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ABSTRACT: Lattice Zg theories with complex actions share many key features with finite-
density QCD including a sign problem and CK symmetry. Complex Zg spin and gauge
models exhibit a generalized Kramers-Wannier duality mapping them onto chiral Zs spin
and gauge models, which are simulatable with standard lattice methods in large regions of
parameter space. The Migdal-Kadanoff real-space renormalization group (RG) preserves this
duality, and we use it to compute the approximate phase diagram of both spin and gauge
Zs models in dimensions one through four. Chiral Z3 spin models are known to exhibit a
Devil’s Flower phase structure, with inhomogeneous phases that can be thought of as Zs
analogues of chiral spirals. Out of the large class of models we study, we find that only
chiral spin models and their duals have a Devil’s Flower structure with an infinite set of
inhomogeneous phases, a result we attribute to Elitzur’s theorem. We also find that different
forms of the Migdal-Kadanoff RG produce different numbers of phases, a violation of the
expectation for universal behavior from a real-space RG. We discuss extensions of our work
to Zy models, SU(N) models and nonzero temperature.
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1 Introduction

A central objective of nuclear physics is mapping out the phases of QCD in the baryon
density-temperature (up-T') plane [1-3]. Several major collider experiments are pursuing
this goal, including RHIC at Brookhaven [4, 5], ALICE at CERN [6], and the planned
CBM experiment at FAIR [7]. To complement this work, a simultaneous theoretical effort is
targeting QCD phase structure from first principles [8]; however, at present we lack rigorous
and systematically improvable methods to probe much of up-7' plane. On the numerical
front, lattice QCD calculations at upg 2 T are obstructed by a sign problem [9-12]. While
many approaches are under development to overcome sign problems [13-36], they cannot
fully handle QCD yet. On the analytic front, various effective field theories (EFTs) have
been developed such as hard thermal loops [37, 38] and high density effective theory [39, 40],
but these only cover limited regions of parameter space. In the near term, there exist few



viable first-principles approaches to finite-density QCD, such as Taylor expansions off the
T-axis [41-44] and studies at imaginary baryon chemical potential [45-49].

A more recently proposed approach to understanding finite-density QCD capitalizes on
one of its symmetries, combined charge and complex conjugation symmetry CK [50-52]. We
can see this symmetry directly from the QCD Lagrangian at finite density [52],

- 1 . -
LEED = (i — m)vyj + G, G + ipsiy*y, (1.1)

where 1); are fermion fields, D is a covariant derivative, G is the gluon field strength, pp is the
baryon chemical potential, and 7’ represents the standard Dirac matrices. It is well known
that when ug = 0, QCD preserves charge conjugation C, parity inversion P, and time-reversal
T symmetries individually and in combination. The situation changes substantially when
we turn on a nonzero baryon density term up in eq. (1.1). While the fermion bilinear
Yy*) remains invariant under P and 7T, it flips sign under C. In turn, the lattice path
integral weights in eq. (1.1) and the fermion determinant become complex, the transfer matrix
becomes non-Hermitian, and QCD develops a sign problem. Additionally, eq. (1.1) loses
Lorentz invariance at ug # 0, as the chemical potential picks out a preferred direction (y*
rather than «*). However, the complex conjugation operation K flips the sign of i while
leaving the constant up and the bilinear ¢y*y invariant. Thus, the combined operation
CK leaves the entire Lagrangian invariant.

The operation CKC belongs to the class of PT-type symmetries, which are widely studied
in optics and condensed matter for their unique properties and extensive experimental
applications [53-61]. A PT-type symmetry is any symmetry combining one linear operator
(e.g. P or C) and one antilinear operator (e.g. 7 or K). Importantly, P7T-symmetric matrices
may be non-Hermitian; however, every eigenvalue of a PT-symmetric system is always either
real or part of a complex-conjugate pair [53, 62]. The study of quantum field theories with
non-Hermitian transfer matrices and P7T-type symmetries is a far younger field than P7T-
symmetric quantum mechanics and optics. Nonetheless, many steps have been taken towards
developing a formal understanding of and techniques for these systems [63-80]. A number of
PT-QFTs have been studied within the context of Beyond the Standard Model (BSM) model
building [81-91]. Within the Standard Model, several models sharing features of dense QCD
have been analyzed using tools based on non-Hermiticity and CK symmetry [50, 92-97].

Most importantly for this work, theories with non-Hermitian transfer matrices and
PT-type symmetries generally support unusual phase structure not seen in conventional field
theories [51, 52, 90, 96]. The appearance of complex conjugate pairs of transfer matrix eigen-
values is a hallmark of PT-type symmetries, leading to sinusoidally-modulated exponential
decay in correlation functions, similar to Friedel oscillations [98, 99]. Regions of parameter
space with conjugate pairs may also behave as moat regimes [100], a name that originates
in the condensed matter literature [101, 102]. The boundary between a region where all
eigenvalues are positive and a region with complex conjugate pairs is referred to in the statis-
tical mechanics literature as a disorder line [103]. PT-type symmetric transfer matrices may
also lead to inhomogeneous phases as a consequence of a Lifshitz instability. We summarize
the possible behaviors in table 1. Note that an arbitrary non-Hermitian system without a



Transfer matrix eigenvalues Phase behavior
All positive Normal
Some complex conjugate pairs Complex (Friedel-like)
Even number of negative eigenvalues Inhomogeneous (Lifshitz instability)
Odd number of negative eigenvalues Unstable

Table 1. Relationship between the phases in a moat regime and the spectral properties of a theory;
see ref. [51]. A disorder line marks the onset of a complex phase.

PT-type symmetry generally has a mix of positive, negative, and complex eigenvalues and
thus does not in general support the types of stable exotic phases we see in PT systems.

The loss of Hermiticity and/or Lorentz invariance can give rise to non-positivity, moat
regimes, and their associated phases. A large body of literature on inhomogeneous phases has
been developed in condensed matter systems, which are naturally non-relativistic [104-174];
these phases are often associated with competing interactions [175-181]. In many models
sharing features with QCD, Friedel-like phases and disorder lines have been observed, including
in flux tube models [182], finite-density Potts models [183], PNJL models [92, 93], static quark
models at strong coupling [94], liquid-gas models [95], mass-mixing models [51], and heavy
quark models [96]. Inhomogeneous phases have also been explored in models sharing features
with QCD, including O(N) models [184-188], scalar models [51, 189], various Gross-Neveu
models [190-202], NJL models [203-209], PNJL models [210], Yukawa models [211], quark-
meson models [212-215], and functional renormalization group (FRG) studies of QCD [216].
Note that one well-studied class of inhomogeneous field configurations that will relate to
inhomogeneous phases in this work are chiral spirals, nonlinear waves with expected values
of o and 73 behaving as a spira; i.e., (o +im3) ~ exp(ik - r) [217, 218]. The widespread
presence of exotic phases in finite-density models suggests that QCD phase structure could
be more complicated than conventionally anticipated, particularly near the QCD phase
transition and hypothesized critical endpoint [219]. Experimental signatures of moat regimes
in heavy ion collisions have been developed, including in Hanbury-Brown-Twiss (HBT)
interferometry [100, 220-222] and enhanced dilepton production [219].

