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Abstract: The Landau problem and harmonic oscillator in the plane share a Hilbert space that carries

the structure of Dirac’s remarkable so(2, 3) representation. We show that the orthosymplectic algebra

osp(1|4) is the spectrum generating algebra for the Landau problem and, hence, for the 2D isotropic

harmonic oscillator. The 2D harmonic oscillator is in duality with the 2D quantum Coulomb–Kepler

systems, with the osp(1|4) symmetry broken down to the conformal symmetry so(2, 3). The even

so(2, 3) submodule (coined Rac) generated from the ground state of zero angular momentum is

identified with the Hilbert space of a 2D hydrogen atom. An odd element of the superalgebra

osp(1|4) creates a pseudo-vacuum with intrinsic angular momentum 1/2 from the vacuum. The odd

so(2, 3)-submodule (coined Di) built upon the pseudo-vacuum is the Hilbert space of a magnetized

2D hydrogen atom: a quantum system of a dyon and an electron. Thus, the Hilbert space of the

Landau problem is a direct sum of two massless unitary so(2, 3) representations, namely, the Di and

Rac singletons introduced by Flato and Fronsdal.

Keywords: Landau model; Kepler problem; magnetic vortex; conformal symmetry; parabosons

to Richard Kerner,
an inspiring teacher and a devoted friend

who can hear, interpret and transmit the music of the spheres

1. Introduction

Conformal symmetry of Maxwell electrodynamics implies that the Landau problem
(magnetostatic) and hydrogen atom problem (electrostatic) enjoy common hidden symme-
tries. The hydrogen atom is the quantum Coulomb–Kepler problem (Newton potential
1/r), whereas the Landau problem is the quantum harmonic oscillator (Hooke potential
r2), with an additional term accounting for the magnetic field. The duality between the
Newton 1/r and Hooke r2 potentials can be traced back to Newton’s Principia [1].

The classical Coulomb–Kepler problem in R2 allows for a Moser regularization [2],
which maps a bound elliptic orbit to a geodesic on the sphere S2. The time parameter
of the cyclic motion is naturally compactified to a circle S1. There is an extension due to
Guowu Meng [3] of the Kepler motion from R2 to the future cone of the flat Minkowski
space R1,2, i.e., i : x → (t, x) such that t = |x|. The Minkowski space R1,2 is further mapped
by the Cayley transform to its compactification M1,2 = (S1 × S2)/Z2, which is endowed
with a free action of the spectrum generating group SO(2, 3) that captures the integrals
of Keplerian motion [4,5]. The Coulomb picture is similar in harmony with the fact that
electrodynamics in R1,2 spacetime possesses the conformal symmetry SO(2, 3) [6]. The
symplectic group Sp(4, R) is the double-covering of the unit component SO0(2, 3) of the
anti-de Sitter group SO(2, 3) [7]:

SO0(2, 3) ∼= Sp(4,R)/Z2 .
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By the Newton–Hooke duality, the symplectomorphisms Sp(4,R) of the phase space
T∗R2 yield a spinorial SO(2, 3) representation on the 2D harmonic oscillator [8]. They
preserve the constant magnetic field of the underlying planar Landau problem (see our
work [5]).

The novelty in the present work is the hidden dynamical symmetry so(2, 3) ∼= sp(4,R)
of the Hilbert space spanned by the states in all Landau levels, which we denote as Dirac.
The Hilbert space Dirac also associated with the isotropic 2D Harmonic oscillator is a
reducible so(2, 3) module for Dirac’s remarkable representation of the anti-de Sitter (AdS)
group SO(2, 3) [9]. In other words, so(2, 3) turns out to be the spectrum generating algebra
(SGA) of both the Landau problem and 2D harmonic oscillator. The Bohlin transform
incarnates the Newton–Hooke duality [10] between the harmonic oscillator (Landau model)
and the quantum Coulomb–Kepler models (with/without magnetic charge):

Dirac := Di ⊕ Rac
Hooke−Newton↔ {2D charge-dyon system} ⊕ {2D hydrogen atom} .

The unitary massless conformal so(2, 3) represenations D(E0, s) are classified by the
minimal conformal energy E0 and the helicity s, with the notations of the seminal work
Massless particles, conformal group, and de Sitter universe [11,12]. The conformal energy E
turns out to be the eigenvalue of the harmonic oscillator Hosc, whereas the helicity s is an
intrinsic spin that is related to the minimal value of the angular momentum Lz in the plane.
Our main result is Theorem 1. It states that the harmonic oscillator Hilbert space Dirac

splits into two SO(2, 3) orbits:
(odd)- Di = D(1, 1/2) is the regularized Hilbert space for a quantum system of an

electron and a charged magnetic vortex (dyon with helicity s = 1
2 ) [10,13];

(even)- Rac = D(1/2, 0) is the regularized Hilbert space for the 2D hydrogen atom
quantum Coulomb–Kepler problem described by a massless field with helicity s = 0, [4,14],
reflecting the fact that the group Sp(4,R) is the double-covering of the AdS group SO(2, 3).

In our previous work [5], the Landau problem SGA so(2, 3) emerges from the Jordan
algebra H2(R) of real Pauli matrices, or spinorial representation of Minkowski space R1,2.
Similarly, the spinorial representation of R1,3, or the Jordan algebra H2(C) of Pauli matrices,
allows us to recover the SGA so(2, 4) and explain the duality between a 3D hydrogen atom
and 4D harmonic oscillator from the (massless) ladder representations of the conformal
group SU(2, 2)/Z2

∼= SO(2, 4) [15–17]. The compound quantum system1 of a magnetic
monopole (or dyon) and an electric charge, i.e., charge–dyon system is described by a non-zero
helicity massless SU(2, 2) representation [4,16,19]. By a Majorana reduction from SU(2, 2)
to Sp(4,R) [20,21], we related the abovementioned 4D and 2D harmonic oscillators.

In this work, we put in the forefront the conformal regularization of the hydro-
gen atom in RD. Its SGA so(2, D + 1) acts freely on the compactified Minkowski space
M1,D := (S1 × SD)/Z2. The reduction from 3D to 2D yields the planar Landau problem [5].

Here is a short outline of the paper: In Section 1, we define our conventions and recall
that the planar Landau problem is a “magnetic deformation” of the 2D harmonic oscillator
by adding a topological term to the Hamiltonian. In Section 2, we recall the construction
of the Hilbert space Dirac of Landau level states. By the action of the parity operator,
they split into subspaces of odd and even states. In Section 3, we recall the SGA of the
hydrogen atom and charge–dyon system in R3. In Section 4, we then revise the Moser
regularization in order to reveal the conformal symmetry SO(2, 4) of the Coulomb–Kepler
system at the classical level. In Section 5, we recall the Hopf fibration S3 → S2 and relate
the geodesic motion on the sphere S3 to a 4D harmonic oscillator. We then use the Majorana
reduction from a 4D to a 2D harmonic oscillator. Section 6 is about the Bohlin transform
and the Newton–Hooke duality between the 2D Landau problem (potential r2) and the 2D
(magnetized) hydrogen atom (potential 1/r). Section 7 is the original contribution of the
paper, which recovers the Dirac’s anti-de Sitter group SO(2, 3) [9] acting on the compactified
Minkowski space Sp(2,R) ∼= (S1 × S2)/Z2 as a dynamical group of the Landau problem.
Inspired by the seminal work of Ganchev and Palev on parabosonic statistics [22], we bind
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the odd Di and even Rac sp(4) modules into the irreducible osp(1|4) module Dirac of the
spectrum generating orthosymplectic algebra. We conclude by presenting an outlook in
Section 8.

