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Abstract

After a general introduction about the calculation of one-loop scattering amplitudes via integrand-level techniques,
which led to the construction of efficient and automated computational tools for NLO predictions, we briefly describe
an approach to the reduction of scattering amplitudes based on integrand-level reduction via multivariate polynomial
division also applicable beyond one-loop amplitudes. We also review the main features of the GoSam 2.0 automated
framework for NLO calculations and show some of its application to Standard Model processes involving the pro-
duction massive particles, such as the Higgs boson or top-quark pairs, obtained embedding of the virtual amplitudes
produced by GoSam within existing Monte Carlo tools.
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1. Introduction

The evaluation of scattering amplitudes allows us to
test the phenomenological prediction of particle theory
with the measurement at collider experiments. By a
more abstract point of view, scattering amplitudes can
be studied in terms of their symmetries and analytic
properties. The understanding of their mathematical
structure naturally provides the theoretical framework
to develop new techniques for their evaluation, and ul-
timately to design more efficient computational algo-
rithms for the production of physical cross sections and
differential distributions.

Theory predictions play a fundamental role in the
particle physics experiments at current hadron collid-
ers. The high luminosity accumulated by the exper-
imental collaborations during the Run-I of the Large
Hadron Collider (LHC), allowed for a very detailed in-
vestigation of the Standard Model of particle physics.
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In these analyses, for example to study the properties
of the recently discovered Higgs boson [1–4], theoreti-
cal predictions are indispensable both for the signal and
for the modeling of the relevant background processes,
which share similar experimental signatures. Beyond
Higgs studies, precise theory predictions allow one to
constrain model parameters in the event that a signal of
New Physics is detected during the Run-II at the LHC
with improved energy.

In this interplay between theoretical prediction and
experimental data, it is crucial that the level of produc-
tivity of the theory matches the precision of the mea-
surements. Since leading-order (LO) results are affected
by large uncertainties, theory predictions are not reliable
without accounting for higher orders. Therefore, it is of
primary interest to provide theoretical tools which are
able to perform the comparison of LHC data to theory
at next-to-leading-order (NLO) accuracy.

One of the scopes of this talk is to summarize the re-
cent progress in the evaluation of scattering amplitudes
and provide a brief description of integrand-level tech-
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niques, in particular the OPP reduction algorithm, the
d−dimensional decomposition of scattering amplitudes,
and the integrand reduction via multivariate polynomial
division.

We will also review the main features of the GoSam
framework [5, 6] for the automated computation of one-
loop amplitudes and some of the recent results obtained
using it. Since the main purpose of GoSam is the com-
putation of the virtual NLO part, in order to produce
integrated cross sections and differential distributions it
should be interfaced with Monte Carlo (MC) tools. We
will focus on this important point in the last part of the
talk, where we show some examples of applications.

For a wider outlook on the field, we refer the reader
to the plenary presentation of Pierpaolo Mastrolia at this
conference [7]. Detailed reports and comprehensive re-
views on the different topics described here can be also
found in [8–12].

2. Scattering Amplitudes at NLO

The computation of NLO matrix elements requires,
in addition to the tree-level LO result, the evaluation of
one-loop virtual corrections and contributions from real
emission. Both terms are separately infrared (IR) di-
vergent and only their combination leads to a physical
result. Moreover, the virtual part is also ultraviolet (UV)
divergent, and the UV poles are removed by the renor-
malization procedure.

While the LO matrix elements and the NLO real parts
have been available for a long time, until recently the
evaluation of the virtual part of one-loop contributions
represented the bottleneck towards the automation of
NLO computation. The standard method for the com-
putation of NLO virtual corrections relies on the evalu-
ation of all NLO Feynman diagrams associated with the
process. The general task of the calculation is to com-
pute, for each diagram contributing to the amplitude and
for each phase space point, the following integral:

M =
∫

ddq̄ A(q̄) =
∫

ddq̄
N(q̄)

D̄0D̄1 . . . D̄m−1
, (1)

where the q̄ denotes integration momenta in d = 4 −
2ε dimensions following the prescription q̄2 = q2 − μ2

and D̄i = (q̄ + pi)2 − m2
i = (q + pi)2 − μ2 − m2

i , are
accordingly the d−dimensional denominators generated
by the propagators of the particles inside the loop.

