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ABSTRACT

An analytical, non-perturbative description of a
strongly interacting hadron gas 1is presented. Its
main features are: the formulation is relativistie-
ally covariant, hadrons have finite extensions which
are treated 3 la Van der Waals and their strong in—.
teractions are simulated by a hadronic mass spectrum
generated by a bootstrap equation under the con~
straints of baryon number comnservation. The system
exhibits a singularity, which has the typical feat-
ures of a phase tramsition gas + liquid, but which
we interpret here as the transition into a quark-
gluon plasma phase, which, however, cannot be des-
cribed by this model. (In Part 2, a quark=-gluon
plasma model will be sketched and matched to the
bootstrap model. The joint models are then applied

to heavy ion collisioms).
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1. INTRODUCTION

We wish to describe the thermodynamic properties of a hadron gas with its
strong interactions 1eadiﬂg to a phase transition — the "dissolution" of individual
hadrons in a weakly interacting quark-gluon plasma. This new phase seems to be
the most obvious continuation of the known hadron phase.

In Part 1 we present the hadronic aspectsl), in Part 2 below the quark-gluon
aspects and the nature of the trapnsition between these two, as well as some pheno-

2)

menological predictions for relativistic heavy ion collisions .
For the description of the strongly interacting hadron gas we require:

- TLorentz covariant formulation of thermodynamics;

- conservation of the total four momentum of the system;

- conservation of the baryon number;

- kinetic and "chemical™ equilibrium between all constituents {pions, nucleons
and antinucleons as well as all their resonances and bound states);

- a finite "matural volume" for each constituent to be used & la Van der Waals.
This natural volume is the volume due to internal dynamics in the absence of

external forces.
2. NOTATION

4 =c¢ =%k =1, mass units MeV, GeV; energy, inverse temperature and volume

3)

are generalized to four vectors ':

(1)

where uu, vu, w"  are the four velocities of the total mass, of the thermometer

and of the volume, respectively. Usually <> = M = W
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THERMODYNAMICS

The usual level density of a system enclosed in a volume V and having energy

E and baryon number b becomes in covariant notations)
g
~E v 6)dE — T(p,V,é)dP | (2)

Given o(p,V,b), we can calculate the grand canonical partition function:

(3)

o 6. __(3 r)"
#P g
Z(T;v,?\).-az AT spV6)e T dp
$=-»
where A 1is the fugacity for baryon conservation.
In the present model, four momentum and baryon number are the only conserved
quantities; further conservation laws, including non~Abelian onesa), can be incor-

porated.

From £fnZ all relevant thermodynamic quantities can be found as usual by

differentiation. Thus the theoretical problem is to find o(p,V,b).

THE DENSITY OF STATES co(p,V,b)

We postulate the following ansatz:

N (4)

280" 102 6. d%.
1k o) 4y

In this expression the complete set of contributing states is subdivided into any
number N of subsets corresponding to any partition of the total four momentum

P and the total baryon number b. These subsets -~ the constituents, called clusters
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from now on — have an internal density of states t(p%,b) (mass spectrum). The

following natural properties are incorporated in the above density of states:

.

i) four momentum conservation [6“(p - Zpi):

e
f

~—

e

baryon number conservation ESK(b - Zbi):

unlimited (as far as is allowed by i) and ii)) creation and absorption of

[T
[T
S~

particles (sum over N};
iv) kinetic and "chemical" equilibrium between all possible constituents (pions,
nucleons and their clusters) which are counted in the mass spectrum T(p%,b);
v) a Van der Waals treatment of the volume: A =V - EVi is the "available
volume" after subtracting from V the natural volumes of the constituents

{clusters).
Comments:

- points iii) and iv) represent the interaction: if t(m®,b) contains all
participating elementary particles (here 7,N) and all their resonances and
bound states, then the interaction is perfectly taken into account (as far
as thermodynamics goes and apart from long-range andlshort-range, strongly

repulsive forces). For details on this crucial point, see Refs. 5 - 8).

