

Exclusive semileptonic decays of open bottom mesons into pseudoscalar open charm mesons

Arpit Parmar^{1,*} Bhavin Patel^{2,†} and P C Vinodkumar^{1‡}

¹Department of Physics, Sardar Patel University, Vallabh Vidyanagar-388120. and

²P D Patel Institute of Applied Sciences, CHARUSAT, CHANGA-388421.

Introduction

The study of semileptonic decays of heavy quarks provides the cleanest avenue for the determination of the Cabibbo-Kobayashi-Maskawa matrix elements, which are fundamental parameters in the standard model of particle physics. The coupling strength of the weak $b \rightarrow c$ transition is proportional to $|V_{cb}|$, which has been measured in exclusive semileptonic transitions $B \rightarrow D\ell\bar{\nu}_\ell$ [1, 2].

Theory

The semileptonic B_q meson decay amplitude is determined by the matrix elements of the weak Hamiltonian as [3],

$$H_W = \frac{G_F}{\sqrt{2}} V_{cb} [\bar{c} \gamma_\mu (1 - \gamma_5) b] [\bar{e} \gamma^\mu (1 - \gamma_5) \nu_e] \quad (1)$$

The vector and axial vector part of weak hamiltonian can be parametrized into model dependent form factors as,

$$\langle D_q(p') | V^\mu | B_q(p) \rangle = f_+(q^2) (p + p')_\mu + f_-(q^2) (p - p')_\mu \quad (2)$$

On the basis of HQET, the most general form of the transition discussed by Eqns. 2 can be expressed as [3],

$$\frac{1}{\sqrt{M_{B_q} M_{D_q}}} \langle D_q(v') | V^\mu | B_q(v) \rangle = (v + v')^\mu \xi(\omega) \quad (3)$$

Where $\xi(\omega)$ is a universal function known as Isgur Wise function and ω is given by,

$$w = v \cdot v' = \frac{[m_{B_q}^2 + m_{D_q}^2 - q^2]}{2m_{B_q}m_{D_q}} \quad (4)$$

The Isgur Wise function, $\xi(\omega)$ can be evaluated according to the relation given by [4],

$$\xi(\omega) = \frac{2}{\omega - 1} \left\langle j_0 \left(2E_q \sqrt{\frac{\omega - 1}{\omega + 1}} r \right) \right\rangle \quad (5)$$

Where E_q is the binding energy of the decaying meson, which can be evaluated by solving the Schrodinger equation $H\psi = E\psi$ and the quantity within the angular bracket, $\langle A \rangle$ corresponds to

$$\langle A \rangle = \int_0^\infty dr r^2 R_i(r) A(r) R_f(r) \quad (6)$$

Consequently, the form factors $f_\pm(q^2)$ correspond to the D_q final state are related to the Isgur Wise function as [3]

$$f_\pm(q^2) = \xi(\omega) \frac{m_{B_q} \pm m_{D_q}}{2\sqrt{m_{B_q} m_{D_q}}} \quad (7)$$

The differential decay rates $d\Gamma/dq^2$ for $B_q \rightarrow D_q(\ell^+ \nu_\ell)$ then be expressed in terms of $f_\pm(q^2)$ as [3],

$$\begin{aligned} \frac{d\Gamma}{dq^2}(B_q \rightarrow D_q e^- \nu_e) = & \frac{G_F^2 |V_{cb}|^2 |f_+|^2}{192\pi^3 m_{B_q}^3} \\ & \times \left[(q^2 - m_{B_q}^2 - m_{D_q}^2)^2 - 4m_{B_q}^2 m_{D_q}^2 \right]^{3/2} \end{aligned} \quad (8)$$

Extraction of masses and radial wave function

For the description of mass spectra and form of wave function of charmonium state we

*Electronic address: arpitspu@yahoo.co.in

†Electronic address: azadpate12003@yahoo.co.in

‡Electronic address: pothodivinod@yahoo.com

TABLE I: Branching ratio (in %) for exclusive semileptonic decays of open bottom mesons into open charm mesons

ν	$B \rightarrow D\ell\bar{\nu}_\ell$	$B_s \rightarrow D_s\ell\bar{\nu}_\ell$
0.1	0.80	1.41
0.3	1.42	2.36
0.5	1.94	2.97
0.7	2.32	3.41
0.8	2.47	3.59
0.9	2.63	3.69
1.0	2.77	3.83
1.1	2.86	3.94
1.3	3.08	4.12
1.5	3.22	4.24
1.7	3.37	4.36
1.9	3.47	4.47
2.0	3.53	4.51
[5]	2.39 ± 0.12	7.9 ± 2.4
[6]	2.34 ± 0.03	

adopt here the potential model with the potential as $V(r) = -\alpha_s/r + Ar^\nu$. Here A and ν are the potential strength and potential exponent respectively. For the present study we vary range of potential exponent as $0.1 \leq \nu \leq 2.0$. For different choices of potential exponent ν radial wave functions are obtained by solving the nonrelativistic schrodinger equation numerically.

Results and Discussion

The compared semileptonic branching ratios of B_q into D_q mesons are shown in Ta-

ble I against different potential exponent ν . Other theoretical and experimental results are also shown for comparison. Our results show agreement with the experimental observations for choices of potential exponent, ν in the range $0.7 \leq \nu \leq 0.8$ for $B \rightarrow D\ell^+\ell^-$. This shows weaker interquark potential in this type of decays. However, in the case of $B_s \rightarrow D_s\ell^+\ell^-$ our results do not compare with the experimental value. However large uncertainty in the experimental observation warranted more precise measurements before further conclusions.

Acknowledgments

The work is part of Major research project NO. F. 40-457/2011(SR) funded by UGC. One of the author (BP) acknowledges the support through Fast Track project funded by DST (SR/FTP/PS-52/2011).

References

- [1] J. Bartelt et al. (CLEO Collaboration), Phys. Rev. Lett. **82** 3746 (1999).
- [2] K. Abe et al. (Belle Collaboration), Phys. Lett. B **526** 258 (2002).
- [3] Quang H-K and Pham X-Y Elementary Particles and Their Interactions (Berlin: Springer) (1998).
- [4] M. G. Olsson and Sinia Veseli , Phys. Rev. D **51** 2224 (1995).
- [5] J. Beringer et al. (Particle Data Group), Phys. Rev. D **86** 010001 (2012).
- [6] B. Aubert et al. [BABAR Collaboration], Phys. Rev. D **79** 012002 (2009).