In this work, we compute the phase diagram of lattice spin and gauge models with Z3
symmetry (the center of the QCD gauge group SU(3)) and CK-symmetric complex couplings,
which mimic a chemical potential and induce a sign problem. Due to CK symmetry, we can
often construct dualities between complex Zs models and sign problem-free chiral Z3 models.
The duality is a complex-chiral generalization of the Kramers-Wannier duality of the Ising
model. Next, we generalize the real-space renormalization group (RG) for use in systems with
chemical potential, and we use it to compute the phase diagram of the complex and chiral
Zs models. One class of these models, chiral Z3 spin systems, exhibit Z3 analogues of chiral
spirals: an imaginary analogue of chemical potential induces a phase in which Zj3 variables
exhibit sinusoidal modulation along a given direction. We predict the phase diagrams for
broad classes of lattice Zs spin and gauge models with real and imaginary chemical potentials
for in three and four dimensions, determining which have Zj spirals. We also explore the
extension of our results to Zy models with N > 3 and to SU(N) models with N > 3.



The outline of this paper is as follows. In the remainder of section 1, we introduce the
Zs models that form the focus of our paper. In section 2, we introduce two key techniques
used in this paper, Kramers-Wannier duality and the Migdal-Kadanoff renormalization group
(RG), and discuss their extensions to complex and chiral models. In section 3, we use the
Migdal-Kadanoff RG to compute the phase diagram of our models. In section 4, we discuss our
results, highlighting how different RG schemes lead to qualitatively different phase diagrams
in finite-density models. We also extend our results to certain SU(N) lattice models. Finally,
in section 5, we offer concluding remarks and outlook.

1.1 Complex and chiral Z3 models
We define 1D complex and chiral Zs spin models with actions

M

J 6
S.[si] = Sy *g 7 (58, — s*ss
HER 2 [2 (sjsﬁl + SJSJH) + NG (SJSJH sjsﬁl)
Mo§o
Syls;l = E 3 (ewsjs;H +e Wt SJ_H) (1.2)

<
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=

respectively. Here, s; are Zy spin variables taking values exp[2mn/N], the parameter j runs
over the M lattice sites, and the parameters (.J,0) and (.J,0) are real-valued. In S, the
complex interaction term € induces a nonzero density. The parametrization we use for S, is
not the standard one, which can be obtained from S, via the analytic continuation 0 — —ip.
It is easy to see that pu ~ 0 for small u, and the general relation between parametrizations is
straightforward. However, the (., §) parametrization is more convenient for RG calculations.

To define higher-dimensional complex (chiral) spin models, we impose the interaction
with 6 # 0 (9 # 0) in only a single direction, leaving the other d — 1 transverse directions as
standard-nearest neighbor interactions with couplings J (j ). In all dimensions, the complex
spin models are a model of Zy particles in the presence of a chemical potential.

To define gauge models, we replace site-based spins with link-based gauge fields, and we
replace nearest-neighbor spin interactions with Wilson plaquette interactions:

J /s e
Sulujl = 3 5 (P + 7703 (1.3)
p

where the sum is taken over all plaquettes p in the 2D plane, and the variables u, are the
standard plaquette variables, i.e. the product of four Zs link variables around a plaquette.

To define higher-dimensional gauge models, we replace site-based spins with link-based
gauge fields, and we replace nearest-neighbor spin interactions with Wilson plaquette inter-
actions. Just as in the spin models, we take the complex (chiral) term 6 (6) to be nonzero
in only a single preferred plane. In the complex gauge models, the 6 term corresponds to a
background electric field that is real in Minkowski space and imaginary in Euclidean space;
this field induces a sign problem on the lattice. The # interaction in the chiral gauge models
gives rise to a real magnetic field in both Euclidean and Minkowski space.



Phase structure of real and chiral Zy models. The phase structure of standard Zy
models (where 6 and @ are both zero) has been extensively investigated [223-228]. Less is
known about general chiral and complex Zy models, though many studies of chiral spin
models have been carried out. In three and higher dimensions, chiral Zs spin models have an
infinite number of stable inhomogeneous phases that are commensurate with the underlying
lattice in the low temperature (small .J) region. In a given inhomogeneous phase, (d — 1)-
dimensional sheets of spins, each characterized by a certain expectation value, are layered
along the chiral direction [165, 229-235]. These phases are Zs analogues of chiral spirals,
with each phase corresponding to a particular wave number. Similar spirals occur in Zy with
N > 4. Tt is likely that the N — oo limit is smooth, although to our knowledge this has not
been investigated. The phase diagrams of the chiral spin models exhibit a fractal structure
called a Devil’s flower, by analogy with the well-known Devil’s staircase [236]. The behavior
of Zs spin models in 2D is a special case, and is closely tied to the physics of the BKT
transition [237, 238]. For example, there is a nontrivial critical point on the positive real axis
associated with a second-order phase transition, whereas higher dimensions have first-order
transitions. It is known that a technique called the Migdal-Kadanoff real-space RG (which
we discuss below in detail) does only a fair job of capturing 2D Zy critical behavior [226].

2 Techniques

Next, we introduce two key techniques that we will use in our analysis: Kramers-Wannier
duality in sections 2.1 and 2.2, and the real-space RG in sections 2.3 and 2.3mkrg-complex.

2.1 Kramers-Wannier duality

Kramers-Wannier duality maps the 2D Ising model onto itself, interchanging low- and
high-temperature behavior [239, 240]. It is simple to establish this duality by mapping the
Boltzmann weights of one model to the character expansion of the other [227].1 This is
simple to see in the 2D Ising model, defined as

H = —JZUjok, (2.1)
Jik
where J and h are couplings, {j, k} are nearest-neighbor sites, and o; are Zg spin variables.
Using shorthand notation to write nearest-neighbor interactions o;0;, = o4, we can write
the character expansion of each Ising model Boltzmann weight as

w(op) = %7 = cosh K + oysinh K . (2.2)

where we use the Zg group characters {1, 0y} with hyperbolic functions as coefficients. The
Boltzmann weights themselves are exp(Kog) = {exp(K), exp(—K)}. We only care about the
relative weighting of the Boltzmann weights, so we can construct a duality

exp(—2K) < tanh K . (2.3)

'The weights of a path integral are simply the exponential of the discretized action w(&#) = exp[—S(Z)]. A
character expansion is simply an expansion of a function on some group O = ZZ cixi as a linear combination
of the characters x; of the group’s irreducible representations.



