is likely to output at least K/2 ones at positions
that have not been recorded. These outputs can only be correct with probability O(K/N)%/2
(Proposition 23).

A.1 Recording query operator

We describe a recording operator that encodes the distribution that gives f : [M] — [N]
where f(x) = 1 with probability K /N independently for each x € [M]. In the standard query

model, the oracle’s initial state is |init) = ®,e(n(v/1 — K/N|0)x, + /K/N|1)£,) for this
distribution. Consequently, we instantiate the recording model as follows.

» Definition 19. For any x € [M], define the unitary S, acting on the register F,, to be
SelL)r, =), Selb)r =17, Sl-)rn =I1-)x

where o = \/1— K/N, 8= \/K/N and |+)7, = a|0) £, + B|11) 7., |-)F = Bl0)xr, —a|l)£,.

We have T|LM) = |init) when 7 = ®,¢[a] S, as required by Theorem 3. The recording
query operator is R = SOS since ST = S, and it satisfies the next equations.

» Lemma 20. If the recording query operator R associated with Definition 19 is applied to a
basis state |x,p,w)|f) where p =1 then the register |f(x))r, is mapped to

(1—-26%)|L) + 208%0) —  2a°B|1) if f(x)
208%1L) + (1 -2a6%)|0) +  2a°BI1) if f(2)
—2a28| L) + 203810) + (1 —2a*)[1)  if f(x)

L
0
1

and the other registers are unchanged. If p =0 then none of the registers are changed.

Proof. By definition, the unitary S, maps |L)r, — |+), |0)r, — a|Ll) + B|-), [1)F, —
B|L) — a|—). Thus, the action on the register F, is
If f(x) = L then |f(x))5, = [+) = al0) = A1) = (a? = B2)| L) +205]).
If f(z) = 0 then |f(2)), = ol L) + =) 2> al L) + B(BI0) + a|1)) > 20| L) + (1 -
2a%32)[0) + 2a3B[1).
It f(z) = 1 then |f ()7, > BIL) —al=) = L) = BBI0) +al1)) = ~2025|L) +
2038|0) + (1 — 2a4)|1).

T
T

<

If a > S, the above lemma shows that R is close to the mapping | L)z, — |L) —25]|1),
0y 7, — 0)+28|1), |1) £, — —|1)+2B(]0) — L)) up to lower order terms of amplitude O(5?).



Y. Hamoudi and F. Magniez

A.2 Analysis of the recording progress

The measure of progress is based on the number of ones contained in the oracle’s register.
We first give some projectors related to this quantity.

» Definition 21. We define the following projectors by giving the basis states on which they
project:
<y, =y and >y all basis states |z, p, w)|f) such that f contains respectively at most,
exactly or at least k coordinates equal to 1.

Ok, 1 andI—yo: all basis states |z, p, w)|f) such that (1) f contains exactly k coordinates
equal to 1, (2) the phase multiplier is p=1 and (3) f(xz) = L or f(x) = 0 respectively.

We can now define the measure of progress g:  for ¢t queries and £ ones as

Gtk = >kl || (5)

where |¢;) is the state after ¢ queries in the recording model. The main result of this section
is the following bound on the growth of g .

k
. t\ ( WK
» Proposition 22. For all t and k, we have that g, 5, < () <W) )
Proof. First, goo = 1 and g = 0 for all k > 1 since the initial state is |¢o) = |0)|L).
Then, we prove that g j satisfies the following recurrence relation

K
Gi1,k+1 < Qe ot1 +4 7 dk (6)

Wi\
W) . In order to prove Equa-

tion (6), we first observe that ¢;41 x+1 = |I>k+1U1R|P0) || = || H>k+1R|ée)|| where Upyq
is the unitary applied by the algorithm at time ¢ + 1. Then, on a basis state |z, p, w)|f), the
recording query operator R acts as the identity on the registers F,. for 2’ # z. Consequently,
the basis states |z, p, w)|f) in |¢;) that may contribute to g;4+1,,+1 must either already contain
k+ 1 ones in f, or exactly k ones in f and f(z) # 1, p = 1. This implies that

From this result, it is trivial to conclude that g, < () (

Qer1h41 < Qi1 + [Hsp 1 ROk 1 |@)[| 4 [[TIs g1 RII—g 0| d4) |-

We first bound the term ||II>;41RII=k 1 |¢¢)||. Consider any state |z,p,w)|f) in the

support of Iy ;. By Lemma 20, we have s 1 R|z,p,w)|f) = —2a%8|z,p,w)|1)x,
Qur#z|f(2"))F,,. Since any two basis states in the support of II_; ; remain orthogonal
after II>x1R is applied, we obtain that |Ispi1RII_g 1 |¢e)|| = 2028y 1 |de)] <

2y/K/N(1—-K/N)g .

Similarly, for |z, p,w)|f) in the support of II_j o we have |1 R|z, p,w)|f)] = 2233
by Lemma 20. Consequently, ||Isp1RII_gol¢s)]| = 2a3B|[H_olde)| < 2¢/K/N(1 —
K/N)3/2g; . We can now conclude the proof,

a2 K (1= Y an+ 2 E (1= KN < s +4/E
Qt4+1,k+1 = Gek+1 N N qt.k N N qt,k = 4t k+1 th,k~

<
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A.3 From the recording progress to the success probability

We connect the success probability o = ||[Isuec|to7)|| in the standard query model to the
final progress gr 1 in the recording model after 1" queries. We show that if the algorithm has
made no significant progress for k > K/2 then it needs to “guess” that f(z) =1 for about
K — k positions where the F, register does not contain 1. Classically, the probability to find
K — k preimages of 1 at positions that have not been queried would be (K/N)%~F, Here,
we show similarly that if a unit state contains at most k ones in the quantum recording
model, then after mapping it to the standard query model (by applying the operator T
of Theorem 3) the probability that the output register contains the correct positions of K

preimages of 1 is at most 3K(%)K7k.

K—k
» Proposition 23. For any |¢), we have ||Hguec T <k|@)| < 3K/2(,/%) ITL<k|®)]-

Proof. Let |z,p,w)|f) be any basis state in the support of II<;. The output value z is a
substring of w made of K distinct values x1,...,zx € [M] indicating positions where the
input f is supposed to contain ones. By definition of II<y, we have f(xz;) # 1 for at least
K — k indices i € [K]. For each such index i, after applying 7 = ®,¢[a)Sa, the amplitude

of 1) 7, is B f(z) = L) or /£ (1= &) (if f(2;) = 0) by Definition 19. Consequently,

K—k
Msuce T |z, p, w)| )] < (\/ﬁ) . (7)

Fix any state |¢) and denote |p) =Tl<x|@) =>_, ., ¢ Qupw,flz, p,w)|f). Let us write
wg = {21, ...,2x} when the output substring z of w contains x1, ..., 2. For any two basis
states |.Z',p, ’LU>|f> and ‘jvﬁv w>‘f>7 if (m,p,w, (f(xl))z’¢w5) # (-775’]5’ w, (f(m/))r’wa) then
Hauee T |2, p, w)| f) is orthogonal to Hgue T |7, p, w)|f). There are 3X choices for |z, p, w)|f)
once we set the value of (x, p,w, (f(2'))s¢w,) since it remains to choose f(z’) € {L,0,1} for
a2’ € wz. By using the Cauchy—Schwarz inequality and Equation (7), we get that
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We can now conclude the proof of the main result.

IN

N

Proof of Theorem 18. Let |1)r) (resp. |¢r)) denote the state of the algorithm after 7' queries
in the standard (resp. recording) query model. According to Theorem 3, we have |[¢r) =
Tl¢r). Thus, by the triangle inequality, the success probability o = ||[Tsucc|tor)||? satisfies
Vo < [ suee THx ry2|9m) | + [Msuce T k2o | < (s r/2ldr) | + [ Hsuce TH< re/2|d7) |-
Using Propositions 22 and 23, we have that /o < (KI;Q) (4\/K/N) K/ +352(\/K/N) K2 <
O(T/VKN)%X/?  2=K/2-1_ Finally, the upper bound on o is derived from the standard
inequality (u+ v)? < 2u? + 202 <



Y. Hamoudi and F. Magniez

B Time-space tradeoff for Sorting

We use the time lower bound obtained in Appendix A to reprove the time-space tradeoff
for the Sorting problem described in [29, Theorem 21]. The input to the Sorting problem is
represented as a function f: [N] — {0, 1,2} (we do not need to consider a larger range for
the proof). A quantum algorithm for the Sorting problem must output in order a sequence
Z1,...,xN € [N] of distinct integers such that f(z1) > f(z2) > --- > f(zn) with probability
at least 2/3.

» Theorem 24. Any quantum algorithm for sorting a function f : [N] — {0,1,2} with
success probability 2/3 must satisfy a time-space tradeoff of T?>S > Q(N3).

Proof. The proof is a modified version of [29, Theorem 21] adapted to our version of the
K-Search problem. Given a circuit C that runs in time 7" and space Q(log N) < S < N/64,
we partition it into L = T/T" consecutive sub-circuits Cy || Ca || - - - || Cr, each running in time
T" = VSN /4. Assume by contradiction that a circuit C; outputs the elements of ranks
r,r+1,...,7+25 — 1 for some r < N/2. We use C; to solve the K-search problem for
K = 28 as follows. Given an input g : [N/2] — {0,1} to the K-search problem where
g(x) = 1 with probability NL/4 for each x, define the function f : [N] — {0, 1,2} where

2 ifx<r,
fl@)=% glea—r+1) ifr<z<r+N/2,
0 ite >r+ N/2.

Note that the function g contains at least 2S5 preimages of 1 with probability at least 25/N.

Thus, if the circuit C is run on the input f, then the indices output by the sub-circuit C; must
contain the position of 25 preimages of 1 with probability at least 2/3 - 25/N. Consequently,
by running C; on the completely mixed state on S qubits we can find 25 preimages of 1
under g with probability at least 2/3 - 2S/N - 279 in time T”. However, by Theorem 18, any
such algorithm must succeed with probability at most 4~°*!. This contradiction implies
that there must be at least L > Q(N/S) sub-circuits in C. Thus, the running time of C is
T > Q(L-VSN) > Q(N3/2/V5). <

The time-space tradeoffs for the Boolean matrix-vector product [29, Theorem 23] and
the Boolean matrix product [29, Theorem 25] problems can be reproved in a similar way.
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—— Abstract

We construct a quantum oracle relative to which BQP = QMA but cryptographic pseudorandom
quantum states and pseudorandom unitary transformations exist, a counterintuitive result in light
of the fact that pseudorandom states can be “broken” by quantum Merlin-Arthur adversaries. We
explain how this nuance arises as the result of a distinction between algorithms that operate on
quantum and classical inputs. On the other hand, we show that some computational complexity
assumption is needed to construct pseudorandom states, by proving that pseudorandom states do
not exist if BQP = PP. We discuss implications of these results for cryptography, complexity theory,
and quantum tomography.
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1 Introduction

Pseudorandomness is a key concept in complexity theory and cryptography, capturing the
notion of objects that appear random to computationally-bounded adversaries. Recent works
have extended the theory of computational pseudorandomness to quantum objects, with
a particular focus on quantum states and unitary transformations that resemble the Haar
measure [19, 13, 12].

Ji, Liu, and Song [19] define a pseudorandom state (PRS) ensemble as a keyed family
of quantum states {|¢k)}rex such that states from the ensemble can be generated in
polynomial time, and such that no polynomial-time quantum adversary can distinguish
polynomially many copies of a random |pg) from polynomially many copies of a Haar-
random state. They also define an ensemble of pseudorandom unitary transformations
(PRUs) analogously as a set of efficiently implementable unitary transformations that are
computationally indistinguishable from the Haar measure. These definitions can be viewed
as quantum analogues of pseudorandom generators (PRGs) and pseudorandom functions
(PRFs), respectively. The authors then present a construction of PRSs assuming the existence
of quantum-secure one-way functions, and also give a candidate construction of PRUs that
they conjecture is secure.

Several applications of PRSs and PRUs are known. PRSs and PRUs are potentially
useful in quantum algorithms: in computational applications that require approximations
to the Haar measure, PRSs and PRUs can be much more efficient than ¢-designs, which
are information-theoretic approximations to the Haar measure that are analogous to t-
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wise independent functions.! Cryptographic applications are possible, with [19] giving a
construction of a private-key quantum money scheme based on PRSs. Recent work by
Bouland, Fefferman, and Vazirani [12] has also established a fundamental connection between
PRSs and any possible resolution to the so-called “wormhole growth paradox” in the AdS/CFT
correspondence.

1.1 Main Results

Given the importance of PRSs and PRUs across quantum complexity theory, in this work
we seek to better understand the theoretical basis for the existence of these primitives. We
start with a very basic question: what hardness assumptions are necessary for the existence
of PRSs,? and which unlikely complexity collapses (such as P = PSPACE or BQP = QMA)
would invalidate the security of PRSs? Viewed another way, we ask: what computational
power suffices to distinguish PRSs from Haar-random states?

At first glance, it appears that an “obvious” upper bound on the power needed to
break PRSs is QMA, the quantum analogue of NP consisting of problems decidable by a
polynomial-time quantum Merlin-Arthur protocol (or even QCMA, where the witness is
restricted to be classical). If Arthur holds many copies of a pure quantum state |¢) that
can be prepared by some polynomial-size quantum circuit C, then Merlin can send Arthur
a classical description of C, and Arthur can verify via the swap test that the output of C
approximates [¢). By contrast, most Haar-random states cannot even be approximated by
small quantum circuits. So, in some sense, PRSs can be “distinguished” from Haar-random
by quantum Merlin-Arthur adversaries.

There is a subtle problem here, though: QMA is defined as a set of decision problems
where the inputs are classical bit strings, whereas an adversary against a PRS ensemble
inherently operates on a quantum input. As a result, it is unclear whether the hardness of
breaking PRSs can be related to the hardness of QMA, or any other standard complexity
class. Even if we had a proof that BQP = QMA, this might not give rise to an efficient
algorithm for breaking the security of PRSs.

One way to tackle this is to consider quantum adversaries that can query a classical oracle.
If we can show that PRSs can be broken by a polynomial-time quantum algorithm with
oracle access to some language £ C {0,1}*, we conclude that if PRSs exist, then £ ¢ BQP.
A priori, it is not immediately obvious whether oracle access to any language L suffices for
a polynomial-time quantum adversary to break PRSs. For our first result, we show that a
PP-complete language works. Hence, if BQP = PP, then PRSs do not exist.

» Theorem 1 (Informal version of Theorem 15). There exists a polynomial-time quantum
algorithm augmented with a PP oracle that can distinguish PRSs from Haar-random states.

This raises the natural question of whether the PP oracle in the above theorem can be
made weaker. For instance, can we break PRSs with a QCMA or QMA oracle, coinciding
with our intuition that the task is solvable by a quantum Merlin-Arthur protocol? In our
second result, we show that this intuition is perhaps misguided, as we construct a quantum
oracle relative to which such a QMA reduction is impossible.

L t-designs are also sometimes called “pseudorandom” in the literature, e.g. [27, 14]. We emphasize that
t-designs and PRSs/PRUs are fundamentally different notions and that they are generally incomparable:
a t-design need not be a PRS/PRU ensemble, or vice-versa.

2 Note that PRUs imply PRSs, so we focus only on PRSs for this part.
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» Theorem 2 (Informal version of Theorem 18 and Theorem 21). There exists a quantum
oracle O such that:

(1) BQP® = QMA®, and

(2) PRUs (and hence PRSs) exist relative to O.

Let us remark how bizarre this theorem appears from a cryptographer’s point of view.
If BQP = QMA, then no quantum-secure classical cryptographic primitives exist, because
such primitives can be broken in NP. So, our construction is a black-box separation between
PRUs and all quantum-secure classical cryptography — a relativized world in which any
computationally-secure cryptography must use quantum communication. Theorem 2 thus
provides a negative answer (in the quantum black box setting) to a question of Ji, Liu, and
Song [19] that asks if quantum-secure one-way functions are necessary for PRSs. One could
even view our result as evidence that it might be possible to base the existence of PRSs and
PRUs on weaker assumptions than those usually used for classical cryptography.

1.2 Application: Hyperefficient Shadow Tomography

An immediate corollary of our results is a new impossibility result for shadow tomography.
Aaronson [2] defined the shadow tomography problem as the following estimation task: given
copies of an n-qubit mixed state p and a list of two-outcome measurements O, ..., Oy,
estimate Tr(O;p) for each ¢ up to additive error e. Aaronson showed that, remarkably,
this is possible using very few copies of p: just poly(n,log M, é) copies suffice, which is
polylogarithmic in both the dimension of p and the number of quantities to be estimated.

Aaronson then asked in what cases shadow tomography can be made computationally
efficient with respect to n and log M. Of course, just writing down the input to the problem
would take (4™ M) time if the measurements are given explicitly as Hermitian matrices, and
listing the outputs would also take Q(M) time. But perhaps one could hope for an algorithm
that only operates implicitly on both the inputs and outputs. For example, suppose we
stipulate the existence of a quantum algorithm that performs the measurement O; given
input ¢ € [M], and that this algorithm runs in time poly(n,log M). Consider a shadow
tomography procedure that takes a description of such an algorithm as input, and that
outputs a quantum circuit C' such that |C(i) — Tr(O;p)| < € for each i € [M].3 Aaronson
calls this a “hyperefficient” shadow tomography protocol if it additionally runs in time
poly(n,log M, é)

Aaronson gave some evidence that hyperefficient shadow tomography is unlikely to
exist, by observing that if hyperefficient shadow tomography is possible, then quantum
advice can always be efficiently replaced by classical advice — in other words, BQP /qpoly =
BQP/poly. However, Aaronson and Kuperberg [4] showed a quantum oracle U relative to
which BQPY /qpoly # BQPY /poly, which implies that hyperefficient shadow tomography is
impossible if the observables are merely given as a black box that implements the measurement.
The proof of this oracle separation amounts to showing that if the oracle U either (1)
implements a reflection about a Haar-random n-qubit state, or (2) acts as the identity, then
no poly(n)-query algorithm can distinguish these two cases, even given a classical witness of

size poly(n).

3 Note the slight abuse of notation here, as the shadow tomography procedure can err with some small
probability, and C itself might be a probabilistic quantum circuit. For simplicity, we assume that the
shadow tomography procedure always succeeds and that C' is deterministic in this exposition.
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One can consider stronger forms of query access to the observables. For instance, in
the common scenario where each observable measures fidelity with a pure state, meaning
it has the form O; = |1;) (15|, then in addition to the ability to measure overlap with |¢;),
one might also have the power to produce copies of |1);). Note that the ability to prepare
|th;) is generally much more powerful than the ability to recognize |¢;), the latter of which
is equivalent to oracle access to the reflection 1 — 2t);) (¢;]. For example, Aaronson and
Kuperberg’s oracle separation of QCMA and QMA [4] amounts to building an oracle relative
to which certain quantum states can be recognized efficiently but cannot be approximately
prepared by small quantum circuits. Other black-box separations of state preparation and
state reflection are known, e.g. [9], so one might hope that this type of query access could be
substantially more powerful for shadow tomography as well.

Nevertheless, our results imply that black-box hyperefficient shadow tomography is
impossible even in this setting where we have state preparation access to the observables.
This follows from the simple observation that hyperefficient shadow tomography of this form
would suffice to break PRS ensembles with a QCMA oracle.

» Theorem 3. If a hyperefficient shadow tomography procedure exists that works for any
list of observables of the form |i1) (¥1], ..., |¥a) (W] given state preparation access to
[1) ..., |¥ar), then all PRS ensembles can be broken by polynomial-time quantum adversaries
with oracle access to QCMA.

Proof sketch. For a given PRS ensemble {|pg) ke, we have state preparation access to
the observable list {|pr) (¢k|}kex by way of the generating algorithm of the PRS. Hence,
we can run hyperefficient shadow tomography using this observable list on copies of some
unknown state [). Suppose that this produces a quantum circuit C' such that |C(k) —
Tr(|eor) (rlt)) (¥])| < 15 for each k € K. Observe that the problem of deciding whether
there exists some k such that C(k) > % is in QCMA. If |¢) is pseudorandom, then such a
k always exists (whichever k satisfies |[¢)) = |px)), whereas if |¢) is Haar-random, such a k
exists with negligible probability over the choice of |1)). Hence, these two ensembles can be

distinguished by feeding C' into this QCMA language. <

The above theorem also relativizes, in the sense that if the shadow tomography procedure
only accesses the state preparation algorithm via a black box O, then hyperefficient shadow
tomography lets us break PRSs in polynomial time with oracle access to O and QCMA®°.
Since Theorem 2 gives an oracle relative to which BQPO = QCMAO = QMAO and PRSs
exist, we conclude that hyperefficient shadow tomography is impossible with only black-box
state preparation access to the observables.

1.3 Our Techniques

The starting point for the proof of Theorem 1, which gives an upper bound of PP on the
power needed to break pseudorandom states, is a theorem of Huang, Kueng, and Preskill
[17] that gives a simple procedure for shadow tomography.

» Theorem 4 ([17]). Fiz M different observables O1,04,...,0p and an unknown n-qubit
mized state p. Then there exists a quantum algorithm that performs T = O(log(M/d)/? -
max; Tr(O2)) single-copy measurements in random Clifford bases of p, and uses the meas-
urement results to estimate the quantities Tr(O1p), Tr(Ozp), ..., Tr(Onp), such that with
probability at least 1 — &, all of the M quantities are correct up to additive error .
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If {|ok) et is a family of PRSs, then by choosing Or = |@x) (¢k| for each k € K to
be the list of observables, we can use the above algorithm to determine whether p is close
to one of the states in the PRS ensemble. A Haar-random state will be far from all of
the pseudorandom states with overwhelming probability. Hence, Theorem 4 implies the
existence of an algorithm that distinguishes the pseudorandom and Haar-random ensembles,
by performing a polynomial number of random Clifford measurements and analyzing the
results. The key observation is that the Clifford measurements can be performed efficiently,
even though the resulting analysis (which operates on purely classical information) might be
computationally expensive.

Next, one could try to argue that the computationally difficult steps in the above algorithm
can be made efficient with a PP oracle. However, we take a different approach. We adopt
a Bayesian perspective: suppose that with 50% probability we are given copies of a Haar-
random state, and otherwise with 50% probability we are given copies of a randomly chosen
state from the pseudorandom ensemble. We wish to distinguish these two cases using only
the results of the random Clifford measurements as observed data. One way to do this is
via the Bayes decision rule: we compute the posterior probability of being Haar-random or
pseudorandom given the measurements, and then guess the more likely result. In fact, the
Bayes decision rule is well-known to be the optimal decision rule in general, in the sense that
any decision rule errs at least as often as the Bayes decision rule (see e.g. [11, Chapter 4.4.1]).
Hence, because the algorithm of Huang, Kueng, and Preskill (Theorem 4) distinguishes the
Haar-random and pseudorandom ensembles with good probability, the Bayes decision rule
conditioned on the random Clifford measurements must work at least as well at the same
distinguishing task.

Finally, we observe that using a quantum algorithm with postselection, we can approximate
the relevant posterior probabilities needed for the Bayes decision rule. This allows us to
appeal to the equivalence PostBQP = PP [1] to simulate this postselection with a PP oracle.

Technically, one challenge is that the postselected quantum algorithm requires the ability
to prepare copies of a Haar-random state, even though a polynomial-time quantum algorithm
cannot even approximately prepare most Haar-random states. The solution is to replace the
Haar ensemble by an approximate quantum design, which we argue does not substantially
change the success probability of the algorithm.

For our second result (Theorem 2), the oracle construction we use is simple to describe.
The oracle O consists of two parts: a quantum oracle U = {U,, } nen, where each U, consists
of 2™ different Haar-random n-qubit unitary matrices, and a classical oracle P that is an
arbitrary PSPACE-complete language. We prove that Theorem 2 holds with probability 1
over the choice of U.

Showing that PRUs exist relative to (U, P) is reasonably straightforward. The proof uses
the BBBV theorem (i.e. the optimality of Grover’s algorithm) [10], and is analogous to showing
that one-way functions or pseudorandom generators exist relative to a random classical oracle,
as was shown by Impagliazzo and Rudich [18]. We only rigorously prove security against
adversaries with classical advice, though we believe that the recently introduced framework
of Chung, Guo, Liu, and Qian [16] should yield a security proof against adversaries with
quantum advice.

Slightly more technically involved is proving that BQPY'” = QMA*"”. To do so, we
argue that a QMA verifier is not substantially more powerful than a BQP machine at learning
nontrivial properties of U. More precisely, we argue that if a QMA verifier V makes T' queries
to U, for some n € N, then either (1) n = O(logT) is sufficiently small that poly(T") queries
to U,, actually suffice to learn U,, to inverse-polynomial precision, or else (2) n = w(logt) is
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sufficiently large that with high probability, the maximum acceptance probability of V' (over
the choice of Merlin’s witness) is close to the average maximum acceptance probability of V
when U, is replaced by a random set of matrices sampled from the Haar measure. We prove
this as a consequence of the extremely strong concentration of measure properties exhibited
by the Haar measure [22].

This allows a BQPY"F machine to approximate the maximum acceptance probability of
VUP as follows. In case (1), the BQPY"” machine first queries U, enough times to learn a
unitary t transformation L{ that is close to U,,, and then hard codes L{n into a new QMA”
verifier V that simulates V by replacing queries to U, with calls to U,. In case (2), the BQPY"
machine similarly constructs a new QMA” verifier V, instead simulating V by replacing
queries to U, with unitaries chosen from an approximate polynomial design.# In both cases,
V defines a QMA” problem. Because P is PSPACE-complete, BQP” = QMA” = PSPACE,
and therefore this problem can be decided with a single query to P.

The astute reader may notice that this proof works for more general choices of P: it
shows that for any oracle P, if BQP” = QMA”, then BQPY"" = QMAY"" with probability 1
over the choice of U. An interesting consequence is the special case when P is trivial.

» Corollary 5. If BQP = QMA, then BQPY = QMAY with probability 1 over the choice of U.

In words, if BQP = QMA in the unrelativized world, then the complexity classes also
coincide relative to a collection U of Haar-random oracles. Or, viewed another way, separating
BQP from QMA relative to U requires separating them in the unrelativized world. This is in
stark contrast to the case of random classical oracles, where we can prove unconditionally
that for a uniformly random oracle O, BQP? #* QMA° (and indeed, NPC 4 BQPO) with
probability 1 over O [10].

1.4 Open Problems

Can we prove a similar result to Theorem 2 using a classical oracle, for either PRUs or PRSs?
Attempting to resolve this question seems to run into many of the same difficulties that arise
in constructing a classical oracle separation between QCMA and QMA, which also remains
an open problem [4]. For one, as pointed out in [4], we do not even know whether every
n-qubit unitary transformation can be approximately implemented in poly(n) time relative
to some classical oracle. Even if one could resolve this, it is not clear whether the resulting
PRUs or PRSs would be secure against adversaries with the power of QMA. For instance,
we show in Appendix C that an existing construction of PRSs, whose security is provable in
the random oracle model [13], can be broken with an NP oracle.

What else can be said about the hardness of learning quantum states and unitary
transformations, either in the worst case or on average? A related question is to explore the
hardness of problems involving quantum meta-complexity: that is, problems that themselves
encode computational complexity or difficulty. Consider, for example, a version of the
minimum circuit size problem (MCSP) for quantum states: given copies of a pure quantum
state |t), determine the size of the smallest quantum circuit that approximately outputs [¢).
If PRSs exist, then this task should be hard, but placing an upper bound on the complexity
of this task might be difficult in light of our results. We view this problem as particularly
intriguing because it does not appear to have an obvious classical analogue, and also because of

4 Technically, this requires choosing a random element of the polynomial design for each = € {0,1}™ by
means of a random oracle, so we use Zhandry’s strategy [28] to simulate 7' quantum queries to a random
oracle using a 27-wise independent function.
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its relevance to the wormhole growth paradox and Susskind’s Complexity=Volume conjecture
in AdS/CFT [12, 25, 24]. A number of recent breakthroughs in complexity theory have
involved ideas from meta-complexity (see surveys by Allender [6, 7]), and it would be
interesting to see which of these techniques could be ported to the quantum setting.

What other complexity-theoretic evidence can be given for the existence of PRSs and
PRUs? Can we give candidate constructions of PRSs or PRUs that do not rely on the
assumption BQP #= QMA? To give a specific example, an interesting question is whether
polynomial-size quantum circuits with random local gates form PRUs. Random circuits are
known to information-theoretically approximate the Haar measure in the sense that they
form approximate unitary designs [15], and it seems conceivable that they could also be
computationally pseudorandom.

2 Preliminaries

2.1 Notation

Throughout, [n] denotes the set of integers {1,2,...,n}, and [n, m] denotes the set of integers
{n,n+1,n+2,...,m}. If x € {0,1}" is a binary string, then |z| denotes the length of
z. For X a finite set, we let |X| denote the size of X. If X is a probability distribution,
then we use x < X to denote a random variable x sampled according to X. When X is a
finite set, we also use z <+ X to indicate a random variable x drawn uniformly from X. A

function f(n) is negligible if for every constant ¢ > 0, f(n) < % for all sufficiently large n.

We use negl(n) to denote an arbitrary negligible function, and poly(n) to denote an arbitrary
polynomially-bounded function.

We use ||[M||r = /Tt (MTM) to denote the Frobenius norm of a matrix M. We denote
by [|A||, the diamond norm of a superoperator A acting on density matrices (see [5] for a
definition). For a unitary matrix U, we use U - U to denote the superoperator that maps a
density matrix p to UpUT.

We use S(N) to denote the set of N-dimensional pure quantum states, and U(N) to
denote the group of N x N unitary matrices. When N = 2", we identify these with n-qubit
states and unitary transformations, respectively. We use o to denote the Haar measure on
S(N), and we let puy denote the Haar measure over U(N). We write U(N)M for the space
of MN x M N block-diagonal unitary matrices, where each block has size N x N, and we
also identify U(N)™ with M-tuples of N x N unitary matrices. We use pd! to denote the
product measure i (Uy,Us, ..., Un) = pn(U1) - pn (Uz) -+ - un (Upr) on U(N)M.

We assume familiarity with standard complexity classes such as BQP and PP, including
relativized versions of these classes that can query a quantum or classical oracle. For
completeness, we define some of the relevant complexity classes and related notions in
Appendix B.

We use superscript notation for algorithms that query oracles. For instance, AY(z, |¢))
denotes a quantum algorithm A that queries an oracle U and receives a classical input = and
a quantum input [¢).

2.2 Quantum Information

We require the following well-known fact, which bounds the distance in the diamond norm
between two unitary superoperators in terms of the Frobenius norm of the difference of the
two matrices. We provide a proof in Appendix A.

» Lemma 6. Let U,V € UN). Then ||U-U =V - V|, <2/|U = V||r.

2:7

TQC 2021



2:8

Quantum Pseudorandomness and Classical Complexity

We use the notion of an e-approximate quantum (state) ¢-design, which is a distribution
over quantum states that information-theoretically approximates the Haar measure over
states.

» Definition 7 (Approximate quantum design [8]). A probability distribution S over S(N) is
an e-approximate quantum t-design if:

l-e) E @< E W@ <1+e) E |Jo) @*

[¢)¢—on T ly)eS [y —on

and:

E |[4)®l= E [¢) ]

[y S [h)on

Similarly, we require e-approximate unitary t-designs, which are approximations to the
Haar measure over unitary matrices. The definition of e-approximate unitary t-designs is
more technical, so we point to [15, Definition 2] for a formal definition. While there are
several definitions of approximate ¢-designs used in the literature, for this work it is crucial
that we use multiplicative approximate designs for both states and unitaries, meaning that
the designs approximate the first ¢ moments of the Haar measure to within a multiplicative
1+ € error (as opposed to additive error).

Efficient constructions of approximate unitary t-designs over qubits are known, as below.

» Lemma 8. Fiz ¢ > 0. For each n,t € N, there exists m(n) < poly(n) and a poly(n,t)-
time classical algorithm S that takes as input a random string x < {0,1}™ and outputs a
description of a quantum circuit on n qubits such that the circuits sampled from S form an
e-approzimate unitary t-design over U(2™).

Proof sketch. Fix an arbitrary universal quantum gate set G with algebraic entries that is
closed under taking inverses (e.g. G = {CNOT, H,T,T"}). Brandao, Harrow, and Horodecki
[15, Corollary 7] show that n-qubit quantum circuits consisting of poly(n, ) random gates
sampled from G, applied to random pairs of qubits, form e-approximate unitary ¢-designs.
So, S just has to sample from this distribution, which can be done with poly(n,t) bits of
randomness. <

Note that this also implies an efficient construction of e-approximate quantum (state) ¢-
designs, as if S is an e-approximate unitary ¢-design over U(NV) then S |¢) is an e-approximate
quantum ¢-design for any fixed |¢) (e.g. |0™)).

Essentially the only property we need of approximate t-designs is that they can be used
in place of the Haar measure in any quantum algorithm that uses ¢ copies of a Haar-random
state (or ¢t queries to a Haar-random unitary), and the measurement probabilities of the
algorithm will change by only a small multiplicative factor.

» Fact 9. Let S be an e-approzimate quantum t-design over S(N), and let A be an arbitrary
quantum measurement. Then:

(1-e) Pr [A(™) =1]< Pr [A(0)™) =1]<0+e) Pr [A(j0)™)=1].

‘ ><*UN o W’N*S ><—0’N

» Fact 10 ([15]). Let S be an e-approximate unitary t-design over U(N), and let AV be an
arbitrary quantum algorithm that makes t queries to some U € U(N). Then:

(1—g) Pr [AY=1]< Pr [AY=1]<(1+¢) Pr [A=1].

U<pun T U+S U<pun
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We require the following concentration inequality on the Haar measure, which is stated
in terms of Lipschitz continuous functions. For a metric space M with metric d, a function
f: M — Ris L-Lipschitz if for all x,y € M, |f(x) — f(y)| < L-d(z,y).

» Theorem 11 ([22, Theorem 5.17]). Given Ny,..., Ny € N, let X =U(N7) & --- & U(Ny)
be the space of block-diagonal unitary matrices with blocks of size Ny,...,Ng. Let p =
N, X -+ X pn, be the product of Haar measures on X. Suppose that f : X — R is
L-Lipschitz in the Frobenius norm. Then for every t > 0:

(N — 2)t2) |

Pr |f(U) > VIEM[f(V)] +t} < exp < A2

U+—p

where N = min{Ny,..., Ny}.

2.3 Cryptography

A family of functions {fx}rexc where fi : {0,1}™ — {0,1}™ is called t-wise independent if
for every distinct a1, xa,...,2: € {0,1}" and every (not necessarily distinct) y1,y2,...,y: €
{0,1}™:
P fulw:) =y Vi€ [t]] =27
Efficient constructions of t-wise independent functions are known, in the sense that one can
sample a random fj from a t-wise independent function family and make queries to fj in
poly(t,n,m) time [28]. Our primary use of t-wise independent functions is in simulating
random oracles: 2t-wise independent functions can be used in place of a uniformly random
function {0,1}" — {0,1}™ in any quantum algorithm that makes at most ¢ queries to the
random function; see Zhandry [28, Theorem 6.1] for more details.
We use the following definitions of pseudorandom quantum states (PRSs) and pseudoran-
dom unitaries (PRUs), which were introduced by Ji, Liu, and Song [19].

» Definition 12 (Pseudorandom quantum states [19]). Let k € N be the security parameter.

Let D be the dimension of a quantum system and let IC be the key set, both parameterized by

k. A keyed family of quantum states {|pr)} e C S(D) is pseudorandom if the following

two conditions hold:

(1) (Efficient generation) There is a polynomial-time quantum algorithm G that generates
lok) on input k, meaning G(k) = |pk).

(2) (Computationally indistinguishable) For any polynomial-time quantum algorithm A and
T = poly(k):

QT ®T

Rt [A <|<p> ) B 1} B |¢)1<D—raD [A <|1/J> ) N 1]‘ = negl(x).

» Definition 13 (Pseudorandom unitary transformations [19]). Let x € N be the security

parameter. Let D be the dimension of a quantum system and let IC be the key set, both para-

meterized by k. A keyed family of unitary transformations {Ug }rex C U(D) is pseudorandom

if the following two conditions hold:

(1) (Efficient computation) There is a polynomial-time quantum algorithm G that implements
Ui on input k, meaning that for any |¢) € S(D), G(k, |¢)) = Uy [¢).

(2) (Computationally indistinguishable) For any polynomial-time quantum algorithm AY
that queries U € U(D):

Pr [.AU’“ (1")=1] - Pr [AU (1%) = 1] | = negl(x).

kK Upp
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We generally take the key set I = {0,1}* and choose D = 2™ for some n = poly(x) in
the above definitions. We sometimes call the negligible quantities in the above definitions
the advantage of the quantum adversary A.

In this work, we consider security against non-uniform quantum algorithms with classical
advice, which means that the adversary is allowed to be a different polynomial-time quantum
algorithm for each setting of the security parameter x € N. Without loss of generality, such
an adversary can always be assumed to take the form of a uniform poly(x)-time quantum
algorithm A (1%, z), where x € {0, 1}P°Y(%) is an advice string that depends only on k.

3 Breaking Pseudorandomness with a Classical Oracle

In this section, we prove that a polynomial-time quantum algorithm with a PP oracle can
distinguish a PRS from a Haar-random state. First, we need a lemma about the overlap
between a fixed state |p) and a Haar-random state |¢).

» Lemma 14. Let |p) € S(N), and let € > 0. Then:

Pr 2>l <e N,
P ([l P2 <

Proof. This follows from standard concentration inequalities, or even an explicit computation,
using the fact that | (1|p) | is roughly exponentially distributed for a random state |¢)). See
e.g. [15, Equation (14)] <

The formal statement of our result is below.

» Theorem 15. For any PRS ensemble {|ok)}reic of n-qubit states with security parameter
K, there exists a PP language L, a poly(k)-time quantum algorithm A, and T = poly(k)
such that the following holds. Let X + {0,1} be a uniform random bit. Let |¢) be sampled
uniformly from the PRS ensemble if X = 0, and otherwise let |¢) be sampled from the Haar
measure oon if X = 1. Then we have:
Pr [A£ (|¢>®T) = X} > 0.995.

X, 1)
Proof. We first describe A. For some T to be chosen later, on input |1/}>®T, A measures each
copy of |[¢) in a different randomly chosen Clifford basis. Call the list of measurement bases
b= (by,bs,...,br) and the measurement results ¢ = (¢1,ca,...,cr). A then feeds (b, c) into
a single query to £, and outputs the result of the query. This takes polynomial time because
there exists an O(n?)-time algorithm to sample a random n-qubit Clifford unitary, and this
algorithm also produces an implementation of the unitary with O(n?/logn) gates [20, 3].

The PP language £ we choose for the oracle is most easily described in terms of a
PostBQP algorithm B(b, ¢) (i.e. a postselected polynomial-time quantum algorithm, as in
Definition 23), by the equivalence PostBQP = PP [1].° Let S be a ---approximate n-qubit
quantum T-design (Definition 7) such that a state can be drawn from S in poly(k) time
(because n, T < poly(k), the existence of such a design follows from Lemma 8). B begins by
initializing the state:

p=310000 E_[lon (] + 5000 B [0 "]

5 Note that any promise problem in PostBQP is also in PP [1], and any promise problem in PP can be
extended to a language in PP because PP is a syntactic class. Hence, we might as well take a language
in PP instead of a promise problem.
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B measures all but the leftmost qubit of p in the basis given by b, and postselects on
observing ¢ (i.e. B outputs x if the measurements are not equal to ¢). Finally, conditioned
on postselection succeeding, B measures and outputs the result of the leftmost qubit that
was not measured.

It remains to show that A distinguishes the pseudorandom and Haar-random state
ensembles. For the purpose of this analysis, it will be convenient to view p as an approximation
to the state:

p=500le E [lod el ] +5mle B [0 @],
kK |9 —0can
where the e-approximate T-design S is replaced by the Haar measure o9n. Indeed, we will
essentially argue the algorithm’s correctness if the state p is replaced by p, and then argue
that this implies the correctness of the actual algorithm.

For each k € K, define Oy, = |pg) (pr|- Note that if X =0 (i.e. |¢) is pseudorandom),
there always exists a k such that Tr(Oy, |[¢) (0|) = 1, namely whichever k satisfies |1)) = |¢)
On the other hand, by Lemma 14 and a union bound, if X =1 (i.e. |[¢)) is Haar-random)
Tr(Oy 1) (¥]) < & for every k € K, except with probability at most |K]| - e 2"/3 < negl(k
over [1)).

If we choose M = |K|[, e = %, and 6 = 0.001—|K|-e~2"/3, then by Theorem 4 there exists a
quantum algorithm that takes as input the results (b, ¢) of T' = O(log |K|) = O(k) single-copy
random Clifford measurements, uses the measurement results to estimate Tr(Og |¢) (¢]) for
each k up to additive error %, and is correct with probability at least 0.999 + |K| - e=2"/3 In
particular, this algorithm can distinguish the pseudorandom ensemble from the Haar-random
ensemble, by checking if there exists a k such that the estimate for Tr(Oy [¢) (]) is at least
2. Call this algorithm C, so that Pr[C(b,c) = X] > 0.999.

We will not actually use C, but only its existence. By the optimality of the Bayes
decision rule [11, Chapter 4.4.1], because C uses (b, ¢) to identify a state i) as either Haar-
random or pseudorandom with probability 0.999, an algorithm that computes the maximum
a posteriori estimate of X also succeeds with probability at least 0.999. In symbols, let
p; = Pr[X =i | b, c], which we view as a random variable (depending on b and c¢) for each
i € {0,1}. Then Pr[argmax; p; = X| > 0.999.

Next, observe that Pr[argmax; p; = X| = E [Pr [arg max; p; = X|b, ¢]] = E [max; p;], by
the law of total expectation. Hence, by Markov’s inequality (and the fact that % < max; p; <
1), we know that Pr [maxi pi > %] > 0.996. In other words, the Bayes decision rule is usually
confident in its predictions, so to speak.

Notice that p; equals the probability (conditioned on postselection succeeding) that B
outputs ¢ if it starts with p in place of p. For i € {0,1}, define p; analogously as the postselcted
output probabilities of B itself: p; = Pr[B(b,c) =i | B(b,c) € {0,1}]. To argue that A is
correct with 0.995 probability, it suffices to show that Pr [maxi p; > % Aargmax; p; = X } >
0.995, as in this case the PostBQP promise is satisfied and the output of £ agrees with X.
We have that:

)

2 3
Pr |maxp; > 3 A arg max p; = X] > Pr [maxpi > 1 Aargmax p; = X]
K3 ; K3 i

K2

>1—-Pr {maxpi < ﬂ —Pr [argmaxpi #+ X}
>0.996 — Pr [argmaxpi # X}
i

> 0.995
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Above, the first inequality follows from the assumption that S is a %—approximate T-design,
because the acceptance probability of a postselected quantum algorithm can be viewed as
the ratio of two probabilities:

- Pr[B(bc) =1
P BB, c) € {0, 1]

Fact 9 implies that both the numerator and denominator change by at most a multiplicative

_a
factor of 1 + %7 when switching between p and p. So, if p; > %, then p; > % . 1+1—1: = % The
second inequality follows by a union bound, and the remaining inequalities were established

above. |

We remark that the above theorem also holds relative to all oracles, in the sense that
if the state generation algorithm G in the definition of the PRS (Definition 12) queries a
classical or quantum oracle U, then the corresponding ensemble of states can be distinguished
from Haar-random by a polynomial-time quantum algorithm with a PostBQPY oracle.

