DERELI-FS-2021 IOP Publishing
Journal of Physics: Conference Series 2191(2022) 012002  doi:10.1088/1742-6596/2191/1/012002

Basics of Apparent horizons in black hole physics

E Altas !, B Tekin ?

! Department of Physics, Karamanoglu Mehmetbey University, 70100, Karaman, Turkey
2 Department of Physics, Middle East Technical University, 06800, Ankara, Turkey

E-mail: ! emelaltas@kmu.edu.tr

E-mail: ?> btekin@metu.edu.tr

Abstract. !Event Horizon, a null hypersurface defining the boundary of the black hole region
of a spacetime, is not particularly useful for evolving black holes since it is non-local in time.
Instead, one uses the more tangible concept of Apparent Horizon for dynamical black holes
out there in the sky that do all sorts of things: evolve, merge and feed on the environment.
Event Horizon, being a gauge-independent, global property of the total spacetime is easy to
define and locate in the stationary case; on the other hand, Apparent Horizon depends on
the embedding of the surface in spacetime and hence it is somewhat tricky to define. But for
numerical simulations in General Relativity, locating the Apparent Horizon helps one to excise
the black hole region and the singularity to have a stable computation. Moreover, for stationary
solutions cross-sections of these horizons match. Here we give a detailed pedagogical exposition
of the subject and work out the non-trivial case of a slowly moving and spinning black hole.

1. Introduction

Stationary (Kerr) and static (Schwarzschild) black hole solutions of General Relativity have
rather dull lives: stationary ones do the same thing, static ones do nothing as observed by
an observer outside the black hole. While these vacuum solutions obtained in an isolated
universe serve as our starting point for a more physical and detailed understanding of actual
astrophysical black holes, the latter are almost never isolated: the black holes out in the sky
have accretion disks, companion stars, neutron stars or black holes. Black holes feed on their
environment and grow; in fact they are the most dynamical parts of the vacuum. As the
first LIGO/VIRGO gravitational wave detection showed [1], black holes can grow feeding on
other black holes: cannibalistic behavior of these objects-highly curved vacua-could explain the
existence of intermediate mass black holes.

As the astrophysical black holes evolve, concepts such as the Event Horizon defined easily
for eternal black holes are not clearly adequate for us, the transient observers. Recall that the
Event Horizon (H) of a stationary black hole is a co-dimension one null hypersurface in the
totality of the spacetime defined as the boundary of the black hole region from which time-like
or light-like geodesics cannot reach future null infinity [2]. Stated in a different way: it is the
boundary of the region which is not in the causal past of the future null-infinity. This says that
the Event Horizon is a global property of the totality of events which is all of the spacetime.
Therefore, one cannot locate the Event Horizon with local experiments in a finite interval of
time. In this respect, it is apt to say that the Event Horizon Telescope detected the environment
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of the black hole from which one can see at best the cross-section of the Event Horizon, not the
Event Horizon itself.

For dynamical black holes one invents the more useful concept of the ‘“Apparent Horizon” [3],
a co-dimension two spatial surface (hence local in time), which, unfortunately, in general does
not carry geometric invariant data as the Event Horizon but it contains sufficient information
regarding the possible formation of an Event Horizon in the future that it pays to describe it in
detail. In numerical relativity computations, detection of a black hole region is best done with
Apparent Horizons. Within the context of General Relativity, existence of an Apparent Horizon
implies the appearance of a future Event Horizon outside of it. Therefore, one can excise the
region inside the Apparent Horizon (that also includes the singularity) for the stability of the
computation since nothing will come out of that region in classical physics. For modified gravity
theories, an Apparent Horizon need not be inside the Event Horizon (See the discussion and
references in [4]).

Our task in this work is to give a detailed definition of the Apparent Horizon and some related
concepts and apply it to slowly rotating and moving initial data which was recently given in [5].
The layout of this work is follow: in section II we introduce the necessary tools for the defining
equation of an Apparent Horizon as a co-dimension two spatial hypersurface in n dimensions
and use the ADM decomposition of the metric to arrive at an equation in local coordinates, in
section III we consider a conformally flat initial data for n = 1 + 3 dimensions for which the
momentum constraints can be solved exactly following the Bowen-York construction [6]; and we
solve the Hamiltonian constraint for slowly moving and spinning initial data and compute the
properties of the Apparent Horizon. In the Appendix we expound upon some technical points
alluded to in the text.