2. Planar Landau Problem and 2D Harmonic Oscillator

The classical motion of an electron of mass µ in an uniform magnetic field is rotation
on a circular orbit around a guiding center X with a cyclotron frequency ω = eB

µc . In
the non-relativistic regime, the minimal coupling of the electron’s charge density to the
external magnetic field (as described by the electromagnetic vector potential A) yields
the Hamiltonian

H =
1

2µ

(

p − e

c
A

)2
. (1)

We choose the symmetric gauge A = (Ax,Ay) = B
2 (−y, x) to create a constant

uniform magnetic field B = Bẑ along the z-axis. Given its negative charge e = −|e|,
the electron is rotating in a positive direction (anti-clockwise) when the magnetic field
is positive B = |B|, while for a negative magnetic field B = −|B|, its rotation is in the
negative direction.

The gauge-independent kinetic momenta P and the guiding center coordinates X are
related to the phase space canonical coordinates (x, y, px, py) by

Pi = µẋi = µ
∂H

∂pi
= pi −

e

c
Ai, Xi = xi +

1
µω

ϵijP
j . (2)

The coordinates X = (X, Y) are integrals of motion Ẋ = 0 = Ẏ and decouple from the
system (merit of the symmetric gauge). One has two independent Heisenberg algebras
[P, X] = 0:

[Px, Py] = i
h̄e

c
B =

ih̄2

ℓ2 , [X, Y] = −i
h̄

µω
= −iℓ2 .

The Landau Hamiltonian is H = P2

2m , and X are the energy zero modes in view of
[H, X] = 0. Here, ℓ stands for the magnetic length ℓ2 = h̄

µω = h̄c
eB . One quantum of magnetic

flux Φ0 = hc
e passes through an area 2πℓ2 in the plane.

Creation and annihilation operators: The kinetic momenta P = p − e
cA are quan-

tized by the energy creation and annihilation operators a±. The guiding center coordinates
X and Y are integrals of motion, where they are quantized by the magnetic translation
operators2 b±:

a± =
−Py ∓ iPx
√

2µωh̄
, b± =

X ± iY

ℓ
√

2
. (3)

The Hamiltonian H is written with the ladder operators a± raising and lowering
the energy:

H =
h̄ω

2
{a+, a−} , [H, a±] = ±a± , H|n⟩ = h̄ω(n +

1
2
)|n⟩ . (4)

The n-th Landau level is the subspace of states |n⟩ with fixed energy h̄ω(n + 1
2 ).

The magnetic translations b± are “zero modes” of the Hamiltonian H, and [H, b±] = 0
since they commute with the energy shift operators a±. Therefore, the degeneracy of any
Landau level is due to the action of the magnetic translations b±, i.e., the freedom of choice
of the guiding center of the orbit of an electron.

Angular momentum operator:3 Lz = (xpy − ypx) is the generator of the rotational
symmetry, where the operators b± increase (decrease) the angular momentum eigenvalue:

Lz =
h̄

2
(b+b− − a+a−) , [Lz, b±] = ±b± , [Lz, H] = 0 . (5)
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The Landau Hamiltonian H is reduced to an isotropic harmonic oscillator Hamiltonian
Hosc in two dimensions plus a “magnetic” term proportional to the angular momentum:

H = Hosc − ΩLz =
p2

x + p2
y

2µ
+

µΩ2

2
(x2 + y2)− ΩLz Ω = ω/2 . (6)

The Larmour frequency Ω = eB
2µc is half of the cyclotron frequency ω, i.e., Ω = ω

2 .

Holomorphic coordinates:4 It is convenient to introduce (anti-)holomorphic coordi-
nates z (z̄) on the phase space such that

z = (x + iy)/2ℓ ∂ = ∂
∂z = ℓ

(

∂
∂x − i ∂

∂y

)

= (py + ipx)ℓ/h̄ ,

z̄ = (x − iy)/2ℓ ∂̄ = ∂
∂z̄ = ℓ

(

∂
∂x + i ∂

∂y

)

= (−py + ipx)ℓ/h̄ .

The energy and magnetic translation creation and annihilation operators a± and b±

(see Equation (3)) provide another parametrization of the phase space T∗R2 ∼= T∗C. These
are expressed in the holomorphic phase space coordinates as follows:

a− = 1√
2
(z + ∂̄) b− = 1√

2
(z̄ + ∂) ,

a+ = 1√
2
(z̄ − ∂) b+ = 1√

2
(z − ∂̄) .

(7)

The Landau Hamiltonian H in the new complex variables reads as follows:

H = Hosc −
ω

2
Lz =

h̄ω

2
(zz̄ − ∂∂̄)− h̄ω

2
(z∂ − z̄∂̄) =

h̄ω

2
{a+, a−} . (8)

The angular momentum is an integral of motion, and thus, Lz commutes with H. It
also commutes with the Hamiltonian Hosc of the underlying isotropic oscillator:

Hosc = h̄ω
2 (zz̄ − ∂∂̄) = h̄ω

4 ({b−, b+}+ {a−, a+}) .

It is worth noting that the Hamiltonians H, Hosc and Lz can be simultaneously diagonal-
ized. Their common eigenstates form a basis of one Hilbert space, i.e., a Bargmann–Fock space.

3. Landau Levels in a Hilbert Space

The common spectrum of the Landau Hamiltonian H (Equation (1)) and the angular mo-
mentum Lz (Equation (5)) is worked out through the standard methods in quantum mechanics:

Lzψn,m = h̄mψn,m , Hψn,m = h̄ω

(

n +
1
2

)

ψn,m , n = nr +
|m| − m

2
.

where m is the magnetic quantum number and n is the radial quantum number. The energy
spectrum is bounded below, i.e., n ≥ 0, and the range of the magnetic quantum number m
is m ≥ −n. The radial quantum number nr is non-negative, i.e., nr ≥ 0.

The Landau eigenstates ψm,n(z, z̄) have a concise expression when written with the
associated Laguerre polynomials:

ψn,m(z, z̄) = Cn,m|z||m|L|m|
nr (2|z|2)e−|z|2 eimφ n ≥ 0 m ≥ −n . (9)

The scalar product of the eigenfunctions is chosen to be

(ψ, χ) =
∫

dx ∧ dy ψ∗(x, y)χ(x, y) = 4ℓ2
∫

dz ∧ dz̄ ψ∗(z, z̄)χ(z, z̄) .

