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Abstract

The unifying theme of this dissertation is using cosmological observations as a tool to discover
new physics and astrophysics.

The first part focuses on the effects of primordial non-Gaussianity on the large-scale
distribution of dark matter halos. The statistical properties of the primordial fluctuation
contain a wealth of information about the Universe’s early moments, and these properties are
imprinted on the late-time distribution of matter. The first chapter serves as an introduction
to the effects of non-Gaussianity on halo bias, summarizing previous work and extending it
to the cubic local model (the gy, model). Chapter 2 generalizes some of the techniques of
Chapter 1, allowing for the calculation of halo bias with arbitrary initial conditions, while
Chapter 3 shows the relationship between the seemingly different techniques existing in the
literature. Detailed forecasts for upcoming surveys are presented in Chapter 4, including the
effect of marginalization over shot-noise and Gaussian part of the bias, photometric redshifts
uncertainties and multi-tracer analysis to reduce the effect of cosmic variance.

The second part contains work on two secondary anisotropies of the Cosmic Microwave
Background radiation (CMB), namely the Integrated Sachs-Wolfe (ISW) effect and the ki-
netic Sunyaev-Zel’dovich (kSZ) effect. The late-time ISW effect arises because of decay of
the large-scale gravitational potential due to the accelerated expansion and is therefore a
powerful probe of dark energy. Chapter 5 presents a new detection of the ISW effect, using
WISE galaxies and AGN as tracers of the gravitational potential, whose bias is measured in
cross-correlation with CMB lensing maps. An appendix discusses the contamination of this
measurement due to the linear part of the kSZ effect, the Doppler shift of photon energy
due to scattering off coherently moving electrons. The last chapter explores the prospects of
detecting the kSZ signal from sources for which accurate redshift information is not available
(such as the WISE catalog). Forecasts are presented, as well as comparison with simulations

and a discussion of the main sources of contamination.
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Relation to Published Work

This dissertation divided into two main sections and comprises six chapters. The first section
includes four chapters and explores the effect of primordial non-Gaussianity on the halo bias
at late times. The topics of the second section are the Integrated Sachs-Wolfe (ISW) effect
and the kinetic Sunyaev-Zel'dovich (kSZ) effect.

Chapter 1 provides an introduction to the effect of primordial non-Gaussianity on halo
bias, explains the peak-background split formalism and extends it to the cubic form of local
non-Gaussianity. Detailed comparison with N-body simulations is presented. This chapter
is based on work done in collaboration with Kendrick Smith and Marilena LoVerde, and has
been published in Smith, Ferraro and LoVerde, “Halo clustering and gnp-type primordial
non-Gaussianity” in the Journal of Cosmology and Astroparticle Physics 03 (2012) 032.
I co-developed the theoretical predictions and the comparison with previous work (with
discussions and help from the other co-authors). Kendrick Smith and Marilena LoVerde
performed and analyzed the simulations.

Part of the work presented in this chapter is also present in the Proceedings of the
DPF-2011 Conference, Providence, RI, August 8-13, 2011.

Chapter 2 derives the halo-halo and halo-matter correlations for arbitrary (non-
Gaussian) initial conditions. The concept of stochastic bias is explored and the conditions
under which it arises are discussed, together with several examples. This chapter is based
on work done in collaboration with Daniel Baumann, Daniel Green and Kendrick Smith,

and has been published in Baumann, Ferraro, Green, Smith, Journal of Cosmology and
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Astroparticle Physics 1305 (2013) 001 with the title “Stochastic Bias from Non-Gaussian
Initial Conditions”. I co-lead this work together with Daniel Baumann. All of the calcu-
lations were derived independently in two different sets of notes (one written by me) that
were then merged to create a single paper.

Chapter 3 explores the relationship between different techniques to compute halo bias
(such as barrier crossing, peak-background spit and local biasing) and show that they are
equivalent under certain conditions, which are specified in the text. This chapter is based
on work done in collaboration with Daniel Baumann, Daniel Green and Kendrick Smith,
and has been published in Ferraro, Smith, Green, Baumann, Monthly Notices of the Royal
Astronomical Society 435 934 (2013) with the title “On the correspondence between bar-
rier crossing, peak-background split and local biasing”. I co-lead this work together with
Kendrick Smith. T have written most of the paper (with the exception of section 3.4.2) with
input from the co-authors.

Chapter 4 provides forecast for primordial non-Gaussianity with halo bias with upcom-
ing galaxy surveys. The effects of photometric redshift errors and cancellation of sample
variance with multi-tracer analysis is also discussed. This chapter is based on work done
in collaboration with Kendrick Smith and has been published in Ferraro and Smith, “Using
large scale structure to measure fxr,, gy and 7n”, Physical Review D 91, 043506 (2015). 1
lead this work, having written most of the text, all of the code and made all of the figures.

Chapter 5 presents a new detection of the ISW effect with WISE galaxies and AGN. The
galaxy /AGN bias is calibrated using CMB lensing, thus avoiding possible systematics that
can arise when using the auto-correlation function. This work has been done in collaboration
with Blake Sherwin and David Spergel and has been published in Ferraro, Sherwin and
Spergel, Physical Review D 91, 083533 (2015) with the title “A WISE measurement of the
ISW effect”. I lead this work, and I have analyzed the data, written all of the code and most

of the text, with frequent discussion with the co-authors.
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Appendix 2 explores the contamination to the ISW signal due the Doppler effect (linear
kSZ). This appendix is the result of currently unpublished work in collaboration with David
Spergel. I lead this work, with advice from David Spergel.

Chapter 6 explores the prospects of detecting kSZ in absence of reliable redshift es-
timates for the tracer populations. The main sources of contaminations are discussed and
forecasts are presented. This chapter builds on work in progress in collaboration with Colin
Hill and David Spergel. The computation of the expected signal follows and confirms previ-
ously published results (see text for details). The calculation of the lensing leakage, cosmic
variance and forecasts are my own, as well as all of the numerical computations. The hy-
drodynamical simulations were analyzed by Colin Hill and Nick Battaglia, while the theory

curves are my work.
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Chapter 1

Halo clustering and gny-type

primordial non-Gaussianity

1.1 Abstract

A wide range of multifield inflationary models generate non-Gaussian initial conditions in
which the initial adiabatic fluctuation is of the form ((g + gn1.¢2). We study halo clustering
in these models using two different analytic methods: the peak-background split framework,
and brute force calculation in a barrier crossing model, obtaining agreement between the two.
We find a simple, theoretically motivated expression for halo bias which agrees with N-body
simulations and can be used to constrain gy, from observations. We discuss practical caveats
to constraining gy, using only observable properties of a tracer population, and argue that
constraints obtained from populations whose observed bias is < 2.5 are generally not robust

to uncertainties in modeling the halo occupation distribution of the population.

1.2 Introduction

In the last few decades, increasingly precise observations (e.g. [36] 53], 56, 58, [34] 66]) have

led to a standard cosmological model in which small initial fluctuations evolve in a ACDM
1



background to give rise to the observed universe. Current data are consistent with initial
fluctuations which are adiabatic, scalar, Gaussian, with weak deviations from scale invariance
(ns < 1 at 30).

The statistics of the initial fluctuations, i.e. deviations from Gaussian initial conditions,
provide a powerful probe of the physics of the early universe. In the context of inflation
[277, 1470, (1], 28], 1301 [65], 2], the simplest models (single-field, minimally coupled slow-roll) predict
initial curvature perturbations with negligible deviations from Gaussianity. However, there
is a rich phenomenology of non-Gaussian initial conditions in models with multiple fields,
self-interactions near horizon crossing, or speed of sound ¢, < 1 during inflation. In this
paper, we will focus on non-Gaussianity of the so-called local type [59] 24], 37, [52], in which

the primordial potentia]lﬂ is of the form

O(x) = Ca(x) + [xn(Pa(®)” — (PF)) + gau(Pa(x)’ — 3(0F) Pa()) (1.1)

where @4 is a Gaussian field and fyr,, gnr, are free parametersﬂ

Local non-Gaussianity can be generated by physical mechanisms involving multiple fields,
such as light spectator fields during inflation which evolve to generate the initial adiabatic
fluctuations (the curvaton scenario) [42], 46, 45], or models where the inflaton decay rate is
modulated by a second field [19][35]. Non-Gaussianity of local type is also naturally generated
in non-inflationary models of the early universe such as the new ekpyrotic/cyclic scenario
[3, 8, B9]. There is a theorem [48] [9] which states that any single-field model of inflation
cannot generate detectable levels of local non-Gaussianity without violating observed limits
on deviation from a scale-invariant power spectrum. Thus, detection of either fxi, or gnr,
would rule out all single field models of inflation and place powerful constraints on the physics

of the early universe. Current observational constraints on these parameters are consistent

'In studies of primordial non-Gaussianity, it is conventional to define a primordial potential ® = %C , Where
( is the initial adiabatic curvature perturbation. Note that ® is not the conformal Newtonian potential, which
is given by %fb deep in the radiation-dominated epoch where Eq. applies.

2We define gni-type non-Gaussianity including the term —3(®Z)®s; this term simply renormalizes ®¢
so that its power spectrum Pg,, is equal to the observed power spectrum Py (to first order in gny,).
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with zero [30, 62, 21] [I7], but are expected to improve by an order of magnitude or more in
the near future.

In models of inflation in which |gxr| = O(fZ;), it is unlikely that observational constraints
on gy, will be competitive with constraints on fyr,. However, there are a number of examples
where f2; < |gnp|, making the gni term in Eq. the dominant source of primordial
non-Gaussianity. This situation arises in curvaton models where non-quadratic terms in the
potential are important [60, 33], 20, 31 5] or in multifield models in which (AN varies rapidly
at the end of inflation [32], 4]. The existence of these scenarios makes searching for gny, just
as important as fy;, and measurements provide important constraints on the microphysical
parameter space.

In a pioneering paper [12], Dalal et al showed that large-scale clustering of halos depends
sensitively on fxr. More precisely, a sample of halos (or tracers such as galaxies or quasars)

with constant bias b; in a Gaussian cosmology will have scale-dependent bias given by

L

b(k) ~ by + 26.(by — 1)a(k 5

(1.2)

in an fy, cosmology. Here, d. is the spherical collapse threshold and «(k, z) is defined by

2k2T(k)D(=)

alk,z) = 20 2 (1.3)
md1(

so that the linear density field and the primordial potential are related by oy, (k,z) =
a(k,z)®(k). Large-scale structure constraints on fyr, from scale-dependent bias are cur-
rently competitive with the CMB (e.g. [62],68]) and may ultimately provide constraints which
are stronger (e.g. [11], 29]). The key identity has been derived using several different
analytic frameworks [50], 62, 25] and agrees with N-body simulations (e.g. [12] 26, 54, [17]).

