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Linear regression is a widely used technique to fit linear models and finds
widespread applications across different areas such as machine learning and
statistics. In most real-world scenarios, however, linear regression problems are
often ill-posed or the underlying model suffers from overfitting, leading to erro-
neous or trivial solutions. This is often dealt with by adding extra constraints,
known as regularization. In this paper, we use the frameworks of block-encoding
and quantum singular value transformation (QSVT) to design the first quantum
algorithms for quantum least squares with general /o-regularization. These in-
clude regularized versions of quantum ordinary least squares, quantum weighted
least squares, and quantum generalized least squares. Our quantum algorithms
substantially improve upon prior results on quantum ridge regression (polyno-
mial improvement in the condition number and an exponential improvement in
accuracy), which is a particular case of our result.

To this end, we assume approximate block-encodings of the underlying ma-
trices as input and use robust QSV'T algorithms for various linear algebra oper-
ations. In particular, we develop a variable-time quantum algorithm for matrix
inversion using QSV'T, where we use quantum singular value discrimination as a
subroutine instead of gapped phase estimation. This ensures that substantially
fewer ancilla qubits are required for this procedure than prior results. Owing to
the generality of the block-encoding framework, our algorithms are applicable
to a variety of input models and can also be seen as improved and generalized
versions of prior results on standard (non-regularized) quantum least squares
algorithms.
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1 Introduction

The problem of fitting a theoretical model to a large set of experimental data appears
across various fields ranging from the natural sciences to machine learning and statistics
[Murl2|. Linear regression is one of the most widely used procedures for achieving this.
By assuming that, for the underlying model, there exists a linear relationship between a
dependent variable and one or more explanatory variables, linear regression constructs the
best linear fit to the series of data points. Usually, it does so while minimizing the sum of
squared errors - known as the least squares method.

In other words, suppose that we are given N data points {(a;,b;)}Y, where Vi : a; €
R?, Vi : b; € R. The assumption is that each b; is linearly dependent on a; up to some
random noise of mean 0. Suppose A is the data matrix of dimension N x d, such that its it
row is the vector a; and b € RY such that b = (by,--- ,by)?. Then the procedure, known
as ordinary least squares, obtains a vector z € R? that minimizes the objective function
|Az — b||5. This problem has a closed-form solution given by x = (ATA)~"1ATb = A*b,
where AT denotes the Moore-Penrose inverse of the matrix A. Thus computationally,
finding the best fit by linear regression reduces to finding the pseudoinverse of a matrix
that represents the data, a task that is expensive for classical machines for large data sets.

In practice, however, least squares regression runs into problems such as overfitting.
For instance, the solution might fit most data points, even those corresponding to random
noise. Furthermore, the linear regression problem may also be ill-posed, for instance, when
the number of variables exceeds the number of data points rendering it impossible to fit
the data. These issues come up frequently with linear regression models and result in
erroneous or trivial solutions. Furthermore, another frequent occurrence is that the data
matrix A has linearly dependent columns. In this scenario, the matrix AT A is not full
rank and therefore is not invertible.

Regularization is a widely used technique to remedy these problems, not just for linear
regression but for inverse problems, in general [EHN96]. In the context of linear regression,
broadly, this involves adding a penalty term to the objective function, which constrains
the solution of the regression problem. For instance, in the case of fs-regularization, the
objective is to obtain x that minimizes

1Az — bll3 + All Ll (1)

where L is an appropriately chosen penalty matrix (or regularization matrix) of dimension
N x d and A > 0 is the regularization parameter, an appropriately chosen constant. This
regularization technique is known as general £2-reqularization or Tikhonov reqularization in
the literature [Hem?75, HH93, Bis95, GHO99, vIW15|. It is a generalization of ridge regres-
sion which corresponds to the case when L is the identity matrix [HK00, Mar70, Vin78§].
The closed-form solution of the general fs-regularized ordinary least squares problem is
given by

v=(ATA+ALTL) AT, 2)

A straightforward observation is that even when A7 A is singular, a judicious choice of the
penalty matrix L can ensure that the effective condition number (ratio of the maximum
and the minimum non-zero singular values) of the overall matrix is finite and AT A+ LTL
is invertible.

In this paper, we develop quantum algorithms for linear regression with general ¢5-
regularization. If the optimal solution is 2 = (x1,--- ,24)’, then our quantum algorithm
outputs a quantum state that is d-close to |x) = Z?:l xj|j) /|||, assuming access to the
matrices A, L, and the quantum state |b) via general quantum input models.
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In several practical scenarios, depending on the underlying theoretical model, general-
izations of the ordinary least squares (OLS) technique are more useful to fit the data. For
instance, certain samples may be of more importance (and therefore have more weight)
than the others, in which case weighted least squares (WLS) is preferred. Generalized
least squares (GLS) is used when the underlying samples obtained are correlated. These
techniques also suffer from the issues commonplace with OLS, warranting the need for
regularization [vW15]. Consequently, we also design algorithms for quantum WLS with
general fo-regularization and quantum GLS with general f5-regularization.

Organization of the paper: In the remainder of Section 1, we formally describe /o-
regularized versions of OLS, WLS, and GLS (Section 1.1), discuss prior and related work
(Section 1.2), and outline our contributions and results (Section 1.3). In Section 2, we
briefly outline the framework of block-encoding and quantum input models that are par-
ticular instances of it (Section 2.2). We also briefly introduce quantum singular value
transformation (QSVT) (Section 2.3) and variable time amplitude amplification (VTAA)
(Section 2.4). Following this, in Section 3, we develop several algorithmic primitives in-
volving arithmetic of block-encodings (Section 3.1), quantum singular value discrimination
(Section 3.2) and quantum linear algebra using QSVT (Section 3.3). These are the tech-
nical building blocks for designing our quantum regularized regression algorithms. Using
these algorithmic primitives, we design quantum algorithms for the quantum least squares
with fs-regularization in Section 4. Finally, we conclude by discussing some possible future
research directions in Section 5.

1.1 Linear regression with ¢s-regularization

Suppose we are given data points {(ai,bi)}f\il, where Vi : a; € R% Vi : b; € R such that
(ai,b;) ~iiaq D, i.e. they are sampled i.i.d. from some unknown distribution D, assumed
to be linear. We want to find a vector z € R? such that the inner product xTaj is a good
predictor for the target b; for some unknown a;. This can be done by minimizing the total
squared loss over the given data points,

Lo = (zTa; — b)) (3)
J
leading to the ordinary least squares (OLS) optimization problem. The task then is
to find # € R? that minimizes || Az — b||3, where A is the N x d data matrix such that
the i*" row of A is a;, and the i*" element of the vector b is b;. Assuming that AT A is
non-singular, the optimal z satisfies

x=(ATA)™1ATH = A, (4)

which corresponds to solving a linear system of equations.

Suppose that out of the samples present in the data, we have higher confidence in
some of them than others. In such a scenario, the i observation can be assigned a weight
w; € R. This leads to a generalization of the OLS problem to weighted least squares (WLS).
In order to obtain the best linear fit, the task is now to minimize the weighted version of
the loss

EW = ij(xTaj — bj)Q. (5)
J

As before, assuming ATW A is non-singular, the above loss function has the following

closed-form solution:

= (ATWwA) "t ATWD, (6)
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where W is a diagonal matrix with w; being the i*" diagonal element.

There can arise scenarios where there exists some correlation between any two samples.
For generalized least squares (GLS), the presumed correlations between pairs of samples
are given in a symmetric, non-singular covariance matrix €2. This objective is to find the
vector x that minimizes

EQ = Z(Qil)iﬁ' (.TTCLi — bi)(SL‘TCLj - bj) (7)
i,J
Similarly, the closed-form solution for GLS is given by

r=(ATQ 1At ATQ . (8)

As mentioned previously, in several practical scenarios, the linear regression problem
may be ill-posed or suffer from overfitting. Furthermore, the data may be such that some
of the columns of the matrix A are linearly dependent. This shrinks the rank of A, and
consequently of the matrix AT A, rendering it singular and, therefore non-invertible. Recall
that the closed-form solution of OLS exists only if AT A is non-singular, which is no longer
the case. Such scenarios arise even for WLS and GLS problems [vW15].

In such cases, one resorts to reqularization to deal with them. Let £ be the loss function
to be minimized for the underlying least squares problem (such as OLS, WLS, or GLS).
Then general fa-regularization (Tikhonov regularization) involves an additional penalty
term so that the objective now is to find the vector z € R% that minimizes

L+ \|Lz|3. (9)

Here A, known as the regularization parameter, is a positive constant that controls the size
of the vector x, while L is known as the penalty matrix (or regularization matrix) that
defines a (semi)norm on the solution through which the size is measured. The solution to
the Tikhonov regularization problem also has a closed-form solution. For example, in the
OLS problem, when £ = Lo, we have that

z=(ATA+ALTL) " ATb. (10)

It is worth noting that when L = I, the fo-regularized OLS problem is known as ridge
regression. For the unregularized OLS problem, the singular values of A, o; are mapped
to 1/0;. The penalty term due to ¢>-regularization, results in a shrinkage of the singular
values. This implies that even in the scenario where A has linearly dependent columns
(some o = 0) and (AT A)~! does not exist, the inverse (AT A+ LT L)~! is well defined for
A > 0 and any positive-definite L. Throughout this article, we refer to such an L (which
is positive definite) as a good regularizer. The penalty matrix L allows for penalizing each
regression parameter differently and leads to joint shrinkage among the elements of x. It
also determines the rate and direction of shrinkage. In the special case of ridge regression,
as L = I, the penalty shrinks each element of x equally along the unit vectors e;. Also
note that by definition, I is a good reqularizer.

Closed-form expressions can also be obtained for the WLS and the GLS problem (£ =
Lw, Lq respectively), and finding the optimal solution x reduces to solving a linear system.
The quantum version of these algorithms output a quantum state that is e-close |z) =
5,2 13) /]l

Throughout this work, while designing our quantum algorithms, we shall assume access
(via a block-encoding) to the matrices A, W, ©, and L and knowledge of the parameter .
Classically, however, the regularization matrix L and the optimal parameter A are obtained
via several heuristic techniques [HH93, GHO99, vW15].
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1.2  Prior work

Quantum algorithms for (unregularized) linear regression was first developed by Wiebe et
al. [WBLI12], wherein the authors made use of the HHL algorithm for solving a linear
system of equations [HHLO09]. Their algorithm assumes query access to a sparse matrix A
(sparse-access-model) and to a procedure to prepare |b) = > . b;|i). They first prepare a
quantum state proportional to AT |b), and then use the HHL algorithm to apply the opera-
tor (AT A)~! toit. Overall the algorithm runs in a time scaling as % (the condition number
of A) and inverse polynomial in the accuracy 6. Subsequent results have considered the
problem of obtaining classical outputs for linear regression. For instance, in Ref. [Wan17],
AT is directly applied to the quantum state |b), followed by amplitude estimation to obtain
the entries of . On the other hand, Ref. [SSP16] used the techniques of quantum principal
component analysis in [LMR14] to predict a new data point for the regression problem.
These algorithms also work in the sparse access model and run in a time that scales as
poly (k,1/6). Kerenidis and Prakash [KP20] provided a quantum algorithm for the WLS
problem wherein they used a classical data structure to store the entries of A and W.
Furthermore, they assumed QRAM access to this data structure [Pral4, KP17] that would
allow the preparation of quantum states proportional to the entries of A and W efficiently.
They showed that in this input model (quantum data structure model), an iterative quan-
tum linear systems algorithm can prepare |z) in time O(ux3/8), where & is the condition

number of the matrix A”v/W while p = H\/ WAHF Chakraborty et al. [CGJ19] applied

the framework of block-encoding along with (controlled) Hamiltonian simulation of Low
and Chuang [LC19] to design improved quantum algorithms for solving linear systems.
Quantum algorithms developed in the block-encoding framework are applicable to a wide
variety of input models, including the sparse access model and the quantum data structure
model of [KP20]. They applied their quantum linear systems solver to develop quantum
algorithms for quantum weighted least squares and generalized least squares. Their quan-
tum algorithm for WLS has a complexity that is in O (akpolylog(Nd/§)), where a = s,

the sparsity of the matrix A”+/W in the sparse access model while o = H\/ WAHF, for the

quantum data structure input model. For GLS, their quantum algorithm outputs |z) in
cost O (kakqa(aa 4+ agkg)polylog(1/6)), where k4 and kq are the condition numbers of A
and €2 respectively while a4 and «agq are parameters that depend on how the matrices A
and 2 are accessed in the underlying input model.

While quantum linear regression algorithms have been designed and subsequently im-
proved over the years, quantum algorithms for regularized least squares have not been
developed extensively. Yu et al. [YGW21] developed a quantum algorithm for ridge
regression in the sparse access model using the LMR scheme [LMR14] for Hamiltonian
simulation and quantum phase estimation, which they then used to determine the opti-
mal value of the parameter X\. Their algorithm to output |z) has a cubic dependence on
both xk and 1/6. They use this as a subroutine to determine a good value of \. A few
other works [SX20, CYGL22| have considered the quantum ridge regression problem in the
sparse access model, all of which can be implemented with poly(x, 1/d) cost.

Recently, Chen and de Wolf designed quantum algorithms for lasso (¢;-regularization)
and ridge regressions from the perspective of empirical loss minimization [CdW21|. For
both lasso and ridge, their quantum algorithms output a classical vector T whose loss
(mean squared error) is d-close to the minimum achievable loss. In this context, they
prove a quantum lower bound of Q(d/d) for ridge regression which indicates that in their
setting, the dependence on d cannot be improved on a quantum computer (the classical
lower bound is also linear in d and there exists a matching upper bound). Note that Z is not
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necessarily close to the optimal solution x of the corresponding least squares problem, even
though their respective loss values are. Moreover, their result (of outputting a classical
vector Z) is incomparable to our objective of obtaining a quantum state encoding the
optimal solution to the regularized regression problem.

Finally, Gilyén et al. obtained a “dequantized” classical algorithm for ridge regression
assuming norm squared access to input data similar to the quantum data structure input
model |[GST22|. Furthermore, similar to the quantum setting where the output is the
quantum state |z) = >°;z;|j) /[|z| instead of x itself, their algorithm obtains samples

from the distribution a;?/HacH2 For the regularization parameter A\ = O (||Al|/[|A| ), the

running time of their algorithm is in 0 (k273 /6%), where 74 is the rank of A. Their result
(and several prior results) does not have a polynomial dependence on the dimension of A
and therefore rules out the possibility of generic exponential quantum speedup (except in
0) in the quantum data structure input model.

