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Linear regression is a widely used technique to fit linear models and finds
widespread applications across different areas such as machine learning and
statistics. In most real-world scenarios, however, linear regression problems are
often ill-posed or the underlying model suffers from overfitting, leading to erro-
neous or trivial solutions. This is often dealt with by adding extra constraints,
known as regularization. In this paper, we use the frameworks of block-encoding
and quantum singular value transformation (QSVT) to design the first quantum
algorithms for quantum least squares with general `2-regularization. These in-
clude regularized versions of quantum ordinary least squares, quantum weighted
least squares, and quantum generalized least squares. Our quantum algorithms
substantially improve upon prior results on quantum ridge regression (polyno-
mial improvement in the condition number and an exponential improvement in
accuracy), which is a particular case of our result.

To this end, we assume approximate block-encodings of the underlying ma-
trices as input and use robust QSVT algorithms for various linear algebra oper-
ations. In particular, we develop a variable-time quantum algorithm for matrix
inversion using QSVT, where we use quantum singular value discrimination as a
subroutine instead of gapped phase estimation. This ensures that substantially
fewer ancilla qubits are required for this procedure than prior results. Owing to
the generality of the block-encoding framework, our algorithms are applicable
to a variety of input models and can also be seen as improved and generalized
versions of prior results on standard (non-regularized) quantum least squares
algorithms.
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1 Introduction
The problem of fitting a theoretical model to a large set of experimental data appears
across various fields ranging from the natural sciences to machine learning and statistics
[Mur12]. Linear regression is one of the most widely used procedures for achieving this.
By assuming that, for the underlying model, there exists a linear relationship between a
dependent variable and one or more explanatory variables, linear regression constructs the
best linear fit to the series of data points. Usually, it does so while minimizing the sum of
squared errors - known as the least squares method.

In other words, suppose that we are given N data points {(ai, bi)}Ni=1 where ∀i : ai ∈
Rd,∀i : bi ∈ R. The assumption is that each bi is linearly dependent on ai up to some
random noise of mean 0. Suppose A is the data matrix of dimension N×d, such that its ith

row is the vector ai and b ∈ RN such that b = (b1, · · · , bN )T . Then the procedure, known
as ordinary least squares, obtains a vector x ∈ Rd that minimizes the objective function
||Ax− b||22. This problem has a closed-form solution given by x = (ATA)−1AT b = A+b,
where A+ denotes the Moore-Penrose inverse of the matrix A. Thus computationally,
finding the best fit by linear regression reduces to finding the pseudoinverse of a matrix
that represents the data, a task that is expensive for classical machines for large data sets.

In practice, however, least squares regression runs into problems such as overfitting.
For instance, the solution might fit most data points, even those corresponding to random
noise. Furthermore, the linear regression problem may also be ill-posed, for instance, when
the number of variables exceeds the number of data points rendering it impossible to fit
the data. These issues come up frequently with linear regression models and result in
erroneous or trivial solutions. Furthermore, another frequent occurrence is that the data
matrix A has linearly dependent columns. In this scenario, the matrix ATA is not full
rank and therefore is not invertible.

Regularization is a widely used technique to remedy these problems, not just for linear
regression but for inverse problems, in general [EHN96]. In the context of linear regression,
broadly, this involves adding a penalty term to the objective function, which constrains
the solution of the regression problem. For instance, in the case of `2-regularization, the
objective is to obtain x that minimizes

‖Ax− b‖22 + λ‖Lx‖22 (1)

where L is an appropriately chosen penalty matrix (or regularization matrix) of dimension
N × d and λ > 0 is the regularization parameter, an appropriately chosen constant. This
regularization technique is known as general `2 -regularization or Tikhonov regularization in
the literature [Hem75, HH93, Bis95, GHO99, vW15]. It is a generalization of ridge regres-
sion which corresponds to the case when L is the identity matrix [HK00, Mar70, Vin78].
The closed-form solution of the general `2-regularized ordinary least squares problem is
given by

x =
(
ATA+ λLTL

)−1
AT b. (2)

A straightforward observation is that even when ATA is singular, a judicious choice of the
penalty matrix L can ensure that the effective condition number (ratio of the maximum
and the minimum non-zero singular values) of the overall matrix is finite and ATA+λLTL
is invertible.

In this paper, we develop quantum algorithms for linear regression with general `2-
regularization. If the optimal solution is x = (x1, · · · , xd)T , then our quantum algorithm
outputs a quantum state that is δ-close to |x〉 =

∑d
j=1 xj |j〉 /‖x‖, assuming access to the

matrices A,L, and the quantum state |b〉 via general quantum input models.
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In several practical scenarios, depending on the underlying theoretical model, general-
izations of the ordinary least squares (OLS) technique are more useful to fit the data. For
instance, certain samples may be of more importance (and therefore have more weight)
than the others, in which case weighted least squares (WLS) is preferred. Generalized
least squares (GLS) is used when the underlying samples obtained are correlated. These
techniques also suffer from the issues commonplace with OLS, warranting the need for
regularization [vW15]. Consequently, we also design algorithms for quantum WLS with
general `2-regularization and quantum GLS with general `2-regularization.

Organization of the paper: In the remainder of Section 1, we formally describe `2-
regularized versions of OLS, WLS, and GLS (Section 1.1), discuss prior and related work
(Section 1.2), and outline our contributions and results (Section 1.3). In Section 2, we
briefly outline the framework of block-encoding and quantum input models that are par-
ticular instances of it (Section 2.2). We also briefly introduce quantum singular value
transformation (QSVT) (Section 2.3) and variable time amplitude amplification (VTAA)
(Section 2.4). Following this, in Section 3, we develop several algorithmic primitives in-
volving arithmetic of block-encodings (Section 3.1), quantum singular value discrimination
(Section 3.2) and quantum linear algebra using QSVT (Section 3.3). These are the tech-
nical building blocks for designing our quantum regularized regression algorithms. Using
these algorithmic primitives, we design quantum algorithms for the quantum least squares
with `2-regularization in Section 4. Finally, we conclude by discussing some possible future
research directions in Section 5.

1.1 Linear regression with `2-regularization
Suppose we are given data points {(ai, bi)}Ni=1, where ∀i : ai ∈ Rd, ∀i : bi ∈ R such that
(ai, bi) ∼i.i.d D, i.e. they are sampled i.i.d. from some unknown distribution D, assumed
to be linear. We want to find a vector x ∈ Rd such that the inner product xTaj is a good
predictor for the target bj for some unknown aj . This can be done by minimizing the total
squared loss over the given data points,

LO :=
∑
j

(xTaj − bj)2, (3)

leading to the ordinary least squares (OLS) optimization problem. The task then is
to find x ∈ Rd that minimizes ‖Ax− b‖22, where A is the N × d data matrix such that
the ith row of A is ai, and the ith element of the vector b is bi. Assuming that ATA is
non-singular, the optimal x satisfies

x = (ATA)−1AT b = A+b, (4)

which corresponds to solving a linear system of equations.
Suppose that out of the samples present in the data, we have higher confidence in

some of them than others. In such a scenario, the ith observation can be assigned a weight
wi ∈ R. This leads to a generalization of the OLS problem to weighted least squares (WLS).
In order to obtain the best linear fit, the task is now to minimize the weighted version of
the loss

LW :=
∑
j

wj(xTaj − bj)2. (5)

As before, assuming ATWA is non-singular, the above loss function has the following
closed-form solution:

x = (ATWA)−1ATWb, (6)
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where W is a diagonal matrix with wi being the ith diagonal element.
There can arise scenarios where there exists some correlation between any two samples.

For generalized least squares (GLS), the presumed correlations between pairs of samples
are given in a symmetric, non-singular covariance matrix Ω. This objective is to find the
vector x that minimizes

LΩ :=
∑
i,j

(Ω−1)i,j(xTai − bi)(xTaj − bj). (7)

Similarly, the closed-form solution for GLS is given by

x = (ATΩ−1A)−1ATΩ−1b. (8)
As mentioned previously, in several practical scenarios, the linear regression problem

may be ill-posed or suffer from overfitting. Furthermore, the data may be such that some
of the columns of the matrix A are linearly dependent. This shrinks the rank of A, and
consequently of the matrix ATA, rendering it singular and, therefore non-invertible. Recall
that the closed-form solution of OLS exists only if ATA is non-singular, which is no longer
the case. Such scenarios arise even for WLS and GLS problems [vW15].

In such cases, one resorts to regularization to deal with them. Let L be the loss function
to be minimized for the underlying least squares problem (such as OLS, WLS, or GLS).
Then general `2-regularization (Tikhonov regularization) involves an additional penalty
term so that the objective now is to find the vector x ∈ Rd that minimizes

L+ λ‖Lx‖22. (9)

Here λ, known as the regularization parameter, is a positive constant that controls the size
of the vector x, while L is known as the penalty matrix (or regularization matrix) that
defines a (semi)norm on the solution through which the size is measured. The solution to
the Tikhonov regularization problem also has a closed-form solution. For example, in the
OLS problem, when L = LO, we have that

x = (ATA+ λLTL)−1AT b. (10)

It is worth noting that when L = I, the `2-regularized OLS problem is known as ridge
regression. For the unregularized OLS problem, the singular values of A, σj are mapped
to 1/σj . The penalty term due to `2-regularization, results in a shrinkage of the singular
values. This implies that even in the scenario where A has linearly dependent columns
(some σj = 0) and (ATA)−1 does not exist, the inverse (ATA+λLTL)−1 is well defined for
λ > 0 and any positive-definite L. Throughout this article, we refer to such an L (which
is positive definite) as a good regularizer . The penalty matrix L allows for penalizing each
regression parameter differently and leads to joint shrinkage among the elements of x. It
also determines the rate and direction of shrinkage. In the special case of ridge regression,
as L = I, the penalty shrinks each element of x equally along the unit vectors ej . Also
note that by definition, I is a good regularizer .

Closed-form expressions can also be obtained for the WLS and the GLS problem (L =
LW ,LΩ respectively), and finding the optimal solution x reduces to solving a linear system.
The quantum version of these algorithms output a quantum state that is ε-close |x〉 =∑
j xj |j〉 /‖x‖.
Throughout this work, while designing our quantum algorithms, we shall assume access

(via a block-encoding) to the matrices A, W , Ω, and L and knowledge of the parameter λ.
Classically, however, the regularization matrix L and the optimal parameter λ are obtained
via several heuristic techniques [HH93, GHO99, vW15].
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1.2 Prior work
Quantum algorithms for (unregularized) linear regression was first developed by Wiebe et
al. [WBL12], wherein the authors made use of the HHL algorithm for solving a linear
system of equations [HHL09]. Their algorithm assumes query access to a sparse matrix A
(sparse-access-model) and to a procedure to prepare |b〉 =

∑
i bi |i〉. They first prepare a

quantum state proportional to AT |b〉, and then use the HHL algorithm to apply the opera-
tor (ATA)−1 to it. Overall the algorithm runs in a time scaling as κ6

A (the condition number
of A) and inverse polynomial in the accuracy δ. Subsequent results have considered the
problem of obtaining classical outputs for linear regression. For instance, in Ref. [Wan17],
A+ is directly applied to the quantum state |b〉, followed by amplitude estimation to obtain
the entries of x. On the other hand, Ref. [SSP16] used the techniques of quantum principal
component analysis in [LMR14] to predict a new data point for the regression problem.
These algorithms also work in the sparse access model and run in a time that scales as
poly (κ, 1/δ). Kerenidis and Prakash [KP20] provided a quantum algorithm for the WLS
problem wherein they used a classical data structure to store the entries of A and W .
Furthermore, they assumed QRAM access to this data structure [Pra14, KP17] that would
allow the preparation of quantum states proportional to the entries of A and W efficiently.
They showed that in this input model (quantum data structure model), an iterative quan-
tum linear systems algorithm can prepare |x〉 in time Õ(µκ3/δ), where κ is the condition
number of the matrix AT

√
W while µ =

∥∥∥√WA
∥∥∥
F
. Chakraborty et al. [CGJ19] applied

the framework of block-encoding along with (controlled) Hamiltonian simulation of Low
and Chuang [LC19] to design improved quantum algorithms for solving linear systems.
Quantum algorithms developed in the block-encoding framework are applicable to a wide
variety of input models, including the sparse access model and the quantum data structure
model of [KP20]. They applied their quantum linear systems solver to develop quantum
algorithms for quantum weighted least squares and generalized least squares. Their quan-
tum algorithm for WLS has a complexity that is in Õ (ακpolylog(Nd/δ)), where α = s,
the sparsity of the matrix AT

√
W in the sparse access model while α =

∥∥∥√WA
∥∥∥
F
, for the

quantum data structure input model. For GLS, their quantum algorithm outputs |x〉 in
cost Õ (κAκΩ(αA + αΩκΩ)polylog(1/δ)), where κA and κΩ are the condition numbers of A
and Ω respectively while αA and αΩ are parameters that depend on how the matrices A
and Ω are accessed in the underlying input model.

While quantum linear regression algorithms have been designed and subsequently im-
proved over the years, quantum algorithms for regularized least squares have not been
developed extensively. Yu et al. [YGW21] developed a quantum algorithm for ridge
regression in the sparse access model using the LMR scheme [LMR14] for Hamiltonian
simulation and quantum phase estimation, which they then used to determine the opti-
mal value of the parameter λ. Their algorithm to output |x〉 has a cubic dependence on
both κ and 1/δ. They use this as a subroutine to determine a good value of λ. A few
other works [SX20, CYGL22] have considered the quantum ridge regression problem in the
sparse access model, all of which can be implemented with poly(κ, 1/δ) cost.

Recently, Chen and de Wolf designed quantum algorithms for lasso (`1-regularization)
and ridge regressions from the perspective of empirical loss minimization [CdW21]. For
both lasso and ridge, their quantum algorithms output a classical vector x̃ whose loss
(mean squared error) is δ-close to the minimum achievable loss. In this context, they
prove a quantum lower bound of Ω(d/δ) for ridge regression which indicates that in their
setting, the dependence on d cannot be improved on a quantum computer (the classical
lower bound is also linear in d and there exists a matching upper bound). Note that x̃ is not
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necessarily close to the optimal solution x of the corresponding least squares problem, even
though their respective loss values are. Moreover, their result (of outputting a classical
vector x̃) is incomparable to our objective of obtaining a quantum state encoding the
optimal solution to the regularized regression problem.

Finally, Gilyén et al. obtained a “dequantized” classical algorithm for ridge regression
assuming norm squared access to input data similar to the quantum data structure input
model [GST22]. Furthermore, similar to the quantum setting where the output is the
quantum state |x〉 =

∑
j xj |j〉 /‖x‖ instead of x itself, their algorithm obtains samples

from the distribution x2
j/‖x‖

2. For the regularization parameter λ = O (‖A‖‖A‖F ), the
running time of their algorithm is in Õ

(
κ12r3

A/δ
4), where rA is the rank of A. Their result

(and several prior results) does not have a polynomial dependence on the dimension of A
and therefore rules out the possibility of generic exponential quantum speedup (except in
δ) in the quantum data structure input model.

1.3 Our contributions
In this work, we design the first quantum algorithms for OLS, WLS, and GLS with general
`2-regularization. We use the Quantum Singular Value Transformation (QSVT) framework
introduced by Gilyén et al [GSLW19]. We assume that the relevant matrices are provided
as input in the block-encoding model, in which access to an input matrix A is given by
a unitary UA whose top-left block is (close to) A/α. The parameter α takes specific
values depending on the underlying input model. QSVT then allows us to implement
nearly arbitrary polynomial transformations to a block of a unitary matrix using a series
of parameterized, projector-controlled rotations (quantum signal processing [LC17b]).

More precisely, given approximate block-encodings of the data matrix A and the regu-
larizing matrix L, and a unitary procedure to prepare the state |b〉, our quantum algorithms
output a quantum state that is δ-close to |x〉, the quantum state proportional to the `2-
regularized ordinary least squares (or weighted least squares or generalized least squares
problem). We briefly summarize the query complexities of our results in Table 1.

For the OLS problem with general `2-regularization (Section 4.2, Theorem 32), we
design a quantum algorithm which given an (αA, aA, εA)-block-encoding of A (implemented
in cost TA), an (αL, aL, εL)-block-encoding of L (implemented in cost TL), a parameter
λ > 0, and a procedure to prepare |b〉 (in cost Tb), outputs a quantum state which is δ-close
to |x〉. The algorithm has a cost

O
(
κ log κ

((
αA +

√
λαL

‖A‖+
√
λ‖L‖

)
log

(
κ

δ

)
(TA + TL) + Tb

))

where κ can be thought of as a modified condition number, related to the effective condition
numbers of A and L. When L is a good regularizer, this is given by the expression

κ = κL

(
1 + ‖A‖√

λ‖L‖

)
,

Notice that κ is independent of κA, the condition number of the data matrix A, which
underscores the advantage of regularization. The parameters αA and αL take specific values
depending on the underlying input model. For the sparse access input model, αA = sA
and αL = sL, the respective sparsities of the matrices A and L. On the other hand for
the quantum data structure input model, αA = ‖A‖F and αL = ‖L‖F . Consequently, the
complexity of Quantum Ridge Regression can be obtained by substituting L = I in the
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above complexity as

O
(

log κ
(
αA√
λ

log
(
κ

δ

)
TA + κTb

))
where κ = 1 + ‖A‖/

√
λ, by noting that the block-encoding of I is trivial while the

norm and condition number of the identity matrix is one. For this problem of quan-
tum ridge regression, our quantum algorithms are substantially better than prior results
[SX20, YGW21, CYGL22], exhibiting a polynomial improvement in κ and an exponential
improvement in 1/δ.

