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Low-energy three-body collisions between an antiproton p
and muonic hydrogen atom H,
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Abstract. A few-body treatment is performed for two low-energy three-body
collisions with participation of heavy charge particles such as an antiproton (p),
deuterium (D), tritium (T) and a negative muon (u~). Specifically, the following
reactions are considered: p + (Du™)1s — (PD), +u~ and p + (T )15 = (PT) +
u~. The final state antinucleon-nucleon (NN) interaction is included in these
calculations and its influence on the cross sections and rates is estimated.

1 Introduction

Since p is an anti-baryonic particle with the baryonic number B = —1, it would be interesting
to discover the strong nuclear interaction between, for example, p and a proton, i.e. the pp
interaction in protonium (Pn) atom — a bound state of the particles: p and p. This two-body
system is also called as anti-protonic hydrogen. Additionally, it would be very useful and
extremely interesting to consider, study and compare results between the following atomic
systems: pD and pT, where D=>H* is the deuterium nucleus and T=>H" is tritium. Perhaps it
should be even worthier to obtain these atoms in their ground (1s) and close to ground states
(2s, 2p) when the systems are compact and nuclear interaction is effective.

It would be possible to prepare such atomic systems with the use of muons, for example,
in the following three-body reaction:

p+(pu") = (Ppla + 1, (D

where ¢~ is a negative muon and « is the final atomic state of Pn. At low energy collisions
a = ls, 2s or 2p. This reaction has been considered in papers [1, 2]. It was found that
the nuclear interaction in the final state is important [1]. Therefore, in the current paper the
following three-body reactions are of our next special interest in the study of the antimatter-
matter nuclear forces: p + (Du™) = (pD)y + =, and p + (Tu™) = (PT)y + ™.

In the next section we provide a brief description of our few-body approach based on
the two-component Faddeev-Hahn-type equation formalism. We discuss the inclusion of
the strong interaction in the framework of this equation. Sec. 3 represents our numerical
results and Sec. 4 conclusions. Muonic atomic units (m.a.u.) are used in this work, i.e.

m, = e = h = 1, where m, is the muon mass, e~ is the charge of an electron and 7 is
Planck’s constant.
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2 Few-body equations

In this work a detailed few-body approach is applied to the following three-charge-particle
reactions at low energy collisions:

p+ @My )is = (PD)o + 47, @
P+ (Tu s = (Do +1- 3

The method is based on the reduction of the total three-body wave function ¥ onto two
Faddeev-type components [3]:

[¥) = W1 (5, P23) + Y2 (B2, 7i3). 4

Eq. (4) reflects a fact that at low energy collisions, that is before the break-up threshold,
only two asymptotic spatial configurations are possible in reactions (2) and (3). For example,
in (2) the component W,(3,, 7»3) represents the p+(Du) input channel, and the component
W1 (0, 713) represents the output channel, i.e. (pD), + p~. Vectors (g, 7;) are so called
Jacobi coordinates in the three-body system. These two configurations are shown in Fig. 1.
Therefore, from works [4, 5] one can determine the Faddeev components by writing down
the following set of two coupled equations:

(E - Tpl - ﬁ23(723))T1(?23,ﬁ1) = (V23(?23) + V12(?12))‘P2(?13,ﬁz),
(5)
(E -7, hNN(rH))‘Pz(VH p2) = (Vl%(rl3) + VIZ(rl2)) 1723, 1).

Here: V; j(r, J) are Coulomb potentials between the partlcles (i+j=1, 2 3), Vis(A3) =
Vis(F3) + v (rlg) and the two particle target hamiltonians h23(r23) = Ty, + Vaa(P3) and
YN (7i3) = Tr
13N (713). Tt is shown exphcltly in these equations. T and 77, are Kinetic energy quantum-
mechanical operators. The Faddeev decomposition av01ds the over-completeness problems,
because the subsystems are treated in an equivalent way in the framework of the two-coupled
equations [6-8]. The correct asymptotes are guaranteed. The Faddeev-components are
smoother functions of the coordinates than the total wave function [¥). The system of Egs.