1.3 Our contributions

In this work, we design the first quantum algorithms for OLS, WLS, and GLS with general
lo-regularization. We use the Quantum Singular Value Transformation (QSVT) framework
introduced by Gilyén et al [GSLW19|. We assume that the relevant matrices are provided
as input in the block-encoding model, in which access to an input matrix A is given by
a unitary Uy whose top-left block is (close to) A/a. The parameter « takes specific
values depending on the underlying input model. QSVT then allows us to implement
nearly arbitrary polynomial transformations to a block of a unitary matrix using a series
of parameterized, projector-controlled rotations (quantum signal processing [LC17b]).

More precisely, given approximate block-encodings of the data matrix A and the regu-
larizing matrix L, and a unitary procedure to prepare the state |b), our quantum algorithms
output a quantum state that is d-close to |z), the quantum state proportional to the f3-
regularized ordinary least squares (or weighted least squares or generalized least squares
problem). We briefly summarize the query complexities of our results in Table 1.

For the OLS problem with general /-regularization (Section 4.2, Theorem 32), we
design a quantum algorithm which given an (a4, a4, € 4)-block-encoding of A (implemented
in cost Ty), an («ap,ar,er)-block-encoding of L (implemented in cost T7), a parameter
A > 0, and a procedure to prepare |b) (in cost T3), outputs a quantum state which is é-close
to |z). The algorithm has a cost

as+Vag K
orwer (5 ) = (5) @a e+ )

where k can be thought of as a modified condition number, related to the effective condition
numbers of A and L. When L is a good regularizer, this is given by the expression

k=~krr |1+ 14l
VAL )

Notice that x is independent of k4, the condition number of the data matrix A, which
underscores the advantage of regularization. The parameters a4 and «j, take specific values
depending on the underlying input model. For the sparse access input model, aqa = sy
and ay = sy, the respective sparsities of the matrices A and L. On the other hand for
the quantum data structure input model, ay = ||A||z and af, = ||L|| . Consequently, the
complexity of Quantum Ridge Regression can be obtained by substituting L. = I in the
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above complexity as

O(logm (f}’% log (;) Ty + KTb>>

where k = 1 4+ ||A|/v/A, by noting that the block-encoding of I is trivial while the
norm and condition number of the identity matrix is one. For this problem of gquan-
tum ridge regression, our quantum algorithms are substantially better than prior results
[SX20, YGW21, CYGL22|, exhibiting a polynomial improvement in k£ and an exponential
improvement in 1/4.

For the fs-regularized GLS problem (Section 4, Theorem 42), we design a quantum
algorithm that along with approximate block-encodings of A and L, takes as input an
(aq, aq,eq)-lock-encoding of the matrix €2 (implementable at a cost of Tg) to output a
state d-close to |x) at a cost of

oy ar aQkq 5 (el AllllL]|
(’)(m//m log & (( Th+ Tr, + TQ) log ( + Ty
Al L] [1€2]] el

In the above complexity, when L is a good regularizer, the modified condition number

is defined as
VEalAl )
K=k |1+ e
( VAL

The WLS problem is a particular case of GLS, wherein the matrix 2 is diagonal.
However, we show that better complexities for the f-regularized WLS problem can be
obtained if we assume QRAM access to the diagonal entries of W (Section 4, Theorem 39
and Theorem 40).

Table 1 summarizes the complexities of our algorithms for quantum linear regression
with general fo-regularization. For better exposition, here we assume that || Al ||L]|, |||
and A = ©(1). For the general expression of the complexities, we refer the readers to
Section 4.

Problem Unregularized {2-Regularized

Quantum OLS O (aakalog(1/0)) O ((aa + ar)krlog(1/0))

Quantum GLS | O ((aA + agka) kay/Fa log? (1/5)) O ((aA + o + agkq) ki/Fq log? (1/(5))

Table 1: Complexity of quantum linear regression algorithms with and without general
Lo-regularization. All of these algorithms require only O(log k) additional qubits.

In order to derive our results, we take advantage of the ability to efficiently perform
arithmetic operations on block-encoded matrices, as outlined in Section 3. Along with this,
we use QSVT to perform linear algebraic operations on block-encoded matrices. To this
end, adapt the results in Refs. [GSLW19, MRTC21] to our setting. One of our contribu-
tions is that we work with robust versions of many of these algorithms. In prior works,
QSVT is often applied to block-encoded matrices, assuming perfect block-encoding. For
the quantum algorithms in this paper, we rigorously obtain the precision e required to
obtain a d-approximation of the desired output state.

For instance, a key ingredient of our algorithm for regularized least squares is to make
use of QSVT to obtain AT, given an e-approximate block-encoding of A. In order to obtain
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a (near) optimal dependence on the condition number of A by applying variable-time
amplitude amplification (VTAA) [Amb12|, we recast the standard QSVT algorithm as a
variable stopping-time quantum algorithm. Using QSV'T instead of controlled Hamiltonian
simulation ensures that the variable-time quantum procedure to prepare AT |z) has a
slightly better running time (by a log factor) and considerably fewer additional qubits
than Refs. [CKS17, CGJ19].

Furthermore, for the variable time matrix inversion algorithm, a crucial requirement is
the application of the inversion procedure to the portion of the input state that is spanned
by singular values larger than a certain threshold. In order to achieve this, prior results have
made use of Gapped Phase Estimation (GPE), which is a simple variant of the standard
phase estimation procedure that decides whether the eigenvalue of a Hermitian operator is
above or below a certain threshold [Amb12, CKS17, CGJ19]. However, GPE can only be
applied to a Hermitian matrix and requires additional registers that store the estimates of
the phases, which are never used for variable-time amplitude amplification. In this work,
instead of GPE, we develop a robust version of quantum singular value discrimination
(QSVD) using QSVT, which can be directly applied to non-Hermitian matrices. This
algorithm decides whether some singular value of a matrix is above or below a certain
threshold without storing estimates of the singular values. This leads to a space-efficient
variable time quantum algorithm for matrix inversion by further reducing the number of
additional qubits required by a factor of O(log?(k/4)) as compared to prior results [CKS17,
CGJ19]. Consequently, this also implies that in our framework, quantum algorithms for
(unregularized) least squares (which are special cases of our result) have better complexities
than those of Ref. [CGJ19].

2 Preliminaries

This section lays down the notation, and introduces the quantum singular value transfor-
mation (QSVT) and block-encoding frameworks, which are used to design the algorithm
for quantum regression.

2.1 Notation

For a matrix A € RN*4 A; denotes the i row of A, and || A; .|| denotes the vector norm of
AlT s and s2 denote the row and column sparsity of the matrix, which is the maximum
number of non-zero entries in any row and any column, respectively.

Singular Value Decomposition. The decomposition A = WXV, where W and V are
unitary and ¥ is a diagonal matrix, represents the singular value decomposition (SVD) of
A. All matrices can be decomposed in this form. The diagonal entries of X2, usually denoted
by 0(A) = {o;}, is the multiset of all singular values of A, which are real and non-negative.
Omax and opiy denote the maximum and minimum singular values of A. r(A) = rank(A)
is the number of non-zero singular values of A. The columns of W, V' (denoted by {|w;)}
and {|v;)}) are the left and right singular vectors of A. Thus A = 3770 |wj) (vj|. The
singular vectors of A can be computed as the positive square roots of the eigenvalues of
AT A (which is positive semi-definite and therefore has non-negative real eigenvalues.)

Effective Condition Number. x4 denotes (an upper bound on) the effective condition
number of A, defined as the ratio of the maximum and minimum non-zero singular values
of A. Let opax (A) be the largest singular value of A, and o, (A) be the smallest singular
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value of A. Additionally, let iy (A) be the smallest non-zero singular value of A. Then

g > Omax (A) .
A= 5min (A) N

If A is full-rank, then Gy (A) = omin (A), and k4 becomes the condition number of
the matrix. In this text, unless stated otherwise, we always refer to k4 as (an upper bound
on) effective condition number of a matrix, and not the true condition number.

Norm. Unless otherwise specified, || A|| denotes the spectral norm of A, while || A||  denotes
the Frobenius norm of A, defined as

[Az]] o (A)

[|A||l := max
270 ||

1Al =

Unless otherwise specified, when A is assumed to be normalized, it is with respect to the
spectral norm.

Soft-O Complexity. Finally, we use f = O (g) to denote f = O(g - polylog(g)).

Controlled Unitaries. If U is a s-qubit unitary, then C-U is a (s + 1)-qubit unitary defined
by
C-U = 00| ® I, + [1}1| @ U

Throughout this text whenever we state that the time taken to implement a unitary
Uy is Ty and the cost of an algorithm is O(nTy4), we imply that the algorithm makes n
uses of the unitary Uy. Thus, if the circuit depth of Uy is T4, the circuit depth of our
algorithm is O(nT4y).

2.2 Quantum Input Models

The complexities of quantum algorithms often depend on how the input data is accessed.
For instance, in quantum algorithms for linear algebra (involving matrix operations), it
is often assumed that there exists a black-box that returns the positions of the non-zero
entries of the underlying matrix when queried. The algorithmic running time is expressed
in terms of the number of queries made to this black-box. Such an input model, known as
the Sparse Access Model, helps design efficient quantum algorithms whenever the under-
lying matrices are sparse. Various other input models exist, and quantum algorithms are
typically designed and optimized for specific input models.

Kerenidis and Prakash [KP17, Section 5.1] introduced a different input model, known
as the quantum data structure model, which is more conducive for designing quantum ma-
chine learning algorithms. In this model, the input data (e.g: entries of matrices) arrive
online and are stored in a classical data structure (often referred to as the KP-tree in the
literature), which can be queried in superposition by using a QRAM. This facilitates effi-
ciently preparing quantum states corresponding to the rows of the underlying matrix, that
can then be used for performing several matrix operations. Subsequently, several quantum-
inspired classical algorithms have also been developed following the breakthrough result
of Tang [Tanl19]. Such classical algorithms have the same underlying assumptions as the
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quantum algorithms designed in the data structure input model and are only polynomially
slower provided the underlying matrix is low rank.

In this work, we will consider the framework of block-encoding, wherein it is assumed
that the input matrix A (up to some sub-normalization) is stored in the left block of some
unitary. The advantage of the block-encoding framework, which was introduced in a series
of works [LC19, Definition 1], [CGJ19, Section 1], [GSLW19, Section 1.3], is that it can
be applied to a wide variety of input models. For instance, it can be shown that both the
sparse access input model as well as the quantum data structure input model are specific
instances of block-encoded matrices [CGJ19, Sections 2.2 and 2.4], [GSLW19, Section 5.2].
Here we formally define the framework of block-encoding and also express the sparse access
model as well as the quantum data structure model as block-encodings. We refer the reader
to [CGJ19, GSLW19] for proofs.

Definition 1 (Block Encoding, restated from [GSLW19], Definition 24). Suppose that A
is an s-qubit operator, a,e € RT and a € N, then we say that the (s + a)-qubit unitary Uz
is an («, a,e)-block-encoding of A, if

HA—a((0|®a®I)UA(|O>®“®I)H <e. (11)

Let [t)) be an s-qubit quantum state. Then applying U to |) |0)** outputs a quantum
state that is Z-close to

A ®a 1
210 10)° + [24)

where (Is ® \0)(0\@)“) |®+) = 0. Equivalently, suppose A := a ((0\@)& ® Is) Ua (\O>®a ® Is)

denotes the actual matrix that is block-encoded into Uy, then HA — le <e.

In the subsequent sections, we provide an outline of the quantum data structure model
and the sparse access model which are particular instances of the block encoding framework.

2.2.1 Quantum Data Structure Input Model

Kerenidis and Prakash introduced a quantum accessible classical data structure which
has proven to be quite useful for designing several quantum algorithms for linear algebra
|[KP17]. The classical data structure stores entries of matrices or vectors and can be queried
in superposition using a QRAM (quantum random access memory). We directly state the
following theorem from therein.

Theorem 2 (Implementing quantum operators using an efficient data structure, [Pral4,
KP17]). Let A € RV*4 and w be the number of non-zero entries of A. Then there exists a

data structure of size O(w log? (dN)) that given the matriz elements (i, j, a;j), stores them

at a cost of O(log (dN)) operations per element. Once all the non-zero entries of A have
been stored in the data structure, there exist quantum algorithms that are e-approximations
to the following maps:

U :liy|0 yn HZ aijli, 7) = |¥i),

Vi) - A”FZHAZ, i) = 165)
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where ||A; .|| is the norm of the it row of A and the second register of |1;) is the quantum
state corresponding to the i™ row of A. These operations can be applied at a cost of
O(polylog(Nd/e)).

It was identified in Ref. [CGJ19] that if a matrix A is stored in this quantum accessible
data structure, there exists an efficiently implementable block-encoding of A. We restate
their result here.

Lemma 3 (Implementing block encodings from quantum data structures, [CGJ19], The-
orem 4). Let the entries of the matriz A € RN*? be stored in a quantum accessible
data structure, then there exist unitaries Ug,Ur that can be implemented at a cost of
O(polylog(dN/e)) such that U}T{UL is a (|[A|| g, [log (d + N)],¢€)-block-encoding of A.

Proof. The unitaries Ug and Uy, can be implemented via U and V in the previous lemma.
Let Ugp = U and Uy, = V.SWAP. Then for s = [log(d + N)] we have

Ur: 1) [0°) = [¢i)

and
UL 13)10°) = 9y ,
So we have that the top left block of U]T%UL is

N d
SOS (Wile) 1i,0) (4, 0]

i=1j=1
Now

aie || Al . .
; i, kIl
o) kzwzlm [PPSR
=06;,1-0k,j

_ G4y

Al 7

Moreover since only e-approximations of U and V' can be implemented we have that U};U I
is a (||Al|p, [log(n +d)],¢) block encoding of A implementable with the same cost as U
and V. O

In Ref. [KP20] argued that in certain scenarios, storing the entries of A®), (A*~P) might
be useful as compared to storing A, for some p € [0,1]. In such cases, the quantum data

structure is a (up, [log(IN + d)], €) block encoding of A, where p1,,(A) = \/SQP(A).SQ(l_p) (AT)
such that s,(A) := max; || 4;. ||g. Throughout the work, whenever our results are expressed
in the quantum data structure input model, we shall state our complexity in terms of 4.
When the entries of A are directly stored in the data structure, g = || A||z. Although, we
will not state it explicitly each time, our results also hold when fractional powers of A are
stored in the database and simply substituting g = p1,(A), yields the required complexity.