Dimensionality Duality of real Zy models
2D Spin systems <> Spin systems
3D Spin systems <> Gauge theories
4D Gauge theories <> Gauge theories

Table 2. Kramers-Wannier duality for real lattice Zy models.

This duality maps the small-K region of the Ising model, which is paramagnetic with zero
magnetization, to the large- K region of the Ising model, which is ferromagnetic with nonzero
magnetization. The fixed point of the duality transform is the critical point of the Ising
model. This duality extends to operators [241], and is the most well-known example of
order-disorder duality.

This duality extends to other Zo and Zpy models generally. The form of the duality
is dimension-dependent, as shown in table 2. In spin systems, nearest-neighbor spins are
connected by links. The Kramers-Wannier dual of a link interaction on a square lattice in two
dimensions is a link on the dual lattice perpendicular to the original link. In three dimensions,
the dual of a link is a plaquette in 3D, and a cube in 4D. Thus, the dual of a Z spin system
is a Zpy spin system in two dimensions, a gauge theory in three dimensions, and a theory of
fundamental plaquettes interacting around a cube in four dimensions. Similarly, the dual of
a Zy gauge theory is a Zy spin theory in three dimensions and a Zy gauge theory in four
dimension. For a concise treatment of Abelian lattice duality, see e.g. [227].

2.2 Complex-chiral extension of Kramers-Wannier duality

Building off studies of similar P7T Zy models in refs. [50, 97] and studies of duality in other
PT-symmetric lattice models [242], it is straightforward to show that complex and chiral
Zn models exhibit an extension of the Kramers-Wannier duality. We begin by examining
the character expansion and Boltzmann weights of our chiral and complex models, which
allows us to demonstrate a duality between these models. Next, we highlight the regions of
parameter space in which the complex models have a sign problem-free dual form.

Character expansion of Zg links. The partition functions for the spin and gauge models
are defined by sums over Zg spins and links in the usual way, as:

Zspin = Z exp [Z A(SK)] ) Zgange = Z exp [Z A(up)l ) (2.4)

{s;} ¢ {ue} p

where the fundamental variables in the two sums over configurations are the site variables
s; and link variables u, respectively; the total action is a sum over functions A(s,) of the
link variables sy in the spin case and the plaquette variables u, in the gauge case. We can
write these expressions as a sum over products of Boltzmann weights:

Zspin = Z Hexp [A(Sé)] ) Zgauge = Z Hexp [A(up)] . (25)
{s;} ¢ {ue} P



The character expression for any Boltzmann weight w(sy) = exp[A(s¢)] has the form
w(sg) =a+bsg+csy, (2.6)

with character coefficients a,b,c € C. The character coefficients represent the Zg Fourier
transform of the weight functions [227, 243].

Let us now examine the form of the character coefficients and Boltzmann weights for
our models introduced in section 1. The symmetries of a link action A(s;) typically are
inherited by their corresponding Boltzmann weights w(sy) = exp A(s¢). For a conventional
Zpy model, the link action must be real, implying invariance under complex conjugation
K. We also require invariance under charge conjugation C, which takes sy — sj. These
two conditions fix eq. (2.6) to

wi(se) = a+b(sg+s7), (2.7)

where a,b € R. This Boltzmann weight is positive for b > —a/2.
To formulate the chiral Zs nearest-neighbor action, we remove the condition that eq. (2.6)
is invariant under C and only require the action to be real, finding that

wy(s)) =1+ zsp+ 275y, (2.8)

where we have normalized a to one and parametrized b as z = = + iy € C.
The complex Z3 action requires invariance under combined CX without imposing invari-
ance under C or K individually. Under these conditions, eq. (2.6) must satisfy

we(sy) = we(se) (2.9)

This bears close resemblance to the CK symmetry condition in quantum mechanics,
V(xz) = V*(—=z) [53]. Under these conditions, {a,b,c} € R in eq. (2.6), but we(s,) is complex
as the Zj3 spin variables sy are complex.

Duality conditions. The character expansion of the Boltzmann weights in the complex
Z3z model is

J . 0 x
we(se) = exp §(Se+54)+%(56—5z)—<] ; (2.10)

where we have added a constant —J to A., which normalizes w(1) = 1. The weights of
the complex model are then

w(l) =1, w(627ri/3) _ e—J/2+i0, w(e47ri/3) _ e—J/2—i0 ) (2‘11)
The character coefficients are

2 4
a:1+2e*%cos0, b:1—2e32jcos(9—;), c:1—2e32jcos<9—;). (2.12)

We parametrized the character coefficients of the Zs chiral model in eq. (2.8) as

a=1, b=z, ¢=2z". (2.13)

-7 -



Complex form Dual real form

2D Spin with chemical potential Spin with chiral interaction
3D Spin with chemical potential Gauge with background magnetic field
3D | Gauge with background electric field Spin with chiral interaction

4D | Gauge with background electric field | Gauge with background magnetic field

Table 3. Generalization of the Kramers-Wannier duality introduced in section 2.1 to Zy models with
a non-Hermitian transfer matrix.

As in the Ising model, we want to identify the Boltzmann weights with dual representation
character coefficients, implying that

7= e /20 (2.14)

This relation is involutive because the Zgz Fourier transform is involutive, and it is straightfor-
ward to check that the real character coefficients of the complex model are the weights of the
chiral model. Note that the normalization condition a = 1 for chiral models is equivalent
to the normalization condition a + b + ¢ = 1 for complex models.

We see that the high-temperature (small-z) behavior of the chiral spin model is dual to the
low-temperature (J > 1) expansion of the complex spin model. Likewise, the low-T" (|z| — 1)
chiral behavior is dual to the high-T (J — 0) complex behavior. This invertible involution
extends the duality of conventional Z3 models to the complex plane. We summarize several
important mappings in table 3.

Sign problem-free region. Complex Zy models always have a sign problem, but their
chiral duals only have a sign problem outside the triangle defined by

142z >0, 1—z—+3y >0, 1—z+V3y>0, (2.15)

where z = x + iy as before. While chiral models are not typically defined outside of this
triangle, due to the complex-chiral duality, we see that it is natural to consider chiral models
on the full range of (z,y) values.

2.3 Migdal-Kadanoff renormalization group

The Migdal-Kadanoff renormalization group (MKRG) yields qualitative information about
the phase structure of lattice systems [244-247]. Due to its simplicity and utility, this
technique has been extensively studied and applied to many models [248]. Effectively, we
apply a Migdal-Kadanoff RG transform R multiple times to a system, and map out the basins
of attraction of the model, which tell us the phase structure of a system. The MKRG is
approximate on conventional lattices, and exact on hierarchical lattices [249]. Interestingly,
MKRG schemes respect Kramers-Wannier dualities [247], and thus give us information about
both a given Zy model and its dual.