(5) is equivalent to the Schrodinger equation — this is very important.
In order to solve Egs. (5) a modified close-coupling approach is used. It leads to an ex-

pansion of the system’s wave function components [¥';) and [¥,) into eigenfunctions ¢, )(}’23)
QNN

L+ Vis(Fis) + v (r13) with additional strong pD (or pT) nuclear potentials -

and ¢, (713) of the subsystem (target) Hamiltonians:

Wi (s, 01) = (f‘*‘ Z) @D (3),
Wy (713, 02) = (f"‘ Z) f,grz)(ﬁz)sé,zrwlv(?m).

This procedure brings a set of coupled one-dimensional integral-differential equations after
the partial-wave projection [8]. The set of coupled integral-differential equations for f,fl)(ﬁl)
and f,fz) (72) can be solved in the framework of different close-coupling approximations, such
as 2x1s, 2x(1s+2s), 2x(1s+2s+2p) etc. Symbol "2x" indicates that we use two independent
sets of the target expansion functions.

The full potentials between p and D and p and T are more complex, because their second
parts, Un N(#13), possess asymmetric N-N nuclear interactions [9—12]. In this work we did not

(6)
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Figure 1. Two spatial coordinate configurations of the Coulomb three-body system p-u-D. Here: (1)
is an antiproton p, (2) is a negative muon u~, and (3) is the deuterium nucleus D. Vectors {3, o1}
and {A3, p>} are few-body Jacobi coordinates of the input and output channels of the reaction (2)
correspondingly, O is the center of mass of the three-body system and w is the angle between the Jacobi
vectors p7 and p3.

explicitly include the strong interaction in our calculations, which is why in the case of the
target pD and pT eigenfunctions we use pure two-body Coulomb (atomic) wave functions.

2NN 2NN . 2 .
e (#3) ~ ZRE,; (r13)Yrn (F13) = ZRE,,;,(VB)YI/W(VB), 7
'm’ 'm’

where Yy, (#13) are spherical harmonics which depend on angular variables of 73, {n’, ', m’}
are quantum atomic numbers and Riﬁ},(rlg) are radial parts of the hydrogen-like atom wave
function [13], for instance, the anti-protonic hydrogen atom. Nonetheless, the strong pD and
pT interactions are approximately taken into account through the eigenstates &, which have

shifted values from the original Coulomb levels &,/ [14], that is:
Ev ~ &y + AENN = 11 /20 + AENY, )

where (1, is the reduced mass of the targets pD or pT in the output channels of the reactions
(2) and (3). i

In this work we apply Eqs. (5)-(8) with the use of an energy shift AE"" in the eigenstate
of pD and pT. The energy shifts can be computed, for example, with the use of the well-known
Deser-Goldberger-Baumann-Thirring formula[14]:

AE’/SN — _i ag

Ew, 9
B ©)
where ay is the pure nuclear strong interaction scattering length in the p+H collision (where
His D or T), i.e. without inclusion of the Coulomb interaction between the particles, Bpy is
the Bohr radius of deuteronium, i.e. the pD atom or the pT one. Computational details of the
Faddeev-Hahn equation formalism can be found in work [8].
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Table 1. Total pD-atom formation cross sections o,(&.,;) and rates Ap in the three-body reaction (2),
where @ = 1s and &, is the collision energy (eV). The rate is a product of the formation cross sections
and the corresponding center-of-mass velocities v, between p and D,, in the input channel. The results
are represented in the framework of different close-coupling approximation models, Eq. (6). The cross
section o, is givenin cm? and Ap in m.a.u. Results with inclusion of the strong nuclear interaction
between p and D are represented only in the six-state model. Our rates A are multiplied by factor of 5.

Ls 1s-2s 1s-2s-2p (p-D Nucl.)
Ecoll Oy Oy Oy /ID (o ?,D }-%D

0.001 2.82E-20 2.50E-20 1.22E-19 0.225 3.30E-19 0.612
0.01  893E-21 7.92E-21 3.84E-20 0.225 1.04E-19 0.611
0.1 2.83E-21 2.50E-21 1.20E-20 0.223 3.24E-20 0.601
0.5 1.26E-21 1.12E-21 5.18E-21 0.215 1.35E-20 0.560
1.0 891E-22 7.90E-22 3.50E-21 0.205 8.80E-21 0.515
2.0 6.30E-22 5.57E-22 2.26E-21 0.188 5.30E-21 0.439

In the literature one can find other theoretical formulas to compute AEfffN , for instance,
in papers [15, 16]. In future calculations it would be interesting to apply some of these
theories together, for example, with the inclusion of relativistic effects in the heavy pD and
pT atoms [17, 18].