4 Pseudorandomness from a Quantum Oracle

In this section, we construct a quantum oracle (U, P) relative to which BQP = QMA and
PRUs exist.

4.1 BQP = QMA Relative to (U, P)

We start with a lemma showing that the acceptance probability of a quantum query algorithm,
viewed as a function of the unitary transformation used in the query, is Lipschitz.

» Lemma 16. Let AY be quantum algorithm that makes T queries to U € U(D), and define
f(U)=Pr[AY =1]. Then f is 2T-Lipschitz in the Frobenius norm.

Proof. Suppose that ||U —V||r < d. By Lemma 6, this implies that the distance between U
and V in the diamond norm is at most 2d. The sub-additivity of the diamond norm under
composition implies that as superoperators, || AY — AY||, < 27d. By the definition of the
diamond norm, it must be the case that | f(U) — f(V)| < 2T4d. <

The next lemma extends Lemma 16 to QMA verifiers: we should think of V as a QMA
verifier that receives a witness |¢), in which case this lemma states that the maximum
acceptance probability of V is Lipschitz with respect to the queried unitary.

» Lemma 17. Let VY(|¢))) be quantum algorithm that makes T queries to U € U(D) and
takes as input a quantum state |¢) on some fized (but arbitrary) number of qubits. Define
f(U) = maxy) Pr [VY(|¢)) = 1]. Then f is 2T-Lipschitz in the Frobenius norm.

Proof. Note that f is well-defined because of the extreme value theorem. Define fy, : U(D) —
R by:

foU) =Pr VY(j¥) =1],

so that f(U) = max,yy fy,(U). Lemma 16 implies that fy is 27-Lipschitz for every [¢). Let
U,V € U(D), and suppose that [¢) and |p) are such that f(U) = fy,(U) and f(V) = f (V).
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Then:

IfU) = ()l = [fo(U) = fo (V)]
= max{fy(U) = fo(V), fo(V) = f4(U)}
< max{fy(U) = fo(V), fo(V) = fo(U)}
<2T||U = VllF,

where the third line uses the fact that fi, (V) < fo (V) and f,(U) < fy(U), and the last line
uses the fact that fy and f, are 27-Lipschitz. <

We are now ready to prove the first main result of this section, that BQPY'? = QMAY”.

» Theorem 18. Let U = {Uy, }nen be a quantum oracle where each U, is chosen randomly
from u%: Let P be an arbitrary PSPACE-complete language. Then with probability 1 over U,
BQPY7” = QUA"F.

Proof. First, some notation. We view each U, alternatively as either a unitary transformation
on 2n qubits, or as a list of 2™ different n-qubit unitary transformations U, = {Unm }mefo,1}n
indexed by n-bit strings.

Let £ € QMAY'” which means that there exists a polynomial-time QMAY” verifier
V4P (2, [4h)) with completeness 2 and soundness 1. Without loss of generality, we can
amplify the completeness and soundness probabilities of V to % and %,
p(n) be a polynomial upper bound on the running time of V on inputs of length n.

We now describe a BQP¥'” machine AY"P () such that, with probability 1 over U, A
computes £ on all but finitely many inputs = € {0,1}*. Let d = [log, (13824|z|p(|z|)* + 2)].

For each n € [d], A performs process tomography on each U, producing estimates U,, such

that |[Uy, - U —U, - U || < m for every n, with probability at least 2 over the randomness

respectively. Let

of A.5 Let S be the algorithm from Lemma 8 that samples from a %—approximate unitary
p(|z|)-design on n qubits, given as input a random seed 7 + {0, 1}*~ where k,, = poly(n, |z|).

Consider a QMA? verifier VP (x, |4))) that simulates VAP (z, 1)) by replacing queries to
U as follows. For cach n € [d+ 1, p(|z|)], V samples a function f, : {0,1}" — {0,1}* from
a 2p(|z|)-wise independent function family. Then, for n € [d], queries to U,, are replaced
by queries to U,. Forn € [d+ 1,p(z])] and m € {0,1}", queries to Uy, are replaced by
queries to S(f,(m)) (i.e. the mth unitary in U, is replaced by an element of the p(|z|)-
design, selected by fn(m)). Consider the QMA? promise problem £ corresponding to V
with completeness % and soundness % Since QMA# C PSPACE“ for all classical oracles A,
L € PSPACE? = PSPACE, so A can decide E(x) with a single query to P. A does this, and
outputs £(z).

We now argue that for any z, with high probability over U, Pr [AYP (z) = L(z)] >
will be convenient to define several hybrid verifiers:

i =V.

Va: For each n € [d + 1,p(|z])], chooses a matrix U, ¢ p3.. Simulates V;, replacing

queries to U, by U, for n € [d + 1,p(|z|)].

It

win

8 There are many ways to accomplish this. For instance, one can use the Choi-Jamiotkowski isomorphism
and quantum state tomography [23] to estimate the Choi state of Uy, to inverse polynomial (in 2") error
in trace distance. The estimated unitary transformation U,, can then be compiled to a circuit using
20 1_ and 2-qubit gates [26]. Since n < d = O(log|x|), this can be done in polynomial time.
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V3: For each n € [d + 1,p(|z])], samples a function g, : {0,1}" — {0, 1}*» uniformly
at random. Simulates V3, replacing queries to Uy, by by queries to S(g,(m)) for
n € [d+1,p(Jz])] and m € {0,1}".

Vy: For each n € [d + 1,p(|z|)], samples a function f, : {0,1}* — {0,1}** from a
2p(|z|)-wise independent function family. Simulates V3, replacing queries to g, by fn.
Vs: Simulates Vy, replacing queries to U,, by queries to Zj{n for n € [d]. Note that V5 and
V are equivalent, and that of these hybrids, V5 is the only one whose output depends on
the randomness of A (by way of Uy,).

For ¢ € [5] and a fixed choice of U, define:

ace(V;) = max Pr [Vi(z, |[v)) = 1],
which is well defined by the extreme value theorem. We now bound |acc(V;) — ace(V;_1)| for
various ¢:

By Lemma 17, because V makes at most p(|x|) queries, we know that acc(V), viewed as

a function of (Uygi1,Udy2, ..., Up(z))), is 2p(|z|)-Lipschitz in the Frobenius norm. Hence,

by Theorem 11 with N = 13824|z|p(|z|)? + 2, L = 2p(|z|), and t = &, we have that:

1 N —2)¢?
lzlr lacc(V1) — acc(Va)| > 12} < 2exp <_(24L2)>
9 < 13824z |p(|)* - yh)
96p(|[)?

= 2¢~ 1l

The factor of 2 appears because Theorem 11 applies to one-sided error, but the absolute
value forces us to consider two-sided error.

Fact 10 and the assumption that S samples from a %-approximate unitary p(|z|)-design
implies that for any fixed [¢), [Pr[Va(z,|¢)) = 1] — Pr[Vs(z,[¢)) =1]| < 4. This in
turn implies that |acc(V2) — ace(V3)| < 5.

Zhandry [28, Theorem 6.1] shows that a quantum algorithm that makes T’ queries to a
random function can be exactly simulated by the same algorithm with 7" queries to a
2T-wise independent function, so acc(Vz) = acc(Vy).

Because ||U, - Ul —U, - U ||, < m for each n € [d] with probability at least 2 over A,
from the definition of the diamond norm [5] and because V makes at most p(|z|) queries,
it holds that Pr4 [lacc(Vy) —ace(V5)| > 5] < 3.

Putting these bounds together, we have that, except with probability 2e~1*l over U:

Lz)=1 = Ii‘r [nllﬁxPr F)(J;, [)) = 1} > :ﬂ >

Wl Wl

Lx)=0 = Pr {%xpr [m, b)) = 1} < ﬂ >

This is to say that A correctly decides L(x), expect with probability at most 2¢~ 17l over U.
By the Borel-Cantelli Lemma, because > .o 2¢ - 2e " = ef2 < 00, A correctly decides L£(z)
for all but finitely many z € {0,1}*, with probability 1 over U. Hence, with probability 1
over U, A can be modified into an algorithm A’ that agrees with £ on every x € {0,1}*, by
simply hard-coding those & on which A and £ disagree.

Because there are only countably many QMAY"” machines, we can union bound over all

L € QMAY" to conclude that QMAY” € BQPY"” with probability 1 over . <
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4.2 PRUs Relative to (U, P)

We proceed to the second part of the oracle construction, showing that PRUs exist relative to
(U, P). We begin with a lemma establishing that the average advantage of a polynomial-time
adversary is small against our PRU construction. Here, we should think of {Uy }eqn] as the
PRU ensemble.

» Lemma 19. Consider a quantum algorithm AU that makes T queries to O € U(D) and
U= (Uy,...,Un) € UD)N. For fired U, define:

adv(AY) = kE[I;V] [.AU’“"U =1] - OEﬁD [AO’U =1].

Then there exists a universal constant ¢ > 0 such that:
T2
E [adv(AY)] < S

U<—,ug

Proof. Our strategy is to reduce to the quantum query lower bound for unstructured search.

Intuitively, if A could identify whether O € {Uy,...,Un} or not, then A could be modified
into a quantum algorithm B that finds a single marked item from a list of size V. Then the
BBBV theorem [10] forces T to be (\/N)

More formally, we construct an algorithm B(z) that queries a string = € {0, 1} as follows.

B draws a unitary V = (Vo, Vi,..., V) € U(D)N+! from pN . Then, B runs A, replacing
queries to O by queries to Vj, and replacing queries to Uy € U by Vj if x5 = 1 and by Vj if
T = 0.
Let e, € {0,1}" be the string with 1 in the kth position and Os everywhere else. We
have that:
E [adv(AU)] = E | Pr [AUsV = 1]} -~ ® [ Pr [AOV — 1]

Unly Ul LF[N] Uepl [O¢HD

= Pr [B(ep)=1]-Pr[B(0N) =1
Pr (e =11 Pr[B(0Y) = 1]
cT?
< —.
- N
Above, the first line applies linearity of expectation, the second line holds by definition of B,
and the third line holds for some universal ¢ by the BBBV theorem [10]. <

The next lemma uses Lemma 19 to show that the advantage of A is small with extremely
high probability, which follows from the strong concentration properties of the Haar measure
(Theorem 11).

» Lemma 20. Consider a quantum algorithm A°-Y that makes T queries to O € U(D) and
U= (Uy,...,Ux) € UD)N. Let adv(AY) be defined as in Lemma 20. Then there exists a
universal constant ¢ > 0 such that for any p,

Pr_[Jadv(AY)| > p] < 2exp <(D —2) (p— cT?/N) > |

U 384772

D

Proof. By Lemma 16, adv(AY) is 4T-Lipschitz as a function of U, because adv(.AY) can be
expressed as the the difference between the acceptance probabilities of two algorithms that
each make T queries to U. Combining Lemma 19 and Theorem 11, we obtain:

(D—-2)(p— cTQ/N)2>
38472 '

Pr [adv(AY) > p] <exp (

U<—,ug

2:15

TQC 2021



2:16

Quantum Pseudorandomness and Classical Complexity

Similar reasoning yields the same upper bound on PrUHMg [adV(AU) < —p], so we get the
final bound (with an additional factor of 2) by a union bound. <

Completing the security proof of the PRU construction amounts to combining Lemma 20
with a union bound over all possible polynomial-time adversaries.

» Theorem 21. Let U = {U, }nen be a quantum oracle where each U, is chosen randomly
from /i%i Let P be an arbitrary PSPACE-complete language. Then with probability 1 over U,
there exists a family of PRUs relative to (U, P).

Proof. Fix an input length n € N. We take the key set & = [2"] and take the PRU family to
be {Ui}rex, where U,, = (U1, Us, ..., Us) € U(2")2". In words, the family consists of the
2™ different Haar-random n-qubit unitaries specified by U,,.

Without loss of generality, assume the adversary is a uniform polynomial-time quantum
algorithm AP (1", z), where x € {0,1}P°¥(") is the advice and O € U(2") is the oracle
that the adversary seeks to distinguish as pseudorandom or Haar-random.

By Lemma 20 with N = D = 2" and T = poly(n), for any fixed 2 € {0,1}P°v(™),
ACUP (17 1) achieves non-negligible advantage with extremely low probability over ¢. This

is to say that for any p = m:

Uk, U, P _ _ o.u,r —
T WP == B A7) =

-]

By a union bound over all z € {0,1}P°W(™)  AOUP (1" 1) achieves advantage larger

than p for any = € {0, 1}P°Y(™) with probability at most 2P°Y(™) . exp (—m) < negl(n).
Hence, by the Borel-Cantelli lemma, 4 achieves negligible advantage for all but finitely many
input lengths n € N with probability 1 over U, as > -, negl(n) < oo. This is to say that
{Uk}rex defines a PRU ensemble. <

; |:
n
U, <_,U'§n

We expect that using the techniques of Chung, Guo, Liu, and Qian [16], one can extend
Theorem 21 to a security proof against adversaries with quantum advice. Some version of
[16, Theorem 5.14] likely suffices. The idea is that breaking the PRU should remain hard
even if A could query an explicit description of O and explicit descriptions of Uy, for k € [27],
which is a strictly more powerful model. But then this corresponds to the security game
defined in [16, Definition 5.12], except that the range of the random oracle is U(D) rather
than the finite set [M].
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A  Proof of Lemma 6
Proof. Let {)\; : i € [N]} denote the eigenvalues of UVT. Then we have:

U=V =T ((U-V)U-V)T)
=Tr(2l - UV —vVUT)

N
ZQ—QRe )

max(2 — 2Re(\;)), (1)

where Re();) denotes the real part of A;. The last line holds because the eigenvalues
of a unitary matrix have absolute value 1. Aharonov, Kitaev, and Nisan [5] show that
|U-UT -V V1|, =2V1 - d?, where d is the distance in the complex plane between 0 and
the polygon whose vertices are A1,...,A\y. From this we may conclude:

|-t —-v. VT||<>§maX2\/1—maX{Re( i), 0}2
< max 2+/2 — 2Re()\;)

<2|U - VllF,

where the first inequality uses the fact that either all of the eigenvalues have positive real
components and therefore d > min; Re()\;), or else d > 0; the second inequality substitutes
1—max{z,0}? < 2—2z which holds for all z € R; and the third inequality substitutes (1). <«

B Complexity Classes

» Definition 22. A promise problem £ = (Lyes, Lno) is in QMA if there exists a polynomial-

time quantum algorithm V(z,|v)) called a QMA verifier and a polynomial p such that:

1. (Completeness) If x € Lyes, then there exists a state |1) (called a witness or proof) on
p(|x|) qubits such that Pr[V(z,[¢)) = 1] > 2.

2. (Soundness) If © € Ly, then for every state |v) on p(|z|) qubits, Pr[V(z, ) =1] < 1.

Aaronson [1] defined PostBQP as follows, and showed that PostBQP = PP.
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» Definition 23. A promise problem L = (Lyes,Lno) is in PostBQP if there exists a

polynomial-time quantum algorithm A(z) that outputs a trit {0,1,*} such that:

1. If x € Lyes U Ly, then PriA(z) € {0,1}] > 0. When A(z) € {0,1}, we say that
postselection succeeds.

2. If © € Lyes, then Pr{A(z) =1| A(z) € {0,1}] > 2. In other words, conditioned on
postselection succeeding, A outputs 1 with at least % probability.

3. If © € Lyo, then PrA(z) =1 A(z) € {0,1}] < 3.
postselection succeeding, A outputs 1 with at most % probability.

In other words, conditioned on

Technically, the definition of PostBQP is sensitive to the choice of universal gate set
used to specify quantum algorithms, as was observed by Kuperberg [21]. However, for most
“reasonable” gate sets, such as unitary gates with algebraic entries [21], the choice of gate set
is irrelevant. We assume such a gate set, e.g. {CNOT, H,T}.

We consider versions of BQP, QMA, and PostBQP augmented with quantum oracles,
where the algorithm (or in the case of QMA, the verifier) can apply unitary transformations
from an infinite sequence U = {U, }nen. We denote the respective complexity classes by
BQPY, QMAY, and PostBQPY. We assume the algorithm incurs a cost of n to query U, so
that a polynomial-time algorithm on input z can query U,, for any n < poly(|z|). In this
model, a query to U,, consists of a single application of either U, U,Tl, or controlled versions
of Uy, or UJ.

The quantum oracle model includes classical oracles as a special case. For a language
L, a query to L is implemented via the unitary transformation U that acts as U |z) |b) =

) b @ L(x)).

C PRSs with Binary Phases

In this section, we sketch a proof that a PRS construction proposed by Ji, Liu, and Song [19]
and shown secure by Brakerski and Shmueli [13] can be broken efficiently with an NP oracle.
The PRS family is based on pseudorandom functions (PRFs). Let {fx}rex be a PRF family
of functions fy : {0,1}™ — {0, 1} keyed by K. The corresponding PRS family is the set of

states {|pr) brex given by:

) =5 O ().

ze{0,1}™
For simplicity, suppose that each fy is balanced, meaning that |f, 1 (0)| = |f, *(1)| = 2"~
Consider the quantum circuit below:
0) ——{4] P
) ————%— H®" Hen -
|0®n> // H®n
Observe that if [)) = |¢g), then this circuit produces the state |0) |¢k>|+>®n\j§|+>®nlw’“> from

a single copy of |pr). Notice that if we measure the resulting state in the computational
basis, then we observe |0) |z) |y) with nonzero probability for z,y € {0,1}" if and only if
fr(z) = fr(y). This is because the amplitude on this basis state is given by:

! V2 vz
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Furthermore, this shows that we in fact sample a uniformly random pair (z,y) such that
fe() = fr(y).

Suppose that given a state [1)) which is either pseudorandom or Haar-random, we repeat
this procedure poly(n) times to obtain a list of pairs {(x;,y;)}. It is an NP problem to decide
whether there exists a k such that fy(x;) = fir(y;) for all 4. If o) = |¢g) for some k then
this NP language always returns true, while if |¢) is Haar-random, this NP language returns
true with negligible probability, so long as we take sufficiently many samples (z;, ;).

In the case where f}, is not perfectly balanced, we simply observe that the above procedure
still works with good probability so long as fj, is close to a balanced function. But PRFs must
be close to balanced functions, in the sense that for most k£ € IC, it must be possible to change
a negl(n) fraction of the outputs of fj to turn it into a balanced function. Otherwise, the
PRF family could be distinguished efficiently from random functions, which are negl(n)-close
to balanced with high probability.
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—— Abstract

The probably approximately correct (PAC) model [30] is a well studied model in classical learning
theory. Here, we generalize the PAC model from concepts of Boolean functions to quantum channels,
introducing PAC model for learning quantum channels, and give two sample efficient algorithms that
are analogous to the classical “Occam’s razor” result [12]. The classical Occam’s razor algorithm is
done trivially by excluding any concepts not compatible with the input-output pairs one gets, but
such an approach is not immediately possible with a concept class of quantum channels, because the
outputs are unknown quantum states from the quantum channel.

To study the quantum state learning problem associated with PAC learning quantum channels,
we focus on the special case where the channels all have constant output. In this special case,
learning the channels reduce to a problem of learning quantum states that is similar to the well
known quantum state discrimination problem [8], but with the extra twist that we allow e-trace-
distance-error in the output. We call this problem Approximate State Discrimination, which we
believe is a natural problem that is of independent interest.

We give two algorithms for learning quantum channels in PAC model. The first algorithm has
sample complexity

o (log|C’ —|—210g(1/5)> 7

but only works when the outputs are pure states, where C is the concept class, € is the error of
the output, and § is the probability of failure of the algorithm. The second algorithm has sample
complexity

o (log3 |C|(log |C| + log(1/5))) ’

€2

and work for mixed state outputs. Some implications of our results are that we can PAC-learn a
polynomial sized quantum circuit in polynomial samples, and approximate state discrimination can
be solved in polynomial samples even when the size of the input set is exponential in the number of
qubits, exponentially better than a naive state tomography.

2012 ACM Subject Classification Theory of computation — Quantum information theory; Theory
of computation — Quantum complexity theory

Keywords and phrases PAC learning, Quantum PAC learning, Sample Complexity, Approximate
State Discrimination, Quantum information

Digital Object Identifier 10.4230/LIPIcs. TQC.2021.3
Related Version Full Version: https://arxiv.org/abs/1810.10938

Funding Kai-Min Chung: This research is partially supported by the 2016 Academia Sinica Career
Development Award under Grant no. 23-17.
Han-Hsuan Lin: This material is based on research/work supported by the Singapore National
Research Foundation under NRF RF Award No. NRF-NRFF2013-13.
© Kai-Min Chung and Han-Hsuan Lin;

oY licensed under Creative Commons License CC-BY 4.0
16th Conference on the Theory of Quantum Computation, Communication and Cryptography (TQC 2021).
Editor: Min-Hsiu Hsieh; Article No. 3; pp. 3:1-3:22

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany


mailto:kmchung@iis.sinica.edu.tw
https://orcid.org/0000-0002-3356-369X
mailto:linhh@cs.nthu.edu.tw
https://doi.org/10.4230/LIPIcs.TQC.2021.3
https://arxiv.org/abs/1810.10938
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

3:2

Sample Efficient Algorithms for Learning Quantum Channels in PAC Model

1 Introduction

In computational learning theory, the Probably Approximately Correct (PAC) model of
Valiant [30] gives a complexity-theoretic foundation of what it means for a concept class to
be (efficiently) learnable. In the most basic setting of PAC learning model, we want to learn
a set of Boolean functions, C' = {c: {0,1}"™ — {0,1}}, called the concept class. The goal of
a learning algorithm A is to guess the identity of an unknown target concept ¢* € C' from
samples {(z1,c*(z1)), (2, c*(x2)),...}, where {x1,23,...} are inputs randomly drawn from
a distribution D that is unknown to A. Specifically, with error parameters € and ¢, for all
concept ¢* € C' and probability distribution D, A is required to, given access to the samples
{(z1,c*(21)), (z2,c*(x2)), ... }, with probability 1 — 4§, come up with a hypothesis h € C that
is e-close to c*, i.e. Pry. p[c(z) # h(x)] < €. Such a learning algorithm is called a proper!
(e,0)-PAC learner for the concept class C. Of course, we would like the learner A to be as
efficient as possible in terms of both sample complexity (i.e., the number of samples A needs
to access) and time complexity, and ideally, polynomial in the input length n and the error
parameters ¢! and log(1/4). Since its introduction in the 80’s by Valiant, PAC learning
theory has been deeply studied to characterize when efficient learning is or is not possible.

Following Valient’s PAC learning model on Boolean functions, generalization to different
kinds of concept classes has been proposed, including Boolean functions on continuous
spaces [13], probabilistic Boolean functions [20, 2], functions with {0,...,n} outputs [26, 11],
and real valued functions [10].

With quantum computers coming closer and closer into reality, it is natural to generalize
the PAC learning model to quantum channels, capturing the learnability of quantum circuits
or devices that we might build in the near future. Note that quantum states has an inherent
“unlearnability”, as manifested by the no-cloning theorem and uncertainty principle. Therefore
this study of learnability of quantum channels has an interesting interaction between classical
learning theory and quantum information theory.

Formally, we define the PAC learning model for quantum channels as follows: Let the
concept class C be a finite set of known d; to dy dimensional quantum channels. We are
trying to learn an unknown quantum channel, the target concept ¢* € C. In order to do
this, we are given samples {(x1,c*(x1)), (x2,c*(22)),. ..}, where {x1,z2,...} are classical
descriptions of the input quantum states to the quantum channel ¢* and {c*(z1), c¢*(z2),...}
are the corresponding quantum states outputted by c¢*. The inputs are drawn from a
distribution D unknown to the learner. Because of the no-cloning theorem, it is hard to
justify holding both the inputs and outputs as unknown quantum states, so we assume that
we have full classical description of the input state and keep the outputted states as unknown
quantum states, meaning that we hold a copy of the quantum state ¢*(x;) rather than the
full classical description of it. A proper (¢, )-PAC learner for the concept class C' of quantum
channels is a quantum algorithm that for all concepts ¢* € C' and distribution D, takes the
description of C and T samples {(x1,c*(11)), (2, c*(22)),... (x7,c*(z7))} as input? and
with probability 1 — §, outputs a hypothesis h € C that is e-close to the target concept c¢*,
where the distance between two concepts h, ¢* depends on the input distribution D and is
defined as A(h,c*) = Eyep [Atr(h(2), c*(2))], i.e. the expected trace distance between the
outputs averaged over D.

L Proper means that the hypothesis A must be inside the concept class C, whereas an improper learner
can output any h as the hypothesis. All learners in this paper are proper, and we sometimes omit the
term “proper”.

2 Note that D is not part of the input and is unknown to the learner.
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We gave two algorithms for learning quantum channels in PAC model that in a sense
generalize the classical Occam’s razor algorithm [12]. In particular, our algorithms have
poly log sample complexity in the size of the concept class. The first algorithm has sample
complexity

o <log|C| +10g(1/5)> |

€2

but requires the outputs to be pure states. The second algorithm has sample complexity

o (o8 1OWes O]+ oxti/o) )

€2

while outputs can be mixed.

The Occam’s razor algorithm [12] is a classical PAC learner for any finite sized concept
class C' with sample complexity O(log|C|). The idea of the algorithm is simple: keep taking
samples, check which concepts in the concept class do not agree with the samples and exclude
them. One can show that every time a sample is taken, a constant fraction of the concepts
that are e-far away from the target concept will be excluded, so an e-close hypothesis can be
found in O(log |C|) samples.

Although the Occam’s razor algorithm is simple, generalizing it to our PAC model for
quantum channels is troublesome. The main difference is that when learning quantum chan-
nels, the outputs from the target concept are copies of unknown (possibly high dimensional)
quantum states. By the nature of quantum mechanics, if we just have a few copies of a
high dimensional quantum state, we can only learn a tiny fraction of information contained
in the quantum state. Since we don’t really know what the outputted state is, we cannot
simply “exclude all channels that do not output this state.” Instead, we need to carefully
design the measurement we take on the outputted states, getting the information useful in
distinguishing the quantum channels in our concept class. Note that the sample complexities
of both of our algorithms do not depend on the dimension of the outputted states.

As a possible application of our result, our algorithms for learning quantum channels in
PAC model can be viewed as a sample-efficient way to do quantum process tomography [23]
when we know that the target quantum processes comes from a finite set and only care
about being correct on average over an input distribution. For example, if we try to PAC-
learn a polynomial sized quantum circuit of n-qubits, since there are only 2P°¥(®) possible
polynomial sized circuits, our result shows that we can learn it in poly(n) samples, an
exponential improvement over a naive process tomography that has no restriction on concept
class size and inputs.

Note that this work studies the sample complexity instead of time complexity of learning.
Just like various other cases in theoretical computer science where the oracle-based complexity
does not match the time complexity of a problem, sample complexity and time complexity of
learning quantum channels in PAC model is unlikely to match. In particular, Arunachalam
et al. [5] showed that there is no polynomial time algorithm for learning TC® or AC circuit
even knowing D is uniform unless LWE can be solved in polynomial time by a quantum
computer.

1.1 Approximate State Discrimination

As stated previously, the most challenging part of our algorithms is how to extract information
from unknown outputted quantum states to distinguish the channels. We isolate and study
this problem by focusing on the special case where the channels are “constant,” i.e. every
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channel in the concept class outputs a fixed quantum state irrespective of the input?. Since
the input does not matter, we don’t need to write it down anymore, so the samples are
just copies of the fixed unknown quantum state, and since a concept is fully specified by its
unique output state, we might as well describe the concept class as a set of quantum states.
In this special case, learning quantum channels in PAC model becomes an interesting hybrid
of quantum state discrimination [6, 25, 24, 8, 29] and quantum state tomography [15, 27],
and we named it the approrimate state discrimination problem. The approximate state
discrimination problem is formalized as follows: Let S be a known finite set of d-dimensional
density matrices. We want to learn an unknown target state o € S using as few identical
copies of o as possible. A quantum algorithm is an (e, §)-approximate discriminator of S if,
for all o € S, it takes the description of S and T copies of ¢ as input and with probability
1 — 0 outputs a state p € S with Ay (p,0) < e. This problem is called approximate
state discrimination because it is the same as the state discrimination problem except that
e-approximate answers are allowed.

Since approximate state discrimination is a special case of PAC learning quantum
channels?, it can also be solved with

o (log 5] + 10g(1/5)>

€2

samples if S consists of pure states and

o (10g3 |S|(log | S| + 10g(1/5))>

€2

samples if S consists of mixed states.

1.2 Related Works and Independent Work

There are several works in the literature that study the sample complexity of PAC learning
with different ways of generalization to quantum information. Cheng, Hsieh, and Yeh [14]
studies the sample complexity of PAC learning arbitrary two outcome measurements, where
the inputs are quantum states, and the learner has complete classical description of them.
They show an upper of sample complexity linear in the dimension of the Hilbert space. Note
that one can trivially get a lower bound of similar order by noticing that Boolean functions
is a subset of two outcome measurements. Arunachalam and de Wolf [4] studies the sample
complexity of PAC learning classical functions with quantum samples and shows that there
is no quantum speed up. See [3] for a survey of quantum learning theory.

1.2.0.1 Independent Work

Independent to our work, in [7], Badescu and O’Donnell formulate the problem of quantum
hypothesis selection. Quantum hypothesis selection can be viewed as a generalization of
our approximate state discrimination problem where the unknown state ¢ might not be in
the hypothesis set | S|, and the learner what to find the state in |S| that is closest to the

3 The outputs of different concepts are still different.

4 We choose not to write up stand-alone algorithms for the approximate state discrimination problem as
it will be very similar to that of PAC learning quantum channels. However, the reader can read the
analysis of our algorithms with constant output assumptions to easily get the intuition behind them.
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unknown state o (see Theorem 1.5 of [7] for the formal definition). This is similar to the
agnostic learning model [18, 21]. Let n be the minimum distance from the unknown state to
something in |S|, Badescu and O’Donnell give an algorithm that finds some p € S such that
Ayr(p,0) < 3.01n 4+ € using O (M) samples. Since quantum hypothesis selection
is a generalization of approximate state discrimination, Badescu and O’Donnell’s algorithm
supersedes our algorithm for approximate state discrimination for the mixed state.

However, it is important to note that Badescu and O’Donnell’s algorithm requires many
identical copies of the unknown state and thus does not generalize to our main result of PAC
learning of quantum channels because every channel output might be a different state. On the
other hand, as will shown in the following technical overview, our approach for approximate
state discrimination involves a binary search through gap amplification and pretty good
measurement and generalizes naturally to the PAC learning of quantum channels.

In [1], Aharonov, Cotler, and Qi introduced the notion of quantum algorithmic meas-
urement, which broadly captures the query and computational complexity of quantum
experiments, including those that generate unknown identical quantum states. In [19],
Huang, Kueng, and Preskill compared the complexity of classically or quantumly training a
machine learning model for predicting outcomes of physical experiments.

1.3 Technical Overview

The intuition behind both of our learning algorithms start with looking at the tensor product
of all outputted states. The fidelity between such tensor produces decays exponentially in the
number of samples drawn, so with enough samples , the tensor products from e-far concepts
will become almost orthogonal (see Lemma 4), so intuitively, we should be able to distinguish
between them.

1.3.0.1 Pure State algorithm

In the case where the channels always output pure states, we have a rather simple algorithm.
The key part is a theorem by Sen [28] on high dimensional random orthonormal measurements,
which states that if we do a measurement of random orthonormal basis on two pure states,
with high probability®, the trace distance between the distribution of measurement outcome
is lower bounded by a constant times the trace distance between those two states (see
Theorem 11). This result might seem counter-intuitive, but remember that a random
orthonormal measurement in d dimension has d possible outputs instead of 2. With this
theorem in hand, the algorithm is rather easy: take enough samples to amplify the distance
between outputted states and do a random orthonormal measurement on each sample. Choose
the hypothesis as the channel that most likely to give the measurement result.

1.3.0.2 Mixed State algorithm

Our thought process on designing a learner for the channels that output mixed states is
the following. In this case, Theorem 11 does not give us a useful result, so we need to find
something else. Noticing the connection to the quantum state discrimination problem, we
turned to pretty good measurement (PGM, Definition 3), a well studied tool for solving the
quantum state discrimination problem. However, the lack of minimum distance between our
outputted states is pretty pathological to PGM, so it was pretty easy to self-reject all our

5 The probability goes to 1 as the dimension goes to infinity.
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Figure 1 (a) Pathological case when trying to cut the concept class into two sets. (b) Cutting
the concept class into three sets.

attempts. Following that, we sought guidance from the analysis of classical Occam’s razor
algorithm, where a constant fraction of concepts are ruled out by each sample. We tried to
divide the concept class into two sets, then do a PGM to distinguish those two, so we can
recurse this into a binary search. Cutting the concepts into two sets does not work either
because there can be concepts really close to any cut, which again is pathological to PGM.
At this point, we realized that we need to have some kind of minimum distance for our PGM,
so we cut the concept class into three sets, Syes, Sno, and Sunknown. We set a minimum
distance v between elements of Syes and Sy, so those two sets can be distinguished. This is
the idea that works out. See Figure 1 for a graphical representation.

To follow our intuition in the previous paragraph, we give a definition about the distance
between two sets of quantum states. Actually fidelity is more useful than trace distance,
so we give the following definition of fidelity between sets of quantum states, which is the
maximum fidelity among all pairs:

F (Syes, Sno) = max {F (o, p)|o € Syes, p € Snot

1.3.0.3 Bichromatic State Discrimination Problem (BSD)

The key component our mixed state algorithm is solving what we called (n, N)-Bichromatic
State Discrimination Problem (BSD). The (n, N)-Bichromatic State Discrimination Problem
is defined as follows: given complete information of two sets of quantum states, Syes and Spo,
with fidelity F'(Syes, Sno) < 1 and size Syes < N, Spo < N, and one copy of an unknown
quantum state o, the goal is to decide whether o € Sycs or 0 € Spo. A quantum algorithm
solves (n, N)-BSD with error § if for all Sycs and Sy, such that F'(Syes, Sno) <1, Syes < N,
and Sy, < N, given complete information about Syes and S, and one copy of an unknown
quantum state o as input to the algorithm, the algorithm output a yes/no answer satisfies
the following two conditions®:

1. If 0 € Syes, the learner outputs yes with probability (1 — 4).

2. If 0 € 5,0, the learner outputs no with probability (1 — 0).

See Figure 2 for some graphical intuition of BSD.

Note that BSD only requires maximum fidelity between the two sets; two states from the
same set can be arbitrarily close. This does not violate quantum state discrimination lower
bounds because the solver only needs to discriminate between the two sets.

We are able to show that BSD can be solved with good enough parameter:

6 The learner can output anything if o does not come from either of the two sets.
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Figure 2 Bichromatic State Discrimination Problem.

» Theorem 1. There exist an algorithm that solves (n, N)-BSD with error § = N27.

The proof idea of Theorem 1 is trying to apply PGM on Syes U Sn,. We start with
the observation that the result of [6] and [9], which gives an upper bound on PGM’s error
probability of mistaking one state as other states, can be generalized to an upper bound on
PGM’s error probability of mistaking one subset of states to its complement subset (See
Appendix C). This almost gives us the required error bound for BSD, except that the PGM
result is for the average case, where ¢ is drawn from some probability distribution, so we
turned it into a worst case result with the minimax argument of [17].

1.3.0.4 Back to Learning Quantum Channels

With BSD solved, we can get an algorithm that recursively exclude a constant fraction
of the concept class. In each recursion, the algorithm partition the remain concepts into
three sets, Syes, Sunknown, and Sy,. Ideally, Sycs and Sy, both occupy a constant fraction
of the remaining concepts and have minimum distance v = Q(1/ polylog|C|). Noticing
that the fidelity between tensor products of outputs decays exponentially with number of
samples by lemma 4, the BSD between O(log |C|/~) samples of Sys or Sy, can be solved
with high probability. If the target concept is in Sy, the BSD solver will return yes with
high probability, and if the target concept is in S,,, the BSD solver will return no. If the
target concept is from Synknown, the BSD solver might return anything, but what we can be
sure is that, if the BSD solver returned yes, the target concept is not from S,,,, and if the
BSD solver return no, the target concept is not from Sys. Therefore, we can always exclude
either Syes or Sy, as possible target concept.

There is another complication in that the distance between the concepts depends on
the unknown distribution D and thus cannot be calculated. In stead, we use the empirical
distance between concepts, Ay (c1,c2) = Z¢T=1 [At (e1(;), ca(z;))], where {z;} are the
inputs points we drawn in each recursion. Our calculation shows that that the error incurred
from this change of distance measure is negligible.

1.3.0.5 Partition Sub-algorithm

It is not always possible to have an ideal partition where Sy.s and Sy, are both constant-
fraction sized” and separated by the gap . Therefore, we designed a classical partition
sub-algorithm (Algorithm 1) to handle these exceptions.

7 By “constant-fraction sized” we mean “occupies a constant fraction of the remaining concepts”.

3:7

TQC 2021



3:8

Sample Efficient Algorithms for Learning Quantum Channels in PAC Model

An example where the ideal partition is not possible is the extreme case where every
concept in the concept class is literally identical to each other. Note that in this extreme case
can be trivially solved by output anything in the concept class as the hypothesis because
everything is e-close to c*.

Our partition sub algorithm builds on the intuition of what happened in the above
extreme case. More specifically, our partition algorithm will not reserve a constant-fraction
sized Sy, if a significant fraction of C' is clustered around a concept. In such case, we choose
the cluster as Sy, with a -thick “shell” of Syninown around it. If we measured no, we can
rule out Syes, which is a constant fraction of |C|. If we measured yes, we can output the
center of the cluster as the hypothesis, and we tune v so that everything in either Sy, or
Sunknown 18 €-close to the center. This completes our algorithm for mixed state outputs.

1.4 Lower Bounds and Agnostic Model

We complement our positive results on the sample complexity of PAC learning quantum
channels with two simple lower bounds. First, by adapting a lower bound argument in [15],
we prove that Q((log|C|)/e?) samples are necessary to PAC learn quantum channels when
the outputs are pure states, showing that our positive result is tight in the dependency on
|C| and e. In particular, for the dependency on e, this is in contrast with the classical results
on the sample complexity for PAC learning concepts with Boolean outputs, where a tight
O((log |C|)/€) sample complexity is known [22, 16].%

Agnostic model is a learning model closely related to the PAC model, and the two models
have similar sample complexity [18, 21]. In the agnostic model, the samples comes from
a concept c¢s that is not necessarily inside the concept class C. Accordingly, the goal of
the learner is to find, with e-distance error, the target concept ¢* € C that is closest to cs.
We introduce the agnostic model for learning quantum channels, see section B.2 for details.
Interestingly, in stark contrast to our algorithms that have dimension-independent sample
complexity for learning quantum channels in PAC model, we found an Q(\/E) lower bound
on the sample complexity for learning quantum channels in agnostic model with output
dimension d. Thus, in the agnostic model, learning quantum channels requires number
of samples polynomial in the dimension, so it is not possible to efficiently learn quantum
channels with large output dimension. Also, our negative example is in fact classical in
nature, consisting of two concepts that output classical distributions, so learning classical
distributions efficiently in agnostic model in large dimension is also impossible. However,
since quantum pure states are not generalizations of classical distributions, the possibility of
sample efficiently learn quantum channels with pure state output in agnostic is still open.

2  Preliminary

Throughout this paper, log is base 2 and In is base e.

We use |||, to denote the trace norm [|A||, = tr VATA. We use |||, or ||| to denote
the Frobenius norm |4, = \/tr(AtA).

Denote the trace distance and fidelity between two distribution Dy, Dy as Ay, (D1, D2)
and F(Dy, D3), where the trace distance is equal to the total variation distance. Denote the
trace distance and fidelity between two quantum states p1, p2 as As.(p1,p2) = % o1 — p2ll;

8 The classical results show that the sample complexity is characterized by the VC dimension of the
concept class C. In the case that C' is finite, log|C] is a trivial upper bound on the VC dimension.
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and F(p1,p2) = H‘ /P1/P2 Hl For a quantum state ¢ and a quantum measurement M, denote
M (o) as the output probability distribution when applying M on o.
Note that fidelity and trace distance are related by

1-F <A, <\1-F2

For two quantum channel concepts ¢y, co, define the distance between them with respect
to D as

Aler,e2) = Epep [Agr(e1(x), ca(z))] -

We say that ¢;, cg are e-close if A(c1,¢2) < e and e-far if A(cq, ¢2) > e. For two sets of concepts

S7 and Ss, define the distance between them as A (S7,.52) = min {A(eq, ¢2)|e1 € S1,c2 € Sa}.

2.1 Chernoff Bound

We use the following standard multiplicative version of Chernoff bound.

» Theorem 2. Let Xi,..., X7 € [0,1] be independent random variables with E[X;] = ;.

Let X = (1/T) >, X3, p=(1/T) >, pi and o € (0,1). We have

Prl|X — pf > ap] < 27T,

2.2 Pretty Good Measurement

The pretty good measurement (PGM) is defined as follows:

» Definition 3 (pretty good measurement). Let {0;} be a set of density matrices and {p;} a
probability distribution over {o;}. Define

The PGM associated with {o;},{p:} is the measurement {E;} with

E; = A"Y24,A71/2, (2)

3 Problem Definitions

In this section we describe the PAC model of learning quantum channel and approximate
state discrimination.

3.1 Classical PAC Learning Model

We start with a review of the classical PAC learning model.

In the classical probably approximately correct (PAC) learning model, a learner tries
to learn a target concept ¢* € C from a known concept class C, which is a set of Boolean
functions ¢ : {0,1}™ — {0, 1}, with respect to an unknown distribution D over the input
domain {0,1}". Specifically, the learner is given access to a sample oracle O.+ p, which
generates i.i.d. samples (z;, ¢*(x;)), where each z; < D is drawn according to the distribution

3:9
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D, and outputs a hypothesis h € C.° The distance between two concepts ¢ and h under the
distribution D is defined as Ap(c,h) = Epop |c(z) — h(x)|. The goal of the learner is to find
a hypothesis h with sufficiently small distance Ap(c*, h) to c*.

A learning algorithm A is a proper (e, §)-PAC learner for a concept class C' if the following
holds: For every c¢* € C' and distribution D, given oracle access to O, p, ACe*.p outputs an
h € C such that Ap(c*, h) < e with probability at least 1 — 4. The sample complexity of A
is the maximum number of samples T" that A needs to query O.- p to output h. The proper
(e,8)-PAC sample complexity of a concept class C is the minimum sample complexity over
all learners. A ©((log|C|)/e) sample complexity is known [22, 16].1°

3.2 Learning Quantum Channels in PAC model

We now generalize classical PAC learning to the context of learning quantum channels. As
above, we consider a learner trying to learn a target concept ¢* € C' from a known concept
class C with respect to an unknown distribution D. Here, we consider the concept class C
as a finite set of known d; to do dimensional quantum channels, and D as a distribution over
the Hilbert space of dimension d;. Precisely, the learner is given access to a sample oracle
Oc~.p and outputs a hypothesis h € C. The oracle O« p generates i.i.d. samples (z;, ¢*(x;)),
where each x; < D is the classical description of a state drawn according to the distribution
D, and c*(z;) is the (potentially mixed) quantum state outputted by ¢* on input ;.