The states in all Landau levels are a complete basis of the Hilbert space:5

Dirac =
⊕

n≥0

Diracn =
⊕

n≥0

⊕

m≥−n

ψn,m(z, z̄) . (10)
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The non-negative integer grading n ≥ 0 is the Landau level, while the grading in
m ≥ −n accounts for the angular momentum.

The ground state ψ0,0(z, z̄) in the lowest Landau level is a Gaussian function with the
distribution |ψ0,0|2 and a standard deviation equal to the magnetic length ℓ:

ψ0,0 =
1√

2πℓ2
e−zz̄ =

1√
2πℓ2

e
− x2+y2

4ℓ2 . (11)

Any state in the lowest Landau level n = 0 (LLL) is represented by an arbitrary
holomorphic function multiplying the ground state f (z)e−zz̄. The basis of the LLL, or
Dirac0, is provided by the holomorphic monomials:

ψ0,0(z, z̄) = (m!)−
1
2 (b+)mψ0,0(z, z̄) = zme−zz̄/

√
2mm!2πℓ2 ,

since the application of the "zero modes" operators b+ do not change the energy level n.
The lowest Landau level is a Bargmann space [24]. The higher Landau level Diracn is a
Bargmann space too, but it is built on the higher vacuum state

ψn,−n =
1√

2πℓ22nn!
z̄ne−zz̄ Diracn =

⊕

m≥0

C(b+)mψn,−n .

The higher vacuum state of the Landau level Diracn is created by the vacuum state in
the LLL via the n-fold application of the energy creation operator

ψn,−n = (a+)nψ0,0/
√

n! . (12)

To summarize: all eigenfunctions in Dirac can be generated from the ground state by
applying the ladder generators a+ and b+:

ψn,m(z, z̄) =
(a+)n

√
n!

(b+)n+mψ0,0
√

(n + m)!
= Cn,me−|z|2

{

zmL
|m|
n (2|z|2) m ≥ 0

z̄|m|L|m|
n+m(2|z|2) −n ≤ m < 0

. (13)

The states ψm,n(z, z̄) are in bijection with the integer points on the plane satisfying
n ≥ 0 and n + m ≥ 0 (see Figure 1). The generators a+ and b+ correspond to the simple
roots of the B2 root system. In Section 8, we relate the orthogonal de Sitter group SO(2, 3)
to the hidden symmetries of the Landau levels. The construction of a dynamical conformal
algebra for the B2 root system was done in a different context in [25].

Figure 1. Hilbert space Dirac = Di ⊕ Rac of Landau levels: odd Di (red) and even Rac (blue) states.

4. Quantum Coulomb–Kepler System

The electronic orbitals of the non-relativistic hydrogen atom are solutions of the
Schrödinger equation with the Hamiltonian

Hatom =
p2

2µ
− e2

r
.
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Thus, the hydrogen atom is the quantum Coulomb–Kepler system. Here, µ stands for
the reduced mass of the electron–proton system µ = memp/(me + mp). Due to the great
difference in the masses of the electron and the proton mp >> me, the reduced mass is very
close to the mass of the electron µ ≈ me; hence, the interpretation is that the electron is
propagating in the background electric field created by the proton. The bound states of the
hydrogen atom can be built from one ground non-excited state by the spectrum generating
group SO(2, 4) [26]. These states span the most degenerated representation of SO(2, 4),
i.e., the massless representation of zero helicity s = 0 [17]. The other massless SO(2, 4)
representation of non-zero helicity s ̸= 0 were interpreted by Barut and collaborators [15,16]
as Hilbert spaces for bound states in a system of an electron and dyon. They correspond to
MICZ–Kepler systems [27,28] with the Hamiltonian

HMICZ =
1

2µ

(

p − e

c
A

)2
− e2

r
+

(eg)2

2µr2 , A(x, y, z) =
g

r(r + z)
(−y, x, 0), g =

h̄cs

e
.

The energy spectrum depends on the principle quantum number N = nr + l + |s|+ 1,
which is a sum of the radial nr, orbital l quantum numbers and helicity s. The sum implies
the accidental degeneracy of the energy levels (N = |s|+ 1, |s|+ 2, . . . ):

EN = −µc2α2

2N2 = − µc2α2

2(nr + l + |s|+ 1)2 , deg(EN) = (N + s)(N − s) =
N−1

∑
j=|s|

(2j + 1) .

The vector potential A(r) corresponds to a Dirac monopole with a magnetic charge g.
The canonical momenta π := p − e

cA do not commute any more due to the magnetic field
but satisfy the gauge and rotational invariant commutation relations:

[xi, xj] = 0, [πi, xj] = −ih̄δij, [πi, πj] = isϵijk
xk

r3 . (14)

Thus, the MICZ–Kepler system describes an electron propagating in the field of a
magnetic monopole also possessing electric charge (dyon). The dyon–dyon system is also
reduced to a charge–dyon system [19].

Spectrum generating algebra for 3D hydrogen atom and MICZ–Kepler problem:

The conformal algebra so(2, 4) generators LAB satisfy the commutation relations

[LAB, LCD] = −i(ηACLBD + ηBDLAC − ηADLBC − ηBCLAD) (15)

where the set of indices contains the auxiliary indices −1 and 5, in addition to the spacetime
indices µ = 0, 1, 2, 3:

LAB ∈ so(2, 4) , ηAB = diag(1, 1,−1,−1,−1,−1) , A, B ∈ {−1, 0, 1, 2, 3, 5} .

The generators of the SGA so(2, 4) are arranged into an antisymmetric 6 × 6 matrix:

















0 L−10 L−11 L−12 L−13 L−15
0 L01 L02 L03 L05

0 L12 L13 L15
0 L23 L25

0 L35
0

















=

















0 Hτ M1 M2 M3 D
0 Γ1 Γ2 Γ3 H̃ρ

0 J3 −J2 A1
0 J1 A2

0 A3
0

















. (16)

The so(2, 4) generators of the quantum Kepler and MICZ–Kepler problem read as
follows [16]:

J = r × π − sr̂ Γ = rπ, D = r · π − i ,

A = 1
2 rπ2 − π(r · π) + s

r J + s2

2r2 r − 1
2 r , Hτ = 1

2

(

rπ2 + s2

r + r
)

,

M = 1
2 rπ2 − π(r · π) + s

r J + s2

2r2 r + 1
2 r , H̃ρ = 1

2

(

rπ2 + s2

r − r
)

.