2. Derivation of the apparent horizon equation
As stated above, the Event Horizon of a black hole, as a null hypersurface, cannot be determined
locally: one has to know the total spacetime to define it. On the other hand, the Apparent
Horizon can be determined locally in time. For this purpose, we need to define a congruence of
null geodesics and its expansion. Our notations will be similar to those of the excellent lecture
notes [2, 7]. We invite the reader to see [9] for detailed information about the apparent horizons.
As shown in Figure 1, we have an n dimensional spacetime manifold ., with a co-dimension
one spacelike hypersurface X, that is dim> = n — 1; and we introduce a co-dimension two
subspace S, dimS = n — 2. Let n* be a timelike unit vector orthogonal to X:

nfn, = —1, (1)
and s* be a spacelike unit vector orthogonal to S
sts, = 1. (2)
We impose the condition that n and s-vectors are perpendicular to each other
s, = 0. (3)

Instead of these two vectors, one can also work with the ingoing null vector k* and the outgoing
null vector ¢#, defined respectively as follows (see Figure 1)

1
k= 5(71“—8“), = nt 4 st (4)

Let g denote the spacetime metric, then the induced metric on the hypersurface ¥ is

Yuv = Guv + Npny, (5)
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K

Figure 1. The unit vectors n*, s* together with the ingoing null vector k* and outgoing null
vector ¢# are shown.

while the induced metric on the subspace S reads
Quv = Vv — SuSv = Guv + NuMy — SuSy, (6)

where p,v run over the spacetime directions. The important concept here is the eztrinsic
curvature of both of these surfaces. For the hypersurface ¥, we have

K,uu = _'V,uU'Yvaanpa (7)

where V, denotes the covariant derivative compatible with the spacetime metric, V,g,, = 0.
From a more geometric vantage point, our definition is as follows: given two vectors (X,Y)
on the tangent space at the point p, that is 7T,,%, and n being the unit normal to ¥, then the
extrinsic curvature of ¥ is defined as K (X,Y) := —y(Vxn,Y). So in local coordinates, one can
take X = 0, Y = 0, to get K, := K(9,,0,) = —v(Va,n,0,) which matches (7). The minus
sign is a convention. Equivalently, one has

K, = -V, —nmn’Ven,. (8)
Similarly, we define the extrinsic curvature of the (n — 2)-dimensional space S as
kuw == —QuoqupV°s’, (9)
and using the definition of the induced metric (6) one obtains
ku = =V s, —nynV,se —nun’Ves, —nunyngn,Vosf + 5,5 Vas, + syn,son,Vos”. (10)
One defines the expansion of the out-going null geodesic congruence as
O = ¢""Vuly, (11)

which is the divergence of the null geodesic congruence along its propagation in the outgoing
null direction. Using (4) and the extrinsic curvatures of the hypersurface and the surface, we
can recast the expansion of the null geodesic congruence as

O = K +k+ (n'n” — ") (K + k) (12)

where K = g" K, and k = g"”ky,,. Since nn” K, =0 =n'n"k,, = s"s"k,., O reduces to
the following neat equation as

@(Z) =-K-—-k+ S”SVKM,,. (13)
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Equivalently one has
@(E) = —q" (KW + km/), (14)
or

Oy = —qY (Kij + kij)y (15)

where the 4, j indices run over coordinates on the hypersurface 3.

The expansion © ) is employed to define the very important concept of a trapped surface.
An outer trapped surface on X is a closed (that is compact without a boundary) co-dimension
two surface such that for outgoing null geodesics orthogonal to the surface, one has O < 0
everywhere on the surface. The subset of ¥ that contains the trapped surfaces is called the
trapped region T, a co-dimension one surface. Finally, Apparent Horizon is the boundary of the
trapped region (an obviously spatial surface) which we shall denote by S := 97T. By definition
Apparent Horizon is a marginally outer trapped surface (MOTS) and satisfies the Apparent
Horizon equation:

@(g) =-K—-k+ SuSVKw, =0. (16)

It is clear that for the case of time-symmetric initial data (K, = 0), the Apparent Horizon
becomes a minimal surface since k£ = 0.

Now that we have defined the Apparent Horizon, given a metric in some coordinates, to
proceed we need to lay out in detail how (16) is expressed in terms of the metric functions. For
this purpose we choose the ADM decomposition of the metric [8].