- point v) says that the volume is reduced d la Van dex Waals; the usual factor
4 1in fromt of ZVi is left out, since our particles, the clusters, are
considered incompressible but deformable and having natural cluster volumes
Vi, which, in a summary way, represent short-range repulsive forces. If

V 1is given, then

will be a function of V apnd N. We shall instead consider A as the free
parameter and then the external, total volume is a function of A and N,
so that in the grand canonical ensemble it will become an expectation value

<V >,

- equation (4) states: the density of states of extended particles in the

volume V is identical to that of point particles in the available volume A.
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- the integration measure reduces in the rest frame of A ' to the usual one:

24 pl* 2 2
s AP — 28 Tl

- as we shall see that T(m?,b) grows exponentially, Bose-Finstein and Fermi-

Dirac statistics can be neglected (for temperatures P 50 MeV).

5. BACK TO THERMODYNAMICS

As explained, Eq. (4) implies:

o(p V) = O (.8, 4) ©

where the subscript pt denotes "point particles". The double Laplace transform

(3) of this density obeys therefore:

Z.(1,<v2,%) = Z,, (T,a,3)

pt

which permits us to calculate everything for fictitious point particles in A and

afterwards obtain the correct quantities by eliminating A in favour of < V >,

Assume now T(pz,b) and therefore o(p,V,b) to be known. Then

ZFt(T,A,?‘)n__Z;ﬁI [8-Zp) P ap

o0 n N
x)] )f’Z(gK (6-§&:)]%; -C(ﬂ.z; (;i) al'?,z o

f= e
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The & functions permit us to do the d“p integration and A summation; the inte-
grand thereafter splits into N independent, identical integrals and the sum yields

an exponential function; thus, taking its logarithm:

bZy (T,8,0)= WZ(T<v>2)=:Z (T,4,3)

Z (T4, N): = "z—r—P-'"(p,?\)e,F"P d'p

where (8

02 4 2
T(pia): = A T(p;b)

A=—o0

All the interaction is contained in 7T(p%,A). If it were a simple 8a(p? - m?),
Z, would be the usual "one-particle partition function” of the ideal gas; here it

is the "one—cluster partition function".

Note that the simple result (8) is due to keeping A fixed as external para-
meter; there is always room for more particles, the volume V grows with N and
N can go to « ; had we instead considered V as external parameter, the sum
over N would have had to break off when the box V was full and we would not

have obtained an exponential functiom,

Now we face two questions:
- what is T(p2,A)?
- what is the relation A L <7

Both will be answered by our dynamical hypothesis: statistical bootstrap.



STATISTICAL BOOTSTRAP

. . 9 . .
The idea 1s rather old ) and has undergone some development making it clearer,
more consistent and, perhaps, more convincing. For details the reader is referred

to Ref. 7) and in particular to Ref. 8) and the references therein.

The basic postulate of statistical bootstrap is that the mass spectrum T(m?,b),
containing all the "particles": elementary, bound states and resonances (clusters)
is generated by the same interactioms which we see at work if we comsider our thermo~
dynamical system. Therefore if we were to compress this system until it reaches
its natural volume Vc(m,b), then it would itself be almost a cluster appearing
in the mass spectrum T(m?,b). Since o(p,A,b) and T(p%,b) are both densities

of states (with respect to different measures: d“p and dmz) we postulate

N z
o“(p,AlK) = T(p,+) )
|<V>"’ \é(m:{')
where £ means "corresponds to" (in some way to be specified). As a(p,A,b) 1is

[see (4):| the sum over N of N - fold convelutions of T, the above "bootstrap

postulate" will yield a highly non-linear integral equation for T.

Macroscopic volume Natural cluster
\% volume V¢ (m,b)

Fig.1 ¢ The bootstrap idea: a macroscopic system com—
pressed to the "natural cluster volume" becomes

itself almost a cluster comsisting of clusters.



There is, however, one important difference between the macroscopic system -
even if compressed to the natural cluster volume — and the clusters making up the
system: the macroscopic system is enclosed in a fixed, externally given volume,
while the cluster chooses its own natural cluster volume and carries it with it;
the natural cluster volume is therefore a four vector VE parallel to the cluster's

four momentum

I F
(mb) = A(M‘(v)-% M= ﬂqu (10)

/

\

c

where the scalar function A(m,b) depends on the dynamics: 1t expresses how the
cluster chooses its volume as a function of its mass and baryon number. As the

bootstrap is to represent the dynamics, it not only should determine T(p*,b) but
also A(m,b). We settle the last question first by requiring, in addition to the
bootstrap postulate (9), the postulate of "uniform packing": for amy partiﬁion of

a cluster into N subclusters, we postulate

\/fZ L KV, (m‘,, 6) an

c

-

where K 1is some constant; K = 1 1is dense packing, K < 1 superdense, K > 1

dilute. Together with (10} this yields:

N
i=

K s
A(mfr % ZK .(’E)-(%': 12)

f

N
and since for any partition p = Zp ,
i=1t

N Ay,
> AR ¢ At - Nof o [ npf

(13)



...8_

whence K =1 and A(m,b)/m = const (independent of b). Thus we obtain dense

packing and a volume proportional to the mass:

F p f m
Vc@ltlfr)zam.gbp = f}% W 48 (14)

by which the free parameter B 1is defined; 4B is the constant energy density
of all clusters, which cannot be found from the bootstrap hypothesis; it has to
be fixed via outside information. Tentatively we identify B with the quark bag
constantlo) B = (145 MeV)", thereby interpreting at the same time our clusters

as quark—-gluon bags.

The bootstrap postulate (9) requires that T should obey the equation result-
ing from replacing O in Eq. (4) by some expression containing T linearly and

by taking into account the volume condition (10), (14).

We cannot simply put V = VC and A = 0, because now, when each cluster
carries its own, dynamically determined volume, A loses its original meaning.

Therefore, in Eq. (4) we tentatively replace

om”

.Q,Vc (M,G)-E _
(Y 48

(2r)°

(15)

-——E.. ( il"i = ~e\ Yy i R of (1 0

L T T I T ey I T e T S B S T T B T L o TP F T S e PO P PPN
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Next we argue that the explicit factors m? and mi

arise from the dynamics and
therefore must be absorbed into T(pi,bi) as dimensionless factors (mi/mi). Thus,

in Eq. (4), we replace

Jlrmo

=20 Tipt) = HT(p2e)

f‘flﬁ"s Tlk) — s T4) - HE )

(16

where either H or m, may be taken as a new free parameter of the model, to be
fixed later (if m, is taken, then it should be of the order of the "elementary
masses' appearing in the system, e.g., somewhere between m and e in a model
using pions and nucleons as elementary input). Finally: if clusters consist of
clusters which consist of clusters, which ....., this should end at some V"elementary"
particles (where what we consider as elementary is fixed by convention). The

bootstrap equation (BE) reads then
4
HT(pj4) = Hglrd:(PQ‘ My )+

+Z’ NI gg’(f’ P: )Z(r (& )TH-C(P ¢ )d," ‘ an
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In words: the cluster with mass V;Y- and baryon number b is either elementary
{mass: Eb’ spin isospin multiplicity: gb) or it is composed of any number N > 2
of subclusters having the same internal composite structure described by this
equation. The bar over 5£ indicates that one has to take the mass, which the
"elementary particle" will have efifectively when bound in a large cluster:

m=m-~ < Ebind > (e.g., EN X 925 MeV). That this must be so, becomes obvious if
one imagines Eq. (17) solved by iteration (the iteration solution exists and is

the physical solution): then HT(p,b) becomes in the end a complicated function
of pz,b, all ﬁb and all gb. In other words: in the end a cluster consists

of the "elementary particles"; as these are all bound inte the cluster, their mass

should be the effective mass, not the free mass m.

Clearly, the bootstrap equation (17) has not been derived; we have made it

more or less plausible and state it as a postulate. For more motivation see Ref. 7).

SOLUTION OF THE BOOTSTRAP EQUATION

We solve the BE by the same double Laplace transformation which we used

before (Eq. (3)): define

_B plos
“p): = (VS aug, & ) dyp -

= JZTCHTE’ 7\”34 m, K, (-’f;—"_}*)
(18)

-Bpl o
Gipn): = [ 2 AHT(pie) 4

Once the set of “elementary particles” {Eb’gb} is given, ®(B,A) is a known
function, while ¢(ByA) is unknown. Applying the double Laplace transformation

te the BE, we obtain

§((3,7\) = CP((S,'R)+ QKP@(F{A)— @((3‘“) -1 (19)
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This implicit equation for ¢ in terms of ¢ «can be solved without regard to

the actual B - ) dependence. Writing

G@: = Plp)
¢ = Qq-eq+ 1

(20)

we can draw the curve ©(G) and then invert it graphically to obtain G(®) = (B, A).