It is well known [13, 14] that the evaluation of the
one-loop diagrams can be performed by decomposing
each integralM in terms of a finite set of scalar master
integrals (MIs), plus an additional rational function of

the masses and momenta appearing in the original am-
plitude, known in the literature as rational part R. The
one-loop “master formula” allows to rewrite the integral
in Eq. (1) as

M =

m−1∑
i0<i1<i2<i3

d(i0i1i2i3)
∫

ddq̄
1

D̄i0 D̄i1 D̄i2 D̄i3

+

+

m−1∑
i0<i1<i2

c(i0i1i2)
∫

ddq̄
1

D̄i0 D̄i1 D̄i2

+

+

m−1∑
i0<i1

b(i0i1)
∫

ddq̄
1

D̄i0 D̄i1

+

+

m−1∑
i0

a(i0)
∫

ddq̄
1

D̄i0

+ R . (2)

The calculation of virtual amplitudes can be visualized
in terms of three tasks: i) the generation of the uninte-
grated amplitudes A, namely their numerator functions
N(q) and the list of denominators D̄i; ii) the reduction
of the amplitude to determine all coefficients multiply-
ing each of the MIs in Eq. (2) and the rational term R;
iii) the evaluation of the MIs which, multiplied by the
coefficients obtained in the reduction, provide the final
result for the amplitudes. Since in the one-loop case,
all scalar master integrals are known and available in
public codes [15–19], and amplitudes can be efficiently
generated with algebraic or numerical techniques, peo-
ple mostly focused on the intermediate step, namely the
stable and efficient extraction of all the coefficients.

3. Integrand-Reduction Techniques

During the past decade, a powerful framework for
one-loop calculation was developed by merging the idea
of four-dimensional unitarity-cuts [20, 21], which allow
to explore the (poly)logarithmic structure of the ampli-
tudes, with the understanding of the universal algebraic
form of any one-loop scattering amplitudes, contained
in the OPP method [22–25].

The reduction at the integrand level is based on the
decomposition of the numerator function of the ampli-
tude in terms of the propagators that depend on the inte-
gration momentum, in order to identify before integra-
tion the structures that will generate the scalar integrals
and their coefficients and those that will vanish upon
integration of the loop momentum. In this approach,
the coefficients in front of the MIs can be determined
by solving a system of algebraic equations that are ob-
tained by: i) the numerical evaluation of the numerator
of the integrand at explicit values of the loop-variable;
ii) and the knowledge of the most general polynomial
structure of the integrand itself.
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The solution of this system of equations becomes
particularly simply if we evaluate the expressions for
the numerator functions at the set of complex values
of the integration momentum for which a given set of
inverse propagators vanish, namely the integration mo-
menta corresponding to the so-called quadruple, triple,
double, and single cuts. This feature establish a strong
connection between the integrand-level techniques and
generalized unitarity methods, where the on-shell con-
ditions are imposed at the integral level.

3.1. Integrand-level Reduction in four dimensions
The integral-level reduction algorithm for one-loop

scattering amplitudes was originally developed in four
dimensions [23–25]. According to this approach, the
numerator function N(q) which appears in the integrand
for any one-loop scattering amplitudes has a universal,
and therefore process-independent, mathematical struc-
ture.

Any four-dimensional numerator function N(q) can
be decomposed by reconstructing 4-dimensional de-
nominators Di = (q + pi)2 − m2

i , where q is the inte-
gration momentum, and pi are the linear combinations
of the external four-momenta of the incoming and out-
going particles. The q-independent function of masses
and external momenta which multiply each group of re-
constructed denominators are indeed the set of coeffi-
cients which appear in front of the the one-loop scalar
functions, that at one loop are the MIs. All other terms
in the decomposition that still depend on the integra-
tion momentum q are called “spurious terms” because
they vanish upon integration and do not contribute to
the final result for the scattering amplitude. The univer-
sal functional form of such decomposition is process-
independent and it is provided in Ref. [23].