In this paper we study the related issue of large-scale halo-clustering in a gni, cosmology.
We consider the large-scale halo bias in two analytic frameworks: the peak-background split
(§1.4) and a barrier crossing model (§L.5). We find consistency between the two formalisms
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(in disagreement with [I5]) and obtain an expression analogous to Eq. (1.2)) for the scale-
dependent halo bias in a gy, cosmology. Our main results are a universal relation between

the scale-dependent halo bias in a gni, cosmology and the mass function in an fyy, cosmology,

ﬁggNL

blk) by + B

where [, = 3(0logn/dfxL) (1.4)

and expressions for g, (Egs. , ) which can be used in practice to constrain gnr,
from data. We also discuss caveats when estimating the gy, bias from observable quantities
( and argue that constraints obtained from tracer populations which are not highly
biased (b; > 2.5) are generally not robust to uncertainties in HOD modeling.

Throughout this paper we use the WMAP5+BAO~+SN fiducial cosmology [I§], with
baryon density Q,h? = 0.0226, CDM density Q.h? = 0.114, Hubble parameter h = 0.70,
spectral index ns; = 0.961, optical depth 7 = 0.080, and power-law initial curvature power
spectrum kP (k)/2n% = AZ(k/kpiy)™ ™" where A% = 2.42 x 107 and ky;, = 0.002 Mpc™'.

All power spectra and transfer functions have been computed using CAMB [40].

1.3 Definitions and notation

We will sometimes model halos of mass > M with peaks in a smoothed density field d,,
defined as follows. Let dy/(x) be the linear density field smoothed by a tophat filter with

radius R(M) = (3M /4np,,)'/3, i.e.

dai() = / Phin-ag () War(h) (1.5)

where

3sin(kR(]\J)) R(M) cos(kR(M))

Warlk) = (ER(A))?

(1.6)



Let oy = (02,)'/2 be the RMS amplitude of the smoothed density field, and let &, (M) be
its n-th non-Gaussian cumulant, defined by:

(FBdeom

n
Opm

Kn(M) =

(1.7)

Since 0y, and oy are defined via linear theory, x, (M) is independent of redshift as implied

by the notation. To first order in fyr, and gnr,, we have

k3(M) = k(M) far (1.8)

k(M) = £8P (Mg (1.9)

with higher cumulants equal to zero, where mgl) (M), /@(ll)(M ) are the values of the cumulants

at fnr, = 1 and gnp, = 1 respectively. These values are given explicitly by:

gy - 6 [ERER : 11 Pron () P (K (e + ')
Pon = / g (Wi ()W (K + K )
W00 = 5 [T W)W () Wi + 4+ )

o P (k) P (E') P (K" ) (|1 K + K + K"]) (1.10)

a(k)a(k)o(k")

where a(k) was defined previously in Eq. (1.3) and P,,,(k) is the power spectrum of the
linear density field, (3, (k)doun (k")) = (27)3 Prm(k)6®) (k + k'). For numerical calculation,

the following fitting functions (from [44]) are convenient:

V(M) = (6.6x107Y) (1 — 0.0161og (h‘]le@» (1.11)
VM) = (1.6x1077) (1 — 0.0211og (h_]l\f%)) . (1.12)

This paper is mainly concerned with calculating halo bias b(k) = Pn(k)/Pum(k) to first

order in fyr, and gni, so let us establish notation from the outset, by writing the large-scale



bias in the general form:

By fNL + Bggne

b(k) =by+b b
(k) 1+ b1 fNr + biggnt, + (k)

(1.13)

where unlike Eq. and Eq. we have allowed for scale-independent corrections b,y and
b1y from fxi, and gnr, primordial non-Gaussianity. Equation defines the coefficients
bi,b1y,b1g, B, Bg. This equation assumes that the k-dependence is of the functional form
(constant) + (constant)/a(k), but we will derive this analytically (Eq. (1.34)) and show that
it agrees with simulations (§1.6.1). In this notation, the Dalal et al formula (1.2) can be

written as y = 26.(by — 1).

1.4 Peak-background split

The peak-background split formalism is a procedure for predicting halo clustering statistics
on large scales. The basic idea is that a long-wavelength fluctuation in the initial curvature
alters the local abundance of halos in a way which is equivalent to perturbing parameters
of the background cosmology, e.g. the matter density p,, or the amplitude Ag of the initial
fluctuations. The use of this formalism to study halo bias in non-Gaussian cosmologies was
pioneered in [62]; we will review this calculation of the bias in an fxy, cosmology ( and

then perform an analogous calculation in the gy, case (§1.4.2)).

1.4.1 fy1 cosmology

In an fyr, cosmology, the initial conditions are given by:
O(x) = g () + fru(Pa(@)® — (9F)) (1.14)

To analyze the effect of a long-wavelength mode, let us decompose the Gaussian potential as
asum &g = &+ D, of long-wavelength and short-wavelength contributions. The long/short-
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wavelength decomposition of the non-Gaussian potential ® is then

®(z) = Di(x) + S (Pi(@)” = (2])) + (L + 2 ®i(2)) Pu() + fin (Pu(@)” — (25) (1.15)

’, i

TV Vv
long short

and contains explicit coupling between long and short wavelength modes of the Gaussian
potential.

Let us consider how the term (1 + 2 fn;,®;(x))Ps(x) in Eq. (1.15) affects n;(x), the long-
wavelength part of the halo number density field. In a local region where the long-wavelength
potential takes some value ®;, the amplitude Ag of the small-scale modes is perturbed:
Agp — (1 4+ 2fnp®P)Ag. This modifies the local halo abundance, in the same way that the
global abundance would be modified if the cosmological parameter Ag were perturbed, i.e. we
get a term in the long-wavelength halo density of the form An(x) = 2 fn,®;(x)(On/0log Ag).
In addition, even in a Gaussian cosmology, there is a perturbation to the local halo abundance
which is proportional to the long-wavelength part §;(x) of the density fluctuation, i.e. a term
of the form An(x) = §,(x)(0On/0d;). Putting this together, the long-wavelength part of the
halo density is given by:E|

on on

n(x) = n+ —=o(x)+2fnp=—=—"b(x

() 2, () fNLaIOgAcp ()
= ﬁ(l + blél(m) + BffNLQ)l(a:)) (1.16)
3In this derivation, we have swept two terms in Eq. under the rug; let us now argue that these are
indeed negligible. The term fxr,(®,(x)?—(®2)) alters the statistics of the small scale modes; this does perturb
the halo abundance (by generating skewness in the density field) but the perturbation is independent of the
long-wavelength fluctuation ®;. Therefore, this term does not contibute to the large-scale halo bias. The
term fnr,(®;(z)? — (®7)) perturbs the long-wavelength modes and decorrelates them (to order O(fr,)) from
both the linear density fluctuation é(x) and the field (2fn1,®;) which modulates the local power spectrum

amplitude Ag. In principle, this should generate stochastic bias at order O(fZ; ), but we will neglect this,
since we are only calculating to order O(fx1).




where

dlogn
by = 1.1
' 89, (1.17)
dlogn
= 9= 1.1
By Tlog Aa (1.18)

Intuitively, in an fy;, cosmology, the local power spectrum amplitude Ag is not spatially
constant, but varies throughout the universe in a way which is proportional to the long-
wavelength potential ®;.

Computing the halo bias b(k) = P (k)/Pum(k) from Eq. (1.16]) for n;(x), we get:

b1 Py (k) + B Pra (k)
P

By fnL

alk,z)

b(k) =

by + (1.19)

From the preceding argument, we predict that the scale-dependent fyp, bias is given by
By = 2(0logn/0log Ag). We will refer to this as a “weak” prediction for the bias: it
cannot be used to constrain fyi, from real data, since 55 has not been expressed in terms of
observable quantities.

To make further progress, we need to evaluate the derivative (0logn/0dlog Ag), by mak-
ing additional assumptions. If we assume that the halo mass function is universal, then
one can calculate the derivative, obtaining (0logn/0log Ag) = 0.(by — 1), where b; is the
Gaussian bias [62], so that:

Br=20.(by —1). (1.20)

We will refer to this as a “strong” prediction for the scale-dependent bias in an fyi, cosmology,
since y has been expressed in terms of the observable quantity b;. The strong form is

essential for constraining fyr, from observations.



1.4.2 ¢gni, cosmology

Let us now generalize the analysis of large-scale clustering in the previous subsection to the

case of a gnr, cosmology, with initial conditions given by:
O(x) = Pg(x) + gnu(Pa(x)® — 3(PL) P (x)) . (1.21)

Separating the Gaussian field into long and short wavelength pieces ®; = &, + &,, we

decompose @ as follows:

O(x) = P(x)+ gNL((I)l(ai)S — 3((1312)<I>l(a3)l (1.22)

+ ®y(x) + 3gnL(Pu(@)” — (0])) D) + Bgnr Pi() (D4 (2)* — (D7)

Where the “long” part of the potential has been indicated explicitly and the rest contributes
to the “short” part. Asin the fyi, case, we’ll consider the perturbation to the long-wavelength
halo density nj(x) generated by each of these terms.

The term 3gnr(®;(x)? — ($7))®,(x) can be interpreted as a local modulation in the
small-scale power spectrum amplitude, given by Ag — (1 + 3gnr(Pi(x)? — (PF)))Ag. This
generates a term Any(x) = 3gn.(Pi(x)? — (®7))(On/01og Ag) in the long-wavelength halo
density, in close analogy with the fxi, case (the modulation is proportional to gnp,(®7 — (®7))
in this case, rather than fnp,®;).

The term 3gn,®;(x) (P, (x)? — (®2)) can be interpreted as follows. In a local region where
the long-wavelength potential takes the value ®;, the small-scale modes are perturbed in the
same way as in an fy;, cosmology where the global value of fyr, is given by (3gn.®;). This
generates a term Any(x) = 3gnLP(x)(On/Jfx) in the long-wavelength halo density.

Finally, there is the usual term An;(x) = §;(x)(0n/9¢;) due to changes in mean back-

ground density (as in the Gaussian case).



Putting this all together, we find that the long-wavelength halo density field in a g,

cosmology is given by{]]

TLZ(JJ) = n-+ g—gél(iﬂ) + 3gNL&<®l($)2 — <q)l2>) + 3gNL aasz (I)l(.’D)
= (1 0@ + S5y @0 () + Bgti(@)) (1.23)

where b; and [y were defined previously (Eqs. (1.17)), (1.18))), and:

dlogn
=3 1.24
Bg afNL ( )
The large-scale halo bias b(k) = Py (k)/Prm(k) is given by:
ﬁggNL
b(k) =10 1.25
( ) 1+ Oé(k,Z) ( )

Note that the (8rgni) term in Eq. does not contribute to the bias, since the field
(@;(x)? — (®?)) and the long-wavelength density field §; are uncorrelated (their cross correla-
tion is a three-point function of Gaussian fields, which vanishes). This term should generate
stochastic bias, but we defer a systematic study of halo stochasticity in non-Gaussian cos-
mologies to a future paper [22].

We have now arrived at the peak-background split prediction for halo bias in a
gnr, cosmology, which relates the scale-dependent gnp, bias to the derivative (0logn/0 fnr,) of
the halo mass function in an fyr, cosmology. In the terminology of the previous subsection,
this is a “weak” prediction: we have shown that the problem of computing the gni, bias is
naturally related to the problem of understanding the mass function in an fyr, cosmology,

but the coefficient 8, has not been expressed in terms of observable quantities.