Since muon is ~207 times heavier than ¢, the muonic hydrogen atom H,, has a very small
size. Therefore, in reactions (2)-(3) antiproton can very closely approach H,,. However, anni-
hilation between p and D/T will be significantly prevented because of the u~ screening effect
and a strong p and u~ Coulomb repulsion. The quantum-mechanical p tunneling through
the muonic-atomic orbit H,, is also significantly suppressed. This fact can be seen from the
following quantum-mechanical tunneling probability formula [13]:

B= exp{—% f NG E)dr}, (10)
0

where B is the probability, E is the total energy in the three-body system, M is the p-H,
reduced mass, and U(r) is the interaction potential between p and H,:

le:(%+MJ{mﬂ (11)

Mo is the muonic hydrogen reduced mass, i.e. gy = 207m,, where m, is the electron mass. The
integration in the Eq. (10) can be done up to pg = 10 m.a.u. One can compute the integral
(10) and show that the argument of the exponent in Eq. (10) is a large number. Therefore,
in the first-order approximation p tunneling can be neglected. In the case of similar atomic
system, where one has an electron e~ instead of muon, p can easily penetrate through the light
e~ cloud and annihilate with the hydrogen isotopes before the three-body reaction occurs.

3 Results

This section represents our results for reactions (2) and (3). As in paper [1], in the current
work we carried out numerical calculation for the transitions to the ground states of the anti-
protonic atoms, i.e. @ = ls in Egs. (2)-(3). In this state the size of the pD and pT atoms

4
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Table 2. Total pT-atom formation cross sections o7,.(€.,;) and rates Ay in the three-body reaction (2),
where @ = 1s and &, is the collision energy (eV). The rate is a product of the formation cross sections
and the corresponding center-of-mass velocities v,,, between p and T,, in the input channel. The results
are represented in the framework of different close-coupling approximation models, Eq. (6). The cross
section o, is givenin cm? and A7 in m.a.u. Results with inclusion of the strong nuclear interaction
between p and T are represented only in the six-state model. Our rates are multiplied by factor of 25.

ls 1s-2s 1s-2s-2p (p-T Nucl.)

pT
Ecoll Otr Ttr Ttr /lT /lT

0.001 2.23E-20 2.64E-20 7.80E-20 0.685 1.315
0.01  7.04E-21 8&.34E-21 2.45E-20 0.685 1.316
0.1 2.23E-21 2.64E-21 7.82E-21 0.687 1.322
0.5 9.95E-22 1.18E-21 3.55E-21 0.698 1.352
1.0 7.03E-22 8.36E-22 2.56E-21 0.711 1.391
2.0 4.96E-22 593E-22 1.89E-21 0.742 1.473

is about ~10 fm. Therefore, one can expect that the contribution of the nuclear forces to
the three-body scattering cross sections and rates will be significant. These reactions, in our
opinion, can be useful to study nuclear matter-antimatter interactions. Table 1 shows our
results for reaction (2). Specifically, the table depicts our p-transfer cross-sections o,(E)
and corresponding reaction rates Ap at low energy collisions. The results are shown in the
framework of the 2x1s, 2X(1s+2s) and 2Xx(1s+2s+2p) close-coupling approximation. One
can see that the contribution of the 2p atomic states is large—slow p can approach the Du atom
particularly close and significantly polarize it. Therefore, the inclusion of the polarization
channels in Eq.(6) is important. Finally, taking into account the nuclear interaction between
p and D increased the cross-section almost three times. This result can be seen from Table 1:
from the cross section column, o-f,D , and from the corresponding reaction rate one, i.e. /l'Z)D.

The inclusion of this interaction has been done within the framework of Egs. (7)-(8) and
(9). From Ref. [19] (Table 5.2) one can find the results of the pD atom ground-state Coulomb
energy shifts. The averaged experimental result has the following value:

AE?”  =1050eV. (12)

This result was adopted in this work. However, the result for AESZ“ differs quite significantly
from the theoretical calculations based on the three-body Faddeev theory [12] and another
older work [11]. With the use of the given AE}‘;Z 1 (12), one can estimate the p+D scattering
length:

_ B- _
D H D

a” = - AEPP
n'=ls

= 0.682 fm, (13)

Ep'=1s
and compute the Coulomb energy shift for 2s and 2p states (n’ = 2):

AEP? = 131.25eV. (14)

All these values have been included in the Egs. (5) in our calculation of the reaction (2).