The distance between two concepts ¢ and h under the distribution D is the expected trace
distance A(c,h) = Eyep [Aw(c(z), h(z))]. The goal of the learner is to find a hypothesis
h € C with sufficiently small A(c*, h).

A quantum learning algorithm A is a proper (e,d)-PAC learner for C if the following
holds: For every ¢* € C' and distribution D, given oracle access to O« p, AO:*.p outputs an
h € C such that Ap(c*, h) < e with probability at least 1 — 4. The sample complexity of A
is the maximum number of samples T' that A needs to query O« p to output h. The proper
(e,0)-PAC sample complezity of a concept class C' is the minimum sample complexity over
all learners.

3.3 Approximate State Discrimination

Let S be a finite set of d-dimensional density matrices. We want to learn a target state o € S
using as few identical copies of o as possible. A quantum algorithm is an (e, §)-approximate
discriminator of S if it takes the description of S and T copies of ¢ as input and with
probability 1 — § outputs a state p € S with Ay.(p,0) <€, for any o € S.

Note that approximate state discrimination can be viewed as a special case of PAC learning
quantum channels with constant output, so the algorithms for PAC learning quantum channels
in Section 4 and Section 5 trivially works for approximate state discrimination.

4 PAC Learning Quantum Channels with Pure State Output

See Appendix A

9 The requirement that the hypothesis h is in the concept class C' is referred to as proper learning. We
focus on proper learning since our algorithms satisfy this property.

10%We use © to denote © with log factors. The classical results show that the sample complexity is
O ((d+1log1/d)/e), where d is the VC dimension of the concept class. In the case where |C] is finite,
log|C] is a trivial upper bound on d, and there are concept classes whose VC dimension d matches
log|C|.
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5 PAC Learning Quantum Channels with Mixed State Output

The random orthonormal measurement approach in Section 4 does not work since two high
dimensional mixed states with constant trace distance between them can have negligible
Frobenius distance between them. Instead, We follow the intuitions detailed in Section 1.3. We
define the bichromatic state discrimination problem (BSD), solve BSD with PGM techniques
, and build our learner algorithm with the BSD solver and a partition sub-algorithm.

Before we show the algorithms for bicromatic state discrimination, let us first show that
we can efficiently amplify the distance between concepts by taking samples.

» Lemma 4 (concept distance amplification). Let ¢ be a quantum channel concept e-far from
the target concept ¢*. Let {x1,xa,...,x7} be T inputs drawn from the distribution D. With

probability 1 — 2=%T) over {x;} drawn, we have

F | @ elri). @ (i) | <270 3)

i€[T] 1€[T)
and
Ay ® c(x), ® M (z) | 21— 9~ UTE), (4)
i€[T] i€[T)

Proof. By Chernoff bound, with probability 1 — 2-%(T€)

3 Ao (el (0) 2 %Te. (5)

Then by Cauchy-Schwarz Inequality,

) 1
> (A (cl@i), ¢ (@) > 7€ (6)

?

Then the amplified fidelity is bounded by

F <® C(xi),®0*($i)> =ILF (c(xi), ¢ (i)

%

< Ty/1— (Ag (o), (@))?
< exp H S (A (e(a), c*(a:n)f] = 9700, ()

K2

where the last inequality is true because 1 — x < e~*. And the amplified trace distance is

A | @ clxi), @ (@) | =1-F <® c(xi),®c*(:ci)> =1 - 27U, (8)

1€[T] 1€[T) % i

<

Lemma 4 means that we can amplify the distance between tensor products of samples
from quantum channels as efficiently as we do on samples of fixed quantum states. This means
that PAC learning quantum channels is really similar to approximate state discrimination
even in the mixed state case.

Now back to BSD. The bichromatic state discrimination problem (BSD) is defined as
follows:

3:11
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» Definition 5 (Bichromatic State Discrimination Problem (BSD)). Given complete information
of two sets of quantum states, Sycs and Spo, with fidelity F(Syes, Sno) < 1 and size Syes < N,
Sno < N, and one copy of an unknown quantum state o, the goal is to decide whether
0 € Syes 01 0 € Spo. We say a quantum algorithm solves (n, N)-BSD with error ¢ if for
all Syes and Spo such that F(Syes, Sno) < 1, Syes < N, and S,, < N, given complete
information about Syes and Sy, and one copy of an unknown quantum state o as input to
the algorithm, the algorithm output and yes/no answer satisfies the following two conditions:
1. If 0 € Syes, the learner outputs yes with probability (1 — 0).

2. If 0 € Spo, the learner outputs no with probability (1 —§).

The learner can output anything if o does not come from either of the two sets.

We show the existence of a BSD solver by first showing that PGM over Sy, U Sy, solves
the “average case” BSD and then turn it into a “worst case” result by the minimax theorem.
First by slightly modifying a result of [9] and [6], We show that PGM can solve the

“average case” BSD:

» Lemma 6 (PGM for “average BSD"). Let Syes, Sno be two sets of density matrices and
{pi} be a probability distribution over Syes U Spo. 1 The PGM on Syes U Sno, {p:i} satisfies

Z Z p; Pr(PGM(0;) = j) + p; Pr(PGM (0;) = i)] Z Z (5,05).  (9)

1€Syes J€ESno 1€Syes JE€ESno

Proof. See appendix C. |

We can group together the outputs of the PGM in Lemma 6 and define a binary
1€8yes Ei, Eno = ZiGSno Ei; and {Ez} is the
PGM. By Lemma 6, the binary measurement solves “average BSD” with error probability at

most Ezesm Zjes,,w F(o;,0).12
Since the upper bound on error is independent of the distribution {p;}, minimax theorem

measurement {Eys, Epo}, where Eyes = >

guarantees the existence of a measurement that distinguishes between S,.s and Sy, for any
distribution {p;} with error probability less than }7,cq > cq. F(0i,05)'°. In particular,
if p; = 1 for some 0; € Syes, the probability of the minimax measurement mistaking o;
as something in S,,, is upper bounded by Ziesyes Zjesm, F(0,04), and vice versa. We
formalize this discussion as the following Theorem.

» Theorem 7 (solver for BSD, Theorem 1 restated). There exist an algorithm that solves
(n, N)-BSD with error § = N%p

Proof. Consider the zero sum game between two players where playerl choose a probability
distribution {p;} over Syes U Sno and player2 choose a binary measurement strategy M. The
score of playerl is given by the following error probability!'4

Pbi—error = Z [pz Pr (M(Uz) = no)] + Z [pj Pr (M(Uj) = yes)] (10)
1€Syes JESno

HWe will slightly abuse the notation and write ¢ € Syes or j € Sno instead of o; € Syes or 05 € Sno.

12 A careful reader might notice that since we only want a binary answer, we are essentially distinguishing
the states Ayes = Ziesyes pio; and Ap, = Zjesna p;joj, and thus the optimal error probability is
characterized by trace distance between Ayes and Ay,. However, to our knowledge there is no inequality
in the literature giving a lower bound on trace distance between on linear combinations of density
matrices, so actually, the other direction of the trace-distance characterization is the relevant one:
Lemma 6 gives a new lower bound on Ay (Ayes, Ano)-

13 This argument was used in [17]

M We will slightly abuse the notation and write ¢ € Syes or j € Sno instead of o; € Syes or 0 € Shno.
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It is easy to check that that strategies of both sides are linear, so we can apply the
minimax theorem to get

min max Pp;_error = Max min Py _error < E E F(o;,04) < N2y, (11)
M {p:} {pi} M €S, jES
ves J€Sno

where the second inequality is from the promises of (n, N) BSD, and the first inequality is
shown by considering the binary measurement {Eycs, Eno}, where Eyeq = >, Syes E;, E,, =
> ies,, Pi, and {E;} is the PGM of Lemma 6. This means that there is a measurement M
whose error probability is less than ), Syes > jes,, F'(oi,0;) for all probability distribution
{pi}. In particular, the error probability is at most N27 when playerl uses the deterministic
strategy of always choosing some specific state o; € Syecs U Spo. Therefore, algorithm of
applying the measurement M solves (1, N)-BSD with error N?2.

<

Theorem 7 implies that if we amplify the maximum fidelity between Sy, and S,, by
Lemma 4 to less than O(1/|C|?), we have a constant error probability in distinguishing
whether a state is from Syes or Sy,,. By lemma 4 this requires © (log |C|/y?) samples if the
distance between Sy.s and Sy, is 7.

Now we present the partition sub-algorithm. Let C). be the set of remaining concepts that
have not been cut off by the main algorithm. The sub-algorithm partitions the remaining
concepts into three disjoint subsets: (Syes, Sunknown, Sno), such that [Syes| > §|Cr[*®, and
A(Syes, Sno) > 7 = O(¢/log|C;|). The sub-algorithm might or might not found an extreme
case. If no extreme case is found, |Sno| > §|C,|. If an extreme case is found, more than
%|Cr| concepts are e-close to some concept. The sub-algorithm initialized with every concept
in Sp,. It then repeatedly picks a concept c. from S,, and adds concepts within the ball
around c. to Syes and concepts in a 7-shell around the ball to Sunknown. The y-shell of S,
ensures that A(Syes, Sno) > 7 and we choose the radius of the ball so that the number of
concepts added to Syes is greater than half the number of concepts added to Sunknown to
ensure that |Sycs| > %|Sunknown| in the end. The sub-algorithm keeps adding concepts to
Syes and Sunknown Until [Syes| + |Sunknown| > %|CT| or the loop is breaked by an extreme
case. The sub-algorithm reports an extreme case if the number of concepts to be added
to Syes and Sypknown in the current iteration is greater than %|CT|. In this case we know
that more than %|CT| concepts are around c.. If no extreme case is found, since the loop
stops when |Syes| + [Sunknown| > %|C’T| and the last iteration cannot add more than %|CT|
concepts to Syes OF Sunknown, there are at least (1 — % - %)|CT| > %|C’T| concepts left in S,,,,
and ‘Sy%l > %(|Sy€8| + [Sunknown|) > %|Cr|-

There is another complication in that the distance between the concepts depends on the
unknown distribution D and thus cannot be calculated. In stead, we calculate the empirical
distance between concepts, Agpp(cr,ca) = % E;szl [A¢- (c1(;), ca(2;))], which depends on
the input points drawn from D. We also tune € into €/2 to accommodate for the extra error
incurred.

The sub-algorithm is detailed in Algorithm 1.

» Lemma 8. The output of Algorithm 1 satisfies the following conditions:

(Syes, Sunknown, Sno) s a partition of Cr. Aepmp(Syes, Sno) > 7 = €/410g|Cyr|. |Syes| >
$1Co|. If flag_eatreme = false, |Sno| > §|Cy|. If flag_extreme = true, Aemp(c,c) <
6/27 Ve € (Syes ) Sunk:nown)'

15 é is an arbitrary constant and can be further optimized
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Algorithm 1 partition sub-algorithm.

Data: concepts class C,., real number e.
Result: Set of concepts Syes, Sunknown, Sno, boolean variable flag_extreme,
concept ¢,
1 Sno <= Cr, Syes 0, Sunknown < 0, flag extreme « false, v < €/(41log|Cy|).
2 while |Sycs| + [Sunknown| < %|Cr|16 do

3 ¢ + a random concept in Sy,;
4 Count the number of concept in S, whose distance to c. is in the interval
[(m — 1)y, m~) for all m € [1/4] and record the number as b,,. Le.
b+ [{c|A(c,ce) € [(m — 1)y, my), ¢ € Spotl;
5 Find the smallest * > 2 such that b;x < QZie[i*fl] b;;
6 if Zie[i*fl] b; + b > %‘Cﬂ then
7 flag _extreme <« true;
8 move everything in Syes and Sunknown back to Spo;
9 run line 12 once;
10 Terminate;
11 end
12 For the concepts in S,,, move the concepts within distance (¢* — 1)y of ¢, to Syes,
and move the concepts whose distance to c. is in [(i* — 1)7,i*Y) t0 Sunknown-
Le. move {c|A(c,c.) € [0,(i" —1)7),c € Spo} to Syes and move
{c|]A(e,c.) € [(2* — 1)y,i*y) ,¢ € Sno} t0 Sunknown;
13 end

Proof. First note that in line 5, v = €/(4 log |C,.|) ensures that ¢* exists and * < €/(2v). This
can be proved by contradiction: if b > 221-6[1-*71] bi, Vi* < €/(27), then b} > 2b;_1,Vi* <
€/(27). Together with b; > 1 because A(ce,c.) =0, we have b|¢/24) > 2 2lglCrlp, > |C,, a
contradiction.

(Syess Sunknowns Sno) is a partition because it is initialized as a partition and we only
moves elements between them. Note that whenever we move something to Syes, we move a
~v-thick shell around it to Synknown. By triangle inequality of empirical distances between
concepts, Aemp(Syes, Sno) = 7 = €/41og|C,| at the end of every step.

If no extreme case is found, at each iteration of the loop at line 12, (Zie[i*_l] b;) concepts
are moved to Syes from Sp,,, and b;« concepts are moved t0 Syninown from S,,. Before the last
iteration of the loop [Syes| + [Sunknown| < %|C’r|7 and the number of concepts moved to Sy
and Synknown in the last iteration is Zie[i*—l] b +bF < %|C’r|7 80 |Sho| > (1 — % — %)|CT| >
%|C’T|. Because of the requirement b;« < 2 Zie[i*_l] b; in line 5, Zie[i*_l] b; > %(Zie[i*_l} b+
b;+) and thus [Syes| > %(|Syes\ + |Sunknown|) at the end of every loop. Combined with the
loop-termination condition |[Syes| + [Sunknown| > %|C’T|, we have |Syes| > %|C’T\.

If an extreme case is found at line 7, because we moved everything back to S,,, all
concepts in Syes OF Synknown are added in that one call of line 12, and thus they are
all (i*v)-close to ¢, . Recall that i*y < €/2, so everything in Syes or Sunknown IS €/2-
close to ¢.. The analysis on |Sy.s| is a bit subtle. Similar to the previous paragraph, we
have Zie[i*—l] b; > %(Zie[i*fl] b; + b;+). Combined with Zz‘e[i*—l] b; + by > %\C’T| to
trigger line 7, we have Zie[itl] b; > %|C’T.\. Since the wiping of Syes and Sunknown at
the beginning of line 7 only opens more possible concepts to be added to Sy.s, we have
‘Syes| > Zie[i*—l] b; > %lCH <
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With the partition sub-algorithm described, we detail the main algorithm for mixed state
case in Algorithm 2.

Algorithm 2 algorithm for mixed state case.

Data: Concept class C, Sampling Oracle O« p
Result: hypothesis h
1 C.+ C

s T © <1og"‘|C|<1og|g\+log<1/5>>> ;

€

3 while do

4 Call O« p T times, getting T samples
{(z1,¢*(21)), (T2, ¢*(22)), - - - (2, " (27)) }5
(Syess Sunknowns Sno, flag_extreme, c.) < (Algorithm 1)(C,, ¢€);
Construct the measurement M in Theorem 7 between Syes and Sy, with the
state g; corresponding to concept ¢; being o; = ®j€[T] ci(:rj);
7 Measure_result « M(Q) ;e c*(25)) 3
8 if Measure result = no then
9 ‘ remove Syes from Cp;
10 end
11 if Measure_result = yes and flag extreme = false then
12 ‘ remove Sy, from C,.;
13 end
14 if Measure_result = yes and flag extreme = true then
15 h + cg;
16 Terminate;
17 end
18 end

Now we state and prove our result for mixed state case:

» Theorem 9. Algorithm 2 is a proper (¢€,§)-PAC learner for any quantum circuit concept
class C', using

0 (log3 |C|(log |C] + log(1/5)))

2
samples.

Proof. By Lemma 8, Algorithm 2 removes at least %|C’T| concepts from C, in each loop
unless it terminates, so it terminates in O(log |C|) loops at line 16. Combined with the fact

that Algorithm 2 takes O (l°g2 |Cl(log \gmogu/ 6))) samples each loop, its sample complexity
is

0 (log3 |C|(log |C] + log(1/5)))

€2

As for the correctness of the algorithm, first note that by Lemma 8 the empirical distance
between any pair of concepts in Sy, and Sy, is at least 7o = €/(41og|C|).

Consider any pair of concepts ¢; € Syes and C; € Sy, with the corresponding states o;
and o;. By definition of empirical distance,

T
ZAtr (ci(zr), ci(xk)) > To (12)

k=1
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Then by Cauchy-Schwarz Inequality,

T

> Au(eilan), ci(xn))” > T, (13)
k=1

Then the fidelity between o; and o; is bounded by

F(o;,05) =F <® Ci(xk)7®cj(xk)>
k

k
=0 F (ci(x1), cj(zx))

< Hk\/l — (A (Ci(wk)acj(kaz
< exp l—; Z (A (ci(zr), Cj(xk)))Q]

k

— 2(id) (14)
where the last inequality is true because 1 —x < e~ 7.

There are only two possible ways for Algorithm 2 to make an error: first is to remove c*
from C). in line 9 or line 12, and second is to output a far-away concept at line 15 because of
the mismatch between empirical distance and true distance.

For the first error, note that ¢* always has empirical distance zero to it self, no matter
what {z1,22,..., 27} are sampled. By Theorem 7 and Equation 14 the error probability in
each loop is bounded by

Perror,l é ‘Cr|2 : 27Q(T’Y‘2))~ (15)
Apply union bound over O(log|C|) loop we can bound the total error probability by

§|CIPlog |C|
poly(|C])

For the second error, consider a pair of concepts that has distance bigger than e. By
Chernoff bound, the probability that their empirical distance is less than %e is less than

Ptotal error,l < IOg |C(HC(|2 ’ 2_Q(T72) = 0 ( ) : 0(5) (16)

2-2T<)  Union bound over all O(|C?) pairs of concepts, we have
2
Ptotal error,2 S |C‘2 : 2_Q(T€ ) < Ptotal error,l- (17)

<
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A PAC Learning Quantum Channels with Pure State Output

The algorithm follows ideas by Sen [28], who shows that random orthonormal measurement
preserves trace distance between pure states. One can then apply random orthonormal
measurements on each sampled output and take enough samples to amplify the distance
between e-far concepts to 1 — O(1/|C|) and show that the probability for the maximum
likelihood estimate to select a e-far concept over the target concept is less than O(1/|CY).
Take a union bound and we have a bounded error probability.

» Theorem 10. Algorithm 3 is a proper (e,6)-PAC learner for any concept class C of
quantum channels with pure state outputs, using

0 ((logICI) tlog(1/5)>

€

samples.

Algorithm 3 algorithm for pure state output.

1 Take T = O((log |C| + log(1/6))/€?) samples (z1,01), (v2,02), ..., (z1,07) ;

2 Do a random orthonormal measurement® M; on each output state o;. Let the
measured outputs be {z;} ;

3 Output the concept h € C that is most likely to give the measured result of line 2:

h = arg max ;¢ Pr[M;(c(x;)) = 2]
ceC

% The measurement has d2 outcomes, where dz is the dimension of output quantum state.

We need the following theorem to prove the correctness of Algorithm 3. First we state
the result 1 of [28] (lemma 4 of arxiv version):

» Theorem 11 (random orthonormal measurement [28]). Let o1, o2 be two density matrices in
CY. Define r := rank(oy — 03). There exists a universal constant k > 0 such that if r < kv/d
then with probability at least 1 — exp(—kd/r) over the choice of a random orthonormal
measurement basis M in C¢, |[M(01) — M(02)||, > kljo1 — 02|z 17

Note that if o1, o2 are pure states, r < 2 < ky/n for large enough n and |01 — o2|; <
V2 ||y — 02| so that Ay, (M(o1), M(02)) > k/V2A, (01, 09).

The following lemma shows how trace distance of the measured result grows when we
take multiple samples.

7 Recall that M (o) is the output distribution of the measurement M on state o.
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» Lemma 12 (trace distance amplification). Let X, Xo,..., X1 be T independent distribu-
tions and so are Y1,Ys,...,Yr. Denote the joint distribution (X1, Xs,...,X1) as X and
(Y1,Ya,...,Yr) as Y. Suppose that

ZAtr(Xi;}/i) = TE, (18)
then
Ap(X,Y) > 1— 27T (19)

Proof. By Cauchy-Schwarz inequality,

D (A (X3, Y7))? > Te?, (20)

?

Then the joint fidelity is bounded by
F(X,Y)=1LF (X;,Y;)

< HZ\/]. - (Atr (XZ7}/:L))2

< exp [; S (A (X0, ¥))?| = 2790, (21)

K2

where the last inequality is true because 1 — z < e~*. And the joint trace distance is

Ap(X,Y)>1-F(X,Y)=1-2"2T), (22)

The following lemma analyzes the effectiveness of maximum likelihood estimate.

» Lemma 13. For any two distributions D, D* have total variation distance o, Pri.p«(D(i) <
D*(i)) > «

Proof.

0< Y D)

= Y  D)-D'(i)+ D* (i)
:D (i) <D* (1) :D(3)<D* (1)
1 * * (. *
=5 > (DG)-D @)+ (D) =D |+ Y, D)
i:D(i)< D* (i) 4:D* (i) <D (i) i:D(i)<D* (4)
= —a+ Pr (D(i) £ D*(i)) (23)

= Pr (D) < D) =
The third line is true because Y, ;)< p« (i) (D(1) —D*(i)) = 3=, p-(iy<pi) (P (1) = D(3)). <«

We think D* as the correct distribution and D is a distribution far away, with the
total variation distance between them being a = 1 — €. When we use maximum likelihood
estimation to distinguish D* from D, Lemma 13 says that the probability of error is less
than e. Now we are ready to prove theorem 10.
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Proof. Let ¢* be the target concept, and ¢ a concept such that A(c*,c¢) > e. Recall that we
took

S (logC| +log(1/5)>

€2

samples. For all ¢ € [T], apply Theorem 11 to the pair of states (¢*(z;), c(x;)), we get that
with probability 1 — exp(—kdz/2) over random orthonormal measurements M;,

Agr (Mi(c*(22)), Mi(e(2:)) > k/V2A4 (" (1), e(x)), (24)

where k is a universal constant. Since you can pad some ancilla states to increase do without
changing trace distances if exp(—kds/2) is not small enough, we ignore this term. By Chernoff
bound, with probability at least 1 — 2=%T) over {z;} sampled from D,

(1) 32 o (Vle 1), Milela) > (/1) S H/V2 06 0 cla) 2 e
1 (25)
So we can apply Lemma 12 to get that with probability at least 1 — 2-%(T¢)
(Ao (M (i), AMi(h(wi))})) = 12720, (26)

Now, note that by Lemma 13, the probability that the maximal likelihood estimation
(incorrectly) selects ¢ is at most (2_Q(T52) + 27T By taking a union bound over all such
c, we get

Pr[A(c*,h) > ¢] < (27T 4 27%T9) || < 6. (27)

<

B Lower Bounds

In this section we describe two simple lower bounds. One is an Q((1—6)In |C|/€2)/In(In |C|/¢)
lower bound on the sample complexity of approximate state discrimination for pure states,
which in turn gives lower bounds on the sample complexity of PAC learning quantum channels.
The other is an Q(v/d) lower bound on the sample complexity of learning large dimensional
classical distribution in the agnostic model, which in turn lower bounds approximate state
discrimination and PAC learning quantum state in the agnostic model [18, 21].

B.1 Lower Bound for Pure State Case

» Theorem 14. The sample complexity of (¢, d)-approzimate state discrimination on a set
C of pure states is Q((1 — 6)In|C|/€?)/In(In|C|/e).

Proof. This lower bound uses the e-packing-net construction of [15]. In Lemma 5 of the
arxiv version of [15], the authors showed the existence of a set C' of d-dimensional pure states
with the following three properties: the distance between each state is at least €, the Holevo
information yo for states uniformly drawn from the set is O(e? In(d/¢)), and In |C| = Q(d).
With a simple reduction to communication protocol and Holevo theorem, [15] showed that to
distinguish states in C with probability 5, L=211CI=2 — (1 — ) In|C]/€2)/In(In|C|/e)
samples are required. Since every state in C is e-far from each other, an (¢, §)-approximate
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discriminator should be able to distinguish each state in C' with probability ¢, therefore
the discriminator must take Q((1 — 6)In|C|/€?)/In(In |C|/€) samples. This matches the
sample complexity of our pure state algorithm in terms of € and |C| with some logarithmic
factors. <

» Remark 15. Unfortunately, running the same argument with the mixed state e-packing
nets of [15] does not give us tighter lower bound, so we don’t have a matching lower bound
for the mixed state case.

» Corollary 16. The proper (¢,0)-PAC sample complezity of a concept class C of pure states
is Q((1 —8§)In|C|/e?)/In(In |C|/e).

B.2 Agnostic Model

Agnostic model [18, 21] is a learning model related to the PAC model. In agnostic model,
the target concept does not need to come from the concept class. We formally define the
agnostic model for learning quantum channels as follows:

We consider a learner trying to learn a target concept ¢* with respect to an unknown
distribution D. The learner is also given a concept class C. Since the target concept might
not be in the concept class C, the learner tries the output the concept cop¢ that minimize
the distance to the target concept ¢*. Here, we consider the concept class C' as a finite set
of known d; to dy dimensional quantum channels, and D as a distribution over the Hilbert
space of dimension d;. Precisely, the learner is given access to a sample oracle O.« p and
outputs a hypothesis h € C. The oracle O.- p generates i.i.d. samples (x;,c*(z;)), where
each x; < D is the classical description of a state drawn according to the distribution D,
and c¢*(x;) is the (potentially mixed) quantum state outputted by ¢* on input z;.

The distance between two concepts ¢ and h under the distribution D is the expected
trace distance to the target concept A(c, h) = Ezep [Asr(c(x), h(z))]. Let cope be the optimal
output, cope = argmin [A(c, ¢*)|c € C]. The goal of the learner is to find a hypothesis h € C
with A(c*, h) < A(c*, copt) + €.

A quantum learning algorithm A is a (e, §)-agnostic learner for C if the following holds:
For every c* and distribution D, given oracle access to O+ p, A9%e=.p outputs an h € C such
that A(c*, h) < A(c*, copt) + € with probability at least 1 — ¢. The sample complexity of
A is the maximum number of samples T" that A needs to query O.« p to output h. The
(e,9)-agnostic sample complexity of a concept class C' is the minimum sample complexity
over all learners.

We show that there is no efficient quantum agnostic learner in the following theorem.

» Theorem 17. For all € < 11—0 and positive integer d, there exist a concept class C of

dimension 0 to d whose (e, 0)-agnostic sample complexity is Q(\/d).

Proof. We can get the Q(v/d) lower bound with a simple concept class of that only has two
concepts. Both of the concepts are constant channels that output classical distributions.
Consider distributions on d 4+ 1 dimensions eq, e1, ..., eq. The first concept C; has all weight
on eg. The second concept Cy has weight uniformly distributed over e, ..., eq. Now consider
the following two set of distribution to be learned. D; = {D;;} has weight 1/3 on ey and
weight 1/d on 2/3 of dimensions e; ...,eq. Anything in D; has distance 2/3 to C; and
distance 1/3 to Cs, so it should be learned as Cy. Dy = {D3;} has weight 1/3 on ey and
weight 100/d on 2/300 of dimensions ey ..., eq4. Anything in Dy has distance 2/3 to C; and

distance (1/3+99 x2/300+ 1 x (1 —2/300))/2 ~ 0.993 to Cs, so it should be learned as Cj.

However, D1 and Ds both looks pretty much like a uniform distribution on eq,...,eq4. To
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distinguish them we need to see a collision on eq,...,eq. By a standard birthday bound,
we need at least Q(1/d/100) samples to see a collision. Therefore we need Q(v/d) samples
to learn classical distributions in agnostic model with constant error. In the regime of
|C| = poly(d), the lower bound means that it’s impossible to find an efficient algorithm of
sample complexity O(polylog |C]). |

» Remark 18. Note that the construction of Theorem 17 is based on a classical distribution,
so it means that agnostic learning of a classical distribution of many outputs efficiently is
also impossible. To the knowledge of the authors, agnostic learning of classical distribution
of many output has not been studied in the literature. Also note that classical distribution
is not a subclass of pure quantum states, so Theorem 17 does not rule out that quantum
channel with pure state outcomes can be efficiently agnostically learned.

» Remark 19. As mentioned in section 1.2.0.1, [7] studied the problem of quantum hypothesis
selection, which can be viewed as a a relax version of agnostic learning, outputting a state h
such that A(c*, h) < 3.01A(c*, copt) + €.
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—— Abstract

StogMA captures the computational hardness of approximating the ground energy of local Hamiltoni-
ans that do not suffer the so-called sign problem. We provide a novel connection between StogMA and
distribution testing via reversible circuits. First, we prove that easy-witness StogMA (viz. eStogMA,
a sub-class of StogMA) is contained in MA. Easy witness is a generalization of a subset state such
that the associated set’s membership can be efficiently verifiable, and all non-zero coordinates
are not necessarily uniform. This sub-class eStogMA contains StogMA with perfect completeness
(StogMA, ), which further signifies a simplified proof for StogMA; C MA [9, 12]. Second, by showing
distinguishing reversible circuits with ancillary random bits is StoqMA-complete (as a comparison,
distinguishing quantum circuits is QMA-complete [26]), we construct soundness error reduction of
StogMA. Additionally, we show that both variants of StogMA that without any ancillary random
bit and with perfect soundness are contained in NP. Our results make a step towards collapsing the
hierarchy MA C StogMA C SBP [9], in which all classes are contained in AM and collapse to NP
under derandomization assumptions.
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1 Introduction

This tale originates from Arthur-Merlin protocols, such as complexity classes MA and AM,
introduced by Babai [5]. MA is a randomized generalization of the complexity class NP,
namely the verifier could take advantage of the randomness. AM is additionally allowing
two-message interaction. Surprisingly, two-message Arthur-Merlin protocols are as powerful
as such protocols with a constant-message interaction, whereas it is a long-standing open
problem whether MA = AM. It is evident that NP € MA C AM. Moreover, under well-
believed derandomization assumptions [31, 32], these classes collapse all the way to NP.
Despite limited progresses on proving MA = AM, is there any intermediate class between
MA and AM?

StogMA is a natural class between MA and AM, initially introduced by Bravyi, Bessen,
Terhal [9]. StogMA captures the computational hardness of the stoquastic local Hamiltonian
problems. The local Hamiltonian problem, defined by Kitaev [29], is substantially approxim-
ating the minimum eigenvalue (a.k.a. ground energy) of a sparse exponential-size matrix
(a.k.a. local Hamiltonian) within inverse-polynomial accuracy. Stoquastic Hamiltonians [10]
are a family of Hamiltonians that do not suffer the sign problem, namely all off-diagonal

© Yupan Liu;
37 licensed under Creative Commons License CC-BY 4.0

16th Conference on the Theory of Quantum Computation, Communication and Cryptography (TQC 2021).
Editor: Min-Hsiu Hsieh; Article No. 4; pp. 4:1-4:22

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany


mailto:yupan.liu@gmail.com
https://www.cs.huji.ac.il/~yupan
https://orcid.org/0000-0003-4799-0200
https://doi.org/10.4230/LIPIcs.TQC.2021.4
https://arxiv.org/abs/2011.05733
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

4:2

StogMA Meets Distribution Testing

entries in the Hamiltonian are non-positive. StogMA also plays a crucial role in the Hamilto-
nian complexity — StogMA-complete is a level in the complexity classification of 2-local
Hamiltonian problems on qubits [17, 11], along with P, NP-complete, and QMA-complete.

Inspiring by the Monte-Carlo simulation in physics, Bravyi and Terhal [9, 12] propose
a MA protocol for the stoquastic frustration-free local Hamiltonian problem, which further
signifies StogMA with perfect completeness (StogMA,;) is contained in MA. A uniformly
restricted variant! of this problem, which is also referred to as SetCSP [3]2, essentially
captures the MA-hardness.

To characterize StogMA through the distribution testing lens, we begin with an informal
definition of StogMA and leave the details in Section 2.2. For a language £ in StogMA,
there exists a verifier V,, that takes z € £ as an input, where the verifier’s computation is
given by a classical reversible circuit, viewed as a quantum circuit. Besides a non-negative
state? in the verifier’s input as a witness, to utilize the randomness, ancillary qubits in the
verifier’s input consist of not only state |0) but also |+) := (|0) + [1))/+/2. After applying
the circuit, the designated output qubit is measured in the Hadamard basis*. A problem
is in StogMA(a, b) for some a > b > 1/2, if for yes instances, there is a witness making the
verifier accept with probability at least a; whereas for no instances, all witness make the
verifier accepts with probability at most b. The gap between a and b is at least an inverse
polynomial since error reduction for StogMA is unknown.

The optimality of non-negative witnesses suggests a novel connection to distribution
testing. Let |0) |Dgo) + |1) |D1) be the state before the final measurement, where |Dy) =
>iefoayn—1 vV Dr(i)[2) for k= 0,1 and n is the number of qubits utilized by the verifier. A
straightforward calculation indicates that the acceptance probability of a StogMA verifier is
linearly dependent on the squared Hellinger distance d3;(Dg, D1) between Dy and Dy, which
indeed connects to distribution testing! Consequently, to prove StogMA C MA, it suffices to
approximate d%;(Do, D1) within an inverse-polynomial accuracy using merely polynomially
many samples®.

1.1 Main results

StogMA with easy witness (eStogMA).  With this connection to distribution testing, it
is essential to take advantage of the efficient query access of a non-negative witness where
a witness satisfied with this condition is the so-called easy witness. For this sub-class of
StogMA (viz. eStogMA) such that there exists an easy witness for any yes instances, we are
then able to show an MA containment by utilizing both query and sample accesses to the
witness. Informally, easy witness is a generalization of a subset state such that the associated
state’s membership is efficiently verifiable, and all non-zero coordinates are unnecessarily
uniform. It is evident that a classical witness is also an easy witness, but the opposite is not
necessarily true (See Remark 17). Now let us state our first main theorem:

It is the projection uniform stoquastic local Hamiltonian problem, namely each local term in Hamiltonian
is exactly a projection. See Definition 2.10 in [4].

Namely, a modified constraint satisfaction problem such that both constraints and satisfying assignments
are a subset.

A witness here could be any quantum state, but the optimal witness is a non-negative state, see
Remark 10.

It is worthwhile to mention that we can define MA [10] (see Definition 7) in the same fashion, namely
replacing the measurement on the output qubit by the computational basis.

Each sample is actually the measurement outcome after running an independent copy of the verifier, see
Remark 12.
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» Theorem 1 (Informal of Theorem 15). eStogMA = MA.

It is worthwhile to mention that easy witness also relates to SBP (Small Bounded-error
Probability) [7]. In particular, Goldwasser and Sipser [22] propose the celebrated Set Lower
Bound protocol — it is an AM protocol for the problem of approximately counting the
cardinality of such an efficient verifiable set. Recently, Watson [42] and Volkovich [40]
separately point out that such a problem is essentially SBP-complete.

Although eStogMA seems only a sub-class of StogMA, we could provide an arguably
simplified proof for StogqMA; C MA [9]. Namely, employed the local verifiability of SetCSP [3],
it is evident to show eStogMA contains StogMA with perfect completeness, which infers
StogMA; C MA. However, it remains open whether all StogMA verifier has easy witness,
whereas an analogous statement is false for classical witnesses (see Proposition 27).

Reversible Circuit Distinguishability is StogMA-complete. It is well-known that distin-
guishing quantum circuits (a.k.a. the Non-Identity Check problem), namely given two efficient
quantum circuits and decide whether there exists a pure state that distinguishes one from
the other, is QMA-complete [26]. Moreover, if we restrict these circuits to be reversible (with
the same number of ancillary bits), this variant is NP-complete [27]. What happens if we
also allow ancillary random bits, viewed as quantum circuits with ancillary qubits which is
initially state |[4+)? It seems reasonable to believe this variant is MA-complete; however, it is
actually StogMA-complete, as stated in Theorem 2:

» Theorem 2 (Informal of Theorem 22). Distinguishing reversible circuits with ancillary
random bits within an inverse-polynomial accuracy is StoqMA-complete.

In fact, Theorem 2 is a consequence of the distribution testing explanation of a StogMA
verifier’'s maximum acceptance probability. We can view Theorem 2 as new strong evidence
of StogMA = MA. Tt further straightforwardly inspires a simplified proof of [27]:

» Proposition 3 (Informal of Proposition 28). Distinguishing reversible circuits without
ancillary random bits is NP-complete.

Apart from the role of randomness, Proposition 4 is analogous for StogMA regarding the
well-known derandomization property [21] of Arthur-Merlin systems with perfect soundness:

» Proposition 4 (Informal of Proposition 23). StogMA with perfect soundness is in NP.

Notably, the NP-containment in Proposition 4 holds even for StogMA(a, b) verifiers with
arbitrarily small gap a —b. Tt is arguably surprising since StogMA(a, b) with an exponentially
small gap (i.e., the precise variant) at least contains NPPP [33], but such a phenomenon does
not appear in this scenario.

Soundness error reduction of StogqMA. FError reduction is a rudimentary property of many
complexity classes, such as P, BPP, MA, QMA, etc. . It is peculiar that such property of
StogMA is open, even though this class has been proposed since 2006 [9]. An obstacle follows
from the limitation of performing a single-qubit Hadamard basis final measurement, so we
cannot directly take the majority vote of outcomes from the verifier’s parallel repetition.
Utilized the gadget in the proof of Theorem 2, we have derived soundness error reduction
of StogMA, which means we could take the conjunction of verifier’s parallel repetition’s
outcomes:

» Theorem 5 (Soundness error reduction of StogMA). For any polynomial r = poly(n),

1 al b T
StogMA (= + 2 2+ 2) CStogMA (= + L~ 4+ 2 ).
ed (2+2’2+2)— ed (2+2’2+2)
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1.2 Discussion and open problems

Towards SBP = MA. As stated before, it is known MA C StogMA C SBP C AM [7, 9].
Note a subset state associated with an efficient membership-verifiable set is an easy witness.
Could we utilize this connection and deduce proof of SBP C eStogMA?

Owing to the wide uses of the Set Lower Bound protocol [22], such a solution would be a
remarkable result with many complexity-theoretic applications. Unfortunately, even a QMA
containment for this kind of approximate counting problem is unknown. Despite such smart
usage of the Grover algorithm implies an O(4/2"/|S|)-query algorithm [2, 8, 39], we are not
aware of utilizing a quantum witness. Furthermore, an oracle separation between SBP and
QMA [1] suggests that such a proof of SBP C QMA is supposed to be in a non-black-box
approach, which signifies a better understanding beyond a query oracle is required.

Besides SBP vs. MA, it remains open whether StogMA = MA. It is natural to ask
whether each StogMA verifier has easy witness. However, we even do not know how to
prove StogMA(1 — a,1 — 1/poly(n)) has easy witness, where a is negligible (i.e., an inverse
super-polynomial). In [4], they prove StogMA(1 — a,1 — 1/poly(n)) C MA by applying the
probabilistic method on a random walk, whereas the existence of easy witness seems to
require a stronger structure®.

Towards error reduction of StoqMA. Error reduction of StogMA is an open problem since
Bravyi, Bessen, and Terhal define this class in 2006 [9]. We first state this conjecture:

» Conjecture 6 (Error reduction of StogMA). For any a,b such that 1/2 < b < a
1 and a — b > 1/poly(n), the following holds for any polynomial l(n): StogMA(a,b)
StogMA (1 — 274 1/2 4 271,

N IA

As [4] shows that StogMA with a negligible completeness error is contained in MA, (com-
pleteness) error reduction of StogMA plays a crucial role in proving StogMA = MA. Instead
of performing the majority vote among parallelly running verifiers, another commonplace
approach is first reducing errors of completeness and soundness separately, then utilizing
these two procedures alternatively with well-chosen parameters. For instance, the renowned
polarization lemma of SZK [36, 6], and the space-efficient error reduction of QMA [19].
Since Theorem 5 already states soundness error reduction of StogMA, is it possible to
also construct a completeness error reduction? Namely, a mechanism that builds a new
StogMA(1/2+4a'/2,1/2 + V' /2) verifier from the given StogMA(1/2 + a/2,1/2 + b/2) verifier
such that a’ is super-polynomially close to 1. It seems to require new ideas since a direct
analog of the XOR lemma in the polarization lemma of SZK, such as Lemma 4.11 in [6],
does not work here.

StogMA with exponentially small gap. Fefferman and Lin prove [20] that PreciseQMA is
as powerful as PSPACE, where PreciseQMA is a variant of QMA(a, b) with exponentially small
gap a — b. Moreover, we know that both PreciseQCMA and PreciseMA are equal to NPPP (33],
where PreciseQCMA is a precise variant of QMA with a classical witness of the verifier. It is
evident that PreciseStogMA is between NP and PSPACE, also the classical-witness variant
of this class is precisely NPPP (see Section 3.3). Does PreciseStogMA an intermediate class
between NPPP and PSPACE, or even strong enough to capture the full PSPACE power?

5 The candidate here is the set S of all good strings (see Appendix B) of the given SetCSP instance, which
is unnecessary an optimal witness. It is thus unclear whether the frustration of S remains negligible.
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Paper organization

Section 2 introduces useful terminologies and notations. Section 3 proves that easy-witness
StogMA is contained in MA, which indicates an arguably simplified proof of StogMA; C MA,
together with remarks on classical-witness StogMA. Section 4 presents a new StoqgMA-
complete problem named reversible circuit distinguishability, and the complexity of this
problem’s exact variant, which infers StogMA with perfect soundness is in NP. Section 5
provides error reduction of StogMA regarding soundness error.

2 Preliminaries

2.1 Non-negative states

We assume familiarity with quantum computing on the levels of [34]. Beyond this, we

then introduce some notations which are more particular for this paper: the support of |¢),

supp(|v)) := {i € {0,1}™ : (¢]i) # 0}, is the set strings with non-zero amplitude. A quantum

state |¢) is non-negative of (i|1p) > 0 for all ¢ € {0,1}". For any S C {0,1}", we refer to the
1 : .

state |S) := El > ics |i) as the subset state corresponding to the set S [41].

2.2 Complexity class: MA and StoqgMA

A (promise) problem £ = (Lyes, £1o) consists of two non-overlapping subsets Lyes, Lno C
{0,1}*. These classes MA and StogMA considered in this paper using the language of
reversible circuits, as Definition 7 and Definition 9.

» Definition 7 (MA, adapted from [9]). A promise problem L = (Lyes, Lno) € MA if there
exists an MA verifier such that for any input x € L, an associated uniformly generated
verification circuit V, using only classical reversible gates (i.e. Toffoli, CNOT, X) on
n = Ny, +ng + n4 qubits and a computational-basis measurement on the output qubit, where
Ny 18 the number of qubits for a witness, and ng (or ny) is the number of |0) (or |+))
ancillary qubits, such that

Completeness. If x € Lyes, then there exists an n-qubit non-negative witness |w) such that

Pr [V, accepts |w)] > 2/3.
Soundness. If x € Ly, we have Pr [V, accepts |w)] < 1/3 for any n-qubit witness |w).