For the `2-regularized GLS problem (Section 4, Theorem 42), we design a quantum
algorithm that along with approximate block-encodings of A and L, takes as input an
(αΩ, aΩ, εΩ)-lock-encoding of the matrix Ω (implementable at a cost of TΩ) to output a
state δ-close to |x〉 at a cost of

O
(
κ
√
κΩ log κ

((
αA
‖A‖

TA + αL
‖L‖

TL + αΩκΩ
‖Ω‖ TΩ

)
log3

(
κκΩ‖A‖‖L‖

δ‖Ω‖

)
+ Tb

))
In the above complexity, when L is a good regularizer, the modified condition number κ
is defined as

κ = κL

(
1 +

√
κΩ‖A‖√
λ‖Ω‖‖L‖

)
The WLS problem is a particular case of GLS, wherein the matrix Ω is diagonal.

However, we show that better complexities for the `2-regularized WLS problem can be
obtained if we assume QRAM access to the diagonal entries of W (Section 4, Theorem 39
and Theorem 40).

Table 1 summarizes the complexities of our algorithms for quantum linear regression
with general `2-regularization. For better exposition, here we assume that ‖A‖, ‖L‖, ‖Ω‖
and λ = Θ (1). For the general expression of the complexities, we refer the readers to
Section 4.

Problem Unregularized `2-Regularized

Quantum OLS Õ (αAκA log (1/δ)) Õ ((αA + αL)κL log (1/δ))

Quantum GLS Õ
(
(αA + αΩκΩ)κA

√
κΩ log3 (1/δ)

)
Õ
(
(αA + αL + αΩκΩ)κL

√
κΩ log3 (1/δ)

)

Table 1: Complexity of quantum linear regression algorithms with and without general
`2-regularization. All of these algorithms require only Θ(log κ) additional qubits.

In order to derive our results, we take advantage of the ability to efficiently perform
arithmetic operations on block-encoded matrices, as outlined in Section 3. Along with this,
we use QSVT to perform linear algebraic operations on block-encoded matrices. To this
end, adapt the results in Refs. [GSLW19, MRTC21] to our setting. One of our contribu-
tions is that we work with robust versions of many of these algorithms. In prior works,
QSVT is often applied to block-encoded matrices, assuming perfect block-encoding. For
the quantum algorithms in this paper, we rigorously obtain the precision ε required to
obtain a δ-approximation of the desired output state.

For instance, a key ingredient of our algorithm for regularized least squares is to make
use of QSVT to obtain A+, given an ε-approximate block-encoding of A. In order to obtain
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a (near) optimal dependence on the condition number of A by applying variable-time
amplitude amplification (VTAA) [Amb12], we recast the standard QSVT algorithm as a
variable stopping-time quantum algorithm. Using QSVT instead of controlled Hamiltonian
simulation ensures that the variable-time quantum procedure to prepare A+ |x〉 has a
slightly better running time (by a log factor) and considerably fewer additional qubits
than Refs. [CKS17, CGJ19].

Furthermore, for the variable time matrix inversion algorithm, a crucial requirement is
the application of the inversion procedure to the portion of the input state that is spanned
by singular values larger than a certain threshold. In order to achieve this, prior results have
made use of Gapped Phase Estimation (GPE), which is a simple variant of the standard
phase estimation procedure that decides whether the eigenvalue of a Hermitian operator is
above or below a certain threshold [Amb12, CKS17, CGJ19]. However, GPE can only be
applied to a Hermitian matrix and requires additional registers that store the estimates of
the phases, which are never used for variable-time amplitude amplification. In this work,
instead of GPE, we develop a robust version of quantum singular value discrimination
(QSVD) using QSVT, which can be directly applied to non-Hermitian matrices. This
algorithm decides whether some singular value of a matrix is above or below a certain
threshold without storing estimates of the singular values. This leads to a space-efficient
variable time quantum algorithm for matrix inversion by further reducing the number of
additional qubits required by a factor of O(log2(κ/δ)) as compared to prior results [CKS17,
CGJ19]. Consequently, this also implies that in our framework, quantum algorithms for
(unregularized) least squares (which are special cases of our result) have better complexities
than those of Ref. [CGJ19].

2 Preliminaries
This section lays down the notation, and introduces the quantum singular value transfor-
mation (QSVT) and block-encoding frameworks, which are used to design the algorithm
for quantum regression.

2.1 Notation
For a matrix A ∈ RN×d, Ai,. denotes the ith row of A, and ‖Ai,·‖ denotes the vector norm of
ATi,.. sAr and sAc denote the row and column sparsity of the matrix, which is the maximum
number of non-zero entries in any row and any column, respectively.

Singular Value Decomposition. The decomposition A = WΣV †, where W and V are
unitary and Σ is a diagonal matrix, represents the singular value decomposition (SVD) of
A. All matrices can be decomposed in this form. The diagonal entries of Σ, usually denoted
by σ(A) = {σj}, is the multiset of all singular values of A, which are real and non-negative.
σmax and σmin denote the maximum and minimum singular values of A. r(A) = rank(A)
is the number of non-zero singular values of A. The columns of W, V (denoted by {|wj〉}
and {|vj〉}) are the left and right singular vectors of A. Thus A =

∑r
j σj |wj〉 〈vj |. The

singular vectors of A can be computed as the positive square roots of the eigenvalues of
A†A (which is positive semi-definite and therefore has non-negative real eigenvalues.)

Effective Condition Number. κA denotes (an upper bound on) the effective condition
number of A, defined as the ratio of the maximum and minimum non-zero singular values
of A. Let σmax (A) be the largest singular value of A, and σmin (A) be the smallest singular
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value of A. Additionally, let σ̃min (A) be the smallest non-zero singular value of A. Then

κA ≥
σmax (A)
σ̃min (A) =

√√√√λmax(A†A)
λ̃min(A†A)

If A is full-rank, then σ̃min (A) = σmin (A), and κA becomes the condition number of
the matrix. In this text, unless stated otherwise, we always refer to κA as (an upper bound
on) effective condition number of a matrix, and not the true condition number.

Norm. Unless otherwise specified, ‖A‖ denotes the spectral norm of A, while ‖A‖F denotes
the Frobenius norm of A, defined as

‖A‖ := max
x 6=0

‖Ax‖
‖x‖

= σmax(A)

‖A‖F :=

√√√√ r∑
j=1

σ2
j

Unless otherwise specified, when A is assumed to be normalized, it is with respect to the
spectral norm.

Soft-O Complexity. Finally, we use f = Õ (g) to denote f = O(g · polylog(g)).

Controlled Unitaries. If U is a s-qubit unitary, then C-U is a (s+ 1)-qubit unitary defined
by

C-U = |0〉〈0| ⊗ Is + |1〉〈1| ⊗ U

Throughout this text whenever we state that the time taken to implement a unitary
UA is TA and the cost of an algorithm is O(nTA), we imply that the algorithm makes n
uses of the unitary UA. Thus, if the circuit depth of UA is TA, the circuit depth of our
algorithm is O(nTA).

2.2 Quantum Input Models
The complexities of quantum algorithms often depend on how the input data is accessed.
For instance, in quantum algorithms for linear algebra (involving matrix operations), it
is often assumed that there exists a black-box that returns the positions of the non-zero
entries of the underlying matrix when queried. The algorithmic running time is expressed
in terms of the number of queries made to this black-box. Such an input model, known as
the Sparse Access Model, helps design efficient quantum algorithms whenever the under-
lying matrices are sparse. Various other input models exist, and quantum algorithms are
typically designed and optimized for specific input models.

Kerenidis and Prakash [KP17, Section 5.1] introduced a different input model, known
as the quantum data structure model, which is more conducive for designing quantum ma-
chine learning algorithms. In this model, the input data (e.g: entries of matrices) arrive
online and are stored in a classical data structure (often referred to as the KP-tree in the
literature), which can be queried in superposition by using a QRAM. This facilitates effi-
ciently preparing quantum states corresponding to the rows of the underlying matrix, that
can then be used for performing several matrix operations. Subsequently, several quantum-
inspired classical algorithms have also been developed following the breakthrough result
of Tang [Tan19]. Such classical algorithms have the same underlying assumptions as the
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quantum algorithms designed in the data structure input model and are only polynomially
slower provided the underlying matrix is low rank.

In this work, we will consider the framework of block-encoding, wherein it is assumed
that the input matrix A (up to some sub-normalization) is stored in the left block of some
unitary. The advantage of the block-encoding framework, which was introduced in a series
of works [LC19, Definition 1], [CGJ19, Section 1], [GSLW19, Section 1.3], is that it can
be applied to a wide variety of input models. For instance, it can be shown that both the
sparse access input model as well as the quantum data structure input model are specific
instances of block-encoded matrices [CGJ19, Sections 2.2 and 2.4], [GSLW19, Section 5.2].
Here we formally define the framework of block-encoding and also express the sparse access
model as well as the quantum data structure model as block-encodings. We refer the reader
to [CGJ19, GSLW19] for proofs.

Definition 1 (Block Encoding, restated from [GSLW19], Definition 24). Suppose that A
is an s-qubit operator, α, ε ∈ R+ and a ∈ N, then we say that the (s+ a)-qubit unitary UA
is an (α, a, ε)-block-encoding of A, if∥∥∥A− α(〈0|⊗a ⊗ I)UA(|0〉⊗a ⊗ I)

∥∥∥ ≤ ε. (11)

Let |ψ〉 be an s-qubit quantum state. Then applying UA to |ψ〉 |0〉⊗a outputs a quantum
state that is ε

α -close to
A

α
|ψ〉 |0〉⊗a + |Φ⊥〉 ,

where
(
Is ⊗ |0〉〈0|⊗a

)
|Φ⊥〉 = 0. Equivalently, suppose Ã := α

(
〈0|⊗a ⊗ Is

)
UA

(
|0〉⊗a ⊗ Is

)
denotes the actual matrix that is block-encoded into UA, then

∥∥∥A− Ã∥∥∥ ≤ ε.
In the subsequent sections, we provide an outline of the quantum data structure model

and the sparse access model which are particular instances of the block encoding framework.

2.2.1 Quantum Data Structure Input Model

Kerenidis and Prakash introduced a quantum accessible classical data structure which
has proven to be quite useful for designing several quantum algorithms for linear algebra
[KP17]. The classical data structure stores entries of matrices or vectors and can be queried
in superposition using a QRAM (quantum random access memory). We directly state the
following theorem from therein.

Theorem 2 (Implementing quantum operators using an efficient data structure, [Pra14,
KP17]). Let A ∈ RN×d, and w be the number of non-zero entries of A. Then there exists a
data structure of size O

(
w log2 (dN)

)
that given the matrix elements (i, j, aij), stores them

at a cost of O(log (dN)) operations per element. Once all the non-zero entries of A have
been stored in the data structure, there exist quantum algorithms that are ε-approximations
to the following maps:

U : |i〉 |0〉 7→ 1
‖Ai,·‖

d∑
j=1

ai,j |i, j〉 = |ψi〉 ,

V : |0〉 |j〉 7→ 1
‖A‖F

N∑
i=1
‖Ai, .‖ |i, j〉 = |φj〉
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where ‖Ai,·‖ is the norm of the ith row of A and the second register of |ψi〉 is the quantum
state corresponding to the ith row of A. These operations can be applied at a cost of
O(polylog(Nd/ε)).

It was identified in Ref. [CGJ19] that if a matrix A is stored in this quantum accessible
data structure, there exists an efficiently implementable block-encoding of A. We restate
their result here.

Lemma 3 (Implementing block encodings from quantum data structures, [CGJ19], The-
orem 4). Let the entries of the matrix A ∈ RN×d be stored in a quantum accessible
data structure, then there exist unitaries UR, UL that can be implemented at a cost of
O(polylog(dN/ε)) such that U †RUL is a (‖A‖F , dlog (d+N)e, ε)-block-encoding of A.

Proof. The unitaries UR and UL can be implemented via U and V in the previous lemma.
Let UR = U and UL = V.SWAP. Then for s = dlog(d+N)e we have

UR : |i〉 |0s〉 → |ψi〉 ,

and
UL : |j〉 |0s〉 → |φj〉 ,

So we have that the top left block of U †RUL is

N∑
i=1

d∑
j=1
〈ψi|φj〉 |i, 0〉 〈j, 0|

Now

〈ψi|φj〉 =
d∑

k=1

N∑
`=1

aik
‖Ai,·‖

· ‖A`‖
‖A‖F

〈i, k|l, j〉︸ ︷︷ ︸
:=δi,l.δk,j

= aij
‖A‖F

.

Moreover since only ε-approximations of U and V can be implemented we have that U †RUL
is a (‖A‖F , dlog(n+ d)e, ε) block encoding of A implementable with the same cost as U
and V .

In Ref. [KP20] argued that in certain scenarios, storing the entries ofA(p), (A1−p)† might
be useful as compared to storing A, for some p ∈ [0, 1]. In such cases, the quantum data
structure is a (µp, dlog(N + d)e, ε) block encoding ofA, where µp(A) =

√
s2p(A).s2(1−p)(AT )

such that sp(A) := maxj ‖Aj,·‖qq. Throughout the work, whenever our results are expressed
in the quantum data structure input model, we shall state our complexity in terms of µA.
When the entries of A are directly stored in the data structure, µA = ‖A‖F . Although, we
will not state it explicitly each time, our results also hold when fractional powers of A are
stored in the database and simply substituting µA = µp(A), yields the required complexity.

2.2.2 Sparse Access Input Model

The sparse access input model considers that the input matrix A ∈ RN×d has row sparsity
sr and column sparsity sc. Furthermore, it assumes that the entries of A can be queried
via an oracle as
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OA : |i〉 |j〉 |0〉⊗b 7→ |i〉 |j〉 |aij〉 ∀i ∈ [N ], j ∈ [d],
and the indices of the non-zero elements of each row and column can be queried via

the following oracles:

Or : |i〉 |j〉 7→ |i〉 |rij〉 ∀i ∈ [N ], k ∈ [sr],
Oc : |i〉 |j〉 7→ |cij〉 |j〉 ∀i ∈ [d], k ∈ [sc]

where rij is the jth non-zero entry of the ith row of A and cij is the ith non-zero entry of
the jth column of A. Gilyén et al. [GSLW19] showed that a block encoding of a sparse A
can be efficiently prepared by using these three oracles. We restate their lemma below.

Lemma 4 (Constructing a block-encoding from sparse-access to matrices, [GSLW18],
Lemma 48). Let A ∈ RN×d be an sr, sc row, column sparse matrix given as a sparse
access input. Then for all ε ∈ (0, 1), we can implement a (√scsr, polylog(Nd/ε), ε)-block-
encoding of A with O(1) queries to Or, Oc, OA and polylog(Nd/ε) elementary quantum
gates.

Throughout the paper, we shall assume input matrices are accessible via approximate
block-encodings. This also allows us to write down the complexities of our quantum al-
gorithms in this general framework. Additionally, we state the complexities in both the
sparse access input model as well as the quantum accessible data structure input model as
particular cases.

2.3 Quantum Singular Value Transformation
In a seminal work, Gilyén et al. presented a framework to apply an arbitrary polynomial
function to the singular values of a matrix, known as Quantum Singular Value Transforma-
tion (QSVT) [GSLW19]. QSVT is quite general: many quantum algorithms can be recast
to this framework, and for several problems, better quantum algorithms can be obtained
[GSLW19, MRTC21]. In particular, QSVT has been extremely useful in obtaining optimal
quantum algorithms for linear algebra. For instance, using QSVT, given the block-encoding
of a matrix A, one could obtain A−c with c ∈ [0,∞) with optimal complexity and by us-
ing fewer additional qubits than prior art. This section briefly describes this framework,
which is a generalization of Quantum Signal Processing (QSP) [LC19, Section 2], [LC17b,
Theorem 2], [LYC16]. The reader may refer to [MRTC21] for a more pedagogical overview
of these techniques.

Let us begin by discussing the framework of Quantum Signal Processing. QSP is a
quantum algorithm to apply a d-degree bounded polynomial transformation with parity
d mod 2 to an arbitrary quantum subsystem, using a quantum circuit UΦ consisting of
only controlled single qubit rotations. This is achieved by interleaving a signal rotation
operator W (which is an x-rotation by some fixed angle θ) and a signal processing operator
Sφ (which is a z-rotation by a variable angle φ ∈ [0, 2π]). In this formulation, the signal
rotation operator is defined as

W (x) :=
(

x i
√

1− x2

i
√

1− x2 x

)
, (12)

which is an x-rotation by angle θ = −2 arccos(x), and the signal processing operator is
defined as

Sφ := eiφZ , (13)
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which is a z-rotation by an angle −2φ. Interestingly, sandwiching them together for
some Φ := (φ0, φ1, . . . φd) ∈ Rd+1, as shown in Equation 14, gives us a matrix whose
elements are polynomial transformations of x,

UΦ := eiφ0Z
j=d∏
j=1

(
W (x)eiφjZ

)
(14)

=
(

P (x) iQ(x)
√

1− x2

iQ∗(x)
√

1− x2 P ∗(x)

)
, (15)

such that

1. degP ≤ d; degQ ≤ d− 1,

2. P (x) has a parity d mod 2,

3. |P (x)|2 + (1− x2)|Q(x)|2 = 1 ∀x ∈ [−1, 1].