2.2.2  Sparse Access Input Model

The sparse access input model considers that the input matrix A € RV*? has row sparsity
s, and column sparsity s.. Furthermore, it assumes that the entries of A can be queried
via an oracle as

Accepted in { Yuantum 2023-04-19, click title to verify. Published under CC-BY 4.0. 12



N b W . .
O : i) 15)10)*° = |i) |4) aij) Vi € [N],j € [d],
and the indices of the non-zero elements of each row and column can be queried via
the following oracles:

Oyt [i) [3) = i) [rij) Vi € [N]k € [s4],
Oc : i) |7) = lcij) l7) Vi€ d], k € [s]

where r;; is the 7™ non-zero entry of the i*" row of A and cij is the ith non-zero entry of
the 7' column of A. Gilyén et al. [GSLW19] showed that a block encoding of a sparse A
can be efficiently prepared by using these three oracles. We restate their lemma below.

Lemma 4 (Constructing a block-encoding from sparse-access to matrices, [GSLW18],
Lemma 48). Let A € RN*? be an s,,s. row, column sparse matriz given as a sparse
access input. Then for all e € (0,1), we can implement a (\/scSr, polylog(Nd/e), €)-block-
encoding of A with O(1) queries to O,,O., 04 and polylog(Nd/e) elementary quantum
gates.

Throughout the paper, we shall assume input matrices are accessible via approximate
block-encodings. This also allows us to write down the complexities of our quantum al-
gorithms in this general framework. Additionally, we state the complexities in both the
sparse access input model as well as the quantum accessible data structure input model as
particular cases.

2.3 Quantum Singular Value Transformation

In a seminal work, Gilyén et al. presented a framework to apply an arbitrary polynomial
function to the singular values of a matrix, known as Quantum Singular Value Transforma-
tion (QSVT) [GSLW19]. QSVT is quite general: many quantum algorithms can be recast
to this framework, and for several problems, better quantum algorithms can be obtained
[GSLW19, MRTC21]. In particular, QSVT has been extremely useful in obtaining optimal
quantum algorithms for linear algebra. For instance, using QSV'T, given the block-encoding
of a matrix A, one could obtain A~¢ with ¢ € [0, 00) with optimal complexity and by us-
ing fewer additional qubits than prior art. This section briefly describes this framework,
which is a generalization of Quantum Signal Processing (QSP) [LC19, Section 2|, [LC17b,
Theorem 2|, [LYC16]. The reader may refer to [MRTC21]| for a more pedagogical overview
of these techniques.

Let us begin by discussing the framework of Quantum Signal Processing. QSP is a
quantum algorithm to apply a d-degree bounded polynomial transformation with parity
d mod 2 to an arbitrary quantum subsystem, using a quantum circuit Ug consisting of
only controlled single qubit rotations. This is achieved by interleaving a signal rotation
operator W (which is an z-rotation by some fixed angle 0) and a signal processing operator
S¢ (which is a z-rotation by a variable angle ¢ € [0,27]). In this formulation, the signal
rotation operator is defined as

x iv1— 2?2
W(x) = 12
(@) Qm : ) ’ 12)
which is an x-rotation by angle § = —2 arccos(z), and the signal processing operator is
defined as
S, i 7, (13)
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which is a z-rotation by an angle —2¢. Interestingly, sandwiching them together for
some ® := (¢, d1,...04) € R as shown in Equation 14, gives us a matrix whose
elements are polynomial transformations of =z,

j=d

_ ¢itoZ H (W )ei®i? ) (14)

P(x) iQ(x)V1 — x2> ’

- (z’@* NVITF Pa) 1

such that

1. deg P < d; deg@ < d—1,

2. P(x) has a parity d mod 2,

3. | P@)?P+(1-2H)Q@)|’=1 Voel[-1,1].

Following the application of the quantum circuit Us for an appropriate ®, one can
project into the top left block of Ug to recover the polynomial (0| Ug |0) = P(x). Project-
ing to other basis allows the ability to perform more interesting polynomial transforma-
tions, which can be linear combinations of P(z), Q(z), and their complex conjugates. For
example, projecting to {|+),|—)} basis gives us

(+Us |[+) = R(P(z)) + iR(Q(x)) V1 — 22 (16)
Quantum Signal Processing can be formally stated as follows.

Theorem 5 (Quantum Signal Processing, Corollary 8 from [GSLW19]). Let P € C[z] be
a polynomial of degree d > 2, such that

e P has parity-(d mod 2),

o Vz e [-1,1]: |P(z)| <1,

o Vi € (—o0,~1]U[L,00) : [P(x)] > 1,

e if d is even, then Vx € R : P(ix)P*(iz) > 1.

Then there exists a ® € R such that
d

[T (7w (@) = (P (=) :) . (17)

J=1

Thus, QSP allows us to implement any polynomial P(x) that satisfies the aforemen-
tioned requirements. Throughout this article, we refer to any such polynomial P(z) as a
QSP polynomial. Quantum Singular Value Transformation is a natural generalization of
this procedure. It allows us to apply a QSP polynomial transformation to each singular
value of an arbitrary block of a unitary matrix. In addition to this generalization, QSVT
relies on the observation that several functions can be well-approximated by QSP poly-
nomials. Thus, through QSVT one can transform each singular value of a block-encoded
matrix by any function that can be approximated by a QSP polynomial. Since several lin-
ear algebra problems boil down to applying specific transformations to the singular values
of a matrix, QSV'T is particularly useful for developing fast algorithms for quantum linear
algebra. Next, we introduce QSVT formally via the following theorem.
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Theorem 6 (Quantum Singular Value Transformation [GSLW18], Section 3.2). Suppose
A € RN* s o matriz with singular value decomposition A = E mie oj |vj) (wj|, where
dmin = min{N, d} and |v;) (|w;)) is the left (right) singular vector wzth singular value o;.
Furthermore, let Uy be a unitary such that A = fIUAH, where 11 and II are orthogonal
projectors. Then, for any QSP polynomial P(x) of degree n, there exists a vector ® =
(¢1, P2, - Ppn) € R™ and a unitary

’ i1 (=D, [H,ﬁl}l)/z’ ¢ =D 7 gidara GH-I) 17 A] . nis odd "
¢® = [HZLZI ei¢2k—1(2ﬁ_I)ULei¢2k(2ﬁ_I)UA:| , n 1s even, ( )
such that B
MMUsIT is odd
P4y =gt e (19)
IUsII, n is even,
where P3V (A) is the polynomial transformation of the matriz A defined as
PSV(A) = {2 P(oy) |vs) {wyl, P is odd (20)
> Ploj) lwy) (wj|, P is even.

Theorem 6 tells us that for any QSP polynomial P of degree n, we can implement
PSV(A) using one ancilla qubit, ©(n) applications of Ug, UL and controlled reflections
I — 211 and I — 2II. Furthermore, if in some well-defined interval, some function f(z) is
well approximated by an n-degree QSP polynomial P(x), then Theorem 6 also allows us
to implement a transformation that approximates f(A), where

> f(o5) |vj) (wi], P is odd
A) = J
FE {Zj f(oj) |wj) (wj], P is even. (21)

The following theorem from Ref. [GSLW 18| deals with the robustness of the QSVT proce-
dure, i.e. how errors propagate in QSVT. In particular, for two matrices A and A, it shows
how close their polynomial transformations (P°Y(A) and PS5V (A), respectively) are, as a
function of the distance between A and A.

Lemma 7 (Robustness of Quantum Singular Value Transformation, [GSLW18], Lemma 23).
Let P € C[z] be a QSP polynomial of degree n. Let A, A € CN*? be matrices of spectral
norm at most 1, such that

A—l—A

|a-4]+

H <1

Then,

[P<¥ ) - PV D) <0 | — a4 - 4],
i H =2l

We will apply this theorem to develop a robust version of QSV'T. More precisely, in order
to implement QSV'T, we require access to a unitary U4, which is a block-encoding of some
matrix A. This block-encoding, in most practical scenarios, is not perfect: we only have
access to a e-approximate block-encoding of A. If we want an d-accurate implementation
of PV (A), how precise should the block-encoding of A be? Such a robustness analysis has
been absent from prior work involving QSV'T and will allow us to develop robust versions of
a number of quantum algorithms in subsequent sections. The following theorem determines
the precision ¢ required in the block-encoding of A in terms of n, the degree of the QSP
polynomial that we wish to implement and d, the accuracy of PV (A).
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Theorem 8 (Robust QSVT). Let P € Clx| be a QSP polynomial of degree n > 2.
Let § € [0,1] be the precision parameter. Let U be an (o, a,e)-block-encoding of matriz
A € CV*4 satisfying || All < /2, implemented in cost T for some ¢ < ad/2n. Then we
can construct a (1,a + 1,0)-block-encoding of P(A/«) in cost O(nT).

Proof. Let A be the encoded block of U, then HA — le < e. Applying QSVT on U with
the polynomial P, we get a block-encoding for P(A/a), with O(n) uses of U, Ut, and as
many multiply-controlled NOT gates. Observe that Hg — éH <=L % < i, and,

AL A
a4
2

2 _ ) _ 2
A A-at_ (ran, A4l 2o
a2 | S e T 2a —(ﬁs) =3

Therefore the error in the final block-encoding is given by invoking Lemma 7 with matrices
Ala, A
A A
(- ()
@ «

In Section 3, we will make use of Theorem 8, to develop robust quantum algorithms for
singular value discrimination, variable-time matrix inversion, positive and negative powers
of matrices. Subsequently, in Sec. 4, we shall combine algorithmic primitives to design
robust quantum regularized least squares algorithms.

O]

2.4 Variable Time Amplitude Amplification

Ambainis [Amb12]| defined the notion of a variable-stopping-time quantum algorithm and
formulated the technique of Variable Time Amplitude Amplification (VTAA), a tool that
can be used to amplify the success probability of a variable-stopping-time quantum algo-
rithm to a constant by taking advantage of the fact that computation on some parts of an
algorithm can complete earlier than on other parts. The key idea here is to look at a quan-
tum algorithm A acting on a state |¢) as a combination of m quantum sub-algorithms
A=A, - Apn_1-...A;, each acting on |¢) conditioned on some ancilla flag being set.
Formally, a variable stopping time algorithm is defined as follows

Definition 9 (Variable-stopping-time Algorithm, [Amb12]). A quantum algorithm A act-
ing on H that can be written as m quantum sub-algorithms, A = Ap - Am—1 - ... A1 s
called a variable stopping time algorithm if H = Ho @ Ha, where Ho = Q2 Hc, with
Hc, = span(|0),[1)), and each unitary A; acts on Ho; @ Hoa controlled on the first j — 1
qubits [0)%7 ™1 € @IZ 1 He, being in the all zero state.

Here H¢, is a single qubit clock register. In VTAA, H 4 has a flag space consisting of a
single qubit to indicate success, H4 = Hp @ Hw. Here Hp = Span(|g), |b)) flags the good
and bad parts of the run. Furthermore, for 1 < i < m, define the stopping times ¢; such
that t1 < ta < -ty = Tax, such that the algorithm A;A;_;--- Ay having (gate/query)
complexity t; halts with probability

2
pj = "chAjAj—l A |O>H‘ :
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where |0),, € H is the all zero quantum state and Ilg; is the projector onto |1) in Hc;.
From this one can define the average stopping time of the algorithm A defined as

m
ITlly = | D_pits-
j=1

For a variable stopping time algorithm if the average stopping time ||T°||, is less than the
maximum stopping time Tax, VTAA can amplify the success probability (psyec) much
faster than standard amplitude amplification. In this framework, the success probability
of A is given by

Psucc = HHFAmAm—l Ay |0>’HH2

While standard amplitude amplification requires time scaling as O(Tmax//Psuce), the com-
plexity of VTAA is more involved. Following [CGJ19|, we define the complexity of VTAA
as follows.

Lemma 10 (Efficient variable time amplitude amplification [CGJ18], Theorem 23). Let
U be a state preparation unitary such that U |0)®% = /Pprep |0) [¥0) + /T = Pprep [1) [11)
that has a query complexity Ty. And let A = A Apm—1--- A1 be a variable stopping
time quantum algorithm that we want to apply to the state |1g), with the following known
bounds: Pprep > Porep AN Psuce > Phyee- Define Tiay = 2Tmax/t1 and

ax

TU+k /
TU +k (HTHZ + /Dorep ) log (Tmax)
Q = | Tmax + \/9og (T ) + oree )
* DPprep ( ) y/ Psucc

Then with success probability > 1 — §, we can create a variable-stopping time algorithm
A’ that prepares the state a|0) A" [¢o) + V1 — a? |1) [Ygarbage), such that a = ©(1) is a
constant and A’ has the complexity O(Q).

One cannot simply replace standard amplitude amplification with VTAA to boost
the success probability of a quantum algorithm. A crucial task would be to recast the
underlying algorithm in the VTAA framework. We will be applying VTAA to the quantum
algorithm for matrix inversion by QSVT. So, first of all, in order to apply VTAA to the
algorithm must be first recast into a variable-time stopping algorithm so that VTAA can
be applied.

Originally, Ambainis [Amb12| used VTAA to improve the running time of the HHL al-
gorithm from O(xk%log N) to O(n log? k log N). Childs et al. [CKS17] designed a quantum
linear systems algorithm with a polylogarithmic dependence on the accuracy. Addition-
ally, they recast their algorithm into a framework where VTAA could be applied to obtain
a linear dependence on k. Later Chakraborty et al. [CGJ19] modified Ambainis’ VTAA
algorithm to perform variable time amplitude estimation.

In this work, to design quantum algorithms for ¢s-regularized linear regression, we use
a quantum algorithm for matrix inversion by QSV'T. We recast this algorithm in the frame-
work of VTAA to achieve nearly linear dependence in k (the effective condition number
of the matrix to be inverted). Using QSVT instead of controlled Hamiltonian simulation
improves the complexity of the overall matrix inversion algorithm (QSVT and VTAA) by
a log factor. It also reduces the number of additional qubits substantially. Furthermore,
we replace a gapped quantum phase estimation procedure with a more efficient quantum
singular value discrimination algorithm using QSVT. This further reduces the number of
additional qubits by O(log?(x/d)) than in Refs. [CKS17, CGJ19], where  is the condition
number of the underlying matrix and ¢ is the desired accuracy. The details of the variable
stopping time quantum algorithm for matrix inversion by QSV'T are laid out in Section 3.3.
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3 Algorithmic Primitives

This section introduces the building blocks of our quantum algorithms for quantum lin-
ear regression with general ¢s-regularization. As mentioned previously, we work in the
block-encoding framework. We develop robust quantum algorithms for arithmetic opera-
tions, inversion, and positive and negative powers of matrices using quantum singular value
transformation, assuming we have access to approximate block-encodings of these matri-
ces. While some of these results were previously derived assuming perfect block-encodings
[GSLW19, CGJ19|, we calculate the precision required in the input block-encodings to
output a block-encoding or quantum state arbitrarily close to the target.