In this framework, the task of computing the one-
loop amplitude is reduced to the algebraic problem of
extracting all the coefficients by evaluating the func-
tion N(q) a sufficient number of times at different val-
ues of q. This is achieved very efficiently if we employ
values of q such that a subset of denominators Di van-
ish: such values correspond to the so-called quadruple,
triple, double, and single cuts also used in the unitarity-
cut method. Operating in this manner, the system of
equations becomes triangular. First one determines all
the coefficients of the 4-point functions, then moves on
to the 3-point coefficients and so on.

This completes the determination of the so-called cut-
constructible part, which can be fully achieved in four
dimensions. However, as is well known, even starting
from a perfectly finite tensor integral, the tensor reduc-
tion may lead to integrals that need to be regularized. In

dimensional regularization, this is achieved by upgrad-
ing the integration momentum to dimension d = 4− 2ε,
both in the numerator function and in the set of denom-
inators. Such procedure is responsible for the appear-
ance of the rational part R. Within the OPP approach,
the calculation of rational termR can be split in two sep-
arate parts, which have different origins. A first set R1
appears from the mismatch between the d-dimensional
denominators of the master scalar integrals and the 4-
dimensional denominators. The term R1 can be recov-
ered automatically by evaluating the amplitudes for a
shifted value of the mass [23]. A second set R2 comes
from the d-dimensionality of the numerator function,
and can be recovered by means of ad hoc tree-level-
like Feynman rules, that are provided in Refs.[25–29]
for different models.

Four-dimensional approaches for construction and
renormalization of d-dimensional amplitudes have been
the target of recent studies. In Ref. [30] a four-
dimensional formulation (FDF) of the d−dimensional
regularization of one-loop scattering amplitude was pre-
sented. Within FDF, particles that propagate inside the
loop are represented by massive particles regularizing
the divergences. Their interactions are described by
generalized four-dimensional Feynman rules. More de-
tails on this topic are provided in the presentation of
William J. Torres Bobadilla [31] at this conference.

The four-dimensional integrand-level reduction algo-
rithm has been implemented in the code CutTools [32],
that is publicly available. The method itself does not
provide specific recipe for the generation of the numer-
ator function. Some of the early calculations based on
CutTools that appeared in the literature [33, 34] em-
ploy traditional Feynman diagrams for the generation
of the amplitudes. For more advanced applications,
CutTools has been incorporated within automated tools
for the computation of NLO correction, such as Form-
Calc [35], Helac-Nlo [36], and MadLoop [37].

3.2. D-dimensional Integrand-level Reduction

Within techniques that operate in four dimensions,
the evaluation of the cut-constructible term and the ra-
tional term are performed separately, since the latter es-
capes the four-dimensional detection and its calculation
requires information from a different source. Signifi-
cant improvements in this direction have been achieved
employing d-dimensional extension of unitarity meth-
ods [38–40], where performing the integrand decompo-
sition in d dimensions, rather than in four, allows for the
combined determination of both cut-constructible and
rational terms at once [41].
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In addition to the standard scalar integrals already
contained in the 4-dimensional master formula depicted
in Eq. (2), there are additional μ2-dependent master in-
tegrals:

∫
ddq̄

μ2

D̄iD̄ j
,

∫
ddq̄

μ2

D̄iD̄ jD̄k
,

∫
ddq̄

μ4

D̄iD̄ jD̄kD̄l
,

whose expressions are also well-known [42, 43]. The
presence of these new contributions, together with the
d-dimensional decomposition, account for the complete
evaluation of the full rational term.

These ideas were the basis for the development of a
new algorithm, called samurai [44], which relies on the
extension of the polynomial structures to include an ex-
plicit dependence on the extra-dimensional parameter μ
needed for the automated computation of the full ratio-
nal term according to the d-dimensional approach, the
parametrization of the residue of the quintuple-cut in
terms of the extra-dimension scale [45] and the numer-
ical sampling of the multiple-cut solutions via Discrete
Fourier Transform [46].