For simplicity, we denote [0) := |0)®"® and |+) := |[+)®™* for the rest of this paper. We
refer the equivalence between Definition 7 and the standard definition of MA to as Remark 8,
which is first observed by [10].

» Remark 8 (Equivalent definitions of MA). The standard definition of MA only allows
classical witnesses, viz. binary strings. To show it is equivalent to Definition 7, it suffices to
prove the optimal witness for yes instances is classical. Notice that Pr[V, accepts |w)] =
(Yin| Vi Iout Ve [¥in) where |15) = |w)® |6>®|$> and Iy = 10) (0]; ® Jeise. Since Vi out Ve
is a diagonal matrix, the optimal witness of V,, is classical.

Analogously, we could define NP using classical reversible gates by setting n, = 0 in
Definition 7. Now we proceed with the definition of StogMA.

» Definition 9 (StogMA, adapted from [9]). A promise problem L = (Lyes, Lno) € StogMA if
there is a StogMA wverifier such that for any input x € L, a uniformly generated verification
circuit V,, using Toffoli, CNOT, X gates on n := n,, + ng + n4 qubits and a Hadamard-basis
measurement on the output qubit, where n,, is the number of qubits for a witness, and ng
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(or ny) is the number of |0) (or |+)) ancillary qubits, such that for efficiently computable

functions a(n) and b(n):

Completeness. If x € Lyes, then there exists an n-qubit non-negative witness |w) such that
Pr [V, accepts |w)] > a(n).

Soundness. If x € L,,, we have Pr [V, accepts |w)] < b(n) for any n-qubit witness |w).

Moreover, a(n) and b(n) satisfy 1/2 < b(n) < a(n) <1 and a(n) —b(n) > 1/poly(n).

Error reduction of StogMA remains open since this class was defined in 2006 [9] because
this class does not permit amplification of gap between thresholds a,b based on majority
voting. Hence, this gap is at least an inverse polynomial. We leave the remarks regarding
the non-negativity of witnesses and parameters to Remark 10.

» Remark 10 (Optimal witnesses of a StogMA verifier is non-negative). Analogous to QMA,
the maximum acceptance probability of a StogMA verifier V,, is precisely the maximum
eigenvalue of M, := (0| (+| V| [+) (+|; V& |0) |[+) due to Pr [V, accepts [¢)] = (1| My [1)).
Notice the matrix M, is entry-wise non-negative. Owing to the Perron-Frobenius theorem
(see Theorem 8.4.4 in [24]), a straightforward corollary is that the eigenvector v (i.e., the
optimal witness) maximizing the acceptance probability has non-negative amplitudes in
the computational basis, namely it suffices to consider only non-negative witness for yes
instances. Additionally, it is clear-cut that the acceptance probability for any non-negative
witness |¢), regardless of the optimality, is at least 1/2 by a direct calculation.

2.3 Distribution testing

Distribution testing is generally about telling whether one probability distribution is close to
the other. We further recommend a comprehensive survey [15] for a detailed introduction.
We begin with the squared Hellinger distance d% (Do, D1) between two (sub-)distributions
Dy, D1, where d% (Do, D) := %H |Do) — |D1)||3 and |Dy) = >, /Dx(i) |i) for any k = 0, 1.
This distance is comparable with the total variation distance (see Proposition 1 in [18]). We
then introduce a specific model used for this paper, namely the dual access model:

» Definition 11 (Dual access model, adapted from [14]). Let D be a fized distribution over
[2"]. A dual oracle for D is a pair of oracles (Sp,Qp):
Sample access: Sp returns an element i € {0,1}" with probability D(i). And it is
independent of all previous calls to any oracle.

Query access: Qp takes an input a query element j € {0,1}"~1, and returns the quotient
D(0]17)/D(1||§) where D(al|j) is the probability weight that D puts on al|j for a € {0,1}.

We then explain how to implement these oracles here in Remark 12:

» Remark 12 (Implementation of dual access model). The sample access oracle in Definition 11
could be implemented by running an independent copy of the circuit that generates the state
|0) | Do) + |1) |D1), and measuring all qubits on the computational basis. Meanwhile, the
query access oracle is substantially an efficient evaluation algorithm corresponding to the
quotient Dg(¢)/D1 (i) for given index i.

In [14], Canonne and Rubinfeld show that approximating the total variation distance
between two distributions within an additive error € requires only ©(1/¢?) oracle accesses
(see Theorems 6 and 7 in [14]). However, suppose we allow to utilize only sample accesses.
In that case, such a task requires Q(NN/log N) samples even within constant accuracy (see
Theorem 9 in [18]), where N is the dimension of distributions.
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3 StogMA with easy witnesses

This section will prove that StogMA with easy witnesses, viz. eStogMA, is contained in MA.
Easy witness is named in the flavor of the seminal easy witness lemma [25], which means
that an n-qubit non-negative state witness of a StogMA verifier has a succinct representation.
In particular, there exists an efficient algorithm to output the quotient Dq(2)/D1(4) for given
index 4. It is a straightforward generalization of subset states where the membership of the
corresponding subset is efficiently verifiable. We here define eStogMA formally:

» Definition 13 (eStogMA). A promise problem L = (Lyes, Lno) € eStogMA if there is a
StogMA wverifier such that for any input x € L, a uniformly generated verification circuit
V. using only Toffoli, CNOT, X gates on n := ny, + ng + n4 qubits and a Hadamard-basis
measurement on the output qubit, where n, is the number of qubits for a witness, and
no (or ny) is the number of [0) (or |+)) ancillary qubits, such that for efficiently computable
functions a(n) and b(n):

Completeness. There exists an n-qubit non-negative witness [w) := 3 ;o 130 v/ Duw(i) [i)
such that Pr[V, accepts |w)] > a(n), and there is an efficient algorithm Q. that out-
puts Dy (0]|2)/ Dy (1]|2) (or Dyw(1]|7)/Dw(0||i)) of index 1||i (or 0|]i) sampled from the
distribution D,, where i € {0,1}"7L.

Soundness. For any n-qubit witness |w), Pr[V, accepts |w)] < b(n).

Moreover, a(n) and b(n) satisfy 1/2 < b(n) < a(n) <1 and a(n) — b(n) > 1/poly(n).

» Remark 14 (Subset-state witnesses require only membership). To show a subset-state witness
|w) is an easy witness, it suffices to decide the membership of supp (|Jw)) for the associated
algorithm Q,. Notice any coordinate Dy, (j) in Dy, is 1/|supp (Jw))| if j € supp (Jw));
otherwise D,,(j) = 0. Moreover, if D,,(1][i) = 0 for some 4, the corresponding point will
never be sampled. Hence, the quotient D,,(0][¢)/D,,(1]]¢) is 1 if both 0||¢ and 1||¢ belong to
supp (|w)) (i.e., Dy (0]]2) = Dy (1]]¢) # 0); otherwise the quotient is 0.

Distribution testing techniques inspire an MA containment of eStogMA, as Theorem 15.
Precisely, employed with the dual access model (see Definition 11) adapted from Canonne
and Rubinfeld [14], we obtain an empirical estimation within inverse-polynomial accuracy
of an eStogMA verifier’s acceptance probability, where both sample complexity and time
complexity are efficient.

» Theorem 15 (eStogMA C MA). For any 1/2<b<a <1 and a—b > 1/poly(n),
eStoqMA(a,b) C MA (&, %) .

In [9, 12], Bravyi, Bessen, and Terhal proved StogMA; C MA, utilizing a relatively
complicated random walk based argument. By taking advantage of eStogMA, we here
provide an arguably simplified proof by plugging Proposition 16 into Theorem 15:

» Proposition 16. StogMA; C eStogMA.

The proof of Proposition 16 straightforwardly follows from the definition of SetCSP (see
Definition 30), namely any SetCSPg /01, instance certainly has easy witness, and it is
indeed optimal. We further leave the technical details regarding SetCSP in Appendix B.

How strong is the eStogMA? Remark 17 suggests eStogMA seems more powerful than
classical-witness StogMA (i.e., cStogMA):

» Remark 17 (eStogMA is not trivially contained in cStogMA). Classical witness is clearly also
easy witness, but the opposite is unnecessarily true. Even though Merlin could send the

4:7

TQC 2021



4:8

StogMA Meets Distribution Testing

algorithm Qp,, as classical witness to Arthur, Arthur only can prepare |w) by a post-selection,
which means cStogMA does not trivially contain eStogMA.

Furthermore, the proof of StogqMA(a,b) with classical witnesses is in MA [23] could
preserve completeness and soundness parameters. By inspection, it is clear-cut that this
proof even holds when the gap a — b is arbitrarily small, whereas the proof of Theorem 15
works only for inverse-polynomial accuracy. Further remarks of classical witness’ limitations
can be found in Section 3.3.

3.1 eStogMA C MA: the power of distribution testing

To derive an MA containment of eStogMA, it suffices to distinguish two non-negative states
(viz., approximating the maximum acceptance probability) within an inverse-polynomial
accuracy regarding the inner product (i.e., squared Hellinger distance). It seems plausible to
prove StogMA C MA by taking samples and post-processing. However, the known sample
complexity lower bound (See Section 2.3) indicates that (almost) exponentially many samples
are unavoidable. Fortunately, we could circumvent this barrier for showing eStogMA C MA,
since easy witness guarantees efficient query access to Dy(i)/D1(i) for given index 4. In
particular, employing both sample and query oracle accesses to Dy, D1, such approximation
within an additive error € requires merely ©(1/€?) samples and queries! This advantage first
noticed by Rubinfeld and Servedio [35], and then almost fully characterized by Canonne
and Rubinfeld [14]. Recently, this technique also has algorithmic applications used in
quantum-inspired classical algorithms for machine learning [16, 38].

» Lemma 18 (Approximating a single-qubit Hadamard-basis measurement). In the dual access
model, there is a randomized algorithm T which takes an input x, 1/2 < b(|z]) < a(]z|) <1,
as well as access to (Sp,Qp), where the non-negative state before the measurement is
W) = X iepn) VD) [i). After making O (1/(a —b)?) calls to the oracles, T outputs either
ACCEPT or REJECT such that:

If L |Do) +|D1) |13 > a, T outputs ACCEPT with probability at least 9/16;

If 1| |Do) + | D) |3 < b, T outputs ACCEPT with probability at most 7/16,
where Dy, (k € {0,1}) is a sub-distribution such that Vi € {0,1}"~1, Dy(i) := D(k||i).

Proof Intuition. To construct this algorithm 7, the main idea is writing the acceptance
probability pa.c. of a StogMA verifier’s easy witness as an expectation over D; (or Dg) of
some random variable regarding coordinates quotients Dg(¢)/D1(i). Note that the quotient
/Do(i)/+/D1(i) could be computed by running the evaluation algorithm @Q,, (i.e., query
oracle access). Hence, T only require to calculate an empirical estimation of E[X] (see the
RHS of Equation (1)) within 1/poly(]z|) accuracy. Such an approximation could be achieved
by averaging poly(|z|) sample with a standard concentration bound, which is analogous to
Theorem 6 in [14].
Now we proceed with the explicit construction (i.e., Algorithm 1) and analysis.

Proof of Lemma 18. We begin with estimating the quantity [[|Do) + [D1)||5 /2 | D1]|, up
to some additive error € := (a — b)/8. We first observe that

2 2
1D +HD)3 _ L 14 VD@ by _ 1 VD@ 1
2[[D1]], 2 Z ( + /D1 (i) D11 i~D1I/EHD1H1 9 + /D1 (i) - (1)

i€{0,1}n—1

Since the inner product is symmetric, it also implies

l1D0)+1D1) 113 _ 1 D1 (i)
AT, B D [2 (1 + \/T()H
1
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Algorithm 1 O(1/(a — b)?)-additive approximation tester 7 of 3 ||[Do) + |D1)|l3.

Require:Sp and Qp oracle accesses; parameters % <b<a<l.
Set m,m’ := O(1/€?), where € := (a — b)/8;
Draw samples 01, -+ , 05 from

Dyt := marginal distribution of the designated output qubit;
Compute Z := % 211/1 Z;, where Z; := o;;
Draw samples s, -+ , Sy, from D;
Fori=1,--- ,m Do

If Z > L Then with Qp, get X; := 1

2
Else with Qp, get X; := 3 (1 T J@) ;
o0lSq

Dl(si)

2
(1 + Y= DO(Si)) ;

End

Compute X := LS X

If Z > % and X7 > %(a + b) Then output ACCEPT;

Else If Z < i and Xq-2)> 3(a+b) Then output ACCEPT;
Else output REJECT;

Notice T only require to achieve an empirical estimate of this expected value, which suffices
DO (Si )
D1 (Si)

to utilize m = O (1/(a — b)?) samples s; from Dy, querying , and computing X; =

2
1 (1 + \/;”Z)TE;;) ||D1]|1. We here provide the explicit construction of T, as Algorithm 1.

Analysis. Define random variables Z; as in Algorithm 1. We obviously have E[Z;] =
ID1]l1 € [0,1]. Since all Z;s’ are independent, a Chernoff bound ensures

A R ®

which is at least 3/4 by an appropriate choice of m/'.

Note drawing samples from py implicitly by post-selecting the output qubit to be 0.

However, due to the inner product’s symmetry and || Dgl[; + ||D1]|; = 1, there must exist
i € {0,1} such that ||D;||; > 1/2. Hence, the required sample complexity will be enlarged
merely by a factor of 2.

Let us also define random variables X; as in Algorithm 1. W.L.O.G. assume that || D;]|; >

1/2 > | Doll,- By Equation (1), we obtain Eiwp, .y, [Xi] = [IIDo) + [Di)|5 /2 [[Dill;-

Because the X;’s are independent and takes value in [1/2, 1], by Chernoff bound,

. |ID Dy)|2
2([ Dl

Therefore, by our choice of m, X is an e-additive approximation of ||| Do) + |D1)|3 /2| D1l
with probability at least 3/4. Note that X;, Z; are independent, we obtain E [X Z} =

311Do) + [ D1)|l5. Hence, notice 1/2 < |[D1]ly < 1 and 1/2 < L||Do) + [D1)|5 < 1, by
combining Equations (2) and (3), we obtain with probability 9/16:

< e] > 11— 2 2m/< (3)

A A 2
X2 < (UBgR I 4 ) (D1l + ) < I1Do) + D)3 + € + € +2¢ < F[[[Do) + D)3 + 4

PPN Do)+|D1) |12
X2 > (Mg H2nIE — ) (IDilly - ) 2 L lIDo) + D) + € — e = 2¢ > L 1Do) + D)} - de.
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It implies that Pr [ X

2
If £ ||| Do) + |D1>||§
If 5 [[[Do) + |D1) I3

111IDo) + |D1>H§’ < 46:| > 9/16. We thereby conclude that

7 —
> q, then XZ >a—4eand T outputs ACCEPT w.p. at least 9/16.
<b hen XZ <b+4eand T outputs ACCEPT w.p. at most 7/16.

Furthermore, the algorithm 7 makes m’ + 2m calls for Sp and m calls for Qp . <

It is worthwhile to mention that this construction in the proof of Theorem 15 is optimal
regarding the sample complexity, as Theorem 7 stated in [14].
Finally, we complete the proof of Theorem 15 by Lemma 18.

Proof of Theorem 15. Given an eStogMA(a, b) verifier V., we here construct a MA verifier
V. that follows from Algorithm 1 in the proof of Lemma 18:

(1) For each call to the sample oracle Sp,,, we run the eStogMA verifier V,, (without measuring

the output qubit) with the witness w, and draw samples by performing measurements:
For samples s; (1 < i < m) from distribution D, measure all qubits utilized by the
verification circuit in the computational basis;
For samples o; (1 < j <m’) from distribution Do, measure the designated output
qubit in the computational basis.

(2) For each call to the query oracle Qp, with index 4, find the corresponding index i’ at the
beginning by performing the permutation associated with V.| on 4, and then evaluate the
value D,,(i")/ D, (i") by utilizing the given algorlthm associated with this easy witness,
where 1" is given by flipping the first bit of 7'.

(3) Compute an empirical estimation of  [||Do) + |D1>||2 as Algorithm 1, and then decide
whether V. accepts w.

The circuit size of V] is a polynomial of |z| since both sample and query complexity
are efficient. We thus conclude that the new MA verifier V is efficient, and only requires
O (1/(a — b)?) copies of the witness w, which finishes the completeness case.

For the soundness case, the acceptance probability p,c. of the eStogMA verifier V. for
all witnesses is obviously upper-bounded by b, regardless of whether such a witness is easy
or not. Furthermore, entangled witnesses are useless since we draw samples by performing
measurements separately. Hence, the maximum acceptance probability of the new MA verifier
V. is also at most b. <

3.2 StogMA with perfect completeness is in eStogMA

We here complete proof of Proposition 16. By Theorem 15, it infers StogMA; C MA.

Proof of Proposition 16. By Theorem 31, we know that SetCSPg;/poy is
StogMA, -complete, so it suffices to show that SetCSPy 1,01y, is contained in eStogMA, .

By Lemma 35, given a SetCSPy; instance C, we can construct a StogMA (1,1 —b/2)
verifier. The corresponding subset S C {0, 1}", where S satisfies all set-constraints of C, is
an optimal witness. It is left to show that this subset states is an easy witness.

We achieve the proof by inspection. Let S be the set of all good strings of C, then
set-unsat(C,;S) = 0. Note z € S is a good string of C iff z is a good string of all set-
constraints C;(1 < ¢ < m), the membership of S thus can be decided efficiently, which infers
the subset state |S) is easy witness by Remark 14. <
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3.3 Limitations of classical-witness StogMA

As we have shown StogMA with easy witness is contained in MA. What about classical
witness, namely cStogMA? In fact, we could show such a containment that preserves both
completeness and soundness parameters.

» Proposition 19 ([23]). For any 1/2<b<a <1 and a—b> 1/poly(n), cStogMA(a,b) C
MA(2a — 1,2b — 1).

Proof Sketch. We only illustrate the intuition: for any s € {0,1}™ and any reversible
circuit U, we have (s|UT [+) (+], U |s) = 1 + 3 (s|UTX U |s) since |+) (+| = (X +I). The
detailed proof is left in Appendix A.1. <

The proof of Proposition 19 immediately infers the precise variant of StogMA with
classical witnesses, where the completeness-soundness gap is exponentially small, is equal
to PreciseMA. However, the proof of Theorem 15 no longer works for precise scenarios,
indicating that StogMA with classical witness seems not interesting.

Furthermore, it is not hard to see that classical witness is optimal for StogMA, verifier”.

However, it does not mean that a classical witness is optimal for any StogMA, verifier. In
fact Appendix A.2 provides a simple counterexample by considering an identity as a verifier.
However, this impossibility result is unknown for easy witness yet.

4  Complexity of reversible circuit distinguishability

This section will concentrate on the complexity classification of distinguishing reversible
circuits, namely given two efficient reversible circuits, and decide whether there is a non-
negative state that cannot tell one from the other. With ancillary random bits, this problem
is StogMA-complete, as Theorem 22. However, this problem’s exact variant, namely assuming
two reversible circuits are indistinguishable with respect to any non-negative witness for
no instances (viz., StogqMA with perfect soundness), is NP-complete (see Proposition 23).
Moreover, Theorem 22 also implies that distinguishing reversible circuits without any ancillary
random bit is NP-complete, which signifies a simplified proof of [27].

4.1 Reversible circuit distinguishability is StoqMA-complete

We begin with the formal definition of the Reversible Circuit Distinguishability problem.

» Definition 20 (Reversible Circuit Distinguishability). Given a classical description of two
reversible circuits Cy, Cy (using Toffoli, CNOT, X gates) on n := ny +no +ny qubits, where
Ny 18 the number of qubits of a non-negative state witness |w), ng is the number of |0)
ancillary qubits, and n is the number of |+) ancillary qubits. Let the resulting state before
measuring the output qubit be |R;) := C; |w) |0)|+), i € {0,1}. Promise that Co and Cy with
respect to witness state(s) are either a-indistinguishable or -distinguishable, decide whether
Yes (a-indistinguishable): there exists a non-negative witness |w) such that (Ro|R1) > «;
No (B-distinguishable): for any non-negative witness |w), then (Ro|R1) < 53;
where a — 3 > 1/poly(n)8.

7 By combining StogMA; € MA; and the gadget in the proof of Proposition 36, we could construct a
StogMA; verifier such that a classical witness is optimal.

8 Note (Ro|Ro) = (R1|R1) = 1 which differs from (Do|Do) + (D1|D1) = 1 previously used in Section 3,
we obtain that the acceptance probability pacc = 4 + & (Ro|R1) =1— % - 1|||Ro) — |R1) 3.
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Since Definition 20 seems slightly inconsistent with known results regarding distinguishing
circuits [26, 27, 37], it is worthwhile to mention a slightly different version (see Remark 21)
of Definition 20, which is co-StogMA-complete.

» Remark 21 (Equivalence Check of Reversible Circuits is co-StogMA-complete). Consider the
same scenario in Definition 20, and the task is checking whether Cjy and C; are approximately
equivalent (with respect to witness states). More concretely, decide whether (Ry|R;) > «
for any |w); or there exists |w) such that (Rg|R;) < . The co-StogMA-completeness
straightforwardly follows from the constructions in the proof of Theorem 22.

Now we state the main theorem in Section 4.

» Theorem 22 (Reversible Circuit Distinguishability is StoqMA-complete). For any o — § >
1/poly(n), («a, )-Reversible Circuit Distinguishability is StogMA (1/2 4+ «/2,1/2 + 3/2)-
complete.

We will then proceed with an intuitive explanation regarding proof of Theorem 22.

Proof Intuition. The StogMA-containment proof is inspired by the SWAP test for distin-
guishing two quantum states [13], since it could be thought of as a StogMA verification
circuit with the maximum acceptance probability 1. We below provide a procedure (see
Figure 1) to distinguish two reversible circuits Cp, Cy using a non-negative witness, and such
a procedure is apparently a StoqMA verifier. The StogMA-hardness proof is straightforward:
replacing Cy and C; by identity and V,f X1V, (see Figure 2), respectively, where V. is the
given StogMA verification circuit.

) G +) | )
|
w) =3 : lwy = EI
10) = ¢ o : 0y = vix,V, E‘Z;_
o |
I+) = | I+) = E'::—
Figure 1 RCD is in StogMA. Figure 2 RCD is StogMA-hard.

Now we proceed with the technical details.

Proof of Theorem 22. We first show (o, 5)-RCD is StogMA (1/2 + «/2,1/2 + 3/2)-hard.
Consider a StogMA verifier V, as Figure 2, let Cy := V,f X1V, where the X gate in the middle
acts on the output qubit, and let C; be identity. Then for any witness |w), we obtain:

Pr [V, accepts |w)] = (w| (O] (+] (VJ| [+) (+], V&) [w) [0) |+

(Ro|Ry) = (w| (O] (+] (VIX1V3) |w) [0) |+) . (4)

Note that |[+) (+| = (X + I)/2, we thereby complete the StogMA-hardness proof by Equa-
tion (4): Pr[V, accepts |w)] = 1/2+ (Ro|R1)/2.

Now it is left to show the StogMA (1/2 + «/2,1/2 + 3/2) containment of («, 8)-RCD.
Given reversible circuits Cp, Cy, we construct a StogMA verifier as Figure 1. Hence, we
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obtain the state before measuring the output qubit (viz. the red dash line):

0) + 1)
Ctrl-Cy - Xy - Ctrl-Cp | ————
r 1 1 r O( \/§

- 1 1
® 0)|4+) ) = —=10)|Ro) + —=|1) |R1) := |RHS) .
) [0) 7)) = 75 10) o) + 75 1) ) = Rt
We thus complete the StogMA-containment proof:
Pr [V, accepts |w)] = |||+) (+]; |RHS>||§ =1/2+ (Ro|R1)/2. <

4.2 Exact Reversible Circuit Distinguishability is NP-complete

We will prove that the exact variant of the Reversible Circuit Distinguishability is NP-
complete. Moreover, it will signify that StogMA with perfect soundness (even the gap
between thresholds «, 1/2 is arbitrarily small) is in NP.

» Proposition 23 (Exact RCD is NP-complete). Ezact Reversible Circuit Distinguishability
(RCD), namely («,0)-Reversible Circuit Distinguishability for any 0 < a < 1, is NP-complete.

Proof Sketch. It suffices to show an NP containment. By an analogous idea in [21], we
could find two matched pairs (s,r) and (s',r') as classical witness, where s, s’ are indices
of non-zero coordinates in the given witness, and 7,7’ are random bit strings. Specifically,
for yes instances, there exist two such pairs such that the resulting strings Cy(s,7) ? and
C1(s',7") are identical; whereas it is evident that no matched pairs exist for no instances.
The details are left in Appendix A.3. <

As a corollary, Proposition 23 will imply StogMA with perfect soundness is in NP:
» Corollary 24 (StogMA with perfect soundness is in NP). Ua>1/2 StogMA (a, %) = NP.

StogMA without any ancillary random bit is in NP. In fact, distinguishing reversible
circuits without any ancillary random bit is NP-complete. By analogous reasoning, we
also provide an alternating proof of Strong Equivalence of Reversible Circuits is co-NP-
complete [27]. We leave the detailed proof in Appendix A.4.

5 Soundness error reduction of StogMA
In this section, we will partially solve Conjecture 6 by providing a procedure that reduces
the soundness error of any StogMA verifier.
» Theorem 25 (restated of Theorem 5). For any r = poly(n),
1 al b 1 a" 1 b
MA(=+—-,-+=-)C MA(=+—,-+—.
Stoq (2+2,2+2>_Stoq <2+2,2+2)
Consequently, Theorem 25 infers a direct error reduction for StogMA; by choosing

appropriate parameters a, b, r.

» Corollary 26 (Error reduction of StogMA;). For any s such that 1/2 < s < 1 and
1—s>1/poly(n), StogMA(1,s) C StogMA (1,1/2+27").

Proof. Choosing a,b such that 1 = 1/24a/2 and s = 1/2+b/2, we have a = 1 and b = 2s—1.
By Theorem 25, we obtain StogMA (3 + 3 - 1,4 + 3(2s — 1)) C StogMA (1, 5 + (25 — 1)").
To finish the proof, it remains to choose a parameter r such that r > (n+1)/log, (1/(2s — 1)),
since (25 — 1)7/2 < 27" implies that 277 10g2(1/(2s=1)=1 < 9-n <

9 A reversible circuit takes (s,r) as an input, and permutes it to the other binary string as the output.
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Figure 3 AND-type repetition procedure of a StogMA verifier.

5.1 AND-type repetition procedure of a StogMA verifier

Proof Intuition. The main idea is doing a parallel repetition of a StogMA verifier V,
and taking the conjunction (viz., AND) of the outcomes cleverly. More concretely, given a
StogMA verification circuit V,, where z is in £ € StogMA, we result in a new StogMA verifier
by separately substituting an identity and VX,V for Cy, C; (as Figure 2). Notice the
acceptance probability of a StogMA verifier’s non-negative witness |w), Pr [V,, accepts |w)] =
% + %<D0|D1>, is linearly dependent to an inner product between states associated with two
distributions Do, Dy where |Dg) := |w) |0) |+) and |D1) := V; |w)|0)|+). We could then
take advantage of this new StogMA verifier by running r = poly(|z|) copies of these reversible
circuits parallelly with the same target qubit, which is denoted as V (see Figure 3).

For yes instances, it follows that an inner product of two tensor products of distributions
is equal to the product of inner products of states associated with these distributions, namely,
Pr[V] accepts |w)] = 1 + 2(Do|D1)". However, it seems problematic for no instances, since
a dishonest prover probably wants to cheat with an entangled witness instead of a tensor
product among repetitive verifiers. We resolve this issue by an observation used in the QMA
error reduction [30]: the maximum acceptance probability of a verifier V,; is the same as the
maximum eigenvalue of a projection HOVZJr 11,V 1Iy where II; is the final measurement on
the designated output qubit and ITy := |0) (0| ® [+) (+|. Eventually, an entangled witness
will not help a dishonest prover. This is because the maximum eigenvalue of the tensor
product of the projection IIyV,/TI; V, Il is also the product of the maximum eigenvalue of
this projection.

Finally, we proceed with the proof of Theorem 25.

Proof of Theorem 25. Given a promise problem £ = (Lyes, £10) € StoqMA(1/2+a/2,1/2+
b/2). For any input x € £, we have a StogMA verifier V,, which is equivalent to a new StogMA
verifier V, as Figure 2, by the StoqMA-hardness proof of reversible circuit distinguishability
as Theorem 22. Namely, V, is starting on a |+) ancillary qubit, applying a controlled-unitary
V.IX1V, on n, + ng + ny qubits, and measuring the designated output qubit.
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Let [Ry) == |w) |0) |[+) where |w) is a witness, we obtain

2

L ) ¢+ Va [R) 13- (5)

) (+y (2 10) @ [Ru) + —= 1) © (Vi X1V2) [Ru)
NG V3

By an observation used in the QMA error reduction, namely Lemma 14.1 in [30], we
notice that the maximum acceptance probability of a StogMA verifier V. is proportion to
the maximum eigenvalue of a matrix M, := (0| (+| VJ X1V, |0) [+) associated with V:

—_

1 1 1
Pr [V, accepts |w)] = 3t3 H|1a>x Tr(M, |w) (w|) = 3+ = Amax(Mz). (6)

[\)

AND-type repetition procedure of a StogMA verifier. We now construct a new StogMA
verifier V] using r copies of the witness |w) on 7(n,, + no + n4) + 1 qubits. As Figure 3, V/
is starting from a |+) ancillary qubit as a control qubit, then applying controlled-unitary
V.IX,V, on qubits associated with different copies of the witness |w(i)> forany 1 <i <r.

By an analogous calculation of Equation (5), we have derived the acceptance probability
of a witness w™" @ - -+ ® w® of the new StogMA verifier V/:

1 1 . ,
Pr [ng accepts (w(l) Q- ® wmﬂ =35+ §Tr (‘w(l)> <w(’) M§T> ,
where M, is defined in Equation (6). Hence, the maximum acceptance probability of V. :
, , 1 1 or 1 1 ”
r‘nzg(Pr [V.] accepts |w')] = 3T §>\max (MET) = 5t3 (Amax (M))", (7)

where the second equality thanks to the property of the tensor product of matrices. Equa-
tion (7) indicates that entangled-state witnesses are harmless since any entangled-state
witness’ acceptance probability is not larger than a tensor-product state witness’.

Finally, we complete the proof by analyzing the maximum acceptance probability of the
new StogMA verifier V, regarding the promises: For yes instances, we obtain Apax(Mz) > a
since there exists |w) such that Pr [V, accepts |w)] > 1/2 4+ a/2. By Equation (7), we have

derived Pr [V accepts |w)®"| = 24 3 Amax(My))" > & + 2. For no instances, we have
Amax(Mz) < bsince Pr [V, accepts |w)] < 1/2+b/2 for all witness |w). By Equation (7), we
further deduce V', Pr [V, accepts |w')] = & 4+ 3 (Amax(M))" < 3 + & <
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A Missing proofs

A.1 Proof of Proposition 19: cStogMA C MA

Proof of Proposition 19. Given a cStogMA verifier V,, on n = n’ +mng +n,, qubits where n’
is the number of qubits of a witness, we construct a new MA verifier V,onn=n'+ng+ny
qubits: first run the verification circuit V,, (without measuring the output qubit), then apply
an X gate on the output qubit, after that run the verification circuit’s inverse VI, finally
measure the first n’ 4+ ng qubits in the computational basis; V, accepts iff the first n’ bits of
the measurement outcome is exactly s; - -- s,/ and the remained bits are all zero.

We then calculate the acceptance probability of a classical witness |s) of a cStogMA

verifier V,, where w = wy - - - w, € {0,1}". Notice |+) (+| = 1 (I + X), we obtain

Pr(V, accepts s = ||[+) (+], Va |s) [0) 1) I3

Vo ls o 8
=5+ 5 (sl O (H VI (X @ L) Vi |s) [0) 1) N

By a direct calculation, the acceptance probability of a classical witness |s) of V:

r [V, accepts s| = (R|R) where |R) := ((s| (0| ® I,,) Vil (X ® I,—1) Vi |s) [0) [+). (9)
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It is evident that |R) is a subset state and supp(|R)) C {0,1}"+. Together with Equations
(8) and (9), we have completed the proof by noticing Pr [V, accepts s] = 3 + 2(+|R) =
$(R|R) = § + 4Pr [V, accepts s] . <

Could we extend Proposition 19 from a classical witness to a probabilistic witness
>, V/D(i) |s;) with a polynomial-size support'®? Notice that the crucial equality (+||R) =
<R\R> utilized in Proposition 19 does not hold anymore, we need an efficient evaluation
algorithm calculating D(4) given an index i. Moreover, we have to calculate each coordinate’s
contribution on the acceptance probability separately, so the accumulated additive error is
still supposed to be inverse-polynomial, which indicates the support size of this probabilistic
witness is negligible for some polynomial.

A.2 Classical witness is not optimal for any StogMA, verifier
» Proposition 27. Classical witness is not optimal for any StogMA, verifier.

Proof. Consider a StogMA; verifier V, that uses only identity gates, then

(1) For all classical witness s; € {0,1}™, Pr[V, accepts s;] = 3 since (Ro|R;) = 0 where
the resulting state before the measurement is |0) ® |Ro) + |1) @ |Ry).

(2) For any classical witness s;,s; € {0,1}™ such that s; and s; are identical except for the
first bit, one can construct a witness |s) = % [s;) + % |s;), Pr [V, accepts s] = 1 since
(Ro|Ry) = 1.

We thus conclude that classical witness is not optimal for this StogMA; verifier. |

A.3 Proof of Proposition 23: Exact RCD is NP-complete

Proof of Proposition 23. Exact RCD is NP-hard, namely NP C StogMA (1,1/2), straight-
forwardly follows from the proof of Proposition 36. It suffices to prove that the exact
RCD is in NP. By Theorem 22, (2« — 1,0)-RCD is Stoql\/IA (ar, 1/2)-complete. Let |w)

be an n,-qubit non—negative witness such that |w) = >, coupp(uw) VDw(si)|si), then
Pr [V, accepts |w)] = L + $(Ro|Ry) = L + 3 (w]| (0] (+| CCy [w) [0) |+) .
For yes instances, note that (Ro|R1) = 2ar — 1 and « > 1/2, we have derived

5 _ _
(RolR1) = > >ooX <2n) ) (s:| (O] (r| CfCy |s5) [0) 7Y > 0. (10)
si,s;Esupp(w) r,r’€{0,1}"+

Since Vs;, 85, Duw(s:)Dw(s;) > 0, there exists s;, s; € supp (w) and r,r" € {0,1}"+ such that
(si] (O] (r (rlCicy |sy) 0 |r") (11)
For no instances, combining (Ry|R1) = 0 and Equation (10), it infers
Vsi, s; € supp (w),Vr,r’ € {0,1}™+, (s;| (0| (r| clcy |sy) 0) [r") = 0. (12)

We eventually construct an NP verifier as follows. The input is the classical description
of two reversible circuits Cy and C7, and the witness is two pairs of binary strings (sg, 7o)
and (s1,71). The verifier accepts iff Cy(sg,0™,79) and Ci(s1,0™,r1) are identical where
C;(i =0,1) takes (s;,0™, ;) as an input and permutes it as the output. Notice these strings
80,70, 1,71 exists for yes instances owing to Equation (11), whereas they do not exist for no
instances due to Equation (12), which achieves the proof. |

10Gyuch witnesses are clearly easy witnesses, but not all easy witnesses have polynomial-bounded size
support. See the explicit construction in Section 3.2 as an example.
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A.4 StoqMA without any ancillary random bit is in NP
» Proposition 28. StogMA without any ancillary random bit is NP-complete.

Proof. It suffices to show that StogMA without any ancillary random bit (viz. ancillary
qubits which is initially |+)) is in NP. As a straightforward corollary of Theorem 22,
distinguishing reversible circuits without |+) ancillary qubit is complete for StogMA without
|+) ancillary qubit, which is essentially NP according to Section 2.2.

Consider reversible circuits Cy and C; act on n,, + ng qubits where ng is the number of
|0) ancillary qubits, we observe that if Cy and C; are not distinguishable with respect to
any classical witness, then 3s € {0,1}" (s| (0| cicy |s) |0) = 1 since reversible circuits Cp
and C are bijections. Otherwise, it is evident that Vw, (w| <(_)’ C’gCl |w) ‘(_)> = 0 provided C)
and C; are distinguishable with respect to any witness. It is thus sufficient to only consider
classical witnesses for distinguishing Cy and C4, namely, classical witness is optimal.

Now we provide an NP verifier. The input is the classical description of two reversible
circuits Cy and C, and the witness is a n,,-bit string s. The verifier accepts iff Cy(s, 0™0)
is identical to C1(s,0™). Note by inspection, the analysis is completed by above showing
classical witness is optimal, which finishes the proof. <

By analogous reasoning, we provide an alternating proof of [27] with respect to the variant
of RCD defined in Remark 21.

» Proposition 29. Equivalence check of reversible circuits without any ancillary random bit
is co-NP-complete.

Proof. Consider reversible circuits Cy, C act on n,, +ng qubits, we observe that if Cy and C}
are not exactly equivalent, then 3s € {0,1}"=, (s[ (0| cloy s) |0) = 0 since reversible circuits
Co and C| are essentially bijections. Otherwise, it is evident that Vw, (w| (0| clon jw) |0) =1
provided Cjy and C are exactly equivalent. Therefore, classical witness is optimal, and the
remained proof follows from the proof of Proposition 28. <

B SetCSPgi/poly is StogMA,-complete

We start from the definition of SetCSP with frustration:

» Definition 30 (k-SetCSP., .,, adapted from Section 4.1 in [3]). Given a sequence of k-local
set-constraints C = (C1,--- ,Cp,) on {0,1}", where k is a constant, n is the number of
variables, and m is a polynomial of n. A set-constraint C; acts on k distinct elements of
[n], and it consists of a collection Y (C;) = {Yl(i), e ,Ylgi)}of disjoint subsets Yj(i) C {0, 1}*.
Promise that one of the following holds, decide whether

Yes: There exists a subset S C {0,1}" s.t. set-unsat(C,S) < e1(n);

No: For any subset S C {0,1}", set-unsat(C, S) > ez(n),
where €1 and €3 are efficiently computable function and ea — e; > 1/poly(n).

Now we briefly define a SetCSP instance C’s frustration. We leave the formal definition in
Proposition 34. The frustration of a set-constraint C regarding a subset S is set-unsat(C, S) =

= set-unsat(Cj, S) = L Y07 (leéf)l + ‘L(’éls)l) , where B;(S) is the set of bad strings

m

of Cj, namely Vs € B;(S), slsupp(c,) & U?‘ZIYJ-(U; And L;(S) is the set of longing strings of
the subset S regarding C;.
We will prove Theorem 31 in the remainder of this section.

» Theorem 31. SetCSPcq11/poly 8 StoqMA,; _, . -complete.
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B.1 SetCSPeg1,1/poly is StoqMA(1 — negl, 1/poly)-hard
To prove Theorem 31, we will first show that SetCSPg 1 /po1y is StogMA;-hard.

» Proposition 32 (SetCSP is hard for StogMA(1 — negl, 1/poly)). For any super-polynomial
q(n) and polynomial q1(n), there exists a polynomial ga(n) such that SetCSP1 /q(n),1/py(n) 5
hard for StogMA (1 —1/q(n),1/p1(n)).

Proof. The StogMA (1 —1/¢(n),1/p1(n))-hardness proof is straightforwardly analogous to
the circuit-to-Hamiltonian construction used in MA-hardness proof of SetCSP in [3]. The only
difference is replacing Y (C°") = {{00},{01},{11}} by Y (C°"*) = {{00},{01},{10,11}} in
Section 4.4.2, since the final measurement on the (7" + 1)-qubit is on the Hadamard basis
instead of the computational basis. The rest of the proof follows from an inspection of Section
44 in [3]. <

Then Corollary 33 is an immediate corollary of Proposition 32 by substituting 0 for

1/q(n):
» Corollary 33. SetCSPy 1 /01y 95 StogMA, -hard.

B.2 SetCSP,, is in StogMA(1 — a/2,1 — b/2)

It now remains to show a StogMA; containment of SetCSPg 1 /01, We will complete the
proof by mimicking the StogMA containment of the stoquastic local Hamiltonian problem in
Section 4 in [9]. The starting point is an alternating characterization of the frustration of a
set-constraint C; in a SetCSP instance C. The proof of Proposition 34 is deferred in the end
of this section.

» Proposition 34 (Local matrix associated with set-constraint). For any k-local set-constraint
C;(1 <1i<m), given a subset S C {0,1}", the frustration

1Y (C4)l
set-unsat(C;, S) =1 — Z Z mﬁ(ﬂ (lz) (y| @ Ln—k) |S).

=1 gyey®
Now we state the StogMA containment of SetCSP, as Lemma 35.

» Lemma 35. For any 0 < a <b <1, SetCSP,;, € StogMA (1 —a/2,1—b/2). Moreover,
for a subset S C {0,1}" such that S = argming, set-unsat(C, S’), the subset state |S) is an
optimal witness of the resulting StogMA wverifier.

The proof of Lemma 35 tightly follows from Section 4 in [9]. We here provide a somewhat
simplified proof using the SetCSP language by avoiding unnecessary normalization.

Proof of Lemma 35. Given a SetCSP,; instance C = (Cy,---,Cy,). For each set-
constraint C;(1 < i < m), we first construct a local Hermitian matrix M, preserves the
frustration, then construct a family of StogMA verifiers for such a M;. For any set-constraint
C;, we obtain a k-local matrix M; by Proposition 34 such that for any subset S C {0,1}":

Y (Cy)
set-unsat(Cy, §) = 1 — (S|M; ® I,_y|S) where M; = > > 1(Z.)||x> . (13)
J

=1 gyey®
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Moreover, for a set Yj(i) of strings associated with the set-constraint C;, we further have

Y o)l

S ety X ()l + I (el

m7y€n<i> zeyju) #yeyjm 14
1
®k ®Rk—-1
= Y VO OTFVIi+S Y Ve (X 10) 0% Vi,
CE€Yj<i) x;ﬁyGY;i)

where V,, is a depth-1 reversible circuit with X such that Vz,|z) = U, |Ok>, and V, 4 is a
O(k)-depth reversible circuit with CNOT and X such that Va,y, U, , |Ok> {10k_1> U;y
Notice that the resulting local observables in Equation (14) are either |0) <O|®k (i.e. asingle-
qubit computational-basis measurement) or X ® |0) <O|®k71 (i.e. a single-qubit Hadamard-
basis measurement). To construct a StogMA verifier, we only allow local observables in form
X @ I®9%) | Namely, we are supposed to simulate a computational-basis measurement by
ancillary qubits and a Hadamard-basis measurement, which is achieved by Proposition 36.