Following the application of the quantum circuit UΦ for an appropriate Φ, one can
project into the top left block of UΦ to recover the polynomial 〈0|UΦ |0〉 = P (x). Project-
ing to other basis allows the ability to perform more interesting polynomial transforma-
tions, which can be linear combinations of P (x), Q(x), and their complex conjugates. For
example, projecting to {|+〉 , |−〉} basis gives us

〈+|UΦ |+〉 = <(P (x)) + i<(Q(x))
√

1− x2. (16)
Quantum Signal Processing can be formally stated as follows.

Theorem 5 (Quantum Signal Processing, Corollary 8 from [GSLW19]). Let P ∈ C[x] be
a polynomial of degree d ≥ 2, such that

• P has parity-(d mod 2),

• ∀x ∈ [−1, 1] : |P (x)| ≤ 1,

• ∀x ∈ (−∞,−1] ∪ [1,∞) : |P (x)| ≥ 1,

• if d is even, then ∀x ∈ R : P (ix)P ∗(ix) ≥ 1.

Then there exists a Φ ∈ Rd such that
d∏
j=1

(
eiφjσzW (x)

)
=
(
P (x) ·
· ·

)
. (17)

Thus, QSP allows us to implement any polynomial P (x) that satisfies the aforemen-
tioned requirements. Throughout this article, we refer to any such polynomial P (x) as a
QSP polynomial. Quantum Singular Value Transformation is a natural generalization of
this procedure. It allows us to apply a QSP polynomial transformation to each singular
value of an arbitrary block of a unitary matrix. In addition to this generalization, QSVT
relies on the observation that several functions can be well-approximated by QSP poly-
nomials. Thus, through QSVT one can transform each singular value of a block-encoded
matrix by any function that can be approximated by a QSP polynomial. Since several lin-
ear algebra problems boil down to applying specific transformations to the singular values
of a matrix, QSVT is particularly useful for developing fast algorithms for quantum linear
algebra. Next, we introduce QSVT formally via the following theorem.
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Theorem 6 (Quantum Singular Value Transformation [GSLW18], Section 3.2). Suppose
A ∈ RN×d is a matrix with singular value decomposition A =

∑dmin
j=1 σj |vj〉 〈wj |, where

dmin = min{N, d} and |vj〉 (|wj〉) is the left (right) singular vector with singular value σj.
Furthermore, let UA be a unitary such that A = Π̃UAΠ, where Π and Π̃ are orthogonal
projectors. Then, for any QSP polynomial P (x) of degree n, there exists a vector Φ =
(φ1, φ2, · · ·φn) ∈ Rn and a unitary

UΦ =

e
iφ1(2Π̃−I)UA

[∏(n−1)/2
k=1 eiφ2k(2Π̃−I)U †Ae

iφ2k+1(2Π̃−I)UA
]
, n is odd[∏n/2

k=1 e
iφ2k−1(2Π̃−I)U †Ae

iφ2k(2Π̃−I)UA
]
, n is even,

(18)

such that

PSV (A) =
{

Π̃UΦΠ, n is odd
ΠUΦΠ, n is even,

(19)

where PSV (A) is the polynomial transformation of the matrix A defined as

PSV (A) :=
{∑

j P (σj) |vj〉 〈wj | , P is odd∑
j P (σj) |wj〉 〈wj | , P is even.

(20)

Theorem 6 tells us that for any QSP polynomial P of degree n, we can implement
PSV (A) using one ancilla qubit, Θ(n) applications of UA, U

†
A and controlled reflections

I − 2Π and I − 2Π̃. Furthermore, if in some well-defined interval, some function f(x) is
well approximated by an n-degree QSP polynomial P (x), then Theorem 6 also allows us
to implement a transformation that approximates f(A), where

f(A) :=
{∑

j f(σj) |vj〉 〈wj | , P is odd∑
j f(σj) |wj〉 〈wj | , P is even.

(21)

The following theorem from Ref. [GSLW18] deals with the robustness of the QSVT proce-
dure, i.e. how errors propagate in QSVT. In particular, for two matrices A and Ã, it shows
how close their polynomial transformations (PSV (A) and PSV (Ã), respectively) are, as a
function of the distance between A and Ã.

Lemma 7 (Robustness of Quantum Singular Value Transformation, [GSLW18], Lemma 23).
Let P ∈ C[x] be a QSP polynomial of degree n. Let A, Ã ∈ CN×d be matrices of spectral
norm at most 1, such that ∥∥∥A− Ã∥∥∥+

∥∥∥∥∥A+ Ã

2

∥∥∥∥∥
2

≤ 1.

Then, ∥∥∥PSV (A)− PSV (Ã)
∥∥∥ ≤ n√√√√ 2

1−
∥∥∥A+Ã

2

∥∥∥2

∥∥∥A− Ã∥∥∥.
We will apply this theorem to develop a robust version of QSVT. More precisely, in order

to implement QSVT, we require access to a unitary UA, which is a block-encoding of some
matrix A. This block-encoding, in most practical scenarios, is not perfect: we only have
access to a ε-approximate block-encoding of A. If we want an δ-accurate implementation
of PSV (A), how precise should the block-encoding of A be? Such a robustness analysis has
been absent from prior work involving QSVT and will allow us to develop robust versions of
a number of quantum algorithms in subsequent sections. The following theorem determines
the precision ε required in the block-encoding of A in terms of n, the degree of the QSP
polynomial that we wish to implement and δ, the accuracy of PSV (A).
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Theorem 8 (Robust QSVT). Let P ∈ C[x] be a QSP polynomial of degree n ≥ 2.
Let δ ∈ [0, 1] be the precision parameter. Let U be an (α, a, ε)-block-encoding of matrix
A ∈ CN×d satisfying ‖A‖ ≤ α/2, implemented in cost T for some ε ≤ αδ/2n. Then we
can construct a (1, a+ 1, δ)-block-encoding of P (A/α) in cost O(nT ).

Proof. Let Ã be the encoded block of U , then
∥∥∥A− Ã∥∥∥ ≤ ε. Applying QSVT on U with

the polynomial P , we get a block-encoding for P (Ã/α), with O(n) uses of U,U †, and as
many multiply-controlled NOT gates. Observe that

∥∥∥Aα − Ã
α

∥∥∥ ≤ ε
α ≤

δ
2n ≤

1
4 , and,

∥∥∥∥∥∥
A
α + Ã

α

2

∥∥∥∥∥∥
2

=
∥∥∥∥∥Aα + Ã−A

2α

∥∥∥∥∥
2

≤

‖A‖
α

+

∥∥∥Ã−A∥∥∥
2α

2

≤
(1

2 + 1
8

)2
≤ 1

2

Therefore the error in the final block-encoding is given by invoking Lemma 7 with matrices
A/α, Ã/α: ∥∥∥∥∥P

(
A

α

)
− P

(
Ã

α

)∥∥∥∥∥ ≤ n
√

2
1− 1

2

ε

α
= 2nε

α
≤ δ.

In Section 3, we will make use of Theorem 8, to develop robust quantum algorithms for
singular value discrimination, variable-time matrix inversion, positive and negative powers
of matrices. Subsequently, in Sec. 4, we shall combine algorithmic primitives to design
robust quantum regularized least squares algorithms.

2.4 Variable Time Amplitude Amplification
Ambainis [Amb12] defined the notion of a variable-stopping-time quantum algorithm and
formulated the technique of Variable Time Amplitude Amplification (VTAA), a tool that
can be used to amplify the success probability of a variable-stopping-time quantum algo-
rithm to a constant by taking advantage of the fact that computation on some parts of an
algorithm can complete earlier than on other parts. The key idea here is to look at a quan-
tum algorithm A acting on a state |ψ〉 as a combination of m quantum sub-algorithms
A = Am · Am−1 · . . .A1, each acting on |ψ〉 conditioned on some ancilla flag being set.
Formally, a variable stopping time algorithm is defined as follows

Definition 9 (Variable-stopping-time Algorithm, [Amb12]). A quantum algorithm A act-
ing on H that can be written as m quantum sub-algorithms, A = Am · Am−1 · . . .A1 is
called a variable stopping time algorithm if H = HC ⊗ HA, where HC = ⊗mi=1HCi with
HCi = span(|0〉 , |1〉), and each unitary Aj acts on HCj ⊗HA controlled on the first j − 1
qubits |0〉⊗j−1 ∈ ⊗j−1

i=1HCi being in the all zero state.

Here HCi is a single qubit clock register. In VTAA, HA has a flag space consisting of a
single qubit to indicate success, HA = HF ⊗HW . Here HF = Span(|g〉 , |b〉) flags the good
and bad parts of the run. Furthermore, for 1 ≤ i ≤ m, define the stopping times ti such
that t1 < t2 < · · · tm = Tmax, such that the algorithm AjAj−1 · · · A1 having (gate/query)
complexity ti halts with probability

pj =
∥∥∥ΠCjAjAj−1 · · · A1 |0〉H

∥∥∥2
,
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where |0〉H ∈ H is the all zero quantum state and ΠCj is the projector onto |1〉 in HCj .
From this one can define the average stopping time of the algorithm A defined as

‖T‖2 =

√√√√ m∑
j=1

pjt2j .

For a variable stopping time algorithm if the average stopping time ‖T‖2 is less than the
maximum stopping time Tmax, VTAA can amplify the success probability (psucc) much
faster than standard amplitude amplification. In this framework, the success probability
of A is given by

psucc = ‖ΠFAmAm−1 · · · A1 |0〉H‖
2

While standard amplitude amplification requires time scaling as O
(
Tmax/

√
psucc

)
, the com-

plexity of VTAA is more involved. Following [CGJ19], we define the complexity of VTAA
as follows.

Lemma 10 (Efficient variable time amplitude amplification [CGJ18], Theorem 23). Let
U be a state preparation unitary such that U |0〉⊗k = √pprep |0〉 |ψ0〉 +

√
1− pprep |1〉 |ψ1〉

that has a query complexity TU . And let A = AmAm−1 · · · A1 be a variable stopping
time quantum algorithm that we want to apply to the state |ψ0〉, with the following known
bounds: pprep ≥ p′prep and psucc ≥ p′succ. Define T ′max := 2Tmax/t1 and

Q :=
(
Tmax + TU + k

√
pprep

)√
log (T ′max) +

(
‖T‖2 + TU+k√

pprep

)
log (T ′max)

√
psucc

.

Then with success probability ≥ 1 − δ, we can create a variable-stopping time algorithm
A′ that prepares the state a |0〉A′ |ψ0〉 +

√
1− a2 |1〉 |ψgarbage〉, such that a = Θ(1) is a

constant and A′ has the complexity O(Q).

One cannot simply replace standard amplitude amplification with VTAA to boost
the success probability of a quantum algorithm. A crucial task would be to recast the
underlying algorithm in the VTAA framework. We will be applying VTAA to the quantum
algorithm for matrix inversion by QSVT. So, first of all, in order to apply VTAA to the
algorithm must be first recast into a variable-time stopping algorithm so that VTAA can
be applied.

Originally, Ambainis [Amb12] used VTAA to improve the running time of the HHL al-
gorithm from O

(
κ2 logN

)
to O

(
κ log3 κ logN

)
. Childs et al. [CKS17] designed a quantum

linear systems algorithm with a polylogarithmic dependence on the accuracy. Addition-
ally, they recast their algorithm into a framework where VTAA could be applied to obtain
a linear dependence on κ. Later Chakraborty et al. [CGJ19] modified Ambainis’ VTAA
algorithm to perform variable time amplitude estimation.

In this work, to design quantum algorithms for `2-regularized linear regression, we use
a quantum algorithm for matrix inversion by QSVT. We recast this algorithm in the frame-
work of VTAA to achieve nearly linear dependence in κ (the effective condition number
of the matrix to be inverted). Using QSVT instead of controlled Hamiltonian simulation
improves the complexity of the overall matrix inversion algorithm (QSVT and VTAA) by
a log factor. It also reduces the number of additional qubits substantially. Furthermore,
we replace a gapped quantum phase estimation procedure with a more efficient quantum
singular value discrimination algorithm using QSVT. This further reduces the number of
additional qubits by O(log2(κ/δ)) than in Refs. [CKS17, CGJ19], where κ is the condition
number of the underlying matrix and δ is the desired accuracy. The details of the variable
stopping time quantum algorithm for matrix inversion by QSVT are laid out in Section 3.3.
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3 Algorithmic Primitives
This section introduces the building blocks of our quantum algorithms for quantum lin-
ear regression with general `2-regularization. As mentioned previously, we work in the
block-encoding framework. We develop robust quantum algorithms for arithmetic opera-
tions, inversion, and positive and negative powers of matrices using quantum singular value
transformation, assuming we have access to approximate block-encodings of these matri-
ces. While some of these results were previously derived assuming perfect block-encodings
[GSLW19, CGJ19], we calculate the precision required in the input block-encodings to
output a block-encoding or quantum state arbitrarily close to the target.

Given a (α, a, ε)-block-encoding of a matrix A, we can efficiently amplify the sub-
normalization factor from α to a constant and obtain an amplified block-encoding of
A. For our quantum algorithms in Sec. 4, we show working with pre-amplified block-
encodings often yields better complexities. We state the following lemma which was proven
in Ref. [LC17a]:

Lemma 11 (Uniform Block Amplification of Contractions, [LC17a]). Let A ∈ RN×d such
that ‖A‖ ≤ 1 If α ≥ 1 and U is a (α, a, ε)-block-encoding of A that can be implemented at
a cost of TU , then there is a (

√
2, a+1, ε+γ)-block-encoding of A that can be implemented

at a cost of O(αTU log (1/γ)).

Corollary 12 (Uniform Block Amplification). Let A ∈ RN×d and δ ∈ (0, 1]. Suppose
U is a (α, a, ε)-block-encoding of A, such that ε ≤ δ

2 , that can be implemented at a cost
of TU . Then a (

√
2‖A‖, a + 1, δ)-block-encoding of A can be implemented at a cost of

O
(
αTU
‖A‖ log (‖A‖/δ)

)
.

We now obtain the complexity of applying a block-encoded matrix to a quantum state,
which is a generalization of a lemma proven in Ref. [CGJ19].

Lemma 13 (Applying a Block-encoded Matrix on a Quantum State). Let A be an s-qubit
operator such that its non-zero singular values lie in [‖A‖/κ, ‖A‖]. Also let δ ∈ (0, 1), and
UA be an (α, a, ε)-block-encoding of A, implementable in time TA, such that

ε ≤ δ‖A‖
2κ .

Furthermore, suppose |b〉 be an s-qubit quantum state, prepared in time Tb. Then we can
prepare a state that is δ-close to A|b〉

‖A|b〉‖ with success probability Ω (1) at a cost of

O
(
ακ

‖A‖
(TA + Tb)

)

Corollary 14 (Applying a pre-amplified Block-encoded Matrix on a Quantum State). Let
A be an s-qubit operator such that its non-zero singular values lie in [‖A‖/κ, ‖A‖]. Also
let δ ∈ (0, 1), and UA be an (α, a, ε)-block-encoding of A, implementable in time TA, such
that

ε ≤ δ‖A‖
4κ .

Furthermore, suppose |b〉 be an s-qubit quantum state that can be prepared in time Tb.
Then we can prepare a state that is δ-close to A|b〉

‖A|b〉‖ with success probability Ω (1) at a cost
of

O
(
ακ

‖A‖
log

(
κ

δ

)
TA + κTb

)
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Now, it may happen that Ub prepares a quantum state that is only ε-close to the desired
state |b〉. In such cases, we have the following lemma

Lemma 15 (Robustness of state preparation). Let A be an s-qubit operator such that
its non-zero singular values lie in [‖A‖/κ, ‖A‖]. Suppose |b′〉 is a quantum state that is
ε/2κ-close to |b〉 and |ψ〉 is a quantum state that is ε/2-close to A |b′〉 /‖A |b′〉‖. Then we
have that |ψ〉 is ε-close to A |b〉 /‖A |b〉‖.

The proofs for Corollary 12, Lemma 13, Corollary 14, and Lemma 15 can be found in
Appendix A.

3.1 Arithmetic with Block-Encoded Matrices
The block-encoding framework embeds a matrix on the top left block of a larger unitary
U . It has been demonstrated that this framework allows us to obtain sums, products,
linear combinations of block-encoded matrices. This is particularly useful for solving linear
algebra problems in general. Here, we state some of the arithmetic operations on block-
encoded matrices that we shall be using in order to design the quantum algorithms of
Section 4 and tailor existing results to our requirements.

