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Research on fast pre-tuning method of 9-cell superconducting cavities

Zhu Hang'?,  Zhai Jiyuan'?,  Dai Jianping'
(1. Accelerator Research Center, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China;
2. University of Chinese Academy of Sciences, Beijing 100049, China)

Abstract: The pre-tuning of frequency and field flatness is one of the most time-consuming post-processing
procedures for 9-cell superconducting cavities, and will soon become the bottleneck of mass production of 9-cell
cavities in domestic related major scientific projects. In this paper we firstly introduce two commonly used pre-tuning
methods for 9-cell superconducting cavities, namely DESY method and Cornell method. Then we analyze and
compare their calculation accuracy and error sources by modeling, and make a correction on the Cornell method’s
tuning amount calculation. Verifing the pre-tuning of several cavities by the experimental research, we give a fast pre-
tuning method in which DESY reconstruction algorithm is used for coarse-tuning as it has high precision and rapid
tuning speed in low field flatness and Cornell perturbation algorithm is used for fine-tuning as it has high precision in
high field flatness with faster measurement. Combining these two tuning algorithms, the pre-tuning is divided into two
steps: coarse tuning and fine tuning, which can effectively improve the pre-tuning speed of the 9-cell superconducting
cavity.
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