The MKRG is built from two primary operations: decimation (D)) and bond-moving
(B.,), as shown in figure 1. A decimation transformation of a 1D spin lattice changes the lattice
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Decimation Bond moving

Figure 1. Schematic representations of Migdal-Kadanoff transforms. In decimation transforms, we
eliminate n? — 1 out of every n? lattice sites, as in eq. (2.16). In bond-moving transforms, we move
the entire strength of one bond onto another, as in eq. (2.17).

spacing from a to Aa by integrating out every (A — 1) out of \ spins, leaving us with lattice
points spaced by Aa from one another. In a 1D Ising model characterized by nearest-neighbor
couplings J and spacing a, decimation creates a new Ising model with coupling J’ and lattice
spacing Aa. In the 1D Ising model, decimation acts as tanh.J’ = tanh*(.J).

Decimation can only be carried out analytically in 1D. Bond moving is a technique
which changes local interactions in a way which allows decimation to be carried out in higher
dimensions. A bond-moving transformation on a spin system moves all the bonds inside a
d-dimensional hypercube of size (Aa)? to links on the boundaries of the hypercube, changing
the strength of an interaction on the boundary of the hypercube from J to A\%~1.J.

Let us use lowercase by and d) to represent MKRG operations in Zz models. Here, a
decimation transform with blocking factor A\ = 2 maps weights a, b, ¢ as:

da(a,b,c) = (a®,b?, c?) (2.16)
and bond moving squares the Boltzmann weights, so
by (a,b,c) = (a® + 2bc, ¢* + 2ab, b* + 2ac). (2.17)

Every MKRG transformation for Zs lattice models can be written as the composition of
a sequence of these two operations. From these two primitive operations, we can build a
large set of MKRG transformations for Zs lattice models. Note that when discussing these
transforms, it is convenient to write functional composition as if it were multiplication, so
daby(a, b, c) represents da(ba(a,b,c)).

The original Migdal form of the spin model RG has the general form DB [247],
i.e., bond moving for links in all d — 1 directions folowed by decimation. This formulation
leads to an RG transform

J = Ry(J) = D\(ATLT), (2.18)

Kadanoff [241] showed bond-moving can also be carried out sequentially along different lattice
directions, resulting in an anisotropic system after an RG transformation, e.g.

Ji. = Ry(J) = XDy (OFL). (2.19)

for k=1, ..., d. This produces a set of MKRG transformations that can have different fixed
points for couplings in different directions, but which lead to similar critical behavior for



standard lattice systems. That is, Kadanoff’s extension to anisotropic RG flows posits that
the RG transformations B DB% 177 with j = 0...d —1, all exhibit the same phase structure
for a given spin system. For a gauge theory, Migdal’s original RG scheme has R = D?B%2,
and Kadanoff’s scheme extends this to all permutations of two D’s and d — 2 B’s [247].

Migdal-Kadanoff RG transforms respect Kramer-Wannier duality [241]: decimation D)
in a given Zy model is equivalent to bond-moving By in its dual model, and likewise for B
and Dy. This relation holds because decimation is convolution of Boltzmann weights, which
is multiplication of the character expansion coefficients of the weights, and bond-moving is
multiplication of weights. The two operations are related by the Zy Fourier transform, which
transforms the parameters of one model to the parameters of its dual.

2.4 Symmetries of the real-space RG for complex and chiral models

Ref. [231] pointed out the crucial role of two symmetries in the RG analysis of chiral Zs spin
systems, a PT-type symmetry and a Roberge- Weiss symmetry. These symmetries extend
to all Zs chiral and lattice models. To see this, let us construct the Migdal-Kadanoff RG
operations for our models, choosing a blocking factor A = 2 in eqs. (2.16) and (2.17). For the
chiral model with weights in eq. (2.8), we have bond-moving and decimation transforms

- B 22 + 2*2

B(z) = T D(z) =22, (2.20)

which impose a normalization ¢ = 1 and we recall from section 2.2 that z = = + iy. It
is straightforward to show that the chiral transforms (D, B) are dual under a Zz Fourier
transform to the corresponding complex transforms (B, D), which we can obtain from
egs. (2.16) and (2.17). Despite their equivalence, these transforms have different algebraic
forms and provide useful cross-checks on one another.

Roberge-Weiss symmetry is invariance of the partition function under z — wz, where
w € Zs. This symmetry manifests itself directly in the RG recursion relation. From the
explicit forms of (D, B) in eq. (2.20) we see that

B(wz) = wB(z), D(wz) = w?D(2). (2.21)
for any w € Zs. As a consequence, RG transforms R built from a sequence of B’s and D’s obey

R(wz) = wPR(2), (2.22)

where p = 0,1,2. A special case of eq. (2.22) was first found in ref. [231] using an argument
based on space-dependent Zj3 transformations of the spins and the behavior of the two-point
function. The RG transforms also respect CX symmetry:

R(z") = R*(2), (2.23)

which follows from B(z*) = B*(z) and D(z*) = D*(z). This relation was first found in
ref. [231] for chiral spin models.

,10,
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Figure 2. 1D complex and chiral spin models. (Left) 1D complex model with phase structure
in the z = & + iy plane obtained from repeated decimation transformations D = B. Solid colors
correspond to different phases. The light blue triangle in the center represents the region where the
action is real. (right) 1D chiral spin model, obtained from repeated action of D =~ B. All points inside
the unit circle eventually map to z = 0.

3 Results

We now apply the Migdal-Kadanoff RG and duality to find the phase diagram of our Zs
models in eq. (1.2). First, it is useful to examine some general features of the fixed points
R(z9) = z¢ of Zs models under RG transforms R. In dimensions d > 2, Z3 models have a
nontrivial fixed point zy = xy + iyp for some zy € [0, 1] and yo = 0. For standard Zs models,
this fixed point separates a large-.J region z < xg from a small-J region x > x¢. For chiral and
complex Zsz models, these phases extend into the complex plane. From eq. (2.22), we have that

R(wzp) = wPR(zp). (3.1)

In the case p = 0, we see that wzy is mapped to zg. For p = 1, we have two additional
nontrivial fixed points {wozo, w3z}, for wy = exp(27i/3). For p = 2, we have R(wozp) = w?zo
and vice versa, meaning that {wpzo,w3zo} form a two-cycle. These features are a natural
result of CK and Roberge-Weiss symemtries. To summarize:

p | R(z0) | R(wozo) | R(w§zo)
0 Z 2 2
0 0 0 (3.2)
1 20 w020 w%zo
2 20 w%zo w020

The chiral models also have a high-T fixed point at z = 0, which is dual to a low-T" fixed
point at J = oo with arbitrary € in the corresponding complex models. In all cases, lower
and upper half-planes have mirror-image phase structure due to eq. (2.23).

3.1 1D spin systems

We determine the phase structure of our models by iterating a given RG transform R on
each z a number of times n, until the value of R"(z) is stable for all values of z. Typically,
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we find that n = 6 is sufficient to give an accurate depiction of the basins of attraction of
R and the phase diagram of the model.