First we prove a slightly more general form of linear combination of unitaries in the
block-encoding framework, presented in [GSLW19]. To do this we assume that we are
given optimal state preparation pairs, defined as follows.

Definition 16 (Optimal State Preparation Unitary). Let m ∈ Z+, and s = dlogme. Let
η ∈ Rm+ . Then we call a s-qubit unitary P a η state-preparation unitary if

P |0〉 = 1∑
j ηj

∑
j

√
ηj |j〉

Lemma 17 (Linear Combination of Block Encoded Matrices). For each j ∈ {0, . . . ,m−1},
let Aj be an s-qubit operator, and yj ∈ R+. Let Uj be a (αj , aj , εj)-block-encoding of Aj,
implemented in time Tj. Define the matrix A =

∑
j yjAj, and the vector η ∈ Rm s.t.

ηj = yjαj. Let Uη be a η state-preparation unitary, implemented in time Tη. Then we can
implement a ∑

j

yjαj ,max
j

(aj) + s,
∑
j

yjεj


block-encoding of A at a cost of O

(∑
j Tj + Tη

)
.

The proof is similar to the one in Ref. [GSLW19], with some improvements to the
bounds. The detailed proof can be found in Appendix A. We now specialize the above
lemma for the case where we need a linear combination of just two unitaries. This is the
case used in this work, and we obtain a better error scaling for this by giving an explicit
state preparation unitary.

Corollary 18 (Linear Combination of Two Block Encoded Matrices). For j ∈ {0, 1},
let Aj be an s-qubit operator and yj ∈ R+. Let Uj be a (αj , aj , εj)-block-encoding of Aj,
implemented in time Tj. Then we can implement a (y0α0 + y1α1, 1 + max(a0, a1), y0ε0 +
y1ε1) encoding of y0A0 + y1A1 in time O(T0 + T1).
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Proof. Let α = y0α0 + y1α1 and P = 1√
α

(√
y0α0 −√y1α1√
y1α1

√
y0α0

)
. By Definition 16, P is a

{y0α0, y1α1} state-preparation-unitary. Invoking Lemma 17 with P , we get the required
unitary.

Given block-encodings of two matrices A and B, it is easy to obtain a block-encoding
of AB.

Lemma 19 (Product of Block Encodings, [GSLW18], Lemma 53). If UA is an (α, a, δ)-
block-encoding of an s-qubit operator A implemented in time TA, and UB is a (β, b, ε)-block-
encoding of an s-qubit operator B implemented in time TB, then (I⊗b⊗UA)(I⊗a⊗UB) is
an (αβ, a+ b, αε+ βδ)-block-encoding of AB implemented at a cost of O(TA + TB).

Directly applying Lemma 19 results in a block-encoding of AB
αβ . If α and β are large,

then the sub-normalization factor αβ might incur an undesirable overhead to the cost of
the algorithm that uses it. In many cases, the complexity of obtaining products of block-
encodings can be improved if we first amplify the block-encodings (using Lemma 12) and
then apply Lemma 19. We prove the following lemma:

Lemma 20 (Product of Amplified Block-Encodings). Let δ ∈ (0, 1]. If UA is an (αA, aA, εA)-
block-encoding of an s-qubit operator A implemented in time TA, and UB is a (αB, aB, εB)-
block-encoding of an s-qubit operator B implemented in time TB, such that εA ≤ δ

4
√

2‖B‖
and εB ≤ δ

4
√

2‖A‖ . Then we can implement a (2‖A‖‖B‖, aA + aB + 2, δ)-block-encoding of
AB implemented at a cost of

O
((

αA
‖A‖

TA + αB
‖B‖

TB

)
log

(‖A‖‖B‖
δ

))
.

Proof. Using Corollary 12 for some δA ≥ 2εA we get a (
√

2‖A‖, aA+1, δA)-block-encoding
of A at a cost of

O
(
αATA
‖A‖

log (‖A‖/δA)
)
.

Similarly for some δB ≥ 2εB we get a (
√

2‖B‖, aB + 1, δB)-block-encoding of B at a cost
of

O
(
αBTB
‖B‖

log (‖B‖/δB)
)
.

Now using Lemma 19 we get a (2, aA + aB + 2,
√

2 (‖A‖δB + ‖B‖δA))-block-encoding of
AB. We can choose δA = δ

2
√

2‖B‖ and δB = δ
2
√

2‖A‖ which bounds the final block-encoding
error by δ.

Observe that we have assumed that A and B are s-qubit operators. For any two
matrices of dimension N × d and d×K, such that N, d,K ≤ 2s, we can always pad them
with rows and columns of zero entries and convert them to s-qubit operators. Thus, in
the scenario where A and B are not s-qubit operators, one can consider block encodings
of padded versions of these matrices. Note that this does not affect the operations on the
sub-matrix blocks encoding A and B. Thus, the above results can be used to perform
block-encoded matrix products for arbitrary (compatible) matrices.

Next we show how to find the block encoding of tensor product of matrices from their
block encodings. This procedure will be useful in creating the dilated matrices required
for regularization. The proof can be found in Appendix A.
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Lemma 21 (Tensor Product of Block Encoded Matrices). Let U1 and U2 be (α, a, ε1)
and (β, b, ε2)-block-encodings of A1 and A2, s and t-qubit operators, implemented in time
T1 and T2 respectively. Define S := Πs

i=1SWAPa+i
a+b+i. Then, S(U1 ⊗ U2)S† is an (αβ, a +

b, αε2 + βε1 + ε1ε2) block-encoding of A1 ⊗A2, implemented at a cost of O(T1 + T2).

We will now use Lemma 21 to augment one matrix into another, given their approximate
block-encodings.

Lemma 22 (Block-encoding of augmented matrix). If UA is an (αA, aA, εA)-block encod-
ing of an s-qubit operator A that can be implemented in time TA and UB is an (αB, aB, εB)-
block encoding of an s-qubit operator B that can be implemented in time TB, then we an
implement an (αA + αB,max(aA, aB) + 2, εA + εB)-block-encoding of

AB =
(
A 0
B 0

)

at a cost of O(TA + TB).

Proof. Let MA =
(

1 0
0 0

)
. Then the SWAP gate is a (1, 1, 0) block encoding of MA.

By Lemma 21, we can implement U ′A, an (αA, aA + 1, εA)-block-encoding of their ten-

sor product MA ⊗ A =
(
A 0
0 0

)
at a cost of O(TA). Similarly, Let MB =

(
0 0
1 0

)
.

Then (I ⊗ X) · SWAP is a (1, 1, 0)-block-encoding of MB. Similarly Lemma 21, we can

implement U ′B, an (αB, aB + 1, εB)-block-encoding of MB ⊗ B =
(

0 0
B 0

)
at a cost of

O(TB). We add them by using Corollary 18 on U ′A and U ′B, to implement UAB , an

(αA + αB, 2 + max(aA, aB), εA + εB)-block-encoding of AB =
(
A 0
B 0

)
. This can be im-

plemented at a cost of O(TA + TB).

3.2 Robust Quantum Singular Value Discrimination
The problem of deciding whether the eigenvalues of a Hamiltonian lie above or below a
certain threshold, known as eigenvalue discrimination, finds widespread applications. For
instance, the problem of determining whether the ground energy of a generic local Hamil-
tonian is < λa or > λb is known to be QMA-Complete [KKR06]. Nevertheless, quantum
eigenvalue discrimination has been useful in preparing ground states of Hamiltonians. Gen-
erally, a variant of quantum phase estimation, which effectively performs a projection onto
the eigenbasis of the underlying Hamiltonian, is used to perform eigenvalue discrimination
[GTC19]. Recently, it has been shown that QSVT can be used to approximate a projection
onto the eigenspace of an operator by implementing a polynomial approximation of the
sign function [LT20a]. This was then used to design improved quantum algorithms for
ground state preparation.

In our work, we design a more general primitive, known as Quantum Singular Value
Discrimination (QSVD). Instead of eigenvalues, the algorithm distinguishes whether a
singular value σ is ≤ σa or ≥ σb. This is particularly useful when the block-encoded
matrix is not necessarily Hermitian and hence, may not have well-defined eigenvalues. We
use this procedure to develop a more space-efficient variable stopping time matrix inversion
algorithm in Section 3.3. Owing to the widespread use of singular values in a plethora of
fields, we believe that our QSVD procedure is of independent interest.
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Let us define the sign function sign : R→ R as follows:

sign(x) =


−1 x < 0
0 x = 0
1 x > 0.

(22)

Given a threshold singular value c, Low and Chuang [LC17a] showed that there exists a
polynomial approximation to sign(c− x) (based on its approximation of the erf function).
We use the result of Ref. [MRTC21], where such a polynomial of even parity was considered.
This is crucial, as for even polynomials, QSVT maps right (left) singular vectors to right
(left) singular vectors, which enables us to use the polynomial in [MRTC21] for singular
value discrimination.

Lemma 23 (Polynomial approximation to the sign function [LC17a, Low17, MRTC21]).
For any ε,∆, c ∈ (0, 1), there exists an efficiently computable even polynomial Pε,∆,c(x) of
degree l = O

(
1
∆ log(1/ε)

)
such that

1. ∀x ∈ [0, 1] :
∣∣Pε,∆,c(x)

∣∣ ≤ 1

2. ∀x ∈ [0, 1] \
(
c− ∆

2 , c+ ∆
2

)
:
∣∣Pε,∆,c(x)− sign(c− x)

∣∣ ≤ ε
Therefore, given a matrix A with singular values between [0, 1], we can use QSVT

to implement Pε,∆,c(A) which correctly distinguishes between singular values of A whose
value is less than c−∆/2 and those whose value is greater than c+∆/2. For our purposes,
we shall consider that we are given UA, which is an (α, a, ε) block-encoding of a matrix A.
Our goal would be to distinguish whether a certain singular value σ satisfies 0 ≤ σ ≤ ϕ
or 2ϕ ≤ σ ≤ 1. Since UA (approximately) implements A/α, the task can be rephrased as
distinguishing whether a singular value of A/α is in [0, ϕ/α] or in [2ϕ/α, 1]. For this, we
develop a robust version of quantum singular value discrimination (QSV D(φ, δ)), which
indicates the precision ε required to commit an error that is at most δ.

Theorem 24 (Quantum Singular Value Discrimination using QSVT). Suppose A ∈
CN×N is an s-qubit operator (where N = 2s) with singular value decomposition A =∑
j∈[N ] σj |uj〉〈vj | such that all σj lie in the range [0, 1]. Let ϕ ∈

(
0, 1

2

)
and δ ∈ (0, 1] be

some parameters. Suppose that for some α ≥ 2 and ε satisfying

ε = o

(
δϕ

log(1/δ)

)
we have access to UA, an (α, a, ε)-block-encoding of A implemented in cost TA. Then there
exists a quantum algorithm QSV D(ϕ, δ) which implements a (1, a + 1, δ)-block-encoding
of some (s + 1)-qubit operator D ∈ C2N×2N satisfying the following constraints for all
j ∈ [N ]:

• σj ≤ ϕ =⇒ D |0〉 |vj〉 = |0〉 |vj〉

• σj ≥ 2ϕ =⇒ D |0〉 |vj〉 = |1〉 |vj〉

This algorithm has a cost of
O
(
α

ϕ
log

(1
δ

)
TA

)
.
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Proof. We invoke Lemma 23 with parameters ε′ := δ
2 , c := 3ϕ

2α and ∆ := ϕ
2α , to construct an

even polynomial P := Pε′,∆,c of degree n := O
(
α
ϕ log

(
1
ε′

))
, which is an ε′-approximation

of f(x) := sign
(

3ϕ
2α − x

)
for x ∈

[
0, ϕα

]
∪
[

2ϕ
α , 1

]
. Invoking Theorem 8 with P and UA,

we get UB – a (1, a+ 1, γ)-block-encoding of B := P (A/α), implemented in cost O(nTA),
where ε must satisfy ε ≤ αγ/2n.

Now consider the following unitary W that acts on s+ a+ 2 qubits:

W := SWAP†[s,s+a+1](H ⊗ Is+a+1) (C-UB) (H ⊗ Is+a+1)SWAP[s,s+a+1]

W is the required block-encoding of D, and SWAP[l,r] sequentially swaps adjacent qubits
with indices in range [l, r] effectively moving qubit indexed l to the right of qubit r. (where
qubits are zero-indexed, with higher indices for ancillas). Let B̃ be the top-left block of
UB (therefore

∥∥∥B − B̃∥∥∥ ≤ γ). Then we can extract D̃, the top-left block of W as follows:

D̃ =
(
〈0|⊗a+1 ⊗ Is+1

)
SWAP†[s,s+a+1] (|+〉〈+| ⊗ Is+a+1 + |−〉〈−| ⊗ UB) SWAP[s,s+a+1]

(
|0〉⊗a+1 ⊗ Is+1

)
= |+〉〈+| ⊗ Is + |−〉〈−| ⊗ B̃

Let us define index sets L,R ⊆ [N ] where L := {j ∈ [N ] | σj ≤ ϕ} and R :=
{j ∈ [N ] | σj ≥ 2ϕ}; and the corresponding subspace projections ΠL :=

∑
j∈L |vj〉〈vj |,

ΠR :=
∑
j∈R |vj〉〈vj |, and Π⊥ := Is −ΠL −ΠR. Using these we pick our required operator

D as follows:
D := I ⊗ΠL +X ⊗ΠR + D̃(I ⊗Π⊥)

That is, D behaves as expected on the required subspace, and acts identical to D̃ on the
remaining space. The error in the block-encoding can be computed as∥∥∥D − D̃∥∥∥ =

∥∥∥I ⊗ΠL +X ⊗ΠR + D̃(I ⊗Π⊥)− D̃
∥∥∥

=
∥∥∥I ⊗ΠL +X ⊗ΠR − D̃(I ⊗ (ΠL + ΠR))

∥∥∥
=
∥∥∥(I ⊗ Is − D̃)(I ⊗ΠL) + (X ⊗ Is − D̃)(I ⊗ΠR)

∥∥∥
=
∥∥∥(|−〉〈−| ⊗ (Is − B̃)

)
(I ⊗ΠL)−

(
|−〉〈−| ⊗ (Is + B̃)

)
(I ⊗ΠR)

∥∥∥
=
∥∥∥(Is − B̃)ΠL − (Is + B̃)ΠR

∥∥∥
=
∥∥∥(Is −B)ΠL − (Is +B)ΠR + (B − B̃)(ΠL −ΠR)

∥∥∥
≤ ‖(Is − P (A/α))ΠL − (Is + P (A/α))ΠR‖+

∥∥∥B − B̃∥∥∥‖ΠL −ΠR‖

≤ ε′ + γ

We can choose γ = δ/2, therefore

ε ≤ αδ

4n = o

 δϕ

log
(

1
δ

)


In Section 3.3, we develop a variable stopping time quantum algorithm for matrix inver-
sion using QSVT. In order to recast the usual matrix inversion to the VTAA framework, we

Accepted in Quantum 2023-04-19, click title to verify. Published under CC-BY 4.0. 23



need to be able to apply this algorithm to specific ranges of the singular values of the ma-
trix. This is achieved by applying a controlled QSVD algorithm, to determine whether the
input singular vector corresponds to an singular value less than (or greater than) a certain
threshold. Based on the outcome of controlled QSVD, the standard inversion algorithm is
applied. These two steps correspond to sub-algorithms Aj of the VTAA framework.

In prior works such as Refs. [Amb12, CKS17, CGJ19], gapped phase estimation (GPE)
was used to implement this. GPE requires an additional register of O(log(κ) log(1/δ))
qubits to store the estimated phases. For the whole VTAA procedure, log κ such registers
are needed. As a result, substituting GPE with QSVD, we save O

(
log2(κ) log(1/δ)

)
qubits.

3.3 Variable-Time Quantum Algorithm for Matrix Inversion using QSVT
Matrix inversion by QSVT applies a polynomial approximation of f(x) = 1/x, satisfying
the constraints laid out in Section 2.3. Here, we make use of the result of [MRTC21]
to implement A+. We adapt their result to the scenario where we have an approximate
block-encoding of A as input. Finally, we convert this to a variable stopping time quantum
algorithm and apply VTAA to obtain a linear dependence on the condition number of A.

Lemma 25 (Matrix Inversion polynomial (Appendix C of [MRTC21])). Given κ ≥ 1, ε ∈
R+, there exists an odd QSP polynomial PMI

ε,κ of degree O(κ log(κ/ε)), which is an ε
2κ

approximation of the function f(x) = 1
2κx in the range D := [−1,− 1

κ ]∪ [ 1
κ , 1]. Also in this

range PMI
ε,κ is bounded from above by 1, i.e. ∀x ∈ D :

∣∣∣PMI
ε,κ (x)

∣∣∣ ≤ 1.

Theorem 26 (Inverting Normalized Matrices using QSVT). Let A be a normalized matrix
with non-zero singular values in the range [1/κA, 1] for some κA ≥ 1. Let δ ∈ (0, 1].
For some ε = o

(
δ

κ2
A log(κA/δ)

)
and α ≥ 2, let UA be an (α, a, ε)-block-encoding of A,

implemented in time TA. Then we can implement a (2κA, a + 1, δ)-block-encoding of A+

at a cost of
O
(
κAα log

(
κA
δ

)
TA

)
.