Let N = N(t,2%) be the lapse function and N = N%(t,27) be the shift vector, then the
line-element reads

ds® = (N;N' — N?)dt* + 2N;dt dz' + ~;;dz’ da?, (17)

or in components one has
goo = NiN' — N?, goi = N; 9ij = Vij> (18)
with the inverses given as
g% = N2, ¢% = NIN“2, gl =~ _ NININ72, (19)
Using the definition (5), one has
Gij = Yij — Minj = Yij, (20)
hence n; = 0. Similarly the relation ¢ = 4% — nin/ = 49 — N N/N~2 yields n® = +N?/N.

Since n* is a timelike vector, using n; = 0, one has ng = =N and choosing for N > 0, we choose
the plus sign for the future-directed time-like vector to arrive at

nt = <Jif’ —]]\\T;) , n, = (—N,0). (21)

We can work out the additional relations between the spacetime metric g and the metric of the
hypersurface v as follows '
goo = Y00 — nong = N;N* — N, (22)

which yields vgg = N;N*. And similarly
9oi = Y0i — non; = N; (23)

yields 70; = N;; and from the inverse metric relations, one obtains v = 0.
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Similar computations for the co-dimension 2 spatial subspace S, after using the condition
nyst = 0, yield s9 =0 and ¢°* = 0.
Now we go back to (11) and express it for the apparent horizon as

qij (Vin; + V;s;) = 0. (24)
From (8), one has K;; = —V;n; = —NI‘% and we obtain?
¢7 (Kij — Disj + Tso + Thjs) = 0. (25)

We denote the Christoffel connection of the induced metric v as EFZ. Then substituting the
corresponding components of the Christoffel connection one has

k Yk Nk
Tij = "Tij + 7 Kis» (26)
and we arrive at -
q” (Kij — DiSj) = 0, (27)

where D; denotes the covariant derivative compatible with the spatial metric 7, D;vyj; = 0.

Before we start working out an example, let us note that there is another simple expression
of the 0y in (11) and hence equation (27). One can show that (see section A of the Appendix
for the proof) Lie-dragging the metric on S along ¢ yields exactly the expansion: namely, one
has

1
Oy = 0" Vs = 30" Lo (28)

where £; denotes the Lie-derivative along the vector £. In section B of the Appendix, 0 is
derived from the minimization of the area along the outing null direction which also yields a
complementary physical picture.

3. Apparent horizon detection

3.1.  The equation in explicit form

From now on we shall work in n = 1+ 3 dimensions. Assume now that the local coordinates on
¥ are denoted as (7,6, ¢) and that the location of the Apparent Horizon depends both on 6 and
¢. The equation to be solved is

g7 (Dss; = Thjs — Ky ) = 0. (29)
Assume that the surface S can be parameterized as a level set such that
®(r,0,9) :=r —h(0,9) =0, (30)

with h being a sufficiently differentiable function of its arguments. Since s’ is normal to the
surface, one has s; ~ 9;®; and because it is a normal vector one can express s; := AJ;®, which
yields

si = )\(1, —ph, —8¢h>. (31)

To solve the equation defining the apparent horizon together with the constraint equations, let
us take the metric on ¥ to be conformally flat as in [6]

1 0 0
vij =yt [0 7 0 , (32)
0 0 7r2sin26

? Note that, explicitly, we have Ki; = 5 (DiN; + D;N; — 8¢yij).
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then one has

s = A (77, =" Oph, =" 0sh) (33)
with the normalization factor given as

—1/2
A= (77 447 (@) + 4% (Dph)2) (34)

As should be clear at this stage, the Apparent Horizon equation will be a rather complicated
non-linear partial differential equation with little hope to yield an exact analytical solution. Let
us further assume (following [6]) v/ K;; = K = 0, which is called the maximal slicing gauge.
Then (29) reads more explicitly as

’yijﬁimj - 'yijffjmk — )\Qmimj@-mj + )\Qmimjmkl“fj + )\mimjKij =0, (35)

where we defined m; := 0;®. After working out each piece in a somewhat tedious computation,
one arrives at

1
"0 =" — S ("0 = A" 000 = Y Brrvss + D" e
+X2((77)2 (Dph)203h + (v99)2(0sh)*03h + 279~ Dy hDghDgdsh)
)\2 rr rr rr
o (2 03er + (1727 (061) 000 + (7)™ (Dph) Dy
— (95h)?00h(v*)*+" 0y
(V2 K + (17)2(B9h)* Kop + (7°)2 ()2 K g — 297" Oph g

— 29" TP K g + 27997¢¢69h8¢hK9¢) = 0. (36)

Given the metric v;; and the extrinsic curvature Kj;, one can find numerical solutions of this
equation up to the desired accuracy. Our goal here is to find approximate analytical solutions to
some physically reasonable initial data which must satisfy the Hamiltonian and the momentum
constraints on the hypersurface ¥ which we discuss next.