While the method itself does not provide specific
recipe for the generation of the numerator function,
samurai can reduce integrands defined either as numera-
tor functions sitting on products of denominators, which
appear in calculations based on Feynman diagrams, or
as products of tree-level amplitudes sewn along cut-
lines, which is suitable for amplitudes generated with
unitarity-based techniques. The reduction provided by
samurai has been employed within the GoSam frame-
work, as well as interfaced with FormCalc [47, 48] and
within the OpenLoops [49] framework.

The integrand-reduction algorithm was originally de-
veloped for cases in which the rank of the numerator
function is smaller or equal than the number of exter-
nal legs (this is indeed the case of renomalizable gauge
theories at one-loop). However, this requirement should
be lifted to allow for more general models, such as ef-
fective theories. In order to deal with the evaluation
of pp → H + 2, 3 jets in gluon fusion [50, 51], where
effective-gluon vertices generated by the large top-mass
limit appear and trigger higher rank terms, the reduc-
tion code within samuraiwas upgraded to accommodate
such an extension [52–54].

3.3. Integrand Reduction via Laurent Expansion
A different and very powerful approach to integrand

reduction was presented [53]. In general, when the
multiple-cut conditions do not fully constrain the loop
momentum, the on-shell solutions are still functions of
some free parameters. The integrand-reduction algo-
rithm as described above requires to solve a system of

equations obtained by sampling the numerator on a fi-
nite set of values of such free parameters after subtract-
ing all the non-vanishing contributions coming from
higher-point residues.

The reduction algorithm can be simplified by exploit-
ing the knowledge of the analytic expression of the in-
tegrand. If the analytic form of the numerator is known,
all coefficients in the integrand decomposition can be in
fact extracted by performing a Laurent expansion with
respect to one of the free parameters which appear in
the solutions of the cuts.

Moreover, the contributions coming from the sub-
tracted terms can be implemented as analytic correc-
tions to the coefficients, replacing the numerical sub-
tractions of the original algorithm. The parametric form
of these corrections can be computed once and for all,
in terms of a subset of the higher-point coefficients re-
quired by the original algorithm. For instance, box and
pentagons do not affect at all the computation of lower-
points coefficients.

If either the analytic expression of the integrand or
the tensor structure of the numerator is known, the co-
efficients of the Laurent expansion can be computed, ei-
ther analytically or numerically, by performing a poly-
nomial division between the numerator and the set of
denominators. The method has been implemented in
the c++ library Ninja [55]. Its use within the GoSam
framework showed an exceptional improvement in the
computational performance [56], both in terms of speed
and precision, with respect to the standard algorithms.
The Ninja library has been already employed in several
calculation, among them the evaluation of NLO QCD
corrections to pp→ tt̄H j [57]. It has also been recently
interfaced within FormCalc [58].

3.4. Integrand-Level Techniques Beyond One-Loop
Extensions of the integrand-reduction method beyond

one-loop, first proposed in Refs. [59, 60], have become
the topic of several studies [61–67], thus providing a
new direction in the study of multi-loop amplitudes.

Higher-loop techniques require a proper parametriza-
tion of the residues at the multi-particle poles [59]. As
in the one-loop case, the parametric form of each poly-
nomial residues is process-independent and can be de-
termined once for all from the corresponding multiple
cut. However, at higher loops, the basis of MIs is more
complicated and so is the form of the residues, which
can be written as a multivariate polynomial in the irre-
ducible scalar products (ISP), namely the products that
cannot be reconstructed in terms of denominators.

In Refs. [61, 62], the determination of the residues
at the multiple cuts has been systematized as a problem
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of multivariate polynomial division in algebraic geom-
etry. The use of these techniques proved that the inte-
grand decomposition is applicable not only at one loop,
as originally formulated, but at any order in perturbation
theory. Moreover, the shape of the residues is uniquely
determined by the on-shell conditions, without any ad-
ditional constraint.