T T =i T
~
S \
~— \\
© \
1
05 -
L \0‘3 -
q—
- z _
- n _
o (a)
| . | | |
0 QIO 020 030 040 P
Fig. 2 : Bootstrap function G(w) - the dashed line re-

presents the unphysical branch. The root sin-

gularity is at ¢, = n{4/e) = 0.3863.
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1) at ¥ =%, = n(4/e); beyond

(see Fig. 2). G(®) has a square root singularity
that value, G(®) becomes complex. Apart from this graphical solution, other forms~

of solutions are known:

(‘P) Z L VV-‘P {integral representation]} 21)

Mt M=0

The power expansion in o™ was first given in 1870 (yes: eighteen hundred and

13)

seventylz)) and rediscovered in 1973 3 the expansion in terms of P

has been used in our numerical work (12 terms yvield a solution within computer

14)

accuracy) and the integral representation will be published elsewhere

We consider ¢(B,1) = G(®) to be a known function of ©(8,)). Consequently,
T(m?,b) is also in principle known. From the singularity of ©® = ¥, it followsla)
that tT(m*,b) grows, for m >> mNb’ exponentially ~ m_sexp(m/To). In some weak-

er form this has been known for a long time7’9’11’13’}5’16)_

ONCE MORE BACK TO THERMODYNAMICS

Having answered the two questions left open at the end of Section 5, we now

have the full information to write down #InZ of Eq. (8). Fortunately we do not

pt
need to know T(pZ,A) explicitly; the formal similarity between Eq. (8) and Eq.
(18) immediately yields a relation between £nZ and ¢ (go to rest frame of

A and RB):

&oz‘,t(TA )= e )3“ 96 @(P,'h)-l—a(ﬁ“)

C(M% %’,;)E, §p-4)-6,-R)} e P'p&'*?

=~ad
(22)
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As is obvious from the last line, C(B,A) corrects the partition function by re-
placing the one-particle contribution of the bound masses ﬁb by those of the

free masses o, with the effect that all unbound, free particles in our system now
have the free mass, while all those bound in clusters still have the bound mass.

We have included this correctiom in all our numerical work, though it is almost
always negligible; but we drop it in the rest of this paper (it might be important

in other contexts).

Thus, once the "elementary particles” {mb,gb} ‘and the constants B and H
are fixed, a specific model is defined and anpt is a known function. Also the

relation between < V > and A 1is now fixed: since VE = pU/AB, we have

B _ A <ph> (E>
KV >-A+—qfé—m 4 + Y8 (23)

Finally we recall Eq. (7), which enables us to calculate physical quantities for

a system of extended particles.

PHYSICAL PROPERTIES OF QUR SYSTEM

As an example we calculate the energy density as a function of B and A:

<E>=--—-&42,(65< >7\)=-—-fuz (@A A) (26)

as EnZPt is linear in A, the last term is equal to A.ept(B,k); hence, after

using (23)

e — -

{E> Ext (f. )
. E( ) = pt
v ) l+£f¢ (3,’7\)/45 (25)
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where

2 2
CPb((j’}) -—..-(m «a_/;'z QE((SI))

(25)
cont.

Similarly one obtains the baryon number density

<> v (B2)
Y ( Pt
=5 I+ (B

elp):= 2AZ 2 (pan)= - a2 qun

and the pressure

(27)
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V> = a-(1+ 5 (BM)4g )

A= <V>-(4- 5(/5,?*)/48) o

As all the point-particle quantities involve derivatives of ¢{B8,A), they become

singular at @ = Q@33 €.8.,

0
'5_(3;@{(51“) = g_g'%{% (29)

L .
and dG/dyp N (@~ @) * (see Fig. 2). Therefore % > @ implies point-particle

infinities. Consider first

PpA) = 4 = %) o0

This defines a curve in the FA-A plane. Its position depends, of course, on the

actually given form of @(8,%), i.e., on the set of “alementary" particles

{Bb,gb} and the wvalue of the constant H [Eq. (16): . In the case of three
elementary pions (ﬁ+ 7 7 ) and four elementary nucleons (spin ® isospin) and

four antinucleons, we have from Eq. (18)

‘P(ﬁ,?\) = WHT 3mtm|<4 ((;“-4.".)-!- 4(?\""7“\) WN K, (g“) 31)



and the condition (30), writtem in T and W = Tn) yields the curve shown in
Fig, 3, the "eritical curve". For | = 0 the curve ends at T = T, = 0.190 Gev,
where Ty, the "limiting temperature of hadronic matter", is the same as that

appearing in the mass spectrum7’9’15’16) T(m?,b) ~ mfgexp(m/To) {(for m >> me).