4Analogously to the fxp case, we have neglected two terms in Eq. . The term gnr(®(x)® —
3(®?)®;(x)) only alters power spectra at order O(g¥;,), and we will neglect terms of this order. The term
INL(Ps(x) — 3(P2)D4(x)) generates kurtosis in the density field and modifies the halo mass function [44],
but in a way which is independent of ®; and therefore does not contribute to large-scale clustering.
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To obtain a “strong” prediction, we need to evaluate the derivative (0logn /0 fxr,), which
requires making additional assumptions. This has been done in [44], assuming a barrier
crossing model for the mass function and using the Edgeworth expansion to calculate the

derivative (see also [51}, 43|, [0, B8, 147, 14] 13]). The result is:

dlogn(M)  k3(M)
E ) ) (o))

. ldlﬁg/dM
6 dv/dM

Hy(v(M)) (1.26)

where v = §. /0oy, and Ho(z) = 2* — 1 and H3(z) = 2® — 3z are Hermite polynomials. We

will compare this prediction with N-body simulations in §I.6]

1.5 Barrier crossing model

In this section, we will study large-scale bias using a barrier crossing model, obtaining results
which are consistent with the peak-background split formalism from the previous section.
The two approaches are complementary: the barrier model has the advantage that it gener-
ates complete predictions for halo statistics (such as the mass function or bias) via an algo-
rithmic calculational procedure, but obscures the physical intuition of the peak-background
split. For completeness, the calculations in this section will be sufficiently general to include

the cases of Gaussian, fyr-type, and gnp-type initial conditions.

1.5.1 Setting up the calculation

The barrier crossing model is an old, widely influential idea in cosmology, in which halos of
mass > M are identified with peaks in the smoothed linear density field [55]. Although more
complex versions have been proposed, we will use the simplest version: a spherical collapse
model with constant barrier height, defined formally as follows.

We model halos of mass > M as regions where the smoothed linear density field d,/(x)

(defined in Eq. ([1.5))) exceeds the threshold value 4., i.e. the halo number density ny(x) is

11



given by:

na (@) = pﬁm (Sar(x) — 6.) (1.27)
where 0 is the step function
0 ifz<O
O(x) = (1.28)
1 ifz>0

Throughout this paper, we take d. = 1.42; this value produces somewhat improved agreement
between the barrier model and simulations, compared to the Press-Schechter value ¢, = 1.69.|ﬂ

To study halo bias in this model, we define the following notation. Let @, @’ be two
points separated by distance r, let 0y, denote the (unsmoothed) linear density field at «,
and let 0}, denote the smoothed linear density field at ’. We denote the joint PDF of these

random variables by p(din, 03,), and denote the 1-variable PDF of 6}, by p(d},). We define

N (1.29)
dc
&)(T’) = /d5hn d(%\/[ p(élina 5;\4) (511110((%\/[ - 50) (130)

These quantities are related to the halo mass function n(M) and matter-halo correlation
function &,,,(r), but there is one wrinkle. In the barrier crossing model, the field n; defined
in Eq. represents the number density of halos with mass > M, whereas we want to
consider a sample of halos with mass in a narrow mass range (M, M + dM). Thus n(M)

and &, (r) are obtained by taking derivatives as follows:

n(M) — —2% (;%) (1.31)

déo(r)/dM

) =y and

(1.32)

®We experimented with using a mass-dependent barrier d.(v) chosen for consistency with a universal mass
function such as Sheth-Tormen [61] or Warren [67], but found that this did not result in further improvement.
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1.5.2 Mass function, halo bias, and interpretation

In principle, calculation of the halo mass function and large-scale bias in the barrier crossing

model has now been reduced to evaluation of Eqgs. (1.29)—(1.32). We defer details of the

calculation to Appendix and quote the final results. The halo mass function is given by:

20m [(dlogo™1\ e /2
M) =
nM) = 7 ( dM )(27r)1/2 Y

" v H(v) dliél)/dM Hy(v)
+ (“3 (M) 6  d(logo')/dM 6 )

1 vH,(v) d/@(ll)/d]\/[ Hs(v)
+  gnL (lﬁ(l )(M) 24 N d(lOgOﬁl)/dM 24 ) ]

The halo bias b(k) = Pn(k)/Prm(k) is given by (in the large-scale limit £ — 0):

B fxt, + Bygnt,

b(k) = by + by far + biggne +

a(k)
where:
b, = 1 +V25:1
oy = =000 (5) o ()
- o (45 5 ()
By = 2% -2
by = 'fél)(M)Vg;gy B daig%%M (V_QV—1>

(1.33)

(1.34)

(1.35)
(1.36)

(1.37)
(1.38)

(1.39)

Although the above expressions are the result of a purely formal calculation, we will now

show that each term has a natural interpretation.

Considering first the halo mass function ((1.33), we have found a Press-Schechter mass

function (with . = 1.42) in the Gaussian case, plus first-order corrections in fyr, and gny,
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which agree with those found in [43] [44] using the Edgeworth expansion. This agreement is
expected since the two calculations are based on the same barrier crossing model.

Moving on to halo bias, in the Gaussian case, we predict that b(k) is constant on large
scales, with value b; given by Eq. . The peak-background split argument suggests a
general relation between the large-scale halo bias and the halo mass function which applies

generally to a universal mass function of the form:

_ Dm dlogo~!
n(M) = % () =5 (1.40)
On large scales, the bias is predicted to be scale-independent and given by [7]:
v dlog f
b =1— — 1.41
! 0. dv ( )

Comparing our predictions ([1.33]), (1.35]) for n(M) and by, we find agreement, i.e. Eq. (|1.35))

for b; can be interpreted as the general peak-background split expression for halo bias,
specialized to the Press-Schechter mass function.

More generally, the ;¢ and by, contributions to the bias (Egs. , ) represent
shifts in the scale-independent part of the bias due to primordial non-Gaussianity. It is
straightforward to check that these terms can be obtained by plugging the non-Gaussian mass
function in Eq. into the peak-background split prediction for scale-independent
bias, i.e. the by and by, terms can be interpreted as changes to the bias which are entirely
due to the mass function being perturbed in a non-Gaussian cosmology. This type of term
(scale-independent bias proportional to fy1,) was first found for fyp, cosmologies in [I7]. Note
that a scale-independent shift is unobservable in practice, and cannot be used to constrain
non-Gaussianity, since the bias of a real tracer population, such as galaxies or quasars, is a
free parameter.

The 35 contribution to the bias is the well-known scale-dependent bias in an fyi, cosmol-

ogy. Comparing Eq. (1.38]) for 8y with Eqs. (1.33)), (1.35]), this term can be written either as
14



Br = 20(logn)/d(log Ag) or By = 25.(by —1). (In we referred to these as “weak” and
“strong” predictions.)

The 3, contribution to the bias is the focus of this paper: scale-dependent bias in a
gnL cosmology. Eq. gives this term in the “strong” form that was found previously
(Eq. ) using the peak-background split argument. Alternately, we can write this term
in the “weak” form 3, = 30(logn)/0 fx1, using Eq. .

In summary, we have found that the complete expression for large-scale halo bias in the
barrier crossing model (Eq. ) agrees perfectly with the peak-background split calcula-
tion from . The bias contains a scale-independent part (by+b; ¢ fxr, +b1,9n1) which can be
obtained from the halo mass function, via the general relation . The scale-independent
bias depends on fxr, and gnr,, because the halo mass function depends on these parameters.
The bias also contains a scale-dependent part (8rfnr, + By9n1)/a(k) whose coefficients can

be calculated explicitly and agree with the peak-background split predictions.

1.5.3 Comparison with previous work

It is interesting to compare the above calculations with the results of [16] (see also [25]),
where (3, was calculated using the MLB formula [49], which gives N-point functions of halos
as an asymptotic series in v. The scale-dependent gn, bias was found to be (in our notation):

5CU(b1 — 1)

(1.42)

When this prediction was compared to N-body simulations, it was found to be a poor fit.
Comparing @ALB with our calculation for f,, it is seen that the two agree in
the high-mass limit ¥ — oo, but disagree in subleading terms. This is expected since the
MLB formula is based on the same barrier crossing model that we have used, but it is an
asymptotic result, whereas we have done an exact calculation (to first order in fxr, gnr)-

For realistic halo masses, the “subleading” terms neglected in the MLB formula are of order
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one (to quantify this better, 3, and ﬂ;\/ILB agree to 10% only when the halo bias b; > 15), so
in practice the two predictions are quite different.

Recently, ref. [15] argued that the barrier crossing model cannot generate correct pre-
dictions for general non-Gaussian initial conditions such as the gn;, model, but we found
the opposite conclusion: brute-force calculation in the barrier crossing model, collecting all
terms of order O(gnr), agrees precisely (i.e. to all orders in 1/v) with the peak-background
split. It seems intuitively plausible that two must be consistent, since the peak-background
split argument depends only on the assumption that halo formation is determined by the
local density field, and the barrier crossing model is a concrete example of a model in which

this assumption is satisfied.

1.6 Results from N-body simulations

In the last two sections, we have obtained complete analytic predictions for large-scale bias
in a gy cosmology, finding agreement between the peak-background split formalism (§1.4))
and a barrier crossing model based on spherical collapse (§1.5]).

To compare these predictions with simulation, we performed collisionless N-body sim-
ulations using the GADGET-2 TreePM code [64]. Simulations were done using periodic
box size Ryox = 1600 h™' Mpc, particle count N, = 10243, and force softening length
R, = 0.05(RbOX/N;/ 3). With these parameters and the fiducial cosmology from 35 the
particle mass is m, = 2.92 x 10'* h=! M.

We generate initial conditions by simulating a Gaussian primordial potential ®, and
applying fnr, or gni, corrections by straightforward use of Eq. . We linearly evolve to

redshift z,; = 100 using the transfer functionﬁ from CAMB [40], and obtain initial particle

6One subtlety here: straightforward use of CAMB’s transfer function at redshift 100 leads to inconsis-
tencies since CAMB includes radiation (which is not negligible at z = 100) in its expansion history, while
GADGET does not. For this reason we use CAMB'’s linear transfer function at low redshift and extrapolate
back to z = 100 using the growth function in an €,,q = 0 universe.
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positions at this redshift using the Zeldovich approximation [69]. (At z,; = 100, transient
effects due to use of this approximation should be negligible [10].)

After running the N-body simulation, we group particles into halos using an MPI par-
allelized implementation of the friends-of-friends algorithm [23] with link length Lror =
0.2Rpox Np /3 For a halo containing Ngop particles, we assign a halo position given by the
mean of the individual particle positions. We estimate halo bias b(k) = Pun(k)/Pum(k)
using the procedure described in Appendix A of [63]. The statistical error Ab(k) obtained
using this procedure is smaller than the error that would be obtained assuming uncorrelated
estimates of the power spectra P,,, and P,,, since shared sample variance is taken into
account.

Results in this paper are based on 4 simulations with Gaussian initial conditions, 5
simulations with gny, = 42 x 10%, and 3 simulations with fx, = £250 (for a total of 20

simulations).

