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Abstract. Lepton deep inelastic scattering off nuclei at medium energies gives the oppor-
tunity to study the space-time development of hadronization. Indeed, for these kinemat-
ics, the production length is comparable to the nuclear size. Based on the Berger model
[1] and dipole phenomenology, we built a model for vacuum and in-medium hadroniza-
tion. The model, which includes vacuum energy loss, induced energy loss and nuclear
absorption in a parameter-free way successfully describes Hermes data [2, 3]. In a future
publication, Fermi motion will be taken into account and the model will be applied to
CLAS Eg2 data, at Jefferson laboratory.

1 Introduction

The study of semi-inclusive production of hadrons in deep-inelastic scattering (DIS) off nuclei is
interesting for at least two reasons. It gives a better understanding of cold nuclear matter and provides
information on the spacetime development of hadronization. The main observables are the hadron
pt-broadening (see section 7) and the multiplicity ratio, defined as :

RA(z,Q2, E) �
1
A

DA(z,Q2, E)
D(z,Q2, E)

(1)

which shows nuclear suppression (enhancement) of hadrons. Here, DA and D are the in-medium
and vacuum fragmentation functions, respectively. z, Q2 and E are the fraction of photon energy
carried by the final hadron, the photon virtuality and the photon energy. Models based on induced
energy loss [4, 5] will for instance provide information on the transport coefficient for nuclear matter
(q̂) and on the production time of the pre-hadron. Other models [7, 8] try to explain the nuclear
suppression in terms of absorption of the (pre)hadron.1 They provide information on production and
formation times as well as on the spacetime dependence of the pre-hadron cross section. Both can
describe reasonably well data on DIS off nuclei which have been published by the European Muon
collaboration (EMC) [6] and by the HERMES collaboration at DESY.

As underlined in [4], these models use quantities which are poorly constrained : q̂ and the
pre-hadron cross section. Consequently, it is hard to make some conclusions on the respective
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1Here and in the following, (pre)hadron stands for either the hadron or the pre-hadron.
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contributions of induced energy loss and nuclear absorption of the (pre)hadron to the multiplicity
ratio. One of our aims is to disentangle these effects.

In this article, we present a simple model based on perturbative QCD (pQCD) for the propagation
and hadronization of the leading quark in cold matter. It includes vacuum energy loss, induced energy
loss and nuclear absorption. Our results are then compared to Hermes data [2, 3] (and to CLAS Eg2
data in a future publication).

2 pQCD based hadronization

Hadronization of the leading hadron is based on the Berger model [1], modified by higher order
considerations [9]. In the Born approximation, the leading quark emits a gluon which splits into a qq̄
pair. Then the q̄ and the leading quark form the leading hadrons, as depicted in figure 1.

q q

q̄

q

α

(1− α)

pre− hadron

Figure 1. Berger mechanism of leading pion production in Born approximation. there, α is the fraction of quark
energy taken by the gluon.

In this description of hadronization and in the limit (1−z) � 1, kt � Q2, one obtains the following
fragmentation function for pion :

∂DBorn

∂kt
(z, kt) ∝

(1 − z)2

k4
t

(2)

with kt the gluon transverse momentum relative to the leading quark direction. As explained in [9],
taking into account energy loss (see figure 2), we obtain the following expression for the pion frag-
mentation function at large z :

∂D
∂kt

(z, kt) ∝
(1 − z̃)2

k4
t

(3)

The energy loss results in a shift of the fragmentation variable z :

z̃ =
z

1 − ∆E/E
(4)

with ∆E being the total energy loss. In the assumption that the qq̄ pair shares equally the gluon energy,
we can write :

z =
Eπ
E
=

(α̃/2 + 1 − α̃)(E − ∆E)
E

= (−α̃/2 + 1)(1 − ∆E/E) (5)

where α̃ is the fraction of (E − ∆E) taken by the gluon. Reversing this equation we have :

α̃ = 2
(
1 − z

1 − ∆E/E

)
= 2(1 − z̃) (6)
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Figure 2. Berger mechanism with energy loss ∆E = E − E′. α̃ is the quark energy fraction taken by gluon after
energy loss ∆E.