» Proposition 36 (Adapted from Lemma 3 in [9]).
(1) For any integer k, there exists an O(k)-depth reversible circuit W using k |0) ancillary
qubits and a |+) ancillary qubits s.t.

Y [), (]10) (0%* ) = (] (0] (+|WT (X @ I9%F) W [9) |0)%" |+).

(2) For any integer k, there exists an O(k)-depth circuit V using k — 1 |0) ancillary qubits
ERA

Y [9), (WX @ [0) (0] i) = (] (0]F T W (X @ I%20=2) W |y [0y *F "

It is worthwhile to mention that the gadgets used in the proof (see Section A.4 in [9]) further
provide proof of MA C StogMA that preserves both completeness and soundness parameters.
Let Idx (C;) be the set of indices, and let ;. be the weight of an index (j, z,y),

) 4
Idx (Ci) := {(JE%ZJ) (1< < YO, (z,y) € (YJQ > L {(x,x) ‘x € Yj“)}};

O(j,zy) = L where the indicator I(z # y)) =1 <z # y.

1+ Lz # y)m|Y"|

Plugging Proposition 36 and Equation (14) into Equation (13), we have derived
1—set-unsat(Cy, §) = Y au(S| (<0|®’“ (+H UL (X @ 1%%%) Uy, |0)®* |+>)®In_k|5>. (15)
1€1dx(Cy)

For a SetCSP instance C' = (C4,--- ,Cy,), by Equation (15), by substituting |+) (+| =
1(X + 1) into Equation (15), we thus arrive at a conclusion that

1 1 1
Pr [V, accepts |S)] = - Z <1 ~5 -set—unsat(C’i,S)> =1- 3 -set-unsat(C, S). (16)
i=1

Note that the set of StogMA verifiers V, with the same number of input qubits and witness
qubits is linear, namely a convex combination of I StogMA verifiers (V1,p1),- -+, (Vi,p1) can
be implemented by additional |+) ancillary qubits and controlled V;(1 <14 < [). Therefore,
by Equation (16), we conclude that Va,b, SetCSP,, ; is in StogMA (1 — a/2,1 — b/2). <

Finally, we achieve proof of Proposition 34:
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4:22 StogMA Meets Distribution Testing

Proof of Proposmon 34. Given a k-local set-constraint C;, the set of good strings G; =
Lh<j<|y(cs )‘Y , and the set of bad strlngs B; = {0,1}//(©)I\ G;. Also, for any subset
5{0,1}", the set of bad strings in S is B;(S). By direction calculation, notice that

BN s (Z 2) @l @M) )

z€B;
> J|s| = (5l <Z ) (2] ® I k) 15) - Z > % m‘ (51 (|2} (] ® ) |5)-
j=1 z€G

j=1 Eﬂeyf)
(17)

Plugging Equation (17) and {0,1}7(@)l = B; U G; into set-unsat(C;,5) = Bl 4

E]l
@)
Z\Y(C DINLY |S(|S)| we then finish the proof.
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—— Abstract

We reduce the extra qubits needed for two fault-tolerant quantum computing protocols: error

correction, specifically syndrome bit measurement, and cat state preparation. For fault-tolerant
syndrome extraction, we show an exponential reduction in qubit overhead over the previous best
protocol. For a weight-w stabilizer, we demonstrate that stabilizer measurement tolerating one fault
(distance-three) needs at most [log, w] + 1 ancillas. If qubits reset quickly, four ancillas suffice. We
also study the preparation of cat states, simple yet versatile entangled states. We prove that the
overhead needed for distance-three fault tolerance is only logarithmic in the cat state size. These
results could be useful both for near-term experiments with a few qubits, and for the general study
of the asymptotic resource requirements of syndrome measurement and state preparation.

For a measured flag bits, there are 2 possible flag patterns that can identify faults. Hence our
results come from solving a combinatorial problem: the construction of maximal-length paths in the
a-dimensional hypercube, corresponding to maximal-weight stabilizers or maximal-weight cat states.
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1 Introduction

A critical component of quantum error correction is syndrome measurement: a set of circuits
used to pinpoint which qubits have errors. This process of error identification is itself
susceptible to noise and may fail. To make this process robust, extra (ancilla) qubits can
be used to identify damaging mid-circuit faults and mitigate the spread of errors. The
objective of this paper is to reduce the overhead of ancilla qubits used in imparting this
fault tolerance. In particular, we focus on optimizing the flag technique for distance-three
fault tolerant stabilizer measurement. We also reduce qubit overhead in distance-three
fault-tolerant cat state preparation. Cat states [11] have applications in many areas of
quantum computing, including communication [9], information processing [12], and error
correction [13, 14]. Besides practical applications, our results on cat state preparation are
theoretically interesting since: i) we introduce the study of asymptotic estimates of qubit
overhead for the fault-tolerant preparation of cat states of arbitrary size, and, ii) ideas
developed for cat state preparation may provide clues for the fault-tolerant preparation of
logical states of more complex codes.
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Figure 1 Functioning of a flag scheme. (a) Flag qubits interact with a non-fault-tolerant circuit
to catch faults. Upon measurement, flag qubits yield a pattern of 1s and 0s. Based on the flag
pattern, a correction is applied onto the data qubits. (b) Measurement of stabilizer X®!° in the
slow reset model, CSS fault-tolerant to distance three, using a = 4 ancilla qubits. Colored qubits
and gates are used to impart distance-three fault tolerance.

We strive for low qubit overhead since quantum computers with limited qubits count
resources preciously, and even minor improvements can free up extra qubits for other tasks.
In topological codes where stabilizers are localized in space and low-weight, only a few flag
qubits close to each stabilizer suffice to impart fault tolerance [16, 2, 3]. It has also been
shown that with adaptive control and quickly resetting qubits, only four ancillas are needed
for the universal fault-tolerant operation of some distance-three codes [4, 5]. In this paper, we
present a general fault-tolerant protocol that works for a stabilizer of any size. If qubits are
connected well enough, we show that only logarithmic overhead is required for fault-tolerant
stabilizer measurement, an exponential space improvement over the previous linear overhead.

The general model of flag-based fault-tolerance is displayed in Figure la. Here, a set
of flag ancilla qubits monitor operations in a non-fault-tolerant circuit and when measured
at the end, produce flag patterns which uniquely identify mid-circuit faults. Based on the
observed flag pattern, a correction is applied to the data to minimize the spread of errors.
As an example, Figure 1b measures a stabilizer on 10 data qubits while tolerating one fault.
The three colored qubits are the flag ancillas and the measured flag patterns each imply
different corrections. Also note that the sequence of flag patterns (100,110,111,011,001) is
a path on the hypercube and also corresponds to the order of the flag CNOTs (edge between
100 and 110 implies a CNOT is applied onto flag qubit 2).

In this paper, we restrict discussion to the measurement of individual stabilizers of a
quantum code, as in Shor-style fault-tolerant stabilizer measurement [13]. We do not focus on
other methods which measure multiple stabilizers in parallel. Figure 2 displays improvements
made over the years to Shor’s method. Note that Shor’s method can tolerate any number of
faults by increasing the fault tolerance of the ancillary cat state preparation. The subsequent
schemes forgo this property and are only fault-tolerant to distance three. DiVincenzo and
Aliferis first make the circuit deterministic by removing the need for cat state verification [7].
This ensures that a circuit designer need not wait for a fault-tolerantly prepared cat state
before measuring the stabilizer. Subsequent improvements were made in [15], [16] and [5] to
reduce ancilla count by coupling each ancilla qubit to two data qubits instead of one.

With our flag method, the ancilla cat state is prepared and unprepared while collecting
the stabilizer. As in Figure 1b, an X fault occurring anywhere on the |[+) qubit may spread
into the data, but will also leave its imprint on the flags. This is then measured out as a flag
pattern. Due to the particular chosen arrangement of the flag CNOTs, any fault that can
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PROGRESSION OF STABILIZER MEASUREMENT CIRCUITS

Shor DiVincenzo-Aliferis Compressed Flag
Non—.(-ll(l\tériu,um“j Deterministic DiVincenzo-Aliferis Slow Reset: #ancillas < [logy w] + 1
sancillas = w + #ancillas = w ) ; Fast Reset: #ancillas < 4
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(a) [13]. (b) [7]. (c) [15, 16, 5]. (d)

Figure 2 Historical progression of stabilizer measurement circuits. A weight-10 X stabilizer
measurement circuit is provided as an example. CNOTs in black have targets on the 10 data
qubits, collectively represented by the black wire. In (b)(c)(d), fault-tolerance is only guaranteed
to distance-three and Pauli corrections (or Pauli frame updates) are applied to the data based on
the Z basis measurements. (a) Shor’s method uses w + 1 ancillas and requires a fault-tolerantly
prepared cat state. (b)(c) The following two methods use unverified cat states with subsequent error
decoding. Non-deterministic cat state verification is replaced with a deterministic circuit, allowing
for uninterrupted circuit operation. (d) The flag method prepares and unprepares an ancilla cat
state while collecting the stabilizer. Exponentially more flag configurations can thus be accessed for
fault diagnosis.

Table 1 Distance-3 cat state preparation: Weight-w cat states can be prepared fault-tolerantly
to distance-3 with m measurements of ancilla qubits. Slow reset requires m ancilla qubits whereas
with fast reset, only one ancilla qubit is required.

Type Bounds
Deterministic error correction w <3 (2™ —2m + 2)
Theorem 5
Adaptive error correction w<3(2™ —2m+ 3)
Theorem 6

spread to a high-weight data error triggers one of the five shown flag patterns. Each flag
pattern then applies a unique correction that ensures that there is at most one data qubit in
error. This satisfies the condition for fault tolerance, which states that k faults in a circuit
should cause no more than k qubits to have errors.

For the distance-three fault-tolerant measurement of a weight-w stabilizer, we propose
two methods based on the speed of qubit reset. With fast qubit reset, Theorem 3, only
three flag ancillas are required in total, but each flag needs to be measured once per four
data qubits. If more flags are used in parallel, the number of accessible flag patterns grows
exponentially and the number of measurements per ancilla converges to one. This is the
regime of slow qubit reset, Theorem 4, which uses at most [log, w] flag ancillas measured
only at the end.

Table 1 contains bounds on the ancilla overhead for preparing weight-w cat states fault-
tolerantly to distance-three. If the flag qubits can reset quickly, Theorem 5 states that only
one flag qubit is required and it needs to be reset and measured m times. Since the flag
qubits operate independently, it is also possible to use m flag qubits, with each one being
measured once. We further show how to use an adaptive circuit in Theorem 6 to marginally
increase the number of flag patterns in use.

The rest of this paper is divided into three sections. Section 2 details the construction of
the two paths on the hypercube that we use as flag sequences. Section 3 describes how to
use these sequences for distance-three fault-tolerant syndrome measurement, and Section 4
deals with cat state preparation.
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2 Flag sequences

A flag pattern or flag configuration is a string of 1s and Os that arises from measuring out
the flags. If a flag ancillas are used, then the a-bit flag configuration labels a vertex of the
a-dimensional hypercube. We show how to construct two paths on the hypercube to produce
maximal-length sequences of flag configurations. Since they are paths, only one bit is flipped
between subsequent flag configurations. This bit flip corresponds to the application of a flag
CNOT from the syndrome ancilla to the flag qubit indexed by the flipped bit, thus providing
a blueprint to construct the fault-tolerant circuit.

The first type of sequence just requires a maximal-length traversal of the a-dimensional
hypercube. A simple choice for this is the Gray code [10, §].

» Lemma 1. For a > 1, the Gray code creates a length-2* Hamiltonian path in the a-
dimensional hypercube.

Proof. We provide a quick construction of the sequence. For a = 1, use the sequence 0, 1.
For a > 1, construct the sequence inductively. First, run the sequence for a — 1 with a 0
prepended, then run it backwards with a 1 prepended. |

For example, for a = 2, the sequence is 00,01, 11, 10. For a = 3, the sequence is 000,001,011,
010,110,111, 101, 100.

In this paper we use a piece-wise definition of fault tolerance. Fault tolerance to distance-
d implies that for all k£ <t = L%j, correlated errors of weight-k occur with k-th order
probability. For distance-three CSS fault-tolerant syndrome bit measurement, any single
fault should result in a data error with X and Z components having weight zero or one.

In order to ensure that the circuit is distance-three fault-tolerant, we need to ensure that
a measurement fault does not trigger corrections of weight greater than one. Hence the
second maximal-length sequence requires that there are no weight-one strings except at the
start and end. As shown in Figure 1b, we may assign weight-one corrections to these two
configurations, but for all others there exist multi-qubit corrections.

» Lemma 2. For a > 2, in the a-dimensional hypercube {0,1}® there exists a path vy =
1091, ... v, = 0% 11 such that all intermediate vertices v, . ..,v,—1 have weight at least
two, and each verter appears at most once; with length n = 2% — 2a + 3.

Proof. Figure 3 illustrates the inductive construction of maximal-length flag sequences
satisfying the above constraints. With a = m — 1 flag qubits, the sequence has length
2% — 2a + 3. The a-flag sequence is constructed by first running the previous flag sequence,
on a — 1 flags, up to the second-to-last element (which for a > 4 is X{anfl}l), and with 0
appended at the end. Then run the sequence backward, except with 1 appended at the end,
and with the 2 and a — 1 coordinates swapped (the red and blue rows in the figure). Finally,
finish the sequence from xy; 4} by walking through (3.4}, X{4,a}5- - - > X{a—2,a}> X{2,a}, With
the appropriate weight-three sequences (shown in gray) interposed.

To ensure that no vertex is visited more than once, one need only check that the last 2a—5
sequences are distinct from those that came before. For this, one can track by induction the
2a — 3 hypercube vertices that are not visited by each walk: 0%, the a — 2 weight-one strings

X2 -+ Xa—1, and the a — 2 weight-two strings X (1,3}, X{3,4}, X{4,5}» - - - » X{a—1,a}- <

! X{z,y} implies bits at positions z and y are set to 1.
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Unused
Flag sequence configurations

a=2: m
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Figure 3 Flag sequences for distance-three fault-tolerant syndrome bit measurement, using a
flag qubits, each measured once (the slow reset model). These sequences are walks through the
a-dimensional hypercube, from 10°~! to 0*~'1; passing through each vertex at most once and no
other weight-one vertices. Flag configurations are stacked vertically and ordered initially left to
right, with solid and empty squares representing 1 and 0, respectively, e.g., Ml represents 10,11, 01.
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3 Distance-three syndrome measurement

In this section, we outline two protocols for distance-three CSS fault-tolerant syndrome
measurement. They differ based on the speed of qubit measurement and reset.

For w € {4,5,6}, flag-fault-tolerant circuits are constructed the same way regardless of
qubit reset speed. We show in Figure 4a that for w = 6, only two flag ancillas are required.
Lower-weight stabilizers can be measured by removing data CNOTs and making appropriate
changes to the Pauli corrections. For 7 < w < 10, the different methods of construction yield
the same circuits. It is only for w > 10 that the effects of qubit reset speed are pronounced.

3.1 Fast reset

» Theorem 3. If qubits can be measured and reset quickly, then for any w, four ancilla
qubits are sufficient to measure the syndrome of X®¥, CSS fault-tolerantly to distance three.
Moreover, the number of measurements needed is f“’T”] + 1.

Proof. For w € {4,5,6}, the circuit using two flag ancillas is shown in Figure 4a. It
runs through a sequence of three flag configurations and a multi-qubit correction is only
applied for the flag configuration 11. For w > 6, the general construction is shown in
Figure 5. Each repetition of the highlighted region adds the X parity of four more data
qubits, while measuring and quickly reinitializing one flag qubit. In terms of the number
of measurements m, the construction achieves up to w =4 (m — 1) — 2. It is fault tolerant
because X faults on the control wire cause flag configurations of alternating weights two or
three, that localize the fault to three possible consecutive locations along the control wire:
before, between or after two CNOT gates. The appropriate correction is for a fault between
the CNOT gates. <

Theorem 3 may be optimal; it does not appear to be possible to use fewer than three flag
qubits. With just one flag qubit, one can detect that an error has occurred, but not where.
As illustrated in Figure 6, either the control wire is unprotected at some point or for w > 4
there is no consistent correction rule.

By a similar argument, two flag qubits are not enough. Any correction based on a single
flag can have weight at most one, since the flag measurement itself could be faulty. However,
if at some point in the middle the control wire is protected by just a single flag, a weight-one
correction will not suffice. On the other hand, if both flags are used to protect the control
wire across the entire sequence of CNOT gates, we are unable to locate faults well enough to
correct them.

0 i
+) T, .1 ix . P i
0 ® Iy
& b »” o 1
() Oi hd Fany > ;(
b PN 4
D D 0> \ >4 A\ "
~ A X Oi &
AN > A\~ 0 Pary
& S ®
(a) (b)

Figure 4 (a) Circuit to measure an X®° stabilizer, CSS fault-tolerant to distance three. (b)
Circuit to prepare a six-qubit cat state, fault-tolerant to distance three.



P. Prabhu and B. W. Reichardt

b-+7

0-0—T0)-o—10)-9 .
+) ——— —o * * *
T

—o) —O —o —o —4

Figure 5 Distance-three fault-tolerant syndrome measurement only requires three flag qubits.
The highlighted region can be repeated to fit the weight of the stabilizer being measured.
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Figure 6 Distance-three error correction is not possible with only one flag qubit. Either (left)
the control wire is unprotected at some point *, from which an X fault can propagate to an error of
weight at least two; or (right) faults at a, b, ¢, causing respective errors I, X1, X, have no consistent
correction.

We would like to point out that this construction can also be used to prepare a w-qubit
cat state fault tolerantly to distance three. The conversion to this circuit follows three steps:
Remove one data qubit. Initialize the data qubits as |0). Remove the syndrome ancilla
measurement, so as to retain the qubit in the support of the stabilizer. An example of this
conversion is shown for w = 6 in Figure 4b. In Section 4, this method will be subsumed by a
better protocol that uses just one ancilla qubit.

3.2 Slow reset

» Theorem 4. The syndrome of X®¥ can be measured CSS fault-tolerantly to distance three
using m > 3 measurements, provided that

w<2(2m 1t —2(m—1)+3).

Proof. Two examples are shown in Figure 4a, for w = 6, and Figure 1b, for w = 10. As
in these figures, in general we collect the syndrome two qubits at a time into a syndrome
qubit that is initialized as |+). Between each of these pairs of CNOT gates, a CNOT is
applied from the syndrome qubit into one of m — 1 flag qubits. This leads to a sequence
of flag configurations, e.g., 100,110,111,011,001 for the w = 10 example. Based on the
observed flag configuration, a correction is applied as if an X fault had occurred between the
corresponding pair of flag CNOT gates.

Observe that the flag sequence changes one bit at a time; it can be thought of as a
path on the hypercube. It begins and ends with weight-one configurations, but otherwise
the configurations all have weight at least two. This is important for distance-three fault
tolerance because a fault could affect the flags, and only the first and last data corrections
have weight one. Also, the flag configurations along the sequence are distinct, so each is
associated with only one correction. The theorem then just follows from the flag sequence
construction in Lemma 2. <
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Figure 7 Distance-three fault-tolerant cat state preparation circuits. Note that, with fast reset,
only one ancilla qubit is required.
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The construction of Lemma 2 gives flag sequences of maximal length, 2¢ — 2a + 3. Indeed,
this follows since the number of vertices with odd weight greater than one is 2~ — @, and
vertices must alternate between odd and even weight.

Note that the approach of Theorem 4, with slow reset, is different from the fast reset case
of Theorem 3, in that a flag qubit is active and able to detect faults in more than one region
of the circuit.

4 Distance-three cat state preparation

Next we turn to the question of distance-three fault-tolerant preparation of cat states.
For preparing a two- or three-qubit cat state, any preparation circuit is automatically
fault-tolerant, because every error has weight zero or one. For example, on three qubits
XXI ~ 11X, since XXX is a stabilizer. Fault tolerance becomes interesting for preparing
cat states on w > 4 qubits.

The ideas of Theorems 3 and 4 can also be applied to cat state preparation. For example,
just as in Figure 4 a circuit for measuring X®% with three ancilla qubits corresponds to a
circuit to prepare a six-qubit cat state with two ancillas, similarly adapting the construction
of Theorem 4 allows preparing a 2(2% — 2a + 3) qubit cat state with a ancilla qubits each
measured once. However, we can do better.

» Theorem 5. For m > 2, one ancilla qubit, measured m times, is sufficient to prepare a
cat state on w qubits fault-tolerantly to distance three, for

w<3(2™—-2m+2).

Proof. Figure 7 illustrates our construction for the cases m = 3 and m = 4. In general, we
prepare a w-qubit cat state using CNOT gates from the first qubit, so that the possible
X errors from a single fault are 1, X1, X, X[3),.... (Here we are using the notation
[m] ={1,2,...,m} and Xg =[[;c5 X;.) We then compute parities of subsets of the qubits
into the ancillas, following the flag sequence from Lemma 2 and Figure 3. Although for
clarity Figure 7 shows the m parity checks being made in parallel, they can also be made
sequentially with just one ancilla qubit.

With the given correction rules, errors due to single faults are corrected up to possibly a
weight-one remainder. (For example, in Figure 7a, errors X(5), X[g) and X7} all result in the
parity checks 111, for which the correction X is applied.) The circuit also tolerates faults
within the parity-check sub-circuit, because a single fault here can flip at most one parity,
and no correction is applied for the weight-one configurations. <

By this method, the cat state is prepared in depth w — 1. The depth of the parity check
circuit, however, increases exponentially as 2™~2 for m > 3 if we consider slow reset (a = m).
This is evident from the flag sequences in Figure 3 as the maximum number of times any
flag bit is switched. The total depth of the circuit is then (w — 1) + 2m72,

Note that the construction from Theorem 5 does not help for syndrome measurement,
because the parity checks would in general become entangled with the data.

We can do slightly better if we allow an adaptive circuit, in which the parity checks are
chosen based on the outcome of a flag qubit measurement. For example, Figure 8 gives
a circuit to prepare a 15-qubit cat state using m = 3 measurements. Here, the result of
measuring the red ancilla determines how the other two ancillas are used.

5:9
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|0) —?—?—iZ |0) ﬁ +7
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Figure 8 Circuit to prepare a 15-qubit cat state by adaptive error correction, fault-tolerant
to distance three. Labels on the thick black wire indicate which data qubit in the block is being
addressed as the control or target of the CNOT. If a fault occurs while preparing the cat state on
the |+) qubit, it is partially localized by the red flag ancilla. The measurement result of this flag
then determines a set of parity checks to completely localize a possible fault. After all the ancilla
qubits have been measured, corrections are applied based on Table 2 and Table 3.

Table 2 Parity checks and correction rules when the red flag ancilla in Figure 8 is measured as 1.

3069 6®12 Possible errors  Correction
0 0 1, X1, Xpy X,
1 0 X3, Xaps X[5) X
1 1 Xie), X715 X[8) X7
0 1 Xpo), Xpiop, X Xnio)

» Theorem 6. Using an adaptive circuit, for m > 2, one ancilla qubit, measured m times,
can be used to prepare a cat state on w qubits fault-tolerantly to distance three, for

w<3(2™—2m+3).

Proof. Our construction will follow the same basic structure as the circuit in Figure 8.
Prepare the w data qubits as |[+0%~1), then apply CNOT; 4, CNOTq 4_1,...,CNOT; 5 to
get a cat state. Let k= 3-2m~1 — 2. Just before CNOT} 41 and just after CNOT} 2, apply
CNOTs into the first ancilla qubit, the red qubit in Figure 8, and measure it.

The remainder of the circuit depends on the measurement result. If it is 1, then a fault
has been detected. The error on the cat state can be one of

1, X0, X, X3 Xy Xpsps oovn Xp—1ps Xy Xt -

The correction procedure needs to determine in which of the above 1 + % groups of three

the error lies; then for any error in {X[gj],X[3j+1]7X[3j+2]} the correction X[3;,1; works.
Perhaps the easiest way to locate the error is by binary search using the Gray code in
Lemma 1, e.g., by computing parities between qubits 35 for j € {1,2,...,1+ %} Since
the measurement of the red ancilla could have been incorrect, it is important that the all-Os
outcome of the binary search correspond to the 1, X1, X5 error triple, as in Table 2. Using
m — 1 measurements, we can search 2™~ ! possibilities, which indeed is 1 + % (The search
circuit can also be made nonadaptive, as in Figure 8.)

Next consider the case that the first measurement result is 0, so no fault has been detected.
The error on the cat state can be one of X 1), X(ryo), .-+, X[ ~ 1. We again use the
remaining m — 1 ancilla qubits to measure parities of subsets of cat state qubits. Since there
is no guarantee of a fault having occurred yet, we use flag sequences from Lemma 2, where
the length of the weight-at-least-two flag sequence is J = (2~ — 2(m — 1) 4+ 1). The parity
checks are now done between qubits {k,k+1+3j,k+2+3J} for j € {0,1,...,J}, as shown
in Figure 9 and Table 3. We do not allow weight-one flag configurations to be able to correct
any errors since they can be triggered by a measurement fault on any one of the data qubits
involved in the parity check.
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1-21 £
22
k+1 =23
26
29
1-9 £
10 39
k+1 =11 w = 33
w=15 W13 - & v
ancilla qubits [0) & & +7
a—1=2 1[0)-& & +7 ) © ©-+2
ancilla qubits |0 & &
ancilla qubits |0) D D +7 Ackive E ! I i E
Active flags:
flags: ﬂ I H
Correction: ~ — X[ — Correction: = X4 X271 X[30)
(@) w=15,a=3. (b) w=33,a =4.
1-45 =
46
k+1 =47
50
53
56
59
62
65
68
71
74
w =75
0) - 87 & & +Z
a—1=4 10) ® <> b & +Z
ancilla qubits |0) & &b +7
0) 87 o 7
Active
flags:
Correction: = Xyg) X(51) X[sa) Xi57) Xoo] X(63) Xoe) X(oo) X[r2]

(c) w="75a=>5.

Figure 9 If the red ancilla flag in Figure 8 is not triggered, these circuits are used to find and
correct a possible error. The flag sequences (from Figure 3) and corresponding corrections are listed
at the bottom. Note that these sequences are nonadaptive, and can be used either with a ancilla
qubits, in a slow reset model, or with just one ancilla qubit in a fast reset model (because many of
the CNOT gates commute).
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Table 3 Parity checks and correction rules when the red flag ancilla is measured as 0.

1115 10414 Possible errors Correction
0 1 Flag/data qubit error None
1 1 X1y, Xi2p, Xpag) X2
1 0 X4y or flag/data qubit error None
0 0 1 None

Consolidating, we are allowed up to 3J + 1 CNOTs before the red ancilla is initialized,
and up to kK CNOTs in the monitored region of the red ancilla. In total we can create a cat
state on up to

w<3J+k+2=3(2" —2m+3)
qubits, with m total measurements. <

We also tested protocols where multiple flags are used for the initial partial localization
of a fault (in place of the red flag qubit). We found no improvement to our bounds on ancilla
overhead. It appears that ancillas are better used in the parity checks than for partial fault
localization.

5 Conclusion

In this paper, we optimize the overhead of distance-three fault tolerance for stabilizer
measurement and cat state preparation. If the circuit on w qubits must tolerate one fault,
we show that only ~ logw extra qubits are required. We detail the construction of a
maximal-length path on the hypercube and show that it can be used to greatly increase the
ability to catch and distinguish faults.

We describe two circuits for stabilizer measurement based on the speed of ancilla qubit
reset. With slow reset, a weight-w stabilizer can be measured fault-tolerantly to distance-
three using only [log, w] flag qubits for fault tolerance. With fast reset, only three flag
qubits are required, but the number of times they are measured and reset grows as ~ 7.

In our circuits for fault-tolerant cat state preparation we check for errors after the cat
state is non-fault-tolerantly prepared. We show, using a deterministic and an adaptive circuit,
that the overhead for fault tolerance can be as low as logarithmic in the size of the cat state.
In fact, only one flag qubit suffices, as long as it can reset quickly.

There are numerous avenues for further improvements. The circuits detailed in this
paper are only fault-tolerant to distance-three. Using more complex designs, flag-based
fault tolerance can be used to effect fault tolerance to arbitrary distance [1, 6]. It may
be interesting to try to develop higher-distance circuits for stabilizer measurement with
logarithmic overhead.

From the perspective of stabilizer algebra, a cat state is a CSS ancilla state. A future
avenue of research might look to extend these flag techniques to the fault-tolerant preparation
of general CSS ancilla states.

In order to execute the circuits in this paper, one qubit needs to be connected to all the
other qubits used. This does not bode well for architectures with limited connectivity. But
by mixing flag and transversal gate concepts for fault tolerance, it is possible to construct
stabilizer measurement circuits that can measure arbitrarily large stabilizers using only
local interactions, fault-tolerantly. This can be especially useful in technologies such as
superconducting qubits, where qubits only talk to neighbors on a 2-D lattice.
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—— Abstract

In the claw detection problem we are given two functions f : D — Rand g : D — R (|D| = n,
|R| = k), and we have to determine if there is exist z,y € D such that f(z) = g(y). We show
that the quantum query complexity of this problem is between Q(nl/ 2k 6) and O(nl/ et/ 4) when
2<k<n.
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1 Introduction

In this note we study the CLAW problem in which given two discrete functions f: D — R
and g : D — R (|D| = n, |R| = k) we have to determine if there is a collision, i.e., inputs
x,y € D such that f(x) = g(y). In contrast to the ELEMENT-DISTINCTNESS problem, where
the input is a single function f : D — R and we have to determine if f is injective, CLAW is
non-trivial even when k < n. This is the setting we focus on.

Both CrLAaw and ELEMENT-DISTINCTNESS have wide applications as useful subroutines
in more complex algorithms [5, 12] and as a means of lower bounding complexity [10, 1].

CLAW and ELEMENT-DISTINCTNESS were first tackled by Buhrman et al. in 2000 [8] where
they gave an O(nS/ 4) algorithm and Q(nl/ 2) lower bound. In 2003 Ambainis, introducing a
novel technique of quantum walks, improved the upper bound to O(ng/ 3) in the query model
[4]. It was soon realized that a similar approach works for CLaw [9, 13, 15]. Meanwhile
Aaronson and Shi showed a lower bound Q(n2/ 3) that holds if the range k = Q(n?) [2].
Eventually Ambainis showed that the Q(n2/ ?) bound holds even if k = n [3]. The same lower
bound has since been reproved using the adversary method [14]. Until now, only the Q(nl/ 2)
bound based on reduction of searching was known for CLAW with k = o(n) [8].

We consider quantum query complexity of CLAW where the input functions are given
as a list of their values in black box. Let Q(f) denote the bounded error quantum query
complexity of f. For a short overview of black box model refer to Buhrman and de Wolf’s
survey [7]. Let [n] denote {1,2,...,n}. Let CLAW,_ : [k]*" — {0,1} be defined as

1, if d,jx; =y,
CLAWn%k(-rla---yxnayla--'7y’ﬂ): .Z j'
0, otherwise

Our contribution is a quantum algorithm for CLAW,,_,; with quantum query complexity
Q(CLAW,,;) = O(n'/**k"/*) and a lower bound Q(CLAW,,_,;) = Q(n"/?k"/¢). In section 2
we describe the algorithm, and in section 3 we give the lower bound.
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2 Results
» Theorem 1. For all € > 0, we have Q(CLAW,, 1) = O(n1/2+5k:1/4).

Proof. Let X = (21,...,2,), Y = (y1,.-.,Yn) be the inputs of the function. We denote
k=n>.
Consider the following algorithm parametrized by « € [0, 1].
1. a. Select a random sample A = {a1,...,a¢} C [n] of size £ =4 -n® -Inn and query the
variables x4, ..., %q,.
Denote by X4 = {z, | a € A} the set containing their values. Do a Grover search for
an element y € Y such that y € X 4. If found, output 1.
b. Select a random sample A" = {af,...,a;} C Y of size ¢ and query the variables
yall,...,yaz.
Denote by Yar = {yas | @’ € A’} the set containing their values. Do a Grover search
for an element x € X such that x € Yy.. If found, output 1.
2. Run CLAWp 1 n—k algorithm (with the value of b specified below) with the following
oracle:
a. To get z;: do a pseudorandom permutation on x1,...,x, using seed ¢ and using
Grover’s minimum search return the first value x; such that z; ¢ X 4.
b. To get y;: do a pseudorandom permutation on yi,...,y, using seed ¢ and using
Grover’s minimum search return the first value y; such that y; ¢ X .
Let B={i€[n]|x; ¢ Xa}, B ={i€[n]|y; ¢ Ya} be the sets containing the indices of
the variables which have values not seen in the steps la and 1b. We denote |B| = b = n”.
Let us calculate the probability that after step la there exists an unseen value v which is
represented in at least n!~% variables, i.e., v ¢ Xa A |{i € [n] | z; = v}| > n!~®. Consider
an arbitrary value v* € [k] such that |{i | z; = v*}| > nl=® TFor i € [{], let Z; be the
event that z,, = v*. Vi € [{] Pr[Z;] > ":a. Let Z =3 ;i Zi- Then E[Z] = (- E[Z] =

a

n'~

4-n*-Inn- = 41nn. Using Chernoff inequality (see e.g. [11]),

Pr[Z = 0] < exp (; E[Z]) <exp(—2lnn) = %
The probability that there exists such v* € [k] is at most Z—Z = o(1). Therefore, with
probability 1 — o(1) after step la, every value v € Xp is represented in the input less than
n!~ times. The same reasoning can be applied to step 1b and the set B’. Therefore, with
probability 1 — o(1) both b and b are at most k- n!=® = p*+1-2,

Similarly, we show that with probability 1 — o(1) each = € B appears as the first element
from B in at least one of the permutations of the oracle in step 2. Let W be the event
that x € B appears in the i-th permutation as the first element from B. E[W7] = %.
Let W* = 3 ciapinn Wi'- E[W*] = 4blnn - 3 =4lnn. PrW?® =0] < exp(—2Inn) = 5.
Pr[Hz € B: W® =0] < %% = 1 = o(1). The same argument works for B’. Therefore, if there
is a collision, it will be found by the algorithm with probability 1 — o(1).

We also show that with probability 1 — o(1), in all permutations the first element from
B appears no further than in position 4% Inn (and similarly for B’). We denote by P; ;
the event that in the i-th permutation in the j-th position is an element from B. E[P; ;] =
2 We denote P; = Zj€[4-%-lnn] P, ;. E[P] =4 -Inn. Pr[P;=0] < exp(—2Inn) = 5.

Pr[3i € [4blnn] : P, =0] < 41’;# < 4”71# = 0(1). Therefore, the Grover’s minimum search

will use at most O (/%) queries.
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The steps la and 1b use O(n®) queries to obtain the random sample, and O(y/n) queries
to check if there is a colliding element on the other side of the input. The oracle in step 2
uses O(\/njﬁ) queries to obtain one value of x; or y;.

Therefore the total complexity of the algorithm is

O(ﬂa + ’/l% + Q(CLAW4b1nn_>k) . n%7%6> .
By using the O(n%) algorithm in step 2,

Q(CLAW4b1nn—>k) : n%7%5 =ns

< p3tsletl-a)

44—
=N 6 s
and the total complexity is minimized by setting o = 4*%. However, we can do better

than that. Notice that the O(ng/ 3) algorithm might not be the best choice for solving
CLAW4p1nn_sk in step 2.

Let Ay denote the regular O(n2/ 3) CLAW,,_ algorithm. For i > 0, let A; denote a
version of algorithm from Theorem 1 that in step 2 calls A;_1. Then we show that for all n
and all 0 < » < %,

Q(A) = O(n™),
i 1) peq0itl
where T;(x) = %
The proof is by induction on i. For ¢ = 0, we trivially have that Q(Ay) = O(n2/3). For
the inductive step, consider the analysis of our algorithm. Let us set o = T;(»¢). First, notice

that 7;(>) is non-decreasing in » and T;(2) = 2 for all i. Thus for all » < 2,

T;(5) < %, hence o < % and ﬁ < % Second, since the coefficient of s is % < 1 the
function T;(3) is above 3 for s < 2, establishing o — 5 > 0. This confirms that o = T; ()
is a valid choice of a.

It remains to show that the complexity of step 2 does not exceed ON(nT'i(”)). By the
inductive assumption and analysis of the algorithm, the complexity (up to logarithmic factors)

we have

bl

=475 ) + %5 Finally, we have

of the second step is n to the power of (1 — a + ) - Ti_l(
to show that

By expanding T;_1(s) and with a slight rearrangement, we obtain

(2071 — )5 + 281 — T (5¢) + ) < Ti(5) +
2i+1 _ 1 - 2 ’

We can further rearrange the required inequality by bringing T;(3) to right hand side and
everything else to the other. Then we get

. . i+1 . .
(21—1_1+21_2 2—1)%+21 1 9t
S <Ti()| = + :

2 2i+1 _ 1
i 1) seg0itl
After simplification we obtain % < T;(5¢), which is true.

: : 2-1 _ 1 : 2t 1 !
Since hmi_>oo 5i¥2_1 — 4 and hmi_>oo iFz_1 — 9 the result follows. |
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3 Lower Bound

We show a Q(nl/ 2 6) quantum query complexity lower bound for CLAW,, .
» Theorem 2. For all k > 2, we have Q(CLAW,, ) = Q(nl/Qk:l/G).

Proof. Let PSEARCH,, : (x U [k])" — [k] be the partial function defined as

PSEARCH,, (21, T2, . . .

{a:i, ifa; #*,Vj#i:x; ==
axm): .

undefined, otherwise

Consider the function f, x = CLAW_,; 0 PSEARCH |, /1. One can straightforwardly reduce
frk(z,y) to CLAW, 12(2’,y') by setting
{xi, if x; # *

I

kE+1, ifx;=x
and

‘ k42, ify, ==

Now we show that Q(fn k) = Q(k%\/n/k) = Q(n'/?k"*). The fact that Q(CLAW_,),) =

Q(k2/3) has been established by Zhang [16]. Furthermore, thanks to the work done by
Brassard et al. in [6, Theorem 13] we know that for PSEARCH,,, a composition theorem holds:
Q(h o PSEARCH,,) = Q(Q(h) - Q(PSEARCH,;,)) = Q(Q(h) - y/m). Therefore,

Q(CLAW,, 1) > Q(CLAWk_Q_)k_Q OPSEARCHLLJ) = Q(k;%\/Z) = Q<n1/2k1/6).

k—2

4 Open Problems

Can we show that Q(CLAWn*)n?/g) = Q(n2/3)? In particular, our algorithm struggles with

. s . .
instances where there are %3 singletons only two (or none) of which are matching and

the remaining variables are evenly distributed with ©(n'"/?) copies each, such that none are
matching. Thus our algorithm then either has to waste time sampling all the high-frequency
decoy values or have most variables not sampled by step 2. If this lower bound held, it would
imply a better lower bound for evaluating constant depth formulas and Boolean matrix
product verification [10, Theorem 5].
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—— Abstract

Quantum state tomography is a powerful but resource-intensive, general solution for numerous
quantum information processing tasks. This motivates the design of robust tomography procedures
that use relevant resources as sparingly as possible. Important cost factors include the number of
state copies and measurement settings, as well as classical postprocessing time and memory. In
this work, we present and analyze an online tomography algorithm designed to optimize all the
aforementioned resources at the cost of a worse dependence on accuracy. The protocol is the first to
give provably optimal performance in terms of rank and dimension for state copies, measurement
settings and memory. Classical runtime is also reduced substantially and numerical experiments
demonstrate a favorable comparison with other state-of-the-art techniques. Further improvements
are possible by executing the algorithm on a quantum computer, giving a quantum speedup for
quantum state tomography.
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1 Motivation

Quantum state tomography is the task of reconstructing a classical description of a quantum
state from experimental data. This problem has a long and rich history [5] and remains a
useful subroutine for building, calibrating and controlling quantum information processing
devices. Over the last decade, unprecedented advances in the experimental control of
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Figure 1 Basis measurement primitive. Global measurements (left) require implementing a
global unitary that affects all n qudits prior to measuring in the computational basis. A k-local
measurement primitive only allows for unitaries that affect groups of k (geometrically) local qudits;
see the left-hand side for a visualization with n = 8 and k£ = 2.
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quantum architectures have pushed traditional estimation techniques to the limit of their
capabilities. This is mainly due to a fundamental curse of dimension: the dimension of state
space grows exponentially in the number of qudits, i.e. a quantum system comprised of n
d-dimensional qudits is characterized by a density matrix p of size D = d". The impact of
this scaling behavior is further amplified by the probabilistic nature of quantum mechanics
(“wave-function collapse”). Information about the state is only accessible via measuring the
system. An informative quantum measurement is destructive and only yields probabilistic
outcomes. Hence, many identically prepared samples of the quantum state are required to
estimate even a single parameter of the underlying state. Characterizing the full state of
a quantum system necessitates accurate estimation of many such parameters. Storing and
processing the measurement data also requires substantial amounts of classical memory and
computing power — another important practical bottleneck. To summarize: the curse of
dimension and wave-function collapse have severe implications that necessitate the design of
extremely resource-efficient protocols.

In this work, we focus on reconstructing the complete density matrix p from single-copy
measurements. This is an actual restriction, as it excludes some of the most powerful
tomography techniques known to this date [34, 19]. While very efficient in terms of state
copies, these procedures are extremely demanding in terms of quantum hardware — an actual
implementation would require exponentially long quantum circuits that act collectively on
all the copies of the unknown state stored in a quantum memory.

We also adopt a measurement primitive that mimics the layout of modern quantum
information processing devices. Apply a unitary U to the unknown state p +— UpUT
and perform measurements in the computational basis {|i) : ¢ =1,...,D}. Fixing U and
repeating this procedure many times allows for estimating the associated outcome distribution:

lpu(p)l; = (@|UpUTi) fori=1,...,D. (1)

This outcome distribution characterizes the diagonal elements of UpUT. In general, access to
a single diagonal is insufficient to determine p unambiguously. Instead, multiple repetitions of
this basic measurement primitive are necessary. We refer to Fig. 1 for an illustration. Different
ensembles &€ of accessible unitary transformations give rise to different basis measurement
primitives. When employed to perform state tomography — i.e. reconstruct an unknown state
p up to accuracy € in trace distance — the following fundamental scaling laws apply to any
(single-copy) basis measurement primitive and any tomographic procedure:
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Table 1 Resource scaling for state tomography protocols based on global measurements (single
copy): Here, D denotes the Hilbert space dimension, r is the rank of the target state and ¢ is
the desired precision (in trace distance). We have suppressed constants, as well as logarithmic
dependencies in D and r. The first row summarizes known fundamental lower bounds, while the

label “unknown” indicates a lack of rigorous theory support.

l

| meas. primitive | basis settings | state copies | runtime | memory |

lower bounds arbitrary >r > DrZe2 > DrZe2 > Dr
CS [40] Haar r unknown D* D?
CS [27] Clifford D3y unknown D* D?
PLS [18] 2-design D Dre? D? D?

this work 4-design re 2 Dr2e D?p5/2e=5 Dre=?2

this work Clifford roe 2 Drie? D?rbe=® Dr?e~?

(i) The number of basis measurement settings M must scale at least linearly with the
(effective) target rank r = rank(p): M = Q(r). This corresponds to estimating a total
of DM = Q(rD) parameters [21, 25].