1.6.1 Fitting the functional form b(k) = b; + Bygni/ (k)

We now compare our analytic prediction for b(k) to simulation in several steps, corresponding
to increasingly strong versions of the prediction.

First, consider the weakest possible question: our analytic prediction for the bias is of
the functional form

b(k) = by + Bg% (1.43)

Is this is a good fit to simulation, if we treat the coefficients b; and 3, as free parameters?
(We will compare our analytic prediction for §, to simulation in the next subsection; for now
we are just testing whether the functional form ((1.43)) is correct.)

In Fig. [I.1, we show some example fits of this form, for redshift z = 0.5 and halo mass
range 1.15 < M < 1.83 x 10 h=! M. Each fit was performed using bias estimates from

4 independent simulations with Lyo = 1600 h~' Mpc and wavenumbers k£ < 0.04 h Mpc~!.
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Figure 1.1: An example to illustrate that halo bias in a gn;, cosmology takes the functional
form form b(k) = by + By9n1./a(k). This figure corresponds to redshift z = 0.5 and halo mass
range 1.15 < M < 1.83 x 10 b= M, but we find the same functional form for all redshifts

and halo masses.

We find good x? values for the fits, with recovered parameters:

by = 3.653 & 0.026 for gn, =0
(b1,10°8,) = (3.575 + 0.038,0.581 + 0.056) for g, = 2 x 108 (1.44)
(b1,10°8,) = (3.824 4 0.039,0.935 + 0.060) for gni, = —2 x 108

We note that the recovered bias parameters in this example show that both b; and
By are gnp-dependent. In the barrier crossing model, we made a prediction for the gy,
dependence of b; (Eq. ) We find good agreement between this prediction and our
simulations. Note that in practice, the gn;, dependence of by is unobservable since for a real
tracer population, the halo occupation distribution is not known precisely and b; must be
treated as a free parameter to be determined from data.

The observed gni, dependence of 8, corresponds to scale-dependent bias of order O(gg;))
or higher (note that f; is defined in such a way that constant (3, corresponds to scale-

dependent bias which is linear in gn,). This complicates comparison with our analytic
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predictions, since we have only calculated the bias to order O(gnr). We address this by
estimating 3, by averaging the estimates obtained from simulations with gxy, = £2 x 10°,
thus removing contributions to b(k) which are proportional to g%;. Note that this does not
remove O(g3;) contributions to the bias, but we have checked that such contributions are
negligible for gni, = +2 x 10, by comparing with simulations with halved step size.
Repeating this fitting procedure for redshifts z € {2,1,0.5,0} and a range of halo masses
(the precise set of halo mass bins used is shown in Fig. below), we find x? values which
are consistent with their expected distribution, i.e. we find that the functional form is
a good fit to the simulations for a wide range of redshifts and halo masses. For this reason, in
subsequent sections, we will “compress” the estimates of b(k) in each simulation (as shown

in Fig. to two numbers (b, and ,), with statistical errors given by the fitting procedure.

1.6.2 Comparison with analytic predictions

Now that we have established the functional form b(k) = by + S,9n1/(k) of the bias, and
a procedure for estimating 3, from simulation as a function of redshift and halo mass, we
would like to compare with our analytic predictions for 3.

First, consider the “weak” form of the prediction (8, = 3(0logn/Jfx1)) obtained from
the peak-background split argument. We can test this prediction by estimating the derivative
(0logn/0fn1,) directly from simulations, by taking finite differences of log(n) in simulations
with fxr, = £250. (We checked convergence in the step size.) We find that the prediction
holds perfectly (within the statistical errors of the simulations) for all redshifts and halo
masses (Fig. [1.2)).

Second, consider the “strong” Edgeworth prediction (Eq. (1.39)), in which an explicit
formula for 3, is given. In this case, we find reasonable agreement at high mass (M > 10
h~1 M), but the prediction breaks down at low halo mass (Fig. [1.2)).

Our interpretation is as follows. The peak-background split prediction 8, = 3(0logn/0 fx1.)

is a universal relation between bias in a gn;, cosmology and the mass function in an fyr,
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Figure 1.2: Comparison of the “weak” and “strong” predictions for the scale-dependent bias
in a gn, cosmology. Blue squares: Direct estimates of the bias, extracted from simulations
with gnp, = £2 x 10% as described in . Green circles: “Weak” analytic prediction
(Ologn/JfxL)) from the peak-background split formalism, showing
perfect agreement. The estimates of (0logn /0 fx1,) shown in the figure were obtained directly
from simulations with fx;, = £250. Red dotted curve: Edgeworth prediction for the
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underpredicts 3(dlogn/dfxy,). We will find an improvement in §1.6.3]
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cosmology. Although “weak” in the sense that it does not supply a closed-form expression
for 4, the derivation makes few assumptions, and one expects it to be exact. In order
to constrain gy, from real data, we need a “strong” prediction which expresses 3, in
closed form, using only observable quantities (i.e. the analog of the Dalal et al formula
B = 20.(by — 1) for an fyi, cosmology). Using the Edgeworth expansion, one can make
such a prediction in the context of the barrier crossing model (Eq. ), and obtain
rough agreement with simulations, but the level of agreement is not really good enough for
doing precision cosmology. Therefore, we next propose a slightly modified version of the

Edgeworth prediction.

1.6.3 A simple universal formula for the bias in a gn;, cosmology

We would like to slightly modify the Edgeworth prediction for B, so that it agrees
better with N-body simulations. It is also convenient to have a prediction in which 3, is
given as a function of observable quantities: Gaussian bias b; (rather than halo mass, which
is unobservable) and redshift z.

We start by rewriting the Edgeworth prediction for 5, in terms of variables (b1, z).

The following fitting functions for k3 and dr3/dlog(c~!) are convenient:

ks = 0.000329(1 + 0.09z)b; "% (1.45)

drs ~0.25
—— = —0.000061(1 + 0.222)b7 ™ 1.46
dlog o1 ( )by ( )

For purposes of this subsection, we define the quantity v to be given in terms of by and z by:

v =[0,(by — 1) + 1]*/2 (where 4, = 1.42) (1.47)
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Figure 1.3: Scale-dependent gni, bias coefficient 3, as a function of redshift z and halo bias
b1, showing excellent agreement between our final analytic result (Eq. (1.49), dashed curves)
and N-body simulations (error bars).

The Edgeworth prediction for 3, can be written in the following form:

3 1 dk v—uvt
Edge. _ -1 =12+ Z(y—1)° — 3 1.48
e = | = 14 S0 14 50 1| - o (1.48)

Empirically, we find that if we tweak the Edgeworth prediction by changing the coefficients

of the polynomial in brackets as follows:

dk v—yvt
B, = ks { 0.7+ LA — 1)+ 0.6(v — 1)3] - dlogfrl ( 5 ) (1.49)

then we obtain good agreement with simulations (Fig. [1.3). The expression for 3,
(with quantities k3, dks/dlogo™!, v defined by Egs. —) is one of the main results
of this paper and is our observational “bottom line” when constraining gy, from real data.

We have motivated our “tweak” to the Edgeworth prediction as essentially a fitting
function for the v dependence (although it is worth noting that the z dependence is correctly

predicted by the barrier crossing model). A speculative interpretation of this tweak, which
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we will defer for future work, is as follows. In the barrier crossing model, the second-order
halo bias is given by by = (13 — 3v)/(6.0x). It is tempting to conjecture that the expression
in brackets in Eq. is generally equal to (d.0nrb2), and interpret our “tweak” to the
Edgeworth prediction as perturbing the relation between b; and by, relative to the
barrier crossing model. This opens up the possibility of directly measuring the second-order
bias and determining [, directly. To study the viability of this idea, one would need to
compare f3, in simulation to some other estimate of second-order halo bias, such as the halo

bispectrum in the squeezed limit.

1.6.4 An important caveat

There is an important caveat when using Eq. , or indeed any fitting function for the
gnt, bias, to constrain gnp, from real data. It is tempting to compute 3, by simply plugging
the observed bias b; and redshift z into Eq. . (Since the z-dependence is very mild, a
rough estimate for the redshift suffices.) However, we have only shown that this procedure
is correct in the limit of a narrow bin in halo mass and redshift, and a real tracer population
will be a weighted average over M and z.

For example, consider the case in which the “tracers” are the dark matter particles
themselves, i.e. each halo is weighted in proportion to its mass (assuming all mass is in
halos). This tracer population has bias by = 1 (for the trivial reason that we are back to the
dark matter field), so straightforward use of Eq. would suggest that 3, ~ —0.00025.
(This value would make the low-k power spectrum a reasonably sensitive probe of gnr.)
In fact, the true 3, of this tracer is zero, since the matter power spectrum P, (k) does
not contain a term proportional to gnr,/a(k). This example shows that the true gnp, bias

of a tracer population can differ significantly from the value obtained by straightforward
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use of Eq. . In general, the gyp, bias will depend on the full HOD (halo occupation
distribution) of the tracer population, not only on the Gaussian bias b1[|

One popular approach to modeling the HOD is to assume that halos below some minimum
mass My, do not host tracers, whereas the mean number of tracers in a halo of mass

M > M, is proportional to the total mass M. For reference, we give a fitting function for

the gnp, bias for this HOD:
By = k3| —0.4(r —1) +1.5(r — 1) + 0.6(v — 1) (1.50)

where for purposes of this equation, k3 and v are defined as functions of the observables b,
and z by Egs. , above.

Eq. applies to a mass-weighted population of halos above M,,;,, whereas Eq.
applies to a population which is narrowly selected in mass. The two agree for b; > 2.5,
suggesting that HOD dependence is small in practice for highly biased samples, but disagree
qualitatively for b; < 2.5. For example, the gy, bias 3, changes sign at b; ~ 2.1 for the
narrowly selected sample (Eq. ), whereas (3, is always positive for the mass-weighted
sample (Eq. (1.50)).

Our perspective is that, in order to obtain gnp constraints which are robust to HOD
modeling uncertainty, one should use highly biased samples (b; > 2.5), where this uncertainty
will be minimized. Samples which are not highly biased do not give robust constraints; for
example, a tracer population with b; = 1.8 can have a gni, bias 3, which is negative, zero,
or positive, depending on the HOD.

For highly biased samples, it is useful to make the following observation: the gni, bias
Bgt which is obtained from straightforward use of Eq. is always less than the true gy,

bias ﬁ;rueﬂ This follows from positivity of the second derivative d?3,/db3. It follows that a

"Note that there is no analogous caveat in the fyi, case. Because the relation B = 26.(by — 1) is linear,
it applies to both a tracer population which is narrowly selected in (M, z) and to a population which is an
arbitrary weighted average over (M, z).

8This statement assumes that the probability that a halo hosts a tracer is a function only of the mass
and redshift. If the probability depends strongly on additional variables such as merger history, triaxiality,
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gnr, constraint obtained using Bgﬁt is always valid, but slightly overestimates the statistical
error that could be obtained if ﬁgme were known. This effectively treats HOD uncertainty as

an extra source of systematic error.