3.2. 1+38 form of Einstein equations
The Hamiltonian and the momentum constraints on the hypersurface ¥ follow from Einstein’s
equations as

—*R— K? + K;; K" — 2xT,,, = 0,
2D, KF — 2D K — 2kT},; = 0. (37)
We chosen K = 0 and consider the vacuum case with 7, = 0. Of course this initial data evolves

in time and the remaining parts of the Einstein equations written as a dynamical system are
given as

0

fat’yij = —QNKZ']' —+ DZN] + DjNZ', (38)
9 > K
8tKij =—N (sz — Rz‘j — KKZJ + 2szKj) + gﬁKU — DiDjN, (39)

where £ is the Lie derivative along the shift vector N ¢, Derivation of these well-known
equations can be found in many textbooks, see our derivation in [10].
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3.8. Conformally flat Bowen-York type data

For a conformally flat hypersurface ¥ (v = P fij with f being the flat metric in some
coordinates), the constraint equations (37) (together with the "maximal slicing" condition K = 0)
reduce to a non-linear elliptic equation and an easily solvable linear equation, respectively given
as

. 1 .
DD = — K, (40)
D'K;; =0, (41)

with le]k =0 and Kij = 7/}_2Kij-
Bowen and York [6] gave the following 7-parameter (p;, ¢, J;) solution to (41) on R?® whose
origin is removed:

. 3 3c?
Kij = ﬁ(pmj + pjni + (ning — fij)p - n) tega

3
+ ﬁjlnk (5kilnj + 5kjlni): (42)

(pmj + pjni + (fij — Sning)p - n)

where r > 0 is the radial coordinate, n’ is the unit normal on a sphere of radius r (not related
to the unit normal to £); ¢ = £1 and p-n = pFn;. At this stage, one should note that the
physical meaning of the parameters (p;, a, J;) is not clear; secondly, linearity of (41) means that
each bracketed term solves the equation separately. For the sake of simplicity, we shall choose
a = 0 in what follows.

Here we follow [5]. We shall need the following expression for the right-hand side of (40)

RPN 9 18 / - 18 / - -
R — ()2 5. i7)2 ke 7).p+ ) - 7
K;; K" = 5,4 (p +2(p- 1) )+ 5 (an) P+ g (an) <J><n). (43)
Inserting this expression to (40), one arrives at the complicated Hamiltonian constraint which
can only be solved exactly after making several assumptions. We shall not go into that discussion
which was given in [11] in some detail.

3.4. Conserved quantities
To understand the physical meaning of the parameters in the solution, we shall assume that the
spacetime is asymptotically flat, hence the conformal factor behaves as

P(r)=14+01/r), as r — 00. (44)

Then one has the conserved total momentum associated to ¥ easily written as a boundary
integral on a sphere at spatial infinity:

1 4 1 N
Pl' - dsn’ Kij = / dsn’ Kij. (45)
87 Jsz,

87 52, T

Observe, from the second equality, that only the leading term in the conformal factor is relevant
for this and the following computation. The total conserved total angular momentum can also
be found easily as

1 i 1kl 1 j 1kl
JZ' = 877T€ijk /Sgo dsS ny T K™ = S?Eijk /Sgo dsS ny z K™, (46)
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Given (45) and (46), it is straightforward to compute the integrals for the extrinsic curvature
(42) which at the end yield P; = p; and J; = J;. So for the computation of these two quantities,
let us note once again that, the full form of the conformal factor is not needed; one only needs
to know its behavior at infinity, that is the O(1) term.

From these two conserved quantities, one can see that physically the assumed extrinsic
curvature (42) belongs to a a self-gravitating system (a curved vacuum) with non-zero
momentum and angular momentum. To compute the total mass-energy, the ADM energy,
of the system, the O(1) term of the conformal factor is not sufficient. For that computation we
keep the next order term and assume

E
P(r)=1+ o +0(1/7?) as r — 00. (47)
r
Then defining the deviation from the background as h;; := (¢)*—1)d;;, the ADM energy simplifies
as
Eapn = 1/ dSn; (9,57 — 0ih)) = L[ asniow (48)
167 Jgz "\ v 21 Jgz. o
whose explicit evaluation for (47) yields Eapyr = E, which of course at this stage is almost a
tautology: we have to find the constant F by solving the Hamiltonian constraint.