We can express the partition functions of 1D spin models and 2D gauge models exactly
in terms of their character weights. For 1D complex Zs spin models, this is

Z=ad" +o" + N (3.3)

where N is the number of spins and {a, b, ¢} are the coefficients of the character expansion
of the Boltzmann weight given in eq. (2.12); they are also the eigenvalues of the transfer
matrix. From the form of {a,b,c} given in eq. (2.12), we see that two of the eigenvalues
cross when 6 = {n/3, 7,57 /3}, leading to first-order phase transitions at those values of
6. We confirm this behavior by carrying out an RG analysis with R(z) = D(z), as shown
in the left panel of figure 2. The points z = {1,wp,w3} are all stable high-temperature
fixed points, and z = 0 is an unstable low-temperature fixed point of the complex spin
model. The critical lines separating the three phases are the boundaries of the basins of
attraction for the high-temperature fixed points, which emanate outward as rays from the
z = 0 along 6 = {n/3, 7, 57/3}.

We carry out a similar analysis for the 1D chiral spin model, which has partition function

Z=a" 4+ +V =14 42N (3.4)

where {a,b, &} are given by eq. (2.13) and N is the number of lattice sites. We display the
phase structure obtained from repeated application of the RG transform R(z) = D(z) = 22
in the right panel of figure 2. For |z| < 1, the @ = 1 term dominates the partition function.
All values |z| < 1 are attracted to the stable fixed point at z = 0, which is a high-temperature
fixed point. Values of z with |z| > 1 move off to infinity. RG flows to the origin, to infinity, or
along the unit circle are chaotic maps. We can easily see this for |z| = 1, where R effectively
takes & — 20 mod 27 (mapping the unit circle to itself). Taking z = sin? , we see that this is
a particular case of the logistic map = — kz(1 — ) with x = 4, which is known to be chaotic.

In all figures in this section, we draw the sign problem-free region, where the character
coefficients {a, b, ¢} are all positive, as a light blue equilaterial triangle given by eq. (2.15).
The vertices of the equilateral triangle are stable fixed points, but other than that, the region
of positive weights does not appear to be of fundamental importance to phase structure.
Indeed, even in these simple 1D models, we see that restricting the parameter z to the region
of positivity in chiral models misses significant aspects of RG flow.

3.2 2D complex gauge model

The phase diagram of the complex gauge model in 2D is similar to that of the 1D complex spin
model. The RG flow is generated by R = D? = 2%, so that R(wz) = wB?(z). Thus we again
have three stable fixed points z = {1,w,w?}, where w = exp(27i/3), as in the 1D complex
spin model. The phase diagram of the 2D chiral gauge model is effectively the same as that
of the 1D chiral spin model: R = {22, 24} have similar properties, including the chaotic map
on the unit circle; the small change in exponent does not affect RG flow significantly.
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3.3 2D spin systems

2D chiral and complex spin systems are dual to one another. In Migdal’s original formulation
of the real-space RG, the natural 2D spin RG transforms are R = DB for the complex
model and R = DB = BD for the chiral model. Both DB and BD occur naturally in
Kadanoff’s anisotropic reformulation. In a standard Zs spin model where z is restricted
to a real number z, these two transformations have a similar phase structure, with some
changes in the location of the nontrivial fixed point.

However, in the chiral and complex models, it is clear from figure 3 that the phase
diagrams generated by BD and DB differ significantly, producing four and seven phases,
respectively. Neither phase diagram shows a Devil’s flower, consistent with the results in
ref. [231]. The fixed points are nonuniversal; there is a nontrivial fixed point 2o along the
positive x axis between zero and one at the tip of the orange region, whose value is different
for the BD and DB. The points (wzg,w?z) form a two-cycle in both cases.

3.4 3D spin and gauge systems

In figure 4, we plot the phase diagrams of the 3D complex spin model, which is dual to the
3D chiral gauge model. As expected, the location of the nontrivial fixed point on the positive
real axis is not universal. As in the 2D complex spin model, the number of phases that appear
depends on the order of the basic RG operations, with BBD producing the smallest number
of phases (4), and DBB producing the largest number of phases (13).

In figure 5, we plot the 3D complex gauge model, which is dual to the 3D chiral spin model.
These models exhibit a Devil’s flower for each of the transformations BDD, DBD, and
DDB. Intriguingly, BDD and DBD have a three-fold symmetry, while DDB has a six-fold
symmetry. From the point of view of the chiral spin model, there are an infinite number
of commensurate inhomogeneous phases in the low-temperature region, which corresponds
to the strong coupling region near J = 0 for complex models.

3.5 4D spin and gauge systems

In figure 6, we see that just as in the 3D models, the order of bond-moving and decimation
transforms produces different results for 4D complex spin systems. The RG transform
DB? generates only four regions (one homogeneous and three inhomogeneous). As more B
operators are placed to the right of D, more phases of smaller sizes appear, with DBBB
having 25 different phases, 21 of which lie outside of the triangle of positive weights.

Figure 7 shows the behavior of the 4D chiral spin model. The RG transformation BD3
(equivalent to DB3) is the orignal Migdal transformation for this model. The phase diagram
takes the form of a Devil’s flower, with the critical point on the positive real axis close to
the origin. Other permutations of BD? show similar behavior, albeit with critical points
further from the origin. Note that the phase diagram of the transform D3B has a six-fold
symmetry, while the other transforms have a three-fold symmetry.

In figure 8, we plot the phase diagram of the 4D Zs3 gauge theory. Using the original
Migdal transformation D2B2, we see four phases. On the other hand, the transformation
B2D? generates many more phases.
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-1. -1,
> 15 55 0 15

Figure 3. 2D complex spin model, analyzed using transforms BD (left) and DB (right).
1.5 1.5 15

¢

~ 0 S ~ 0
-1. -1.5 -1.5
25 0 15 215 0 15 215 0 15
X

Figure 4. 3D complex spin models, analyzed using the transforms (left to right): BBD, BDB,
DBB. The phase diagrams are identical to those for 3D gauge models using DDB, DBD and BDD,

respectively.

1.5 1.5

-1. -1.5
-1.5 . -15 0 1.5

X X

Figure 5. 3D complex gauge models, analyzed using the transforms (left to right): BDD, DBD,
DDB. The presence of the Devil’s flower phase structure is clear in all three cases. These are identical
to the phase diagrams for the 3D chiral spin model.

