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Abstract: Spacetime torsion is known to be highly suppressed at the end of inflation, which is

called preheating. This result was recently shown in (EPJ C (2022)) in the frame of Einstein–Cartan–

Brans–Dicke inflation. In this paper, it is shown that a torsionful magnetogenesis in QED effective

Lagrangean drives a torsion damping in order to be subsequently amplified by the dynamo effect

after the generation of these magnetic fields seeds. This damping on amplification would depend

upon the so-called torsion chirality. Here, a cosmic factor gkK is present where K is the contortion

vector and k is the wave vector which is connected to the inverse of magnetic coherence length. In

a second example, we find Higgs inlationary fields in Einstein–Cartan gravity thick domain walls

(DWs). Recently, a modified Einstein–Cartan gravity was given by Shaposhnikov et al. [PRL (2020)]

to obtain Higgs-like inflatons as a portal to dark energy. In the case of thick DW, we assume that

there is a torsion squared influence, since we are in the early universe where torsion is not so weak as

in the late universe as shown by Paul and SenGupta [EPJ C (2019)] in a 5D brane-world. A static DW

solution is obtained when the inflationary potential vanishes and Higgs potential is a helical function.

Recently, in the absence of inflation, domain wall dynamos were obtained in Einstein–Cartan gravity

(EC) where the spins of the nucleons were orthogonal to the wall.

Keywords: modified gravity theories; magnetogenesis; QED and preheating; domain walls;

Higgs inflation

1. Introduction

Recently, Shaposhnikov et al. [1] have investigated a metric-affine theory, alternative to
general relativity, which is a generalization of the Einstein–Cartan theory of gravity (EC) [2].
This EC extension contains other invariants, besides the Ricci scalar in Riemann–Cartan
spacetime, called Nieh–Yan and Host topological invariants. This is due to the fact that
in EC gravity, the Riemann–Cartan curvature tensor is totally asymmetric and violates
parity. Earlier, the author has showed [3] how to obtain magnetic seed fields from the
electromagnetic gravity field Lagrangean, where the term ǫijkl Rijkl is added to the action.
In the Shaposhnikov et al. Einstein–Cartan gravity, this term is also added to the action and
called a Holst term. Their action, which is more complete than usual EC, gives rise to Higgs
inflation. The simple presence of a scalar gravity sector is not enough to guarantee that
the scalar field is a Higgs field [4]. Therefore, here, we shall investigate the non-minimal
coupling of EC gravity to QED and scalar gravity sectors, via non-minimal coupling,
and investigate static domain walls (DWs) in the Riemann-flat curvature plus torsionful
spacetime. There, the QED gravity sector is also obtained from non-minimal coupling
with torsion. Previously, Bassett et al. [5] investigated the variation of the magnetic energy
density compared to electromagnetic radiation in a photon fluid. This has been done in
a GR magnetogenesis frame. They found a cosmic dynamo as a metric perturbation at
preheating ending of inflation. Since torsion is highly suppressed at that time epoch of
the universe, one is led to think that torsion might not contribute to the magnetogenesis
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process [6]. Nevertheless, in this paper, we show that in EC [7] magnetogenesis, the torsion-
damping effect affects the self-induction equation with non-adiabatic helical magnetic
fields. This is made by decreasing the magnetic energy density to values compatible to
astronomical observations [8]. Since EC gravity and GR are equivalent in the absence of
matter sector [9], we must use in this QED the fermionic matter sector or the scalar gravity
as a source of torsion. In the GR case, a similar result with helical fields has been established
by Schober et al. [10]. Present results are accomplished by considering a semi-minimal
coupling quantum electrodynamics (QED) on a torsionful inflationary case. We assume
that torsion does not couple to the electromagnetic field minimally, in the QED case, and
no massive photon to break gauge invariance is produced [11]. Recently, Khotari et al. [12]
considered modifications of the minimal coupling of electromagnetism with torsion [12]
with spin-one fields of non-Abelian nature, driven by torsionful magnetogenesis. This
paper contains the derivation of a torsionful cosmic self-induced equation, which was
obtained by variation of the torsionful QED effective Lagrangean. The value of torsion
in terms of a cosmic time dependent factor is substituted into this cosmic self-induced
equation and solved. Its solution is shown to depend upon a parameter β written in terms
of torsion coupling, electric resistivity and the wave vector k. This results in a magnetic
field damping, which is driven by torsion coupling of the magnetic field energy density.
Results agree with the observations of modern astronomy. Several types of dynamos have
been presented in the literature [13,14]. For example, chiral dynamos instabilities [15]
are endowed with torsion. To our knowledge, this is the first time a cosmic preheting
dynamo in a torsionful helical magnetogenesis is found to be compatible with observations
with the aid of torsionful QED. Non-adiabatic and superadiabatic magnetic fields can be
found from the present solutions. In addition to primordial magnetic field seeds in the
QED sector, we also find seed fields from the presence of magnetic fields external to a
static DW with torsion. Torsion at the early universe, where DWs are present, is of the
order of 1 MeV [16], and this reasonably big order of magnitude allows us to show that
torsion depends upon the DW equations from Euler–Lagrange equations. The paper is
organized as follows: In Section 2, we present the effective QED Lagrangean with semi-
minimal coupling and found a differential equation for the magnetic vector potential. In
Section 3, we obtain galactic dynamo seeds from magnetic self-induction equation. In
Section 4, we present the derivation of the magnetic wave equation in the background
of torsionful QED cosmology. Solutions are found which depend upon torsion electric
resistivity coupling. In Section 5, we investigate the role of a torsion on a static DW with
scalar inflation in EC gravity without Nieh–Yan inflation or Holst invariant terms in the
action, as considered by Karananas et al. [4]. In Section 6, we derive the self-induction
equations in comoving coordinates of a DW static metric. Section 7 is left to discussions
and conclusions. It is important to note that to consider dynamos in the early universe, we
would need turbuence in plasmas, and since we do not address this theme here, we only
consider dynamos to be used to amplify pre-existing magnetic fields generated by QED
and other particle physics methods. Very recently S Capozziello et al. [17] has obtained a
comparison between the gravitational contraction and dynamo effects as competing effects
to amplify the magnetic fields.