One can see that for α̃ ∈ [0, 1], we have z ∈ [0.5, 1]. It comes from our assumption of equal sharing
for the qq̄ pair, but this is not an issue since we want to focus on high z values. Another assumption of
our model is to identify the production length of the pre-hadron with the radiation time of the gluon :

Lp =
2α̃E′

k2
t
=

4E′(1 − z̃)
k2

t
(7)

Energy loss gives a shorter production length (z̃ > z) and the effect is larger for smaller value of z. For
z = 1, there is no energy loss allowed and we find back the result given by the Born approximation.
In terms of production length, the fragmentation function, eq. (3), is given by :

∂D
∂Lp

(z, E,Q2, Lp) ∝ (1 − z̃) (8)

3 Vacuum energy loss

There is a perturbative and non-perturbative contribution. The perturbative one is given by :

∆Epert(L, z,Q2) = E
∫ Q2

λ2
dq2

t

∫ 1

0
dββ

dng
dq2

t dβ
Θ(L − lgc)Θ(1 − z − β) (9)

λ = 0.7 GeV is a cut-off (see [9]), qt the gluon transverse momentum and β is the energy fraction
taken by the radiated gluon. The last step function maintains energy conservation; none of the emitted
gluons can have energy larger than (1− z)E. The first step function takes into account gluons radiation
time :

lgc =
2βE
q2

t
(10)

and dng
dq2

t dβ is the usual gluon number distribution (see [9] for more details). In terms of gluon radiation
time, the perturbative energy loss is :

∆Epert(L, z,Q2) = E
∫ 1−z

λ/E
dβ
∫ lmax

lmin

β
dng
dldβ

dl (11)

with boundaries for integration given by :

lmin =
2Eβ
Q2 , lmax = min[

2Eβ
λ2 , L] (12)
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Due to energy conservation, energy loss goes to zero when z → 1. For L > Lmax, the maximal length
for perturbative energy loss given by :

Lmax =
2E(1 − z)
λ2 (13)

the perturbative energy loss is a constant of L.

Non-perturbative energy loss due to color flux tube formation is based on the second model in [9].
That is :

∆Enp(L, z) = κ
λ2L2

E
Θ(Lmax − L) +

[
κ
λ2L2

max

E
+ κ(L − Lmax)

]
Θ(L − Lmax) (14)

where κ = 1 GeV/fm is the string tension.

4 Fragmentation function

In order to compare with data, one has to integrate the differential fragmentation function (8) over the
production length Lp :

D(z,Q2, E) ∝
∫ Lpmax

Lpmin

dLp
∂D
∂Lp

(z,Q2, E, Lp) (15)

with Lpmin and Lpmax given by the equations :

Lpmin =
2E′(1 − z̃(Lpmin))

Q2 ; Lpmax =
2E′(1 − z̃(Lpmax))

λ2 (16)

Since z̃ < z, we see that the production length is shorted by energy loss. These equations are solved
numerically.

5 In medium hadronization

At first approximation, we are taking into account only nuclear absorption. Then the nuclear fragmen-
tation function is simply the convolution of the vacuum fragmentation function, equation (8), with a
suppression factor :

DA(z,Q2, E) ∝
∫

d2b
∫

dzl ρ(b, zl)
∫ Lpmax

Lpmin

dLp
∂D
∂Lp

(z,Q2, E, Lp)Tr(z,Q2, E, b, zl + Lp,∞) (17)

Here b is the two dimensional impact parameter; ρ the nuclear density, taken from [11]; zl the
longitudinal coordinate of the DIS process and Tr() the suppression factor due to dipole absorption
by the nuclear medium.

At low energies, the dipole size can fluctuate and the eikonal approximation can’t be used. The
qq propagation throughout the medium is achieved with the light cone Green function G(z2,

−→r2, z1,
−→r1),

where z1, z2 correspond to initial and final times, respectively, and −→r1, −→r2 represent the initial and
final dipole sizes. This Green function obeys the two dimensional light cone Schrödinger equation,
described in [12] together with its solution :

i
d

dz2
G(z2,

−→r2, z1,
−→r1) =

[
ε2 − ∆r2

2pβ(1 − β) + Vqq(z2,−→r2, β)
]

G(z2,
−→r2, z1,

−→r1) (18)

4

EPJ Web of Conferences 164, 07042 (2017)	 DOI: 10.1051/epjconf/201716407042
ICNFP 2016



EPJ Web of Conferences

Due to energy conservation, energy loss goes to zero when z → 1. For L > Lmax, the maximal length
for perturbative energy loss given by :

Lmax =
2E(1 − z)
λ2 (13)

the perturbative energy loss is a constant of L.