1.7 Discussion

We have computed large-scale halo bias for non-Gaussian initial conditions, using two ana-

lytic frameworks: the peak-background split formalism (§

1.4) and a barrier crossing model
(, finding agreement between the two. Although our emphasis has been on the constant-
fnu and constant-gynr, models, our calculational machinery should apply to more general
non-Gaussian initial conditions.

The peak-background split formalism is simpler and also suggests a simple physical pic-
ture of non-Gaussian cosmologies on large scales. In an fyr, cosmology, the amplitude Ag of
the initial fluctuations is not spatially constant, but is proportional to (1 + 2fxp,®;). Thus,
Ag has fluctuations on large scales which are 100% correlated with the long-wavelength
potential, generating halo bias of the form (5 fnxr/a(k)). In a gni, cosmology, the small-
scale skewness is nonzero and proportional to (gnr®;), leading to halo bias of the form
(Bygon/a(k)). The peak-background split argument is very useful for generating universal
relations such as 8, = 39(logn)/d fxL, which are “weak” in the sense that the RHS has not
been expressed in terms of observable quantities, but have the advantage of being exact (as
can be seen by comparing the two sets of errorbars in Fig. [1.2]).

The barrier crossing model generates all terms in the large-scale bias, including terms
such as by ¢ and b, which are easy to miss, by a purely algorithmic calculational procedure. In
addition, the barrier crossing model generates “strong” forms of the bias coefficients (e.g. the

Edgeworth expression (|1.39)) for ,), which are closed-form expressions in M and z. However,

etc. then this will generate additional contributions to 84, in analogy to the fyr, case [62} [57]. In principle,
selection biases to B, can be addressed by folding the selection into the mass function when computing
d(logn)/0fxL, but detailed study is beyond the scope of this paper.
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these expressions are not exact because the barrier crossing model is approximation to the
true process of halo formation.

To obtain a “bottom line” expression for the scale-dependent gnp, bias 8, in terms of
redshift z and Gaussian bias z, we found it necessary to tweak slightly the b; dependence
of the Edgeworth prediction, arriving at the expression which agrees very well with
simulations. The caveat is that Eq. applies only to a halo population which has been
selected in a narrow halo mass and redshift range. In principle, one can calculate 5, for a
tracer population by multiplying by the halo occupation distribution and integrating over
mass and redshift. In practice, the HOD is not known precisely and we have argued in
that the best approach is to only use highly biased populations (b > 2.5) for constraining
gnr- Since f, is a rapidly increasing function of by, this strategy makes sense both from the
perspective of minimizing statistical errors, and systematic errors due to HOD uncertainty.
In data analysis, it may be useful to impose cuts which increase the mean halo bias at
the expense of reducing the number of tracers. Another advantage of subdividing tracer
populations is that this may permit fx, and gnp, to be constrained simultaneously (with a

single tracer population, the two are degenerate).
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1.8 Appendix: Barrier model calculations

In this appendix, we give details of the calculation of the halo mass function and large-scale
bias (Egs. 7) in the barrier crossing model, to first order in fxr,, gnL-

First, consider evaluation of the integrals in Egs. , . Primordial non-
Gaussianity enters the calculation by perturbing the PDFs which appear from Gaussian
distributions. This perturbation can be written down explicitly using the Edgeworth expan-
sion, which represents the PDF as a power series in cumulants. The Edgeworth expansion

for the 1-variable PDF p(d),) is:

M) = (=" n 0" 1 —572 /(202))
p((;M) = exp <nz>; ol /{n<M)O-M85;@> (27T)1/20-M6 M M (151)
1 ~872 /(202 k3(M) ka(M)
= m@ ]\/I/( ]M) (1+TH3(V)+TH4(V)+
(1) (1)
1 ' ROy oy

where we have kept terms of first order in fnr, gn. We can now compute pg by plugging

into the definition (|1.29)):

R (M) e

2 ) (1.52)

Hy(v) + gni

1 v k(M) e 72
= Zerfe [ — 3
po = Feric (\/5> + faL 6 (2m))2
Armed with this expression, it is easy to compute n(M) = —2p,,/M (dpy/dM), obtaining
the form of the mass function in Eq. (1.33]).

Moving on to the 2-variable PDF p(dyy, 0),), the Edgeworth expansion is:

(Otins O7y) e > + Z (D™ " K o
in = exp | OiOMK1L1 57— OO N Fmn Feraerr
PAOtin: Ot Pl o g5 08y, e il Mg s
m+’;L23
1 62 5%
X—e - - 1.53
2T OO M xp( 2012in 2012\4 ( )
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where oy, = <(512in>1/ 2 and the cumulant Km,n 1s defined by:ﬂ

((01n) ™ (0)") conn

m n
O1in% M

Kman(M, 1) = (1.54)

Note that the cumulant «, (M) defined previously in Eq. (1.7)) is equal to ko, (M, 7).

Keeping the first few terms in the Edgeworth expansion{™]

2 9
p(511n75;\4) = ;exp (_ 5lin . 5M)

2 2
2T 00 M 207, 20y

1+ M&]in <5_M> + MélinHQ (5_M)

Olin oM 201in oM

+M5MH3 (5_M) + Fa (M, r)ros(M) O1inHy (5_M)

6071in oM 601in oM

/{,171 (M, T)KOA(M)
24O-lin

51mH5<5—M> 4 (1.55)

OM

+

we compute &(r) by integrating Eq. (1.30) term by term, obtaining:

me /2 M M
O1in€ R , T K1, T
a0 = S <m1,1<M,r>+ ), | s gy,

+/@171(M,g)/i3(M) Hy(v) + 51,1(M722)“4(M)H4(,/)> (1.56)

To make further progress, we convert the correlation function to a power spectrum FPy(k) =

[ d®re* 7 (r), and keep only the leading behavior of each term in the long-wavelength

9A technical point: oy, is formally infinite, but it will cancel from the final results in Egs. 7.
One could make oy, finite by introducing a smoothing scale R for the matter field, and take the limit R — 0
at the end of the calculation.

10The choice of terms to keep was dictated by the following considerations. Only terms with precisely one
Oy derivative will give nonzero contributions to the integral ffooo ddiin 01inP(d1in, 09;) appearing in &,p(r),
so we have only kept these terms. (Terms with two or more derivatives would contribute to the halo-halo
correlation function &, (r), so they may be relevant for halo stochasticity.) We have also omitted terms
whose leading contribution is second-order or higher in fxr, and gnr..
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limit £ — 0.

3., ik T d’qd’q’ ! !
/d re'* kio(M,r) = Ulin10]2\/[ / (gﬂ)(sq W)W (q') <5(k)5(Q)5(_q )>
40{11\?% (1.57)

. 1 Bqdiq dq"
/dgre“" "kig(M,r) = / 79 °49 Wr(@)War(qd )W (¢")

Olin0's; (2m)?

x(6(k)3(@)5(a)5(=4"))
18gn1. P (k) [ d*qd*q / /
7 omodalk) / (2m)6 W)W (d)Wa(lg + q'f)
Pla)Pd)ollg +4')
a(q)e(q’)
_ 3gNLKJ(1) w
B 3 (M) (a(k)> (1.58)

where “—” denotes the £ — 0 limit, and we have used Eq. (1.10) to simplify the last line.

Putting this together, we find the following expression for Py(k) in the k& — 0 limit:

ﬂﬁ@+m@?%mwwwﬁwhw0

6—1/2/2

Po(k) )i

oM

2 M 1.
+ VfNLO[(k') +/{3 ( ) 9 gNLO{(k) ( 59)
The halo bias in a narrow mass range is given by the derivative:
dPy(k)/dM
b(k) = +1 1.60
(k) (dpo/dM)P(k) ( )

where the “417 converts Lagrangian to Eulerian bias. Plugging in the forms of py, Fy in

Egs. (1.52), (1.59), a long but straightforward calculation now gives the halo bias in the form
given in the text (Eqgs. (1.34)—(1.39)).
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Chapter 2

Stochastic Bias from Non-Gaussian

Initial Conditions

2.1 Abstract

In this chapter we show that a stochastic form of scale-dependent halo bias arises in multi-
source inflationary models, where multiple fields determine the initial curvature perturbation.
We derive this effect for general non-Gaussian initial conditions and study various examples,
such as curvaton models and quasi-single field inflation. We present a general formula for
both the stochastic and the non-stochastic parts of the halo bias, in terms of the N-point
cumulants of the curvature perturbation at the end of inflation. At lowest order, the stochas-
ticity arises if the collapsed limit of the four-point function is boosted relative to the square
of the three-point function in the squeezed limit. We derive all our results in two ways,
using the barrier crossing formalism and the peak-background split method. In the next
chapter, which was published as a companion paper [I], we prove that these two approaches

are mathematically equivalent.
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2.2 Introduction

A central goal of modern cosmology is to uncover the physics that generated the primordial
density perturbations and thereby seeded the large-scale structures (LSS) we see around us.
The coherent nature of the cosmic microwave background (CMB) anisotropies suggests that
the fluctuations were created at very early times, possibly during a period of inflation [2].
One of the few observational probes that allows us access to the physics of that epoch
is primordial non-Gaussianity [3]. At present, the best constraints on non-Gaussianity are
coming from the CMB (e.g. [4]), but LSS is emerging as a promising complementary observ-
able (e.g. |5, [6]). Historically, the usefulness of LSS as a tool for early universe cosmology
has been viewed with some suspicion, since non-linear evolution can itself produce significant
non-Gaussianity even if the initial conditions were perfectly Gaussian. Disentangling any
primordial non-Gaussianity from these late time effects always seemed like a messy business.
This attitude has changed somewhat when it was discovered that non-Gaussian initial con-
ditions lead to a scale-dependent clustering of galaxies on large scales [7, [8]. In particular,
it was shown that non-linear mode coupling induces a modulation of the local short-scale
power og(x) by the long-wavelength gravitational potential ® (). This results in a biasing
of halos (or galaxies) that is proportional to ® rather than the dark matter density ¢ (or
V2®). Crucially, the appearance of ® rather than § in the halo bias implies a specific form
of scale-dependence that cannot be created dynamically (i.e. by late time processes). This

is the main reason that halo bias is such a robust probe of the initial conditions.
/»’2 ]}‘1 /.‘J

——— ] e R——
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klﬁo v k’lg*)(]

Figure 2.1: The squeezed limit of the three-point function, k; — 0, gives the dominant
contribution to the scale-dependent halo bias. A stochastic form of scale-dependent halo
bias arises if the four-point function is large in the collapsed limit, k1o = |k; + ko] — 0.