2. QED Effective Lagrangean and Semi-Minimal Torsion–Photon Coupling RF
2

Though the torsion effects are highly suppressed, in comparison with curvature ones
in the Einstein gravity sector, we do not consider Minkowski space here. This is due to the
fact that as can be easily shown in this paper, from field equations, that torsion vanishes in
Minkowski space. From Maziteli and Spedallieri [18], the QED effective Lagrangean is

S =
1

m2

∫
d4x(−g)

1
2 (−1

4
F2 + (m2 + ǫR)φφ̄ − DjφDjφ̄) (1)

Operator, Di = ∂i − ieAi is the covariant derivative for the scalar fields. Maziteli and
Spedalieri [18] have computed an effective Lagrangean for the e.m field by integrating
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the quantum scalar field. Via dimensional regularisation, they obtained the effective
Lagrangean

Le f f = −1

4
F2 +

1

2

1

4π
d
2

(
m

µ
)d−4 ∑ aj(x)m4−2jΓ(j − d

2
) (2)

The first Schwinger–De Witt (SDW) coefficients from Spedelieri et al. work are

a0 = 1 (3)

a1 = −(ǫ − 1

6
)R (4)

a2 =
1

180
(Rijkl R

ijkl − RijR
ij) +

1

2
(ǫ − 1

6
)2R2 +

1

6
(ǫ − 1

5
)R − e2

12
F2 (5)

a3 = ... +
e2

60
Rijkl F

ijFkl − e2

90
RijF

ikFkl + (
1

6
− ǫ)RF2 + ... (6)

Here, we note that due to the use of semi-minimal coupling, where torsion is also our
gravitational field, it appears only in a2 as a first term. Since in the semi-minimal coupling
torsion does not appear, in the covariant derivative, it consequently does not appear in
the electromagnetic field. Accordingly, torsion appears only in the curvature for the first
time in a2. Moreover, from semi-minimal coupling, I shall consider the following effective
Lagrangean in Riemann–Cartan spacetime

Le f f = −1

4
F2(1 +

b

m2
R) (7)

where we have taken n = 1 such as in Widrow and Turner [19]. From this effective La-
grangean, we obtain the field equations for the Friedmann spatially flat metric

ds2 = a2(−dη2 + dx2) (8)

as

∂i(Fij(1 +
bR

m2
)) = 0 (9)

Expanding this last equation, one obtains

Äk −∇2 Ak +
Ṙ

R
Ȧk = 0 (10)

where to obtain this equation, we use the gauges A0 = 0 and divA = 0. Moreover, we
assume here that in the Riemannian case inflationary epoch R >>> m2, so this would
reduce the last equation to

[Äk +
Ṙ

R
Ȧk] = 0 (11)

where R is the Ricci scalar. This shows that although there is no inflation here, we consider
that torsion has a similar behavior, so actually K̇ >>> m2.