3.5. Approximate solution of the Hamiltonian constraint for a boosted slowly rotating
gravitating system

To solve the elliptic equation (40) using (43), let us take k to be the direction of the conserved
angular momentum and choose p to be in the xz plane (this is just a choice of the orientation
of the coordinates and no generality is lost)

— A~

J=Jk, 7 = psinfyi + pcos bk, (49)
with 6y a fixed, conserved angle. Then the Hamiltonian constraint (40) becomes

' 2 2
DiDitp = o7 (iﬁ)cl sin 0 sin ¢ — % sin?6 — %(1 + 2(c1 sin 6 cos ¢ + ¢ cos 0)2)> , (50)

where ¢ := sin 8g, co := cos b.

Needless to say, an exact solution of this equation is hopeless, therefore we shall search for
the lowest order perturbative solution assuming an expansion in terms of the momentum and
spin which corresponds to a curved 3-surface with a small linear and small angular momentum.
In [12] the slowly spinning case with no linear momentum was solved in the leading order; and
in [13] slowly moving without spin was solved and in [5], both motions were considered at the
leading order. We now present this solution.

A cursory inspection on the right-hand side suggests that one should have a double series of
the form

¥(1,0,¢) == 0 + 72 4 2@ 1 JpplP 1 0, 4, p? %), (51)

where the functions on the right-hand side depend on (7,6, ¢). At the zeroth order, one has the
usual Laplace equation o
DD =0, (52)

which needs boundary conditions to be uniquely solved. The following boundary conditions as
employed by [13] are apt for the problem at hand: at spatial infinity one demands

lim ¥(r) =1, P(r) >0 (53)

r—00
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and near the origin one has

lim 1) (r) = (), (54)

r— 0

where () might have a singularity at the origin. In fact the zeroth order solution satisfying
these boundary conditions reads

PO =142 (55)
The equations at the next order are

A 9 r
DD = —Zsin? g

) 2 Sin 0 a7 (56)
D;DiypP) = gcl sin € sin qSL (57)

4 (r+a)”

' 3

D;Dip®) = 196 ( + 2(cy sin cos ¢ + c2 cos 0) ) C :_ 7 (58)

These are linear equations whose solutions can be found with the help of the following spherical
harmonics :

Y00<67 (ZS) = \/11771" Ylo(aa ¢) = @COS@, Y20(07¢) \/ 16 (3 COs 6 - 1)

Y6, 0) = wgsinﬁsin(b, Y5 (0, ¢) = \/ESiDQCOSQCOSQﬁ, Y0, ¢) = \/%SHIQCOS(;S.

Then a close inspection of (56) suggests that the proper ansatz for ¥»(!) should be of the form

(0, 0) = w5 (Y0, 0) + 0\ (r) Y6, 9),

from which the solution obeying the boundary conditions (53, 54) can be found to be

(a* + 5a3r + 10a%r? + 5ar? + r?) r?

[e— 2 pe—
40a3(a +1)° 40a(a +1)> (Beos™6 —1). (59)

b (r,0,0) =

To solve (57) one should take

WP (r,0,0) = ¥ (1YP (0, 0) + i ()Y (0, 0),
for which the solution obeying the boundary conditions is

cir (a? + 5ar + 10r?)
80a(a + r)®

w(Jp) (r,0,¢) = — sin € sin ¢. (60)

The ¥®) equation (58) is similar albeit slightly more complicated: the proper ansatz reads

@ = P (1)YL(0,8) + v (Y0, 0)% + o (1)Y5 (0, 8) + v (1) Y20, 6)?,

from which four equations follow whose solutions are as follows:

Oy — VT (8448 + 378a°r + 653a’r? + 5144”3 4 142a*r* — 35ar° — 25r°)
0 N 80ar?(a + r)>
21\fa a
20r5 198 gy (61)
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and

(p) (r) = 71'6% (84(15 + 378a*r + 658a3r? + 539a%r3 4+ 192ar* + 15r5)
! B 4072(a + r)®
21mac? a
: 2
107 ®rta (62)

2 3

w(p )(r) can be obtained from (62) with the replacement ¢f — 4/#cico and zp(p )(r) can be
2 1 51 3

obtained from (62) with the replacement ¢? — ¢3 . All these pieces can be combined to get ¢(®)
at this stage, but a depiction of the final result is redundant since all the parts are given above
and the final expression is cumbersome. We have now all the information at our disposal to
compute the relevant quantities defined on ¥ including the location of the Apparent Horizon.
First let us revisit the ADM energy computation which we started above: We need the
dominant terms up to and including (’)(%) in ¥(r,0,¢). A quick power series expansion yields