(17)
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The block structure of the matrix induces a rich hierarchy of subalgebras of so(2, 4). The
angular momentum J (with components of the so(3) generators Jk = εijkLij) commutes with
the radial algebra so(1, 2) spanned by the dilatation D, Hτ and H̃ρ. According to the energy, a
different element of the radial algebra is chosen to be the Hamiltonian. For negative energies
E < 0, one diagonalizes the compact Hamiltonian Hτ, with the (rescaled) Runge–Lenz vector
A as an additional integral of motion (related to the accidental energy degeneracy). Classically,
the Runge–Lenz vector points in the direction of the major semi-axis of the elliptical orbit and
has a length proportional to the eccentricity of the bound Keplerian orbits. In the quantum
Kepler problem, the bound states are transformed into one SO(4) representation generated
by J and A for every eigenvalue of the energy. Similarly, the dual Runge–Lenz vector M is an
additional integral of motion for the scattering states and commutes with the non-compact
Hamiltonian H̃ρ for positive energies. The scattering eigenstates transform into an SO(1, 3)
representation generated by J and M. The Galilean boost operators r = M − A are related to
the symmetries of the lightcone in Minkowski space R1,3. The current operator Γ, together
with J, generates another dynamical subgroup SO(1, 3), which commutes with the dilatation
operator D.

We summarize the subalgebra structure and its relation to the geometry in the Table 1.

Table 1. 3D Hydrogen atom Spectrum Generating Algebra so(2, 4) and its subalgebras.

Energy Hamiltonian Symmetry Integrals Invariant Geometry

E < 0 Hτ ∈ so(2) so(4) J, A S1 × S3

E > 0 H̃ρ ∈ so(1, 1) so(1, 3) J, M H1 × H3

E = 0 (Hτ + H̃ρ) ∈ R so(3) +R3 J, r Lightcone ∗
D ∈ R so(1, 3) J, Γ AdS5

5. Conformal Regularization

Vladimir Fock explained the accidental degeneracy of the energy levels in the hydro-
gen atom [29] by the presence of hidden symmetries. The essence of Fock’s method is the
compactification of the momentum space R3 to a three-dimensional sphere S3 ⊂ R4. The
sphere S3 is invariant under the action of the group SO(4) generated by the integrals of
motion, the angular momentum L and the (rescaled) Runge–Lenz vector A.

The Moser regularization [2] for the classical Kepler problem was inspired by Fock’s
method. Moser showed that the Kepler bound motion (for negative energies E < 0) is
equivalent to a geodesic motion on a sphere S3 in momentum space. There is a well-
forgotten result of Sir Hamilton about the trajectory in the momentum space that he coined
a hodograph. Hamilton proved that a hodograph of a Kepler orbit is a circle. We will see
that this circle is a great circle on S3.

Moser regularization map [2,4,30]: The stereographic projection maps the 3D sphere
S3 ⊂ R4 to the Euclidean momentum space p ∈ R3. We have the isomorphism f : S3

N → R3

of the chart S3
N = S2 − {N}, where N = (1, 0) is the north pole:

pk =
Xk

1 − X0
, X0 =

|p|2 − 1
|p|2 + 1

, Xk =
2pk

|p|2 + 1
, S3 : X2

0 + X2 = 1 . (18)

We embed the cotangent bundle T∗S3 into T∗R4 = R4 ⊕R4. The additional dimension
X0 and the radius of the sphere depend on the energy E < 0 (here, for simplicity, we
consider unit spheres). The conjugate momenta Y = (Y0, Y) ∈ R4 are defined to be tangent
to the sphere X · Y = X0Y0 + X · Y = 0. The momenta p are conjugate to the coordinate q

in the cotangent bundle (p, q) ∈ T∗R3 = R3 ⊕R3. We extend the stereographic projection
(18) to a mapping between the cotangent bundles T∗R3 and T∗S3

N by

q = (1 − X0)Y + Y0X , Y0 = p · q , Y =
1
2
(p2 + 1)q − (p · q)p . (19)
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Then, we have a symplectomorphism between T∗R3 and T∗S3
N since the canonical

contact forms Y · dX = −q · dp are related by a canonical transformation.
The geodesic flow on the sphere S3 is given by the Hamiltonian F on T∗S3:

F(X, Y) =
1
2
|X|2|Y|2 =

1
8
(p2 + 1)2r2 , r = |q| ,

which, under the constraint |X|2 = 1, yields the free Hamiltonian 1
2 |Y|2. Hence, the geodesic

flow on S3 is symplectically equivalent to the flow of the Kepler Hamiltonian. Suppose we
have a new Hamiltonian J(F) =

√
2F − 1; hence, J′(F) = 1√

2F
. The submanifold of T∗R3,

where F = 1
2 , will be identical to the submanifold J = 0, where

J(p, q) =
r

2
(p2 + 1)− 1 . (20)

To every function, one associates a vector field χ f ( ) = ω( f , ), where ω = dp ∧ dq is
the symplectic form. The Hamiltonian vector fields are related by χJ = J′(F)χF, and thus,
coincide on the submanifold F = 1

2 , which is identical to the submanifold J = 0. Hence, we
have a similarity between the Hamiltonian J and the Kepler Hamiltonian:6

J = r

(

H +
1
2

)

where H =
1
2

p2 − 1
r

.

Conformal Hamiltonian: The submanifold F = 1
2 is then identified as H = − 1

2 (which
would be the energy of the ground state upon quantization7). One has

dJ = r d

(

H +
1
2

)

⇔ χJ = rχH .

Let t be the absolute Newtonian time associated with the Kepler Hamiltonian and
the vector field χH = d

dt = {·, H}, whereas τ is the natural parameter along the geodesic
flow of χJ =

d
dt = {·, J}. From the second Kepler’s law about the conservation of the arial

velocities, we know that the velocity is bigger when the two bodies are close to each other.
The fictitious time τ is a conformal transformation of the absolute time:

d

dτ
= r

d

dt
,

dτ

dt
=

1
r

,

where it slows down when the two bodies are close, and due to the conformal factor r, the
velocity dx

dτ becomes uniform. The vector field χH has a singularity at r = 0, or |p| = ∞,
which is the image of the north pole N on S3. The vector field χJ is free of singularities;
going from t to fictitious time τ restores N on S3. The collision orbits where we have a clash
for a finite time t are regularized so that the clash happens at infinite τ and the orbit space
is compactified. In fact, after quantization, we can set the quantum Kepler Hamiltonian
vector field as Hatom = d

dt and the quantum conformal Hamiltonian as Hτ = d
dτ .

Hodograph: Without loss of generality, we can rotate the plane of motion to X2 = 0.
The reduced 2D Kepler motion is then equivalent to the motion on the geodesic on S2:

X0 = sin α cos τ , X1 = sin τ , X3 = − cos α cos τ ,

where α is the tilt of the great circle of S2. The eccentricity of the orbit is identified with
ϵ = sin α and it is proportional to the magnitude |A| of the Runge–Lenz vector. The tangent
to the sphere momenta is found by differentiation with respect to the evolution parameter τ:

Y0 = − sin α sin τ , Y1 = cos τ , Y3 = cos α sin τ .
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With the help of the cotangent extension of the stereographic projection T∗S3
N → T∗R3

and Equations (18) and (19), we obtain the trajectory in the phase space:

p1 = sin τ
1−ϵ cos τ , p3 = −

√
1−ϵ2 cos τ
1−ϵ cos τ , p2 = 0 ,

q1 = cos τ − ϵ , q3 =
√

1 − ϵ2 sin τ , q2 = 0 .