To summarize the algorithm presented in Ref. [62],
let us write a general loop integrand as:

Ii1···in =
Ni1···in

D̄i1 · · · D̄in
. (3)

i) When the on-shell conditions have no solutions, i.e.
the number n of denominators D̄i is larger than the to-
tal number of the components of the loop momenta, the
integrand Ii1···in is reducible: it can be written in terms
of lower point functions, namely integrands with (n−1)
denominators. This is the case of the six-point functions
at one loop.
ii) When the on-shell conditions admit solutions, the
corresponding residue is obtained dividing the numer-
ator Ni1···in modulo the Gröbner basis of the n-ple cut.
The remainder of the division is the residue Δi1···in of the
n-ple cut. The quotients generate integrands with (n−1)
denominators. Each numeratorNi1···in can be written as:

Ni1···in =
n∑
κ=1

Ni1···iκ−1iκ+1···in D̄iκ + Δi1···in . (4)

Using Eq. (3), we get the recurrence relation

Ii1···in =
n∑
κ=1

Ii1···iκ−1iκ+1in +
Δi1···in

D̄i1 · · · D̄in
. (5)

In this expression the function Δi1···in is the residue at
the multi-particle pole D̄i1 = . . . = D̄in = 0, while
Ii1···iκ−1iκ+1in are integrands with (n−1) denominators that
can be further decomposed in lower point functions by
applying the same recursive algorithm.

iii) A special set of on-shell cut conditions called
maximum-cuts are defined by the maximum number of
on-shell conditions which can be simultaneously satis-
fied by the loop momenta. The Maximum Cut Theo-
rem [62] ensures that their residues can always be re-
constructed by evaluating the numerator at the solutions
of the cut, since they are parametrized by exactly ns co-
efficients, where ns is the number of solutions of the
multiple cut-conditions. This theorem extends at all or-
ders the features of the one-loop quadruple-cut [21, 23],
where the only two complex solutions of the cut de-
termine the two coefficients needed to parametrize the
residue.

Figure 1: Examples of maximum-cuts.

In Figure 1, we show the structures of the residues
of the maximum cut, together with the corresponding
values of ns, for a selection of diagrams with different
number of loops (one, two, and three). With the ex-
ception of the first diagram in the left column, which
represents the 5-ple cut of the 5-point one-loop dimen-
sionally regulated amplitude, all the other diagrams in
the table are considered in four dimensions. For each of
them, the general structure of the residue Δ and the cor-
responding value of ns are provided. Similar conditions
can be found for more complicated topologies at higher
loops.

The integrand recurrence relation of Eq. (5) can be
applied in two different ways. After the parametric form
of all residues has been determined, if the solutions of
all multiple cuts are known, the coefficients which ap-
pear in the residues can be determined by evaluating the
numerator at the solutions of the multiple cuts, as many
times as the number of the unknown coefficients. This
approach has been employed at one loop in the original
integrand reduction [23], and the language of multivari-
ate polynomial division provides its generalization at all
loops.

As a very different strategy [67], the decomposition
can be obtained analytically by successive polynomial
divisions. In this approach, the reduction algorithm is
applied directly to the actual numerator functions, with-
out requiring the knowledge of the parametric form of
all residues or the solutions of the multiple cuts. In
Ref. [67], we showed how this strategy can be success-
fully applied to integrands with denominators appear-
ing with multiple powers, thus solving a long-standing
problem within unitarity-based methods.

4. Virtual NLO with GoSam 2.0

The idea behind the GoSam framework is to combine
automated diagram generation and algebraic manipu-
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lation [68–71] with the integrand-level reduction tech-
niques described above. Amplitudes are automatically
generated via Feynman diagrams, so that the only task
required from the user is the preparation of an input file
for the generation of the code, without having to worry
about the internal details.

We recently released GoSam 2.0, a new version of
the code that offers numerous improvements both on
the generation and the reduction side, resulting in faster
and more stable codes for calculations within and be-
yond the Standard Model. After the generation of all
contributing diagrams, the virtual corrections are eval-
uated using the integrand reduction via Laurent expan-
sion provided by Ninja, or the d-dimensional integrand-
level reduction method, as implemented in Samurai.
Alternatively, the tensorial decomposition provided by
Golem95C [72, 73] is also available. GoSam 2.0 can be
used to generate and evaluate one-loop corrections in
both QCD and electro-weak theory. Model files for Be-
yond Standard Model (BSM) applications can be gener-
ated from a Universal FeynRules Output (UFO) [74, 75]
or with LanHEP [76].