In this chapter, we study stochastic halo bias on large scales. The term ‘stochastic’ here

refers to the fact that the halo over-density is not 100% correlated to the matter over-density
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on large scales, i.e. the halo-halo power spectrum Py, (k) is boosted relative to the matter-halo

power spectrum Py, (k). Formally, this means that

Pan(k) > B2(k) Pon (k) + — | 2.1)

Ny

where b(k) = Pun(k)/Pum(k) is the halo bias, and ny, is the halo number density. Large-
scale stochastic bias arises in non-Gaussian models when the small-scale power og(x) varies
from point to point, but in a way that isn’t completely correlated with the local value of
®(x) and its derivatives. This is most easily demonstrated in models with multiple fields,
where the small-scale power may depend on fields that do not contribute to the (linearized)
gravitational potential. Our goal in this chapter is to provide an understanding of the origin
of stochastic bias in a model-independent way. In the absence of significant isocurvature
perturbations, all the relevant information must be encoded in the correlation functions of

gravitational potential ®. It will be useful to define

A 1. 5(3)(’@1 ko, k3)
=_1 e B 2.2
NL 4k11210 P, P, ) ( )
. 9 €y (R, ko, ks, Koy
= 2.
NL 100 k:112r£>10 P, PP 7 ( 3)
where (P, -+ P )e = (23N ki, ko) 0p(ky + -+ + k) and P, = €2(k,).

This parametrizes the amplitude of the three-point function in the squeezed limit,
k1 < min{ky, k3}, and the amplitude of the four-point function in the collapsed limit,
k1o = |k1 + ko| < min{k;}. As we will show, stochastic bias arises if the ‘collapsed
four-point function’ is not equal to the square of the ‘squeezed three-point function’, i.e. if
™NL # (g fNL)2. There exists a well-known theoretical constraint on the relative size of 7y,
and (¢ fxi)2 If only a single field (which may or may not be the inflaton) generates the
primordial curvature perturbation and its non-Gaussianity, then 7n;, = (%fNL)Q [9] and

the biasing is non-stochastic. On the other hand, if multiple coupled fields generate the
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non-Gaussianity, then 7yp, can be large than (g fNL)2 [16, 17] and the biasing will be
stochastic. We will discuss classes of inflationary theories that predict precisely this kind of
observational signature [18] [19, [20]. This provides the opportunity of using scale-dependent
stochastic biasE| as a probe of any early universe physics associated with a boosted collapsed
four-point function—just like the non-stochastic scale-dependent bias is a powerful probe of
the squeezed three-point function.

More generally, we find that the large-scale non-stochastic bias can be written
as a sum over N-point functions 5((I>N)(k1, -+, kyn) evaluated in the squeezed limit
k1 < min{ks,-- -,k:N}E| The stochastic bias, on the other hand, involves a double
sum over (M + N)-point functions ffbMJrN)(kl, -+, kpyn) evaluated in the collapsed limit
|k1 + -+ - + k| < min{k;}. Stochastic bias arises if any collapsed (M + N)-point function
is boosted relative to the product of the corresponding squeezed (M + 1)-point and (N + 1)-
point functions. In all physically interesting cases that we are aware of, this effect is due
to the collapsed four-point function being boosted relative to the square of the three-point
function (i.e. the case M = N = 2). Therefore, we will generally interpret stochastic bias
as a probe of the collapsed four-point function. The main result of this chapter is a general
pair of formulas, eqs. and , for the non-stochastic and stochastic parts of the
bias, for completely general non-Gaussian initial conditions parametrized by the N-point

cumulants fgv)(kl, o k).

The outline of the chapter is as follows: We will begin, in Section [2.3] with a qualita-

tive explanation of scale-dependent stochastic bias. In Section [2.4, we will show how our

!No matter how the fluctuations were created, the parameters have to satisfy the Suyama-Yamaguchi
inequality 7n1, > (ngL)2 [10] (see also [I1}, 12] 13} 14} [15]). This is easy to understand: we can think of
fNL as a measure of the large-scale correlation between the potential ® and the locally measured small-scale
power, fxr, ~ (®,®2)/(®2)(®2). On the other hand, 7y, is a measure of the large-scale variance in the small-
scale power, 7y, ~ (®202)./(®2)(®2)2. The inequality 71, > (£ f1.)? then arises simply as the condition
that the correlation coefficient between the small-scale power and ® must be between —1 and 1.

2We should note that in this chapter we are interested in large-scale stochastic bias. On small scales,
non-linear evolution and astrophysical processes can create local stochasticity, which is not relevant in our
study.

3More precisely, k; is fixed to the large scale k where we are computing the bias, and ko, ---,ky are
integrated over a broad range of scales near the halo collapse scale ky, ~ p,ln/ SMB,
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intuitive understanding is borne out in the barrier crossing model of structure formation.
In Section [2.5] we will illustrate these results with explicit examples. In each case, we also
derive our predictions in the peak-background split formalism. In a companion paper [I],
we prove the mathematical equivalence of barrier crossing and peak-background split. We
present our conclusions in Section Finally, Appendix discusses the convergence of

the Edgeworth expansion for local non-Gaussianity.

2.3 Stochastic Bias

Galaxies reside in dark matter halos. For Gaussian initial conditions and at long wave-
lengths, the fluctuations in the density of halos d,, can be expressed as an expansion in the
linear matter density field §. At linear order, the two are simply related by a numerical
factor—the bias b,—i.e. d, = by6. This simple bias relation gets modified for non-Gaussian
initial conditions, due to a coupling between short and long-wavelength modes. The short
modes determine the collapse of dark matter halos, while long modes modulate the density
on large scales, effectively raising or lowering the threshold for the formation of collapsed
objects. A non-zero three-point function affects the variance of the short modes, leading to
a dependence of the number density of halos on the amplitude of the long modes. For local
non-Gaussianity{Y| this leads to a dependence of the halo density on the long-wavelength grav-
itational potential ® rather than the matter density § oc V2®. This leads to a characteristic
scale-dependence in the bias relation, Ab oc k=2 [7]. It is this scale-dependence that allows us
to trust the large-scale bias as a probe of initial conditions. Crucially, the dependence of the
halo density on ® is not something that could be mimicked by local dynamics. Dynamical
processes don’t care about the local value of the potential, but are only sensitive to tidal
forces which are proportional to V2® and ® (essentially this is a consequence of the equiv-

alence principle). Any dependence of the small-scale power on & itself can therefore only

4In real space, local non-Gaussianity is parametrized as ®(x) = ¢(x) + fnL(¢*(x) — (¢2)), where ¢ is
Gaussian.
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come from the initial conditions. This is what makes scale-dependent bias such a promising
probe of early universe physics, despite all the astrophysical uncertainties associated with
galaxy formation.

Stochastic bias arises whenever the density of halos is not 100% correlated with the
potential ® or its derivatives. In order to develop some intuition, we now give a schematic
derivation of the effect. In the next section, we will upgrade this to a more formal analysis in
the barrier crossing approach. If we assume that the primordial perturbations are adiabatic,
then the formation of halos can only depend on local physics of the fluctuations. Nevertheless,
long-wavelength variations of the number of halos may depend, not only on the local value of
the linear density field, but on all of its local correlation functions. Assuming only locality,

we may therefore write the local halo number density as

mn(x) = nn(6(x); [0"](2)) , (2.4)

where [...] denotes an average over a small region of characteristic size ¢ that is centered
around x. Long-wavelength fluctuations in the number of halos can then be understood as
a Taylor expansion,

Bul(@) = 2 = b,6(2) + Bl (@) + - | (2.5)
where b, is the Gaussian bias and

Jlnny,

0[6?]

8= (2.6)

It is easy to see (e.g. by splitting all fields into long and short modes), that for local non-
Gaussianity the short-scale power is modulated by the gravitational potential, [0%] ~ [6%], (14
4fn®(x)). This is the origin of scale-dependent bias in local non-Gaussianity.

Using the expansion (2.5, we can also evaluate correlation functions between two spa-
tially separated points & and x’. We use a prime to indicate that fields are evaluated at

a’, while fields without a prime are evaluated at . The matter-halo correlation, in a large
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region of size L > ¢, then is

(0nd") ([67]0")
00 =by+ (55) + ) (2.7)
while the halo-halo correlation is
(ondn') 9 ([6°)0") | 2([0%][6°]")
05" = bg + 2by8 05 + B 56) + (2.8)

This leads to the possibility that the bias inferred from (6;,0) is not equal to the bias inferred
from (0,01"). We characterize this so-called stochasticity of the halo bias by the following

parameterﬂ

_ {Gndn') (60" \
=G (o) 29)

Using eqgs. (2.7) and ({2.8]), we find

e ey
‘5[ oo~ ((r)

o (2.10)

This simple argument gives reliable intuition for the origin of stochasticity. Specifically, we
see that if a local variation in the amplitude of [0%](x) is uncorrelated with §(x’), then there is
no extra contribution to the bias in eq. (2.7). Nevertheless, the halo-halo correlation function
in eq. (2.8)) can still be modified by long-wavelength variations in [§2](x). Moreover, the result
(2.10) makes it clear that stochasticity arises from a non-trivial four-point function of the
primordial potential. In fact, the real space correlation function ([§](x)[6?](x’)) relates to the

collapsed limit of the four-point function in Fourier space, i.e. 1imk, 4i,—0{ Pk, Pro Prs Py -

°In practice, we also have to subtract shot noise contributions from (,,d,’) and (0,0")—see §2.4.3] Note
that other definitions of the stochasticity coefficient can be chosen. A natural alternative would be to define
7 = (6,6")/((6n01")(86"))1/% — 1. In both definitions r = 0 means that the matter and halo fields are 100%
correlated.
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2.4  Predictions from Barrier Crossing

In this section, we give a formal derivation of stochastic bias using the classic barrier crossing
method of Press and Schechter [21]. Our goal is to obtain an expression for the stochasticity
coefficient in terms of the cumulants of the smoothed density field. These in turn can
be related to N-point functions of the primordial potential and hence contain information

about the initial conditions.

2.4.1 Definitions and Notation

We begin with some basic definitions and a description of our notation. Let 4 (x, z) denote
the linear density field (to be distinguished by the hat from the non-linear density field §).

The linearized Poisson equation relates 5 to the primordial potential ®,

~

o(z) = alk,2)Py (2.11)
where
alk,z) = %Q:Hg T(k)D(z) . (2.12)

Here, T'(k) is the matter transfer function normalized such that T'(k) — 1 as k — 0 and D(z)
is the linear growth factor (as function of redshift z), normalized so that D(z) = (1 + z)~*
in matter domination. For notational simplicity, we will from now on suppress the redshift

argument from all quantities. We use d)/(x) for the linear field smoothed with a top-hat

window function with radiug’| Ry = (3M/47pm)"/?, so that

Su(x) = /k e T Wy (k)op = /k e 0 (k)P (2.13)

6The smoothing scale Ry; corresponds to the comoving size of halos of mass M in Lagrangian space.
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where [ () f(gjrl)ﬁ, (+),

sin(kRys) — kRyycos(kRyy)
k) =

(2.14)

and ay;(k) = Wy (k)a(k). Let oa = (62,)Y/2 be the rms amplitude of the smoothed density

field, and x,,(M) be its n-th non-Gaussian cumulant,

k(M) = Oh)c : (2.15)

where the subscript ‘c’ indicates the use of a connected correlation function. Since d;; and
oy are defined via linear theory, , (M) is independent of redshift. Similar definitions apply
to the unsmoothed field § , in which case we denote the variance and cumulants by ¢ and .