4 Discussion

Many features of the phase diagrams in section 3 are consistent with our intuition from
real-space RG analyses of conventional models. All of the spin models have at least four
phases for d > 2, and all of the gauge models have at least four phases for d > 3, which is the
minimum number of phases consistent with three nontrivial fixed points. The location of
these nontrivial fixed points is dependent on the form of the RG transforms (i.e. the order of
bond-moving and decimation operations), consistent with Kadanoff’s interpretation of the
real-space RG. However, the phase structures predicted by different RG transforms are far
from identical. Here, we discuss a number of their important features.
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15 1.5
S 0 0
135 0 1.5 135 15
X
15 1.5
A Y
N 0 - 0
~
135 0 1.5 135 15

Figure 6. 4D complex spin models, analyzed using the transforms (left to right): BBBD, BBDB
(top row); and BDBB, DBBB (bottom row). In the dual chiral model, the fundamental variables

are plaquettes interacting around cubes.

1.5

1375 0 1.5
X

1.5

135 0 1.5
X

-1.5
-1.5

1.5

Figure 7. 4D chiral spin models, analyzed using the transforms BDDD, DBDD (top); and
DDBD, DDDB (bottom). In the dual complex model, the fundamental variables are plaquettes
interacting around cubes.

— 15 —



1.5 1.5 1.5

25 0 15
X b 4 X

Figure 8. 4D gauge models, using the transforms: BBDD, BDBD, and DBBD (1st row); and
BDDB, DBDB and DDBB (2nd row).

4.1 Failure of universality and spurious symmetries

The symmetry of phase diagrams often change from threefold, to sixfold, to even higher-fold as
we change the order of bond-moving and decimation operations; see e.g. figures 3 and 4. This
behavior, to our knowledge, has not been observed in conventional lattice models. Critical
behavior usually depends on the symmetries and dimensionality of a system, and our results
are at odds with Kadanoff’s interpretation of different orderings as belonging to the same
universality class [247]. Although all Migdal-Kadanoff RG schemes give exact results for
appropriate hierarchical models [249], the phase diagram’s symmetry on a normal cubic
lattice cannot depend on the precise scheme used: there is a single correct answer. This
difference in symmetry represents a failure of the predictive power of the MKRG to respect
the universality within a given model in non-Hermitian systems.

The number of phases appears to be tied to the number of D = B operators appearing
to the right of the rightmost B = D in a given Zz renormalization transformation R. To
understand this behavior, let us compare the RG transforms BD and DB acting on a 2D
complex spin model. Writing z in polar form as re?, we find explicitly that

9126120 | ydo—4if
14 274

BD(e"r) = (4.1)

Eq. (4.1) only contains a single overall phase factor if §# = 7n/3: along these constant-6 lines,
|z| evolves just as it would along the positive real axis. Off these lines, however, the phase can
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evolve, thus explaining the six-fold symmetry of the BD phase diagram. On the other hand,

, el 4 =202\ 2
DB(r)="——— "~ . 4.2

Eq. (4.2) has an overall phase if § = 27n /3, giving the phase diagram threefold symmetry.
If we now consider the general Migdal-Kadanoff transform for a complex Zs spin model

R(z) = DI BDI(z), (4.3)
we see that
Di(er) = X Di(r) (4.4)

suggesting a proliferation of copies of the positive real axis with increasing j. However,
B(e"r) produces copies of the positive real axis only for # = 27n/3. Subsequent application
of D does not produce further copies of the positive real axis, so the phase diagram has
a 3 x 2/-fold symmetry, in agreement with the observed behavior. The analysis of other
cases follows from similar reasoning.

We see that the real-space RG cannot answer which symmetry is correct on a standard
cubic lattice for complex and chiral models. All of the models have a Zs-symmetric action,
with no indication that a larger-symmetry group is somehow hidden in the action. This logic
favors the RG scheme that produces a three-fold symmetric phase diagram as the correct
one. Another argument in favor of the three-fold symmetric phase diagram, which relies on
properties of chiral model low-temperature expansions, is given in appendix A.

4.2 Presence and absence of Devil’s flowers

In d > 3, only chiral spin models and their complex duals have a Devil’s flower phase structure.
The Devil’s flower appears for all possible RG scheme choices R in these models, though the
size of each phase and the symmetries differ based on the scheme.

One might wonder whether the Devil’s flower stems from Roberge-Weiss symmetry, as
the chiral spin models and their duals are unique among our models in having p = 2. As
noted in [231], for a blocking factor A = 2, we have one fixed point z = 1 and a two-cycle
z = {Q, Q?}; thus, it makes sense that adjacent phases of the Devil’s flower map after many
iterations to different points in {1,Q,Q?}. However, for A = 3 we have B3(wz) = wBs(2)
and D3(wz) = D(z). For a chiral spin model, R3(z) contains only one D3, implying that
p = 0. However, the lines separating the different regions still map into all three elements
of {1,9,02}. In other words, the phase structure is not gone for A = 3, but is just harder
to discern. That is, p = 2 is not required for a Devil’s flower.

Instead, let us write the coarse-grained order parameter for chiral spin models as M (x) =
p(x) explig(x)]. Symmetry arguments suggest the Landau free energy density takes the form

f= %(v +iA)M* - (V —iA)M + BM*M + C(M3 + M*3) + O(M*) (4.5)
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where A is a constant vector field in the chiral direction, and {B,C} are scalar parameters.
In the low-temperature limit, we can take the magnitude of M and pg to be fixed and reduce
the Landau free energy density to

f = 3 (Vo — A — 20 cos(30). (4.6)

Minimization of eq. (4.6) leads to the fundamental equation of the Frenkel-Kontorova
model [164], a well-known system with Devil’s staircase behavior. (The explicit form of
the parameters in the model can be easily obtained using, for example, mean field the-
ory [250].) The potential term favors a constant value of ¢ = 2wn/3, while the kinetic term
is minimized if ¢ changes at a constant rate along chiral direction. In the Frenkel-Kontorova
model, the interplay between these two terms leads to a Devil’s staircase for ¢ along the
direction of A. For general Zy models, eq. (4.6) generalizes to

f = 3 (Vo — A7 205 cos(N). (4.7)

The key feature of this connection is the presence of a local order parameter M in the
chiral spin models and their duals. However, for the other cases, the fundamental field of
the chiral model is not an order parameter due to Elitzur’s theorem [251], which prohibits
the spontaneous breaking of local gauge symmetry in gauge theories without gauge fixing.
Generally, unless an Abelian lattice model or its chiral dual has a local order parameter,
it cannot support a Devil’s flower.

4.3 Extension to finite temperature

So far we have only included the effects of a nonzero chemical potential in an infinite
FEuclidean spacetime. To build models with a closer relationship to QCD at nonzero density
and temperature, we must also consider the effects of nonzero temperature, obtained by
giving the lattice a toroidal topology, R? ® T!, where the circumference of T' is 3 = 1/T, the
inverse temperature. Note that the temperature introduced here is completely distinct from
our previous use of low- and high-temperature to encapsulate our intuition about phases for
J > 1 and J <« 1. Here, we take the direction associated with temperature to be that of 6
(chemical potential); we refer to this as the Euclidean time direction.