3. Galactic Dynamo Seeds in RF
2 Semi-Minimal Coupling

In this section, we shall solve Equation (11) in the case of curved spacetime with
torsion, and performing the semi-minimal coupling where the Ricci scalar is approximated
taken as 2K̇, where K is the time component K0, which to simplify matters is the only
homogeneous component of contortion, an algebraic combination of torsion. Here, we
assume linearization of the Ricci–Cartan scalar

R = gijR
ij = R∗ + 2∇iK

i − K2 (12)
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where K j = Krj
r represents the trace of torsion tensor, R∗ is the Riemannian Ricci scalar that

shall be taken as a constant as in de Sitter or Einstein space. Let us now perform the variation
of the Lagrangean density

√
gL with respect to the scale cosmological factor a and contortion

K. This would complete the Einstein–Cartan–Maxwell equations systems with propagating
torsion. This can be completed easily by computing the Euler–Lagrange equations

d

dt

∂
√

gL
∂ȧ

−
∂
√

gL
∂a

= 0 (13)

d

dt

∂
√

gL
∂K̇

−
∂
√

gL
∂K

= 0 (14)

The last equation determines contortion K in terms of the scale factor a. This yields

K = −3ȧ

a
(15)

Before applying this result to the expression for the Ricci–Cartan scalar, let us express
this scalar in terms of the scalar a and torsion K. Then, we are left with the following
expression

R = gijR
ij = R∗ + 2K̇ − K2 + ∂tln

√
gK (16)

or

R = gijR
ij = −6[

ä

a
+ (

ȧ

a
)2] + 2K̇ − K2 + (∂tlna3)K (17)

which yields

Ṙ = Ṙ∗ + K̈ + (
ȧ

a
+ 2K)K̇ + 3[

ä

a
− ȧ2

a2
]K (18)

The expression for K̈ is

K̈ = −3[
¨̇a

a
− 3

äȧ

a2
+ (

ȧ

a
)3] (19)

The expression for Ricci–Cartan scalar
√

gR is

a3R = −3[3äa2 + 7ä2a] (20)

Substitution of this expression into the Euler–Lagrange equation above leads to

¨̇aa − 4äȧ = 0 (21)

By making use of the ansatz a ∼ tn, where n is a real number, one obtains the following
algebraic equation

n(n − 2)− 4n2 = 0 (22)

which yields immediatly n = − 2
3 , and a ∼ t−

2
3 , which represents a contracting phase of

the cosmological model with torsion. Therefore, from the above expression for K, one

obtains K ∼ a
3
2 . In terms of cosmic time, the contortion and cosmic factor is K ∼ − 2

3 t−1

and a ∼ t−
2
3 . This shows that in the contracting phase of the cosmological bouncing

model, the contraction of the universe goes faster than torsion, whereas in the expansion
inflationary factor, the torsion decays faster than cosmic expansion, showing that torsion is
really highly suppressed by inflation. Now, to investigate how the magnetic field can be
highly compressed in the contracting phase giving rise to a kind of dynamo action, one

simply compute the ratio Ṙ
R as

Ṙ

R
=

[3K̈ − 2
3 (K

2).]

[3K̇ − 2
3 K2]

(23)
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Being a very weak field at the preheating phase, we may approximate torsion in
order that

Ṙ

R
≈ K̈

K̇
(24)

This expression then yields
Ṙ

R
≈ 2t−1 (25)

Therefore, substitution of this value into the Fourier transformed equation for Ak

above one obtains
Äk + 2t−1 Ȧk = 0 (26)

solution of this differential equation is easy if we assume the ansatz Ak = A0
ktn where n

is an integer and 0-index denotes an initial value. The substitution of this ansatz in the
expression (26) yields the algebraic characteristic equation

n(n − 1) + 2n = 0 (27)

which trivially yields n = −1; then, going back to the solution ansatz, one obtains

Ak ∼ Ak(0)t
−1 (28)

The magnetic field Bseed = ikA and Bseed ∼ BGt−1 and BG = 10−6G, this implies that
Bseed ∼ 10−24Gauss, which is strong enough to be able to seed the galactic dynamo [20].