Given a («,a,¢e)-block-encoding of a matrix A, we can efficiently amplify the sub-
normalization factor from « to a constant and obtain an amplified block-encoding of
A. For our quantum algorithms in Sec. 4, we show working with pre-amplified block-

encodings often yields better complexities. We state the following lemma which was proven
in Ref. [LC17a]:

Lemma 11 (Uniform Block Amplification of Contractions, [LC17a]). Let A € RV*4 sych
that |A|| <1 Ifa>1 and U is a (a, a,)-block-encoding of A that can be implemented at
a cost of Ty, then there is a (v/2,a+1,e+)-block-encoding of A that can be implemented
at a cost of O(aTy log(1/7)).

Corollary 12 (Uniform Block Amplification). Let A € R¥X4 and 6 € (0,1]. Suppose
U is a (a,a,ce)-block-encoding of A, such that € < %, that can be implemented at a cost
of Ty. Then a (V2||A||,a + 1,68)-block-encoding of A can be implemented at a cost of
O (4 1og (1| A]1/9)).-

We now obtain the complexity of applying a block-encoded matrix to a quantum state,
which is a generalization of a lemma proven in Ref. [CGJ19].

Lemma 13 (Applying a Block-encoded Matrix on a Quantum State). Let A be an s-qubit
operator such that its non-zero singular values lie in [|A||/k, || A||]]. Also let § € (0,1), and
Uy be an («,a,e)-block-encoding of A, implementable in time T4, such that
__dl4]
- 2k
Furthermore, suppose |b) be an s-qubit quantum state, prepared in time Ty. Then we can

prepare a state that is d-close to Hﬁ}lg;” with success probability Q2 (1) at a cost of

O(m@ +17y))

Corollary 14 (Applying a pre-amplified Block-encoded Matrix on a Quantum State). Let
A be an s-qubit operator such that its non-zero singular values lie in [||A||/k, ||A||]. Also
let § € (0,1), and Ua be an (a, a,e)-block-encoding of A, implementable in time T4, such
that
__ola)
4k

Furthermore, suppose |b) be an s-qubit quantum state that can be prepared in time Ty.

Then we can prepare a state that is d-close to Hjiiggll with success probability (1) at a cost

of
K K
(9( log () T + &7, >
[A] e \s ’
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Now, it may happen that Uy prepares a quantum state that is only e-close to the desired
state |b). In such cases, we have the following lemma

Lemma 15 (Robustness of state preparation). Let A be an s-qubit operator such that
its non-zero singular values lie in [||A||/k, ||Al|]. Suppose |b') is a quantum state that is
e/2k-close to |b) and |¢) is a quantum state that is £/2-close to A V') /||A0)||. Then we
have that |) is e-close to A|b) /||A|b)]|.

The proofs for Corollary 12, Lemma 13, Corollary 14, and Lemma 15 can be found in
Appendix A.

3.1 Arithmetic with Block-Encoded Matrices

The block-encoding framework embeds a matrix on the top left block of a larger unitary
U. It has been demonstrated that this framework allows us to obtain sums, products,
linear combinations of block-encoded matrices. This is particularly useful for solving linear
algebra problems in general. Here, we state some of the arithmetic operations on block-
encoded matrices that we shall be using in order to design the quantum algorithms of
Section 4 and tailor existing results to our requirements.

First we prove a slightly more general form of linear combination of unitaries in the
block-encoding framework, presented in [GSLW19|. To do this we assume that we are
given optimal state preparation pairs, defined as follows.

Definition 16 (Optimal State Preparation Unitary). Let m € Z*, and s = [logm]. Let
n € R'. Then we call a s-qubit unitary P a n state-preparation unitary if
1

P\0>:ﬂ2\/777|j>
i 55

Lemma 17 (Linear Combination of Block Encoded Matrices). For each j € {0,...,m—1},
let Aj be an s-qubit operator, and y; € RT. Let U; be a (aj,aj,e;)-block-encoding of Aj;,
implemented in time Tj. Define the matriv A = 3 ;y;A;, and the vector n € R™ s.i.
n; = yjoj. Let Uy be a n state-preparation unitary, implemented in time T,. Then we can
implement a

(Z yjoy,max(a;) + s, > yﬁj)

J J

block-encoding of A at a cost of(’)(zj T; + T,7>.

The proof is similar to the one in Ref. [GSLW19|, with some improvements to the
bounds. The detailed proof can be found in Appendix A. We now specialize the above
lemma for the case where we need a linear combination of just two unitaries. This is the
case used in this work, and we obtain a better error scaling for this by giving an explicit
state preparation unitary.

Corollary 18 (Linear Combination of Two Block Encoded Matrices). For j € {0,1},
let Aj be an s-qubit operator and y; € RT. Let U; be a (o ,aj,e;j)-block-encoding of Aj;,
implemented in time T;. Then we can implement a (yoao + y1o1, 1 + max(ao, a1), Yogo +
y1€1) encoding of yoAo + y1 A1 in time O(Ty + T1).
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Proof. Let o = yoag + y10q and P = -2 [V A By Definition 16, P is a
Ve Vyiar (/Yoo
{yoan, y11} state-preparation-unitary. Invoking Lemma 17 with P, we get the required
unitary.
O

Given block-encodings of two matrices A and B, it is easy to obtain a block-encoding
of AB.

Lemma 19 (Product of Block Encodings, [GSLW18], Lemma 53). If Us is an (a,a,d)-
block-encoding of an s-qubit operator A implemented in time T4, and Ug is a (5,b,€)-block-
encoding of an s-qubit operator B implemented in time Tp, then (I%® @ Un)(I®* @ Up) is
an (af,a+ b, ae + $0)-block-encoding of AB implemented at a cost of O(T4 + Tg).

Directly applying Lemma 19 results in a block-encoding of %' If a and B are large,
then the sub-normalization factor a8 might incur an undesirable overhead to the cost of
the algorithm that uses it. In many cases, the complexity of obtaining products of block-
encodings can be improved if we first amplify the block-encodings (using Lemma 12) and
then apply Lemma 19. We prove the following lemma:

Lemma 20 (Product of Amplified Block-Encodings). Leté € (0,1]. IfUy is an (aa,a4,€4)-
block-encoding of an s-qubit operator A implemented in time T4, and Up is a (ap,ap,€B)-
block-encoding of an s-qubit operator B implemented in time Ty, such that ¢4 < ﬁIIBH

and ep < ﬁHAH' Then we can implement a (2||Al|||B||, aa + aB + 2, )-block-encoding of
AB implemented at a cost of

Al||B]|
O<<O‘ATA + 2B > log <”)>
4] 1BlI"" 5

Proof. Using Corollary 12 for some d4 > 24 we get a (v/2|| A, aa + 1,8 4)-block-encoding
of A at a cost of

a4
o it o (141/6) ).

Similarly for some 6 > 2e5 we get a (v2||B||,ap + 1,p)-block-encoding of B at a cost

of
apTp
o[58 2 o5 (IB1/35) ).
1B
Now using Lemma 19 we get a (2,a4 + ap + 2,v2 (||A||65 + || B||§.4))-block-encoding of
_ 5 3 : ) .
AB. We can choose d4 = V3Bl and dp = S ValAl which bounds the final block-encoding
error by 4. 0

Observe that we have assumed that A and B are s-qubit operators. For any two
matrices of dimension N X d and d x K, such that N, d, K < 2%, we can always pad them
with rows and columns of zero entries and convert them to s-qubit operators. Thus, in
the scenario where A and B are not s-qubit operators, one can consider block encodings
of padded versions of these matrices. Note that this does not affect the operations on the
sub-matrix blocks encoding A and B. Thus, the above results can be used to perform
block-encoded matrix products for arbitrary (compatible) matrices.

Next we show how to find the block encoding of tensor product of matrices from their
block encodings. This procedure will be useful in creating the dilated matrices required
for regularization. The proof can be found in Appendix A.
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Lemma 21 (Tensor Product of Block Encoded Matrices). Let Uy and Uz be (a,a,e1)
and (B, b, e2)-block-encodings of Ay and As, s and t-qubit operators, implemented in time
Ty and Ty respectively. Define S := HfZISWAPZIZH. Then, S(Uy @ Up)S' is an (afB,a +
b, agg + Pe1 + €1€2) block-encoding of Ay @ Aa, implemented at a cost of O(Ty + Tv).

We will now use Lemma 21 to augment one matrix into another, given their approximate
block-encodings.

Lemma 22 (Block-encoding of augmented matrix). If Ua is an (o4, aa,e4)-block encod-
ing of an s-qubit operator A that can be implemented in time T4 and Upg is an (ap,ap,ep)-
block encoding of an s-qubit operator B that can be implemented in time Ty, then we an
implement an (aa + ap,max(aa,ap) + 2,4 + £p)-block-encoding of

A0

). Then the SWAP gate is a (1,1,0) block encoding of May4.

at a cost of O(Ta + Tp).

10
00

By Lemma 21, we can implement U/, an («wa,a4 + 1,£4)-block-encoding of their ten-

Proof. Let My = (

0 0 10
Then (I ® X) - SWAP is a (1,1,0)-block-encoding of Mp. Similarly Lemma 21, we can

sor product My ® A = A O> at a cost of O(Ty). Similarly, Let Mp = (O 0).

implement Up, an (ap,ap + 1,ep)-block-encoding of Mp @ B = g 8) at a cost of
O(Tp). We add them by using Corollary 18 on U’y and Up, to implement Ua,, an
(a4 + ap,2 + max(ag,ap),c4 + €p)-block-encoding of Ap = (g 8) This can be im-
plemented at a cost of O(T4 + Tp). O

3.2 Robust Quantum Singular Value Discrimination

The problem of deciding whether the eigenvalues of a Hamiltonian lie above or below a
certain threshold, known as eigenvalue discrimination, finds widespread applications. For
instance, the problem of determining whether the ground energy of a generic local Hamil-
tonian is < A, or > )y is known to be QMA-Complete [KKR06|. Nevertheless, quantum
eigenvalue discrimination has been useful in preparing ground states of Hamiltonians. Gen-
erally, a variant of quantum phase estimation, which effectively performs a projection onto
the eigenbasis of the underlying Hamiltonian, is used to perform eigenvalue discrimination
[GTC19]. Recently, it has been shown that QSVT can be used to approximate a projection
onto the eigenspace of an operator by implementing a polynomial approximation of the
sign function [LLT20a]. This was then used to design improved quantum algorithms for
ground state preparation.

In our work, we design a more general primitive, known as Quantum Singular Value
Discrimination (QSVD). Instead of eigenvalues, the algorithm distinguishes whether a
singular value o is < o, or > o03. This is particularly useful when the block-encoded
matrix is not necessarily Hermitian and hence, may not have well-defined eigenvalues. We
use this procedure to develop a more space-efficient variable stopping time matrix inversion
algorithm in Section 3.3. Owing to the widespread use of singular values in a plethora of
fields, we believe that our QSVD procedure is of independent interest.
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Let us define the sign function sign : R — R as follows:

-1 <0
sign(z) =4 0 x=0 (22)
1 x> 0.

Given a threshold singular value ¢, Low and Chuang [LC17a| showed that there exists a
polynomial approximation to sign(c — x) (based on its approximation of the erf function).
We use the result of Ref. [MRTC21], where such a polynomial of even parity was considered.
This is crucial, as for even polynomials, QSVT maps right (left) singular vectors to right
(left) singular vectors, which enables us to use the polynomial in [MRTC21] for singular
value discrimination.

Lemma 23 (Polynomial approximation to the sign function [LC17a, Low17, MRTC21]).
For any e,A,c € (0,1), there exists an efficiently computable even polynomial P a .(x) of

degree | = (9(% 10g(1/€)> such that

1. Vz e [0,1]: [Poac(z)] <1

2. Vrel0,1]\ (c— %,c—l— %)  |Peac(x) —sign(c—x)| <e

Therefore, given a matrix A with singular values between [0, 1], we can use QSVT
to implement P: A .(A) which correctly distinguishes between singular values of A whose
value is less than ¢ — A /2 and those whose value is greater than ¢+ A /2. For our purposes,
we shall consider that we are given Uy, which is an (o, a,€) block-encoding of a matrix A.
Our goal would be to distinguish whether a certain singular value o satisfies 0 < o < ¢
or 2¢ < o < 1. Since Uy (approximately) implements A/«, the task can be rephrased as
distinguishing whether a singular value of A/« is in [0,¢/a] or in [2¢/a, 1]. For this, we
develop a robust version of quantum singular value discrimination (QSV D(¢,¢)), which
indicates the precision € required to commit an error that is at most 9.

Theorem 24 (Quantum Singular Value Discrimination using QSVT). Suppose A €
CN*N s an s-qubit operator (where N = 2°) with singular value decomposition A =

> jen 04 [uj)vs| such that all o; lie in the range [0,1]. Let ¢ € (0, %) and § € (0,1] be
some parameters. Suppose that for some o > 2 and e satisfying

5:o(log(zf/5))

we have access to Uy, an («, a,€)-block-encoding of A implemented in cost T4. Then there
exists a quantum algorithm QSV D(p,d) which implements a (1,a + 1,0)-block-encoding
of some (s + 1)-qubit operator D € C>N*2N satisfying the following constraints for all
j € [N]:

e 0j <@ = DI0)v) = [0) [v;)

e 05 >2p = DI0)|v) = [1) |v;)

o(zm()m)
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Proof. We invoke Lemma 23 with parameters &’ % c: g‘p and A := 2~ to construct an
even polynomial P := P A . of degree n := (’)( log(%)), which is an E/ -approximation
of f(z) := sign (—@ — x) for z € [0,2] U [%", 1}. Invoking Theorem 8 with P and Uy,
we get Up —a (1,a + 1,v)-block-encoding of B := P(A/«), implemented in cost O(nTy),
where € must satisfy ¢ < ay/2n.