In general, when (3 is much larger than any correlation length in a system, the system’s
behavior resembles that of 8 = co. When we decrease § to become commensurate with one
of the correlation lengths, finite temperature effects become non-negligible. From an RG
perspective, the RG flow near a d-dimensional fixed point typically crosses over to behavior
associated with a (d — 1)-dimensional fixed point. This is closely associated with dimensional
reduction, the description of a d-dimensional field theory at high temperature by an effective
(d — 1)-dimensional theory. This behavior occurs naturally in the Migdal-Kadanoff RG. For a
complex spin model in d dimensions, the RG transformation is

Ry(z) = DB 1(2) (4.8)

for all directions. When § = 2 in lattice units, periodic boundary conditions in time imply
that there is no spin-spin interaction in that direction anymore; it has been integrated out.
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This leads to a dimensionally-reduced spin model in (d — 1) dimensions with no chemical
potential. The RG flow for this reduced model evolves as

Ry_1(z) = DB 2(2). (4.9)

A more interesting behavior occurs for gauge theories. The Polyakov loop P, a closed
thermal Wilson line, is the product of the link variables U(Z,t) winding around the lattice
in the time direction:

P(Z,t) = U@ U@, t+1)... Ut — 1) (4.10)

where periodic boundary conditions close the loop. Note that Tr P(Z,t) is gauge-invariant
and independent of the choice of ¢, and it functions like a scalar from a (d — 1)-dimensional
perspective. This is the order parameter for the deconfinement phase transition in a pure gauge
theory at nonzero temperature. Using, for example, the original form of the Migdal-Kadanoff
RG, the complex Zs3 gauge theory has the RG transformation

Ry(z) = D*B%2(2). (4.11)

When we repeatedly act with R on timelike plaquettes, we eventually reach a point where
the system is effectively (d — 1)-dimensional, like before. However, the timelike gauge
interactions remain between neighboring Polyakov loops P(&,0), effectively generating a
spin-spin interaction between them.? In the Migdal-Kadanoff framework, once we reach the
limiting case of a (d — 1)-dimensional spin system, the timelike couplings evolve as

Ry_1(z) = DBY2(2) (4.12)

which is precisely the evolution of a (d — 1)-dimensional spin system. At this point, a
d-dimensional Zs gauge theory evolves as two separate systems: a (d — 1)-dimensional Zs
spin system with Polyakov loops playing the roles of spins and a (d — 1)-dimensional Zs
gauge theory. This decoupling is unique to Abelian gauge theories; for non-Abelian gauge
theories, the Polyakov loops act as adjoint scalars in (d — 1) dimensions and remain coupled
to the gauge field. In the case of chiral Zs gauge theory, the dimensionally-reduced Zs spin
system is chiral, and the gauge theory is Hermitian. For a complex Zj3 gauge theory, the
dimensionally-reduced Zs spin system is complex. In four dimensions, a chiral Zs3 gauge
theory at nonzero temperature has a Devil’s flower phase structure associated with Polyakov
loops, but the corresponding complex Zs gauge theory does not.

4.4 Extension to Zp

Carrying out real-space RG analyses of Zy models becomes increasingly more complicated
for increasing N. To parametrize nearest-neighbor Zs models, we only need one parameter in
the Hermitian case and two parameters in the chiral and complex cases. As we increase N,
the number of required parameters increases according to the number of nontrivial simple

2This is a concrete realization of Svetitsky- Yaffe universality [252]: the deconfinement transition of a
d-dimensional gauge theory lies in the same universality class as a (d — 1)-dimensional spin system using
Tr P(Z,t) as spin variables.
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representations of the group. For example, Z4 has 4 irreps, associated with the mapping
s — {1, 5,52, 5%}, two of which are complex and conjugate (s*> = s*) and one of which is real
(s?); thus, it requires one complex and one real parameter.

While we do not work out the behavior of Zy models explicitly, it seems likely that
phase diagram characteristics of Z3 models will persist for all N. For example, chiral Z, spin
models are known to exhibit Devil’s flowers for d > 3 [233]; we expect chiral spin models
and their duals to exhibit this structure for all N in d > 3. Likewise, we expect that Zy
complex spin models have similar phase diagrams as the Zs case, with a disordered phase
and at least NV ordered phases; however, as discussed above, we expect that the correct Zy
result for cubic lattices is a disordered phase and exactly N ordered phases.

4.5 Extension to SU(3)

While neither Zg nor SU(2) models have complex irreducible representations (irreps), extending
our Zy results to complex and chiral SU(N) models for N > 3 is more complex because
SU(N) has an infinite number of irreps. Nonetheless, Migdal-Kadanoff methods have been
applied to Hermitian SU(N) gauge theories in 4D and d = 4 — € [253, 254], which provides
us a starting point.

As with Zy gauge theories, 2D gauge models are exactly solvable. The Migdal-Kadanoff
RG consists only of decimations, which map a class of SU(V) heat kernel actions, parametrized
by a single real parameter [, into itself. These actions give results essentially identical to
those of continuum 2D SU(N) pure gauge theories. There are two fixed points: an unstable
high-temperature fixed point at 5§ = co and a stable low-temperature fixed point at 5 = 0,
similar to the behavior of a standard 1D Zs spin model. In 4D, a perturbative analysis
around [ = oo shows that this is a good approximation to the standard UV fixed point at
g°> =0. In d = 4 +¢, that fixed point becomes an IR fixed point, and a new UV fixed point at
g% = O(e) emerges. This is consistent with the continuum behavior of such theories; parallel
results hold for SU(V) spin models in d = 2 + € [255, 256].

Lattice SU(N) models display additional structure when we extend the usual Wilson
lattice action to include a term in the adjoint representation. For example, for a gauge
theory the extended action is [257, 258]

Ba
N2 -1

S0 = 3 [ 55 (n(U) + xr U)) + agxa(l)] (4.3

Here xr is the group character for the irrep R: xr(Up) is the trace of the plaquette variable
U, in the fundamental representation, and x4(U,) = |xr(U,)|* — 1. In the limit S4 — oo,
the plaquette variables take on values in Zy. Thus in this limit, an SU(N) gauge theory
reduces to a Zy gauge theory, and similarly for SU(N) spin systems.
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We can also define chiral and complex SU(N) lattice models; for spin models, we have

Sel2) = Y [ 25 (xr(UU2) + xr(UasU) + U sUs) = xr(Us—iU2))

Nf<(

£ 19N
5A
+ yz 7 XaU:Ux) (4.14)
S U] = Br 20 U+ U, —if, U. Ut Ba U+ U,
(U] =Y | o (¢ xr (UF:00) + € xp(UansUF)) + 5 Xa(USU2) |

where {x,r} index lattice sites and directions, and {#,., 6, } are nonzero only along the complex
or chiral direction, respectively. The normalizations of the parameters agree with the Zs
models in the limit 4 — oo.