Ultimately, we will be interested in two-point clustering statistics. Let & and @’ be two
points separated by a distance r = | — &’|. Moreover, let a prime indicate that the field
is evaluated at o', e.g. 8}, = dy(x’). Fields without a prime are evaluated at . The joint

cumulants are then defined by

Kpn(r, M) = %, (2.16)
K (T, M, M) = ((51\4;:5‘52\-4)”%‘ (2.17)

These cumulants can be related to N-point functions of the gravitational potential,
(i, Dy Py e = (27)*0p (k2. ) &5 (R K, o) (2.18)

where k12._.N = k1 + kg + -4 kN.
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2.4.2 Edgeworth Expansions

The probability density functions (PDFs) of weakly non-Gaussian random variables have
well-defined Edgeworth expansions (for a review see e.g. [22]). Consider first the variables

dpr and 0%,. It will be convenient to define the rescaled fields
v=— and v =M (2.19)

with () = (v') = 0 and (v?) = ((v")?) = 1. The cumulants in eqs. ) and (2.17)) then
become k,, = (V") and K, = (V™ (V')")e. The Edgeworth expansion for the marginal PDF

is

(=" o R S
p(v) = exp (Z Sk | p(v) . where py(v) = =72 (2.20)
The first few terms can be written as

pv) = (1+ T H(v) + TH) +- ) pylv) (2.21)

41
where the functions H, (v) are Hermite polynomials

H,(v) = (—1)”6?12%6_%”2 . (2.22)

Similarly, the Edgeworth expansion for the joint PDF is

m+n am—i—n

+ Z m'n' /im’nﬁyma<yl)n> pg<1/)pg(y’) . (2.23)

m+n>3

p(v,v') = exp (/@1 1

In Appendix [2.7] we discuss the convergence properties of this expansion. In the next section,

we will use it to compute halo-halo correlations.
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The matter-halo case is completely analogous: to construct the joint PDF of the variables
6 and 0, we define rescaled variables ¥ = 6/6 and v/ = &), /op;. The joint PDF p(0,1/) is

then given by the Edgeworth series (2.23)) with the cumulant &,,,, replaced by K, .

2.4.3 Barrier Crossing

In the simplest version of the barrier crossing formalism [21], halos of mass > M are identified
with regions where the linearly evolved smoothed density field exceeds a constant threshold

value 0, for collapse. The halo number density ny(x) is then given by
nn(x) = 2% O (0 (z) —6.) , (2.24)

with © the Heaviside step function. It has been shown numerically that 6. ~ 1.42 produces
good results [23], but for our analytical calculations we don’t need to specify a particular

value for d.. The fraction of space occupied by regions above the collapse threshold is

F(M) = / 1] () | (2.25)

where v.(M) = 6./on. Using the Edgeworth expansion (2.21)), we find[]

n) = gerte (22) 4 00 | a0 + 2t | 220)

When interpreting calculations in the barrier crossing model, it must be kept in mind that
eq. for ny(x) is the number density of halos in Lagrangian space. Our convention
throughout this paper is that the power spectra P (k) and By, (k) are always computed in
Lagrangian space. In particular, b, denotes the Lagrangian bias. The relevant quantity to
compare to observations or simulations is the Fulerian bias which, to lowest order, is given

bybgzl—i-bg.

"In our notation the halo mass function is dny, /dM = — py, /M (df /dM).
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The barrier crossing model also neglects shot noise contributions which arise from the
finite halo number density n,. Throughout this paper, B, always denotes the halo-halo
power spectrum after subtracting the shot noise contribution 1/ny. (There are also shot
noise, or one-halo, contributions to the matter-halo power spectrum P, which are usually

negligible, but are a leading source of stochastic bias in the Gaussian case [24], 25].)

Matter-Halo Correlations

The correlation between the halo field at «’ and the dark matter field at x is given by

o0

oy = 2L [ g [ 1006 ) 06.83) (2.27)

Qﬁm —00 0

In the rescaled variables o = d(x)/6 and v’ = 8y (a') /o, this becomes

o

& M) = & /_ [d5] / T op(o,v') | (2.28)

o0

It will be convenient to work in momentum space via &(k, M) = [ d3re®* "&(r, M). To
describe the correlations of halos in the mass bin [M, M + dM], we take derivatives with
respect to M. The matter-halo power spectrum is then given by

P (k, M) = dg(dkMM (%(ﬁ)) . (2.29)

To compute the correlation function (2.28)), we substitute the Edgeworth expansion ([2.23]) for

p(v,v'). Only terms with exactly one D-derivative survive the integration, and we therefore

find

. . Hi(v,) Hs(v.) Hs(v.)
§(k, M) = 6 py(ve) Kiqp =+ 12—!’11,2 23! Kis 33!

Rigxks+- |, (2.30)
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where x denotes a convolution. We see that the matter-halo correlations, or equivalently the

non-stochastic part of the halo bias, only depend on the following cumulants

Ki,(k, M) = 6oy (H/ aM(ql-)> a(k)(PrPy, - - - Py, )e - (2.31)

=1

Moreover, we note that the large-scale limit, limy ¢ 1, (k, M), is determined by the squeezed

limit of the primordial (n 4 1)-point function [26],

lim &5 (R, g1, qa) (2.32)
—0

The explicit form of the cumulants ki ,-, depends on the type of non-Gaussianity. We

compute some examples in Section [2.5]

Keeping only linear termsﬁ in eq. (2.30)), we get

: 1~ Ho1(ve
§(ks M) = py(ve) (R 16001) | ——+ 3 % Finto| s (2.33)
n=2 ’

where we defined
Hi,n<kv M)

(kM) = D)
fl,n( ) /’ii’l(l{, M) oM

(2.34)

It was convenient to factor out the Gaussian term rj 00y, since at long wavelengths it

becomes the matter power spectrum
Ki, 00N = /a(k)aM(q)(CDkCI)q) = Wy (k)Pam(k) —— Pum(k) . (2.35)
q
Evaluating eq. (2.29), we find

Pon(k) 2% Po(k)

: (2.36)

= - d
bg_‘_; (ﬂn“—ﬁndlnaM) fi,n—i_"'

8In Appendix we explain that the lowest order cumulants usually dominate and that products of
cumulants are suppressed.
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where

1 v2—1 H, (v,
b=t g, = i)

oM Ve n!

anl(Vc)
nlv,

and 3,

(2.37)

The ellipses in eq. stand for terms that are non-linear in the cumulants. For local
non-Gaussianity, the derivative terms dfi,n/ dIn oy, will be negligible, but in principle, we
can keep them (and sometimes we have to).

Our expression (|2.36[) agrees with the general formula for the non-stochastic bias given
in [26]; however, ref. [26] implicitly found that non-Gaussianity cannot generate large-scale
stochastic bias. In the next section, we will find the opposite conclusion. The disagreement
is easy to understand: Ref. [20] claims after their eq. (40) that contributions to P, from
cumulants K, , with m,n > 2 must approach a constant as & — 0. This is not true for
general non-Gaussian initial conditions and exceptions to that statement are precisely what

causes the effects discuss in this paper.

Halo-Halo Correlations

Next, we consider the correlation between the halo fields at « and x’,

E(r, M, ) = ﬁjf _oo (o] /_ a8 (@) (@) p(6ar, 5l - (2.38)

o0

In the rescaled variables v = 0y (x) /oy and v/ = 0y;(2") /oy, this becomes

£(r, M, i) = / v / Sl plo ) (2.39)

Notice that, in principle, we have allowed for two distinct mass thresholds, M and M. The

power spectrum of halos in the mass bins [M, M + dM| and [M, M + dM] then is

Pi (k) (2.40)

_ (kM M) <df(M) df(M)>_1
dMdM dM  dM '
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For simplicity, we will restrict the following presentation to correlations of equal mass halos,

M = M. The power spectrum for a narrow mass bin around M is then given by

d?¢(k, M, M) df (M) ™
Pun(k) = ———~1— — . 241
b (K) AMdM |y, < dM (241)
To compute the correlation function (2.39)), we substitute the Edgeworth expansion (2.23))

for p(v,v’),

§(k, M, M) = pg(”C)Z’g@C) {5171 + %(KJ?JHl(VC) + '%1,2H1(770))

1 1
+ (H3,1H2(Vc) + H1,3H2(5c)) + ZH2,2H1(UC)H1(DC) + SHL * K11+ o

=

(2.42)

The form of higher-order cumulants, such as k19, k13 and kg2, again depends on the type
of non-Gaussianity. We compute some examples in Section [2.5

Keeping only the terms linear in k,,, (this approximation will be justified in Ap-

pendix in eq. (2.42)), we find

5%%%—&@Mmewﬂl

OMO §p
>/ 1 H, (7. 1 Hy 1 (ve
3 (Ll g, L)y )
2 OM n: O n!
2 o= H,, 1 (v.) Hy1 (D,
gy e i) (2.43)
m=2 n=2 ’ :
where
— /iln(k,M,M)
wlk, M, M) = : = f >1, 2.44
fL ( ) :‘il’l(k,M, M)O'M orn ( )
W m,n k) M7M
fn(k, M, M) = fimn ) for m,n > 2. (2.45)

k11(k, M, M)oyoy

52



We again factored out the Gaussian contribution, ki3 o7 k20, Pum (k). Note that

Jin = fi, in the large scale limit & < R;/}, where fi,, was defined in eq. 1) Substituting
(2.43]) into (2.41)), we get

Pn(k) 2% Pon(k)

b2 + 2b, Z(ﬁnJrﬁn )fln
. _ 9

m=2 n=2

(2.46)

Note that, while in the end we always take M = M in this paper, M and M are independent

variables when calculating partial derivatives of f,, (M, M).

2.4.4 Stochastic Halo Bias

We now combine the above results to evaluate the stochasticity coefficient

Pin Pun )\’
=" (= 2.4
r P ( > , (2.47)

where, as usual, it is understood that shot noise is subtracted from P, and P,,. Substituting

eqs. ) and - we find
re Z(ﬁmwm%) (ﬁn+ﬁn ’ )fmn
~ 2

n=2

We note that cumulants s, , (k) with m,n > 2 contribute to the halo-halo power spectrum
but not the matter-halo power spectrum ([2.36]), so stochastic halo bias is sourced by these

cumulants. These cumulants can be written in terms of the (m + n)-point functions of the
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gravitational potential,

_ 1
Ko (k, M, M) 2% (

é_l/qi aM(Qi)> (ﬁ /q aM(q§)> anr(q) gz (q)

=1 j

X f}(pern) ((h’ s lqdm—1,—4q + k7 qllv ) q;—la _ql - k) ) (249)

where q = 2?:11 qg; and ¢ = Z;:ll q;- We see that, in general, large-scale stochastic bias

arises whenever an (m + n)-point function €0 (ki, - - -, km.n) is boosted in the collapsed

limit | 7", k| — 0, relative to the product of the corresponding squeezed (m+1)-point and
(n + 1)-point functions. In the next section, we will compute eq. for a few interesting
examples. In most cases, we will get stochastic bias from the case m = n = 2, ie. a
collapsed four-point function limy, 4k, -0 5((;)(k:1, ko, k3, k,) which is larger than the square

of the squeezed three-point function limyg, .o Sg’)(kl, ko, ks3).
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2.5 Examples

In this section, we discuss several physical mechanisms that lead to stochastic halo bias. For

each example, we will derive the result in two different ways:
1) using a peak-background split (PBS) method;
2) using the barrier crossing analysis of the previous section.