(ii) The sampling rate N, i.e. the number of independent state copies required to obtain
sufficient data, must depend on rank, dimension and desired accuracy: N = ) (Dr2 / 62)
[19].

(iii) The classical storage S is bounded by dimension times target rank: S = Q(rD).
Constraint iii. follows from a simple parameter counting argument — specifying a general
D x D-matrix with rank r requires (order) rD parameters — while i. and ii. reflect fundamental
limitations that have only been identified comparatively recently. These bounds cover three
of the four most relevant cost parameters. For the last one we are not aware of a nontrivial
rigorous lower bound:

(iv) The classical runtime associated with processing the measurement data to produce an

estimated state o, should be as fast as possible.

The last decade has seen the development of several procedures that provably optimize
some of these four cost factors up to logarithmic factors in the ambient dimension. We refer
to Table 1 for a detailed tabulation of resource requirements. For now, we content ourselves
with emphasizing that existing procedures have been designed to either minimize the number
of measurement settings (compressed sensing approaches [17, 32, 28]) or the required number
of samples per measurement (least-squares approaches [37, 18]). Neither of these approaches
seems to be well-suited for optimizing classical postprocessing memory and time. Finally,
we point out that currently available quantum technologies are not perfect [35]. Practical
tomography procedures should be robust with respect to imperfections, most notably state
preparation and measurement errors.

2 Overview of results

In this work, we develop a robust algorithm for almost resource-optimal quantum state
tomography from (single-copy) basis measurements that comes with rigorous convergence
guarantees. The theoretical results are closely related to quantum state distinguishability
[23, 22, 3, 33] and strongest for global measurement primitives (Fig. 1, left) that are sufficiently
generic. In the regime of low target rank r, the proposed method improves upon state-of-the
art techniques at the cost of a worse dependence on target accuracy €. The actual numbers
are summarized in Table 1. The required number of basis measurement setting matches
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results from compressed sensing [17, 32, 28] — a technique that has been specifically designed
to optimize this cost function — while the required number of state copies is comparable
to projected least squares [37, 18] — which is known to be (almost) optimal in this regard.
Classical runtime and memory cost are also reduced substantially. We also obtain rigorous
results for k-local measurement primitives (Fig. 1, right), but the obtained theoretical
numbers only become competitive if the locality parameter k is sufficiently large. We believe
that this shortcoming is an artifact of poor constants and refer to App. B.4 of the extended
version [9] for details.

2.1 Algorithm and theoretical runtime guarantee

The tomography algorithm — which we call Hamiltonian updates — is based on a variant
of the versatile mirror-descent meta-algorithm [38, 10], see also [7]. Mirror descent and
its cousin, matrix multiplicative weights, have led to considerable progress in algorithm
design across several disciplines. Prominent examples include fast semidefinite programming
solvers [20, 4, 31, 39, 8, 6, 7], quantum prediction techniques like shadow tomography [1],
the online learning methods of [2] and the tomography protocol of [41]. The algorithm design
is summarized in Algorithm 1. The key idea is to maintain and iteratively update a guess
for the unknown state. The sequence of guess states is parametrized by Hamiltonians

exp(—Hy)

o :m for t=0,1,2,... (Gibbs / thermal state)

and initialized to an infinite temperature state o9 = I/D (maximum entropy principle).
At each subsequent iteration, we choose a unitary rotation U ~ & at random from a fixed
ensemble, estimate the outcome distribution (1) of the rotated target state UpUT and compare
it to the predicted outcome distribution Uc,UT of the current guess state. If the two outcome
distributions differ by more than mere statistical fluctuations, o; is an inadequate guess for
p.

We then update the guess state oy — 0,41 by including a small energy penalty in the
associated Hamiltonian that penalizes the observed mismatch and repeat. Heuristically, it is
reasonable to expect that this update rule makes progress as long as each newly selected basis
provides actionable advice, i.e. discrepancies in the outcome distributions. As we prove in
App. A of the extended version [9] that we indeed make progress in relative entropy. Things
get more interesting when this is not the case. Predicted and estimated outcome distribution
can be very close for two reasons (i): the current iterate oy is close to the unknown target p
(convergence); (ii) the current basis measurement cannot properly distinguish between oy
and p, even though they are still far apart (false positive). It is imperative to protect against
wrongfully terminating the procedure due to the occurrence of a false positive. Hamiltonian
Updates (Algorithm 1) suppresses the likelihood of wrongfully terminating by checking
closeness in (up to) L additional random bases. The required size of such a control loop
depends on the measurement primitive. Broadly speaking, generic measurement ensembles —
like Haar-random unitary transformations — are very unlikely to produce false positives; while
highly structured ensembles — like mutually unbiased bases — can be much more susceptible.
The following relation introduces two ensemble-dependent summary parameters that capture
this effect:

Prye [llpu(p) = pu(ar)lle, = 0 (p, ov)llp = otlla] = 7e(p; 01). (2)

The parameter 6¢(p, o¢) relates an observed discrepancy in outcome distributions (measured
in ¢, distance) to the Frobenius distance in state space. As detailed below, it captures the
minimal progress we can expect from a successful update o; — oy41. The second parameter
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Algorithm 1 Hamiltonian Updates for quantum state tomography.

Input: error tolerance €, number of loops L.

Initialize: ¢t = 0, H; = 0, CONVERGENCE=FALSE

while CONVERGENCE=FALSE do
compute oy = exp(—Hy)/tr(exp(—Hy)) > current guess for the state p
select random basis measurement {U|i)(i|U"}

compute outcome statistics [p;] of oy > classical computation
estimate outcome statistics [g;] of p > quantum measurement
check if [p;] and [¢;] are e-close in ¢; distance
if No then set P =3 _  [i)il > collect outcomes for which p; > ¢;
Set 1 = gllp — qlle,
Hyyy < Hy +nUTPU > energy penalty for mismatch (in this basis)
update o¢41 = exp(—Hyy1)/tr(exp(—Hit1))
t—t+1 > update counter of number of iterations
else if YES then > current guess may be close to p
check L additional random bases > suppress likelihood of false positives
if /; distance is always < € then > current guess is likely to be close
set CONVERGENCE=TRUE
end if
end if
end while

Output: H,

7e(p, 0¢) lower bounds the probability of observing an outcome discrepancy that appropriately
reflects the current stage of convergence. This parameter controls the size of the control loop.
It is desirable to choose both parameters as large as possible, but there is a trade-off (making
¢ (p, o¢) larger necessarily diminishes 7¢(p, 0¢)) and both depend heavily on the measurement
ensemble. One of our main theoretical contributions is a rigorous convergence guarantee
for Hamiltonian updates (Algorithm 1) that only depends on the ambient dimension D, the
target rank r = rank(p), as well as the worst-case ensemble parameters

Oc(p) = max Og(p,0) and 7¢(p) = max 7¢(p,0). (3)

o state o state
» Theorem 1 (informal statement). Fiz a measurement primitive £, a desired accuracy
€ and let p be a rank-r target state. With high probability, Algorithm 1 requires at most
T = O (rlog(D)/(6s(p)e)?) steps — each with a control loop of size L = O(log(T)/7e(p)) —

to produce an output o, that obeys ||p — 0|1 < e.

This convergence guarantee is also stable with respect to imperfect implementations. In
particular, we only need to estimate measurement outcome statistics to a certain degree
of accuracy: O (Dr/(0g(p)e)*) measurement repetitions suffice for each basis. This implies
that the total number of measurement settings and state copies are bounded by

M =TL ~ O (rlog(D)/(te(p)bs(p)*€®)) (measurement settings), (4)
N ~0 (Dr?log(D)/(re(p)0e(p)*e*)) (sample complexity). (5)

To increase readability, we have suppressed the logarithmic contribution in 7.
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2.2 Connections to quantum state distinguishability

The bounds for M in Eq. (4) and N in Eq. (5) are characterized by worst-case ensemble
parameters (2). These are intimately related to quantum state distinguishability: how good is
a fixed measurement primitive £ at distinguishing state p from state o in the single-shot limit?
Ambainis and Emerson [3] showed that the optimal probability of successful discrimination
is given by psuce = % + iEUNngU (p) — pu(o)|le, and achieved by the maximum likelihood
rule, see also [33]. It is possible to relate this bias to the Frobenius distance in state space:

Ev~ellpu(p) — pu(o)lle, > Xe(p,0)llp — o2

The proportionality constant Ag(p, o) measures how well the measurement primitive is
equipped to distinguish p from o. It is closely related to the ensemble parameters defined in
Eq. (2) and has been the subject of considerable attention in the community. Tight bounds
have been derived for a variety of measurement primitives, such as Haar random unitaries
and approximate 4-designs [3, 33|, random Clifford unitaries [29] and k-local (approximate)
4-designs [30]. Simple probabilistic arguments allow for converting these assertion into lower
bounds on both 0g(p) and 7¢(p). Inserting these bounds into Eq. (4) and Eq. (5) then
implies the measurement and sample complexity assertions advertised in Table 1. We refer
to Appendix B of the extended version [9] for a detailed case-by-case analysis and content
ourselves here with an overview. We start with the strongest measurement primitive: Haar
random unitaries and approximate 4-designs achieve 0¢(p), 7e (p) = const for any target state.
Hence, M = O(rlog(D))/€?) basis settings and N = O(Dr?log(D)/€*) state copies suffice.
Clifford random measurements achieve g (p) ~ r~2,7¢(p) ~ r~2. That is, they only have
a worse dependency on the rank, but perform as well as Haar measurements in terms of
the ambient dimension. On the other hand, more local measurement settings defined by
unitaries acting on at most k qubits have Og(p) ~ exp(—O(n/k)), e(p) ~ exp(—O(n/k)),
showing an (exponentially) worse dependency on the number of qudits when compared to
Haar measurements. Empirical studies below do, however, suggest a much more favorable
performance in practice.

This scaling highlights both a core strength and a core weakness of Hamiltonian updates.
In terms of dimension D and rank r, these numbers saturate fundamental lower bounds on
any tomographic procedure up to a logarithmic factor. However, the number of measurement
settings also depends inverse quadratically on the accuracy. Furthermore, the accuracy enters
as €4, not €2 in the sample complexity. Thus, high accuracy solutions do not only require
many samples, but also many basis measurement settings. This drawback is a consequence
of a “curse of mirror descent (or multiplicative weights)”. These meta-algorithms are very
efficient in terms of problem dimension, but scale comparatively poorly in accuracy [4].
However, inverse polynomial scaling in accuracy e is an unavoidable feature of quantum
state tomography. Hence, tomography is a reasonable setting to apply algorithms that trade
dimensional dependency for accuracy. Moreover, for most applications, it suffices to recover
the state up to precision € = O(polylog(D)~1).

3 Summary and comparison to relevant existing work

We propose a variant of mirror descent [38, 10] to obtain resource-efficient algorithms for
quantum state tomography. In recent years, mirror descent and its cousins have been
extensively used to obtain fast SDP solvers [20, 4, 31, 39, 8, 6, 7], to develop prediction
algorithms like shadow tomography [1], the online learning methods of [2] and the tomography
protocol of [41]. Key advantages are resource efficiency, as well as intrinsic resilience towards
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noise. Empirical studies summarized in Fig. 2 confirm these theoretical assertions. A
downside is, however, that the number of iterations may depend on the desired target
accuracy €. We focus on obtaining a e-approximation in trace distance of a D-dimensional

state p from (random) basis measurements on i.i.d. copies (global classical description).

Our goal is to optimize the different resources required for that task. These include the
number of state copies (sample complexity), the cost for processing measurement data
(classical postprocessing), as well as the associated memory cost. The multipronged resource
efficiency of our results becomes particularly pronounced if the underlying target state has
(approximately) low-rank r < D. This is a natural assumption in most applications, but can
also be relaxed to states with low Rényi entropy, see App. G of the extended version [9].

Thus, our results are similar in spirit to the tomography algorithms based on compressed
sensing (CS) [17, 32, 14, 36, 28], or projected least squares (PLS) [37, 18]. These also focus
on rigorous and (nearly) optimal sample complexity in the low-rank regime combined with
efficient postprocessing. Table 1 summarizes the resources required for these protocols, as
well as our new results. These compare favorably with existing methods. We note that for
approximate 4-design measurements, both sample complexity and memory — as functions
of D and r — are essentially optimal [34, 19]. Compared to existing approaches, we obtain
significant savings in both runtime and memory. Moreover, as pointed out in [41], there are
also qualitative advantages.

Current schemes that minimize the number of basis settings [40, 27] are only known to do
so with perfect knowledge of the underlying measurement outcomes. This will never be the
case in practice, due to statistical fluctuations. Thus, to the best of our knowledge, our work
is the first to rigorously obtain recovery guarantees with imperfect knowledge of outcomes
and basis settings that only scale logarithmically with the ambient dimension and linearly
with rank (albeit with the extra e dependency).

The focus of this work differs from other recent applications of mirror descent to quantum
learning [2, 1, 6]. Broadly speaking, these works focus on obtaining a classical description

of the state — a shadow — that approximately reproduces a fixed set of target observables.

This is a different and weaker form of recovery. Moreover, these works prioritize sample
complexity, not necessarily classical postprocessing resources. Minimizing these classical
resources is a core focus of this work.

Having said this, the idea of using (variants of) mirror descent for quantum state (and
process) tomography is not completely new. Similar ideas were proposed in Refs. [13, 16]
and have been experimentally tested [11, 24]. More recently, Youssry, Tomamichel and Ferrie

proposed and analyzed state tomography based on matrix exponentiated gradient descent [41].

They focused on the practically relevant case of local (single-qubit) Pauli measurements and
established convergence to the target state as the number of samples goes to infinity. They

also pointed out conceptual advantages, such as online implementation and noise-robustness.

The results presented here add to this promising picture. We equip (a variant of) mirror
descent with rigorous performance guarantees in the non-asymptotic setting, optimize actual
implementations and establish robustness in a more general setting. Moreover, our results
apply to any measurement procedure that is capable of distinguishing arbitrary pairs of
quantum states.

We also want to point out that the method presented here could also be implemented
on a quantum computer. This would result in substantial runtime savings — a quantum
speedup for quantum state tomography. Suppressing polylogarithmic terms, a runtime of
order O(D2r3¢9) suffices to obtain a classical description of the target state. We refer to
App. E of the extended version [9] for details and proofs. To the best of our knowledge, this
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Recovery of 8 qubit random state under noise, € = 0.04
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Figure 2 Convergence of Algorithm 1 for different noise models. We consider Haar-random
global measurements of a 8-qubit pure target state with target accuracy e = 0.04. Different colors
track convergence for different noise models: (blue) amplitude damping noise with parameter €/4;
(red) white noise with standard deviation €/4 that mimics one-shot noise; (orange) zero noise. All
logarithms are base 10 and the shaded areas indicate 25% and 75% quartiles, estimated from 20
samples.

is the first quantum speedup for low-rank tomography beyond the results of Kerenidis and
Prakash [26] which cover pure, real target states (r = 1) exclusively and work under the
stronger assumption of access to a controlled unitary that prepares the state.

Finally, we want to emphasize that the proposed reconstruction procedure can be em-
powered by advantageous measurement structure. Storage-efficiency stems from the fact
that we can keep track of the Hamiltonian — not the associated Gibbs state — which inherits
structure from the underlying measurement procedure. Runtime savings are achieved by only
exponentiating the Hamiltonian approximately and exploiting fast matrix-vector multiplica-
tion. We refer to App. D of the extended version [9] for details and content ourselves here
with a vague, but instructive, analogy: View Algorithm 1 as an adaptive cool-down procedure.
We start with a Gibbs state at infinite temperature and, at each step, we cool down the
system in a controlled fashion that guides the thermal state towards the unknown target.
Importantly, each update is small and the number of total cooling steps is also benign. Hence,
we never truly leave the moderate temperature regime and avoid computational bottlenecks
that typically only arise at low temperatures. In turn, the output of our algorithm is in the
form of a Hamiltonian whose Gibbs state is close to the target state. A list of Gibbs state
eigenvalues and corresponding eigenvectors can be obtained by block Krylov iterations, see
App. F of the extended version [9]. Runtime and memory cost of this conversion procedure
can never exceed those of Algorithm 1.

4 Numerical experiments

We complement our theoretical assertions with empirical test evaluations for systems com-
prised of up to 10 qubits. The results look promising and may establish Algorithm 1 as a
practical tool for quantum state tomography. We remark that our numerical implementation
has two additional details when compared with the one described in Algorithm 1. Although
these modifications do not change the asymptotic runtime analysis of the algorithm, they
can substantially reduce runtime and sample complexity in practice.

The first alteration we do is to recycle the last measurement data after a successful
update. More precisely, after each update o, — o441, we then check if the new iteration
o¢41 is still distinguishable from p under the previous measurement basis. Only if this is
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Recovery 8 qubit random state, € = 0.04 Recovery 8 qubit EPR pair, € =0.04

¢ooegy ® 8-local aacy Py ® 8-local
—0.44 U. ® 4-local —0.44 a :- ® 4-local
' ® 2-local 2 ® 2-local
—0.6 1-local L 1-local
o ! o —0.6 )
v 5]
5 038 H 5 i!
z " 5 —08 3
@ _10 [ ] o
S | ® !
o H I (]
g t 5 -1.0 o8
E -12 " 50,’ o.‘
N ege
X ~1.24 eg®
-1.4 "‘- 12 ‘..C
"l' .‘. ®esee
-1.6 S8y -1.4+ %0009
6 g 1’0 1’5 2‘0 2’5 3‘0 0 5 10 15 20 25 30

Measurement settings Measurement settings

Figure 3 Convergence of Algorithm 1 for different measurement localities. Different colors track
convergence (in logarithmic trace distance) for 8-qubit basis measurements with different localities
and target accuracy € = 0.04. Individual basis measurements are subject to white noise with standard
deviation €/4. (Left) Reconstruction of a generic pure target state. (Right) Reconstruction of a
highly structured target state (EPR/Bell state). All logarithms are base 10 and the shaded area
indicate 25% and 75% quartiles, estimated from 20 samples.

not the case, we move on to sample a new measurement setting. Otherwise, we re-use the
already known measurement basis to drive another update in the same direction. We observe
empirically that this minor modification has very desirable consequences. It leads to a much
faster convergence throughout early stages of the algorithm and, by extension, reduces the
number of required measurement settings significantly.

What is more, this recycling procedure cannot change the asymptotic scaling of the
algorithm. To see this, note that the modification can only affect postprocessing complexity.
Indeed, it clearly does not require us to sample more states or measurement settings.
Finding another violation can only bring us closer to the state in relative entropy. And the
postprocessing time can only double in the worst case. This worst case scenario happens
when after updating every basis once, we have already converged in that basis and checking
again does not lead to further convergence. We will refer to this variation as the last step
recycling strategy. It is explained in detail in the appendix (Algorithm 2 of the extended
version [9]).

Other variations of this basic principle come to mind. For instance, we need not stop at
testing the current iteration against the previous measurement basis. We can also test it
against all measurements that have already accumulated. This variation can further reduce
the (total) number of basis settings required to converge. Fig. 4 confirms this intuition.
However, this strategy comes at the expense of an increase in the computational complexity
of the postprocessing. We refer to this strategy as the complete recycling strategy.

Apart from these practical improvements, we have also tested desirable fundamental
properties of Algorithm 1. Chief among them is noise resilience. As advertised in Sec. 2
and proved in App. C of the extended version [9], the performance of the algorithm under
This
feature is empirically confirmed by Fig. 2. For detecting a random pure state on 8 qubits,

arbitrary noise of bounded intensity is indistinguishable from the noiseless case.

different noise sources — such as shot noise and amplitude damping — affect convergence in a
very mild fashion only (robustness). It is also interesting to note that the convergence in
trace norm appears to be polynomial for the first measurements and then switches to an
exponential phase.
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Another interesting figure of merit is measurement locality. The assertions that underpin
Algorithm 1 do, in principle, extend to local measurement primitives. But, as detailed in
App. B.4 of the extended version [9], the resulting numbers look rather pessimistic and scale
unfavorably with measurement locality k. Empirical studies do paint a much more favorable
picture, see Fig. 3. The two subplots address reconstruction of a typical 8-qubit target state
(left), as well as a highly structured one (right). A direct comparison lends credence to a
conjecture voiced in App. B.4 of the extended version [9] below: generic or typical states are
easier to reconstruct with local measurements than highly structured ones.

Quality of recovery under noise Postprocessing time
-1.2
4“1 e cs °
1.4+ ® HU total rec. Y [
P ° 34 HU last rec.

~16 o
[ Y [ ] L J ] [ ]
= o« 3 .
5 —1.81 () = 24
z ° 4 @ ]
5 20 €
8 ] (] o 1 (] o
5 -2.2 S
g - .
- 24 ? 04 « 8

e s e 3 o
2671 o ® HU total rec. 1
o8 HU last rec.
2 4 6 8 10 2 4 6 8 10
Number of qubits Number of qubits

Figure 4 Comparison between Algorithm 1 (HU) and compressed sensing (CS) tomography.
(Left) Reconstruction of a random n-qubit pure state from 15 globally random basis measurements
corrupted by amplitude damping noise (p = 0.005). Different colors track the logarithmic trace
distance error achieved by either CS (blue) or variants of HU (orange and red) for ¢ = 0.01. Shaded
regions indicate the 25 — 75 percentiles over 20 independent runs. (Right) Empirical runtime for
executing (naive implementations of) the three different reconstruction procedures on a conventional
laptop. CVX [12] — a standard solver for semidefinite programs — could not go beyond 7 qubits.

Last but not least, we compare Algorithm 1 against the state of the art regarding
tomography from very few basis measurements. Compressed sensing (CS) [17, 14, 27, 28] has
been designed to fit a low rank solution to the observed measurement data by also minimizing
the trace norm over the cone of positive semidefinite matrices (X = 0):

e . M ~ 2
minimizexy-o tr(X) subject to Zi:l lpv, (p) — pu, (X)||7, < e (6)

Fig. 4 compares Algorithm 1 with compressed sensing (CS). CS is contingent on solving a
semidefinite program. We used CVX [12], a standard SDP solver, in Python. Algorithm 1
has also been implemented in Python. Open source code is available at [15]. We see that
Hamiltonian Updates is more noise-resilient than CS. The rightmost plot also underscores
the importance of memory improvements. A high-end desktop computer already struggles
to solve SDP (6) for 8 qubits (even though the extrapolated computation time Fig. 4 still
seems reasonable), while 10 qubits (and more) have not been a problem for Algorithm 1.
We believe that Fig. 4 conveys both quantitative and qualitative advantages of Hamiltonian
Updates over CS methods. This seems particularly noteworthy, because we compared both
procedures for pure target states (rank(p) = 1) — a use-case tailor-made for CS approaches.
We also stress that the implementation of the algorithm used to generate this data was not
optimized, there is room for further improvements.

Let us conclude with the most important take-away from Figs. 2, 3 and 4. The theoretical
assertions from Sec. 2 carry over to practice. Moreover, recycling of data ensures that the
number of measurement settings remains small even if we try to characterize the state up to
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high precision. Our theoretical results suggest that order 10° algorithm iterations, and thus
also measurement settings, might be required to obtain a € = 10~2-approximation of a pure
state in dimension D = 2'°. But our numerics demonstrate that already order 10! suffice to

achieve convergence. The main theoretical drawbacks of Algorithm 1 — most notably, the

poor scaling in accuracy — may be a non-issue in practical use cases. These findings establish

our algorithm as a rare instance of a method that is provably (essentially) optimal and has a

competitive performance in practice.
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—— Abstract

Motivated by estimation of quantum noise models, we study the problem of learning a Pauli channel,

or more generally the Pauli error rates of an arbitrary channel. By employing a novel reduction to
the “Population Recovery” problem, we give an extremely simple algorithm that learns the Pauli
error rates of an n-qubit channel to precision € in £+ using just O(1/€?)log(n/e) applications of the
channel. This is optimal up to the logarithmic factors. Our algorithm uses only unentangled state
preparation and measurements, and the post-measurement classical runtime is just an O(1/¢) factor
larger than the measurement data size. It is also impervious to a limited model of measurement
noise where heralded measurement failures occur independently with probability < 1/4.

We then consider the case where the noise channel is close to the identity, meaning that the
no-error outcome occurs with probability 1 — 7. In the regime of small 7 we extend our algorithm
to achieve multiplicative precision 1 + € (i.e., additive precision en) using just O(ﬁ)log(n/e)
applications of the channel.
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1 Introduction

A major challenge in the analysis of engineered quantum systems is estimating and modeling
noise. The most standard theoretical model for noise in the study of quantum error correction
and fault tolerance [20] is the n-qubit Pauli channel:

P Z p(C) - oopol. (1)
Cce{0,1,2,3}n

Here 0¢ = 0¢, ® --- ® 0¢,, is a tensor product of the Pauli operators og, 01, 02,03, and p
is a probability distribution on {0, 1,2,3}™. The numbers p(C) are referred to as the Pauli
error rates. Additional motivation for the Pauli channel model comes from the practical
technique of randomized compiling [13, 22], which converts a general noise channel A (with
potentially coherent errors) to a Pauli channel Ap having the same process fidelity as the
original channel. We refer to the p(C) values for Ap as the “Pauli error rates” of the original
general channel A.
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Given an experimental setup (possibly with randomized compiling), a natural challenge
is to diagnose errors in the system via Pauli error estimation. Here the goal is to estimate
the large Pauli error rates of an unknown channel by preparing states, passing them through
the channel, and measuring them. The main desideratum is to minimize the number of
measurements; additionally one would like to use simple state preparation and measurement
processes and minimal computational overhead. We remark that full tomography for arbitrary
n-qubit channels requires at least 4™ /e? measurements, with more practical methods requiring
at least 8" /€.

In this work, we give very simple and efficient algorithms for learning all of the large
Pauli error rates of an n-qubit channel. Our first main result is the following:

» Theorem 1. There is a learning algorithm that, given parameters 0 < d,e < 1, as well as
access to an n-qubit channel with Pauli error rates p, has the following properties:
It prepares m = O(1/¢€2) - log( %) unentangled n-qubit pure states, where each of the mn
1-qubits states is chosen uniformly at random from {|0), |1),|+), =), |7),]|—i)};
It passes these m states through the Pauli channel.
It performs unentangled measurements on the resulting states, with each qubit being
measured in either the {|0),|1)}-basis, the {|+),|—)}-basis, or {|i),|—i)}-basis.
It performs an O(mn/e)-time classical post-processing algorithm on the resulting mn
measurement outcome bits.
It outputs hypothesis Pauli error rates p in the form of a list of at most % pairs (C,p(C)),
with all unlisted p values treated as 0.
The algorithm’s hypothesis p will satisfy ||D — plloo < € except with probability at most 4.

Note that our “sample complexity” of 5(1 /€2) is optimal up to the logarithmic term: The
task of estimating Pauli error rates strictly (and vastly) generalizes the problem of estimating
the bias of an unknown coin to additive precision e (and confidence 1 — ¢§), and this is
known to require ©(1/e?) - log(1/4) coin flips. For comparison of our bounds with previous
work [8, 10, 11], see §1.2.

When the channel is modeling quantum noise, one hopes and expects that the nontrivial
error rate, 7 = 1 — p(0™), is small. In this case, a natural and more ambitious goal is to first
estimate 7, and then to estimate all other Pauli error rates to multiplicative precision 1 = ¢;
i.e., additive precision *en. (This ambition was also pursued in [8, 10].) Here the ideal
sample complexity would be O(ﬁ).1 If one uses our Theorem 1 as a black box, it would

use 6(%) measurements. The extra factor of 1/n here is quite undesirable (as one might
imagine a typical parameter setting to be something like = 1072, ¢ = 10~!). We show that
it can be eliminated:

» Theorem 2. In the setting of Theorem 1, suppose the overall error rate is n =1 — p(0™).
One can augment the algorithm so that, given in addition a “noise floor” parameter 0 < ny < 1,
it has the following properties:

It first makes at most mg := O(1/no) - log(1/9) measurements (as in Theorem 1).

It does O(mqgn)-time classical processing, then either outputs “n < no” and halts, or

proceeds.

! Again, one can compare the task to the vastly simpler one of estimating the face probabilities of a
6-sided die that comes up “1” with probability 1 —n. When rolling many times, one obtains a non-1
outcome roughly every 1/n rolls. Thus the task becomes very similar to estimating the face probabilities
of a 5-sided die to additive precision €, but with a 1/n “slowdown”.
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It then operates as in Theorem 1, but makes m = O(ﬁ) -log(%) measurements.

Its outputs are correct, with a guarantee of ||p — pl|loo < €n, except with probability at most §.
Finally, we show that our algorithm can be made impervious to a limited amount of
measurement noise. Specifically, suppose that our measuring devices have the following
property: When measuring a 1-qubit state from {|0),|1), |+),]|—), |i),|—4)} in one of the
bases {|0), |1)}, {|4),|—)}, or {|é), |—i)}, the device fails (reading out “?”) with probability v,
and otherwise behaves ideally. We assume that the failures are independent, and that the
algorithm may know the parameter v (thanks to prior estimation). In this case, we will see
that it is almost automatic to obtain the following extension:
» Theorem 3. Theorem 2 continues to hold for any any constant v < i.
For the more challenging task of handling general SPAM (state preparation and measurement)
error, see the discussion in §1.2.

1.1 Techniques

Our algorithm employs a novel reduction from Pauli error estimation to the task in classical
unsupervised learning known as Population Recovery. Population Recovery was introduced
by Dvir, Rao, Wigderson, and Yehudayoff in 2012 [7], and has been studied in numerous
subsequent works [3, 16, 14, 23, 6, 15, 19, 2, 1, 5, 17]. A Population Recovery problem is
specified by a classical channel S — i.e., a stochastic map S : ¥ — T" for some finite alphabets
3, . The task is to learn an unknown probability distribution p on 3" to {,.-error €, with
the twist being that samples are mediated by the channel. That is, when the learner requests
a sample, first © € X" is drawn according to p, but then only y = X(z1)X(x2) - - - X(zy) is
revealed to the learner. The most well-studied cases are the binary symmetric channel and
the binary erasure channel, the former being noticeably more challenging; lately, the deletion
channel has also begun to be studied. (Each of these channels also requires specifying the
crossover/erasure/deletion probability r.)

Our work shows how to efficiently convert the Pauli error estimation task to that
of Population Recovery with respect to the so-called binary Z-channel with crossover
probability 3. This is the channel with ¥ = I' = {0,1} in which 0’s are “transmitted”
correctly, but 1’s are flipped to 0 with probability % We observe that the known methods for
Population Recovery with respect to the binary erasure channel with erasure probability r
also apply equally well to the Z-channel with crossover probability . We then use the
fact that there is a known, highly efficient Population Recovery algorithm for erasures with
probability at most 1. [7, 16, 5, 19] (Indeed, the fact that even probability 3 can be tolerated
is the reason our Pauli error estimation algorithm can handle additional measurement noise
as in Theorem 3.)

1.2 Previous work

The problem of Pauli error estimation was first studied in depth in work of the first author
and Wallman [8]. Tt is not possible to directly compare those results with ours, for several
reasons. The most immediate reason is that their complexity bounds typically include a
factor of 6(1 /A), where “A” is another parameter, the spectral gap of the Pauli channel
being learned. We have A < 27, where n = 1 — p(0™) is the nontrivial error rate, and this is
saturated in the most favorable case. However, in general A may be arbitrarily small, or
even zero, for relatively simple channels. In practice, a user of the algorithm in [8] would
set a spectral cutoff Ag and allow estimation errors for channel eigenvalues in the interval
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(1 — Ay, 1], but no analysis is done in [8] of the extra error incurred by this cutoff. Thus, in
the worst case, their results as formally stated do not give any guarantee.

On the other hand, the results of [8] are impervious to a much more challenging model
of measurement error (“SPAM”). This model imposes that before the learner measures the
channel’s output, an additional unknown channel = is applied to the state. (It is assumed
that = satisfies the extremely mild condition that its nontrivial error rate is bounded away
from 1.) It might seem impossible to disentangle E from the main channel A to be learned,
but the authors of [8] use the fact that one is at liberty to pass a state p through A several
times (say, k times) before it is subjected to Z; i.e., the learner may obtain ZA*p for p and
k € N of the learner’s choosing. By carefully choosing k values up to O(1/A), the authors
of [8] show that = can essentially be expunged. (Note that, in practice, multiple uses of the
channel are often far less costly than even a single measurement.)

Finally, the first algorithm in [8] judges its hypothesis with respect to the o-norm, rather
than the /., norm as in this paper. This distinction is relatively minor, however, as the
norms are roughly equivalent for probability distributions: ||p—p|lee < ||[p—pll2 < ||;3—p||<1>42,
and one may refine this further to take into account dependence on n =1 — p(0™).

With these caveats, we state (simplifications of) the relevant main results in [8]:

» Theorem 4 ([8]). There exists a SPAM-tolerant algorithm that makes O(2" log(1/A))/€2
measurements, with O(1/A) channel-uses per measurement, and with high probability outputs
an estimate p of the channel’s Pauli error rates p satisfying ||p — p|l2 < en.

In the favorable case of A = ©(n), this is somewhat comparable to our Theorem 2; the above
theorem has much better SPAM-tolerance, but a complexity that is greater by roughly 2.

The authors of [8] also present a heuristic for identifying a set S corresponding to large
Pauli error rates with the following guarantee.

» Theorem 5 ([8]). For any set S C {0,1,2,3}", there exists a SPAM-tolerant algorithm that
makes O(log |S|) loglog(1/A)/e* measurements, with O(1/A) channel-uses per measurement,
and with high probability outputs estimates p(C) for each C € S satisfying |p(C) —p(C)| < en.

However, no guarantee is proven that the set S will contain the |S| largest error rates.

The results in [11] are also somewhat incomparable to the present paper. The authors
analyze Pauli channels with a recovery guarantee in the oo-norm, but under the assumption
that the Pauli channel has sparse and random support, and that the nonzero error rates are
not too small (greater than some fixed ey). While the sparsity assumption is not critical
in that analysis (the algorithm will approximate error rates smaller than €, as zero with
high probability), the random support assumption is used in an essential way. This is an
undesirable assumption since it is very unlikely to hold in practice.? The sample complexity is
also not stated directly in terms of quantum measurements, but rather in terms of queries to a
“noisy eigenvalue oracle” with Gaussian noise. While this noisy oracle can be approximated by
quantum measurements and finite sample complexity, quantum noise is not exactly Gaussian,
so no direct comparison with the present work is possible without further analysis.

We remark that the techniques used in [8, 11] are Fourier-based, and the heuristic from [8]
described above is similar to the Goldreich-Levin learning algorithm [9]. In §7, we give an
alternate Fourier-based approach to Pauli error estimation, one that is equivalent to our

2 Perhaps surprisingly, the algorithm performs well on real data despite grossly violating this
assumption [11].
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Population Recovery method “in disguise”; in fact, the Goldreich—Levin algorithm becomes
equivalent to the Individual-to-Population Recovery reduction!

It is our belief that these Fourier techniques can actually be used to provide a common
generalization of the results of this paper and of [8]; i.e., efficient SPAM-tolerant Pauli error
estimation with no dependence on A. We leave this for future work.

2 Notation

» Notation 6. The 1-qubit Pauli matrices are the unitary, hermitian matrices

(10 (01 (0 —i (10
oo = 0 1 ) 01 =0 = 1 0 ) 02 = 0y = i 0 ) 03 =0z = 0 —1 .

As operators on the Bloch sphere, o1, 09,03 act as rotations by 7 about the 1st, 2nd, 3rd
axis (aka z-, y-, z-axis), respectively. More generally, an n-qubit Pauli matriz, indexed by
string A € {0,1,2,3}", is 04 = Q) 04;.

» Notation 7. For a,b € {0, 1,2, 3}, there is some ¢ € {0,1,2,3} such that 0,0, = 0., up
to a global phase. We introduce the notation a @ b (equivalently, b ® a) for this ¢; so, e.g,
193=2,09b=b, etc. We extend the notation coordinate-wise: if A, B € {0,1,2,3}",
then A® B= (4, & By,..., A, ® B,) €{0,1,2,3}" (and so 0405 = 0agB, up to a global
phase).

» Notation 8. We write the orthonormal eigenbasis for the Pauli operator o, as |x%), [x1).

On the Bloch sphere these are the two unit vectors pointing in the positive (respectively,
negative) direction along the 1st (z-)axis; they are often called |+), |—). We use similar

notation [x%), |x2) (often called |i),|—i)) and |x3), [x2) (often called |0), |1)) for o2 and o3.

» Notation 9. For a,b € {0,1,2,3} we have that o4|x%) is (up to a phase) |x%), with the
subscript being + if o, and o, commute, and — if o, and o, anticommute. To capture this,
it will be convenient to introduce the following notation:

0 if {a,b,a ®b}| < 3, i.e., 04,0, commute;
a*b:b*a:{ ) }‘ b

1 if {a,b,a ® b}| = 3, i.e., 04,0 anticommute.

Thus op|x%) = |x‘(171)a*,,> (up to a phase). We extend this notation coordinate-wise, writing
AxB=(A;xBy,..., Ay xBy) € {0,1}" for A, B € {0,1,2,3}". For example, (0,0,3,2,1)
(3,1,1,2,2) = (0,0,1,0,1).

» Fact 10. If we identify {0, 1,2, 3} with IF3 by writing numbers in base 2, then @ corresponds
to the usual vector addition in IF2, and * corresponds to the “symplectic” product: a b =
(a1,a2) * (b1,b2) = arbs + azb;. This lets us see that ax (b@® ¢) = (a *b) 4+ (a* ¢) mod 2.

» Notation 11. For a quantity x, we denote an estimate of x by . We use boldface font
(e.g., A) to denote a random variable. If A is drawn from the distribution p we denote this
by A ~ p, and let A denote a concrete assignment to the variable A. Addition (of scalars or
vectors) modulo 2 is denoted +3. The Fourier transform of f is denoted f.

3 Learning a Pauli channel

In this section we describe the basic setup for learning a Pauli channel. Learning the Pauli
error rates of a general channel will end up being just a minor extension, discussed in §6.1.

8:5
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As described in Equation (1), an n-qubit Pauli channel is determined by a probability
distribution p on {0, 1,2, 3}™. This probability distribution induces the mixed unitary channel
in which o¢ is applied with probability p(C). An n = 5 example:

p(00321) = 2/10, p(01300) = 3/10, p(11323) = 2/6, p(30000) = 1/6, p(C) = 0 otherwise.

We anthropomorphize by imagining a character Charlie who operates the channel; on receiving
a state p, Charlie first (secretly) draws C ~ p, then outputs the state cepoc.

Alice the Learner would like to estimate the probability distribution p via interactions
with Charlie. Alice has the ability to prepare n-qubit states, to “query” Charlie (i.e., pass an
n-bit state through his channel), and to measure states that she receives back. Her goal is to
learn a precise approximation to p (with high probability), while minimizing the number of
queries to Charlie.

» Definition 12. We say that Alice performs a nontrivial probe if she does the following:
She chooses a string A € {1,2,3}".
She prepares the (unentangled) n-qubit state [tha) in which the jth qubit is |Xﬁj>.
She passes |1 4) through Charlie, obtaining oc|a) with probability p(C).
She does a (non-entangled) measurement on the resulting n-qubit state, measuring the
jth qubit in the basis |xij>.

Continuing our n = 5 example, if Alice does a nontrivial probe with the string A = 31122,
this entails preparing and passing to Charlie the state

snash = KD XDRAI) (= 0FH1),

and then measuring the 5 returned qubits in the bases |x3), |x1), IxL), Ix3), Ix3),
respectively.

Now suppose that Charlie drew C' = 00321 (which occurs with probability 2/10 in our
example). Then the state returned to Alice would be

(00 ® 00 @ 03 ® 03 @ 1) s1122) = (00[x3)) @ (00[x})) @ (03})) @ (021x3)) @ (04]x3))
= DI I )

for some phase ¢ (§ € R) that we did not bother to compute. Now when Alice measures in
the bases [x3), [xL), IxL), IX2), [x3), her readout will, with probability 1, be

I A XD A IX2).

The subscripts +, 4, —,+, — here are the 5 bits of information conveyed to Alice by the
readout, and we may think of instead labeling them as 00101 in accordance with Notation 9.
With this relabeling convention, we obtain:

» Fact 13. Suppose Alice performs a nontrivial probe with string A € {1,2,3}", and suppose
the random string drawn by Charlie is C' € {0,1,2,3}". Then when Alice measures, she
obtains the readout R = A C € {0,1}".

» Remark 14. So far we have pictured Alice as first choosing A, and then Charlie as drawing
a random C'. It is useful now to make a slight shift in perspective: for each interaction
between Alice and Charlie, we will equivalently think of Charlie as first (secretly) drawing C,
and then Alice gaining some partial information about this C' by “probing” it using an A
of her choice. We emphasize that Alice must make her choice of A without knowing the
channel outcome C.
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We now describe a trick that Alice may employ in probing the channel:

» Definition 15. For a channel distribution p on {0,1,2,3}"™, and any fized B € {0,1,2,3}",
define the B-altered channel distribution p®Z on {0,1,2,3}" via p®B(C) = p(B @ O).

For any string B € {0, 1,2,3}" of her choosing, Alice can effectively simulate access to
the B-altered channel: If she wishes to simulate passing |¢) through the B-altered channel,
she could instead simply pass op|¢) through Charlie’s actual channel. (This may introduce a
“wrong” global phase, but it doesn’t matter for any measurement behavior that we consider
here.) But in fact, something even simpler is true:

» Observation 16. Given B € {0,1,2,3}", if Alice wants to perform a nontrivial probe of
p®B based on string A, she can pass |14) to Charlie as always. Then, when she measures and
obtains AxC', she can “reinterpret” this readout by adding in, mod 2, the string AxB € {0, 1}"
(which she knows). Recalling Fact 10, this gives her (A* B) 42 (AxC) = A% (B& C). Thus
the reinterpreted readout is indeed distributed as what she would get by probing p®8 with A.

A natural strategy for Alice is to make random nontrivial probes. It is easy to see the
following:

» Fact 17. Fix a draw C € {0, 1,2,3}" for Charlie. Now if Alice performs a nontrivial probe
with a uniformly random A € {1,2,3}", then the coordinates of her readout R = AxC €
{0, 1}™ will be independent, with the following distribution for each 1 < j < n:

If C; = 0 then R; will be 0 with probability 1.

If C;j # 0 then R; will be 0 with probability % and 1 with probability %

We can state this more succinctly by introducing some additional terminology:

» Notation 18. For B,C € {0,1,2,3}", define the string C7Z € {0,1}" by

1 if C; # B,

Cc#B). —
( )J{OﬁQ:&

» Definition 19. Recall from information theory the so-called Z-channel with crossover
probability r: it is the binary channel that leaves O untouched and flips 1 to O with probability .