4. Torsion Chirality QED Magnetogenesis

In this section, the derivation of a dynamo equation from the electromagnetic equa-
tions is given where torsion is introduced by the coupling of the new torsional covariant
derivative: ∇i = ∂i + igKi where Ki is the contortion vector assumed in previous sections.
Here, g is the torsion coupling. One notices that the partial differentiation substitutes the
usual Riemann covariant operator, since we have assumed here that torsion coupling is
not present in principle in the definition of electromagnetic field 2-tensor Fij. Hence, the
Maxwell equations in a Friedmann torsionful universe are given by

∇×(a2E) = ∂t(a2B) (29)

which is the modified Faraday equation in curved Riemann Friedmann spacetime, whereas
the Ampere modified equation is

∇×(a2B) = a2 J (30)

whereas the absence of a monopole equation is given by

∇.(a2B) = 0 (31)

Since a cosmic factor depends only upon cosmic time t, this expression is equivalent
to the regular Maxwell one divB = 0 given in Riemann-flat spacetime without torsion. By
taking the coupling derivative above, we obtain

[∇+ igK]×(a2B) = a2 J (32)

and
∇×[v×(a2B)] + ig[K×B] = σ[−∂t(a2B) + a2∇×(v×B] (33)

where we have used in this computation the Ohm s law

J = σE + v×B (34)
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By taking the hypothesis of amagnetic helical dynamos where

∇×B = λB (35)

and that the term which will appear in the expansion ∇.v = α which would be connected
with the mean field dynamo term or electromotive term αB and the Hubble constant H = ȧ

a
yields the equation of the cosmic dynamo in QED torsionful magnetogenesis as

[∂tB + 2
ȧ

a
B] = −[ηλ2 − g[a2K×B] = J (36)

where we have used in the divergence of velocity the term is ∇ → ik. The special term
gk.K is the coupling of torsion with the chiral torsion helicity given by the scalar dot of the
wave vector k and the contortion vector K. A similar situation has been also addressed by
Karananas and Tsagas [21,22]. To further simplify this equation, one takes the ansatz for
the magnetic field as B = Bseedexp(γt), where γ if positive is the amplification factor of the
magnetic field, one obtains

γ = [g(k.K)− (2H + λ2η + α] (37)

where H = H0 in de Sitter expansion to simplify matters. Then, if γ = g(k.K)− (2H +
λ2η + α), this means that for the greater sign, we obtain the dynamo action, whereas the
equal sign represents the saturation of the dynamo where the magnetic field remains the
same without growing in time. Associated with a plus or minus sign, respectively, is either
spin or torsion vector flips, and these are parallel or antiparallel. Here, the electric resistivity
is η = σ−1, where σ is the electric conductivity parameter. However, Equation (37) and the
magnetic field ansatz yields

B ∼ Bseede[gkK−(2H0+ηλ2+α)]t (38)

where g is the torsion coupling constant. Therefore, whether the magnetic field is enhanced
or damping by chiral torsional effects depends only upon torsion chirality. Now, with
this solution at hand, we may perform the astrophysical analysis of this solution. We
notice that if the chirality kK term is negative, therefore, we might have a decaying of the
magnetic field on a strong suppression as inflationary ends. However, on the contrary, if it
is positive or right-handed, the torsion chirality induces a dynamo action. Now, let us drop
the hypothesis of the Hubble constant de Sitter cosmology and write H in terms of the a(t)
cosmic scale factor. Then, the magnetic field above takes a more interesting solution where
the adiabatic magnetic field is now modified by an exponential term which is fundamental.
The general B field is

B ∼ Bseede[gkK−(ηλ2+α)]ta−2 (39)

So, even if the adiabaticity expression tends to damp the magnetic field with cosmic
expansion, the mere existence of a positive or right-handed torsion chirality makes the
dynamo action possible. Furthermore, one could even notice that in the absence of torsion,
the magnetic field decays always here even in the presence of a convective term. If the
electromagnetic mean field force α is negative and dominates the magnetic helicity term
times the electric resistivity, which is possible since the early universe is positive, the
convection term does contribute to the dynamo onset. Deu to torsion, magnetic energy
density is ρB ∼ B2 ∼ a−2exp[gkK − (ηλ2 + α)]a−2 which shows that torsion may really
damp the magnetic field via chiral torsion factor, unless it is positive.