The code has been employed in several applications
at NLO QCD accuracy [50, 51, 57, 77–81], studies of
BSM scenarios [82–84], electroweak calculations [85,
86], and recently also within NNLO calculations for the
production of real-virtual contributions [87–89].

GoSam 2.0 also contains the extended version of the
standardized Binoth Les Houches Accord (BLHA) in-
terface [90, 91] to Monte Carlo programs.

5. Production of physical results at NLO precision,

interfaces with Monte Carlo tools

The computation of physical observables at NLO ac-
curacy, such as cross sections and differential distri-
butions, requires to combine the one-loop results for
the virtual amplitudes obtained with GoSam, with other
tools that can take care of the computation of the real
emission contributions and of the subtraction terms,
needed to control the cancellation of IR singularities.
This can be obtained by embedding the calculation of
virtual corrections within a Monte Carlo framework
(MC), that can provide the phase-space integration, and
of the combination of the different pieces of the calcula-
tion. A complete table of GoSam’s interfaces with MC
programs has been recently presented in [92].

At present, the GoSam code has been successfully
interfaced with several Monte Carlo tools, in order to
provide insightful phenomenological applications [93–
95]. While in the following we will show exam-
ples obtained within the frameworks of Sherpa [96]

and aMC@NLO [97], results have been also obtained
within the Herwig++/Matchbox [98], whizard [99],
and Powheg [100] frameworks.
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Figure 2: pp → H + 3 j in GF for the LHC at 8 TeV: transverse
momentum distribution of the Higgs boson at LO and NLO.

Higgs boson production in Gluon Fusion. The exten-
sion of integrand reduction to allow for higher rank
integrands, described in Section 3.2, allowed us to
compute the NLO QCD corrections to the produc-
tion of H + 2 jets [50] and, for the first time, also
H + 3 jets [51] in Gluon Fusion in the large top-
mass limit. This calculation is indeed challenging
both on the side of real-emission contributions and
of the virtual corrections, which alone involve more
than ten thousand one-loop Feynman diagrams with
up to rank-seven hexagons. Due to the complexity of
the integration, for the results presented in Ref. [51]
we employed a hybrid setup which combines Go-
Sam, Sherpa and the MadDipole/Madgraph4/MadEvent
framework [101–105]. The pT distribution for the
Higgs boson in Fig. 2 shows how the NLO correc-
tions enhance all distributions for pT values lower than
150−200 GeV, whereas their contribution is negative at
higher pT .

An updated analysis appeared in the “Physics at
TeV Colliders: Standard Model Working Group Re-
port” [12], which contains new results and distributions
for H + 3 jets at NLO for a set of ATLAS-like cuts and
a comparison with the NLO predictions for H + 2 jets
(see Fig. 3), including the three-to-two jet cross section
ratio at LO and NLO. Further studies for Higgs plus jets
production are currently in progress, which contain the
analysis of the effects of different cuts, merging with
smaller multiplicities, and matching with parton shower.
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Figure 3: pp → H + 3 j in GF for the LHC at 8 TeV: distributions of
NLO transverse momentum and rapidity of the Higgs boson compared
with the NLO prediction for pp→ H + 2 j.

NLO QCD corrections to pp → tt̄H j. The production
rate for a Higgs boson associated with a top-antitop pair
is particularly interesting to study the coupling of the
Higgs boson to the top quark. In Ref. [57], we pre-
sented the calculation of the complete NLO QCD cor-
rections to the process pp → tt̄H + 1 jet at the LHC,
which is important for the phenomenological analyses
at the LHC, in particular for the high-pT region, where
the presence of the additional jet can be relevant. As
an illustration, in Fig. 4, we report the distribution of
the top-pair invariant mass. This process is also chal-
lenging by a technical point of view for the presence of
two mass scales, Higgs boson and top quark, in addition
to a high number of diagrams. Indeed, this calculation
represented the first application and validation of the re-
duction algorithm described in Section 3.3.

Further analyses for pp→ tt̄H+0, 1 jets are currently
in progress.