Non-perturbative energy loss due to color flux tube formation is based on the second model in [9].
That is :

∆Enp(L, z) = κ
λ2L2

E
Θ(Lmax − L) +

[
κ
λ2L2

max

E
+ κ(L − Lmax)

]
Θ(L − Lmax) (14)

where κ = 1 GeV/fm is the string tension.

4 Fragmentation function

In order to compare with data, one has to integrate the differential fragmentation function (8) over the
production length Lp :

D(z,Q2, E) ∝
∫ Lpmax

Lpmin

dLp
∂D
∂Lp

(z,Q2, E, Lp) (15)

with Lpmin and Lpmax given by the equations :

Lpmin =
2E′(1 − z̃(Lpmin))

Q2 ; Lpmax =
2E′(1 − z̃(Lpmax))

λ2 (16)

Since z̃ < z, we see that the production length is shorted by energy loss. These equations are solved
numerically.

5 In medium hadronization

At first approximation, we are taking into account only nuclear absorption. Then the nuclear fragmen-
tation function is simply the convolution of the vacuum fragmentation function, equation (8), with a
suppression factor :

DA(z,Q2, E) ∝
∫

d2b
∫

dzl ρ(b, zl)
∫ Lpmax

Lpmin

dLp
∂D
∂Lp

(z,Q2, E, Lp)Tr(z,Q2, E, b, zl + Lp,∞) (17)

Here b is the two dimensional impact parameter; ρ the nuclear density, taken from [11]; zl the
longitudinal coordinate of the DIS process and Tr() the suppression factor due to dipole absorption
by the nuclear medium.

At low energies, the dipole size can fluctuate and the eikonal approximation can’t be used. The
qq propagation throughout the medium is achieved with the light cone Green function G(z2,

−→r2, z1,
−→r1),

where z1, z2 correspond to initial and final times, respectively, and −→r1, −→r2 represent the initial and
final dipole sizes. This Green function obeys the two dimensional light cone Schrödinger equation,
described in [12] together with its solution :

i
d

dz2
G(z2,

−→r2, z1,
−→r1) =

[
ε2 − ∆r2

2pβ(1 − β) + Vqq(z2,−→r2, β)
]

G(z2,
−→r2, z1,

−→r1) (18)

ICNFP 2016

Using the Green function, The expression for the transparency factor is :

Tr(z,Q2, E, b, z1, z2) =

∣∣∣∣∣∣∣

∫
d2r1d2r2 ψ

∗
h(r2)G(z2, r2, z1, r1)ψqq(r1)∫
d2r ψ∗h(r)ψqq(r)

∣∣∣∣∣∣∣
2

(19)

For the hadronic wave function, we use a parametrization in the form of the asymptotic light-cone
meson wave function [13]

ψh(r) = f (β) exp(−a2(β)r2/2) (20)

a2(β) =
4(β(1 − β) + a0)〈

r2
π

〉 (21)

In [8] it is found that for the value a0 = 1/12, the previous wave function reproduces correctly the
pion mean radius squared. In our model, the light cone fraction β of the quark inside the pion wave
function is related to z by

β =
2z̃ − 1

z̃
(22)

This wave function is solution of the Schrödinger equation (18) if the real part of the potential is
given by :

� Vqq(z2,
−→r , β) = a4(β)r2

2pβ(1 − β) (23)

The imaginary part of the potential responsible for absorption is given by :

� Vqq(z2,
−→r , β) = −

σqq(r)
2
ρA(z2) (24)

where σqq(r) is the dipole cross section with nucleon. For simplicity, we use the small r expression :

σqq(r) = C(s)r2 (25)

with
√

s the pre-hadron nucleon center of mass energy :

s = 2zMpE + M2
p + m2

π (26)