5. Scalar Gravity–Torsion Sector in Static DW

In this section, we assume there is a distinct source for torsion, namely a scalar field
which is given by a DW with torsion. In the example of a fermionic sector, we have
already obtained [23] a DW in EC gravity, where the spin of nucleons are fermionic sources
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of torsion and are polarized along orthogonal directions to the planar DW. In this case,
we assume that the present domain wall is static and a solution is naturally obtained
from the Lagrangean. In general, EC gravity is sourced by the fermionic sector, and its
energy momentum tensor gives rise naturally to torsion. The scalar torsionless sector DW
Lagrangean is given by

S =
∫

d4x(−g)
1
2 [gij∂iφ∂jφ − λ

2
(φ2 − η2)

2
] (40)

Variation of the action above yields the following wave equation for the scalar field

[∂2
t −∇2]φ + 2λ(φ2 − η2)φ = 0 (41)

In the static case, DW this wave equation reduces to

d2φ

dz2
− 2λ(φ2 − η2)φ = 0 (42)

which yields the following classical solution for the Minkowski DW as

φ(z) = ηtanh(
z

δ0
) (43)

where δ0 = 1
η
√

λ
is the thickness of the wall in flat spacetime. Since the denominator is

essentially the mass of the Higgs-like boson, as observed by Dolgov et al. [24], this δ0 is
microscopically small; otherwise, it is cosmologically large. Therefore, this boson would
have a tiny mass, and it would generate long-range forces which would contradict LHC
experiments. The torsion mass would reach 600 GeV for example [25]. Now, let us use a
non-minimal coupling between torsion and the Higgs-like field to consider the action

S =
∫

d4x(−λ

2
(φ2 − η2)

2
+ DjφDjφ) (44)

Here, Di = ∂i − iSi is the covariant derivative for the scalar fields containing the
minimal coupling, this time between torsion axial vector of components Si and the Higgs-
like field. Let us express the last action explicitly in terms of the torsion by minimal
coupling. This yields

LS2φ = −1

2
gij[∂iφ∂jφ + 2iSiφ∂jφ − S2φ2 − λ

2
(φ2 − η2)

2
] (45)

By applying the Euler–Lagrange equation to this Lagrangean with respect to the
Higgs-like scalar field and axial torsion pseudo-vector, respectively, yields

∂k[
∂L

∂∂kφ
]− ∂L

∂φ
= 0 (46)

and

∂k[
∂L

∂∂kSi
]− ∂L

∂Si
= 0 (47)

From the Lagrangean, for the interaction between torsion and Higgs-like fields in
DW, one obtains the following field equations: First, the one which gives the torsion axial
pseudo-vector sourced by Higgs-like field as

Sk = i∂klnφ (48)
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This shows that the axial torsion pseudo-vector sourced by a Higgs-like field is a
complex torsion. This kind of affine connection appears in loop quantum gravity. Let us
now solve the remaining Equation (46). This yields the following equation

∂k∂kφ − [
λ

2
(φ2 − η2)

2
+ S2]φ = 0 (49)

where S2 = SkSk, therefore, by plugging Equation (47) into this last wave equation for
Higgs-like field in DWs, we obtain

∂k∂kφ − [
λ

2
(φ2 − η2)

2
+ ∂klnφ∂klnφ]φ = 0 (50)

which can approximated by

∂k∂kφ − [
λ

2
(η2)

2 − ∂kφ∂kφ

φ2
]φ = 0 (51)

Recently, [15] we showed that since, by the end of inflation, torsion is highly sup-
pressed in scalar-torsion gravity sector, one may approximate this equation, in order to
obtain the same solution as before for a flat DW, which shows from expression (48) that the
z-component of torsion is given by

Sz = iS0sech2(
z

δ0
) (52)

Now, let us examine this solution for torsion more closely from the physical point
of view. Since hyperbolic secant has an accute Gaussian format, it is squared secant, and
so is the torsion vector component in the direction of the z-coordinate orthogonal to DW.
This seems to indicate that both torsions sourced either by the fermionic sector or scalar
Higgs-like sector have a similar behavior orthogonally to the flat torsional DW. If δ0 is small
microscopically but finite, then when we approach the wall as z → ∞, the Gaussian function
tends to be a delta Dirac distribution. This could for example represent a string crossing a
DW. Primordial magnetic DW with Debye screening has been recently investigated which
gives also motivation to obtain the dynamo equation in comoving coordinates in the next
section as we did for the QED sector dynamo.