This geodesic line is the hodograph; it is a great circle with a center depending on the
eccentricity ϵ:

p2
1 + (p3 − tan α)2 = 1 + tan2 α , tan α =

ϵ√
1 − ϵ2

.

Mapping one hodograph to another one in the plane is a conformal transformation
SO(2, 3). This hodograph will be mapped under the Newton–Hooke duality to the planar
cyclotronic motion of an electron in a constant magnetic field.

6. Newton–Hooke Duality

The Moser regularization is a symplectic isomorphism between the Kepler motion
and the free geodesic motion on the sphere S3. Furthermore, the geodesic motion on S3

is equivalent to the motion of a harmonic oscillator in R4 by the Kustaanheimo–Stiefel
transform [31]. It allows the quantum Coulomb–Kepler problem (hydrogen atom) and the
quantum MICZ–Kepler problem to be mapped to a 4D harmonic oscillator [32]. We are
referring to this correspondence as the Newton–Hooke duality.

Compactified Minkowski space: The flat Minkowski space R1,3 with metric ηµν =
diag(+1,−1,−1,−1) can be written as a spinor:

x̃ = xµσµ =

(

x0 + x3 x1 + ix2

x1 − ix2 x0 − x3

)

∈ H2(C) , (x)2 = det x̃ = ηµνxµxν .

The Kepler orbits are conic sections and they appear as an intersection of the light
cone det x̃ = 0 with some plane. The Cayley transform C is a map that sends a Hermitian
matrix to a unitary one:

C : H2(C) → U(2) , U =
1 − ix̃

1 + ix̃
.

The Cayley transform is a Lorenzian counterpart of the stereographic projection. It
compactifies both space and time:

C : R1,3 → M1,3 := U(2) = U(1)× SU(2)/Z2
∼= S1 × S3/Z2 .

We define the space of the unitary matrices U to be the compactified Minkowski space.
On the space M1,3, we have an action of the conformal group SU(2, 2) by fractional
linear transformations:

U → gU :=
AU + B

CU + D
, g =

(

A B
C D

)

∈ SU(2, 2) .

The compactified Minkowski space M1,3 is a homogeneous space of the conformal
group SU(2, 2). The group SU(2, 2) is the double-covering of SO0(2, 4), the identity compo-
nent of the conformal group SO(2, 4). There is a manifestly covariant description of the com-
pactified Minkowski space M1,3 as a projective quadric in R2,4, the Klein–Dirac quadric:8

M1,3 = Q/R∗ , Q = {ηAByAyB = 0} , ηAB = diag(+1,+1,−1,−1,−1,−1) .

KS transform and Hopf fibration: The regularized Kepler orbits live on the cotangent
bundle T∗S3 to the sphere S3 with the zero section removed [4]:
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T+S3 = T∗S3 − {0sec} .

Definition 1. The Kustaanheimo–Stiefel (KS) transform is the map

KS : T+S3 → T+S2 ⊂ (R∗)4 ×R
4 → (R∗)3 ×R

3

where the 4D harmonic oscillator phase space coordinates (u, w) ∈ (R∗)4 ×R4 are related to the
3D Kepler phase space (q, p) ∈ (R∗)3 ×R3 coordinates through the Hopf fibration map extended
with the derived momentum relations (|z|2 = u2

1 + u2
2 + u2

3 + u2
4):

q1 = u1u3 + u2u4 ,
q2 = u2u3 − u1u4 ,
q3 = −u2

1 − u2
2 + u2

3 + u2
4 ,

p1 = −(u1w3 + w1u3 + u2w4 + w2u4)/|z|2 ,
p2 = −(u2w3 + w2u3 − w1u4 − u1w4)/|z|2 ,
p3 = (u1w1 + u2w2 − u3w3 − u4w4)/|z|2 .

(21)

The coordinates on T+S3 are subject to the constraint

K = u1w2 − u2w1 + u3w4 − u4w3 = 2λ .

The Hopf fibration represents a 3D vector x ∈ R3 as a “square root” of a spinor Z ∈ C2

in view of
|q| = |Z|2 , Z =

(

u1 + iu2
u3 + iu4

)

, |Z|2 = Z†Z. (22)

The KS transformation can be seen as a phase space extension of the Hopf fibration

0 → S1 →֒ S3 → S2 → 0 ,

where the kernel consists of the spinors eiθz ∈ S1. The new Hamiltonian J(F) (20) can be
written in terms of spinorial variables as a Hamiltonian of a 4D harmonic oscillator:

J(Z, W) =
1
2
|Z|2 + 1

2
|W |2 − 1 , KS : J(Z, W) → J(p, q) .

Its image under the KS transform yields the Hamiltonian J(p, q), which is equivalent
to the Kepler Hamiltonian H. The 4D harmonic oscillator modes are components of a Dirac
spinor that transforms under the conformal group SU(2, 2), thus giving a spinorial SO(2, 4)
representation in view of the isomorphism SU(2, 2)/Z2

∼= SO(2, 4).
Majorana reduction from 4D to 2D: The 4D Dirac SU(2, 2) spinor is reduced by

a Majorana projection to a 4D real spinor that is transformed under Sp(4,R) (see our
companion paper [5]). The reduction of the KS transform to the Bohlin (Levi–Civita)
transform is done by the Majorana reduction:

u2 = u4 = 0 , w2 = w4 = 0 ,

which amounts to taking a square root of a vector in the 2D plane q1 = η and q3 = ξ.
The Bohlin transform stems from the change to parabolic coordinates u1 and u3 in the
complex plane:

ξ + iη = z2 ,
ξ = u2

1 − u2
3 , pξ = (u1w1 − w3u3)/|z|2 ,

η = 2u1u3 , pη = −(u1w3 + w1u3)/|z|2 ,
(23)

where the real spinor ψ =

(

u1
u3

)

is written with one complex number z = u1 + iu3. The

Levi–Civita mapping is then a sympletic extension of the the trivial Hopf fibration:

0 → S0 →֒ S1 → S1 → 0 ,

where the dimension zero sphere S0 = Z2 is in the kernel, thus reflecting the fact that any
pair of parabolic coordinates (u1, u3) and (−u1,−u3) parametrize one point ξ + iη ∈ C.
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A 4D real Majorana spinor is equivalent to a 2D Weyl spinor. We now use a conformal
regularization of the 2D quantum Coulomb–Kepler system (with or without magnetic
charge). These reduced systems are embedded into a 2D harmonic oscillator via a Bohlin
(Levi–Civita) transform [10].

7. Planar Harmonic Oscillator and Newton–Hooke Duality

The harmonic oscillator Hosc and Landau Hamiltonian H have a common basis of
states ψm,n(z, z̄), which are also eigenvalues of the angular momentum Lz:

Hosc =
h̄ω

2

(

a+a− + b+b− + 2
)

, H = h̄ω

(

a+a− +
1
2

)

= Hosc − ΩLz .

The spectrum of the harmonic oscillator Hamiltonian is easy to calculate:

Hoscψn,m(z, z̄) = h̄ω

(

N +
1
2

)

ψn,m(z, z̄) N = n +
m

2
= nr +

|m|
2

.