Proof. We use the matrix inversion polynomial defined in Lemma 25, P := PMI
φ,κ for this

task, with κ = κAα and an appropriate φ. This has a degree of n := O(κAα log (κAα/φ)).
We invoke Theorem 8 to apply QSVT using the polynomial P above, block-encoding UA,
and an appropriate error parameter γ such that ε ≤ αγ/2n, to get the unitary U , a
(1, a+ 1, γ)-block-encoding of P (A/α). As P is a (φ/2κ)-approximation of f(x) := 1/2κx,
we have

‖f(A/α)− P (A/α)‖ ≤ φ

2κ,

which implies U is a (1, a+1, γ+φ/2κ)-block-encoding of f(A/α). And because f(A/α) =
αA+

2κ = A+/2κA, we can re-interpret U as a (2κA, a + 1, 2κAγ + φ/α)-block-encoding of
A+. Choosing 2κAγ = φ/α = δ/2, the final block-encoding has an error of δ. This gives
us φ = αδ/2 and γ = δ/4κA, and

ε ≤ αγ

2n = αδ

8κAn
= O

(
δ

κ2
A log(κA/δ)

)
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Next, we design a mapW (γ, δ) that uses QSVT to invert the singular values of a matrix
if they belong to a particular domain. This helps us recast the usual matrix inversion
algorithm as a variable-stopping-time algorithm and will be a key subroutine for boosting
the success probability of this algorithm using VTAA. This procedure was also used in
Refs. [CKS17, CGJ19] for the quantum linear systems algorithms.

Theorem 27 (Efficient inversion of block-encoded matrix). Let A be a normalized matrix
with non-zero singular values in the range [1/κ, 1], for some κ ≥ 1. Let δ ∈ (0, 1]; 0 < γ ≤
1. Let UA be an (α, a, ε)-block-encoding of A implemented in time TA, such that α ≥ 2
and ε = o

(
δγ2

log
(

1
δγ

)) . Then for any quantum state |b〉 that is spanned by the left singular

vectors of A corresponding to the singular values in the range [γ, 1], there exists a unitary
W (γ, δ) that implements

W (γ, δ) : |0〉F |0〉Q |b〉I 7→
1

amax
|1〉F |0〉Q f(A) |b〉I + |0〉F |⊥〉QI (23)

where amax = O(κA) is a constant independent of γ, |⊥〉QI is an unnormalized quantum
state orthogonal to |0〉Q and

∥∥f(A) |b〉 −A+ |b〉
∥∥ ≤ δ. Here F is a 1-qubit flag register, Q

is an α-qubit ancilla register, and I is the logN -qubit input register. This unitary has a
cost

O
(
α

γ
log

( 1
γδ

)
TA

)
(24)

Proof. Since we only need to invert the singular values in a particular range, we can use
the procedure in Theorem 26 with κA modified to the restricted range. That gives us the
description of a quantum circuit W̃ (γ, δ) that can implement the following map

W̃ (γ, δ) : |b〉I |0〉Q 7→
γ

2f(A) |b〉I |0〉Q + |⊥〉QI ,

where |⊥〉 is an unnomalized state with no component along |0〉Q. This has the same cost
as Equation 24. Here

∥∥f(A) |ψ〉 −A+ |ψ〉
∥∥ ≤ δ whenever |ψ〉 is a unit vector in the span of

the singular vectors of A corresponding to the singular values in [γ, 1]. This follows from
the sub-multiplicativity property of the matrix-vector product.

Next, we must transform the amplitude of the good part of the state to Θ(κ), inde-
pendent of γ. To achieve this, we will have to flag it with an ancillary qubit to use a
controlled rotation to modify the amplitude. Thus we add a single qubit |0〉F register and
flip this register controlled on register Q being in the state |0〉 (the good part). This gives
us the transformation

W̃ ′(γ, δ) : |0〉F |b〉I |0〉Q 7→
γ

2 |1〉F f(A) |b〉I |0〉Q + |0〉F |⊥〉QI

Then we use a controlled rotation to replace the amplitude γ/2 with some constant a−1
max

which is independent of γ, which is achieved by introducing the relevant phase to the flag
space

|1〉F 7→
2

γamax
|1〉F +

√
1− 4

γ2a2
max
|0〉F .

This gives us the desired W (γ, δ) as in Equation 23.

Given such a unitary W (γ, δ), Ref. [CGJ19] laid out a procedure for a variable time
quantum algorithm A that takes as input the block encoding of an N × d matrix A, and
a state preparation procedure Ub : |0〉⊗n 7→ |b〉, and outputs a quantum state that is a
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bounded distance away from A+ |b〉 /
∥∥A+ |b〉

∥∥. In order to determine the branches of the
algorithm on which to apply VTAA at a particular iteration, [CKS17, CGJ19, Amb12] use
the technique of gapped phase estimation, which given a unitary U , a threshold φ and one
of its eigenstate |λ〉, decides if the corresponding eigenvalue is a bounded distance below
the threshold, or a bounded distance above it. In this work, we replace gapped phase
estimation with the QSVD algorithm (Theorem 24) which can be applied directly to any
block-encoded (not necessarily Hermitian) matrix A, and allows for saving onO

(
log2(κ/δ)

)
qubits.

The Variable time Algorithm: This algorithm will be a sequence of m sub-algorithms
A = Am ·Am−1 · . . .A1, where m = dlog κe+1. The overall algorithm acts on the following
registers:

• m single qubit clock registers Ci : i ∈ [m].

• An input register I, initialized to |0〉⊗s.

• Ancillary register space Q for the block encoding of A, initialized to |0〉⊗a.

• A single qubit flag register |0〉F used to flag success of the algorithm.

Once we have prepared the above state space, we use the state preparation procedure
to prepare the state |b〉. Now we can define how each Aj acts on the state space. Let
ε′ = δ

amaxm
. The action of Aj can be broken down into two parts:

1. If Cj−1 . . . C1 is in state |0〉⊗(j−1), apply QSVD(2−j , ε′), (Theorem 24) to the state
|b〉. The output is to be written to the clock register Cj .

2. If the state of Cj is now |1〉, apply W (2−j , ε′) to I ⊗ F ⊗Q.

Additionally, we would need algorithms A′ = A′m · · · A′1 which are similar to A, except
that in Step 2, it implements W ′ which sets the flag register to 1. That is,

W ′ |b〉I |0〉F |0〉Q = |b〉I |1〉F |0〉Q .

Now we are in a position to define the variable time quantum linear systems algorithm
using QSVT.

Theorem 28 (Variable Time Quantum Linear Systems Algorithm Using QSVT). Let
ε, δ > 0. Let A is a normalized N × d matrix such that its non-zero singular values lie in
[1/κ, 1]. Suppose that for

ε = o

(
δ

κ3 log2 (κ
δ

)) ,
we have access to UA which is an (α, a, ε)-block-encoding of A, implemented with cost TA.
Let |b〉 be a state vector which is spanned by the left singular vectors of A. Suppose there
exists a procedure to prepare the state |b〉 in cost Tb. Then there exists a variable time
quantum algorithm that outputs a state that is δ-close A+|b〉

‖A+|b〉‖ at a cost of

O
(
κ log κ

(
αTA log

(
κ

δ

)
+ Tb

))
(25)

using O(log (κ)) additional qubits.
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Proof. The correctness of the algorithm is similar to that of Refs. [CKS17, CGJ19], except
here, we use QSVD instead of gapped phase estimation. According to Lemma 10, we need
Tmax (the maximum time any of the sub-algorithms Aj take), ‖T‖22 (the `2-averaged stop-
ping time of the sub-algorithms), and √psucc (the square root of the success probability.)
Now each sub-algorithm consists of two steps, implementing QEVD with precision 2−j
and error ε′, followed by W (2−j , ε′). From Theorem 24, the first step costs

O
(
αTA2j log

( 1
ε′

))
,

and the cost of implementing W (2−j , ε′) is as described in Equation 24. Thus the
overall cost of Aj , which is the sum of these two costs, turns out to be

O
(
αTA2j log

(
2j

ε′

))
(26)

Note that the time tj required to implement Aj . . .A1 is also the same as Equation 26.
Also,

Tmax = max
j

tj

= max
j
O
(
αTA2j log

(
2j

ε′

))

= O
(
αTAκ log

(
κ

ε′

))
= O

(
αTAκ log

(
κ log (κ)

δ

))
.

The ‖T‖22 is dependent on the probability that A stops at the jth step. This is given
by pj =

∥∥∥ΠCjAj . . .A1 |ψ〉I |0〉CFPQ
∥∥∥2
, where ΠCj is the projector on |1〉Cj , the j

th clock
register. From this, ‖T‖22 can be calculated as

‖T‖22 =
∑
j

pjt
2
j

=
∑
j

∥∥∥ΠCjAj . . .A1 |ψ〉I |0〉CFPQ
∥∥∥2
t2j

=
∑
k

|ck|2
∑
j

(∥∥∥ΠCjAj . . .A1 |vk〉I |0〉CFPQ
∥∥∥2
t2j

)

= O
(
α2T 2

A

∑
k

log2
( 1
σkε′

) |ck|2
σ2
k

)

Therefore

‖T‖2 = O

αTA log
(
κ log κ
δ

)√√√√∑
k

|ck|2

σ2
k

. (27)

Next we calculate the success probability.

√
psucc =

∥∥∥∥∥ΠF
A−1

αmax
|b〉I |φ〉CFPQ

∥∥∥∥∥+O
(
mε′

)
Accepted in Quantum 2023-04-19, click title to verify. Published under CC-BY 4.0. 27



= 1
αmax

√√√√∑
j

|cj |2

σ2
j

+O
(

δ

αmax

)

= Ω

1
κ

√√√√∑
j

|cj |2

σ2
j


Given these, we can use Lemma 10 to write the final complexity of matrix inversion

with VTAA:

Tmax + Tb + (‖T‖2 + Tb) log (T ′max)
√
psucc

= O
(
κ log κ

(
αTA log

(
κ

δ

)
+ Tb

))
The upper bound on the precision required for the input block-encoding, ε, can be cal-
culated from the bounds on the precisions for W (κ, ε′) (Theorem 27) and QSVD(κ, ε′)
(Theorem 24) as follows:

ε = o

min

 ε′

κ2 log
(
κ
ε′
) , ε′

κ log
(

1
ε′

)
 = o

(
ε′

κ2 log
(
κ
ε′
)) = o

(
δ

κ3 log2 (κ
δ

))

The overall complexity is better by a log factor and requires O
(
log2(κ/δ)

)
fewer addi-

tional qubits as compared to the variable time algorithms in Refs. [CKS17, CGJ19].

3.4 Negative Powers of Matrices using QSVT
We consider the problem: given an approximate block-encoding of a matrix A, we need to
prepare a block-encoding of A−c, where c ∈ (0, 1). This procedure will be used to develop
algorithms for `2-regularized versions of GLS. We will directly use the results of [GSLW19].

Lemma 29 (Polynomial approximations of negative power functions, [GSLW18], Corol-
lary 67). Let ε, δ ∈ (0, 1

2 ], c > 0 and let f(x) := δc

2 x
−c, then there exist even/odd polynomi-

als Pc,ε,δ, P ′c,ε,δ ∈ R[x] such that ‖Pc,ε,δ − f‖[δ,1] ≤ ε, ‖Pc,ε,δ‖[−1,1] ≤ 1 and
∥∥∥P ′c,ε,δ − f∥∥∥[δ,1]

≤

ε,
∥∥∥P ′c,ε,δ∥∥∥[−1,1]

≤ 1. Moreover the degree of the polynomials are O
(

max(1,c)
δ log

(
1
ε

))
.

Theorem 30 (Negative fractional powers of a normalized matrix using QSVT). Let c ∈
(0, 1) be some constant and δ ∈ (0, 1] Let A be a normalized matrix with non-zero singular
values in the range [1/κ, 1]. Let UA be a (α, a, ε)-block-encoding of a matrix A, implemented
in time TA such that α ≥ 2 and

ε = o

(
δ

κc+1 log(κ/δ)

)
Then we can construct a (2κc, a+ 1, δ)-block-encoding of A−c at a cost of

O
(
ακ log

(
κ

δ

)
TA

)
.

Proof. From Lemma 29, using ∆ := 1
κα and an appropriate ϕ ∈ (0, 1

2 ], we get an even
QSP polynomial P := Pc,ϕ,∆ which is ϕ-close to f(x) := 1

2κcαcxc , and has degree n such
that n = O

(
ακ log

(
1
ϕ

))
. Therefore

‖f(A/α)− P (A/α)‖ ≤ ϕ.
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Using Theorem 8 we can construct UP , a (1, a+ 1, γ)-block-encoding of P (A/α), given
that ε ≤ αγ

2n . Then from triangle inequality it follows that it is a (1, a + 1, ϕ + γ)-
block-encoding of f(A/α). And because f(A/α) = A−c

2κc , UP can be re-interpreted as a
(2κc, a + 1, 2κc(ϕ + γ))-block-encoding of A−c. We therefore choose ϕ = γ = δ

4κc , and
choose ε as

ε = o

(
α
δ

4κc
1

ακ log(4κc/δ)

)
= o

(
δ

κc+1 log(κ/δ)

)

Having discussed the necessary algorithmic primitives, we are now in a position to
design quantum algorithms for linear regression with general `2-regularization. We will
first deal with ordinary least squares followed by weighted and generalized least squares.

4 Quantum Least Squares with General `2-Regularization
In this section, we derive the main results of our paper, namely quantum algorithms
for quantum ordinary least squares (OLS), quantum weighted least squares (WLS) and
quantum generalized least squares (GLS) with `2-regularization.

4.1 Quantum Ordinary Least Squares
Given N data points {ai, bi}Ni=1 such that ai ∈ Rd and bi ∈ R, the objective of linear
regression is to find x ∈ Rd that minimizes the loss function

LO =
N∑
j=1

(xTai − bi)2. (28)

Consider the N × d matrix A (known as the data matrix) such that the ith row of A is
the vector ai transposed and the column vector b = (b1 · · · bN )T . Then, the solution to the
OLS problem is given by x = (ATA)−1AT b = A+b.

For the `2-regularized version of the OLS problem, a penalty term is added to its
objective function. This has the effect of shrinking the singular values of A which helps
overcome problems such as rank deficiency and overfitting for the OLS problem. The loss
function to be minimized is of the form

‖Ax− b‖22 + ‖Lx‖22, (29)

where L is the N ×d penalty matrix and λ > 0 is the optimal regularizing parameter. The
solution x ∈ Rd satisfies

x = (ATA+ λLTL)−1AT b. (30)

Therefore, for quantum ordinary least squares with general `2-regularization, we assume
that we have access to approximate block-encodings of the data matrix A, L and a pro-
cedure to prepare the quantum state |b〉 =

∑N
j=1 bj |j〉 /‖b‖. Our algorithm outputs a

quantum state that is close to

|x〉 = (ATA+ λLTL)−1AT |b〉
‖(ATA+ λLTL)−1AT |b〉‖

. (31)

In order to implement a quantum algorithm that implements this, a straightforward
approach would be the following: We first construct block-encodings of ATA and LTL,
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given block encodings of A and L, respectively (Using Lemma 19). We could then imple-
ment a block-encoding of ATA + λLTL using these block encodings (By Lemma 17). On
the other hand, we could also prepare a quantum state proportional to AT |b〉 by using the
block-encoding for A and the unitary preparing |b〉. Finally, using the block encoding of
ATA+λLTL, we could implement a block-encoding of (ATA+λLTL)−1 (using Theorem 26)
and apply it to the state AT |b〉. Although this procedure would output a quantum state
close to |x〉, it is not efficient. It is easy to see that the inverse of ATA+ λLTL, would be
implemented with a complexity that has a quadratic dependence on the condition numbers
of A and L. This would be undesirable as it would perform worse than the unregularized
quantum least squares algorithm, where one is able to implement A+ directly. However, it
is possible to design a quantum algorithm that performs significantly better than this.

The first observation is that it is possible to recast this problem as finding the pseu-
doinverse of some augmented matrix. Given the data matrix A ∈ RN×d, the regularizing
matrix L ∈ RN×d, let us define the following augmented matrix

AL :=
(

A 0√
λL 0

)
. (32)

It is easy to see that the top left block of A+
L = (ATA + λLTL)−1AT , which is the

required linear transformation to be applied to b. Consequently, our strategy would be
to implement a block-encoding of AL, given block-encodings of A and L. Following this,
we use matrix inversion by QSVT to implement A+

L |b〉 |0〉. The first register is left in the
quantum state given in Equation 31.

From this, it is clear that the complexity of our quantum algorithm would depend
on the effective condition number of the augmented matrix AL. In this regard, we shall
assume that the penalty matrix L is a good regularizer. That is, L is chosen such that it
does not have zero singular values (positive definite). This is a fair assumption as if L has
only non-zero singular values, the minimum singular value of AL is guaranteed to be lower
bounded by the minimum singular value of L. This ensures that the effective condition
number of AL depends on κL, even when the data matrix A has zero singular values and
ATA is not invertible. Consequently, this also guarantees that regularized least squares
provide an advantage over their unregularized counterparts.