The energy dependent factor C(s) is constrained since the averaged dipole cross section has to repro-
duce the total meson (π+ in our case) cross section with nucleon

〈
σqq

〉
=

∫
d2r C(s)r2|ψqq(r)|2 = C(s)

〈
r2
π

〉
= σ

πp
tot(s) (27)

Here we use σπp
tot(s) = 23.6 (s/s0)0.079 + 1.432 (s/s0)−0.45 mb [14] with s0 = 1000 GeV2 for√

s > 2.5 GeV2 and a table from Igor Strakovsky otherwise [15]. Additionally, we have the relation〈
r2
π

〉
= 8

3

〈
r2
π

〉
em

,
〈
r2
π

〉
em
= 0.44 fm2 being the pion mean charge radius squared [16].

The last ingredient for the color transparency factor, equation (19), is the dipole wave function.
Since we want a continuous transition between the dipole and pion wave functions, we will use :

ψqq(z,Q2, E, Lp, r) = f (β) exp(−b2(β)r2/2) (28)

with
b2(β) =

4(β(1 − β) + a0)〈
r2

qq

〉 (29)

Then for
〈
r2

qq

〉
=
〈
r2
π

〉
, dipole and pion wave functions are equal.
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6 Multiplicity ratio

We now have all the ingredients in order to compute the suppression factor Tr() and the multiplicity
ratio defined in equation (1). Even though the dipole transverse size evolves with time, it is interest-
ing to start with the approximation

〈
r2

qq

〉
=
〈
r2
π

〉
since it gives the maximal contribution of nuclear

absorption. Our result for the HERMES experiment [2] is presented in figure 3.

Figure 3. Multiplicity ratio for nitrogen and krypton, compared to HERMES data [2].

At z = 1, due to energy conservation, there is no energy loss. Therefore, the suppression comes
only from the nuclear absorption. Unsurprisingly, our prediction is below the data, which is the
consequence of our approximation on the dipole size. This approximation was also expected to work
better for big nuclei. At z = 0.5, the fact that we are still above the data could be an indication that the
contribution of induced energy loss is missing.

7 Broadening and induced energy loss

As it propagates through the nucleus, the leading quark undergoes multiple scattering which generates
induced energy loss and pt-broadening. Following [17, 18], the two main formulae are :

δ
〈
p2

t

〉
(s, zq, b, L) = 2C(s)ρ(zq, b)L (30)

−dEind

dzq
=

3
4
αsδ
〈
p2

t

〉
(31)

where zq is the longitudinal coordinate of the quark. Since ρ depends on zq, the correct expression for
pt-broadening on a finite length is given by :

∆
〈
p2

t

〉
(s, zl, b, Lp) = 2C(s)

∫ zl+Lp

zl

ρ(l, b)dl (32)

where zl is the longitudinal coordinate of the DIS point. Total induced energy loss is given by :

∆Eind(s, zl, b, Lp) =
3
4
αs

∫ Lp

0
∆
〈
p2

t

〉
(s, zl, b, l)dl (33)

6

EPJ Web of Conferences 164, 07042 (2017)	 DOI: 10.1051/epjconf/201716407042
ICNFP 2016



EPJ Web of Conferences

6 Multiplicity ratio

We now have all the ingredients in order to compute the suppression factor Tr() and the multiplicity
ratio defined in equation (1). Even though the dipole transverse size evolves with time, it is interest-
ing to start with the approximation

〈
r2

qq

〉
=
〈
r2
π

〉
since it gives the maximal contribution of nuclear

absorption. Our result for the HERMES experiment [2] is presented in figure 3.

Figure 3. Multiplicity ratio for nitrogen and krypton, compared to HERMES data [2].

At z = 1, due to energy conservation, there is no energy loss. Therefore, the suppression comes
only from the nuclear absorption. Unsurprisingly, our prediction is below the data, which is the
consequence of our approximation on the dipole size. This approximation was also expected to work
better for big nuclei. At z = 0.5, the fact that we are still above the data could be an indication that the
contribution of induced energy loss is missing.