There is no known general connection between the two models in eq. (4.14) except in
the Zx limit. However, the first-order transitions we have found for Zs models should extend
to large but finite values of SBr, which allows us to make predictions for T = 0 behavior.
We expect that chiral SU(N) spin models in d > 3 exhibit a Devil’s flower phase structure
as 0 is varied for at sufficiently large Br and 84. We also expect that chiral SU(N) gauge
models for d > 3 exhibit a four-phase structure as we vary 0 at sufficiently large S and
B4. Similarly, we expect that complex spin and gauge models in d > 3 exhibit a four-phase
structure as we vary 6 for small Sr and large (4.

5 Outlook

In this work, we studied lattice Zs spin and gauge theories with complex and chiral interactions.
We demonstrated an extension of Kramers-Wannier duality that maps complex and chiral
models onto one another. We analyzed the phase structure of these models with real-space RG
methods, and showed how Zs and CK symmetries impact the RG flow and phase structure.
In particular, we showed that spatially-modulated phases appear in both chiral and complex
models, and that these phases manifest in a Devil’s flower structure in the specific case of
chiral spin models and their duals.

We have shown that the phase structure of Z3 non-Hermitian models obtained from
Migdal-Kadanoff RG calculations depends strongly on the order of bond moving and dec-
imation, a violation of expectations of universality. This finding underscores the need to
explore whether other real-space RG formulations, and other theoretical tools like mean field
theory exhibit similar issues when applied to non-Hermitian and finite-density models. In
cases where a real dual form is available, standard lattice methods can in principle determine
the correct phase structure. In practice, it may be necessary to consider both order and
disorder variables for a complete understanding.

We have also found that the Devil’s flower phase structure only occurs in a given
model if there is a gauge-invariant order parameter available in the model or its dual, a
behavior we trace to Elitzur’s theorem. This has profound implications for the appearance
of inhomogeneous phases in lattice field theories in general.

We have partially extended our results on Zs to Zy and SU(N) lattice models. The Zy
chiral spin models with N > 3 are all expected to have Zy spirals. As in the Zs case, we
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predict that chiral SU(V) spin models exhibit a Devil’s flower phase structure for d > 3, but
that chiral gauge theories do not, due to Elitzur’s theorem. Unfortunately, the lack of a simple
duality for non-Abelian lattice models prevents us from making corresponding statements
about complex SU(N) lattice models, which are more directly related to finite-density QCD. It
is possible that chiral spirals and Zy spirals may have a synergistic effect for models in which
Polyakov loops and fermion bilinear order parameters are coupled, such as PNJL models.
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A Configuration-worldline duality

Chiral Zs3 spin models have an unusual low-temperature (small .J) phase structure for d > 3,
with an infinite number of periodic inhomogeneous phases commensurate with the underlying
lattice. Evidence for this behavior was first obtained via low-temperature (') expansions [230],
and has also been indicated by other approaches [229, 231, 232, 234]. In a given inhomogeneous
phase, (d — 1)-dimensional sheets of spins, each characterized by a certain expectation value,
are layered along the chiral direction, forming a Zs spiral along the chiral direction.

A low-T expansion of a spin system typically entails expanding about the lowest-energy
configuration(s); in our sign convention, these configurations have the largest lattice action. In
our Zs chiral spin models at § = 0, the ground state configurations have all their spins aligned,
leading to three possibilities for the starting point for our expansion (one for each possible
spin). Higher-order terms in the expansion reflect contributions to the partition function
from configurations formed by flipping one or more spins in the original configuration.

As we vary 0, configurations become inhomogeneous in the chiral direction 6 but remain
homogeneous in the directions transverse to 0; this behavior is called a chiral spiral. We
describe these configurations by the element of Z3 associated with each transverse slice of the
lattice configuration, using n = 0, 1,2 as a shorthand to denote the three Zs spins exp(27n/3).
For example, we can write the three homogeneous ground states at § = 0 as a sequence
of period one: (000...), (111...), and (222...). These configurations are all equivalent up
to a global Zs rotation. Likewise, at the special values 6 = 27 /3,47 /3, the ground state
configurations have period three; specifically, repeated sequences of (012) and (021), up to
a global rotation. Every value of 0 is associated with a sequence of spins, each associated
with a phase. A first-order transition occurs when the free energies of two stable phases
are degenerate in parameter space.
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Brief notation | Spin configuration Worldlines
(00) (000000) [000000]
(3) (000111222) [001001001]
(32) (000112220011122) | [001010010100101]
(32%) (0001122) [0010101]
(2) (001122) [010101]
(1) (012012) [111111]

Table 4. Examples of spin configuration-worldline duality.

An alternative notation for describing field configurations tells us how many times a
spin value repeats before changing. For example, in the configuration (012), the spin value
repeats once before changing, which we can write as

(012012 ...) = (1). (A.1)

We can generalize this notation to more complicated patterns (ki ks ... k). For example,
we could have a spin configuration that looks like

{01122000122001112...} = (1223). (A.2)

The righthand side indicates that there is a layer consisting of one spin, followed by a layer
of two spins, followed by another layer of two spins, followed by a layer of three spins, before
the pattern repeats. The notation

{000...} ={111...} = {222...} = (c0) (A.3)

indicates a homogeneous phase.

Due to the duality between the low-T expansion of a chiral model and the high-T
expansion of its corresponding complex model, we can associate configurations of chiral
models with contributions to the high-T" expansion of complex models. For example, in d = 2
spin systems, duality relates each spin configuration of the chiral model to a set of closed paths
in a worldline expansion of the corresponding complex model, and vice versa. In d = 3, spin
configurations of the chiral spin model are dual to terms in a worldsheet expansion of the dual
complex gauge theory. We refer to this relationship as spin configuration-worldline duality.

In d = 2, configurations of the chiral spin model are mapped by duality into straight
worldlines in the direction transverse to the chiral direction. In between each two adjacent
slices of the (012) configuration, there is a worldline carrying Zs triality 1. Similarly, in
between each two adjacent slices of the (021) configuration, there is a worldline carrying
Zsg triality 2 = —1. We can associate the spin configurations described above with their
corresponding worldlines as follows:

(000) < [000]
(012) «» [111]
(021) « [222]
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The worldline value on the right is the difference of the successive spins on the left. We
can think of [111] and [222] in d = 2 as representing constant currents in the Euclidean
timelike direction, arising from a nonzero chemical potential. We give further examples of
this configuration-worldline duality in table 4.

The spin configurations (012) and (021) are atypical in the chiral models: they are
inhomogeneous, but their worldline duals [111] and [222] are homogeneous. From this
analysis, we see that it is natural that a Zs model without a Devil’s flower has only four
phases, with a three-fold symmetric phase diagram: each of the three ordered phases of a chiral
model is obtained in the complex form of the model from a starting point of constant density.
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