We distinguish two types of Hosc eigenspaces, with N as an integer (blue) or half-
integer (red). The parity operator depends on the parity of the angular momentum eigen-
value m:

Πψn,m(z, z̄) = ψn,m(e
iπz, e−iπ z̄) = (−1)mψn,m(z, z̄) .

The Hamiltonian Hosc has a finite degeneracy 2N + 1, contrary to the infinite degener-
acy of the Landau levels, i.e., the eigenspaces of H.

Duality between a harmonic oscillator and H-atom or charge–vortex system: The
duality between oscillators in various dimensions and hydrogen atom or charge–dyon
(charged vortex) were thoroughly studied in the works of the Armenian Mathematical
Physics school (for a pedagogical review and extensive literature, see [13,33]). From the
perspective of two-time physics, the same dualities were studied by Itzhak Bars and
collaborators (see [34] and references therein).

The 2D isotropic harmonic oscillator with Hamiltonian Hosc is in duality with the
2D hydrogen atom. The duality is provided by the Levi–Civita regulatization or Bohlin
transform. It is a two-sheeted covering the complex mapping

w = z2 where z = |z|eiφ w = reiθ

which induces the mapping between φ ∈ [0, 2π) and θ ∈ [0, 4π), where θ winds twice for
one period of φ:

r = zz̄ , θ = 2φ .

The angular momentum operator Lz = −ih̄ ∂
∂φ with integer eigenvalues m ∈ Z (reflect-

ing the single valuedness of the wavefunction) transforms into a rotation operator in the
new angle θ; hence, the Jz eigenvalues j run on half-integer values:

Lz = −ih̄
∂

∂φ
, 2Jz = 2 ×

(

−ih̄
∂

∂θ

)

, m = 2j = 2(l + s) .

Here, the angular momentum is the sum of the “orbital” angular momentum l ∈ Z and
the intrinsic angular momentum (helicity) s ∈ 1

2Z. The Schrödinger equation for Hosc in z
variables induces another Schrödinger equation in w (or for r, θ) for the quantum Coulomb–
Kepler system, with or without a magnetic charge. The wavefunction of the oscillator
with energy levels N = nr + |j| are mapped to the eigenfunctions of the (magnetized) 2D
hydrogen atom with finitely degenerated energy levels (N = |s|, |s|+ 1, . . .):

EN = − µc2α2

2(N + 1
2 )

2
= − µc2α2

2(nr + |l + s|+ 1
2 )

2
, deg(EN) = 2(N − |s|) + 1 .
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Here, α = e2/h̄c is the fine structure constant. These wavefunctions depend on
θ and live on a two-sheeted Riemann surface w = z2, with a double-covering of the
z-complex plane:

ψn,m(r, θ) = C
(s)
N,je

−βr(βr)|j|L2|j|
N−|j|(2βr)eijθ β = 1/(N + 1/2) .

These are 4π-periodic ψn,m(r, θ + 4π) = ψn,m(r, θ) since the wavefunction is single-
valued. However, the 2π-translation of θ yields the parity operator (red and blue dots in
Figure 1):

Πψn,m(r, θ) = ψn,m(r, θ + 2π) = (−1)2jψn,m(r, θ) = (−1)mψn,m(r, θ) ,

where for odd m, we have a (−1) (blue states) eigenvalue, while for even m, we have (+1)
(red states). We introduce a U(1) factor, taking care of the boundary conditions in view of
(−1)2s = (−1)m, and we end up with a 2π-periodic and single-valued function ψ̃n,m(r, θ):

ψn,m(r, θ) = eisθψ̃n,m(r, θ) , ψ̃n,m(r, θ + 2π) = ψ̃n,m(r, θ) .

The effective Hamiltonian acting on ψ̃m,n(r, θ) defines a 2D charge–vortex system [13,35]:

H f lux =
1

2µ

(

p − e

c
A

)2
− e2

r
, A(x, y) =

g

r2 (−y, x) , g = h̄cs/e .

The number 2s counts the elementary fluxes hc/e in the flux of the magnetic field B(r).
The Dirac quantization condition eg/h̄c ∈ 1

2Z guarantees that ψ̃n,m(r, θ) is single-valued.
When s = 0, we recover the 2D hydrogen atom with no magnetic field. For s = 1

2 , one has
a localized magnetic flux at the origin r = 0. An ideal infinite solenoid transversal to the
plane creates a magnetic vortex carrying a magnetic charge g:

B(r) = rotA(r) = 2πgδ(r) .

The limit of the 3D MICZ–Kepler problem when the flux g is increasing proportional
to the area surface yields the Landau problem with a constant transversal field B in the
symmetric gauge as a planar limit:

A = lim
g→∞

lim
r→∞

g

r(r + z)
(−y, x, 0) =

B

2
(−y, x, 0) provided B =

2g

r2 = const .

8. Dirac’s Remarkable Representation

The action of the spectrum generating algebra allows for creating all the states in a
Hilbert space starting from one (or several) ground state(s). What is the dynamic alge-
bra of the Hilbert space Dirac of the Landau levels? In other words, can we endow the
Hilbert space of the Landau problem Dirac (Equation (10)) with a structure of a representa-
tion of an algebra such that its action generates all the states from some lowest (energy)
weight vector(s)?

The phase space T∗R2 coordinates on the 2D plane are {px, py, x, y}. The magnetic
field is encoded into the symplectic form of the phase space throughout the commutation
relations. Therefore, the group Sp(4,R) of symplectomorphisms is a natural symmetry
for the Landau problem. On the other hand, the symplectic group Sp(4,R) is the double-
covering of a de Sitter group:

SO0(2, 3) ∼= Sp(4,R)/Z2 , so(2, 3) ∼= sp(4,R) .

The conformal group SO(2, 3) is the maximal symmetry of the Maxwell equations in
the flat Minkowski spaceR1,2. We then expect to see the conformal algebra so(2, 3) ∼= sp(4,R)
as a dynamical symmetry of the Landau problem, as well as the 2D hydrogen atom.

Klein–Dirac quadric: Dirac came out with a spinorial realization of so(2, 3) in his
seminal paper A Remarkable Representation of the 3 + 2 de Sitter Group [9]. The de Sitter
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group SO(2, 3) has a homogeneous space dS4 defined by the Klein–Dirac quadric in five-
dimensional flat ambient space with coordinates yA:

y2
−1 + y2

0 − y2
1 − y2

2 − y2
3 = R2 = ηabyayb , ηab = diag(+1,+1,−1,−1,−1) .

The de Sitter group SO(2, 3) is the conformal group of the Minkowski space R1,2; it
acts freely on the compactified Minkowski space of rays in y ∈ R2,3:

M1,2 = (S1 × S2)/Z2 .

The flat Minkowski space R1,2 is isometric to the space real Hermitian matrices S ∈
H2(R), and the metric is given by det. The symplectic Cayley transform C maps the real
symmetric matrix S = ST to the real symplectic matrix [36]:

C : H2(R) → Sp(2,R) , C(S) = M :=
11 −J S

11 + J S
, J =

(

0 1
−1 0

)

.