Now consider the following unitary W that acts on s + a + 2 qubits:

W .= SWAPEr575+a+1](H ® Istqr1) (C-Up) (H ® Is+a+1)SWAP[s,s+a+1]

W is the required block-encoding of D, and SWAP}; 1 sequentially swaps adjacent qubits
with indices in range [I, 7] effectively moving qubit indexed [ to the right of qubit r. (where
qubits are zero-indexed, with higher indices for ancillas). Let B be the top-left block of

Up (therefore HB — E’H < ). Then we can extract D, the top-left block of W as follows:

D= (01" @ Iyx ) SWAP], oy (14X+ ® Lovags + =)~ @ Up) SWAPY, oy i) (10)%7 ® Lisn)
= |+ +H @I+ |-}—-|® B

Let us define index sets L,R C [N] where L := {j € [N] | 0; < ¢} and R :=
{7 € [N] | 0j > 2p}; and the corresponding subspace projections Iz := >>.c; [vj)v;l,
g = > jcr|vj) vjl, and I} := I — T, — IIg. Using these we pick our required operator
D as follows:
D=1, +XIr+DI®IL,)

That is, D behaves as expected on the required subspace, and acts identical to D on the
remaining space. The error in the block-encoding can be computed as

HD—DH: I®HL+X®HR+D(I®HJ_)—DH

=|[ren, + X ety - DI @ (1, + 1y

=l -D)(Iel) + (X I, — D)I ®Ilg) H

= [(-X-® (- B)) U eL) - (I-X-|@ (I + B)) (I @ Ig)|

= ||z, = Byt — (1, + B)lig|

= ||(s = BYILL = (L + B)Ig + (B = B)(IL, — Tig)|

< |I(Ls = P(Afa)Tly, — (I, + P(A/a))g| + | B — B |1, — Tig|
<&+

We can choose v = /2, therefore

O]

In Section 3.3, we develop a variable stopping time quantum algorithm for matrix inver-
sion using QSVT. In order to recast the usual matrix inversion to the VTAA framework, we
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need to be able to apply this algorithm to specific ranges of the singular values of the ma-
trix. This is achieved by applying a controlled QSVD algorithm, to determine whether the
input singular vector corresponds to an singular value less than (or greater than) a certain
threshold. Based on the outcome of controlled QSVD, the standard inversion algorithm is
applied. These two steps correspond to sub-algorithms A; of the VTAA framework.

In prior works such as Refs. [Amb12, CKS17, CGJ19|, gapped phase estimation (GPE)
was used to implement this. GPE requires an additional register of O(log(x)log(1/9))
qubits to store the estimated phases. For the whole VTAA procedure, log k such registers
are needed. As aresult, substituting GPE with QSVD, we save O(logQ(/{) log(l/é)) qubits.

3.3 Variable-Time Quantum Algorithm for Matrix Inversion using QSVT

Matrix inversion by QSVT applies a polynomial approximation of f(z) = 1/z, satisfying
the constraints laid out in Section 2.3. Here, we make use of the result of [MRTC21]
to implement AT. We adapt their result to the scenario where we have an approximate
block-encoding of A as input. Finally, we convert this to a variable stopping time quantum
algorithm and apply VTAA to obtain a linear dependence on the condition number of A.

Lemma 25 (Matrix Inversion polynomial (Appendix C of [MRTC21})). Given k > 1,¢ €
RY, there exists an odd QSP polynomial Pg}/g of degree O(klog(k/e)), which is an 5-
approzimation of the function f(x) = in the range D := [—1,—1]U[L,1]. Also in this
PMI(z)| < 1.

1
2Kx

range PM] s bounded from above by 1, i.e. Yz € D :

Theorem 26 (Inverting Normalized Matrices using QSVT). Let A be a normalized matriz
with non-zero singular values in the range [1/ka,1] for some k4 > 1. Let § € (0,1].

For some ¢ = 0( ) and o > 2, let Uy be an (o, a,¢€)-block-encoding of A,

&
w5 log(k.a/9)
implemented in time T4. Then we can implement a (2k4,a + 1,8)-block-encoding of At

at a cost of
O(mmlog( 5 )TA>

Proof. We use the matrix inversion polynomial defined in Lemma 25, P := Pé‘/[ ! for this
task, with kK = ka4 and an appropriate ¢. This has a degree of n := O(kaalog (kaa/@)).
We invoke Theorem 8 to apply QSVT using the polynomial P above, block-encoding Uy,
and an appropriate error parameter v such that ¢ < a7y/2n, to get the unitary U, a
(1,a+1,7)-block-encoding of P(A/«a). As P is a (¢/2k)-approximation of f(z) :=1/2kzx,
we have

1£(4/a) - P(Afa)]| < 2 ¢

which implies U is a (1, a+ 1,7+ ¢/2k)-block-encoding of f(A/a). And because f(A/a) =
ﬂ = A" /2k4, we can re-interpret U as a (2r4,a + 1,2r47 + ¢/a)-block-encoding of
A+ Choosing 2k4v = ¢/a = §/2, the final block-encoding has an error of §. This gives

us ¢ = ad/2 and v = 0/4K4, and

-y ad )
< — = f— B S —
°=n 8kaAn O(ﬁilog(f@A/&)
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Next, we design a map W (7, ) that uses QSVT to invert the singular values of a matrix
if they belong to a particular domain. This helps us recast the usual matrix inversion
algorithm as a variable-stopping-time algorithm and will be a key subroutine for boosting
the success probability of this algorithm using VTAA. This procedure was also used in
Refs. [CKS17, CGJ19] for the quantum linear systems algorithms.

Theorem 27 (Efficient inversion of block-encoded matrix). Let A be a normalized matriz
with non-zero singular values in the range [1/k, 1|, for some k > 1. Let § € (0,1]; 0 <y <
1. Let Uy be an (a,a,e)-block-encoding of A implemented in time T4, such that o > 2
_ 5y

and € =0
tog (55 )
vectors of A corresponding to the singular values in the range [y, 1], there exists a unitary

W (~v,9d) that implements

. Then for any quantum state |b) that is spanned by the left singular

W(3,6) £ 10)5 10)q Ibhy = —— [ 00 F(A) )y + [0} L (23)

where amax = O(k4) is a constant independent of -, \J.)QI is an unnormalized quantum
state orthogonal to |0}, and |f(A) |b) — AT |b)|| < &. Here F is a 1-qubit flag register, Q
is an a-qubit ancilla register, and I is the log N -qubit input register. This unitary has a

o(3us(35) )

Proof. Since we only need to invert the singular values in a particular range, we can use
the procedure in Theorem 26 with x4 modified to the restricted range. That gives us the
description of a quantum circuit W (v, ) that can implement the following map

W(3,6): 1) 0)g = 5 F(A) 1) [0)g + [ L)gs

where | L) is an unnomalized state with no component along |0),. This has the same cost
as Equation 24. Here || f(A) [¢) — AT |¢)|| < § whenever |¢) is a unit vector in the span of
the singular vectors of A corresponding to the singular values in [, 1]. This follows from
the sub-multiplicativity property of the matrix-vector product.

Next, we must transform the amplitude of the good part of the state to O(k), inde-
pendent of v. To achieve this, we will have to flag it with an ancillary qubit to use a
controlled rotation to modify the amplitude. Thus we add a single qubit |0) . register and
flip this register controlled on register () being in the state |0) (the good part). This gives
us the transformation

W'(7,6) : 0)p b1 10)q = 5 (1) F(A) b 10)g +10) & [L)gr

-2

Then we use a controlled rotation to replace the amplitude /2 with some constant ag} .

which is independent of «y, which is achieved by introducing the relevant phase to the flag
space

4
g — 1) p + 1_727|0>F-

Y @max max

This gives us the desired W (~,d) as in Equation 23. O

Given such a unitary W (v, d), Ref. [CGJ19] laid out a procedure for a variable time
quantum algorithm A that takes as input the block encoding of an N x d matrix A, and
a state preparation procedure Uy : ]0)®n — |b), and outputs a quantum state that is a
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bounded distance away from A* |b) /||AT |b)|. In order to determine the branches of the
algorithm on which to apply VTAA at a particular iteration, [CKS17, CGJ19, Amb12] use
the technique of gapped phase estimation, which given a unitary U, a threshold ¢ and one
of its eigenstate |\), decides if the corresponding eigenvalue is a bounded distance below
the threshold, or a bounded distance above it. In this work, we replace gapped phase
estimation with the QSVD algorithm (Theorem 24) which can be applied directly to any
block-encoded (not necessarily Hermitian) matrix A, and allows for saving on O (logQ(/i / 5))
qubits.

The Variable time Algorithm: This algorithm will be a sequence of m sub-algorithms
A=A, -Ap_1-... A1, where m = [log k] +1. The overall algorithm acts on the following
registers:

e m single qubit clock registers C; : i € [m].

e An input register I, initialized to |0)®°.

e Ancillary register space Q for the block encoding of A, initialized to |0)®*.

e A single qubit flag register |0), used to flag success of the algorithm.

Once we have prepared the above state space, we use the state preparation procedure

to prepare the state |b). Now we can define how each A; acts on the state space. Let

g = amim. The action of A; can be broken down into two parts:

1. If Cj—1...Cq is in state 10)2U=D apply QSVD(274,¢'), (Theorem 24) to the state
|b). The output is to be written to the clock register Cj.

2. If the state of C; is now [1), apply W(277,&') to I @ F @ Q.

Additionally, we would need algorithms A’ = A/ --- A} which are similar to A, except
that in Step 2, it implements W’ which sets the flag register to 1. That is,

w’ |b>1 ’O>F ‘O>Q = |b>1 |1>F |0>Q .

Now we are in a position to define the variable time quantum linear systems algorithm
using QSVT.

Theorem 28 (Variable Time Quantum Linear Systems Algorithm Using QSVT). Let
g,0 > 0. Let A is a normalized N x d matriz such that its non-zero singular values lie in

[1/k,1]. Suppose that for
-~ \k3log? (%))

we have access to Uy which is an («, a,€)-block-encoding of A, implemented with cost T4y.
Let |b) be a state vector which is spanned by the left singular vectors of A. Suppose there
exists a procedure to prepare the state |b) in cost Ty. Then there exists a variable time

quantum algorithm that outputs a state that is d-close ”ﬁ% at a cost of

O </~£10g K (aTA log <§> + Tb>) (25)

using O(log (k)) additional qubits.
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Proof. The correctness of the algorithm is similar to that of Refs. [CKS17, CGJ19], except
here, we use QSVD instead of gapped phase estimation. According to Lemma 10, we need
Tax (the maximum time any of the sub-algorithms A; take), ||T° 13 (the fo-averaged stop-
ping time of the sub-algorithms), and |/psucc (the square root of the success probability.)

Now each sub-algorithm consists of two steps, implementing QEVD with precision 277
and error ¢, followed by W (277, ¢’). From Theorem 24, the first step costs

(’)(aTAQj log (;)),

and the cost of implementing W (27/,¢’) is as described in Equation 24. Thus the
overall cost of A;, which is the sum of these two costs, turns out to be

. 2
(@] (aTA2J log <€/>> (26)

Note that the time ¢; required to implement A; ... A; is also the same as Equation 26.
Also,

Tmax = m;;LX tj

. 27
=max O|aT42’log | —
J €
= (’)<aTA/€10g (ﬁ))
€

= C’)(aTAnlog (W))

The ||T Hg is dependent on the probability that A stops at the j™ step. This is given
by b = [Tle, Ay - A1 1) 10) g

register. From this, | 7|3 can be calculated as

2
, where Il¢; is the projector on ’1>ij the j* clock

ITllz = > »st;
j
2
=> HHCjAj ALY ’0>C’FPQH t;
J

=l (HHCjAj AL o)y ‘O>CFPQH2t?)
k J

1 il
- 0<a2szlog2 ( ) lex )
k

/
(79 O

klogk crl?
IT]ly = O (aTA log ( : ) T ‘(f%) . (27)
k

Next we calculate the success probability.

Therefore

-1

0)1 19)crpol| + O(me)

amax

A
V Psucc = HHF
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|CJ ( g >
amax Z Qmax

1 |c;]

—0l =z Z J
(/ﬁ} - 0'2- )

i J

Given these, we can use Lemma 10 to write the final complexity of matrix inversion
with VTAA:

(T, + Tp) log (Thnax) _ ( ( (ﬁ) ))
s = O| klogk | aTy log 5 + Ty

The upper bound on the precision required for the input block-encoding, ¢, can be cal-
culated from the bounds on the precisions for W (k,&’) (Theorem 27) and QSVD(k,¢e’)
(Theorem 24) as follows:

oo (v ) ) ()

The overall complexity is better by a log factor and requires O(log2(/<;/ 5)) fewer addi-
tional qubits as compared to the variable time algorithms in Refs. [CKS17, CGJ19].

Tmax + Tb +

O]

3.4 Negative Powers of Matrices using QSVT

We consider the problem: given an approximate block-encoding of a matrix A, we need to
prepare a block-encoding of A=¢, where ¢ € (0,1). This procedure will be used to develop
algorithms for /5-regularized versions of GLS. We will directly use the results of [GSLW19].

Lemma 29 (Polynomial approximations of negative power functions, [GSLW18], Corol-
lary 67). Lete,6 € (0,4],¢ > 0 and let f(z) := S x7°, then there exist even/odd polynomi-

als Pee s, Py, 5 € R[z] such that || Pec s — f||[51] <eg, HPCMH[ 1] <1and‘

e fH[51 -

/
Pc,a,é

€, < 1. Moreover the degree of the polynomials are (’)(max(l <) log ( ))

[_171}

Theorem 30 (Negative fractional powers of a normalized matrix using QSVT). Let ¢ €
(0,1) be some constant and 6 € (0,1] Let A be a normalized matriz with non-zero singular
values in the range [1/k,1]. Let Uy be a (v, a, €)-block-encoding of a matriz A, implemented
in time T4 such that o > 2 and

=< (e igm)

Then we can construct a (25°,a + 1,6)-block-encoding of A=¢ at a cost of

(’)(cmlog (’;) TA>.

Proof. From Lemma 29, using A := — and an appropriate ¢ € (0, ], we get an even

RO
QSP polynomial P := P, , A which is ¢-close to f(x) := and has degree n such

that n = O(om log (é)) Therefore

If(A/a) = P(A/a)|| < .

1
2HCOlLZ(’ )
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Using Theorem 8 we can construct Up, a (1,a+ 1, v)-block-encoding of P(A/«a), given
that ¢ < §X. Then from triangle inequality it follows that it is a (1,a + 1, ¢ + 7)-

2n
block-encoding of f(A/a). And because f(A/a) = %, Up can be re-interpreted as a
(2%, a + 1,2k%(¢ + 7v))-block-encoding of A~¢. We therefore choose ¢ = v = &, and
choose ¢ as
Y <a51> —Y (5)
°= 4k¢ arlog(4kc/d) ) —  \ktllog(k/d)
O

Having discussed the necessary algorithmic primitives, we are now in a position to
design quantum algorithms for linear regression with general fo-regularization. We will
first deal with ordinary least squares followed by weighted and generalized least squares.

4 Quantum Least Squares with General /5>-Regularization

In this section, we derive the main results of our paper, namely quantum algorithms
for quantum ordinary least squares (OLS), quantum weighted least squares (WLS) and
quantum generalized least squares (GLS) with /;-regularization.

4.1 Quantum Ordinary Least Squares

Given N data points {ai,bi}ﬁ\il such that a; € R? and b; € R, the objective of linear
regression is to find z € R? that minimizes the loss function

N
EO = Z(a;Tai - bi)Q. (28)

J=1

Consider the N x d matrix A (known as the data matrix) such that the i'" row of A is
the vector a; transposed and the column vector b = (by - --by)?. Then, the solution to the
OLS problem is given by x = (AT A)~tATb = A*b.