Next, we obtain bounds on the effective condition number of the augmented matrix AL
for a good regularizer L via the following lemma:

Lemma 31 (Condition number and Spectral Norm of AL). Let the data matrix A and
the positive definite penalty matrix L have spectral norms ‖A‖ and ‖L‖, respectively. Fur-
thermore, suppose their effective condition numbers be upper bounded by κA and κL. Then
the ratio between the maximum and minimum (non-zero) singular value of AL is upper
bounded by

κ = κL

(
1 + ‖A‖√

λ‖L‖

)
We can also bound the spectral norm as

‖AL‖ = Θ
(
‖A‖+

√
λ‖L‖

)
Proof. To bound the spectral norm and condition number of AL, consider the eigenvalues
of the following matrix:

ATLAL =
(
ATA+ λLTL 0

0 0

)
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This implies that the non-zero eigenvalues of ATLAL are the same as those of ATA +
λLTL. Therefore, using triangle inequality, the spectral norm of AL can be upper-bounded
as follows:

‖AL‖ =
√∥∥ATLAL∥∥ =

√
‖ATA+ λLTL‖ ≤

√
‖ATA‖+ λ‖LTL‖ =

√
‖A‖2 + λ‖L‖2 ≤ ‖A‖+

√
λ‖L‖

Similarly ‖AL‖ ≥ ‖A‖ and ‖AL‖ ≥
√
λ‖L‖, which effectively gives the tight bound for

‖AL‖.
As LTL is positive definite, we have that its minimum singular value is σmin(L) =

‖L‖/κL. And we also know that ATA is positive semidefinite, so by Weyl’s inequality, the
minimum singular value of AL is lower bounded by

σmin (AL) ≥
√
σmin (A)2 + λσmin (L)2 ≥

√√√√λ‖L‖2
κ2
L

=
√
λ
‖L‖
κL

Thus,
σmax (AL)
σmin (AL) ≤ κ = κL

(
1 + ‖A‖√

λ‖L‖

)

In the theorems and lemmas for regularized quantum linear regression and its variants
that we develop in this section, we consider that L is a good regularizer in order to provide
a simple expression for κ. However, this is without loss of generality. When L is not a good
regularizer, the expressions for the respective complexities will remain unaltered, except
that κ would now correspond to the condition number of the augmented matrix.

Now it might be possible that |b〉 does not belong to the row space of (ATA+λLTL)−1AT

which is equivalent to saying |b〉 |0〉 may not lie in row(A+
L ). However, it is reasonable to

expect that the initial hypothesis of the underlying model being close to linear is correct.
That is, we expect |b〉 to have a good overlap with row

(
A+
L

)
= col (AL). The quantity

that quantifies how far the model is from being linear is the so called normalized residual
sum of squares. For `2-regularized ordinary least squares, this is given by

SO =

∥∥∥(I −Πcol(AL)) |b〉 |0〉
∥∥∥2

‖|b〉‖2
= 1−

∥∥∥Πcol(AL) |b〉 |0〉
∥∥∥2
. (33)

If the underlying data can indeed be fit by a linear function, SO will be low. Subse-
quently, we assume that SO = 1−

∥∥∥Πcol(AL) |b〉 |0〉
∥∥∥2
≤ γ < 1/2. This in turn implies that∥∥∥Πcol(AL) |b〉 |0〉

∥∥∥2
= Ω(1), implying that the data can be reasonably fit by a linear model.i

Now we are in a position to present our quantum algorithm for the quantum least
squares problem with general `2-regularization. We also present an improved quantum
algorithm for the closely related quantum ridge regression, which is a special case of the
former.

Theorem 32 (Quantum Ordinary Least Squares with General `2-Regularization). Let
A,L ∈ RN×d be the data and penalty matrices with effective condition numbers κA and

iOur results also hold if we assume that SO ≤ γ for some γ ∈ (0, 1). That is,
∥∥Πcol(AL)

∥∥ ≥ 1 − γ. In
such a scenario our complexity to prepare A+

L |b, 0〉 /
∥∥A+

L |b, 0〉
∥∥ is rescaled by 1/

√
1− γ.
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κL respectively, and λ ∈ R+ be the regression parameter. Let UA be a (αA, aA, εA)-block-
encoding of A implemented in time TA and UL be a (αL, aL, εL)-block-encoding of L im-
plemented in time TL. Furthermore, suppose Ub be a unitary that prepares |b〉 in time Tb
and define

κ = κL

(
1 + ‖A‖√

λ‖L‖

)
Then for any δ ∈ (0, 1) such that

εA,
√
λεL = o

(
δ

κ3 log2 (κ
δ

)) (34)

we can prepare a state that is δ-close to(
ATA+ λLTL

)−1
AT |b〉∥∥∥(ATA+ λLTL)−1AT |b〉

∥∥∥
with probability Θ(1), at a cost of

O
(
κ log κ

((
αA +

√
λαL

‖A‖+
√
λ‖L‖

)
log

(
κ

δ

)
(TA + TL) + Tb

))
(35)

using only O(log κ) additional qubits.

Proof. We invoke Lemma 22, to obtain a unitary U , which is a (αA+
√
λαL,max(aA, aL)+

2, εA+
√
λεL)-block-encoding of the matrix AL, implemented at a cost ofO(TA + TL). Note

that in Lemma 22, A and L are considered to be s-qubit operators. For N × d matrices,
such that N, d ≤ 2s, we can pad them with zero entries. Padding A and L with zeros may
result in the augmented matrix AL having some zero rows between A and L. However,
this is also not an issue as we are only interested in the top left block of A+

L which remains
unaffected.

Note that U can be reinterpreted as a
(
αA+

√
λαL

‖AL‖ ,max(aA, aL) + 2, εA+
√
λεL

‖AL‖

)
-block-

encoding of the normalized matrix AL/‖AL‖. Furthermore, we can prepare the quantum
state |b〉 |0〉 in time Tb. Now by using Theorem 28 with U and an appropriately chosen δ
specified above, we obtain a quantum state that is δ-close to

(ATA+ λLTL)−1AT |b〉
‖(ATA+ λLTL)−1AT |b〉‖

in the first register.

In the above complexity, when L is a good regularizer, κ is independent of κA. κ can
be made arbitrarily smaller than κA by an appropriate choice of L. Thus the regularized
version has significantly better time complexity than the unregularized case. One such
example of a good regularizer is in case of Quantum Ridge Regression, where we use the
identity matrix to regularize. The corollary below elucidates this.

Corollary 33 (Quantum Ridge Regression). Let A be a matrix of dimension N × d with
effective condition number κA and λ ∈ R+ be the regression parameter. Let UA be a
(α, a, ε)-block-encoding of A implemented in time TA. Let Ub be a unitary that prepares
|b〉 in time Tb. If κ = 1 + ‖A‖/

√
λ then for any δ such that

ε = o

(
δ

κ3 log2 (κ
δ

))
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we can prepare a state δ-close to (
ATA+ λI

)−1
AT |b〉∥∥∥(ATA+ λI)−1AT |b〉

∥∥∥
at a cost of

O
(

log κ
(
αA√
λ

log
(
κ

δ

)
TA + κTb

))
(36)

with probability Θ(1) using only O(log κ) additional qubits.

Proof. The identity matrix I is a trivial (1, 0, 0)-block-encoding of itself, and κI = 1. We
invoke Theorem 32 with L = I to obtain the solution.

Being in the block-encoding framework allows us to express the complexity of our
quantum algorithm in specific input models such as the quantum data structure input model
and the sparse access model. We express these complexities via the following corollaries.

Corollary 34 (Quantum Ordinary Least Squares with `2-Regularization in the Quantum
Data Structure Input Model). Let A,L ∈ RN×d with effective condition numbers κA, κL
respectively. Let λ ∈ R+ and b ∈ RN . Let κ be the effective condition number of the
augmented matrix AL. Suppose that A, L and b are stored in a quantum accessible data
structure. Then for any δ > 0 there exists a quantum algorithm to prepare a quantum
state δ-close to (

ATA+ λLTL
)−1

AT |b〉∥∥∥(ATA+ λLTL)−1AT |b〉
∥∥∥

with probability Θ(1), at a cost of

O
(
κ

(
µA +

√
λµL

‖A‖+
√
λ‖L‖

)
polylog

(
Nd, κ,

1
δ
, λ

))
. (37)

Proof. Since b is stored in the data structure, for some εb > 0, we can prepare the state
|b′〉 that is εb-close to |b〉 =

∑
i bi |i〉 /‖b‖ using Tb = O(polylog(N/εb)) queries to the

data structure (see Section 2.2.1.) Similarly, for some parameters εA, εL > 0, we can
construct a (µA, dlog(d+N)e, εA)-block-encoding of A using TA = O(polylog(Nd/εA))
queries to the data structure and a (µL, dlog(d+N)e, εB)-block-encoding of L using TL =
O(polylog(Nd/εB)) queries.

We invoke Theorem 32 with a precision δ/2 by choosing εA and εL such that equation
Equation 34 is satisfied. This gives us a state that is δ/2-close to(

ATA+ λLTL
)−1

AT |b′〉∥∥∥(ATA+ λLTL)−1AT |b′〉
∥∥∥

To compute the final precision as δ, we use Lemma 15 by choosing εb = δ
2κ . The

complexity can be calculated by plugging in the relevant values in Equation 35

In the previous corollary µA = ‖A‖F and µL = ‖L‖F when the matrix A and L are
stored in the data structure. Similarly, µA = µp(A) and µL = µp(L) when the matrices
A(p), A(1−p) and L(p), L(1−p) are stored in the data structure.

Now we discuss the complexity of quantum ordinary least squares with `2-regularization
in the sparse access input model. We call a matrix M as (sr, sc) row-column sparse if it
has a row sparsity sr and column sparsity sc.
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Corollary 35 (Quantum Ordinary least squares with `2-regularization in the sparse access
model). Let A ∈ RN×d be (sAr , sAc ) row-column sparse, and similarly, let L ∈ RN×d be
(sLr , sLc ) row-column sparse, with effective condition numbers κA and κL respectively. Let
λ ∈ R+ and δ > 0. Suppose there exists a unitary that prepares |b〉 at a cost, Tb. Then
there is a quantum algorithm to prepare a quantum state that is δ-close to

(ATA+ λLTL)−1AT |b〉
‖(ATA+ λLTL)−1AT |b〉‖

with probability Θ(1), at a cost of

O

κ

√
sAr s

A
c +

√
λsLr s

L
c

‖A‖+
√
λ‖L‖

polylog
(
Nd, κ,

1
δ
, λ

)
+ κ log κTb

. (38)

Proof. The proof is similar to Corollary 34 but with αA =
√
sAr s

A
c and αL =

√
sLr s

L
c .

4.2 Quantum Weighted And Generalized Least Squares
This technique of working with a augmented matrix will also hold for the other variants of
ordinary least squares. In this section, we begin by briefly describing these variants before
moving on to designing quantum algorithms for the corresponding problems.

Weighted Least Squares: For the WLS problem, each observation {ai, bi} is assigned
some weight wi ∈ R+ and the objective function to be minimized is of the form

LW :=
∑
j

wj(xTaj − bj)2. (39)

IfW ∈ RN×N is the diagonal matrix with wi being the ith diagonal entry, then the optimal
x satisfies

x = (ATWA)−1ATWb. (40)

The `2-regularized version of WLS satisfies

x = (ATWA+ λLTL)−1ATWb (41)

Our quantum algorithm outputs a state that is close to

|x〉 = (ATWA+ λLTL)−1ATW |b〉
‖(ATWA+ λLTL)−1ATW |b〉‖

(42)

given approximate block-encodings of A, W and L. Much like Equation 32, finding the
optimal solution reduces to finding the pseudo inverse of an augmented matrix AL given
by

AL :=
(√

WA 0√
λL 0

)
.

The top left block of A+
L = (ATWA + λLTL)−1AT

√
W , which is the required linear

transformation to be applied to the vector y =
√
Wb. The ratio between the minimum

and maximum singular values of AL, κ, can be obtained analogously to Lemma 31. For
the `2-regularized WLS problem, normalized residual sum of squares is given by

SW =

∥∥∥(I −Πcol(AL)) |y〉 |0〉
∥∥∥2

‖|y〉‖2
= 1−

∥∥∥Πcol(AL) |y〉 |0〉
∥∥∥2
. (43)
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Subsequently, we assume that SW = 1−
∥∥∥Πcol(AL) |y〉 |0〉

∥∥∥2
≤ γ < 1/2. This in turn implies

that
∥∥∥Πcol(AL) |y〉 |0〉

∥∥∥2
= Ω(1), implying that the data can be reasonably fit by a linear

model.

Generalized Least Squares. Similarly, we can extend this to GLS problem, where there the
input data may be correlated. These correlations are given by the non-singular covariance
matrix Ω ∈ RN×N . The WLS problem is a special case of the GLS problem, corresponding
to when Ω is a diagonal matrix. The objective function to be minimized is

LΩ :=
∑
i,j

(Ω−1)ij(xTai − bi)(xTaj − bj). (44)

The optimal x ∈ Rd satisfies

x = (ATΩ−1A)−1ATΩ−1b (45)

Similarly, the `2-regularized GLS solver outputs x such that

x = (ATΩ−1A+ λLTL)−1ATΩ−1b. (46)

So, given approximate block-encodings of A, Ω and L a quantum GLS solver outputs a
quantum state close to

|x〉 = (ATΩ−1A+ λLTL)−1ATΩ−1 |b〉
‖(ATΩ−1A+ λLTL)−1ATΩ−1 |b〉‖

(47)

The augmented matrix AL is defined as

AL :=
(

Ω−1/2A 0√
λL 0

)
.

Then top left block of A+
L to the vector y = Ω−1/2b yields the optimal x. Thus the quantum

GLS problem with `2-regularization first prepares Ω−1/2 |b〉 |0〉 and then uses the matrix
inversion algorithm by QSVT to implement A+

LΩ−1/2 |b〉 |0〉. Analogous to OLS and WLS,
we assume that the normalized residual sum of squares SΩ ≤ γ < 1/2.

4.2.1 Quantum Weighted Least Squares

In this section, we derive the complexity of the `2-regularized WLS problem. We assume
that we have a diagonal weight matrix W ∈ RN×N such that its smallest and largest
diagonal entries are wmin and wmax, respectively. This implies that ‖W‖ = wmax and
κW = wmax/wmin. We take advantage of the fact that the matrix W is diagonal and then
apply controlled rotations to directly implement a block encoding of

√
WA. Additionally,

given a state preparation procedure for |b〉, we can easily prepare a state proportional to√
W |b〉. We then use Theorem 32 to solve QWLS.
We first formalize this idea in Theorem 36, assuming direct access to (i) a block encoding

of B =
√
WA, and (ii) a procedure for preparing the state |bw〉 =

√
W |b〉

‖
√
W |b〉‖ . Subsequently,

for the specific input models, we show that we can indeed efficiently obtain a block-encoding
of B and prepare the state |bw〉.
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Theorem 36 (Quantum Weighted Least Squares with General `2-Regularization). Let
A,L ∈ RN×d, be the data and penalty matrix, with effective condition numbers κA and
κL, respectively. Let λ ∈ R+ be the regularizing parameter. Let W ∈ RN×N be a diagonal
weight matrix with the largest and smallest diagonal entries being wmax, wmin, respectively.
Let UB be a (αB, aB, εB) block encoding of B :=

√
WA implemented in time TB and let UL

be a (αL, aL, εL) block encoding of L implemented in time TL, such that εB = o

(
δ

κ3 log2(κδ )

)
and εL = o

(
δ√

λκ3 log2(κδ )

)
. Let Ubw be a unitary that prepares

√
W |b〉

‖
√
W |b〉‖ in time Tbw . Define

κ := κL

(
1 +
√
wmax‖A‖√
λ‖L‖

)

Then for any δ > 0 we can prepare a quantum state that is δ-close to

(ATWA+ λLTL)−1ATW |b〉
‖(ATWA+ λLTL)−1ATW |b〉‖

with probability Θ(1), at a cost of

O
(
κ log κ

(
αB +

√
λαL

√
wmax‖A‖+

√
λ‖L‖

log
(
κ

δ

)
(TB + TL) + Tbw

))
, (48)

using only O(log κ) additional qubits.

Proof. We then invoke Theorem 32 with B and L as the data and regularization matrices,
respectively. This requires that εB, εL such that

εB +
√
λεL = o

(
δ

κ3 log2 (κ
δ

)) .
Thus, we get the upper bounds on the precision εB, εL required. This gives us a quantum
state δ-close to

(ATWA+ λLTL)−1ATW |b〉
‖(ATWA+ λLTL)−1ATW |b〉‖

.

Next, we construct the block encodings for
√
WA and the state

√
W |b〉

‖
√
W |b〉‖ efficiently in

the quantum data structure input model. This construction would also apply to the sparse
access input model with slight modifications.

Lemma 37 (Efficiently preparing
√
WA in the Quantum Data Structure Model). Let

W ∈ RN×N such that W = diag(w1, w2 . . . wN ) and wmax := maxiwi, and A ∈ RN×d be
stored in a quantum-accessible data structure. Then for any δ > 0 there exists a

(
√
wmax‖A‖F , dlog (N + d)e, δ)

block-encoding of
√
WA that can be implemented at the cost O(polylog(Nd/δ)).