), (63)

a J? 5p?
1/1(7‘):1-1‘*"‘ ’/“72

r  40a3r  32ar +0O(

in which the Jp term appears at O (T%) and therefore makes no contribution to the energy. Then
from (47), the ADM energy of the solution follows as

EADM :2a+7a+7. (64)

So one can immediately see that for vanishing spin and vanishing linear momentum (that is the
case of the Schwarschild black hole written in the isotropic coordinates) the constant a is related
to the mass of the Schwarschild black hole mass as a = M/2.

3.6. Apparent Horizion area and the irreducible mass

While studying the efficient processes of extracting energy from rotating black holes,
Christodoulou [14] realized® that there is an irreducible mass M., which is related to the area
Agpy of a section of the event horizon via

_ [Agn
Min 1= [ 08 (65)

For a moving, rotating black hole, the total energy was obtained in [14] as

2

J
E? =M +p*+ —— 66
irr + p + 4M2 ) ( )

ur

in which the physical meaning of each part is clear.

Since we have a dynamical, evolving system, we have at our disposal the area of the Apparent
Horizon, not a section of the Event Horizon. But, following [13], a good approximation to M,
can be given with the help of the area of the Apparent Horizon via

 [Aan
Mg = | 528 (67)

3 Note that after Hawking’s area theorem [15] which came later than Christodoulou’s observation, it became
clear that there must be an irreducible mass at the classical level.

10
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As we shall see, this definition yields the correct expression for the energy of our system obtained
from an expansion of (66). But first we need to find the location of the Apparent Horizon, namely
solve (36) up to the accuracy we have been working with. That area is given simply as

= 7d¢ /7r df+/det g, (68)
0

0
which yields the following ezact form:

27 ™

. 1 1/2
Aag = / do / df sin 6 * h? (1 3 (8ph)* + Ty (8¢h)2> : (69)
0 0

Hence to get the area, all we need is to find the location of the Apparent Horizon up to first
order in the spin and momentum. This suggests the following ansatz:

h(0,¢) = h° +ph? + Jh" + O(p*, J, Jp), (70)
where
Oh=0,  9.h"=0=0ph° = 9,h°. (71)
Ignoring the terms such as (9ph)?, (9,h)? and 9phdyh, (36) reduces to
W6
Ggh—i— 98¢h+cot 00gh — 2r — 4r 2a¢w + ¢4i'28¢h s (01 sin f cos ¢ + c2 cos@) 0. (72)
At the zeroth order, O(p°, JY), it yields
r({W =0, (73)
with ¢ = 1+ ¢ ; setting r = h, one finds
h® = a. (74)

This solution identifies the parameter a as the location of the apparent horizon at the lowest,
dominant, order. For example, for the Schwarzschild black hole h = 2M (as noted above) would
be the exact solution for which the Event Horizon and the Apparent horizon coincide in these
conformally flat, isotropic coordinates.

At O(p) we have an inhomogeneous, linear Helmholtz equation on a sphere (S?),

3 .
<89 98¢ + cot 00y — 1) h? = 16 <01 sin 6 cos ¢ + ¢o cos 9), (75)
while at O(J), we have a homogeneous one:
(89 + 98¢ + cot 00y — 1) h' = (76)

Therefore, we have to find everywhere finite solutions of the following equation

(V3 + k) £ (6.0) = 9(6,9), (77)
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where 6252 is the Laplacian on S? given as

- 1
Ve 1= 0j + cot 00y + ma;. (78)

One can employ the Green’s function technique to solve this problem. For the Helmholtz
operator on the sphere, the Green function G(%,’) is defined as

(V& + k(s +1)) G(2,2) = 00 (2 - &), (79)

which can be found as an infinite series expansion (for example, see [16])

oo 1 & 1 Tn-R)Tn+r+l) (1+3-2\"
G<x’x)_4SiD7TI{Z (n‘)2 [(—k) I(k+1) ( 9 ) ) (80)

n=0

where & = sin 6 cos ¢1 + sin 6 sin ¢j + cos 6k and &’ is a similar expression with some other § and