6. Decay of Chiral Magnetic Field Seeds in Scalar Higgs-like Sector Einstein–Cartan
Static DWs

In this section, we shall obtain the magnetic dynamo equation in the background of a
planar thick static wall in comoving coordinates, which are given by the metric line element

ds2 = ecz(dt2 − dz2)− e−cz(dx2 + dy2) (53)

This metric by assuming just one non-trivial component of the magnetic field orthog-
onal to the wall as Bz, then, we have from the chiral dynamo [26] equation without the
convection term the following equation

∂tB
z − η∂2Bz = µ5Bz (54)

Note that by considering the metric (53) and the comoving coordinates for the con-
travariant component of the magnetic field as Bz transforms as e−azBz, where c is an
integration constant, one obtains the chiral dynamo equation, even in the absence of
convective terms in the explicit form as

∂t(e
−2czBz)− η∂2

z(e
−2czBz) = µ5(e

−2czBz) (55)
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Here, µ5 is the chiral chemical potential, which is fundamental for a chiral magnetic
effect. By the way, this example here is a new example of the torsional CME (TCME)
investigated by Imaki and Qiu [27]. Furthermore, we note that we are not considering the
convective term here that depends on the velocity of the chiral plasma for example, but yet
we shall obtain c. As usual, the z-component of the magnetic field depends upon the z and
t-cosmic coordinates. Then, the solution of this equation is given by

Bz = B(0)e
−2c(2cη+µ5)t (56)

which decays because we do not have the convective dynamo term. To complete the solution,
one simply multiply this magnetic field component by the comoving component to obtain

Bz = B(0)e
−2c(2cη+µ5)t+z (57)

Therefore, one notices that the domain wall sourced by the Higgs-like field is compati-
ble with the one we have obtained previously in the fermionic sector where the nucleons
spins were polarized along the orthogonal direction to the DW.

7. Conclusions and Outlook

In this paper, we showed that torsional Ohmic effects also affect the amplification of
magnetic fields during preheating. However, despite the weakness of the fields we obtained
here of the order of Btorsion = 10−24G, this estimate is still able to seed galactic dynamo.
This result, which is our main goal in the paper, has been obtained by finding a solution of
QED equations with torsion semi-minimally coupled with an electromagnetic field. This
does not introduce a massive photon as in some previous investigations such as in Proca
magnetogenesis recently investigated by Garcia de Andrade [6] and Adelberger et al. [28].
Effective Lagrangean can be used to determine the torsion which can be used to seed galactic
dynamos. From a cosmic self-induced, torsionful QED background equation, we show
that torsion contributes the magnetic field as a damping coupling with Ohmic resistivity to
decrease the values of the magnetic densities in several situations of astrophysically interest
and to provide results compatible with astronomical observations. The motivation from
this study came from some work by Campanelli et al. [29], where an investigation of similar
issues was undertaken in general relativistic backgrounds of Riemannian geometry, and
by the work of Salim et al. [30,31] on the amplification of the magnetic field in bouncing
cosmological models. Another aspect of magnetogenesis can be found in Pandey [32]. We
also showed that the torsion decouples from the expansion of a magnetic field. Recently,
Banerjee [33] has informed us that values of B − f ield as low as 10−32Gauss may also seed
galactic dynamos. Probably, one of the most interesting features of introducing torsion here
is that since dark energy is repulsive gravity [2] and dark matter is attractive, the slow down
in the magnetic field growing discussed above may be due to torsion contributions to dark
energy. A more detailed investigation on that matter must appear in a forthcoming paper.
Previously, Gasperini [34] showed that it is possible to regularize the curvature singularity
in a radiation dominated universe by the repulsive effect of spin–spin interaction in Einstein–
Cartan gravity. Other types of dynamos in topological defects such as domain walls can
be found recently in the literature [7]. Magnetogenesis is such an important subject that
appeared very recently on a scientific magazine for popular science [25]. Following the
evolution of a double thick domain wall, one containing matter and the other containing
antimatter, given by Dolgov et al. [24] in the context of an inflationary universe, one may
further generalize the ideas discussed here in Section 5. This is work under progress.

Funding: This research received no external funding.

Data Availability Statement: Data availability may be obtained upon reasonable request.