Proof. ∀j ∈ [N ], define

|ψj〉 :=
√

wj
wmax

|j〉 1
‖Aj,·‖

∑
k∈[d]

Aj,k |k〉 .
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Similarly, ∀k ∈ [d], define

|φk〉 := 1
‖A‖F

 ∑
j∈[N ]

‖Aj,·‖ |j〉

 |k〉 .
Observe that ∀j ∈ [N ], k ∈ [d],

〈ψj |φk〉 =
√

wj
wmax

Aj,k
‖A‖F

= 〈j|
√
WA |k〉

√
wmax‖A‖F

.

Given quantum data structure accesses to W and A, one can construct quantum circuits
WR and WL similar to UL and UR from Lemma 3 that prepare |φk〉 and |ψj〉 above. |φk〉
can be prepared just as in Lemma 3, while |ψj〉 can be prepared using controlled rotations
on the state | wjwmax

〉 (which can be constructed from the QRAM access to W ) after adding
an ancilla qubit and the QRAM access to A. Thus, W †RWL is the required block encoding,
which according to Theorem 2 can be implemented using polylog(Nd/δ) queries.

Lemma 38 (Efficiently preparing
√
W |b〉 in the Quantum Data Structure Model). Let

b ∈ RN and W ∈ RN×N . Suppose that b and W are stored in a quantum-accessible data
structure such that we have a state preparation procedure that acts as

UW : |j〉 |0〉 7→ |j〉 |wj〉 ,

Ub : |0〉 7→
∑
j

bj
‖b‖
|j〉 .

Then for any δ > 0 we can prepare the quantum state that is δ-close to
√
W |b〉

‖
√
W |b〉‖ with

constant success probability and at a cost of O
(√

wmax
wmin

polylog
(
N
δ

))
.

Proof. Use Ub to prepare the state

|b〉 = 1
‖b‖

∑
j

bj |j〉

in time polylog(N). Then, apply the following transformation

|j〉 |0〉 |0〉 7→ |j〉 |wj〉 |0〉

7→ |j〉 |wj〉
(√

wj
wmax

|0〉+
√

1− wj
wmax

|1〉
)

7→ |j〉 |0〉
(√

wj
wmax

|0〉+
√

1− wj
wmax

|1〉
)

which can again be applied using some controlled rotations, a square root circuit and UW .
This gives us the state (ignoring some blank registers)∑

j

(√
wj
wmax

|0〉+
√

1− wj
wmax

|1〉
)
bj
‖b‖
|j〉 . (49)

The probability for the ancilla to be in |0〉 state is

Ω
(
wmin
wmax

)
.

Thus performing O
(√

wmax
wmin

)
rounds of amplitude amplification on |0〉 gives us a constant

probability of observing |0〉, and therefore obtaining the desired state
√
W |b〉

‖
√
W |b〉‖ .
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Using the above two theorems, and the quantum OLS solver (Theorem 32), we can
construct an algorithm for regularized quantum WLS.

Theorem 39 (Quantum Weighted Least Squares with General `2-Regularization in the
Quantum Data Structure Model). Let A,L ∈ RN×d with effective condition numbers
κA, κL respectively be stored in an efficient quantum accessible data structure. Let W ∈
RN×N be a diagonal matrix with largest and smallest singular values wmax, wmin respec-
tively, which is also stored in an efficient quantum accessible data structure. Furthermore,
suppose the entries of the vector b ∈ RN are also stored in a quantum-accessible data
structure and define,

κ := κL

(
1 +
√
wmax‖A‖√
λ‖L‖

)
Then for any δ > 0 we can prepare a quantum state that is δ-close to

(ATWA+ λLTL)−1ATW |b〉
‖(ATWA+ λLTL)−1ATW |b〉‖

with probability Θ(1), at a cost of

O
(
κ

(√
wmax‖A‖F +

√
λ‖L‖F√

wmax‖A‖+
√
λ‖L‖

+
√
wmax
wmin

)
polylog

(
Nd, κ,

1
δ

))
(50)

Proof. Choose some precision parameter ε > 0 for accessing the data structure. Given
access to W and A, we can use Lemma 37 to prepare a (√wmax‖A‖F , dlog (N + d)e, ε)-
block-encoding of

√
WA, using TA := O(polylog (Nd/ε)) queries to the data structure.

Similarly, Lemma 3 allows us to build a (‖L‖F , dlog (N + d)e, ε)-block-encoding of L using
TL := O(polylog(Nd/ε)) queries to the data structure.

Next, using Lemma 38, for any εb > 0, we can prepare a state εb-close to |b′〉 :=√
W |b〉

‖
√
W |b〉‖ . This procedure requires Tb := O

(√
wmax
wmin

polylog (N/εb)
)

queries to the data
structure. Now we can invoke the OLS solver in Theorem 32 with a precision of δb, by
considering

√
WA as the data matrix and

√
W |b〉

‖
√
W |b〉‖ as the input state. In order for the

input block-encoding precision to satisfy the bound in Equation 34, we choose ε such that

ε = o

 δb

κ3 log2
(
κ
δb

)
 .

Finally, for the output state to be δ-close to the required state, we choose δb = δ/2 and
εb = δ/2κ to use the robustness result from Lemma 15. This gives us

log
(1
ε

)
= O

log

κ3 log2
(
κ
δb

)
δb


= O

(
log

(
κ

δ

))
Now we can substitute the cost of the individual components in Equation 35 to obtain the
final cost as

O
(
κ log κ

(√
wmax‖A‖F +

√
λ‖L‖F√

wmax‖A‖+
√
λ‖L‖

log
(
κ

δ

)
polylog

(
Nd

ε

)
+
√
wmax
wmin

polylog
(
Nκ

δ

)))
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= O
(
κ

(√
wmax‖A‖F +

√
λ‖L‖F√

wmax‖A‖+
√
λ‖L‖

+
√
wmax
wmin

)
polylog

(
Ndκ

δ

))

Now, for the sparse access model, we can obtain a block encoding similar to Lemma 37
and a quantum state similar to Lemma 38, with the same query complexities. Thus we
have an algorithm similar to Theorem 39 in the sparse access model as well. We directly
state the complexity of this algorithm.

Theorem 40 (Quantum Weighted Least Squares with General `2-Regularization in the
Sparse Access Model). Let A ∈ RN×d be (sAr , sAc ) row-column sparse, and similarly, let
L ∈ RN×d be (sLr , sLc ) row-column sparse, with effective condition numbers κA and κL
respectively. Let λ ∈ R+. Let W ∈ RN×N be a diagonal matrix with the largest and the
smallest diagonal entries being wmax, wmin, respectively. Suppose that the diagonal entries
of W are stored in a QROM such that, for any δ > 0, we can compute |j〉 0 7→ |j〉 |wj〉 in
cost O (polylog (Nd/δ)) as well as wmax. Furthermore, suppose there exists a unitary that
prepares |b〉 at a cost Tb and define,

κ := κL

(
1 +
√
wmax‖A‖√
λ‖L‖

)

Then for any δ > 0 we can prepare a quantum state that is δ-close to

(ATWA+ λLTL)−1ATW |b〉
‖(ATWA+ λLTL)−1ATW |b〉‖

with probability Θ(1), at a cost of

O

κ
√wmax

√
sAr s

A
c +
√
λ
√
sLr s

L
c

√
wmax‖A‖+

√
λ‖L‖

+
√
wmax
wmin

Tb

 polylog
(
Nd, κ,

1
δ

) (51)

4.2.2 Quantum Generalized Least Squares

In this section, we assume that we have block-encoded access to the correlation matrix
Ω ∈ RN×N , with condition number κΩ. We begin by preparing a block encoding of Ω−1/2,
given an approximate block-encoding of Ω.

Lemma 41 (Preparing Ω−1/2). Let Ω ∈ RN×N be a matrix with condition number κΩ Let
UΩ be an (αΩ, aΩ, εΩ)-block-encoding of Ω, implemented in time TΩ. For any δ such that

εΩ = o


√
‖Ω‖δ

κ1.5 log
(

κ√
‖Ω‖δ

)
 ,

we can prepare a (2
√
κΩ/‖Ω‖, aΩ + 1, δ)-block-encoding of Ω−1/2 at a cost of

O
(
αΩκΩ
‖Ω‖ log

(
κΩ

δ
√
‖Ω‖

)
TΩ

)

Moreover, the condition number of Ω−1/2 is bounded by √κΩ.
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Proof. UΩ can be re-interpreted as a ( α
‖Ω‖ , a,

ε
‖Ω‖)-block-encoding of Ω

‖Ω‖ . We can then
prepare the required unitary by invoking Theorem 30 on UΩ with c = 1/2 and some γ such
that we get a (2√κΩ, a + 1, γ) block encoding of

√
‖Ω‖Ω−1/2, which is a (2

√
κ
‖Ω‖ , a +

1, γ√
‖Ω‖

) block encoding of Ω−1/2. Fixing γ =
√
‖Ω‖δ gives us the required result.

We will now use this lemma in conjunction with Theorem 32 to develop quantum
algorithms for GLS with general `2-regularization.

Theorem 42 (Quantum Generalized Least Squares with General `2-regularization). Let
A,L ∈ RN×d be the data and penalty matrices with effective condition numbers κA, κL
respectively. Let Ω ∈ RN×N be the covariance matrix with condition number κΩ. Let
δ > 0 be the precision parameter. Define κ as

κ := κL

(
1 +

√
κΩ‖A‖√
λ‖Ω‖‖L‖

)
.

For some εA such that

εA = o

(
δ
√
‖Ω‖

κ3√κΩ log2 κ
δ

)
we have access to UA, an (αA, aA, εA)-block-encoding of A implemented in time TA. For
some εL such that

εL = o

(
δ√

λκ3 log2 κ
δ

)
we have access to UL, an (αL, aL, εL)-block-encoding of L implemented in time TL. For
some εΩ such that

εΩ = o

 δ

‖A‖κ3κΩ1.5 log3 κ
δ log

(
κΩ

‖A‖‖Ω‖

)


we have access to UΩ, an (αΩ, aΩ, εΩ)-block-encoding of Ω implemented in time TΩ. Let
Ub be a unitary that prepares the state |b〉 in time Tb.

Then we can prepare the quantum state that is δ-close to(
ATΩ−1A+ λLTL

)−1
ATΩ−1 |b〉∥∥∥(ATΩ−1A+ λLTL)−1ATΩ−1 |b〉

∥∥∥
with probability Θ(1), at a cost of

O
(
κ
√
κΩ log κ

((
αA
‖A‖

TA + αL
‖L‖

TL + αΩκΩ
‖Ω‖ TΩ

)
log3

(
κκΩ‖A‖‖L‖

δ‖Ω‖

)
+ Tb

))
(52)

using only O(log κ) additional qubits.

Proof. Observe that by choosing A′ := Ω−1/2A,L′ := L, |b′〉 := Ω−1/2 |b〉 (upto normal-
ization) in the quantum ordinary least squares, we get a state proportional to (A′TA′ +
λL′TL′)−1A′T |b′〉 = (ATΩ−1A+ λLTL)ATΩ−1 |b〉, which is the desired state.

For convenience, let us define the matrix B := Ω−1/2 (and therefore κB = √κΩ and
‖B‖ =

√
κΩ/‖Ω‖). We now need to prepare a block-encoding of BA and the quantum

state B|b〉
‖B|b〉‖ , which we then use to invoke Theorem 32.
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We begin by using Lemma 41 with some precision εB to construct a (αB, aB, εB)-block-
encoding of B = Ω−1/2, where αB = 2

√
κΩ
‖Ω‖ = 2‖B‖, and aB = aΩ + 1. This bounds εΩ

as

εΩ = o


√
‖Ω‖εB

κΩ1.5 log
(

κΩ√
‖Ω‖εB

)
 ,

and has a cost of
TB := O

(
αΩκΩ
‖Ω‖ log

(
κΩ

εB
√
‖Ω‖

)
TΩ

)
Then using Lemma 20 with precision γ satisfying γ ≥ 4

√
2 max (‖B‖εA, ‖A‖εB), we

get a
(2‖A‖‖B‖, aA + aB + 3, γ)-block-encoding of A′ := BA = Ω−1/2A at a cost

TA′ := O
((

αA
‖A‖

TA + αB
‖B‖

TB

)
log

(‖A‖‖B‖
γ

))
.

To prepare B|b〉
‖B|b〉‖ , we use Lemma 13 with precision εb ≥ 2εBκB/‖B‖. This prepares a

state that is εb-close to |b′〉 := B|b〉
‖B|b〉‖ with constant success probability at a cost of

Tb′ := O
(
αBκB
‖B‖

(TB + Tb)
)

= O(κB(TB + Tb))

We could invoke OLS directly using the above two, but that ends up with a product
of sub-normalization factors (α terms) in the complexity. We want to avoid this, because
in most common cases α-s for block-encodings are quite large. So we also pre-amplify UL
using Corollary 12: for any δL ≥ 2εL we get a (

√
2‖L‖, aL + 1, δL)-encoding of L at a cost

of
TL′ := O

(
αL
‖L‖

TL log
(‖L‖
δL

))
.

Now that we have these, we can use Theorem 32 to get a quantum state δ′-close to
|ψ〉 := A+

L |b
′〉

‖A+
L |b′〉‖

, where A+
L = (ATΩ−1A + λLTL)−1ATΩ−1/2. This would require that

γ,
√
λδL ∈ o

(
δ′

κ3 log2( κδ′ )

)
and would cost

O
(
κ log κ

((
2‖A‖‖B‖+

√
2λ‖L‖

‖BA‖+
√
λ‖L‖

)
log

(
κ

δ′

)
(TA′ + TL′) + Tb′

))
.

To simplify the ratio of norms term, we can first lower-bound ‖BA‖ ≥ ‖A‖/
∥∥B−1∥∥ =

‖A‖/
√
‖Ω‖. And as ‖B‖ =

√
κΩ/‖Ω‖, the whole term can be simplified to O

(√
κΩ
)
. This

simplifies the cost expression to O
(
κ log κ

(√
κΩ log (κ/δ′) (TA′ + TL′) + Tb′

))
.

We can compute the error between |ψ〉 and the expected state by using Lemma 15.
For the final error to be δ, we have to choose εb = δ/2κ and δ′ = δ/2. Therefore

εB ≤
εb‖B‖
4κB

= Θ
(

δ

κ
√
‖Ω‖

)

γ,
√
λδL ∈ o

(
δ

κ3 log2(κ/δ)

)
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=⇒ log
(1
γ

)
= o

(
log

(
κ

δ

))
, log

( 1
δL

)
= o

(
log

(√
λκ

δ

))

εA = o

(
γ

‖B‖

)
, εB = o

(
γ

‖A‖

)
Combining both bounds of εB by using sums or products, we can effectively bound

εΩ = o

 δ

‖A‖κ3κΩ1.5 log3 κ
δ log

(
κΩ

‖A‖‖Ω‖

)


Finally for the final costs, we calculate the respective coefficients of terms TA, TΩ, TL
and Tb, (excluding the common factor of κ√κΩ log κ for brevity). Let us label these
“coefficient extraction” functions as C with matching subscripts, and the total cost as T .

CA(T ) = O
(

log
(
κ

δ

)
CA(TA′)

)
= O

(
log

(
κ

δ

)
αA
‖A‖

log
(‖A‖‖B‖

γ

))
= O

(
αA
‖A‖

log2
(
κκΩ‖A‖
δ‖Ω‖

))
CL(T ) = O

(
log

(
κ

δ

)
CL(TL′)

)
= O

(
log

(
κ

δ

)
αL
‖L‖

log
(‖L‖
δL

))
= O

(
αL
‖L‖

log2
(
κ‖L‖
δ

))
CΩ(T ) = O

(
log

(
κ

δ

)
CΩ(TA′) + CΩ(Tb′)√

κΩ

)

= O
((

log
(
κ

δ

)
log

(‖A‖‖B‖
γ

)
+ 1

)
CΩ(TB)

)
= O

(
log2

(
κκΩ‖A‖
δ‖Ω‖

)
αΩκΩ
‖Ω‖ log

(
κΩ

εB
√
‖Ω‖

))

= O
(
αΩκΩ
‖Ω‖ log3

(
κκΩ‖A‖
δ‖Ω‖

))
Cb(T ) = O

(
CΩ(Tb′)√

κΩ

)
= O(1)

And hence the final complexity is given by the expression

T = O(κ√κΩ log κ (CA(T ) · TA + CL(T ) · TL + CΩ(T ) · TΩ + Cb(T ) · Tb))

= O
(
κ
√
κΩ log κ

(
αA
‖A‖

log2
(
κκΩ‖A‖
δ‖Ω‖

)
TA + αL

‖L‖
log2

(
κ‖L‖
δ

)
TL + αΩκΩ

‖Ω‖ log3
(
κκΩ‖A‖
δ‖Ω‖

)
TΩ + Tb

))
= O

(
κ
√
κΩ log κ

((
αA
‖A‖

TA + αL
‖L‖

TL + αΩκΩ
‖Ω‖ TΩ

)
log3

(
κκΩ‖A‖‖L‖

δ‖Ω‖

)
+ Tb

))
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One immediate observation is that for the special case of the (unregularized) quantum
GLS problem (when L = 0 and λ = 0), our algorithm has a slightly better complexity
than [CGJ19] and requires fewer additional qubits. Now, we will state the complexities of
this algorithm in specific input models, namely the quantum data structure model and the
sparse-access input model.