7 Broadening and induced energy loss

As it propagates through the nucleus, the leading quark undergoes multiple scattering which generates
induced energy loss and pt-broadening. Following [17, 18], the two main formulae are :

δ
〈
p2

t

〉
(s, zq, b, L) = 2C(s)ρ(zq, b)L (30)

−dEind

dzq
=

3
4
αsδ
〈
p2

t

〉
(31)

where zq is the longitudinal coordinate of the quark. Since ρ depends on zq, the correct expression for
pt-broadening on a finite length is given by :

∆
〈
p2

t

〉
(s, zl, b, Lp) = 2C(s)

∫ zl+Lp

zl

ρ(l, b)dl (32)

where zl is the longitudinal coordinate of the DIS point. Total induced energy loss is given by :

∆Eind(s, zl, b, Lp) =
3
4
αs

∫ Lp

0
∆
〈
p2

t

〉
(s, zl, b, l)dl (33)

ICNFP 2016

The DIS point is distributed over the whole nucleus, so we have to average equation (32) with
1
A

∫
d2b dz1 ρ(z1, b). We also have a distribution for the length Lp, therefore, we average equation

(32) with 1
NL

∫
dLp

∂D
∂Lp

. Then, for the quark, the experimental pt-broadening is given by :

∆
〈
p2

t

〉
exp

(z,Q2, E) =
2C
A

∫
d2b
∫

dz1ρ(z1, b)
∫ Lmax

Lmin

dLp
1

NL

∂D
∂Lp

TA(b, z1, z1 + Lp) (34)

with

TA(b, z1, z1 + Lp) =
∫ z1+Lp

z1

dlρ(l, b) (35)

and the normalization

NL(z,Q2, E) =
∫ Lmax

Lmin

dLp
∂D
∂Lp

(z,Q2, E, Lp) (36)

Finally, the pion pt-broadening we are interested in is given by

∆
〈
k2

t

〉
π

(z,Q2, E) = z̃2∆
〈
p2

t

〉
exp

(z,Q2, E) (37)

To take into account the induced energy loss, we need to replace z̃ → z̃ = z
1−(∆Evac+∆Eind)/E , when

computing in-medium fragmentation function DA. Results for pt-broadening and multiplicity ratio
modified by induced energy loss are shown in Figure 4.

For pt-broadening, our result does a reasonably good description of data. It should be noticed
that HERMES do a correction (based on Monte-Carlo) for decays of the ρ0 meson into pions. For
the higher bin in z, more than 50% of pions are supposed to come from ρ0 decays. This is likely an
overestimation of this number which results in a negative pt-broadening for high z. Notice also that
one argument for the negative pt-broadening is that the pt distribution of quarks inside a nucleus is
larger for smaller nucleus. Then at z = 1 (no broadening from quark multiple interaction) we could
have pt,A − pt,Deterium < 0. But in this case we should have ∆pt,Xe < ∆pt,Kr < ∆pt,Ne < 0 which is not
the case.

Our result for the multiplicity ratio has been improved by induced energy loss, particularly for
smaller value of z, as it was expected. In a future publication, we will show that the implementation
of induced energy loss based on the model presented in [4] gives a similar result (using q̂ = 0.25). At
z = 0.5, the correction of induced energy loss is of the order of 15%. One of the reason why in our
case, the contribution of induced energy loss appears smaller than in models based solely on this effect
is probably because they use q̂ ∼ 0.70 while the value for cold matter is estimated to be q̂ ∼ 0.25 [18].
Another reason is that the DIS point is taken to be at the front edge of the nucleus, giving a bigger
path for the quark inside nuclear matter.

8 Conclusion

Based on Berger’s model, we can build vacuum and in-medium fragmentation functions. The sup-
pression factor, Tr(), which takes into account nuclear absorption of the dipole, is computed based
on quantum mechanics, using an assumption for the dipole and pion waves functions. The induced
energy loss has been implemented, using its relation with the pt-broadening. With our no free pa-
rameter model, we are able to describe HERMES data for pt-broadening and multiplicity ratio. The
contribution of induced energy loss for the multiplicity ratio is found to be 15% at z = 0.5. One
obvious improvement of the model, is the implementation of the dipole size evolution based on the
Green function. The consequence will be a smaller suppression, particularly at z = 1.
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Figure 4. Top : pt-broadening compared to HERMES data [3]. bottom : multiplicity ratio taking into account
induced energy loss.
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