For the fs-regularized version of the OLS problem, a penalty term is added to its
objective function. This has the effect of shrinking the singular values of A which helps
overcome problems such as rank deficiency and overfitting for the OLS problem. The loss
function to be minimized is of the form

1Az — bl + || Lz, (29)

where L is the N x d penalty matrix and A > 0 is the optimal regularizing parameter. The
solution z € R? satisfies
z=(ATA+ A LTL)" ATy, (30)

Therefore, for quantum ordinary least squares with general {s-regularization, we assume
that we have access to approximate block-encodings of the data matrix A, L and a pro-
cedure to prepare the quantum state |b) = Z;-V:l b;j|7) /lIbll. Our algorithm outputs a
quantum state that is close to

(ATA+ ALTL)~LAT |b)

)= (AT A+ \ETL)TAT )] (31)

In order to implement a quantum algorithm that implements this, a straightforward
approach would be the following: We first construct block-encodings of AT A and LTL,
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given block encodings of A and L, respectively (Using Lemma 19). We could then imple-
ment a block-encoding of AT A + ALTL using these block encodings (By Lemma 17). On
the other hand, we could also prepare a quantum state proportional to A” |b) by using the
block-encoding for A and the unitary preparing |b). Finally, using the block encoding of
AT A4+ NLT L, we could implement a block-encoding of (AT A+ LT L)~ (using Theorem 26)
and apply it to the state AT |b). Although this procedure would output a quantum state
close to |x), it is not efficient. It is easy to see that the inverse of AT A+ ALT L, would be
implemented with a complexity that has a quadratic dependence on the condition numbers
of A and L. This would be undesirable as it would perform worse than the unregularized
quantum least squares algorithm, where one is able to implement A" directly. However, it
is possible to design a quantum algorithm that performs significantly better than this.

The first observation is that it is possible to recast this problem as finding the pseu-
doinverse of some augmented matrix. Given the data matrix A € RV*?  the regularizing
matrix L € RVN*? let us define the following augmented matrix

Ap = (\/éL O) . (32)

It is easy to see that the top left block of A7 = (ATA + ALTL)71 AT, which is the
required linear transformation to be applied to . Consequently, our strategy would be
to implement a block-encoding of Ay, given block-encodings of A and L. Following this,
we use matrix inversion by QSVT to implement A} |b) |0). The first register is left in the
quantum state given in Equation 31.

From this, it is clear that the complexity of our quantum algorithm would depend
on the effective condition number of the augmented matrix Ay. In this regard, we shall
assume that the penalty matrix L is a good reqularizer. That is, L is chosen such that it
does not have zero singular values (positive definite). This is a fair assumption as if L has
only non-zero singular values, the minimum singular value of Ay, is guaranteed to be lower
bounded by the minimum singular value of L. This ensures that the effective condition
number of Ay, depends on Ky, even when the data matrix A has zero singular values and
AT A is not invertible. Consequently, this also guarantees that regularized least squares
provide an advantage over their unregularized counterparts.

Next, we obtain bounds on the effective condition number of the augmented matrix Ay,
for a good regularizer L via the following lemma:

Lemma 31 (Condition number and Spectral Norm of Ay). Let the data matriz A and
the positive definite penalty matriz L have spectral norms ||A|| and ||L||, respectively. Fur-
thermore, suppose their effective condition numbers be upper bounded by k4 and xr,. Then
the ratio between the maximum and minimum (non-zero) singular value of Ay, is upper

bounded by
A
ﬁ:m<1+ 1Al )
VAL

We can also bound the spectral norm as

lALll = © (I14]l + VAIZIl)
Proof. To bound the spectral norm and condition number of Ay, consider the eigenvalues

of the following matrix:
ATA+NLTL 0
ATAL = ( 0 0)
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This implies that the non-zero eigenvalues of AT A; are the same as those of ATA +
ALT L. Therefore, using triangle inequality, the spectral norm of A, can be upper-bounded
as follows:

lALl = VIAT ALl = IATA + ALTL| < /I ATA| + AILTL = A2 + MLI® < Al + VAL

Similarly ||Az|| > ||A]| and ||AL| > VA||L||, which effectively gives the tight bound for
[ AL-

As LTL is positive definite, we have that its minimum singular value is Omin(L) =
| L||/kz. And we also know that AT A is positive semidefinite, so by Weyl’s inequality, the
minimum singular value of Ay, is lower bounded by

; N L e
Gin (A1) > \/Fmin (A)° + Aomin (L)2 > 1| A e =V
Thus,

Omax (AL) HAH
Fmax \2L) o — 1+
ouin (Az) =" ( VAL

O

In the theorems and lemmas for regularized quantum linear regression and its variants
that we develop in this section, we consider that L is a good reqularizer in order to provide
a simple expression for k. However, this is without loss of generality. When L is not a good
regularizer, the expressions for the respective complexities will remain unaltered, except
that k would now correspond to the condition number of the augmented matrix.

Now it might be possible that |b) does not belong to the row space of (AT A+ALTL)~1 AT
which is equivalent to saying |b) |0) may not lie in row(Af). However, it is reasonable to
expect that the initial hypothesis of the underlying model being close to linear is correct.
That is, we expect |b) to have a good overlap with row (AI) = col (Ar). The quantity
that quantifies how far the model is from being linear is the so called normalized residual
sum of squares. For {o-regularized ordinary least squares, this is given by

(7~ ey 19) 103
1)

If the underlying data can indeed be fit by a linear function, Sp will be low. Subse-

So =

=1 [Feorgay 19 0] (33)

2
quently, we assume that Sop =1 — HHcol(AL) |b) |0)H <~ < 1/2. This in turn implies that

HHcol(AL) |b) |0) H2 = Q(1), implying that the data can be reasonably fit by a linear model.!

Now we are in a position to present our quantum algorithm for the quantum least
squares problem with general fo-regularization. We also present an improved quantum
algorithm for the closely related quantum ridge regression, which is a special case of the
former.

Theorem 32 (Quantum Ordinary Least Squares with General (o-Regularization). Let
A, L € RN*? pe the data and penalty matrices with effective condition numbers k4 and

IOur results also hold if we assume that Sp < ~ for some v € (0,1). That is, | Meorcay) H >1—~.In
such a scenario our complexity to prepare A} |b,0) /HAZ' |b, 0) H is rescaled by 1//1 — .
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kg respectively, and A\ € R™ be the regression parameter. Let Uy be a (aa,aa,ea)-block-
encoding of A implemented in time Ty and U, be a (ar,ar,er)-block-encoding of L im-
plemented in time Ty. Furthermore, suppose Uy be a unitary that prepares |b) in time Tj

and define
.=y <1+ 1A] )
VAL

Then for any 6 € (0,1) such that

€A, Ver =o <5> (34)

K3 log? (%)

we can prepare a state that is d-close to
-1
(ATA+ALTL) AT |b)
|(ATA 4 ALTL)™" AT |b>H

with probability ©(1), at a cost of

ap+ \f/\aL K
O(n log <<HA||+\5\||LH> log ((5) (Ta+1TL) + Tb)) (35)

using only O(log k) additional qubits.

Proof. We invoke Lemma 22, to obtain a unitary U, which is a (a4 +v/ ar, max(a, ar)+
2, €A+\A€L)—block-encoding of the matrix Ay, implemented at a cost of O(T'4 + T7). Note
that in Lemma 22, A and L are considered to be s-qubit operators. For N x d matrices,
such that N, d < 2°, we can pad them with zero entries. Padding A and L with zeros may
result in the augmented matrix Ay having some zero rows between A and L. However,
this is also not an issue as we are only interested in the top left block of AJLr which remains
unaffected.

Note that U can be reinterpreted as a (%,max(amam + 2, %)—block—

encoding of the normalized matrix Ar/||AL|. Furthermore, we can prepare the quantum
state |b) |0) in time Tp. Now by using Theorem 28 with U and an appropriately chosen §
specified above, we obtain a quantum state that is d-close to

(ATA+XLTL)"1AT |b)
[(ATA + ALTL)-1AT |b)||

in the first register. O

In the above complexity, when L is a good regularizer, « is independent of k4. k can
be made arbitrarily smaller than k4 by an appropriate choice of L. Thus the regularized
version has significantly better time complexity than the unregularized case. One such
example of a good regularizer is in case of Quantum Ridge Regression, where we use the
identity matrix to regularize. The corollary below elucidates this.

Corollary 33 (Quantum Ridge Regression). Let A be a matriz of dimension N x d with
effective condition number ks and X € RY be the regression parameter. Let Uy be a
(a, a,€)-block-encoding of A implemented in time Tx4. Let Uy be a unitary that prepares
b) in time Ty. If K = 1+ ||A||/vV/X then for any § such that

()
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we can prepare a state d-close to
(ATA+ A1) AT |y
|(ATA4An)7t AT b)|

at a cost of

O(logﬁ (j% log (’;) T+ m,)) (36)

with probability ©(1) using only O(log k) additional qubits.

Proof. The identity matrix I is a trivial (1,0, 0)-block-encoding of itself, and k; = 1. We
invoke Theorem 32 with L = I to obtain the solution. O

Being in the block-encoding framework allows us to express the complexity of our
quantum algorithm in specific input models such as the quantum data structure input model
and the sparse access model. We express these complexities via the following corollaries.

Corollary 34 (Quantum Ordinary Least Squares with ¢5-Regularization in the Quantum
Data Structure Input Model). Let A, L € RN with effective condition numbers ka, K,
respectively. Let X € RT and b € RN. Let k be the effective condition number of the
augmented matrix Ay. Suppose that A, L and b are stored in a quantum accessible data
structure. Then for any § > 0 there exists a quantum algorithm to prepare a quantum
state §-close to

~1
(ATA+ALTL) AT |b)
H(ATA FALTL)™h AT |b>H
with probability ©(1), at a cost of

pa+ VAL ) 1
O| k| ————— ] polylog (Nd,/@,,)\) . (37)
( <HA||+\5||LH 0

Proof. Since b is stored in the data structure, for some &, > 0, we can prepare the state
|b') that is ep-close to |[b) = >, b;|é) /||b]| using T, = O(polylog(N/ep)) queries to the
data structure (see Section 2.2.1.) Similarly, for some parameters 4,7, > 0, we can
construct a (ua, [log(d+ N)|,e4)-block-encoding of A using T4 = O(polylog(Nd/c4))
queries to the data structure and a (ur, [log(d + N)],ep)-block-encoding of L using Ty, =
O(polylog(Nd/ep)) queries.

We invoke Theorem 32 with a precision /2 by choosing €4 and e, such that equation
Equation 34 is satisfied. This gives us a state that is d/2-close to

(ATA+ALTL) AT 1)
(AT A ALTL)™ AT )

To compute the final precision as §, we use Lemma 15 by choosing ¢, = %. The
complexity can be calculated by plugging in the relevant values in Equation 35 0
In the previous corollary pa = ||Al|p and pr = ||L||» when the matrix A and L are

stored in the data structure. Similarly, pa = p,(A) and pr = pp(L) when the matrices
AP A(0=P) and L®) LA-P) are stored in the data structure.

Now we discuss the complexity of quantum ordinary least squares with /s-regularization
in the sparse access input model. We call a matrix M as (s,, S.) row-column sparse if it
has a row sparsity s, and column sparsity s..
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Corollary 35 (Quantum Ordinary least squares with fs-regularization in the sparse access
model). Let A € RV*4 be (s2,54) row-column sparse, and similarly, let L € RN*? pe
(sk, sL) row-column sparse, with effective condition numbers k4 and kg, respectively. Let

A € RT and § > 0. Suppose there exists a unitary that prepares |b) at a cost, Ty. Then
there is a quantum algorithm to prepare a quantum state that is §-close to

(ATA+ ANLTL)~LAT |b)
|I(ATA+ ALTL)=1AT |b)||
with probability ©(1), at a cost of

A+ \/ASL L 1
Ol k polylog (Nd Ky 5 A) + rklog kT |- (38)

HAH +VA|IL|

Proof. The proof is similar to Corollary 34 but with ay = \/sds? and oy = \/sksl. O

[

4.2 Quantum Weighted And Generalized Least Squares

This technique of working with a augmented matrix will also hold for the other variants of
ordinary least squares. In this section, we begin by briefly describing these variants before
moving on to designing quantum algorithms for the corresponding problems.

Weighted Least Squares: For the WLS problem, each observation {a;,b;} is assigned
some weight w; € RT and the objective function to be minimized is of the form

ﬁw = Z wj(a:Taj — bj)Q. (39)
J
If W € RV*N s the diagonal matrix with w; being the i*" diagonal entry, then the optimal

x satisfies
= (ATWA) L ATWD. (40)

The ¢5-regularized version of WLS satisfies
z=(ATWA+ALTL) ATWb (41)
Our quantum algorithm outputs a state that is close to

) = (ATW A + ALTL)~"ATW |b)
YT (ATW A + A\LTL)—TATW |b)]|

(42)

given approximate block-encodings of A, W and L. Much like Equation 32, finding the
optimal solution reduces to finding the pseudo inverse of an augmented matrix Ay given

by
A VWA 0
L=\ VAL o)

The top left block of A} = (ATWA + ALTL)"'ATV/W, which is the required linear
transformation to be applied to the vector y = v/Wb. The ratio between the minimum
and maximum singular values of Ay, x, can be obtained analogously to Lemma 31. For
the fo-regularized WLS problem, normalized residual sum of squares is given by

|~ a0
1912 B

Sw = [ ey 1y 10} (43)
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2
Subsequently, we assume that Sy = 1— HHcol(AL) ly) ]0)” <5 < 1/2. This in turn implies
2
that HHCOI(AL) ly) \O>H = Q(1), implying that the data can be reasonably fit by a linear

model.

Generalized Least Squares. Similarly, we can extend this to GLS problem, where there the
input data may be correlated. These correlations are given by the non-singular covariance
matrix Q € RV*N_ The WLS problem is a special case of the GLS problem, corresponding
to when Q is a diagonal matrix. The objective function to be minimized is

[:Q = Z(Q_l)ij (.’BT(Zi — bi)(acTaj — bj). (44)
2V

The optimal = € R? satisfies
= (ATQ 1At ATQ 1 (45)
Similarly, the ¢o-regularized GLS solver outputs x such that
x=(ATQ A+ A\LTL)" P ATQ b, (46)

So, given approximate block-encodings of A, €2 and L a quantum GLS solver outputs a
quantum state close to
z) = (ATQ 1A+ XLTL) 1 ATQ 1 |b)
T (ATQ A+ ALT L)~ 1ATQ-1 |b) ||

(47)

The augmented matrix Ay, is defined as
1 Q124 0
UV o)
Then top left block of Az to the vector y = Q2 yields the optimal z. Thus the quantum
GLS problem with fy-regularization first prepares Q=2 |b) |0) and then uses the matrix

inversion algorithm by QSVT to implement A7 Q~/2[b)|0). Analogous to OLS and WLS,
we assume that the normalized residual sum of squares S <y < 1/2.