LHC 8 TeV

CT10 pdf

anti-kt: R=0.5, pT > 15 GeV, |η| < 4.0

GoSam/Ninja+Sherpa

tt̄Hj LO μ = 2×GAT

tt̄H NLO μ = 2×GAT

tt̄Hj NLO μ = 2×GAT

10−6

10−5

10−4

10−3

H t t̄+ jet: transverse momentum of top-antitop system

d
σ
/
d
p
T
,t
t̄
[p
b
/
G
eV

]

0 100 200 300 400 500 600

0.6
0.8
1

1.2
1.4
1.6
1.8
2

pT,tt̄[GeV]

N
L
O
/
L
O

Figure 4: Transverse momentum of the top-quark pair in pp→ tt̄H j.

GoSam+aMC@NLO vs GoSam+Sherpa. As a last ex-
ample of application of GoSam 2.0, we show a compari-
son between the NLO differential distributions obtained
interfacing it with two different multi-purpose Monte
Carlo tools. As a benchmark process, we studied the
tt̄H production at the 8 TeV-LHC, with a fixed scale
μ = 2mT + mH , and CT10nlo PDF set. Among the
several distributions that we checked, some examples
are presented in Fig. 5 and Fig. 6 . The agreement be-
tween the results obtained with the two tools is remark-
ably good.

A detailed work which contains a description of the
interface between GoSam and aMC@NLO, together
with phenomenological studies of pp → tt̄γγ, is cur-
rently in progress [106].

6. Conclusions and Future Outlook

The study of scattering amplitudes provides a fertile
ground for many theoretical applications. The develop-
ments of the past decade show how a better understand-
ing of mathematical properties of scattering amplitudes
can provide the basis for the construction of efficient
algorithms for their evaluation, and ultimately leads to
higher quality predictions to be used in the experimen-
tal analyses at the particle colliders. As of today, several
different approaches available for one-loop calculations,
which are encoder in different computational tools and
interfaced with Monte Carlo event generators, to pro-
vide NLO predictions for a variety of processes needed
by the LHC experimental collaborations.

In this presentation, we reviewed the main features
of the integrand reduction techniques, described some
of the algorithms for the evaluation of scattering ampli-
tudes that can be constructed following those ideas, and
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Figure 5: Comparison GoSam+aMC@NLO vs GoSam+Sherpa,
pp → tt̄H for the LHC at 8 TeV: transverse momentum of the top
quark and invariant mass of the tt̄ pair.

showed their application in a selection of phenomeno-
logical studies for the 8 TeV-LHC, obtained within the
GoSam framework.

The GoSam 2.0 release contains several improve-
ments respect to its earlier versions. GoSam established
itself as a flexible and widely applicable tool for the au-
tomated calculation of the virtual part of multi-particle
scattering amplitudes at NLO accuracy and provides a
reliable answer for multi-leg amplitudes in the pres-
ence of massive internal and external legs and propa-
gators. Recent examples of calculations performed with
GoSam include NLO QCD corrections to Higgs produc-
tion channels and backgrounds, neutralino and graviton
production in BSM scenarios, and electroweak correc-
tions. The code has also been employed for the evalua-
tion of the real-virtual part within NNLO calculations.

Several new NLO analyses are currently under way,
which exploit the combination of GoSam, as provider of
one-loop virtual amplitudes, within the flexible frame-
work of Monte Carlo event generators. Such interfaces
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Figure 6: Comparison GoSam+aMC@NLO vs GoSam+Sherpa,
pp → tt̄H for the LHC at 8 TeV: transverse momentum of the Higgs
boson, and Higgs boson rapidity.

should be improved and simplified, to allow for an au-
tomated generation of analyses which include parton
shower effect and the merging of different multiplicities,
as needed by comparisons with experimental data.

Looking ahead, as the focus is shifting towards the
challenges presented by NNLO calculations, new ideas
and techniques [107–111], along with improved version
of known algorithms, are starting to make an impact. In
this context, it will be interesting to observe whether the
extensions of integrand-level techniques to higher or-
ders will succeed to provide a comparable level of reli-
ability, and eventually of automation, as in the one-loop
case, and to what extent the GoSam framework could be
extended to explore the new frontiers in precision cal-
culations.
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