¢. Employing this Green’s function with x = 71%“6, one finds the first non-trivial correction
to the location of the Apparent Horizon as
1 .
hP = BT (c1sinfcos ¢ + cacosb), (81)

and h’ = 0. Therefore the apparent horizon is perturbed from the zeroth order expansion to

r = h(0, ) :a—%(sin@osinﬁcosqb—i—cos&m:os@), (82)
where, recall that, 6y is the angle between the linear momentum and the spin vectors. So the
magnitude of the spin vector is irrelevant at this order for the location of the Apparent Horizon,
but the angle it makes with the momentum vector is relevant. In Figure 2, we plotted and
example of how the shape of the horizon looks like. There is a dimple on the sphere whose size
depends on the ratio p/a which we took to be large to see the dimple. In the limit 6y = 0, h
reduces to the form given in [13].
Let us now evaluate the area of the Apparent Horizon from (69) which at the end yields

117.J?
Appy = 64ma® + dmp? + 57;2 (83)
Thus the irreducible mass M, turns out to be
2 2
P 11J
My =20+ —— 4+ —— 84
= 20 e T 32048 (84)
so comparing with the energy, E4pas, we have
2 2
P J
E =My + —— + —+, 85
ADM o, T RME (85)

which matches the result (66) of Christodoulou at this order.
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Figure 2. Shape of the Apparent Horizon when the angle between p’ and J is 45 degrees; and
p/a = 8y/2 which is outside the validity of the approximation we have worked with.

4. Conclusions

We have presented a step-by-step construction of the Apparent Horizon equation which is of
extreme importance in black hole physics; and described in detail how it correctly yields the
expected results, such as the irreducible mass, for a slowly moving and spinning black hole. For
stationary black holes cross-sections of the event Horizon and the Apparent Horizon coincide.
This exposition is of a pedagogical nature with details given in the Appendix including the
derivation of the null Raychaudhuri equation which we have not used in the text, but added for
more insight for the expansion of a null geodesic. We have skipped some interesting issues such
as: numerically solving the case with no symmetry; multi black hole initial data; the proof that
when the dominant energy condition is satisfied, the topology of the Apparent Horizon is that
of S2. For other nice expositions regarding horizons and related concepts see [7, 17, 18].
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Appendix A. An equivalent definition of the expansion 0,
Here we give a proof of the second equality in (28): we have

1
@(4) = q‘“’V,ﬂV = iq‘w’ﬁgquy, (Al)

where the first equality is identical to the definition of the ©. Starting from ¢"”Lq,.,, one
can easily arrive at the expansion © . The construction is as follows:

quyﬁﬁqyll = quy (EUquluy + quvHéa “I‘ qguvyfa) . (A2)

The first term on the right hand side automatically vanishes. To be able to see this explicitly,
we express the metric g, in terms of the spacetime metric g,

"N 5 = "V o (g + kuly + ko ly,) (A.3)
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Since Vg, = 0, the non vanishing terms are
@ g = ¢"° (kyNoly + 0,V ok + kN ol + £,V k) (A.4)
where ¢"k, = 0 = ¢"”/,,, and so one gets
"1V oqu = 0. (A.5)

Now let us evaluate the second and third terms in (A.2) (which contribute equally). We can
write

" 4oV 7 = " (Gow + koly + kily) V07 (A.6)

Using ¢""k, = 0 = ¢"”/,, again, the last expression reduces to the following

qlwqguvuga = qlwgauvuea = q“l’vuﬁy. (A7)
Then (A.2) becomes
0" Loquu = 2¢""V by, (A.8)
and one ends up with
1
iq“’jﬁng = QWVMV = @(6)7 (Ag)

which is the expression we wanted to prove.

Appendix B. Derivative of the area along the null vector field ¢/

To gain a better physical insight to the expansion of the null geodesic congruence, let us show
that when one takes the derivative of the area of the cross section along the null vector field ¢#,
the expansion © ) can be directly obtained as the integrand. On the surface S, let us start with
the area formula

A= /ds\/a, (B.1)

of which the derivative along ¢ yields

1
9, A = / dS 0'0,\/g,= 5 / dS /30" 4" 9 qap.- (B.2)

Equivalently one can express the result in terms of the Lie derivative along the vector field ¢
using
0" Logab = "0 Ougap + 20" qunOal”. (B.3)

Since the null vectors ¢# and k* are the elements of the compliment of the subspace S, one has
k* = 0 = ¢*. By definition (6) we obtain

g8 = 0% + kul® + k0, = 08, (B.4)

and similarly
g = g™ 4+ EFLY + kU = g, (B.5)