Now Fact 17 can be restated as follows:

» Fact 20. Fix a draw C € {0,1,2,3}" for Charlie. Now if Alice performs a random
nontrivial probe, her readout is the result of passing C79" through a Z-channel with
crossover probability %

» Observation 21. By combining Observation 16 with Fact 20, we obtain the following: Fiz
a draw C € {0,1,2,3}" for Charlie and suppose Alice performs a random nontrivial probe.
She can then — for any fived B € {0,1,2,3}" — interpret her readout as C7 B passed through
a Z-channel with crossover probability % Warning: these reinterpretations are completely
dependent; she of course cannot get the result of independent channel applications for
various B’s, unless she makes multiple probes.

4 Population Recovery

With Observation 21 in hand, we have effectively reduced the problem of learning a Pauli
channel to a “Population Recovery”-type problem (with a quantum-free definition). To recap:
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there is an unknown probability distribution p on {0, 1,2,3}™, a learner may request samples,
and when a sample C is drawn from p, the learner receives a binary string which can be
interpreted as “C7P passed through a Z-channel with crossover %” for any B € {0,1,2,3}"
of the learner’s choosing.

In this section we will give a solution to this problem that has optimal sample complexity
(except possibly up to a logarithmic factor) using techniques from the field of Population
Recovery. Our solution will immediately imply Theorem 1 in the special case where the
channel to be learned is indeed a Pauli channel. The case of learning a general channel’s
Pauli error rates is treated in §6.1. We remark that our Pauli channel algorithm only uses
nontrivial probes, and thus only involves preparing the states |0), |+), and |¢). The other
three states |1), |—), and |—i) are only used for the extension to general channels.

4.0.0.1 Idea of our solution

Using known techniques from Population Recovery, one can first reduce to the simpler task
of “Individual Recovery” (estimating a single p(B) value) via a coordinate-by-coordinate
learning algorithm. Then one can further reduce to just recovering p(0™), using the altered-
channel trick. As for learning p(0™), we first observe that the replacement of C' by C#0"
changes nothing for this problem, so we effectively have the same task just for the %—crossover
Z-channel on binary strings. This is similar to the erasure channel with erasure probability %,
and in fact the known solutions for erasure probability-r [7, 16, 5, 19] only use the locations of
the 1’s in the received word. Thus these known solutions work equally well for the Z-channel.
Indeed, as noted in [7], the solution is particularly simple when r < % (as it is for us); the
full method of “robust local inverses” is not needed, and one can use the “natural inverse”

(as we implicitly do in the proof of Theorem 22 below).

4.1 Individual Recovery

Although the proof of the below theorem is self-contained, we remark that it implicitly follows

the Individual Recovery routine of [7] for the 3-erasure channel.

» Theorem 22. For any fixred B € {0,1,2,3}"™, a version of Theorem 1 holds in which the
learner only computes an estimate p(B) of p(B) satisfying |p(B) — p(B)| < eq except with
probability at most 8g. The number of samples used is m = O(1/e3) - log(1/8y) and the
classical post-processing time is O(mn).

» Remark 23. The reader may wish to verify the proof just in the case B = 0™, where it is
simpler; the general case then follows from Observation 16.

Proof. Alice obtains m probe/readout pairs (A, R), with A ~ {1,2,3}" uniformly random
and R = A x C, where C' is a random channel outcome drawn from p. The estimate p(B)
that Alice will output is the empirical mean of the random variable

H - (_1/2>\A*B+2R| — (_1/2)Zt((A*B)+2R)t _ H(_l/Z)yt’ Y, = (At *Bt) 49 R;.

t=1

As seen in Observation 21, for a given outcome C' = C, the random binary string (A*xB)+2 R
is distributed as C7 P passed through a Z-channel with crossover probability % In particular,
its coordinates y, are independent random variables, with conditional expectation given by

(—1/2)0 = lf Ct = Bt7

E[(-1/2)¥ |C=C]= {é(—l/Q)O + %(_1/2)1 =0 if C; # B;.
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Thus

1 ifC =8,

H|C=(C]= E -1/2)¥% | C=C
ElH | t[[l /2% ] {O if C # B,

and hence indeed E[H] = p(B). <

4.2 Population Recovery

Theorem 22 allows Alice to estimate p(B) for any particular string B € {0,1,2,3}". But
also, for any shorter string 8 € {0, 1,2,3}¢, Alice can estimate the marginal

pB) = 3. PN =PriCr. G = 5]

7v€{0,1,2,3}n~*

simply by ignoring all data in positions ¢ + 1,...,n. (She is obviously not limited to
marginalizing contiguous blocks, but this is all we will need for our purposes.) Alice can
thus learn all of p to good f~.-precision with the straightforward, coordinate-by-coordinate
branch-and-prune approach common in Population Recovery (see, e.g., [19, App. A]). We
repeat this approach here; the following algorithm achieves our main Theorem 1 for Pauli
channels, except for the claim about the running time of the post-processing algorithm:

Define ° support sets” 2, ={0,1,2,3 and Qp =--- =Q,, = 0.
Forround j=1...n—1:
For each prefix 5’ € Q; and each b € {0,1,2,3}:
Run the Individual Recovery algorithm on 3 := b to estimate the marginal p(f3).
If the estimate is at least 2¢g = §, then place 3 into ;1.

N kkwh=

Output as p the collection of strings in €2,,, together with their estimated probabilities.

The correctness of the algorithm, that ||p — p||loo < € with failure probability at most 4, is
straightforward and is explicitly proven in [19, Lem. 18]. The proof also establishes that when
there is no failure, |2;| < % holds for all 1 < j < n. Thus for running time purposes (and
without impacting the correctness claim) we may have the algorithm abort if ever some Q;
gets cardinality more than 2. It only remains to obtain the post-processing running time of
O(mn/e) claimed in Theorem 1.

4.2.0.1 Running time analysis

As it stands, the running time of the above algorithm is O(mn?/e), since it may do up to
O(n/e) executions of the O(mn)-time Individual Recovery algorithm. But since all executions
of the Individual Recovery algorithm are on the same batch of samples, it’s not hard to see
that information from the jth round of the algorithm can be used to speed up the (j + 1)st
round. More precisely, we show that each round can be done in O(m/¢) time, leading to the
overall claimed running time of O(mn/e).

Let R € {0,1}™*™ be the measurement outcome bits that the algorithm processes, and
let Ry ; denote the submatrix formed by the first j columns. Also, for 8 € {0,1,2,3}7, let
RV ¢ {0,1}™*J be the (hypothetical) matrix whose tth row is the same as R;_;’s but with
(Af,..., AY) x B added in mod 2, where A" is the tth probe string used by Alice. Given 3,
the algorithm can look up entries of R%®) in O(1) time.

Set €9 = 7, dg = 465 and draw a single batch of m samples where m is as in Theorem 22.

8:9
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Recall that when the algorithm does Individual Recovery on the prefix 3, it computes
the fraction of rows of R(®) that have Hamming weight i, multiplies this number by (—1/2)%,
and sums the results. In particular, this estimate can be computed in O(m) time given the
vector h#) € N whose tth entry is the Hamming weight of the tth row of R%®) — just add
up (—1/2)h§/3)/m across all ¢.

We can now modify the above Population Recovery algorithm so that whenever a prefix
B € {0,1,2,3} is added into ;, the algorithm retains the vector h(®) that went into
estimating p(5). It is easy to see that in the subsequent round, we can compute each of
RBO B RB2) RB3) from AP (and hence the marginal estimates) in O(m) time, and
retain them as needed. Thus indeed each round only requires O(m/¢) time, since at most %
prefixes are processed in each round.

5  Multiplicative error

In a practical scenario we would would hope that the “nontrivial error rate” of the Pauli
channel,

n=1-p(0")
is very small. This motivates writing p as a mixture distribution, as follows:
p: mixing weight 1 — 7 on 0", mixing weight n on pe, (2)

where perr is a distribution on {0,1,2,3}™ \ {0”}. Now a natural goal is to learn with
multiplicative error €, meaning producing estimates 7, Doy With

(1 - 6)77 < 7/7\ < (1 + 6)777 ||]/)\err - perr”oo <e

As described in §1, the ideal sample complexity to strive for now is O(ﬁ)

5.0.0.1 Adaptivity, and a floor on 1

Let us make two more technical remarks. First, if n is extraordinarily small (or even 0), we
won’t want to make 1/7 measurements. Thus we assume the algorithm is given a floor 7, and
when 1 < 19 we are satisfied just to certify that this is the case. Second, we cannot hope to
have (as before) a completely nonadaptive algorithm achieving sample complexity on the order
of 1/(¢2n) because the algorithm does not know 7, or even an approximation to 7, in advance.
Thus our algorithm will first need to find a preliminary constant-factor approximation 7egt
to n in an online probe-and-measure fashion; then it can proceed nonadaptively.

5.1 Roughly estimating the error rate

Here we describe the (mildly) “adaptive” algorithm that handles the error floor and
obtains 7st, a factor-5 approximation of ) before subsequently finding a good approximation
to all the error rates (including p(0™) =1 — 7).

» Lemma 24. There is a randomized learning algorithm that, given input 0 < dg,m9 < 1, as
well as access to an n-qubit Pauli channel defined by distribution p with nontrivial error rate
n=1-p0"):
repeatedly prepares a state, passes it through the Pauli channel, and measures, as in
Theorem 1;
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halts after some number of repetitions (always at most O(1/ng) -log(1/60)) and outputs
either: “n < ny” or else an estimate nest that is within a factor of 5 of n;
runs in classical time that is linear in the number of measurement readouts.
Except with probability at most §q, the algorithm’s output is correct and it halts after at most
O(1/n) -log(1/do) repetitions.

Proof. Recall Fact 20: by doing random nontrivial probes, an algorithm can get samples
from a random string that is non-0" with some probability 1’ between %77 and 7. In order
to find the factor-5 approximation 7. of 7, it suffices for the algorithm to estimate 7’
up to a factor of 3 or else certify < 19. This is now a completely standard problem:
estimating the bias of an 7’-biased coin up to a factor of 3 using on the order of 1/7 flips,
despite not knowing 7’ in advance. The algorithm is the obvious one: repeatedly flip until
getting “heads” (but never more than O(1/ng) times), convert the number of flips G into the
estimate 1/G, then take the median of O(log(1/6)) estimates. We omit the straightforward
classical analysis. <

5.2 Individual Recovery with multiplicative error

We henceforth assume the algorithm from Lemma 24 succeeded and that 7. is a factor-5
approximation of the true error rate . We now describe how the algorithm can do “Individual
Recovery” with multiplicative error. A note: the sample complexities are stated in terms
of the parameter n; formally, the algorithm does not know 7, but it can use 51t (which it
knows) in its place, and the O(-) bounds are not affected.

We first show that the algorithm from Theorem 22 already achieves the desired multipli-
cative-error/sample tradeoff in the case of estimating #:

» Proposition 25. Given nesy within a factor 5 of n =1 — p(0™), a version of Theorem 22
holds in which, for B = 0", the estimate p(0") satisfies |p(0™) — p(0™)] < en except with
failure probability at most 0y, and the number of samples used is m = O(ﬁ) -log(1/dp).

» Remark 26. The success event here is equivalent to the estimate 77 = 1 — p(0™) satisfying
the inequality (1 —€)n <7 < (1 + e)n.

Proof. The algorithm used is the same as the one in Theorem 22 (with B = 0™); only the
analysis changes. Recall that the algorithm’s estimate is the empirical mean of H = (—1/2)I%l,
a random variable whose true mean is p(0") = 1 — 5. Equivalently we may consider the
random variable H = 1 — H, which has true mean 1 and which is supported in [0,2]. But
now a standard multiplicative Chernoff bound shows that the empirical mean 7 of H after
O(1/(€*n)) - log(1/d) samples indeed satisfies (1 —€)n <7 < (1 + €)n. <

» Proposition 27. A trivial modification of Theorem 22 also achieves, for any B # 0", an
estimate p(B) satisfying |p(B) — p(B)| < en except with failure probability at most oy, using
m = O(ﬁ) -log(1/0¢) samples.

Proof. Rather than empirically estimating the mean of H = (—1/2)l4*B+2Bl the algorithm
instead empirically estimates the mean of H' = H —(—1/2)I4*Bla random variable bounded
in [-2,2]. (Note that Alice knows B and also each probe string A, hence can compute
(—1/2)14*Bl herself.) Tt is easy to see that E[(—1/2)4*Bl] = 0 using B # 0". Thus H'
remains an unbiased estimator for p(B); i.e., E[H'] = p(B). But furthermore note that H’
is almost always 0; specifically, whenever the channel outcome C' is 0™ (probability 1 —n), we
have R = Ax0" = 0™ and hence H' = (—1/2)/4*Bl — (=1/2)l4*Bl = 0. Thus using |[H'| < 2
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we trivially conclude E[(H')?] < 4. But now it follows from the Bernstein inequality (see,
e.g., [21, Ch. 2, Prop. 2.4]) that to estimate the mean of a random variable H' that is
bounded in [—2, 2] and has E[(H')?] = s, it suffices to use é'fiz/?’ In(2/6¢) samples to achieve
additive error v except with probability at most dg. Thus taking v = en and using s < 47
indeed completes the proof. <

5.3 Population Recovery with multiplicative error

Combining the results from the previous section on Individual Recovery with the reduction
in §4.2 immediately proves our Theorem 2 (in the case of Pauli channels).

6  Further extensions: general channels and measurement noise

6.1 Pauli error rates of general channels

With very minor effort we can now upgrade our algorithm to learn the “Pauli error rates” of
a general quantum channel, thereby fully establishing our Theorem 1.
We recall the following definitions/facts (see, e.g., [4, Lem. 5.2.4]):

» Definition 28. Let A denote an arbitrary n-qubit quantum channel. Its Pauli twirl Ap is
the n-qubit quantum channel defined by
App= B [oh(Aorpol)or).

The channel Ap is itself a Pauli channel; the associated probabilities p(C) are called the Pauli
error rates of A.

» Fact 29. Suppose we write K; for the Kraus operators of A, so Ap = Zj ijKJT. Further
suppose that K is represented in the Pauli basis as K; = ZC€{0,1,2,3}" ajcoc. Then A's
Pauli error rates are given by p(C) =, lovj. o]

It’s easy to see that, given access to a general channel A, a learner Alice can simulate
access to its Pauli twirl Ap: whenever Alice wishes to pass p through Ap, she instead chooses
T ~ {0,1,2,3}" uniformly at random, passes UTpa; through A, and replaces the channel
output 7 with O’;TUT.

In our context of learning Pauli error rates, this simulation becomes particularly simple.
Recall that our algorithm for Pauli channels only ever passes pure states of the form
\Xfl>\xi2> e \Xf") through the channel, for A € {1,2,3}". Further, the channel output is
always measured in the associated Pauli bases, the jth qubit of the output measured in the

basis |Xi"). The effect of simulating the Pauli twirl with o7 is simply to replace the input
A .

(il)Aj *Tj
Thus we may deduce the full version of Theorem 2 (concerning learning Pauli error rates of
general channels) from the already-established special case of learning Pauli channels.

\Xf) to qubit j with the input |x ), and to add AxT to the measurement outcomes.

6.2 Tolerating measurement errors

It is also straightforward to see that our algorithm can tolerate a mild form of measurement
error. Suppose that we have an imperfect 1-qubit measuring device that is used to implement
the three Pauli-basis measurements. More precisely, we assume it has the following property:
When applied to a qubit in a Pauli eigenvalue state, the measuring device “fails” (say, reads
out “?”) with probability v, and otherwise behaves ideally. Here v is a parameter that
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we assume is known to the learner through estimation, and that measurement failures are
independent events.

As discussed in the paragraph just preceding §4.1, our algorithm for estimating any
p(B) is effectively performing the standard “Individual Recovery algorithm” for the binary
erasure channel with erasure probability % (Recall that we actually have the Z-channel
with crossover probability % applied to the binary string C75, but that the erasure channel
algorithm only uses the locations of the 1’s in the received string, and thus works equally
well for the Z-channel.) The effect of measuring device failures is to replace the erasure
probability % with r =v 4+ (1 — 1/)% So long as r < %, the standard recovery algorithm
for probability r-erasures works just as well [7]: the only change needed is that the factor

“(—=1/2)” appearing in Theorem 22’s definition of H needs to be replaced by —r/(1 — r).

(Note that this quantity has magnitude bounded by 1 if and only if r < %) But the condition
r < % is equivalent to ¥ < 1, and this justifies our Theorem 3.

(In fact, for erasure probability 3 < r < 1, much more sophisticated algorithms [5, 19]
can succeed at Individual Recovery, at the expense of increasing the sample complexity
from the order of 1/€? to the order of 1/e2"/(1="); but for simplicity, we ignore pursuing this
extension.)

7 An alternative, Fourier approach

Here we give an alternative algorithm for learning Pauli channels, using a perspective from
Boolean Fourier analysis; see [18, Chaps. 1, 3] for background and notation.

For Pauli channels, the Fo-Fourier transform relates the error rates and the channel
eigenvalues. The Pauli operators themselves are the eigenvectors of a Pauli channel, and we
1)A*C

can easily compute the eigenvalue associated to o4 using the relation caoc = (— ocoa

via
O-A — Z p(C) . O‘CO-AUE frd Z p(C) . (-1)21‘:1(14*0)1'0.14 — )\AUA;
Cce{0,1,2,3}™ Cce{0,1,2,3}n

n

so that )\A = EC’N{O,LQ,B}" [22np(C) . (—1)21:
transform.

1(A*C)"]. This clearly resembles an IFo-Fourier

To make this connection more explicit, in the remainder of this section we will identify
the elements of {0,1,2,3} with their base-2 representations in F3. Let us use overline to
denote the swapping operation on two bits; i.e., ajaz = asa; for a;,as € Fy. We extend the
notation n-fold to vectors A € F3" = (F%)". (Equivalently, we have 0 = 0, T = 2, 2 = 1,
3 = 3, and we extend the notation coordinate-wise to A € {0,1,2,3}".) Now define the
symplectic dot product

(A,C)=A-C=) (AxC); mod2,
i=1
where A - C denotes the usual dot product on F3". A Pauli channel eigenvalue is now

equivalently written in two ways as

M= B [P(C)- (1)) = B [2(C)- (1))

Let us write ¢ for the probability density (vis-a-vis the uniform distribution) associated to p;
i.e., (C) = 2%"p(C). Then the Fourier transform f = ¢ is given by

J(A) = ¢(4) = _E_ [¢(O)N-1*C] = E [(-)*) =iz 6

8:13
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Observe that f (and equivalently \) are functions f : F3" — [—1,1] and that p = f. Such

group character averages were considered in the context of quantum noise estimation in [12].

While we can talk interchangeably about the Fourier coefficients of the density ¢ and the

channel eigenvalues A (as they are related by f(A) = A), we will focus on f in what follows.
We see from Equation (3) that

J(A) = E ()] = B [(-1)2, (4)
C~p C~p
and as we now describe this means Alice can straightforwardly estimate f(A) for any A of
her choosing.

Let’s extend Definition 12 of “nontrivial probe” to allow not just for A € {1,2,3}™ but
any A € {0,1,2,3}"; we omit the adjective “nontrivial” in this more general case. To handle
coordinates j where A; = 0, Alice can simply put any qubit |x) into the jth position of her
state |1 4), ignore the jth position coming out of the channel, and automatically treat the
jth readout bit as 0. In this way, Fact 13 still holds: for any probe A € {0,1,2,3}" and any
string C' € {0,1,2,3}" drawn by Charlie, the readout is R = Ax C € {0,1}". It follows that
Alice can empirically estimate the right-hand side of Equation (4) by repeatedly probing the

channel with A and averaging the following function of R, the readout: (fl)zz Rt This
yields f(A) to additive precision € with confidence at least 1 — 4§, using O(1/¢?) - log(1/4)
probes; we refer to this as “efficient estimation”.

We now see that Alice has (noisy) query access to f : F3" — [—1,1], and her goal is to
estimate the large values of p = f. This task is highly reminiscent of the task solved by
the Goldreich-Levin learning algorithm [9]. The minor differences are that Goldreich-Levin
typically assumes perfect query access to some f : F3 — {—1,1}, and has the normalization
that 3" f(C)? = 1, rather than our normalization of 3" f(C) = 3", p(C) = 1. Still, if one
“unrolls” the Goldreich—Levin algorithm in this context, one gets almost the same solution
for learning Pauli channels as described in §4.2: reduction from Population Recovery to
Individual Recovery.

7.1 The Goldreich—Levin approach

In a typical exposition of the Goldreich-Levin algorithm (e.g. [18, Ch. 3.5], which we’ll
follow), one assumes Alice has perfect query access to an f : F§ — {—1,1}. Herein we sketch
the alterations to this exposition that are needed for learning Pauli channels.

One basic subroutine in the Goldreich-Levin algorithm (akin to “Individual Recovery”)
is using query access to f to efficiently estimate f(B) for various B. This is done (see [18,
Prop. 3.30]) via straightforward empirical estimation:
fB)= B (A (5)
Recall that in our setting, Alice can only access f(A) by empirically estimating it via
Equation (4). Inserting this into the above, we get

iBY= E  E (-1 >, (AxC)+A-B _

f)= B, Bl ]
Thus as needed in Goldreich-Levin, Alice can efficiently estimate this for any B of her
choosing by picking uniformly random A € {0,1,2,3}", probing the channel with A, and
averaging the following function of R, the readout: ( —l)zt R:+AB Tndeed the reader will
note that this method is almost the same as the one used in Theorem 22! The essential
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difference is that A is uniform on {0, 1,2, 3}" rather than {1,2,3}", which effectively makes

the “crossover probability” % instead of %, and hence the factor (—1/2) = — 1i/1?}3 becomes
(-1) = —%. Note that this difference implies that the Goldreich—Levin approach does

not immediately tolerate measurement failures as in §6.2.

As mentioned earlier, Goldreich-Levin typically assumes f : 5 — {—1,1} and hence we
have ZCeFS f(C)? = 1; its goal is to find all B with |f(B)| > ¢, knowing that there are
automatically at most 1/€2 such B. It accomplishes this via a “branch-and-prune” strategy
that relies on the ability to estimate ZC,GF;HC f(3,C")? for any prefix 8 € F5%. In our setup,
with f : F3" — [—1, 1], we instead know a priori that p = f satisfies Yoo f(C) =1, and our
goal is to find all B with |f(B)| > e. Thus the search is even easier than in Goldreich-Levin,
as the same branch-and-prune strategy works with non-squared Fourier coefficients. Following
the strategy gives the same Population-to-Individual Recovery algorithm as in §4.2.

7.2 Final remarks

As mentioned earlier, the techniques used in the previous works [8, 10, 11] on Pauli channel
estimation are Fourier-based. The paper [8] achieves SPAM tolerance, and manages to
trade some measurement complexity for channel-reuse; on the other hand, its bounds have a
dependency on the channel eigenvalue gap A = minagn {1 —|Aa|}, which may be arbitrarily
small. As shown in the previous section, one can recover our (SPAM-less) Pauli estimation
results via the Fourier approach with no dependence on A and without assumptions about
the noise or the support.

We believe that it is possible to obtain a common generalization of the results in [8]
and the present paper that achieves the best of both worlds via this Fourier approach:
SPAM-robust and efficient Pauli channel estimation with no dependence on A. We leave
this for future work.
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We give a multidimensional version of amplitude estimation. Let p be an n-dimensional probability
distribution which can be sampled from using a quantum circuit U,. We show that all coordinates of
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1 Introduction

A central challenge when working with random processes is the estimating of the probability
of some event occurring from a bunch of samples. An example from classical computer science
is Monte Carlo methods, which try and estimate a value that is hard to compute using a
random sampling process. To estimate the probability p of an event occurring using classical

samples we can simply sample many times and use the fraction of the outcomes where the

In(

event occurred as our estimate. It follows from the Chernoff bound that O (%) samples

suffice to get an € accurate estimate with failure probability at most §. In fact, it can be
shown that this is optimal for classical samples [3].

If we however have access to “quantum samples”, that is a unitary that prepares a state
that upon measuring would return 1 with probability p, than we can improve the number
of “samples” needed. The amplitude estimation algorithm by Brassard et al. [2] show that
O (%) applications of the unitary and it’s inverse suffice. This already lays the ground
work for numerous general speedups, including for many Monte Carlo methods [9].

Sometimes estimating a single probability is not enough, and we are actually interested in
finding a full (discrete) probability distribution. We write A := {z € R" : 2 > 0 A ||z||, = 1}
for the set of all probability distributions on n elements. Let p € A™, if we take O (%)
classical samples than for each element p; we get an estimate p; such that |p; — p;| < ¢
with error probability at most §/n. Hence by the union bound over all ¢ € n it follows that
llp — Pl < e with probability at least 1 — 4.
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This paper considers the problem of recovering an estimate for a distribution p € A"
using “quantum samples”:

» Definition 1 (Quantum probability oracle). Let p € A™ be a probability distribution. We
say that O, is a quantum probability oracle for p if

Op|0) = Z\/E\i>\¢i>

for some quantum states |1) ..., |1n). That is, applying O, to the |0) state and measuring
the first register is the same as sampling from p.

Throughout the paper we will assume that if we can apply O, then we can also apply O, L
and we can do both in a controlled way. Note that this is the case if O, comes from a
randomized classical or quantum algorithm.

We generalize the result of amplitude estimation to n-dimensional distributions, showing
that an e-f,.-estimate can be obtained with O (%) queries to a quantum probability oracle.
We do so using a multidimensional version of quantum phase estimation, in a similar manner
as the quantum gradient estimation algorithm by Jordan [6, 4]. In fact, we consider estimating
the gradient of the function f(z) = (z,p).

We also consider ¢;-norm (or total variation distance) and f2-norm estimates. We get
@) (%) and O (@) query algorithms respectively using norm equivalence. In the second
part of the paper we give lower bounds that matches the upper bounds up to logarithmic
factors for #;-norm and f>-norm. An {..-norm lower bound follows from known lower bounds
on amplitude estimation. We end the paper with some open questions.

Table 1 Comparison of known classical sampling bounds and our quantum results for estimating
a distribution p € A™ up to ¢ error in a certain norm. Here the O (---) hides polylogarithmic factors
inn and 1/e. *The £2-norm quantum lower bound only holds when £ < 1/(3y/n).

Known Classical Quantum
leo | O () ©(3)

LB:[3] UB:Chernoff | LB: [1]* UB: Theorem 9
6|6 (E%) o (min(@, 5%))7 Q <4)

LB:[3] UB:[7] LB: Corollary 12 UB: Corollary 10
G 0(3) ©(2)

UB:[7] LB: Lemma 11 UB: Corollary 10

2 Upper bound
We show our main result in two steps. First we prove the base result, Theorem 5, which has

an almost optimal query complexity but lacks in a few other areas. We then add several
improvements to obtain our main result, Theorem 9.

1" A lower bound on normal amplitude estimation follows from the lower bound on parity given in (1].
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2.1 Main algorithm

In this section we will show how to obtain an e-¢.-approximation of p € A™ using O (@)

queries to a quantum probability oracle for p. To do so we consider the linear function
f:10,1]™ = [0,1] : & — {(x,p). We will show how to construct a specific type of oracle for
this function, use known results to convert this to a phase roacle for the function, and then
apply multidimensional phase estimation to obtain the gradient p.

We will use the following two oracle definitions:

» Definition 2 (Oracles for functions). Let f: D — [0,1] be a [0, 1] valued function from a
discrete domain D. A probability oracle for the function f is a unitary Uy that acts as

U l)0)0) = [a) (VF@) [01e5) + vI= F@) o)) -

A phase oracle for the function f is a unitary Uy that acts as
Uy lz) = ¥ @ |z).

We start by constructing a probability oracle for f(x) = (z,p)

» Lemma 3. Let U, be a quantum probability oracle for a distribution p € A™. Let k > 1
be an integer and let D = {0, 2%, ey Qkfl} be a discretization of [0,1]. Then a probability

ok
oracle Uy for a function f can be constructed such that f is an additive p-approximation of
f(z): D™ = [0,1] : x = (x,p) using 2 queries to U, and O (npolylog (1/p)) two-qubit gates.
The gate count can be improved to polylog (n/u) when the input is stored in a QRAM?.

Proof. We start in a state |2)0)|0)|0)|0). First we apply Uy ® I to obtain

) (mew) 0)0).

Now, for each i € [n] we do the following conditioned on ¢ being in the second register:

1. In the last register, compute an approximation of 2arcsin (\/907) /7 such that the approx-
imation is in [0, 1).

2. Conditioned on the first bit of the approximation rotate the second to last register from
|0) to |1) over an angle 7 /4.

3. Continue for the other bits: rotate over an angle 7 /8 conditioned on the second bit, then
/16, and so on.

4. Uncompute the last register.

Note that we can approximate the arcsin very efficiently, only introducing a logarithmic

overhead in terms of the precision. In the end the second to last register will be rotated over

an angle very close to 2arcsin (z;) /7 X /2 = arcsin (z;). We finish the analysis as if the

angle was exact. We end up with (after dropping the last register which is now |0) again)

Zx/pT\ W) (Vi 1) + VI = 2]0)) = Z\/ﬁ\ Nl 1) + .. 10) -

i=1

2 A QRAM allows us to store values in such a way that we can recover them conditioned on an index
register using a single QRAM query. While a physical QRAM requires many gates to build, the
implementation can likely be highly parallel in a similar manner to classical RAM. When we consider a
model with a QRAM we abstract the details of the QRAM away, and count a QRAM query as a single
gate, similar to how a classical RAM query is normally counted as a single operation for a classical
computer.

9:3
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The f5-norm of the |1) part of te state is /> 1", | /piti> = /(x,p). We conclude that the
state can be written as

\% <£1?7p> |m>|¢:1:,0>|0> + v 1- <:C7p> |m>|/¢£13,1>|1> ’

and hence we have implemented a probability oracle for f.
The steps taken for each ¢ can be performed at the same time when x is stored in a
QRAM, as this allows us to query x; in superposition on [). |

For our purposes we will require a phase oracle, not a probability oracle. Luckily, in [4] it
was shown that a phase oracle can be constructed from a probability oracle with minimal
overhead:

» Lemma 4. [}, Corollary 4.1 (Rephrased)] Let Uy be a probability oracle for a function
f D — [0,1] acting on q qubits. Let T > 0. An phase oracle with n-additive error for
T - f(z) can be constructed using O (|T| +log (1/n)) applications of Uy and its inverse, and
O (¢|T| + qlog (1/7n)) two-qubit gates.

We could directly apply quantum gradient calculation [6, 4] now to obtain p, but since we
have a linear function the result can be obtained using a slightly simpler proof, so we include
it for completeness.

» Theorem 5. Let p € A" and let U, be a quantum probability oracle acting on q qubits for
p. Let e > 0. An approzimation p such that ||p — p||, < e can be found with error probability
at most ¢ using O (In(n/d)/e) applications of U, and O (In(d)gn/e) two-qubit gates. The

gatecount can be improved to O (In(8)q(n + 1/¢)) by using a QRAM.

Proof. Let k = [log (4/¢)]. Consider the following algorithm:
1. Start in a n-register all zero state, where each register as k qubits:

0% . [0F)
2. Apply Hadamard gates to all qubits to obtain

n 2k _1

1 1
® ﬁ%z::o |i) = Skn/2 Z |)

i=1 ze{0,2k—1}"

3. Make a phase query for an 1/6-approximation of f(x) = (z,p) using Lemma 3 with
p < 1/(96¢) and Lemma 4 with T' = 2* and 1 < 1/12 to obtain a state 1/6-close in

f5-norm to
1 i(z,p) 1 iy xipi
2kn/2 Z e |IL’> - 2kn /2 Z € ‘ l‘>
z€{0,2F—1}" ze{0,26—1}"
1 L
X (1)
zef0,2k—1}" \i=1
n 1 2k 1
— elzipi ‘xz>
w2z

4. Apply the k-qubit inverse QFT to each of the n registers and measure each register.
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Note that this algorithm applies U, a total of O (é) times as per Lemma 4. The gate cost of
the phase oracle implementation is O (gn/e) (or O (¢In(n)/e) when using QRAM), and the
n inverse QFTs require O (n In?(1 /€)) gates®.

If we ignore the f5-error due to the imperfect phase oracle than it would follow from the
analysis of phase estimation that we end up with a vector  such that |p; — p;| < 4/2F < ¢
with probability at least 5/6 per coordinate. Since we incurred at most 1/6-fo-norm error
we conclude that |p; — p;| < e with probability at least 2/3 per coordinate. By repeating
O (In(n/d)) times and taking the coordinate wise median, the error probability can be reduced
to §/n. Taking the union bound we get the result from the theorem. <

2.2 Improvements and tweaks

In this section we give three improvements on the main algorithm. We start by removing
the dependence on n, leaving only the implicit dependence via ¢ in the gate-complexity. We
then show how to get a better query bound when only considering part of a distribution.
Finally we show that the algorithm can be tweaked to always return an estimate from A”.

2.2.1 Removing the dependence on n

While the main algorithm requires few queries, the time complexity grows linear in n. Since
the classical algorithm has no dependence linear dependence on n we would hope the same
for the quantum algorithm.

The high gate count in the quantum algorithm is due to the fact that we consider
all coordinates of p, even those with very small or 0 entries. However, to get an e-.-
approximation we can ignore all coordinates where the probability is less than . This leaves
at most 1/e coordinates to run the algorithm on. To find relevant coordinates we simply use
classical samples:

» Lemma 6. Letp € A", and e,6 € (0,1/3). O (In(n/d)/e) classical samples suffice to, with
error probability at most 0, find all i € [n] such that p; > €.

Proof. Consider a single entry i such that p; > €. After T' samples the probability that we
have not seen i yet is at most (1 —)T. Letting T = hlfzgls_i) =0 (M) ensures that
this error probability is at most de. Union bounding over the at most 1/e coordinates gives

the result from the lemma. <

The lemma shows that the number of coordinates we have to consider in our main algorithm
is independent from n. As we can simply look at the inner product on those entries, we
only get a dependence on n implicitly as ¢ > log (n). In fact, the classical algorithm can be
improved using the same method.

2.2.2 Learning part of the distribution

Often we will not be interested in all coordinates of p, the method from the previous section
is an example, but there might be other cases as well. One example is a binary distribution
(p,1 — p), where we only need to estimate the first entry. If we know a pmax such that

P < Pmax, then amplitude estimation [2] requires O (7&;“) applications of U,,.

3 The square can be removed by approximating the QFT using standard techniques.
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Similarly, if we know that p; < pmax for all 4, then the classical algorithm can be improved
by a factor paz. Sadly our main algorithm can not be improved by \/Pmaz to our knowledge,
but we may get a dependence on the sum of the entries in the part of p that we want to
estimate.

» Lemma 7. Letpc A", e € (0,1/3) and let S C [n]. Let pms > ) ;g pi be the mazimal
total probability on S. We can construct a quantum probability oracle for a distribution
p’ € A"2 using O (\/1/pmt) applications of U,, membership queries for S, and two-qubit

gates such that a estimating p” up to O (£/pmt)-Leo-€rror gives an e-Ly, error estimate of p.

Proof. The main idea is to amplify the probabilities by a factor of a = © (1/p,,;) using
O (y/a) iterations of amplitude amplification. This allows us to take ¢’ = ¢ - a as a larger
error tolerance. However, we need to be careful as we do not know the original {5 norm of
the “good” part of the state, and hence we do not know the exact amplification that O (\/a)
iterations of amplitude amplification would give, only that it is © (1/pm¢).

We consider a new distribution p’ with dimension n + 2. The first n coordinates are
equal to p/2, while the last to coordinates are pp,;/2 and (1 — py,:)/2. We can construct a
quantum probability oracle U, for p’ using a single controlled application of U,.

Using amplitude amplification we can create an quantum probability oracle U, for
a distribution p” that is equal to ap’ on the indices in S U {n + 1} for some unknown
a € O (1/pme). This requires O (y/a) applications of U, and membership queries for S.

Note that p;, | = apmt /2= (1) and in particulair let L be a (constant) lower bound
so 1 > L. Now, let p” be a —€OO estimate of p”. It follows that ., is an (1 4+ g7—)
multiplicative estimate of pl, |, and hence it gives such a multiplicative estimate a of a.

Let p; = 29} /a. We know that p/ = p} + ey for some error term ey with |e;| < Le/8pms.
We also know that @ = a(1 + e3) for some error term es with |ea| < £/8p,,:. Hence we know
that

2 "'//

i:.,

a
2 ten)
(1(1 +62)
2% + 1)
a(l + e9)
_ pi+2ei/a
(]. +€2)
= (pi +2e1/a)(1+e3)
=p; +2e1/a+ pies + 2ere3/a

where |eg| < 2|ea| < &/4ppm:. We can therefore bound the final error by

|2e1/a + pies + 2e1es/al < [2e1/a| + |pies| + [2e1e3/al

Le € Le?
S 2 TPy, 25
- 8L 4 64L
<e
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2.2.3 Returning a probability distribution

Our main algorithm does not always return a p € A”, all we are promised is that ||p — p[| , < e.

The following Lemma shows that we can always convert such a p into a good approximation
inside A™.

» Lemma 8. Let p € A™ and let p be such that ||p — pl|, < e/8. Then a min(n,8/¢)-sparse
P’ can be constructed from p such that p' € A™ and ||p — p||, < €.

Proof. Let p' be defined by setting all elements in p that are below /4 to zero and all

elements above 1 to 1, this introduces at most €/4 extra error in /o-norm so [|p — || ., < €/2.

Now, for an element in p’ to be non-zero, the corresponding element of p should be at
least €/8, hence p’ has at most 8/ non-zero elements. Let k < min(n,8/¢) be the number of
non-zero elements in §’. Let S be the sum of the entries in p', so

max(0,1 —ne/2) < S <1+ ke/4d.

If S =1 then p' € A™ so we are done.

If S > 1, then we decrease each of the non-zero elements by (S — 1)/k < ¢/4. This
introduces at most £/4 extra error, so the total error is less than €/2 + /4. Now all elements
are non-negative and they sum to 1.

If S < 1 and there is an element larger than 1 — e/4, return the distribution that is 1 on
the corresponding index and 0 everywhere else. Otherwise we consider two cases, n < 8/¢
and n > 8/e. For the first case, the ¢;-norm error in p' is at most ne/2, so 1 — S is at
most ne/2. Hence, by increasing each coordinate by at most £/2 we can ensure that the
resulting vector is in A™. For the second case we pick 2/¢ entries in §/, giving preference to
the non-zero entries, and increase the picked entries by @ <eg/2.

Finally, we note that this construction can be implemented in time linear in the input or
output sparsity, whichever is larger, times log (1/¢). <

2.2.4 Putting it all together

We can now combine these improvements with our base algorithm to get the following result
as a corollary.

» Theorem 9. Let p € A" and let U, be a quantum probability oracle acting on g
qubits for p. Let ¢ > 0. Let S C [n] and let py: be an upperbound on ), gpi. An
O (1/e)-sparse p € A™ such that ||p — Pl < € can be found with error probability at most
§ > 0 using O (In(1/e6)\/Pme/€) applications of U, (and membership queries for S) and
o (qIn(8)\/Pmt/e?) two-qubit gates. The gatecount can be improved to o (qIn(6)\/Pmt /)
using QRAM.

We note that the query complexity matches that of normal amplitude estimation (the query
complexity of which is known to be optimal as it can solve the parity problem for a 1/e-bit
long string [1]) up to logarithmic factors.

Using the equivalence of norms we can also get upper bounds on the query complexity
for £, estimates.

» Corollary 10. Let p € A™ and let U, be a quantum probability oracle acting on q qubits
for p. Lete > 0 and p > 1. Let S C [n] and let py; be an upperbound on ), o p;.
An O (nl/p/s) -sparse p € A™ such that ||p fﬁHp < ¢ can be found with error probability
at most 6 > 0 using O (In(1/&d) Pmint/? J€) applications of U, (and membership queries
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for S) and O (gIn(6) pmth/”/52) two-qubit gates. The gatecount can be improved to
9] (qIn(8)\/Prent/? /<) using QRAM.

We note that this might not always be optimal, in particular in the low-precision regime. For
example, classical sampling can produce an e-f5-estimate using O (1 / 52) samples as shown
by Kamath et al. [7].

3 Lower bounds

In this section we will prove lower bounds on the number of applications of U, that are
required to approximate p in different norms. Since the £, ,-norm bound follows from known
lower bounds on amplitude estimation that can be obtained from the lower bound on parity [1],
we focus on the ¢; and £ norms. We start by proving a lower bound on ¢;-norm estimation.

» Lemma 11. Let e € (0,1/3) and n > 2. Any algorithm that (with success probability at
least 2/3) for every p € A™ outputs a p for which ||p — pl|; < € using queries to a quantum
probability oracle for p, uses at least ) (g) such queries.

Proof. We assume that n is even as we can always add an extra zero entry. Let k = O (1/¢),
where p will be defined later. Let (), ... 2("/2) € {0,1}* be such that for all i we have
|| € {k/2,k/2 + 1}. Finding the Hamming weight of a single 2(*) solves the majority
problem and hence requires 2 (k) quantum queries to a standard (binary) oracle for 2( [1].
We further note that any algorithm that recovers a n/2-bit string requires Q (n) quantum
queries. Since quantum query complexity is multiplicative under composition [8] it follows
that finding all of the n/2 Hamming weights requires €2 (nk) = £ (n/e) quantum queries.
Standard techniques can be used to show that finding a constant fraction of the Hamming
weights would still require €2 (n/e) quantum queries, as Grover search can be used to find
the “mistakes”.

We now reduce this problem to finding an ¢;-approximation of a probability distribution.
Let p € A™ be given by p; = 2% for i <n/2 and by p; = 2% otherwise. Let p be an
¢ approximation of p. If |p; — p;| < ﬁ than we can find |z?| from p;. As P is an e-¢;-norm
estimate, it can only be off more than 1/kn = O (¢/n) on a small constant fraction of the
indices, allowing us to find the Hamming weight for all the others.

Finally we show how to implement a quantum probability oracle for p. We can sample
from p using a classical algorithm as follows:

1. Pick a uniformly random i € [n/2].

2. Pick a uniformly random j € [k].

3. If x;i) = 1 return i, if xg.i) =0 return ¢ +n/2.

By replacing the uniformly random picks by the creation of a uniform superposition we get a
quantum probability oracle for p.

We conclude that € (n/e) queries to a quantum probability oracle for p are required to
obtain an e-f;-approximation. >

As a corollary we get a lower bound for ¢s-estimates in the high precision regime:

» Corollary 12. Let e € (0,1/3y/n) and n > 2. Any algorithm that (with success probability
at least 2/3) for every p € A™ outputs a p € A™ for which ||p — p||, < € using queries to a
quantum probability oracle for p, uses at least (%) such queries.

Proof. This follows from the fact that ||p — p||; < v/n||p — p||, combined with Lemma 11. <
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4 Open questions

Estimating the expectation value of stochastic variables

We can identify a stochastic variable over a finite probability distribution p € A™ with a
vector a € R™. Here a; is the value of the stochastic variable on outcome i. Hence, the
expectation value of the stochastic variable is equal to (a, p). If we have m stochastic variables
a®, ..., a™ then we can write these as the rows of a matrix A € R™*". This leads to the
following problem:
Let A € [—1,1]™*" be a known matrix, let ¢ > 0 be an error parameter, and let p € A™ be
a unknown probability distribution, accessible via a quantum probability oracle. Output
a vector ¢ € R™ such that ||Ap —ql|, <e.
Here we take A € [—1,1]™*" for normalization purposes.