3 | I

">"‘ e
[+}]

b3 -
i |
500 .
Hadronic N
i Phase .
"~ (b) |7

| L 1

O 50 100 150 T{(MeV)

Fig.3 .  The critical curve corresponding to @(T,H) =9,
in the W - T plane. Beyond it the usual
hadronic world ceases to exist. In the shaded
region our theory is not valid because we neg~

lected Bose~Einstein and Fermi-Dirac statistics.

Our system consists, for small T and u, of nucleons and nuclei. For in-
creasing T, pion creation sets in and finally also baryon—antibaryonm pair crea-
tion, K~hyperon associated production, etc., If the latter is to be taken into
account, the input set of "elementary particles' must be enlarged. This hardly
changes the position of the critical curve and the equations of state of hadron

matter, since Ty 1s of the order of the pion mass, while the other particles
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have larger masses and give little contribution to ®(B,A). More precisely: each
new conserved quantum number (strangeness, charm, ..;) glves rise to amother A;
hence the singularity is defined by cp(B,ll,kz,As... kn) = @¢ as a hypersurface
in an n + 1 dimensional space. Since, however, in normal physical situations
only the baryon number is different from zero, we have to consider‘only the inter-

section of this hypersurface with the plane. That is the curve which

T-L
baryon
was said to be little different from the one shown in Fig. 3.

The value of the comstant H in Eq. (16) has been chosen to yield T, = 0.19 GeV
(this apparently large value of T, is necessary to yield a maximal average decay

temperature of the order of 0.16 GeV; see part 2 below). Thus

= 0.724 GeV 2

=
|

(32)

B
[

= 0.398 GeV [when B = (145 MeV)"_|

. % -
where the value of m;, lies, as expected, between W and oy [(mﬁmN)2_=.0.36 GeV_L

Taking. the critical curve of Fig. 3 as representative, we ask: what does our
system do when it approaches the critical curve? As the point particle quantities

}gpt’ th’ Ppt diverge, one sees easily (by comparing degrees of divergence when

® > 9,) that

E(pA ) = 4B

V((f,"\*) = Ve (FA") +0

P(EAN) =0 55
A(PIN)=0 A VD> +0

(VIEX)> =00 4 a+0

* _k
where f$ ,A  are the values along the critical curve.
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The constant energy density of our clusters was, independently of m and b,
always 4B. Hence the first line suggests that on the critical curve the whole
hadron system has condensed into ome giant cluster. This is also witnessed by the
vanishing of the pressure; indeed, one can explicitly see that for any given external
volume < V > the number N of "particles" (clusters) contained in it goes to

zero on the critical curve: Eq. (8) can be written

Z(pap) - Z;?(p,a,ag)lgz; - %: w (52) ,5 »

Hence, with (7) and (22)

2479 7 . D o
W=l 5 2, =~ oFh @ng((s,a) @

and, with (28)

N> by () (36)
5_\7} - _W@@(ﬁ,?)/(wfﬂ/%) TQ

because Ept contains second derivatives of ¢.

Note that from (27) and (36) it follows that

P<V>=<N>T ' - an
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that is: our hadron gas obeys the ideal gas equation if < N > is the number of
clusters; of course, < N > is not a constant (as for an ideal gas), but a function

of R,A.

The critical curve limits the hadron gas phase; by approaching it, all hadrons
dissolve into a giant cluster, which we might call "hadron liquid", but which we
would prefer to identify with a quark-gluon plasma. Indeed, as the energy density
along the critical curve is comstant (= 4B), the critical curve can be attained
and, if the energy density becomes > 4B, we enter into a region which camnot be
described without making assumptions about the inner structure and dynamics of the
"elementary particles” {ab’gb} - here pion and nucleon - entering into the input
function ©(B,A). Considering pioms and nucleons as quark-gluon bags leads natux-—
ally to the above interpretation. We discuss these points and applications of our

theory to relativistic heavy ion collisions in Part 2 of these lectures.
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