Corollary 43 (Quantum Generalized Least Squares with General `2-Regularization in
the Quantum Data Structure Model). Let A,L ∈ RN×d be the data and penalty matrices
with effective condition numbers κA, κL respectively. and Ω ∈ RN×N be the covariance
matrix with condition number κΩ. Let the matrices A,L,Ω and the vector b be stored in a
quantum-accessible data structure. Define κ as

κ := κL

(
1 +

√
κΩ‖A‖√
λ‖Ω‖‖L‖

)
Then for any δ > 0, we can prepare the quantum state that is δ-close to(

ATΩ−1A+ λLTL
)−1

ATΩ−1 |b〉∥∥∥(ATΩ−1A+ λLTL)−1ATΩ−1 |b〉
∥∥∥

with probability Θ(1), at a cost of

O
(
κ
√
κΩ

(
µA
‖A‖

+ µL
‖L‖

+ κΩµΩ
‖Ω‖

)
polylog

(
Nd, κ,

1
δ
,
κΩ
‖Ω‖ , ‖A‖, ‖L‖, λ

))
(53)

Proof. The proof is very similar to Corollary 34 with the extra input of Ω. We can
use the data structure to prepare the block-encodings for A,L,Ω and the state |b〉, with
precisions εA, εL, εΩ, εb respectively. We invoke Theorem 42 with a precision of δb, and
choose the above ε terms to be equal to their corresponding upper-bounds. And finally
we use Lemma 15 with εb = δ/2κ and δb = δ/2 to get the final error as δ.

Now, µA = ‖A‖F (similarly for µL and µΩ). As ‖A‖F ≤
√
r(A)‖A‖, where r(A) is the

rank of A, we have that the complexity of Corollary 43 can be re-expressed as

O
(
κ
√
κΩ

(√
r(A) +

√
r(L) +

√
r(Ω)κΩ

)
polylog

(
Ndκ

δ

))
. (54)

Corollary 44 (Quantum Generalized Least Squares with General `2-Regularization in
the Sparse Access Model). Let A ∈ RN×d be a (sAr , sAc ) row-column sparse data matrix.
Let L ∈ RN×d be a (sLr , sLc ) row-column sparse penaly matrix. Let Ω ∈ RN×N be a (sΩ

r , s
Ω
c )

row-column sparse covariance matrix. Suppose we have a procedure to prepare |b〉 in cost
Tb. Define κ as

κ := κL

(
1 +

√
κΩ‖A‖√
λ‖Ω‖‖L‖

)
Then for any δ > 0, we can prepare the quantum state that is δ-close to(

ATΩ−1A+ λLTL
)−1

ATΩ−1 |b〉∥∥∥(ATΩ−1A+ λLTL)−1ATΩ−1 |b〉
∥∥∥

with probability Θ(1), at a cost of

O

κ√κΩ


√
sAr s

A
c

‖A‖
+

√
sLr s

L
c

‖L‖
+
κΩ
√
sΩ
r s

Ω
c

‖Ω‖ + Tb

polylog
(
Nd, κ,

1
δ
,
κΩ
‖Ω‖ , ‖A‖, ‖L‖, λ

)
(55)
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Proof. The algorithm is similar to Corollary 43, but with αA =
√
sAr s

A
c , αL =

√
sLr s

L
c ,

αΩ =
√
sΩ
r s

Ω
c .

5 Future Directions
Our algorithms for quantum linear regression with general `2-regularization made use of
QSVT to implement various several matrix operations. However, it is possible to use QSVT
directly to obtain the solution to quantum ridge regression. This requires computing a
polynomial approximation for the transformation σ 7→ σ/(σ2 + λ), to be applied on the
singular values of A, which lie between [1/κA, 1]. However, it is unclear how to extend this
while considering general `2-regularization. For instance, even when the data matrix and
the penalty matrix share the same right singular vectors, this approach involves obtaining
polynomial approximations to directly implement transformations of the form σ 7→ σ/(σ2+
λσ̃2), where σ̃ is a singular value of the penalty matrix L. A monomial is no longer sufficient
to approximate this quantum singular value transformation. It would be interesting to
explore whether newly developed ideas of M-QSVT [RC22] can be used to implement such
transformations directly with improved complexity.

While developing quantum machine learning algorithms, it is essential to point out
the caveats, even at the risk of being repetitive [Aar15]. Our quantum algorithms output
a quantum state |x〉 whose amplitudes encode the solution of the classical (regularized)
linear regression problem. While given access to the data matrix and the penalty ma-
trix, we achieve an exponential advantage over classical algorithms, this advantage is not
generic. If similar assumptions (`2-sample and query access) are provided to a classical
device, Gilyén et al. developed a quantum algorithm [GST22] for ridge regression (building
upon [CGL+20]) which has a running time in O(poly(κ, rank(A), 1/δ)). This implies that
any quantum algorithm for this problem can be at most polynomially faster in κ under
these assumptions. One might posit that similar quantum-inspired classical algorithms for
general `2-regression can also be developed. The exponential quantum speedup, however,
is retained when the underlying matrices are sparse.

Another future direction of research would be to recast our algorithms in the framework
of adiabatic quantum computing (AQC) following the works of [LT20b, AL22]. Quantum
algorithms for linear systems in this framework have the advantage that a linear dependence
on κ can be obtained without using complicated subroutines like variable-time amplitude
amplification. The strategy is to implement these problems in the AQC model and then use
time-dependent Hamiltonian simulation [LW18] to obtain their complexities in the circuit
model. One caveat is that, so far, time-dependent Hamiltonian simulation algorithms
have only been developed in the sparse-access model and therefore the advantage of the
generality of the block-encoding framework is lost.

In the future, it would also be interesting to explore other quantum algorithms for ma-
chine learning such as principal component regression and linear support vector machines
[RML14] using QSVT. Finally, following the results of [CdW21], it would be interesting
to investigate techniques for quantum machine learning that do not require the quantum
linear systems algorithm as a subroutine.
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A Algorithmic Primitives
This appendix contains detailed proofs for certain lemmas and corollaries in Section 3, for
completeness. These proofs are not necessary to understand the techniques and results of
the paper, but may help the reader develop a better intuition for the methods used.

Corollary 12 (Uniform Block Amplification). Let A ∈ RN×d and δ ∈ (0, 1]. Suppose
U is a (α, a, ε)-block-encoding of A, such that ε ≤ δ

2 , that can be implemented at a cost
of TU . Then a (

√
2‖A‖, a + 1, δ)-block-encoding of A can be implemented at a cost of

O
(
αTU
‖A‖ log (‖A‖/δ)

)
.

Proof. We can re-interpret U as a (α/‖A‖, a, ε/‖A‖)-block-encoding of A/‖A‖. Invoking
Lemma 11 with γ = δ

2‖A‖ , we get U
′, a (
√

2, a+1, ε/‖A‖+ δ
2‖A‖)-block-encoding of A/‖A‖,

implemented at a cost ofO
(

α
‖A‖TU log (‖A‖/δ)

)
which is a (

√
2‖A‖, a+1, δ)-block-encoding

of A.

Lemma 13 (Applying a Block-encoded Matrix on a Quantum State). Let A be an s-qubit
operator such that its non-zero singular values lie in [‖A‖/κ, ‖A‖]. Also let δ ∈ (0, 1), and
UA be an (α, a, ε)-block-encoding of A, implementable in time TA, such that

ε ≤ δ‖A‖
2κ .

Furthermore, suppose |b〉 be an s-qubit quantum state, prepared in time Tb. Then we can
prepare a state that is δ-close to A|b〉

‖A|b〉‖ with success probability Ω (1) at a cost of

O
(
ακ

‖A‖
(TA + Tb)

)

Proof. The proof is similar to Lemma 24 of [CGJ19]. We have ‖A |b〉‖ ≥ ‖A‖κ . By applying
UA to |0〉 |b〉 (implementable at a cost of TA + TB), followed by ακ

‖A‖ -rounds of amplitude
amplification (conditioned on having |0〉 in the first register) , we obtain a quantum state
that within δ of |0〉 ⊗ A|b〉

‖A|b〉‖ .
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Corollary 14 (Applying a pre-amplified Block-encoded Matrix on a Quantum State). Let
A be an s-qubit operator such that its non-zero singular values lie in [‖A‖/κ, ‖A‖]. Also
let δ ∈ (0, 1), and UA be an (α, a, ε)-block-encoding of A, implementable in time TA, such
that

ε ≤ δ‖A‖
4κ .

Furthermore, suppose |b〉 be an s-qubit quantum state that can be prepared in time Tb.
Then we can prepare a state that is δ-close to A|b〉

‖A|b〉‖ with success probability Ω (1) at a cost
of

O
(
ακ

‖A‖
log

(
κ

δ

)
TA + κTb

)
Proof. We first pre-amplify the unitary using Corollary 12 with some γ ≥ 2ε. We get a
(
√

2‖A‖, a+ 1, γ)-block-encoding of A implemented at a cost of

TA′ := O
(
αTA
‖A‖

log
(‖A‖

γ

))
Now we invoke Lemma 13 with δ = 2κγ

‖A‖ and the above unitary to prepare the state,
which has a time complexity of

O(κ (TA′ + Tb)) = O
(
ακ

‖A‖
log

(
κ

δ

)
TA + κTb

)

Lemma 15 (Robustness of state preparation). Let A be an s-qubit operator such that
its non-zero singular values lie in [‖A‖/κ, ‖A‖]. Suppose |b′〉 is a quantum state that is
ε/2κ-close to |b〉 and |ψ〉 is a quantum state that is ε/2-close to A |b′〉 /‖A |b′〉‖. Then we
have that |ψ〉 is ε-close to A |b〉 /‖A |b〉‖.

Proof. We know that ∥∥|b〉 − |b′〉∥∥ ≤ ε

2κ
and ∥∥∥∥|ψ〉 − A |b′〉

‖A |b′〉‖

∥∥∥∥ ≤ ε

2
For small enough ε � κ, we can assume that ‖A |b〉‖ ≈ ‖A |b′〉‖. We can derive the final
error as ∥∥∥∥|ψ〉 − A |b〉

‖A |b〉‖

∥∥∥∥ =
∥∥∥∥|ψ〉 − A |b〉 −A |b′〉+A |b′〉

‖A |b〉‖

∥∥∥∥
=
∥∥∥∥|ψ〉 − A |b′〉

‖A |b〉‖
+ A |b′〉 −A |b′〉

‖A |b〉‖

∥∥∥∥
≤
∥∥∥∥|ψ〉 − A |b′〉

‖A |b′〉‖

∥∥∥∥+
∥∥∥∥A |b′〉 −A |b′〉‖A |b〉‖

∥∥∥∥
≤ ε

2 + ‖A‖‖|b〉 − |b
′〉‖

‖A |b〉‖

≤ ε

2 + ε

2
= ε
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A.1 Arithmetic with Block-Encoded Matrices
Lemma 17 (Linear Combination of Block Encoded Matrices). For each j ∈ {0, . . . ,m−1},
let Aj be an s-qubit operator, and yj ∈ R+. Let Uj be a (αj , aj , εj)-block-encoding of Aj,
implemented in time Tj. Define the matrix A =

∑
j yjAj, and the vector η ∈ Rm s.t.

ηj = yjαj. Let Uη be a η state-preparation unitary, implemented in time Tη. Then we can
implement a ∑

j

yjαj ,max
j

(aj) + s,
∑
j

yjεj


block-encoding of A at a cost of O

(∑
j Tj + Tη

)
.

Proof. Let a = maxj(aj) + s and α =
∑
j yjαj . For each j ∈ {0, . . . ,m− 1}, construct the

extended unitary U ′j by padding ancillas to Uj , i.e. U ′j = Ia−s−aj ⊗ Uj . Note that U ′j is
a (αj , a − s, εj)-block-encoding of Aj . Let Bj = (〈0|aj ⊗ Is)Uj(|0〉aj ⊗ Is) denote the top
left block of Uj and U ′j , and observe that ‖Aj − αjBj‖ ≤ εj . We also construct P — an η
state-preparation unitary s.t. P |0〉 =

∑
j
√
yjαj |j〉 — by invoking Definition 16.

Consider the unitary W = (P † ⊗ Ia−1 ⊗ Is)(
∑
j |j〉〈j| ⊗ U ′j)(P ⊗ Ia−1 ⊗ Is). This is a

(α, a, ε)-block-encoding of A =
∑
j yjAj , where ε is computed as:

‖A− α(〈0|a ⊗ Is)W (|0〉a ⊗ Is)‖ =

∥∥∥∥∥∥
m−1∑
j=0

yjAj − α(〈0|a ⊗ Is)W (|0〉a ⊗ Is)

∥∥∥∥∥∥
=

∥∥∥∥∥∥
∑
j

yjAj − α(〈0|a ⊗ Is)(
∑
j

P † |j〉〈j|P ⊗ U ′j)(|0〉
a ⊗ Is)

∥∥∥∥∥∥
=

∥∥∥∥∥∥
∑
j

yjAj − α
∑
j

〈0|P † |j〉〈j|P |0〉 ⊗Bj

∥∥∥∥∥∥
=

∥∥∥∥∥∥
∑
j

(
yjAj − α 〈0|P † |j〉〈j|P |0〉Bj

)∥∥∥∥∥∥
=

∥∥∥∥∥∥
∑
j

(
yjAj − α

(yjαj
α

)
Bj

)∥∥∥∥∥∥
≤
∑
j

yj‖Aj − αjBj‖

≤
∑
j

yjεj = ε

Lemma 21 (Tensor Product of Block Encoded Matrices). Let U1 and U2 be (α, a, ε1)
and (β, b, ε2)-block-encodings of A1 and A2, s and t-qubit operators, implemented in time
T1 and T2 respectively. Define S := Πs

i=1SWAPa+i
a+b+i. Then, S(U1 ⊗ U2)S† is an (αβ, a +

b, αε2 + βε1 + ε1ε2) block-encoding of A1 ⊗A2, implemented at a cost of O(T1 + T2).

Proof. From the property of Kronecker products (A ⊗ B)(C ⊗ D) = (AC) ⊗ (BD). For
j ∈ {1, 2} let Ãj =

(
〈0|⊗aj ⊗ Is

)
Uj
(
|0〉⊗aj ⊗ Is

)
. Then it follows that(

〈0|⊗a ⊗ Is ⊗ 〈0|⊗b ⊗ It
)

(U1 ⊗ U2)
(
|0〉⊗a ⊗ Is ⊗ |0〉⊗b ⊗ It

)
= Ã1 ⊗ Ã2 (56)
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Therefore Ã1⊗ Ã2 is block-encoded in U1⊗U2 as a non-principal block-encoding, and
we can use SWAP gates to move it to the principal block as follows.

S
(
|0〉⊗a ⊗ Is |0〉⊗b ⊗ It

)
= Πs

i=1SWAPa+i
a+b+i

(
|0〉⊗a ⊗ Is |0〉⊗b ⊗ It

)
= Πs−1

i=1 SWAPa+i
a+b+iSWAPa+s

a+b+s

(
|0〉⊗a ⊗ Is |0〉⊗b ⊗ It

)
= Πs−1

i=1 SWAPa+i
a+b+i

(
|0〉⊗a ⊗ Is−1 |0〉⊗b ⊗ It+1

)
= . . .

= |0〉⊗a+b ⊗ Is+t

Similarly, (
〈0|⊗a ⊗ Is ⊗ 〈0|⊗b ⊗ It

)
S† = 〈0|⊗a+b ⊗ Is+t.

From Equation 56 we have

Ã1 ⊗ Ã2 =
(
〈0|⊗a ⊗ Is ⊗ 〈0|⊗b ⊗ It

)
S†S(U1 ⊗ U2)S†S

(
|0〉⊗a ⊗ Is |0〉⊗b ⊗ It

)
=
(
〈0|⊗a+b ⊗ Is+t

)
S(U1 ⊗ U2)S†

(
|0〉⊗a+b ⊗ Is+t

)
Next, we look at the subnormalization and error terms.

∥∥∥A1 ⊗A2 − αβÃ1 ⊗ Ã2
∥∥∥

2
≤
∥∥∥(αÃ1 + ε1Is)⊗ (βÃ2 + ε2It)− αÃ1 ⊗ βÃ2

∥∥∥
2

=
∥∥∥αÃ1 ⊗ ε2I2 + ε1Is ⊗ βÃ2 + ε1Is ⊗ ε2I2

∥∥∥
2

≤ αε2
∥∥∥Ã1

∥∥∥
2

+ βε2
∥∥∥Ã2

∥∥∥
2

+ ε1ε2

= αε2 + βε1 + ε1ε2

where we have used ‖A1‖2 ≤ α
∥∥∥Ã1

∥∥∥
2

+ ε1 and
∥∥∥Ã1

∥∥∥
2
≤ 1 and similarly for A2.
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