Universe 2022, 8, 658 10 of 10

Acknowledgments: We would like to express my gratitude to Banerjee for helpful discussions on

primordial magnetism. Support from my wife Ana Paula Teixeira de Araujo and financial support

from the University of State of Rio de Janeiro (UERJ) is gratefully acknowledged.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Shaposhnikov, M.; Shkerin, A.; Timiryasov, I.; Zell, S. Einstein-Cartan Portal to Dark Matter. Phys. Rev. Lett. 2021, 126, 161301.

[CrossRef] [PubMed]

2. de Sabbata, V.; Sivaram, C. Spin and Torsion Gravitation; World Scientific: Singapore; New York, NY, USA, 1994.

3. Garcia de Andrade, L. Einstein-Cartan-Holst gravity, chiral dynamos and GWs. Can. J. Phys. 2023, in press.

4. Karananas, G.K.; Shaposhnikov, M.; Timiryasov, I.; Zell, S. Scale and Weyl Invariance in Einstein-Cartan Gravity. Phys. Rev. Lett.

2021, arXiv:2108.05897v2.

5. Bassett, B.A.; Polifrone, G.; Tsujikawa, S.; Viniegra, F. Preheating; magnetic cosmic dynamo. Phys. Rev. D 2001, 63, 023506.

[CrossRef]

6. Garcia de Andrade, L. Topology in Einstein-Cartan Magnetogenesis and Dynamo Effects; Lambert Academic Publishers: Chisinau,

Moldavia, 2021.

7. Garcia de Andrade, L.C. Chiral and non-chiral spinning string dynamo instability from quantum torsion sources. Ann. Phys.

2022, 436, 168666

8. Shukurov, A. Astrophysical Magnetic Fields-From Galaxies to the Early Universe ; Cambridge Astrophysics Monographs: Cambridge,

UK, 2022; Volume 56.

9. Schober, J.; Rogachevskii, I.; Brandenburg, A. Dynamo instabilities in plasmas with inhomogemeous chiral chemical potential.

Phys. Rev. D 2022, 105, 043507. [CrossRef]

10. Schober, J.; Rogachevskii, I.; Brandenburg, A. Production of a chiral magnetic field anomaly, with emerging turbulence and mean

field dynamos. Phys. Rev. Lett. 2022, 128, 065002. [CrossRef]

11. Drummond, I.T.; Hathrell, S.J. QED vacuum polarization in a background gravitational field and its effect on the velocity of

photons. Phys. Rev. D 1980, 22, 343. [CrossRef]

12. Seketh, M.V.S.; Kothari, R.; Jain, P. Torsion driven magnetogenesis at inflationary universe. Phys. Rev. D 2020, 102, 024008.

13. Arnold, V.; Khesin, B. Topological Methods in Hydrodynamics; Springer: New York, NY, USA; London, UK, 1980.

14. Childress, S.; Gilbert, A.D. Stretch, Twist and Fold: The Fast Dynamo; Springer: New York, NY, USA; London, UK, 1996.

15. Garcia de Andrade, L. Addendum to: Dynamical Torsion Suppression in Brans-Dicke Inflation and Lorentz Violation: Einstein-

Cartan-Brans-Dicke-Maxwell Universe with a Chiral Dynamo? Eur. Phys. J. C 2022, 82, 695. [CrossRef]

16. Mavromatos, N.E. Torsion in string-inspired cosmologies in the universe dark sector. arXiv 2021, arXiv:2111.07642.

17. Capozziello, S.; Carleo, A.; Lambiase, G. The amplification of cosmological magnetic fields in external f (T, B) Teleparallel Gravity.

arXiv 2022, arXiv:2208.11186.

18. Mazzitelli, F.D.; Spedalieri, F.M. Scalar Electrodynamics and Primordial Magnetic Fields. Phys. Rev. D 1995, 52, 6694. [CrossRef]

[PubMed]

19. Turner, M.S.; Widrow, L.M. Inflation-produced, large-scale magnetic fields. Phys. Rev. D 1988, 37, 2743. [CrossRef]

20. Tsagas, C.G. Resonant amplication of magnetic seed fields by gravitational waves in the early universe. Phys. Rev. D 2005, 72,

123509. [CrossRef]

21. Kranas, D.; Tsagas, C.G.; Barrow, J.D.; Iosifidis, D. Friedmann-like universes with torsion. Eur. Phys. J. C 2019, 79, 341. [CrossRef]

22. Dolan, B.P. Chiral Germions in the Early Universe. Cl. Quantum Gravity 2010, 27, 249801. [CrossRef]

23. Garcia de Andrade, L. Galactic dynamo Seeds and black holes singularities driven by Einstein-Cartan QCD walls. Ann. Phys.

