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Abstract. A microscopic theoretical approach to the average level spacing at the neutron
binding energy in even-even nuclei is proposed. The approach is derived based on the Bardeen-
Cooper-Schrieffer (BCS) theory at finite temperature and projection M of the total angular
momentum J , which is often used to describe the superfluid properties of hot rotating nuclei.
The exact relation of the J-dependent total level density to the M -dependent state densities,
based on which the average level spacing is calculated, was employed. The numerical calculations
carried out for several even-even nuclei have shown that in order to reproduce the experimental
average level spacing, the M -dependent pairing gaps as well as the exact relation of the J-
dependent total level density formula should be simultaneously used.

1. Introduction
Knowledge of the average level spacing between resonances of a compound nucleus has an
important role in the calculation of the nuclear level density (NLD). The latter, which is defined
as the number of excited levels per unit of excitation energy E∗, has major contribution in
the study of nuclear structure and low-energy reaction. This average level spacing has been
extensively studied within a number of theoretical models including both phenomenological and
microscopic ones (see e.g., Refs. [1, 2, 3] and references therein). The phenomenological models
are often derived based on the Bethe formula of NLD [4], in which several phenomenological
parameters are introduced and their values are found from the fitting to the experimental data.
The microscopic models are usually constructed based on the statistical nuclear thermodynamic
theories such as the Bardeen-Cooper-Schrieffer (BCS) theory at finite temperature (FTBCS) [5]
or finite temperature Hartree-Fock-Bogoliubov (FTHFB) [6], in which the effects of superfulid
pairing, deformation, vibration, rotation and shell structure, which are important for the
description of NLD, are microscopically or empirically included. However, within the FTBCS
and FTHFB, the angular-momentum dependent total NLD is calculated approximately from the
state density by assuming that the distribution of nuclear spins can be approximated with the
Gaussian function [7]. In fact, the angular-momentum dependent total NLD can be calculated
directly from the angular-momentum dependent state densities via its exact relation (see e.g.,
Eq. (56) of Ref. [7]), which can be obtained within the BCS theory at finite temperature and
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angular momentum (FTABCS). The goal of the present paper is to employ the FTABCS theory
to calculate the angular-momentum dependent total NLD using this exact relation. The results
obtained will be used to calculate the average level spacing at the neutron binding energy. The
numerical calculations are restricted to even-even nuclei, whereas the extension to odd-even and
odd-odd cases is still going on.

2. Formalism
2.1. BCS theory at finite temperature and finite angular momentum (FTABCS)
The FTABCS equations are derived based on the grand-canonical ensemble average of the
nuclear Hamiltonian, which consists of the one-body mean field and two-body monopole pairing
interaction with the rotational field acted on the projection M of the total angular momentum
J as an external field. The derivation of the FTABCS equations for the pairing gap ∆, particle
number N , and angular momentum M has been reported in a number of papers [7, 8, 9, 10], so
we report here only their final forms, which are given as

∆ = G
∑
k

ukvk(1− n+
k − n

−
k ) ,

N = 2
∑
k

[
(1− n+

k − n
−
k )v2

k +
1

2
(n+
k + n−k )

]
, (1)
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Here εk are energies of the single-particle levels k written in the deformed basis and λ, γ,G,
and T are respectively chemical potential, rotational velocity (frequency), pairing interaction
parameter, and temperature of the nuclear system, which corresponds to a given excitation
energy of the compound nucleus.

The FTABCS equations are numerically solved to obtain λ, γ, Bogoliubov transformation
coefficients uk and vk, quasiparticle energy Ek, quasiparticle occupation numbers n±k , and pairing
gap ∆N(Z) at different values of T and M . These quantities are then used to calculate the total
(internal) energy E(T,M) and entropy S(T,M), whose explicit forms are given as

E(T,M) = 2
∑
k

εk

[
(1− n+

k − n
−
k )v2

k +
1

2
(n+
k + n−k )

]
− ∆2

G
, (2)

S(T,M) = −
∑
k

[n+
k lnn+

k + (1− n+
k )ln(1− n+

k ) + n−k lnn−k + (1− n−k )ln(1− n−k )] . (3)

As the nuclear system consists of N neutrons and Z protons, the total energy and total entropy
of the nucleus should be calculated as