4.2.1 Quantum Weighted Least Squares

In this section, we derive the complexity of the fo-regularized WLS problem. We assume
that we have a diagonal weight matrix W € RV*N such that its smallest and largest
diagonal entries are wpin and wpayx, respectively. This implies that ||W]| = wpax and
KW = Wmax/Wmin- We take advantage of the fact that the matrix W is diagonal and then
apply controlled rotations to directly implement a block encoding of VW A. Additionally,
given a state preparation procedure for |b), we can easily prepare a state proportional to
VW |b). We then use Theorem 32 to solve QWLS.

We first formalize this idea in Theorem 36, assuming direct access to (i) a block encoding

of B=+WA, and (ii) a procedure for preparing the state |b,,) = H%:Zi" Subsequently,

for the specific input models, we show that we can indeed efficiently obtain a block-encoding
of B and prepare the state |by,).
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Theorem 36 (Quantum Weighted Least Squares with General /5-Regularization). Let
A, L € RNX4 be the data and penalty matriz, with effective condition numbers k4 and
k1, respectively. Let A € RY be the regularizing parameter. Let W € RNXN be a diagonal
weight matriz with the largest and smallest diagonal entries being Wmaz, Wmin, respectively.
Let Up be a (ap,ap,ep) block encoding of B := VWA implemented in time Tg and let U,

be a (ar,ar,er) block encoding of L implemented in time T, such thateg = o (»M?(“))
3

. 5 . VWY .
ander, = o (ﬁ,{s og?(%) ) Let Uy, be a unitary that prepares TVwin] in time Ty, . Define

\/wmazHAH
= pp, 1+ Vel
ren < VL]

Then for any 6 > 0 we can prepare a quantum state that is §-close to

(ATW A + ALTL)"*ATW |b)
[(ATW A+ ALTL) " TATW [b)]|

with probability ©(1), at a cost of

ap + \F/\OéL K
O(/@log/@ < oA + VAL log <5> (Tp+1T1) + wa>>7 (48)

using only O(log k) additional qubits.

Proof. We then invoke Theorem 32 with B and L as the data and regularization matrices,
respectively. This requires that eg, ey, such that

€B+\A€L:O<5>.

K3 1og? (%)

Thus, we get the upper bounds on the precision €p, €, required. This gives us a quantum
state d-close to
(ATWA + ALTL)"*ATW |b)
|(ATW A + ALTL)=YATW |b) ||

O]

Next, we construct the block encodings for vW A and the state H%Ilgiﬂ efficiently in

the quantum data structure input model. This construction would also apply to the sparse
access input model with slight modifications.

Lemma 37 (Efficiently preparing vWA in the Quantum Data Structure Model). Let
W € RV*N such that W = diag(wi, ws ... wx) and wpay := max; w;, and A € RV*? pe
stored in a quantum-accessible data structure. Then for any 6 > 0 there exists a

(vVwmax[ Al p, [log (N + d)1,9)
block-encoding of VW A that can be implemented at the cost O(polylog(Nd/s)).

W 1
5) =) = 10) 7 Do Ak lk) -
! Wmax HAL k:%;l] !
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Proof. Vj € [N], define




Similarly, Vk € [d], define

k) > 14 | 1k) -
H ||F je[N]

Observe that Vj € [N], k € [d],

W A _ GIVIVALK)
Wiax || Al ¢ \/WBLX”AHF
Given quantum data structure accesses to W and A, one can construct quantum circuits
Wg and W, similar to Uy, and Ug from Lemma 3 that prepare |¢y) and [¢;) above. |¢y)

can be prepared just as in Lemma 3, while [¢;) can be prepared using controlled rotations
w:i —) (which can be constructed from the QRAM access to W) after adding

an ancilla qubit and the QRAM access to A. Thus, W};WL is the required block encoding,
which according to Theorem 2 can be implemented using polylog(Nd/J) queries. O

(Vjlon) =

Lemma 38 (Efficiently preparing vW |b) in the Quantum Data Structure Model). Let
beRYN and W € RV*N | Suppose that b and W are stored in a quantum-accessible data
structure such that we have a state preparation procedure that acts as

Uw : [5)10) = [7) lw;) ,

bj .
Ub:|0>'_>zm|]>'
J

Then for any 6 > 0 we can prepare the quantum state that is d-close to
03 max N
constant success probability and at a cost of (’)( Z’}nﬁpolylog (?))

Proof. Use Uy, to prepare the state
1 .
b) = ol > bili)
ol 2
in time polylog(N). Then, apply the following transformation

1710} 10) = 15) Iwg 10)

- (=)
~ 13)10) ( o)+ f1- )

which can again be applied using some controlled rotations, a square root circuit and Uy .
This gives us the state (ignoring some blank registers)

Wi
——|0) + /1 ) 49
zj: ( Wmax | > Wmax > Hb” ’]> ( )
The probability for the ancilla to be in |0) state is
0 <wmin ) .
Wmax
Thus performing O(, /wﬁ;{) rounds of amplitude amplification on |0) gives us a constant

probability of observing |0), and therefore obtaining the desired state H\/\/gilziﬂ' O
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Using the above two theorems, and the quantum OLS solver (Theorem 32), we can
construct an algorithm for regularized quantum WLS.

Theorem 39 (Quantum Weighted Least Squares with General fo-Regularization in the
Quantum Data Structure Model). Let A, L € RN*? with effective condition numbers
KA, kL respectively be stored in an efficient quantum accessible data structure. Let W €
RVXN pe o diagonal matrix with largest and smallest singular values wyyaz, Winin TESPEC-
tively, which is also stored in an efficient quantum accessible data structure. Furthermore,
suppose the entries of the vector b € RN are also stored in a quantum-accessible data

structure and define,
V maxr A
K= K[, <1 + uj””)
VAL

Then for any § > 0 we can prepare a quantum state that is d-close to

(ATW A + ALTL)"*ATW |b)
[(ATW A+ ALTL)-TATW [b)]|

with probability ©(1), at a cost of

O( (\/wmaxHAHF + f||L|’F + maac) polylog (Nd %, 1)) (50)
VOma|| Al + VALV wmin o

Proof. Choose some precision parameter € > 0 for accessing the data structure. Given

access to W and A, we can use Lemma 37 to prepare a (\/Wmax|| 4|z, [log (N +d)],€)-

block-encoding of VW A, using T4 := O(polylog (Nd/e)) queries to the data structure.

Similarly, Lemma 3 allows us to build a (||L|| , [log (N + d)], €)-block-encoding of L using

Ty, := O(polylog(Nd/e)) queries to the data structure.

Next, using Lemma 38, for any ¢, > 0, we can prepare a state g,-close to |b) :=

||%}Z;H This procedure requires T3 := (9( axpolylog (N/sb)) queries to the data

structure. Now we can invoke the OLS solver in Theorem 32 with a precision of &, by

considering vW A as the data matrix and H?:Z 1l as the input state. In order for the

input block-encoding precision to satisfy the bound in Equation 34, we choose € such that

Y 0

Finally, for the output state to be d-close to the required state, we choose §, = §/2 and
€p = 0/2k to use the robustness result from Lemma 15. This gives us

(1) =0 e (52
-ofm(?)

Now we can substitute the cost of the individual components in Equation 35 to obtain the
final cost as

max A L N max N
O(nlogn (m” le+ VAl HF log <H> polylog <d> + L polylog ( R)))
VUmaxl| Al + VAL 6 € min 0
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_of . VEmaxllAlp + VAL \/Wax bolylog (Nd/s)
\/MHA” + \/XHLH Wmin (5

Now, for the sparse access model, we can obtain a block encoding similar to Lemma 37
and a quantum state similar to Lemma 38, with the same query complexities. Thus we
have an algorithm similar to Theorem 39 in the sparse access model as well. We directly
state the complexity of this algorithm.

O

Theorem 40 (Quantum Weighted Least Squares with General ¢5-Regularization in the
Sparse Access Model). Let A € RN*? pe (sf,sf) row-column sparse, and similarly, let
L € RN* be (sL,sE) row-column sparse, with effective condition numbers k4 and Kr,
respectively. Let A\ € RT. Let W € RY*N be a diagonal matriz with the largest and the
smallest diagonal entries being Wmaz, Wmin, respectively. Suppose that the diagonal entries
of W are stored in a QROM such that, for any § > 0, we can compute |j) 0 — |j) |w;) in
cost O (polylog (Nd/6)) as well as wiqq. Furthermore, suppose there exists a unitary that

prepares |b) at a cost Ty, and define,

Ki=krp|1l4+ F+—— wmaxHAH
VAL

Then for any § > 0 we can prepare a quantum state that is d-close to

(ATW A + ALTL)"LATW |b)
[(ATW A + MLTL) LATW [b)]

with probability ©(1), at a cost of

VWmazy/ 5454 + /Ay /sLsL 1
o (n ( + .4/ Wmaz Ty, | polylog (Nd, K, ) (51)
Wmin

VOmarll Al + VA|L| 0

4.2.2 Quantum Generalized Least Squares

In this section, we assume that we have block-encoded access to the correlation matrix
Q € RV*N | with condition number ko. We begin by preparing a block encoding of Q~1/2,
given an approximate block-encoding of (2.

Lemma 41 (Preparing Q~'/2). Let Q € RN*N be a matriz with condition number ko Let
Uq be an (aq, aq,cq)-block-encoding of 2, implemented in time Tq. For any § such that

Vo

/11510( K ) ’
&\ Vials

we can prepare a (2v/ka/||Q], aq + 1, 8)-block-encoding of Q=% at a cost of

QKo KQ
O log To
( 12 (5\/”QH> )

Moreover, the condition number of Q12 is bounded by /kq.

€EQ =0
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Proof. Uq can be re-interpreted as a (ﬁ, a, ﬁ)—block—encoding of ﬁ We can then
prepare the required unitary by invoking Theorem 30 on Ug with ¢ = 1/2 and some v such
that we get a (2\/kq, a+ 1, ) block encoding of /[[Q[[Q~1/2, which is a (2 mar o+

1 \’\YQH) block encoding of Q~/2. Fixing v = [|2]]0 gives us the required result. O

We will now use this lemma in conjunction with Theorem 32 to develop quantum
algorithms for GLS with general ¢s-regularization.

Theorem 42 (Quantum Generalized Least Squares with General (o-regularization). Let
A, L € RV pe the data and penalty matrices with effective condition numbers ka, KL,
respectively. Let Q € RN*N be the covariance matriz with condition number kq. Let
6 > 0 be the precision parameter. Define k as

o= L (1 + VWMH) |
VATETIZ

For some €4 such that
Y 0]
K3\/Fq log? &

we have access to Ua, an (a4, a4,€a)-block-encoding of A implemented in time Ty. For
some €1, such that

5 )
=0 =75
(ﬁkﬁlogQé

we have access to Ur, an (ap,ar,er)-block-encoding of L implemented in time Ty. For
some eq such that

1)
EQ =0
(HAHH%” log® % log (nA’ﬁ"a))

we have access to Ug, an (aq,aq,eq)-block-encoding of Q implemented in time Tq. Let
Uy be a unitary that prepares the state |b) in time Ty.
Then we can prepare the quantum state that is 6-close to

(ATQ 1A+ ALTL) AT )
H(ATQ—lA +ALTL) " ATQ1 yb>H

with probability ©(1), at a cost of

S Ok oy ) (ol 7))
O(“V“ﬂl"g“«uAuTA*HLHT”Hnu 7o) log” ( sl ) ) 62

using only O(log k) additional qubits.

Proof. Observe that by choosing A’ := Q~Y2A, L' := L, V) := Q2 |b) (upto normal-
ization) in the quantum ordinary least squares, we get a state proportional to (A7 A’ +
ALTINTTAT ) = (ATQ A+ ALTL)ATQ1 |b), which is the desired state.

For convenience, let us define the matrix B := 012 (and therefore kg = VEq and
IB|| = ka/l|€?]]). We now need to prepare a block-encoding of BA and the quantum

state %, which we then use to invoke Theorem 32.
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We begin by using Lemma 41 with some precision € to construct a (ap, ap, £p)-block-
encoding of B = Q12 where ap = 2 ‘FTQ” = 2||B||, and ap = aq + 1. This bounds &g
as

VIIQlles
EQ — )
1.5] Kg
UG (\/953)

agkQ KQ
Ty im0 29 1o, () TQ>
(HQII eV €]

Then using Lemma 20 with precision v satisfying v > 4v/2max (|| Bllea, ||[Alleg), we
get a
2|l All|B|, aa + aB + 3,7)-block-encoding of A’ := BA = Q~1/2A at a cost

as ap 1A[1Bl|
Ty = o((TA 4 9B g ) log ())
[A] 1Bl 7 v

and has a cost of

To prepare %, we use Lemma 13 with precision ¢, > 2egrp/||B||. This prepares a

state that is ej-close to |b) := % with constant success probability at a cost of

Ty = O( HBéHB (TB + Tb)) = O(HB(TB + Tb))

We could invoke OLS directly using the above two, but that ends up with a product
of sub-normalization factors (« terms) in the complexity. We want to avoid this, because
in most common cases a-s for block-encodings are quite large. So we also pre-amplify Uy,
using Corollary 12: for any 67, > 21, we get a (v/2||L|,ar + 1,81 )-encoding of L at a cost

o Ll
ar,
Tz:z(’)(T lo ())
t DN

Now that we have these, we can use Theorem 32 to get a quantum state d§’-close to
+11
|v) = %, where Af = (ATQ™'A + ALTL)"1ATQ~1/2. This would require that
L

)

AANIBI+ VLI, [ n
O(’“"“(( 1BA| + VAL >1°g (5) (TA/+TL')+T”'>>'

¥, VAL, €0 (,{3102;(“/)) and would cost

To simplify the ratio of norms term, we can first lower-bound ||BA|| > || A|l/||B~!|| =

|l All//11Ql. And as ||B]| = v/ka/||Q], the whole term can be simplified to O(,/kq). This
simplifies the cost expression to O(klogk (/kqlog (k/8") (Tar + 1) + Tiy)).