So that qabqub = d;; and the last term in (B.3) becomes
4" qup0alt = 520a0" = 0,0 = 0. (B.6)

Then ¢ L4q,p reduces to
0" Legay = q"*0"0uqan, (B.7)
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which can be related to E“@H\/a via

1
H0,\/q = iﬁqabﬁgqab. (B.8)

Now we can rewrite (B.2) in terms of Lie derivative

1
oA = / dS \/q 3 ™ Logap. (B.9)

In order to show the appearance of the expansion O explicitly, we should use the spacetime
coordinates, recall that we have ©g) = ¢"” Lquv/2, instead of the coordinates on the co-
dimension two surface S. It is straightforward to write

02abLeqab = 6260Leqab = Loguy- (B.10)

Multiplying this with /g, one obtains

a5 s ad Logas = ¢4 45 Logu, (B.11)
which in terms of Kronecker delta functions reads
ngzdzégﬁé%bb = ngzﬁé%wy (B.l?)

and yields
435 Ledab = 44 Lodun- (B.13)
We multiply the last identity with ¢°”. Then we find the identity

Q"PO%85 Logar = 7P 4! Loty (B.14)

and so one arrives at
0" Logar = 4P 440, Loqu, (B.15)

where ¢7qLqy = ¢"”. Finally we end up with

0" Logab = 0" Loguu- (B.16)

This proves that the expansion O, appears in the change of the area along the vector field ¢/
The final expression is therefore

1 1
019, A = / dS /g5 " Loq = / dS /15 g Logap = / dS /70 (B.17)
So setting © ;) = 0 to define the Apparent Horizon boils down to setting ¢#9,A = 0.

Appendix C. Null Raychaudhuri equation

The form of (28) already suggests that one can define a tensor whose trace is the expansion. Here
we explore this tensor and obtain an expression for the change of the null expansion along the
null direction ¢ as well as the null Raychaudhuri equation [2]. So let us introduce the deformation
tensor ©,, as

1
@;w = §QZQ££€QU/)7 (Cl)
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such that
O = g0, = q"'V L. (C.2)

Carrying out the Lie-derivative in (C.1), one has
Ouw = Vb, —wuly, +0,k°Vsl,, (C.3)

with
wy = —k’Vle — kkPL,N L, (C4)

which is called the rotation one form.
In what follows, we will make use of the Ricci identity

V.V, 0t =V, V0" = R\ (C.5)

From (C.2), one has
Oy = Vbt + kN . (C.6)

Here we assume that ¢ is a geodesic null vector but not necessarily affinely parameterized so
that

N b, = KLy, (C.7)
where & is a function on spacetime. Using £”¢, = —1, one has
O = Vbt — k. (C.8)
So we have the following two equations:
Vbt =0 + K, Vb, =0, +wuly — L,k ol (C.9)
Substituting these in (C.5), one has
Vi (0" + w bt — b,V o 0") — V(O + K) = Ryl (C.10)

which more explicitly becomes
VO, + UV pwy, + w, Vb — KON Nl — 6N (KON o) — V(O + k) = R\, (C.11)

We use the expressions (C.9) one more time and reexpress the third and the fourth terms to
obtain

VuOu# + 04V oy, + wi (O + k) — K7V ol (O + wyly — LKV L)
0,V u(K°V o l) =V, (8 + k) = R\l . (C.12)

Since £, V,¢# = 0, the last term on the first line automatically vanishes. Contracting the final
expression with ¢¥ and using the fact that it is a null vector, one arrives at

0N 4O, P 4 L0 sy + 70, (O ) + K) — 17O k7N ol — 1V, (Bp) + k) = Ryp£. (C.13)

It is easy to show that the contraction of the null vector ¢* and the deformation tensor identically
vanishes, 0, # = 0. Then one has

('V,0," = —0,,0 (C.14)
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and also
0PNy, = PV ke — K2 (C.15)
Inserting these expressions in (C.13) we get
— 00" + KOy — "V, 0y = R\ (C.16)
The first term ©,, 0" can be written in terms of the trace free shear tensor o,
_ 1
UHV = @uy — mquy@(g) (017)
as follows ]
@MV@#V = O-MVO-#V_{—?@%K)’ (018)
where 0,,0" = 04,0, Then (C.16) becomes
” 1
0V = ViOp) = kO@) — Rt — 0ap0™ — — 0. (C.19)

The null vector field ¢# is oriented in the future direction. Therefore the last equation, known

as the null Raychaudhuri equation, is an evolution equation for the expansion © ).
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