E(T,M) = EN (T,M) + EZ(T,M), S(T,M) = SN (T,M) + SZ(T,M), (4)

where EN(Z) and SN(Z) are the internal energy and entropy calculated from Eqs. (2) and (3)
for neutron (proton), respectively.
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2.2. Intrinsic state density and average level spacing
The intrinsic state density of an atomic nucleus at given excitation energy E∗ and angular
momentum M is calculated based on the inverse Laplace transform of the grand-partition
function making use of the saddle-point approximation. It has the form as [7]

ω(E∗,M) =
eS

(2π)2 |D|1/2
, (5)

where E∗(T,M) = E(T,M) − E(T = 0,M) and the determinant D is given in terms of the
second derivatives of the grand-partition function with respect to α = λ/T and µ = γ/T

D =
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In Eq. (6), the logarithm of the grand-partition function of the systems Ω is calculated as

Ω = ΩN + ΩZ = SN + SZ + αNN + αZZ + µM − βE . (7)

The derivations of Ω with respect to α and µ can be seen explicitly in Eqs. (25)–(35) of Ref.
[7].

The total NLD ρ(E∗) at given excitation energy E∗ is calculated as the sum of all J-dependent
level densities

ρ(E∗) =
∑
J

(2J + 1)ρ(E∗, J) , (8)

where ρ(E∗, J) can be obtained from the difference between the state densities of the system
with angular momentum M = J and M = J + 1, namely [7]

ρ(E∗, J) = ω(E∗,M = J)− ω(E∗,M = J + 1) , (9)

with ω(E∗,M) being the state density calculated from Eq. (5). It is worth noticing here that Eq.
(9) is the exact relation between the total J-dependent NLD and M -dependent state densities.

Based on the assumption that the distribution of nuclear spin can be approximately expressed
in terms of the Gaussian function, ρ(E∗, J) in Eq. (8) can be calculated approximately as [5, 7]

ρ(E∗, J) ≈ 2J + 1

2σ3
√

2π
ω(E∗)exp

(
−J(J + 1)

2σ2

)
, (10)

where ω(E∗) is the total state density obtained from Eq. (5) with M = 0 and σ is the spin cut-off
parameter, which is related to the nuclear moment of inertia via the relation σ2

⊥(‖) = =⊥(‖)T/h̄
2

, where =⊥(‖) is the moment of inertia perpendicular (parallel) to the symmetry axis of the
nucleus. The perpendicular spin cut-off parameter is often calculated empirically via the limit
of rigid body [11]

σ2
⊥ ≈ 0.015TA5/3(1 +

β2

3
) , (11)

where A is the nuclear mass number and β2 is the quadrupole deformation parameter. The
parallel spin cut-off parameter can be calculated microscopically within the FTBCS theory as
[7]

σ2
‖ =

1

2

∑
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m2
ksech2 1

2
βEk . (12)
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Consequently, two approximate formulas for the J-dependent total NLD, which have been used
in most theoretical models such as the FTBCS or FTHFB, are [5, 6]

ρvib(E∗, J) ≈ 2J + 1

2σ3
‖
√

2π

ω(E∗)

(1− e−βωλ)2λ+1
exp

(
−J(J + 1)

2σ2
‖

)
, (13)

ρrot(E∗, J) ≈ 2

2σ‖
√

2π
ω(E∗)

J∑
K=−J

exp

(
−K

2

2σ2
‖
− J(J + 1)−K2

2σ2
⊥

)
, (14)

where ωλ is the phonon energy of the vibrational excitation corresponding to the phonon
multipolarity λ, whereas K is the projection of total angular momentum J on the symmetry
axis. In these equations, Eq. (13) is used for spherical and/or slightly deformed nuclei, whose
vibrational collective vibrations are significant, whereas Eq. (14) is applicable for well-deformed
nuclei, whose rotational excitations are mostly important.

Knowing the J-dependent total NLD, one can easily calculate the average level spacing D at
the neutron binding energy Bn based on its definition as [6]

D =
106

ρ
(
Bn, It − 1

2

)
+ ρ

(
Bn, It + 1

2

) , (15)

where ρ(Bn, It ± 1/2) are the NLDs obtained at the excitation energy E∗ = Bn and spins
J = It ± 1/2, with It being the ground-state spin of the target nucleus (Z,N − 1).