2022, 440, 168816. [CrossRef]

24. Dolgov, A.D.; Godunov, S.I.; Rudenko, A.S. Evolution of thick domain walls in inflationary and p = ωρ universe. Eur. Phys. J. C

2018, 78, 855. [CrossRef]

25. Belayev, I.; Shapiro, I.; Vale, M.B. Quantum Gravity in Einstein-Cartan theory. Phys. Rev. D 2007, 7645, 0345014.

26. Garcia de Andrade, L. Can Magnetogenesis driven by chiral dynamo instabilities, favor Einstein-Cartan cosmology? Ann. Phys.

2021, 433, 24.

27. Imaki, S.; Qiu, Z. Chiral torsional effect with finite temperature, density, and curvature. Phys. Rev. D 2020, 102, 016001. [CrossRef]

28. Adelberger, E.; Dvali, G.; Gruzinov, A. Photon mass destroyed by vortices. Phys. Rev. Lett. 2007, 98, 010402. [CrossRef] [PubMed]

29. Campanelli, L.; Cea, P.; Fogli, G.L. Lorentz symmetry violation and galactic magnetism. Phys. Lett. B 2009, 675, 155–158.

[CrossRef]

30. Salim, J.; Souza, N.; Bergliaffa, S.P.; Prokopec, T. Creation of cosmological magnetic fields in a bouncing cosmology. J. Cosmol.

Astropart. Phys. 2007, 2007, 011. [CrossRef]

31. Neville, D. Spin-2 propagating torsion. Phys. Rev. D 1981, 23, 1244–1249. [CrossRef]

32. Pandey, L.; Sethi, S.K. Probing Primordial Magnetic Fields Using Lyα Clouds. Astrophys. J. 2013, 762, 15. [CrossRef]

33. Banerjee, R. Private Communication, at Numerical Modeling of Space Plasma Ows; Astronum: Biaritz, France, 2013.

34. Gasperini, M. Repulsive gravity in the very early Universe. GRG J. 1998, 30, 1703–1709. [CrossRef]

http://doi.org/10.1103/PhysRevLett.126.161301
http://www.ncbi.nlm.nih.gov/pubmed/33961466
http://dx.doi.org/10.1103/PhysRevD.63.103515
http://dx.doi.org/10.1103/PhysRevD.105.043507
http://dx.doi.org/10.1103/PhysRevLett.128.065002
http://dx.doi.org/10.1103/PhysRevD.22.343
http://dx.doi.org/10.1140/epjc/s10052-022-10584-7
http://dx.doi.org/10.1103/PhysRevD.52.6694
http://www.ncbi.nlm.nih.gov/pubmed/10019210
http://dx.doi.org/10.1103/PhysRevD.37.2743
http://dx.doi.org/10.1103/PhysRevD.72.123509
http://dx.doi.org/10.1140/epjc/s10052-019-6822-4
http://dx.doi.org/10.1088/0264-9381/27/24/249801
http://dx.doi.org/10.1016/j.aop.2022.168816
http://dx.doi.org/10.1140/epjc/s10052-018-6350-7
http://dx.doi.org/10.1103/PhysRevD.102.016001
http://dx.doi.org/10.1103/PhysRevLett.98.010402
http://www.ncbi.nlm.nih.gov/pubmed/17358459
http://dx.doi.org/10.1016/j.physletb.2009.04.011
http://dx.doi.org/10.1088/1475-7516/2007/04/011
http://dx.doi.org/10.1103/PhysRevD.23.1244
http://dx.doi.org/10.1088/0004-637X/762/1/15
http://dx.doi.org/10.1023/A:1026606925857

	Introduction
	QED Effective Lagrangean and Semi-Minimal Torsion–Photon Coupling RF2
	Galactic Dynamo Seeds in RF2 Semi-Minimal Coupling
	Torsion Chirality QED Magnetogenesis
	Scalar Gravity–Torsion Sector in Static DW
	Decay of Chiral Magnetic Field Seeds in Scalar Higgs-like Sector Einstein–Cartan Static DWs
	Conclusions and Outlook
	References