Hence, it compactifies the flat Minkowski spaceR1,2 to the compactified Minkowski space:

C : R1,2 → M1,2 := Sp(2,R) ∼= (S1 × S2)/Z2 .

The space M1,2 is a homogeneous space for the fractional linear action of the double-
covering Sp(4,R) of the identity component of the conformal group SO0(2, 3):

M → gM :=
AM + B

CM + D
, g =

(

A B
C D

)

∈ Sp(4,R) .

The reduction of the Minkowski space R1,3 ∼= H2(C) to R1,2 ∼= H2(R) induces the
Majorana reduction of an SU(2, 2) spinor to an Sp(4,R)-spinor (see [5] for more details).

It was shown that the Dirac remarkable representation is spanned by the quadratic
polynomials of the modes of 2D isotropic harmonic oscillator [8].

Lemma 1. The skewsymmetric generators mab = −mba, a, b ∈ {−1, 0, 1, 2, 3} quadratic in the
oscillators modes a± and b±

m12 = 1
2 (z∂ − z̄∂̄) = 1

4 ({b−, b+} − {a−, a+}) ,

m23 = 1
4 (z

2 + z̄2 − ∂2 − ∂̄2) = 1
4 ({a−, b+}+ {a+, b−}) ,

m31 = i
4 (z

2 − z̄2 + ∂2 − ∂̄2) = i
4 ({a−, b+} − {a+, b−}) ,

m1−1 = 1
4i (z

2 − z̄2 − ∂2 + ∂̄2) = i
4

(

a+2 − a−2 + b−2 − b+2
)

,

m2−1 = 1
4 (z

2 + z̄2 + ∂2 + ∂̄2) = 1
4

(

a−2 + a+2 + b−2 + b+2
)

,

m3−1 = − i
2

(

z∂ + z̄∂̄−1
)

= − i
4 ({a−, b−} − {a+, b+}) ,

m01 = − 1
2

(

z∂̄ − z̄∂
)

= − 1
4

(

a−2 + a+2 − b−2 − b+2
)

,

m02 = − i
2

(

z̄∂ + z∂̄
)

= − i
4

(

a−2 − a+2 + b−2 − b+2
)

,

m03 = 1
2

(

zz̄ + ∂∂̄
)

= − 1
4 ({a+, b+}+ {a−, b−}) ,

m−10 = 1
2

(

zz̄ − ∂∂̄
)

= 1
4 ({a−, a+}+ {b−, b+}) ,

(24)

satisfy the commutation relation

[mab, mcd] = 0 , [mab, mbc] = −iηbbmac , ηab = diag(+1,+1,−1,−1,−1) .

Therefore the generators mab provide a representation of the conformal algebra so(2, 3). The
latter representation is identified with the Dirac remarkable representation of so(2, 3) ∼= sp(4,R).

Proof. By straightforward calculation. One can also give a conceptual proof by Majorana
reduction of a spinor from su(2, 2) to sp(4,R). For details, see [5].
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Subalgebras of the conformal algebra so(2, 3): the isotropic rays in the five-dimensional
space R2,3 carry a linear representation of the conformal group SO(2, 3) with generators

mab =













0 m−10 m−11 m−12 m−13
0 m01 m02 m03

0 m12 m13
0 m23

0













=













0 hτ M1 M2 D

0 Γ1 Γ2 h̃ρ

0 l3 A1
0 A2

0













.

The conformal Hamiltonian. The operator hτ generates the flow on the compactified
time variable τ running on the circle S1; it coincides with the (normalized) harmonic
oscillator Hamiltonian Hosc = h̄ωhτ . The conformal Hamiltonian hτ ∈ so(2) commutes
with li =

1
2 ϵijkmjk in the so(3) subalgebra and generates the flows on the compactified

Minkowski space:

[hτ , li] = 0 , so(2)hτ
⊕ so(3) ⊂ so(2, 3) , M1,2 = (S1 × S2)/Z2 .

Runge–Lenz vector and so(3) subalgebra: The generators {l3, A1, A2} close the so(3)
algebra:

[A1, A2] = il3 , [l3, A1] = iA2 , [l3, A2] = −iA1 .

Only l3 = Lz/h̄ has a meaning of geometric rotation. A is a two-dimensional vector
(A1, A2) [14,37]; it plays the role of Runge–Lenz generators for the 2D Kepler problem.

Dual Runge–Lenz vector. The generators {l3, M1, M2} close a copy of the subalgebra
so(1, 2). The so(1, 2) generators are the integrals of motion for the non-compact generator
h̃ρ. The generator h̃ρ is a Hamiltonian for the scattering states when the energy is positive
E > 0 and ρ is the non-compact time parameter. Thus, the 2D vector (M1, M2) is the analog
of the dual Runge–Lenz vector generation flow on a 2D hyperboloid.

Galilean boost and rotations: The Hamiltonian h f ree = hτ + h̃ρ is related to the
parabolic motion of zero energy E = 0. Its integrals of motion span the Euclidean subalge-
bra so(2)⋉R2: the semidirect sum of pure rotations and Galilean boosts r = M − A.

We summarize the subalgebras of the reduced SGA so(2, 3) ∼= sp(4,R) in a Table 2.

Table 2. 2D Hydrogen atom Spectrum Generating Algebra so(2, 3) and its subalgebras.

Energy Hamiltonian Symmetry Integrals Inv. Geometry

E < 0 hτ ∈ so(2) so(3) L3, A S1 × S2

E > 0 h̃ρ ∈ so(1, 1) so(1, 2) L3, M H1 × H2

E = 0 (hτ + h̃ρ) ∈ R so(2) +R2 L3, r Lightcone ∗
D ∈ R so(1, 2) L3, Γ AdS4

Radial algebra so(1, 2): The operators hτ , h̃ρ and D span the radial subalgebra so(1, 2).
It originates in the conformal transformations of the time variable [35]. The radial algebra
so(1, 2) is the commutant of the spatial rotation algebra so(2)l3 generated by l3:

so(1, 2)⊕ so(2)l3 ⊂ so(2, 3) .

The non-compact generators h̃ρ and D can be combined into raising and lowering
operators of the compact conformal energy operator hτ :

c± = −h̃ρ ± iD = a±b± , [c+, c−] = −2hτ , [hτ , c±] = ±c± .

The operators c± = a±b± shift the quantum number n by one unit without affecting m:

c±ψn,m = Nmnψn±1,m , hτψn,m =

(

N +
1
2

)

ψn,m , l3ψn,m = mψn,m .
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The commutation [l3, c±] = 0 allows for the separation of variables in the Schrödinger
equation.

Lemma 2. The Hilbert space Dirac of the Landau levels (and the 2D isotropic harmonic oscillator)
is a reducible so(2, 3) representation with generators mab. All the states ψn,m(z, z̄) in the Landau
levels space (10) are generated by the so(2, 3) action from the two lowest Landau level states:

ψ0,0 ∈ Rac = D(1/2, 0) and ψ0,1 = b+ψ0,0 ∈ Di = D(1, 1/2) .