3. Numerical results and discussion
The average level spacings are calculated within the FTABCS for several even-even nuclei from
the medium 58Fe to the heavy 250Cf mass isotopes. The single-particle spectra εk are taken
from the axially deformed Woods-Saxon (WS) potential including the spin-orbit and Coulomb
interactions. The parameters of the WS potential are taken from Ref. [12]. The quadrupole
β2 and hexadecapole β4 deformation parameters are adjusted to reproduce the experimental
ground-state properties including nuclear binding energy and charge radii as well as energy of
the first 2+ state. The pairing interaction parameter GN(Z) is as usual adjusted so that the
pairing gap ∆N(Z) obtained within the FTABCS at T = 0 and M = 0 fits the experimental
odd-even mass difference.

It is found that the pairing gap ∆N(Z) decreases with increasing both T and M and collapses
at given T = Tc and M = Mc values, which are defined as the critical temperature and critical
angular momentum, respectively (See e.g., Figs. 2 and 3 of Ref. [8]). This change of the
pairing gaps is known to affect the state density (5) as well as level density (9) at low E∗

and M . Consequently, one can see in Table 1 the average level spacings D obtained within
the FTABCS using Eq. (15) with ρ(E∗, J) being calculated from its exact relation (9) are in
quite good agreement with the experimental data of all nuclei under consideration. It is also
seen in this Table 1 that the results obtained within the FTBCS by Maino [5] and FTHFB by
Goriely [6] are far from the measured data, especially for nuclei with large ground-state spins
such as 68Zn(It = 5/2), 88Sr(It = 9/2), 98Mo(It = 5/2), 144Nd(It = 7/2), 150Sm(It = 7/2),
162Dy(It = 5/2), 168Er(It = 7/2), 248Cm(It = 9/2), and 250Cf(It = 9/2). One of the reasons of
the discrepancy between the results obtained within the FTBCS and FTHFB approaches and
the experimental data is that the pairing gaps obtained within these theoretical models depend
only on T (E∗), whereas in reality the pairing gaps should depend on not only T (E∗) but also
M(J). Other reason is certainly due to the use of the approximate formulas (13) and (14) within
the FTBCS (FTHFB) instead of the exact relation (9) for ρ(E∗, J).
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Compound
Nucleus

It Bn Dexp DMaino DGoriely DFTABCS

58Fe 1
2 10.044 7050± 700 3440 6889

68Zn 5
2 10.198 370± 20 235 365.7

78Se 1
2 10.498 120± 15 409 122.6

88Sr 9
2 11.112 290± 80 160 285.1

98Mo 5
2 8.643 60± 10 30.3 42 59.96

112Cd 1
2 9.394 27± 2 23.9 14.1 26.86

118Sn 1
2 9.324 61± 7 76.7 38.1 68.58

126Te 1
2 9.113 43± 3 49.0 20.8 47.14

132Xe 3
2 8.935 49± 8 52.2 34.1 48.11

144Nd 7
2 7.817 38± 2 30.1 25.4 34.49

150Sm 7
2 7.987 2.4± 0.2 1.56 1.94 2.486

162Dy 5
2 8.197 2.4± 0.2 2.67 1.48 2.464

168Er 7
2 7.771 4.2± 0.3 4.61 2.7 3.987

180Hf 9
2 7.380 4.6± 0.3 3.73 3.56 6.768

202Hg 3
2 7.754 90± 30 36.4 86.75

248Cm 9
2 6.21 1.27± 0.19 1.48 1.28 1.242

250Cf 9
2 6.62 0.79± 0.12 0.73 0.426 0.7738

Table 1. Average level spacings of even-even nuclei at the
neutron binding energy (Bn) and the ground-state spin (It) of
the target nucleus obtained within the FTABCS (DFTABCS)
in comparison with the experimental data (Dexp) [14] as well
as the FTBCS given by Maino (DMaino) [5] and FTHFB
given by Goriely (DGoriely) [6].

4. Conclusions
Present paper applies the BCS theory at finite temperature and angular momentum (FTABCS)
to describe the average level spacings of several even-even nuclei. Within the FTABCS, the
neutron and proton pairing gaps and total state densities, which depend on both temperature
(excitation energy) and angular momentum, are microscopically calculated. The average level
spacings are then obtained based on the exact relation of the angular-momentum dependent
total level density to the state densities instead of the approximate formulas, which are often
used in previously proposed theoretical approaches. The results obtained within the FTABCS
are in good agreement with the experimental data, especially for nuclei having large ground-
state spins, whose angular-momentum dependent pairing correlations are important. Present
paper is restricted to even-even nuclei. The extension of this method will be studied and the
results will be reported in the forthcoming papers.
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