Classically this problem can be solved using O (W) samples. The argument is similar

as before: each expectation value can be estimated with error probability §/m, and union
bounding gives the result. However, our quantum algorithm does not generalize as easily.
One way to solve the problem is to apply amplitude estimation n times, but this would use

O (nln(1/6)/¢e) applications of U,. In fact, we can proof the following lower bound:

» Lemma 13. Let € € (0,1/(3y/n)) and let n be a positive integer power of two. There
exists a matriz A € {—1,1}"*", such that any algorithm that for every p € A™ (with success
probability at least 2/3) outputs a § € A™, for which ||Ap — q|| ., < €, uses at least Q (@)

queries to a quantum probability oracle for p.

Proof. We let A € {—1,1}""" be \/nH®"°8(") the rescaled n-fold Hadamard, so ﬁA is
unitary. Now let p € A™ be an unknown probability distribution given by a quantum
probability oracle. Let A be an algorithm that uses T' queries to a quantum probability
oracle for p, and outputs an estimate ¢ such that [[Ap — ¢||, < e. This £c—norm estimate
also gives an ¢y-norm estimate ||Ap — G|, < v/ne. Applying the unitary ﬁAT gives

1
ATy AT < e
and using that AT A = nl we get

Jnp— Aa], < ne.

So H p— +ATq ||2 < ¢, hence from ¢ we can recover an e-approximation of p in #3-norm, which,

by Corollary 12 requires at least 2 (@) queries to a quantum probability oracle for p. <«

We note that the proof, combined with the O (W) classical algorithm for estimating
the expectation value of stochastic variables, gives an alternative proof to that of [7] of the
fact that O (In(n/8)/e?) samples suffice for an e-£5-estimate.

Although the lower bound is disappointing, it still leaves open the possibility of an
improvement over applying amplitude estimation n times. In particular, when A = I the
problem is simply that of /,.-norm estimation, and hence we know that there is an improved
algorithm. Slightly more general, if A can be decomposed as A = RC' for matrices R and C
such that R has a maximal row sum of r, and C has a maximal column sum of ¢, then the
problem can be solved with O ( %) queries, by first applying C/c¢ as a leaky Markov chain
step, estimating the result in infty norm up to error £/b, and then applying R. It is however
unclear for which matrices a good decomposition exists.
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Improvements for partial distributions

While our improved algorithm from Theorem 9 works better when the total probability of
seeing a sample we are interested in is low, there is still a discrepancy between the classical
dependence on p,,q; and the quantum dependence on /D¢

Lower bound for low precision £2-norm estimates

Our lower bound for £s-norm estimates only works for the high precision (¢ € O (1//n))

regime. A Q) (%) lower bound for the ¢ > ﬁ regime follows from the lower bound on

amplitude estimation, but it is an open question whether this may be improved to €2 (E%)

Circuit depth

Recent work by Giurgica-Tiron et al. [5] addresses a big disadvantage of amplitude estimation
on near term hardware: the circuit depth. While classical probabilities can be estimated by
a highly parallel system of logarithmic depth using O (1 / 52) processors, quantum amplitude
estimation is inherently sequential and takes depth (5(1 /€). Giurgica-Tiron et al. give
algorithms that interpolate between these two cases, keeping the depth times the number of
oracle queries constant at O (1 / 52). It would be interesting to achieve a similar trade-off in
the multidimensional case.

Applications

A natural question is of course that of applications. Since the algorithm works when samples
from p are generated by a quantum algorithm, inherently quantum outputs like that of the
HHL algorithm, Hamiltonian simulation, or quantum Gibbs sampling might be a good fit.
Our new methods allow a lower dependence on the error ¢ when performing quantum state
tomography on the resulting states than the classical method of simply measuring does.

Another application might lie in distribution learning theory, or more broadly learning
theory in general. Here we are given an unknown distribution and are asked to learn certain
properties of the distribution. Our estimation algorithm might serve as a new tool to design
quantum improvements in this area.
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Post-selection, the power of discarding all runs of a computation in which an undesirable event
occurs, is an influential concept introduced to the field of quantum complexity theory by Aaronson
(Proceedings of the Royal Society A, 2005). In the present paper, we initiate the study of post-
selection for space-bounded quantum complexity classes. Our main result shows the identity
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that can be solved by unbounded-error logarithmic-space classical algorithms (PL). This result
gives a space-bounded version of the well-known result PostBQP = PP proved by Aaronson for
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1 Introduction

Post-selection. Post-selection is the power of discarding all runs of a computation in which
an undesirable event occurs. This concept was introduced to the field of quantum complexity
theory by Aaronson [1]. While unrealistic, post-selection turned out to be an extremely
useful tool to obtain new and simpler proofs of major results about classical computation,
and also prove new results about quantum complexity classes. The most celebrated result is
arguably the identity PostBQP = PP proved by Aaronson [1], which shows that the class of
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problems that can be solved by a bounded-error polynomial-time quantum algorithm with
post-selection (PostBQP) is equal to the class of problems that can be solved by unbounded-
error polynomial-time classical algorithms (PP), and thus makes possible to bridge quantum
complexity classes and classical complexity classes.

Space-bounded quantum complexity classes. The study of space-bounded quantum Turing
machines was initiated by Watrous [16]. Watrous showed in particular that any quantum
Turing machine running in space s can be simulated by an unbounded-error probabilistic
Turing machine running in space O(s). This result implies the identity PQL = PL, where
PQL denotes the class of problems that can be solved by unbounded-error logarithmic-space
quantum Turing machines, and PL denotes the class of problems that can be solved by
unbounded-error logarithmic-space classical Turing machines. The main open question of the
field is whether bounded-error quantum Turing machines can be simulated space-efficiently
by bounded-error classical Turing machines.

A major step towards establishing the superiority of space-bounded quantum Turing
machines over space-bounded classical (bounded-error) Turing machines has been the construc-
tion by Ta-Shma [14] of logarithmic-space quantum algorithms for inverting well-conditioned
matrices (it is unknown how to perform the same task classically in logarithmic space). While
Ta-Shma’s quantum algorithm used intermediate measurements, a version of this quantum
algorithm without measurement was later constructed by Fefferman and Lin [6] (see also [5]
for a related result on space-efficient error reduction for unitary quantum computation).
Very recent works [7, 8] have further showed that many other problems from linear algebra
involving well-conditioned matrices can be solved as well in logarithmic space by quantum
algorithms, and additionally showed that intermediate measurements can be removed from
any space-bounded quantum computation.

Our results. In view of the impact of the concept of post-selection to quantum complexity
theory and in view of the surge of recent activities on space-bounded quantum complexity
classes, a natural question is investigating the power of post-selection for space-bounded
quantum complexity classes. To our knowledge, this question has not been investigated so
far in the literature (while the notion of post-selection was previously studied in quantum
automata theory [21]). In this paper, we tackle this question and obtain the following
result (here PostBQL denotes the class of problems that can be solved by a bounded-error
polynomial-time logarithmic-space quantum Turing machine that uses post-selection — see
Section 2 for a formal definition):

» Theorem 1 (Main Theorem). PostBQL = PL.

This result thus gives a space-bounded version of the result PostBQP = PP mentioned
above for polynomial-time complexity classes. This enables us to bridge quantum complexity
classes and classical complexity classes for space-bounded computation as well, and thus
suggests that post-selection may become a useful tool to analyze space-bounded (quantum
and classical) computation as well. Actually, as a by-product of our main result, we
also obtain the fact that PL coincides with the class of problems that can be solved by
bounded-error logarithmic-space quantum algorithms that has no time bound (namely, the
bounded-error logarithmic-space quantum algorithms are as computationally powerful as the
unbounded-error ones under no time restriction).

We additionally present several results about logarithmic-space quantum computation
with post-selection in Section 4.
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Overview of our techniques. As for the result PostBQP = PP proved by Aaronson [1], the
nontrivial part of the proof of our main theorem is the simulation of a probabilistic machine
by a post-selecting quantum simulation machine. The simulation technique given in [1]
requires a polynomial amount of qubits, and thus cannot be used in our setting since we
are limited to a logarithmic amount of qubits. Therefore, we propose a different simulation,
which is composed of three parts. First, we show how to simulate the computation of a
logarithmic-space probabilistic Turing machine by a logarithmic-width probabilistic circuit K
(Section 3.1). Note that the computation process of K is represented by a mixture ) j ;Cj,
which means that the configuration is in C; with probability p;. (It can be written as
>_; pi|C;){Cj| when the mixed state formalism [11] is used.) Here, we can assume that there
are unique accepting and rejecting configurations C, and C,.. Thus, the final mixture of K
can be represented in the form of pC, + (1 —p)C,., where p > 1/2 if the input is a yes-instance,
and p < 1/2 if it is a no-instance. Second, we give a simulation of the probabilistic circuit
K by a logarithmic-space quantum Turing machine M with post-selection (Section 3.2).
Note that this simulation is done in a coherent manner. Namely, if the mixture of K
at some step is > j p;Cj, the quantum state of M at the corresponding simulation step
should be the normalized state of >, p;|C;). Thus, M produces the normalized state of
[¢) = p|Cy) + (1 — p)|Cy) as the final outcome. In fact, we use the power of post-selection
for this simulation, and the final outcome can be obtained after post-selection with an
exponentially small probability. Then, the third part is fairly similar to the approach used
in [1]: using polynomial number of states constructed from the same number of copies of
|1}, we use repetition and post-selection to increase the success probability of the simulation
(Section 3.3).

2 Preliminaries

2.1 Space-bounded probabilistic Turing machines

A classical space-bounded Turing machine has an input tape and a work tape. Both tapes
are infinite and their cells are indexed by integers, each of which contains the blank symbol
(#) unless it is overwritten with a different symbol. The input tape has a read-only head
and the work tape has a read/write head. Each head can access a single cell in each time
step and, after each transition, it can stay on the same cell, move one cell to the right, or
move one cell to the left.

The input alphabet is denoted ¥ and the work tape alphabet is denoted I', none of which
contains the blank symbol. Moreover, ¥ = ¥ U {#} and T' = ' U {#}. For a given string z,
|x| represents the length of x.

Formally, a (space-bounded) probabilistic Turing machine (PTM) M is a 7-tuple

M = (Sa Evl—‘aé; Siasaas’r‘)v

where S is the set of states, s; € S is the initial state, s, € S and s, € S (s, # ;) are the
accepting and rejecting states, respectively, and ¢ is the transition function described below.

At the beginning of the computation, the given input, say x € ¥*, is placed on the input
tape between the first cell and the |z|-th cell, the input tape head and the work tape head
are placed on the cells indexed by 0s, and the state is set to s;. In each step, M evolves with

respect to the transition function and the computation is terminated after entering s, or s,..

In the former (latter) case, the decision of “acceptance” (“rejection”) is made. It must be
guaranteed that the input tape head never visits the cells indexed by —1 and |z| 4+ 2. The
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formal definition of ¢ is as follows:

6:S><f)><1~“><Sxf><{—1,0,1}><{—1,0,1}—>{O,;,l}.

Suppose that M is in s € S and reads o € ¥ and v € ' on the input and work tapes,
respectively. Then, in one step, the new state is set to s’ € S, the symbol 4/ € I is written
on the cell under the work tape head, and the positions of the input and work tape heads are
respectively updated with respect to d; € {—1,0,1} and d,, € {—1,0, 1}, with probability

6(87 a,7, 3/77/7 di7 dw)v

where the input (work) tape head moves one cell to the left if d; = —1 (d,, = —1) and one
cell to the right if d; = 1 (d,, = 1). Remark that any transition with zero probability is never
implemented. To be a well-formed PTM, for each triple (s, a,7),

Z 6(3a05778/a7/adiadw) =1.

s'€S8,y'€el,d;€{—1,0,1},dw€{—1,0,1}

For a given input x € ¥*, M can follow more than one computation path. A computation
path either halts with a decision or runs forever. A halting path is called accepting (rejecting)
if the decision of “acceptance” (“rejection”) is made on this path. The accepting (rejecting)
probability of M on z is the cumulative sum over all accepting (rejecting) paths.

A language L is said to be recognized by PTM M with unbounded error if and only if
any x € L is accepted by M with probability more than 1/2 and any x ¢ L is accepted with
probability less than 1/2. A language L is said to be recognized by PTM M with error bound
€ < 1/2 if and only if any x € L is accepted by M with probability at least 1 — ¢ and any
x ¢ L is rejected with probability at least 1 —e. When € > 0 is a constant (independent of
the input), it is said that L is recognized by M with bounded error. As a special case, if all
non-members of L are accepted with probability 0, then it is called one-sided bounded-error.
A PTM making only deterministic transitions (i.e., such that the range of the transition
function is {0, 1}) is a deterministic Turing machine (DTM).

The range of the transition function can also be defined as [0,1] N Q, and thus the
PTM, called rational valued PTM, can make more than one transition with rational valued
probabilities in each step. Remark that all results presented in this paper are also followed
for rational valued PTMs. A nondeterministic Turing machine (NTM) can be defined as a
rational valued PTM and a language is said to be recognized by a NTM if and only if for any
member there is at least one accepting path and for any non-member there is no accepting
path (or equivalently any member is accepted with nonzero probability and any non-member
is accepted with zero probability).

A language is recognized by a machine in (expected) time t(n) and space s(n) if the
machine, on a given input z, runs no more than (expected) ¢(|x|) time steps and visits no
more than s(|z|) different cells on its work tape with non-zero probability.

The class PL (L and NL) is the set of languages recognized by unbounded-error PTMs
(DTMs and NTMs) in logarithmic space (with no time restriction). It is shown that each of
these classes coincides with the subclass such that the running time of the corresponding
machines is polynomially bounded (note that the proof is nontrivial for PL [10]).

The class BPL (RL) is the set of languages recognized by bounded-error PTMs (one-
sided bounded-error PTMs) in polynomial time and logarithmic space. On contrary to the
above three classes PL, L, NL, it is unknown that these two classes are the same as their
corresponding classes such that the underlying machines have no time restriction, which we
denote by BPL(00) (RL(c0)).
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Any language L is in C_L [2] if and only if there exists a polynomial-time logarithmic-
space PTM M such that any = € L is accepted by M with probability % and any z ¢ L is
accepted by M with probability other than %

2.2 Turing machines with post-selection

A postselecting PTM (PostPTM) has the ability to discard some predetermined outcomes
and then makes its decision with the rest of the outcomes, which is guaranteed to happen
with non-zero probability (see [1, 21]). Formally, a PostPTM is a modified PTM with three
halting states. A PTM has the accepting state s, and the rejecting state s, as the halting
states. A PostPTM has an additional halting state s, called the non-postselecting halting
state. In this paper, we require that a PostPTM must halt its computation absolutely, i.e.,
there is no infinite loop.

For a given input x, let pace,n () (Prejm(2) and pppost,a(2)) be the probability of
PostPTM M ending in s, (s, and s,). Since M halts absolutely, we know that

Pace,M (ZL‘) + DPrej,M (33) + pnpost,M(x) =1.

Due to post-selection, we discard the probability ppnpost,ar(z) and then make a normalization
On Pace, M (x) and prej ar(x) for the final decision. Thus, the input « is accepted (rejected) by
M with probability

Dace,m (T) =
e ( ) pacc,M(x) + prej,M(x)

Pace,m (2) (

- L DPrej,M (I)
pT@LM(x) o pacc,M(x) + prej,M($)> '

The postselecting counterparts of BPL and RL are PostBPL and PostRL, respectively.
(For instance, L is in PostBPL if and only if there are a polynomial-time logarithmic-space
PostPTM M and a constant € < 1/2 such that Pace () is at least 1 —e when z is in L, and
Prej,m(x) is at least 1 — e when z is not in L). Let PostEPL denote the class of languages
recognized with no error (or exactly) by polynomial-time logarithmic-space PostPTMs (i.e.,
L is in PostEPL if and only if there is a polynomial-time logarithmic-space PostPTM M such
that pece,m () > 0 and prejar(z) =0 when z is in L, and pgee,m () = 0 and prej i (x) > 0
when z is not in L).

2.3 Space-bounded quantum Turing machines and complexity classes

The initial quantum Turing machine (QTM) models (e.g., [4, 3, 16]) were defined fully
quantum. While quantum circuits have been used more widely in literature, QTMs are
still the main computational models when investigating space bounded complexity classes.
However, their definitions have been modified since 90s (e.g., [17, 15, 14, 6]). The main
modifications are that the computation is governed classically and the quantum part can be
seen like a quantum circuit. This paper follows these modifications. To be more precise, our
QTM is a PTM augmented with a quantum tape. Here, the quantum tape is designed like a
quantum circuit, i.e., it contains a qubit (or qudit) in each tape cell and it can have more
than one tape head so that a quantum gate can be applied to a few qubits at the same time.

We remark that the result given in this paper can also be obtained by the other space-
bounded QTMs defined in literature [18, 17, 20, 15, 14], where algebraic numbers are used
as transition values. The main advantage of the aforementioned modifications in QTMs is to
simplify the proofs and the descriptions of quantum algorithms.

Formally, a (space-bounded) QTM M is a 9-tuple

M = (Sa E,F, 5(17507 SiySas Sry Q)v
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where, different from the PTMs, the transition function is composed by two functions §,
and . that are responsible for the transitions on quantum and classical parts, respectively,
and € is the set of contents of a classical register storing quantum measurement outcomes.
(Similarly to the PTMs, S is the set of internal states, ¥ is the input alphabet, T" is the
work tape alphabet, and s;, s,, and s, are respectively the initial state, the accepting state,
and the rejecting state.) As the physical structure, M additionally has a quantum tape
with [ heads, and the classical register storing a value in Q = {1,...,m}, where I,m > 0 are
constants (independent of the input given to M). The quantum tape heads are numbered
from 1 to I. For simplicity, we assume that the quantum tape contains only qubits (with
states |0) and |1)) in its cells. Each cell is set to |0) at the beginning of the computation.
For a given input x € ¥*, the classical part is initialized as described for PTMs. The [ tape
heads on the quantum tape are placed on the qubits numbered from 0 to [ — 1.

The overall computation of M is governed classically. Each transition of M has two
phases, quantum and classical, which alternate. We define the transition functions ¢, and
0. different from the transition functions of PTMs. Suppose that M is in s € S and reads
o € ¥ and v € T, respectively. For each triple (s,0,7), d4(s,0,7) can be the identity
operator, a projective measurement (in the computational basis), or a unitary operator. If it
is the identity operator, the quantum phase is skipped by setting the value of the classical
register to 1 (in ). If the quantum operator is unitary, then the corresponding unitary
operator is applied to the qubits under the heads on the quantum tape, and the value in the
classical register is set to 1 (in ). If it is a measurement operator, then the corresponding
projective measurement is done on the qubits under the heads on the quantum tape, and the
measurement outcome, represented by an integer between 1 and m’ < m (in Q), is written in
the classical register, where m’ is the total number of all possible measurement outcomes of
the measurement operator.

After the quantum phase, the classical phase is implemented. For each quadruple
(s,0,7v,w), §. returns the new state, the symbol written on the work tape, and updates of all
heads, where w € €.

The termination of the computation of M is the same as the PTMs, i.e., done by entering
the accepting state s, or the rejecting state s,.. One time step corresponds to a single
transition. We add the number of qubits visited with non-zero probability during the
computation (as well as the number of cells visited on the classical work tape) to the space
usage.

Remark that any QTM using superoperators can be simulated by a QTM using unitary
operators and measurements with negligible memory and time overheads, i.e., by using extra
quantum and classical states, any superoperator can be implemented by unitary operators
and measurements in constant steps (e.g. [11, 13]).

Since the computation of the QTM defined above is controlled classically, a postselecting
QTM (PostQTM) can be defined similar to PostPTMs: the PostQTM has an additional
classical halting state s,, and any computation that ends in s,, is discarded when calculating
the overall accepting and rejecting probability on the given input.

The quantum counterparts of BPL (BPL(0)), RL, PL, NL, PostBPL, PostRL, and PostEPL
are BQL (BQL(0)), RQL, PQL, NQL?, PostBQL, PostRQL, and PostEQL, respectively, where
QTMs use algebraic numbers as transition amplitudes.

The following relations on logarithmic space quantum and classical complexity classes

2 Note that NQL is the quantum counterpart of NL based on the criterion by the accepting probabilities
of the underlying machine, not the certificate-based counterpart (QMAL).
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are already known [9, 16, 17, 7]:
L € NL = coNL C coC_L = NQL € PL = PQL.

L € BPL € BQL C PL = PQL.

3 Main Result

In this section, our main theorem (PostBQL = PL) is proved. We start with the easy inclusion.
» Theorem 2. PostBQL C PQL = PL

Proof. Any polynomial-time logarithmic-space PostQTM M can be easily converted to a
polynomial-time logarithmic-space QTM M’ such that M’ enters the accepting and rejecting
states with equal probability when M enters the non-postselecting halting state. Thus
the balance between accepting and rejecting probabilities is preserved, and the language
recognized by M with bounded-error is recognized by M’ with unbounded error. |

In the rest of this section, we give the proof of the following inclusion.
» Theorem 3. PL C PostBQL.

As described in Section 1, the proof of Theorem 3 consists of three parts, each of which
will be given in the next three subsections. We start by giving an overview of the first part.
Let L be a language in PL. Then there exists a PTM M recognizing L with unbounded error
such that M on input = halts in |z|* steps by using at most dlog(|x|) space for some fixed
positive integers d and k.

Without loss of generality, we can assume that M always splits into two paths in every
step, the work tape alphabet of M has only two symbols 0 and 1, and M halts only when
the work tape contains only blanks and both tape heads are placed on the 0-th cells, i.e.,
there exist a single accepting and a single rejecting configurations. Let m be the number of
internal states.

We fix x as the given input with length |x| = n. Any configuration of M is represented
by a 4-tuple of binary strings

(Sa hin; w, hwk)a

where s is the internal state, hy, is the position of the input head, w is the content of the
work tape, and hyy is the position of the work tape. (We also assume that w is always a
binary string, which does not contain any blank symbol.) The set of all configurations is
denoted by C*, i.e., C* = {C},...,Cn} for some N polynomial in n. The length of any
configuration is

I = [logm] + [logn] + [dlogn] + [log(dlogn)] € O(logn).

Based on C*, we define a stochastic matrix P,, called the configuration matriz, whose
columns and rows are indexed by configurations and its (j,)-th entry represents the prob-
ability going from C; to C;. Then, the whole computation of M on z can be traced by an
N-dimensional column vector, called configuration vector:

vy = P,

where 1 <1 < n* and v; represents the probability distribution of the configurations after
the [-th step. Here, vy is the initial configuration vector having a single nonzero entry, that is
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1, corresponding to the initial configuration, and v, is the final configuration vector having
at most two nonzero entries that keep the overall accepting and rejecting probabilities:

k
_ n
Uk = P vg.

Since the computation is split into two paths in each step with equal probability, the overall
accepting (A) and rejecting probabilities (R) are respectively of the forms
A R’

2? and 2?,
where 0 < A, R’ < 2"k, A +R = 2”k, and A’ # on* -1,

We present a simulation of the above matrix-vector multiplication in logarithmic space. It
is clear that keeping all entries of a single configuration vector separately requires polynomial
space in n. On the other hand, a single configuration can be kept in logarithmic space.
Therefore, we keep a mixture of configurations as a single summation for any time step. In
other words, we can keep v; as

vl[l]Cl + ’02[2]02 + 4 vi[nk]C’nk,

where each coefficient v;[j] represents the probability of being in the corresponding configur-
ation C;. The transition from v; to v;41 can be obtained in a single step by applying F,.
However, in our simulation, we can do this in n* sub-steps. The idea is as follows: In the
j-th sub-step, we check whether our mixture has C; or not. If it exists, then C} is evolved to
C’ and C] that are the configurations obtained from C; in a single step when the outcome
of the coin is respectively heads or tails. In this way, from the mixture corresponding to v;,
we obtain the next mixture:

Vi11[1]C1 +vi41[2]Cy + -+ + Ui+1[”k]0nk-
Then, the final mixture is
AC, + RC,,

where C, and C). are the accepting and rejecting configurations, respectively.
We present the details of this simulation in the following subsection.

3.1 Probabilistic circuit

In this subsection, it is shown that we can construct, in deterministic logarithmic space, a
logarithmic-width and polynomial-depth probabilistic circuit Ky, that simulates M on z.

Note that a logarithmic-space DTM can easily output each element of C**. Moreover, for
any C; € C%, it can also easily output two possible next configurations C; and C7’ such that
M switches from Cj to C’j’- if the result of the coin flip is heads and it switches from C; to
C7 if the result of the coin flip is tails.

A logarithmic-space DTM D described below can output the desired probabilistic circuit
K, with width [ 4+ 3 where (i) the first bit is named as the random bit that is used for coin
flip, (ii) the second and third bits are named as the block control bit and the configuration
control bit that are used to control the transition between the configurations in each time
step, and (iii) the rest of the bits hold a configuration of M on z.

The circuit K, consists of n* blocks, and D outputs the n* blocks. Each block
corresponds to a single time step of M on x:

blocky,block,, . .. block,x,
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where each block is identical, i.e., each block implements the transition matrix P, operating
on configurations. Remark that, after block;, we have the mixture representing v;.

Before each block, the random bit is set to 0 or 1 with equal probability and the block
control bit is set to 1. As long as the block control bit is 1, the configurations are checked
one by one in the block. Once it is set to 0, the remaining configurations are skipped.

Any block is composed by N parts where each part corresponds to a single configuration:

party,parta,...,party.

Here, part; implements the transitions from Cj in a single step. In part;, we do the following
items:
1. If the block control bit is 0, then SKIP the remaining items. Otherwise, CONTINUE.
2. SET the configuration control bit to 1 (here we assume that M is in Cj).
3. It checks whether M is in C}.
If M is not in Cj, SET the configuration control bit to 0 and SKIP the remaining
items. (Remark that the block control bit is still 1 in this case, and thus the next
configuration C;11 will be checked in part;1.)
Otherwise (i.e., if M indeed is in C;), CONTINUE.
4. SWITCH from Cj to Cj if the random bit is 0 and SWITCH from C; to C}' if the random
bit is 1.
5. SET the block control bit to 0.

After all n* blocks, D outputs the last block called decision block. In the last block, it is
checked whether the last configuration is C,, or C,.. If it is C,, (resp. C.), then the first bit of
the decision block is set to 1 (resp. 0).

For the above operations, we can use some gates operating on no more than four bits that
are the first three bits and one bit from the rest in each time. With [ sequential gates, we can
determine whether we are in C; or not. Similarly, with [ sequential gates, we can implement
the transition from C; to C’j’. and, with another [ sequential gates, we can implement the
transition from C; to CJ’/ . Here, using I sequential gates allows us to keep the size of any gate
no more than 4 bits as shown in Fig. 1 (where Hy,..., H; denote the I sequential gates).

random bit
block control bit
configuration control bit Hj Hj+1

1st

jn / A4 \
G / NI

[-th

Figure 1 Two sequential gates operating on the first three bits and one bit from the rest.

When physically implementing the above circuit K 5, before each block, the circuit will
be in a single configuration, and during executing the block, only the part corresponding to
this configuration will be active, and thus the circuit will switch to one of the two possible
next configurations. After the decision block, we will observe the first bit as 1 and 0 with
probabilities A and R, respectively.
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Remark that the set of all possible gates which can be used in the above circuit is
finite and independent of the input . The only probabilistic gate is a single bit operator
implementing a fair coin toss. The rest of gates are deterministic and basically they are
controlled operators with maximum dimension of 16.

Before continuing with the quantum part, we make further simplifications on K . As
2-bit AND and OR gates® and 1-bit NOT gate form a universal gate set for classical circuits,
each deterministic gate (operating at most 4 bits) can be replaced by some finite numbers
of NOT, AND, OR, and some 1-bit resetting gates with help of a few extra auxiliary bits
used for intermediate calculations, which are appended to the bottom part of the circuit.
Let G = {Go,G1,...,G:} be the new set of our gates, where Gy implements the fair coin
by outputting the values 0 and 1 with equal probability, and the values are used by the
deterministic gates whenever it is needed.

We denote the simplified circuit as K}, , or shortly as K'. Let I be the width of K’ (note
that I’ =1+ O(1) = O(logn) ). Thus, we have K’ such that the probability of observing 1
(resp. 0) on the first bit is A (resp. R).

3.2 QTM part

In this subsection, we give a logarithmic-space postselecting QTM that simulates the compu-
tation of K’ in a coherent manner, as described in Section 1.

A logarithmic-space (postselecting) QTM can trace the computation of K’ on its quantum
tape by help of its classical part. Since the circuit K’ is deterministic logarithmic-space
constructible, the classical part of the QTM helps to create the parts of K’ on the quantum
tape whenever it is needed. Moreover, any mixture of the configurations in K’ is kept in a
pure state of I’ qubits (described below).

The QTM uses I’ + 2 active qubits on the quantum tape for tracing K’ on the input. The
last two qubits are auxiliary, and the first I’ qubits are used to keep the probabilistic state of
K’. We consider the quantum tape as a logarithmic-width quantum circuit simulating K'.

For each gate of K', say G, we apply a unitary gate (operator) operating on at most 4
qubits, say U;. Therefore, we use 4 tape heads on the quantum tape.

During the simulation, the first I’ qubits are always kept in a superposition and after each
unitary operator the last qubit or the last two qubits are always measured. If the outcome is
0 or 00, then the computation continues. Otherwise, the computation is terminated in the
non-postselecting state.

In the probabilistic circuit K/, Gg is applied on the first qubit. For each Gg, we apply

11 1 1
11 1 -1 -1
Uo=311 1 1 1
1 -1 -1 1

on the first and the last qubits, measure the last qubit, and continue if |0) is observed:

1 1 1 1 post-selection 1 1
Up|00) = =|00) + =|01) + =|10) + =|11) ———— —|0) + —|1).
0[00) = 3100} + 3101} + 3 110) + S [11) 510+ 5l
1
\/>

1 1 1 1 post-selection 1
U0|10>:§|OO>—§|01>+§|10>—§|11>—> |0) + 2|1>.

S

3 We assume that these gates are represented by 4 x 4 matrices.
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Thus, coin-flipping operator can be easily implemented.

For the other operators (including the ones given below), we use the techniques given in
[12]. For any G; (1 < j < t), we apply unitary operator U; acting on four qubits. Before
applying Uj;, the quantum part is in

Z Qg p]ab00),

a,be{0,1}

since the last two qubits are measured before and any outcome other than |00) is discarded
by entering the non-postselecting state. Thus, only 4 x 4 = 16 entries of U; affects the above
quantum state. We construct U; step by step as follows. These 16 entries are set to the
corresponding values from G;. Thus, the probabilistic state, which is kept in the pure state,
can be traced exactly up to some normalization factor.

Without loss of generality, we assume that (by reordering the quantum states) these 16
values are placed in the top left corner. Then, Uj is of the form
1(GjG}G}’0>

e

where e is the normalization factor and all G, G, and G’/ are 4 x 4 matrices.
The entries of G;- are set in order to make the first four rows pairwise orthogonal:

1 0 0 0
Y2 1 0 0
M3 Y3 1 0]
7,4 Y24 Y34 0

) =

where the values are set column by column. The values of 7y 2, 71,3, and y; 4 are set to the
appropriate values such that the first row becomes orthogonal to the second, the third, and
the fourth ones, respectively. Similarly, we set the values of the second and third columns.
Since G is composed by integers, G; is also composed by integers.

The entries of G;’ are set in order to make the first four rows with equal length, say e,

which is a square of an integer:

v 0 0 0
0 72 0 0
Gy =
i 0 0 v 0 |’
0 0 0

where diagonal entries are picked as the square roots of some integers. Remark that the
entries of G;»’ does not change the pair-wise orthogonality of the first four rows. Moreover, at

this point, the first four rows become pair-wise orthonormal (due to normalization factor e).

One can easily fill up the rest of the matrix with some arbitrary algebraic numbers in order
to have a complete unitary matrix.

Since the set of G depends on the transitions of the PTM M, each U; can be kept in the
description of the QTM.

By using the above quantum operators, we can simulate K’ with exponentially small
probability. Only note that, due to normalization factors, the computation is terminated in
the non-postselecting state with some probabilities after applying each unitary gate.

At the end of the simulation of K’, we separate the first qubit from the rest of qubits,
each of which is set to |0). Then, we have this unnormalized quantum state in the first qubit:

(1— A)[0) + Al1) = ( 1;1A )
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1/2 2
The operator ( 1§2 _i’;2 ) maps the above quantum state to
1
i 5+ A
@) = )
5—A

Since this operator can be also implemented with post-selection by using an extra qubit, the
new unnormalized quantum state is set to |a).
If A =0, then the quantum state |u), that is the normalized version of |a), is identical to

[4+) = %. If A < £, then the quantum state |u) lies between |+) and [0), and thus it is

closer to |+) compared to |—) = @. If A> 1 then |u) lies between |0) and |—), and
thus it is closer to |—) compared to |+).

After making a measurement in {|+),|—)} basis, we can easily distinguish the cases
whether A is close to 0 or A is close to 1 with bounded error. In the case of when A is
close to %, the probability of observing these basis states can be very close to each other.
In Section 3.3, we use a modified version of the trick used by Aaronson [1] to increase the
success probability. Actually, we will need to use the above QTM O(n*) times sequentially
in logarithmic space.

3.3 Executing a series of QTMs

Let p be our integer parameter from the set {0, 1,...,n*}. For each p, we consider a QTM
M]p] as follows. First, we execute the above QTM in Section 3.2, and then transform |@) to

;+A
|p) =

2" (5 - 4)

in (n* — p) iterations. In each iteration, we combine the first qubit with another qubit in
state |0), apply the quantum operator

1 v3 0 0
1{ v3 -1 0 0
2 0o 02 0|’

0 0 0 2

and then the second qubit is measured. If the measurement outcome is |0), then the
computation continues. Otherwise, the computation is terminated by entering the non-

postselecting state. (By induction, we can easily see that |@) n'p steps |t,).) Note
that for each p, the QTM M |p] can be done in logarithmic space as the QTM described in
Section 3.2 is done in O(logn) space, and the counter for the iteration for creating |@) needs
O(logn) space as well.

By substituting A = ;‘T;, the quantum state |&,) can be rewritten as

1, A 1, A 1 A
2 1 oF 2t guF 3t ouF
P
k
2”16*17 1_ A 2nk7p 2" —2A’ onk _oar
2 an 2n,k+1 9p+1

It is easy to see that
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nk
when A < 1 (A’ <2Z-=24A'< Q”k)7 the normalized state |u,) of |@,) lies in the first
quadrant, and thus it is closer to |+), and

nk :
when A > % (A’ > 27 = 24" > 2"k>, |up) lies in the fourth quadrant, and thus it is

closer to |—).

\y') [up)

Figure 2 The visualization of |y) and |u,/) when A < %, and |y’) and |u,~) when A > 1.

ase A < 5: As A < 5 — — (recall that A is the accepting probability of the
Case A< 3: As A< g — Il that A is th g probability of the PTM M

on input z that halts in n* steps),

on* 94! 2
op+1 = op+l’

Thus, there exists a value of p, say p’, such that

k
2n 24’
W S [1,2]
. , PLEY 1/2 .
Then, since % < %—l— ﬁ and 2 > 22p,+21‘4 , the quantum state |y) = \/% ( é ) lies

’ nk ’
between |1) and |u, ), and since 3 < 1 + Q‘:—k <land2>2 2p7+21A > 1, |uy) lies between
ly) and |+) (see Fig. 2). Thus, the probability of observing |+) after measuring |u,/) in

{|+),]—)} basis is always greater than

5T
34 10
since |(y|+)[> = 2.

Case A > %: The case is similar to the previous case. There exists a value of p, say p”,
such that
' 24/

W S [—2, —1].

1/2
Then, the quantum state |y/) = —2= ( /2 > lies between —|1) and |u,/) and |uy/) lies

V17
between |y’) and |—) (see Fig. 2). Thus the probability of observing |u,) when measuring
in {|+),|—)} basis is always greater than

%7

34" 10

Now the overall quantum algorithm is as follows:
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1. Prepare counter C to 0. For each p € {0,1,...,n* — 1}, the following steps are imple-
mented.

a. We execute the above QTM M p], and make the measurement at the end in {|+),|—)}
basis. (Note that the execution can be discarded by entering the non-postselecting
state in the procedure of Section 3.2.)

b. If the measurement result corresponds to |+), then we reset the quantum register to
all |0) (note that this is possible using the classical control since all the non-|0) qubits
are induced only by post-selection, and thus we know what states they are in), and
add +1 to C.

c. If the measurement result corresponds to |—), then we reset the quantum register to
all |0), and add —1 to C.

2. If C = n* (namely, we observe |+) in all executions), then the input is rejected.

w

If C = —n* (namely, we observe |—) in all executions), then the input is accepted.
4. Otherwise (namely, if we observe the outcomes |+) and |—) at least once in some
executions), the computation is terminated in the non-postselecting state.

Note that the overall quantum algorithm is implemented in logarithmic space since the
counter is clearly implemented in O(logn) space, and M [p] is also implemented in O(logn)
space, and each iteration of step 1 is done by the reuse of the classical and quantum registers.

The analysis of the algorithm is as follows:

When A < 3, the probability of observing |+) is always greater than |—) in each execution

and at least once it is % times more. Thus, if = ¢ L, the probability of observing all |+)’s

is at least Z times more than the probability of observing all |—)’s after all executions.

When A > 3, the probability of observing |—) is always greater than |+) in each execution

and at least once it is % times more. Thus, if z € L, the probability of observing all |—)’s

is at least % times more than the probability of observing all |+)’s after all executions.

Therefore, after normalizing the final accepting and rejecting postselecting probabilities,
it follows that L is recognized by a polynomial-time logarithmic-space postselecting QTM
with error bound %. This completes the proof of Theorem 3. (The error bound can easily
be decreased by using the standard probability amplification techniques.)

3.4 Additional result

Additionally, we can show that PostBQL is contained in the class of languages recognized by
logarithmic space bounded-error QTMs that halt in expected exponential time.

» Theorem 4. PostBPL C BPL(exp) and PostBQL C BQL(exp), where BPL(exp) (BQL(exp))
is the class of languages recognized by logarithmic space bounded-error PTMs (QTMs) that
halt in expected exponential time.

Proof. Let M be a polynomial-time logarithmic-space PostPTM. By restarting the whole
computation from the beginning instead of entering the non-postselecting state, we can obtain
a logarithmic-space exponential-time PTM M’ from M, i.e., (i) the restarting mechanism
does not require any extra space, and, (ii) since M produces no less than exponentially
small halting probability in polynomial time, M’ halts with probability 1 in exponential
expected time. Both machines recognize the same language with the same error bound
since the restarting and postselecting mechanism can be used interchangeably [19, 21],
i.e., the accepting and rejecting probabilities by M and M’ are the same on every input.
Thus, we can conclude that PostBPL C BPL(exp). In the same way, we can obtain that
PostBQL C BQL(exp). >
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As BQL(exp) € BQL(o0) C PQL by definition and Watrous showed PQL = PL [17], our
main result (PL = PostBQL) leads to the following equivalence among BQL(exp), BQL(c0)
and PL.

» Corollary 5. PL = PQL = PostBQL = BQL(exp) = BQL(c0).

We leave open whether BPL(exp) is contained in PostBPL.

4 Related Results

In this section, we provide several results on logarithmic-space complexity classes with
post-selection. The first result is a characterization of NL by logarithmic-space complexity
classes.

» Theorem 6. NL = PostEPL = PostRL.

Proof. We start with the first equality NL = PostEPL. Let L € NL. Since NL = coNL [9],
L is also in NL. Then, there exist polynomial-time logarithmic-space NTMs N; and N
recognizing L and L. Based on N; and N, we can construct a polynomial-time logarithmic-
space PostPTM M such that M executes N7 and Ny with equal probability on the given
input. Then, M accepts the input if N7 accepts and rejects the input if Ny accepts. Any other
outcome is discarded by M. Therefore, (i) any « € L is accepted with nonzero probability
and rejected with zero probability by M, and, (ii) any = € L is accepted with zero probability
and rejected with nonzero probability by M. Thus, L is recognized by M with no error, and
thus L € PostEPL.

Let L € PostEPL. Then, there exists a polynomial-time logarithmic-space PostPTM M
recognizing L with no error. Based on M, we can construct a polynomial-time logarithmic-
space NTM N such that N executes M on the given input and switches to the rejecting
state if M ends in the non-postselecting halting state. Thus, N accepts all and only strings
in L. Therefore, L € NL.

Now we are done with equality NL = PostEPL. It is trivial that PostEPL C PostRL. To
complete the proof, it is enough to show that PostRL C NL. If a language is recognized by a
polynomial-time logarithmic-space PostPTM M with one-sided bounded-error, then it is also
recognized by a polynomial-time logarithmic-space NTM M’ where M’ is modified from M
such that if M enters the non-postselelecting state, then M’ enters the rejecting state. <

By using the same argument, we can also obtain the following result on quantum class
PostEQL (note that the first equality comes from NQL = coC_L [16, 7]).

» Theorem 7. C_L NcoC_L = NQL N coNQL = PostEQL.

As will be seen below, the relation between PostEQL and PostRQL seems different from
the relation between their classical counterparts since C_L and coC_L may be different
classes. Remark that it is also open whether NL is a proper subset of C_L N coC_L or not.

By using the quantum simulation given in Section 3, we can obtain the following result.

» Theorem 8. coC_L = PostRQL.

Proof. It is easy to see that PostRQL C NQL. Let L be a language in PostRQL and M be a
polynomial-time logarithmic-space PostQTM recognizing L with one-sided bounded-error.
By changing the transitions to the non-postselecting state of M to the rejecting state, we can

obtain a polynomial-time logarithmic-space NQTM recognizing L, and thus PostRQL C NQL.

Since NQL = coC_L [16, 7], we obtain PostRQL C coC_L.
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Now we prove the other direction. Let L be in coC_L. Then there exists a polynomial-time
logarithmic-space PTM M’ that accepts any non-member of L with probability % and any
member with probability different from % Let x be a given input with length n.

We use the simulation given in Section 3. We make the same assumptions on the PTM
M’ except that M’ accepts some string with probability % and M’ never accepts any string
with probability in the following interval

1 1 1 1

PR TR
for some fixed integer k. This condition is trivial if the running time never exceeds n*, i.e.,
the total number of probabilistic branches never exceeds o,

Then, we construct a polynomial-time logarithmic-space PostQTM as described in
Section 3 with the following unnormalized final quantum state:

<2A—1>
o—n" |7

where A is the accepting probability of M’. We measure this qubit and accept (reject)
the input, if we observe |0) (|1)). All the other outcomes are discarded by entering the
non-postselecting state.

It is clear that for any non-member of L, A is always equal to %, and thus the QTM
accepts the input with zero probability and rejects the input with some non-zero probability.
Therefore, any non-member of L is rejected with probability 1.

On the other hand, for any member, the amplitude of |0) is at least twice of the amplitude
of |1), and thus the accepting probability is at least four times more than the rejecting
probability. Thus, any member is accepted with probability at least %. The success probability
can be increased by using the standard probability amplification techniques. |
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