We can compute the error between |¢)) and the expected state by using Lemma 15.
For the final error to be §, we have to choose e, = 6/2k and ¢’ = §/2. Therefore

|| B 6
< =0
B s /1

’)’,\F/\(SL€O<

)
w3log?(k/0)
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= w(3) =0 v(5) () =+ o (1))
5A:O(M), SBZO(HZH)

Combining both bounds of ep by using sums or products, we can effectively bound

)
=0 ( 3 1.5 3 K K )
[ Alls3k015 log® % log (14itr)

Finally for the final costs, we calculate the respective coefficients of terms T'4,Tq, 1T,
and Ty, (excluding the common factor of k,/kqlogk for brevity). Let us label these
“coefficient extraction” functions as C with matching subscripts, and the total cost as T'.

ea() =010 () aTa)

(o (5) i 1os (1))
=o(iias* (“Sior )
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(1 (5) 127 os (151))
(\Ln (5)
=0 5
(
&
(ot
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Ca(Ty
log CQ TA/) Q (K:; ) >

(25 s
< ) (i)
v ()

O

I
O

O
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And hence the final complexity is given by the expression

Cy(T) = o(

T = O(ky/kalogk (CaA(T) - Ta+ Cr(T) - Ty, + Ca(T) - Ta + Cp(T) - Tp))

ap L 9 HHQIIAII) (KIILH) ankq | 3 (MQHAII) >>
= I 1 Thr+ — T 1 T T
O(“V’m 0g“<rA\ o8 ( sior ) Tt e (o) Tt o oe (e ) T+ B

QkQ 5 (rrellAllllIL]
Kk logk <( T4+ —TL —|— TQ) log ( + Ty
( || Al [IL]] 19 a[l€2]]
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One immediate observation is that for the special case of the (unregularized) quantum
GLS problem (when L = 0 and A = 0), our algorithm has a slightly better complexity
than [CGJ19] and requires fewer additional qubits. Now, we will state the complexities of
this algorithm in specific input models, namely the quantum data structure model and the
sparse-access input model.

Corollary 43 (Quantum Generalized Least Squares with General fs-Regularization in
the Quantum Data Structure Model). Let A, L € RN*4 be the data and penalty matrices
with effective condition numbers k4, k1, respectively. and Q € RN*N be the covariance
matriz with condition number kq. Let the matrices A, L, Q) and the vector b be stored in a
quantum-accessible data structure. Define k as

s (1 _VRallAl )
VAT

Then for any § > 0, we can prepare the quantum state that is d-close to
-1
(ATQ 1A+ ALTL)  ATQ L |b)
|(ATQ1 A+ ALTL) ™t ATQ 1 |b) H

with probability ©(1), at a cost of

HA Hr  EQUQ 1 ko
(s (7 + 2 + i) pobior (M m g g 41 1LA) ) (59
Proof. The proof is very similar to Corollary 34 with the extra input of 2. We can
use the data structure to prepare the block-encodings for A, L, and the state |b), with
precisions €4,¢r,£q,€p respectively. We invoke Theorem 42 with a precision of dp, and
choose the above ¢ terms to be equal to their corresponding upper-bounds. And finally
we use Lemma 15 with g, = §/2k and 0, = /2 to get the final error as 0. O

Now, pa = ||Al|p (similarly for p, and pg). As ||Allz < +/r(A)||Al|, where r(A) is the
rank of A, we have that the complexity of Corollary 43 can be re-expressed as

(9</{ KQ <\/7‘(A) + \/r(L) + \/T(Q)/m) polylog (N(;ln)) (54)

Corollary 44 (Quantum Generalized Least Squares with General fo-Regularization in
the Sparse Access Model). Let A € RV*? be a (s2,52) row-column sparse data matriz.

rITc

Let L € RV*4 be q (sL, sL) row-column sparse penaly matriz. Let Q € RV*N be q (s, 5%)

r2c roTe
row-column sparse covariance matriz. Suppose we have a procedure to prepare |b) in cost

Ty. Define k as
VEal Al )
K=k |1+
< VAL

Then for any § > 0, we can prepare the quantum state that is d-close to

(ATQ'A+ALTL) " AT |b)
H(ATQ*A +ALTL) L ATQ1|b) H

with probability ©(1), at a cost of

spset\[skst Ry sitst 1
o(ﬂ HQ< | +\/ + v T )polylog <Nd PR YR )\>

A IL] €211 ENT

(55)
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Proof. The algorithm is similar to Corollary 43, but with ay = (/sAsd, ap = \/sksk,

r

ag = /s O

5 Future Directions

Our algorithms for quantum linear regression with general ¢s-regularization made use of
QSVT to implement various several matrix operations. However, it is possible to use QSVT
directly to obtain the solution to quantum ridge regression. This requires computing a
polynomial approximation for the transformation o + o /(02 4+ ), to be applied on the
singular values of A, which lie between [1/k4, 1]. However, it is unclear how to extend this
while considering general ¢s-regularization. For instance, even when the data matrix and
the penalty matrix share the same right singular vectors, this approach involves obtaining
polynomial approximations to directly implement transformations of the form o + o /(0% +
A\G?%), where & is a singular value of the penalty matrix L. A monomial is no longer sufficient
to approximate this quantum singular value transformation. It would be interesting to
explore whether newly developed ideas of M-QSVT [RC22| can be used to implement such
transformations directly with improved complexity.

While developing quantum machine learning algorithms, it is essential to point out
the caveats, even at the risk of being repetitive [Aarl5|. Our quantum algorithms output
a quantum state |z) whose amplitudes encode the solution of the classical (regularized)
linear regression problem. While given access to the data matrix and the penalty ma-
trix, we achieve an exponential advantage over classical algorithms, this advantage is not
generic. If similar assumptions (¢2-sample and query access) are provided to a classical
device, Gilyén et al. developed a quantum algorithm [GST22]| for ridge regression (building
upon [CGL"20]) which has a running time in O(poly(x,rank(A),1/§)). This implies that
any quantum algorithm for this problem can be at most polynomially faster in x under
these assumptions. One might posit that similar quantum-inspired classical algorithms for
general fo-regression can also be developed. The exponential quantum speedup, however,
is retained when the underlying matrices are sparse.

Another future direction of research would be to recast our algorithms in the framework
of adiabatic quantum computing (AQC) following the works of [LT20b, AL22]. Quantum
algorithms for linear systems in this framework have the advantage that a linear dependence
on k can be obtained without using complicated subroutines like variable-time amplitude
amplification. The strategy is to implement these problems in the AQC model and then use
time-dependent Hamiltonian simulation [LW18| to obtain their complexities in the circuit
model. One caveat is that, so far, time-dependent Hamiltonian simulation algorithms
have only been developed in the sparse-access model and therefore the advantage of the
generality of the block-encoding framework is lost.

In the future, it would also be interesting to explore other quantum algorithms for ma-
chine learning such as principal component regression and linear support vector machines
[RML14] using QSVT. Finally, following the results of [CdW21], it would be interesting
to investigate techniques for quantum machine learning that do not require the quantum
linear systems algorithm as a subroutine.
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A Algorithmic Primitives

This appendix contains detailed proofs for certain lemmas and corollaries in Section 3, for
completeness. These proofs are not necessary to understand the techniques and results of
the paper, but may help the reader develop a better intuition for the methods used.

Corollary 12 (Uniform Block Amplification). Let A € R¥*4 and 6 € (0,1]. Suppose
U is a (a,a,ce)-block-encoding of A, such that € < %, that can be implemented at a cost
of Ty. Then a (V2| All,a + 1,68)-block-encoding of A can be implemented at a cost of
O (55 10g (1|1A]1/9)).-

Proof. We can re-interpret U as a (/|| Al], a,e/||A||)-block-encoding of A/||Al|. Invoking
Lemma 11 with v = ﬁ, we get U', a (v2,a+1,¢/|| Al +ﬁ)—block—encoding of A/||Al],
implemented at a cost of O(ﬁTy log (||AH/6)) which is a (v/2||4]|, a+1, §)-block-encoding
of A. O

Lemma 13 (Applying a Block-encoded Matrix on a Quantum State). Let A be an s-qubit
operator such that its non-zero singular values lie in [|A||/k, || A||]]. Also let § € (0,1), and
Uy be an («, a,e)-block-encoding of A, implementable in time T4, such that

a4
- 2

Furthermore, suppose |b) be an s-qubit quantum state, prepared in time Ty. Then we can
prepare a state that is d-close to % with success probability Q2 (1) at a cost of

O(m(TA 4 Tb))

Proof. The proof is similar to Lemma 24 of [CGJ19]. We have || A |b)|| > M};H. By applying
U4 to |0) |b) (implementable at a cost of T4 + T), followed by %—rounds of amplitude
amplification (conditioned on having |0) in the first register) , we obtain a quantum state

that within § of |0) ® %. O

Accepted in { Yuantum 2023-04-19, click title to verify. Published under CC-BY 4.0. 48


http://www.jstor.org/stable/1924340
http://www.jstor.org/stable/1924340
https://doi.org/10.2307/1924340
https://doi.org/10.48550/ARXIV.1509.09169
https://doi.org/10.48550/ARXIV.1509.09169
https://doi.org/10.1103/PhysRevA.96.012335
https://doi.org/10.1103/PhysRevLett.109.050505
https://doi.org/10.1103/PhysRevLett.109.050505
https://doi.org/10.1109/TKDE.2019.2937491

Corollary 14 (Applying a pre-amplified Block-encoded Matrix on a Quantum State). Let
A be an s-qubit operator such that its non-zero singular values lie in [||A||/k, ||A||]. Also
let § € (0,1), and Ua be an (a, a,e)-block-encoding of A, implementable in time T4, such

that
_ 34|

€ .

T 4k
Furthermore, suppose |b) be an s-qubit quantum state that can be prepared in time Tp.
Then we can prepare a state that is d-close to % with success probability (1) at a cost

of
Qmubg()1h+“ﬂ>

Proof. We first pre-amplify the unitary using Corollary 12 with some v > 2¢. We get a
(V2||Al|, @ + 1, ~)-block-encoding of A implemented at a cost of

e =ofi()

Now we invoke Lemma 13 with § = ﬁ% and the above unitary to prepare the state,

which has a time complexity of

O(k (T +Tp)) = <HAH log( )TA—I—/-sTb>
0

Lemma 15 (Robustness of state preparation). Let A be an s-qubit operator such that
its non-zero singular values lie in [||A||/k, ||Al|]. Suppose |b') is a quantum state that is
e/2k-close to |b) and |¢) is a quantum state that is £/2-close to A V') /||A0)||. Then we
have that |1) is e-close to A|b) /|| A|b)]|.

Proof. We know that
, €
_ <
i)~ 1] < =

and

Al
)~ T < 5
|~ i
For small enough ¢ < k, we can assume that ||A|b)|| ~ ||A|V)||. We can derive the final
error as

A |b) Alb) — A |b’> + A |b'>
- A -
H’>nAmu ) 1A
AW) AW — A
= |I|) — +
)= A T AT
§ A H HAW AW
S Y 1A
§+HMW6 )]
<3t Aw
cf.f
- 2 2
=¢
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A.1 Arithmetic with Block-Encoded Matrices

Lemma 17 (Linear Combination of Block Encoded Matrices). For each j € {0,...,m—1},
let Aj be an s-qubit operator, and y; € RT. Let U; be a (aj,aj,e;)-block-encoding of Aj;,
implemented in time Tj. Define the matriv A = 3 ,;y;A;, and the vector n € R™ s.i.
n; = yjoj. Let Uy be a n state-preparation unitary, implemented in time T,. Then we can
implement a

(Z yjog,max(a;) + s, > yjfj)

J J
block-encoding of A at a cost of (’)(Zj T + Tn)-

Proof. Let a = max;(a;)+s and a = 3, y;ja;. For each j € {0,...,m —1}, construct the
extended unitary U} by padding ancillas to Uy, i.e. U; = I4—s—a; ® U;. Note that Uj is
a (aj,a — s,g;)-block-encoding of A;. Let B; = ((0|" & I,)U;(|0)* ® I,) denote the top
left block of U; and UJ, and observe that ||A; — a;B;|| < ;. We also construct P — an 7
state-preparation unitary s.t. P[0) = >, /yja; |j) — by invoking Definition 16.

Consider the unitary W = (P' @ I,—1 ® L)(X; [5)(j| ©® Uj)(P ® I,y ® I;). This is a
(o, a, €)-block-encoding of A =37, y;A;, where € is computed as:

A = a((0]* @ L)W (|0)* @ L,)|| = Zyy — a0 @ L)W (|0)* ® I)

= Zyy —a((0* @ L) P )| P2 U))(10)" ® I)
7

= |2 w4j — ad> (0| PTIj}j| P[0) @ B;

= |5 (s — 01 P 3331 P10} B;)

J

Yo
= ; (Z/jAj - a( ]a])B])
<> yillAj — ;B

J

< Zyjaj =€
J

O

Lemma 21 (Tensor Product of Block Encoded Matrices). Let Uy and Uz be (o, a,e1)
and (B,b,e2)-block-encodings of A1 and As, s and t-qubit operators, implemented in time

Ty and Ty respectively. Define S := 117 1SWAPZI§7+Z Then, S(Uy ® Up)S' is an (afB,a +

b, aeg + Be1 + €1€2) block-encoding of A1 ® Az, implemented at a cost of O(Ty + Tb).

Proof. From the property of Kronecker products (A ® B)(C ® D) = (AC) ® (BD). For
je{1,2} let A; = (<0]®aj ® IS) U; (]0)@"” ® Is). Then it follows that

(O @ L™ en) (et (0™l e0)*al)=4od (56
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Therefore A; ® A, is block-encoded in U; ® U, as a non-principal block-encoding, and
we can use SWAP gates to move it to the principal block as follows.

S (|o>®a @I, |0)*" ® It> = T3, SWAP® i (|0>®“ ® I, |0)%° @ zt)
= o iswapily, suapet (10)°° ® L [0)*" @ 1)

= - {suapyty (10)° @ L1 00 @ L1 )

= ’0>®a+b ® Isyt
Similarly,

(<0|®a I, ® <0’®b ®It) gt — <0|®a+b ® Iy,

From Equation 56 we have

Aol = (0oL 0*al)s S e)sts (j0)* e L0 e §)
= (<Ol®a+b ® Is+t) S(U; @ Uy)ST (|O>®a+b ® Is+t>

Next, we look at the subnormalization and error terms.

HA1 ® Ay — afA; ® 1212H2 < H(OML +e1l,) ® (BAy + e2) — ad; ® ﬁfbHZ
= "QA1 ®Qegly + 6115 ® ,81212 +e1ls ® 62[2”2
<ocd i, +srf]

= aeg + fe1 + €169

where we have used || A1, < OZHAIHQ + 1 and H/LHQ < 1 and similarly for As.
L]
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