Table 2 shows our results for the collision (3). This is a very attractive and special three-
charge-particle reaction with participation of tritium (T), which is a radioactive hydrogen
isotope. It would be extremely interesting to investigate the influence of the strong interaction
between p and T on the rate of the reaction (3). With the use of this reaction it should be
possible to study nuclear interaction between p and radioactive T.
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In order to carry out calculations of the process (3) one needs the nuclear energy shifts
of the (pT) Coulomb levels as an input. However, to our best knowledge, this data are not
available in the literature so far. Therefore, at this time it is not possible to carry out quality
and strict calculations for this reaction. Nonetheless, we will depict our preliminary results
for the reaction rates of (3) with the use of a model approach. Table 2 shows our reaction
cross-sections o,(E) and rates A7. One can see that the inclusion of the 2p atomic states
is important for the transfer channel. Also, the transfer cross section is smaller than the
corresponding transfer cross-section in the reaction (2). This result agrees with the results of
previous paper [2].

In regard to the nuclear interaction in (3) we also use Eqs. (7)-(9) in order to estimate the
effect of the strong pT interaction. However, as we mentioned above, there are no results for
the pT ground-state Coulomb level energy shifts, i. e. no results for AE” _1,- We have come
across only a paper where we found information about p+T scattering [20]. Therefore, in the
current paper, we apply a model approach for the Coulomb level energy shift AEE,T . Note
that in the case of the two-particle system (pp) the energy shift is AEEf’zls = 540 eV. In the

case of the three-nuclear-particle system pD: AE‘_)D = 1050 eV. Therefore, we assume that
in the case of the four-particle system ie. pT, the ground state Coulomb level energy shift
due to the nuclear interaction is AE ~ 1575 eV.

We adopt this value and use 1t m order to complete our calculation of the rate of the
reaction (3) with the inclusion of the strong pT interaction in the final state. As a preliminary
treatment, the energy range for this calculation was only: 10~ eV < E < 2 eV. We can see
from Table 2 that the nuclear pT interaction effect is large In order to compare our results
with the results of paper [2] our p+(Tu ™) rates Ay and /lp were multiplied by 25.

4 Conclusions

The main goal of this paper is to carry out calculations of the charge-transfer reactions (2) and
(3) at low energies, and investigate the influence of the strong nuclear interaction on the final
states of these reactions, i.e. the influence of the pD and pT short-range nuclear forces on the
output scattering parameters. A set of coupled two-component Faddeev-Hahn-type equations
has been applied together with a modified close-coupling approximation technique. The
main advantage of this three-body method over other few-body adiabatic approaches is that
we utilize an independent formulation of the two-body targets in the reactions (2) and (3): for
example, the (Du) atom in the input channel and the (pD) atom in the output channel. This
distinctive property of the Egs. (5)-(6) allows us to avoid the over-completeness problems and
provide accurate three-body asymptotes for ¥, (%3,01) and W»(73,02). The set of coupled
Egs. (5) is equivalent to the Schrodinger equation. We treat the Coulomb three-body systems
as systems with arbitrary masses, i.e. the masses of the charged particles are taken as they
are. We do not apply any type of adiabatic approximation, when the dynamics of heavy and
light parts of a system are separated.

In the case of the reaction (2) it is shown that the effect of the final-state nuclear interaction
is significant - up to 275%. Therefore, one could conclude that the three-body reaction could
be considered as a possible candidate for future experiments with participation of low-energy
antiprotons p’s and muons in order to produce the antiprotonic hydrogen atom (pD) and study
the nuclear interaction between p and D at low energies. In regard to the very interesting (pT)
system we carried only preliminary estimations of the influence of the strong pT forces on
the reaction outputs. It was also found that the contribution is large.

In conclusion, we would like to make a cautious assumption, that the low-energy colli-
sions between antiprotons and muonic atoms could also be useful to study a quite old problem
in nuclear physics concerning the long-range part of the strong NN interaction [21].
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