Proof. The so(2, 3) module Dirac is the Hilbert space for the 2D isotropic harmonic oscilla-
tor with the conformal Hamiltonian Hosc = h̄ωhτ , as well as the Landau level space with a
Landau Hamiltonian H = Hosc − ω

2 Lz. The unitary so(2, 3) modules with positive energy
are denoted as D(E0, s) [12], where E0 is the minimal energy of the conformal Hamiltonian
hτ and s is the minimal value of the angular momentum l3.

Half of the states in Dirac (Equation (10)) can be obtained by the action of so(2, 3) on
the ground state ψ0,0 ∈ Rac = D(1/2, 0). These are the states with even eigenvalues n + m

2
of the conformal energy Hosc. The odd eigenvalues are obtained by acting on the “odd”
ground state b+ψ0,0 ∈ Di = D(1, 1/2).

Theorem 1. The superalgebra osp(1|4) is an SGA for the Landau levels space Dirac. It generates
all the Landau level states from one ground state:

Dirac ∼= osp(1|4)ψ0,0 .

Proof. The super algebra generated by the creation and annihilation operators a± and b±

is the orthosymplectic superalgebra B(0, 2) := osp(1|4):

osp(1|4) = sp(4)⋉ (Ca± ⊕Cb±) .

Its even subalgebra is sp(4); it is the algebra closed by the quadratic polynomials in the
parabosonic generators a± and b±. Ganchev and Palev [22] showed that n barabososonic
generators span the orthosymplectic algebra B(0, n) = osp(1|2n). From this perspective,
the SGA of the Landau levels space is the superalgebra of two parabosonic generators,
namely, a± and b±.

Remark 1. Super-extensions of the Landau problem based on motions on a supergroup manifold
are known (see [38] and the reference therein); however, in our approach, the supersymmetry arises
as a dynamical symmetry of the standard “bosonic” planar Landau problem.

The Landau levels Hilbert space Dirac is a OSp(1|4) module with a natural splitting
into two SO(2, 3) orbits, namely, odd states Di (charge–vortex system [10,13]) and even
states Rac (2D hydrogen atom [20]):

Dirac = Di ⊕ Rac = SO(2, 3)ψ0,1 ⊕ SO(2, 3)ψ0,0 = OSp(1|4)ψ0,0 .

9. Outlook and Perspectives

In this paper, we examined the Moser conformal regularizations of the classical
Coulomb–Kepler problem for bound motions in 2D and 3D. The Kepler orbits are natu-
rally lifted to the compactified Minkowski space endowed with a free linear action of the
conformal group. The quantum Coulomb–Kepler problems (i.e., the hydrogen atoms in
2D and 3D) yield upon regularization the Newton–Hooke dual oscillator models, which
are the harmonic oscillators in 2D and 4D, respectively. The Cayley transform and Hopf
fibration are instrumental in obtaining the massless ladder U(2, 2)-representations. The
Majorana reduction of the ladder U(2, 2)-representations lead to the Dirac’s remarkable
representation of the anti-de Sitter group SO(2, 3) on the Hilbert space Dirac of the planar
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Landau model and 2D harmonic oscillator. Table 3 summarize the interrelation between
the oscillators and Kepler models in our text.

Table 3. The big picture of the reduction of the harmonic oscillators into Kepler problems.

Coulomb–Kepler Model Harmonic Oscillator MICZ–Kepler Model

3D hydrogen atom 4D oscillator 3D charge–dyon
Massless SO(2, 4) rep SU(2, 2) rep Massless SO(2, 4) rep

Landau model on S2 ⊂ R3

Helicity s = 0 Planar 2D Landau model Helicity s = 1
2

Even module OSp(1|4) rep Dirac Odd module

2D hydrogen atom 2D oscillator 2D charge–dyon(vortex)
SO(2, 3) rep Rac Sp(4,R) rep Di ⊕ Rac SO(2, 3) rep Di

A parity operator distinguishes between odd and even states in the Landau levels,
splitting the Hilbert space into two irreducible unitary massless so(2, 3) representations.
We show that the Newton–Hooke duality maps the even (odd) subspace of the Landau
problem Dirac onto the Hilbert space of the 2D hydrogen atom Rac (charge–vortex system
Di). The unitary so(2, 3) representations Di and Rac are then identified as the odd and even
states in one orthosymplectic osp(1|4) module. This module is the same as the Fock space
for two parabosons subject to the parastatistics quantization of H.S. Green [39]. We can
speculate that under some conditions, the osp(1|4) supersymmetry is broken down to the
underlying conformal so(2, 3) symmetry, and a different physical Hilbert space is realized
according to the magnetic charge of the vacuum state. A reformulation of the Landau
levels OSp(1|4) supersymmetry in terms of chiral superfields along the lines of [40,41]
is desirable. Another direction is explore the connection between the coherent states of
the orthosymplectic algebra osp(1|4) developed in [42] and the eigenstatesstates in the
Landau levels.

The reduction from a 4D to a 2D harmonic oscillator yields the planar Landau
problem [5]. By analogy, the Newton–Hooke dual 3D magnetized hydrogen atom can
be seen as a higher-dimensional Landau model [43,44] of an electron in the background
with a Dirac magnetic monopole. Landau models and their Newton–Hooke duals can
also be thought of as a toy model for quantum systems with a confinement. It would be
natural to explore the Landau problems in higher dimensions [45,46] as the dual models
of the quantum (magnetized) Kepler problems [47,48] attached to other Euclidean Jordan
algebras [3]. Long ago Barut and Kleinert proposed a relativistic framework based on
SO(2, 4) symmetry that incorporates the discrete mass spectrum and the internal degenera-
cies of hadron states [49]. These ideas indicate a possible track to attack the confinement in
quantum chromodynamics [50,51].

It will be interesting to understand the relation between matrix models for the Landau
models, Jordan algebra modules and noncommutative matrix geometry studied by Michel
Dubois-Violette, Richard Kerner and John Madore [52].
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Notes

1 For a review of magnetic monopoles and charge–dyon systems, see [18].
2 For the geometrical meaning of the Zak’s magnetic translations in the Landau problem, see the work [23].
3 Here, Lz denotes the only non-zero component of the angular momentum transversal to the (x, y)-plane.
4 Our convention of holomorphic coordinates is consistent with a negative magnetic field B < 0 when the electron is moving

clockwise in the plane. The alternative anti-clockwise electron motion would be in harmony with a somehow awkward definition
of complex z = (x − iy)/2ℓ, which we prefer to avoid.

5 For a similar construction of the space of states in the higher Landau levels, see [24].
6 H is the classical version of Hatom, where we set the mass and the charge to one, i.e., µ = 1 = e.
7 The general case of negative energy H = − 1

2Λ2 . is reduced to the latter case by a rescaling of the variables q → Λ2q, p → Λ−1 p,
t → Λ3t.

8 We adopt the notation R∗ = R− {0}.
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