We demonstrate explicitly that both approaches lead to the same answers.

2.5.1 71, Cosmology

A simple phenomenological way to get a boosted collapsed limit for the four-point function

is the following generalization of the local ansatz to multiple fields

® = Aigi + Byj (i — (9i05)) (2.50)

with the Einstein summation convention understood. This structure arises, for example, in

the curvaton model of [I§] (see also [25]),
O =¢+v+ fan(1+10)2 (W — W), where —% =TI . (2.51)

Here, ¢ and 1) are uncorrelated Gaussian random fields with power spectra that are propor-

tional to each other. The three- and four-point functions take the local form

£ (K koyks) = fau[PiP+ 5perms.] + O(f2) (2.52)
D (ky Ky s, ka) = 2(2) 7w [PLPyPis + 23 perms.] + O(72,) | (2.53)

where we have defined P; = Py(k;) and P;; = Ps(|k; + k;|). However, unlike the single-field

local ansatz, now 7y1, need not be equal to (ngL)Q. Instead, the ansatz (2.51)) implies 7, =
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(gf NL)2 (1 +1I), in agreement with the Suyama-Yamaguchi inequality, 7wy, > (ngL)2 [10]
(see also [11], 12), 13], 14} 15]). The following limits will be useful in computing the cumulants

required in the barrier crossing calculation:

hm €<(I>3)(k17 kQ, k?g) = 4fNLP1P2 s (254)
k1—0
) (4) o (5)\2
khf_I)leq, (kl, kz,kg, k4) =38 (6) TNL Pl [P2P3 + P2P4 + P3P4] s (255)
Jim &9 (K, Ko, s, ky) = 16 (2) 7y, Pia PPy . (2.56)
12

However, before we discuss the explicit barrier crossing result, we present an alternative

derivation using the peak-background split approach.

Peak-Background Split

PBS is a heuristic procedure for predicting the large-scale clustering statistics of dark matter
halos. All fields are split into long and short modes—i.e. the Gaussian fields in eq. are
written as ¢ = ¢s+ ¢, and 1 = Ps+1)p. The short scales (S Ry < 10 Mpe/h) determine halo
formation, while the long scales (2 100 Mpc/h) are the ones on which we want to measure
the clustering of halos. Long modes are therefore always much larger than the Lagrangian
size of the halos that we consider, i.e. Ry/k; < 1. The precise split into long and short modes
isn’t important for physical observables, as long as it satisfies the above constraints.

The long-wavelength modes alter the statistical properties of the small-scale fluc-
tuations.  For instance, to lowest order, the locally measured small-scale power is

o =01+ 2fxL(1 4 I)1y], and the locally measured halo number density is

nn(x) = nn (6 — 0¢50 [1+ 2fnn(1+ M)d]) . (2.57)
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Taylor expanding this expression, we get

on
O = n—hh = bydy + B (1 + D) farte (2.58)
where
Olnny J0lnny,
b, = d =2 2.
g 06y and - G dlno (2.59)
Hence, we find
Sy
Puan= 10 — | Pom , 2.
h <g+ﬁfa(k) (2.60)
and
Py, = b2+2b5&+52% P (2.61)
M AT T k) T k) ) ‘
This leads to large-scale halo stochasticity of the form
2 B
r = ((%) TNL — fl%L) a2—(k> . (262)

As IT — 0, this reduces to the classic fy;, model, with 7wy, = (gf NL)2 and hence no stochas-

ticity.

Barrier Crossing

Next, we show that eq. (2.62)) can be reproduced precisely from the barrier crossing analysis
of the previous section. In Appendix 2.7, we show that only the lowest-order cumulants will

be significant. Here, we calculate the relevant cumulants explicitly: Using eq. (2.54)), we get

k—0 fNL
= fi, =% 4 .
f1,2 f1,2 Oé(k)

(2.63)

The order-of-magnitude estimates in Appendix suggest that this will be the dominant

contribution. In particular, we expect, fi2 > fi3. We can confirm this explicitly. Using
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eq. ([2.55]), we get

5\2
k—0 (-) TNL fnL=1

f1,3 = fi,3 > 4 6@(/{,‘) "%Z(’) = ) (264)

where

- 6
00 = o [ [l Pala) Polas) (2.65)
M q1 q2

Since Réf NL=D g of order Ag, we see that the condition fi3 < fi9 is equivalent to fxr(1 +

IT)Ag < 1. This latter condition is always satisfied if all fields are weakly coupledﬂ

Finally, using eq. (2.56)), we get

2
k—0, (g) TNL
Joo — 16 o2 (k) (2.67)
Substituting the above into eq. (2.48|) gives
2
2 g
r=((3) - i) —a2(fk) : (2.68)

where we have used the relation 8y = 4/, = 2(v.—1), which can be derived by evaluating the
derivative §; = 201Inny/01n o in the barrier crossing model [27]. Comparing with eq. (2.62)),

we find that barrier crossing and peak-background split give consistent answers.

9In more detail, to show that fyr(1+ I1)Agp < 1, we argue as follows. Assuming that the field ¢ is not

strongly coupled, the dimensionless non-Gaussianity parameter flsfi) Ay = fnn(l+ 1)3/2Ag must be < 1.

Therefore s 2/
Fan(l+ DAy = {fNLAq)] : [fNLu + H)3/2A¢] <0733 . 1) =101, (2.66)

where the bound on the first factor is the current observational bound fyr, < 102.
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2.5.2 gnp, Cosmology

As our next example, we consider a cubic form of local non—GaussianityB In this case, the

non-Gaussian potential is parametrized by the expansion

® = ¢+ gnu (07 — 3(0)0) . (2.69)

The power spectrum of the non-Gaussian field is
Py (k) = Py(k) + grp.Pss (k) (2.70)

where

Pya(k) = 6 / / Po(1) Po(a) Pollk — a1 — a2 (2.71)

We note that for scale-invariant initial conditions, (k*/27%) Py(k) = A3, the power spectrum
Ps is infrared divergent. If the IR divergence is regulated by putting the fields in a finite

box with length L, then the power spectrum diverges as
Pys(k) ~ 185 In*(kL)Py(k) . (2.72)

On large scales, the matter power spectrum therefore is
Pum(k) ~ (k) Py (k) = Py(k) (14 18¢3, A5 In*(kL)) (2.73)

where we defined P, (k) = o?(k)Ps(k). Current observational constraints imply that
lgnLAj] < 1. To obtain answers to zeroth or first order in gnpAZ, it suffices to set

Pom ~ Py

10We should say from the outset that the large-scale stochasticity in the gni, model will be too small to
be observationally relevant. Although the non-stochastic and stochastic contributions to Py, (k) will turn
out to be parametrically identical (~ g% A% Pp(k)), the non-stochastic contribution is typically larger by a
constant factor ~ 10*. Nevertheless, the gy, example provides an interesting check of our formalism.
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For the barrier crossing analysis, we require the following higher-order correlation func-

tions

o kK ks ks) = ga[PPPs+ 23perms] +O(ky) . (274)
€<(1>4)[100p} (kh k27 k37 k4) - 991%114 |:P1P2P¢2 (k13) + 11 perms'] ) (275>
(k1 ko, s, ka, ks, keg) = 3693, [P PaPsPiPros + 89 perms.] | (2.76)

where kij = |k7, + kj|, B = P¢(k)z), Pijk = P¢(|kz + kij + kik|), and

Py(k) = 2/P¢(q)P¢(|k—Q|) ~ AANZIn(kL)Py(k) . (2.77)

Note that odd-point correlation functions f((;NH) are zero due to the ® — —® symmetry.

Next, we will derive the stochastic halo bias both in peak-background split and in barrier

crossing.

Peak-Background Split

The PBS analysis proceeds as before. Splitting the Gaussian potential into long and
short modes, ¢ = ¢, + ¢, we find that the locally measured small-scale power is
o =& [1+3gnL (62 — (¢?))]. Moreover, the locally measured value of fyp, is fol = 3gnro¢

[28]. The halo number density therefore is

mn(z) = fn (6. — 6036 [1+ 3wt (67 — (07))] 5 £ (2.78)

where 0, ~ a(k;)¢p. Taylor expanding this expression, we find

On = bgdy + %ﬁngL (Cﬁ — <¢§)) + Bygnr e (2.79)
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where b, and [y are the same as in (2.59), and

Jlnny,

=3 2.80
=0 (2:50)
It follows that
th = bngm + ngNLPrmj) = (bg + Bg%) Pmm ; (281>
and
gNL 2
This implies a large-scale halo stochasticity of the form
Py
= 2.
5f9NL P (2.83)

Barrier Crossing

We now show that the same result is obtained from barrier crossing. In Appendix we

argue that only the first few cumulants need to be taken into account. It is straightforward

to compute them explicitly. From egs. (2.74]) and (2.76), we get

k—0_ SgNL _
f1,3(k?) AN (k) HéfNL 1)

and  fas(k) = [fra(k)) . (2.84)

Q

This only contributes to the non-stochastic bias. However, since fj, = 0, stochastic bias
arises from f55. First, we note that the tree-level four-point function (2.74)) leads to a very

small and scale-independent contribution to fa5:

2[t,ge6](k7M, M) k=0, ;jj?;) (%/qa%(q)Pj(q)%—%/qaﬂ(q)Pj(q)) . (2.85)

Om
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Plugging into eq. 1} and noting that 5y = }lﬁf and By = %, we get a small scale-dependent

contribution to the large-scale stochastic bias

ot = 5 s (3289 (- [btori) (250

In practice, this contribution to the large-scale stochasticity can’t be used as a probe of initial
conditions, since a contribution to r with r o< 1/k (or equivalently a contribution to Py, (k)
which approaches a constant as k — 0) is degenerate with other sources of stochasticity such
as second-order Gaussian bias. Finally, the one-loop four-point function leads to the

following contribution to fa5:

00 P k:
1ol (k) 2% 3643, Pd’2 (< k)) (2.87)
The corresponding stochasticity parameter is
Py (k) 1
T[loop] = BngLpd) (k) X7 (2.88)

in agreement with the PBS predictions (2.83)).

2.5.3 Quasi-Single-Field Inflation

Our last example is quasi-single field inflation (QSFI) [I9]. These models involve extra mas-
sive scalar degrees of freedom during inflation. In the simplest examples, a single scalar field
o of mas m? < 2 H? mixes with the fluctuation of the inﬂato d¢. The mixing commu-
nicates non-Gaussianity from the hidden (isocurvature) sector to the observable (adiabatic)

sector. As we now show, it also leads to a significant stochasticity in the halo bias.

11'We note that extra scalars with masses close to the Hubble scale H are a natural prediction of super-
symmetric theories of inflation (see [20] for further discussion).
12Recall that §¢ in spatially flat gauge is proportional to the curvature perturbation, ¢ = f—éqﬁ
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Boosted Four-Point Function

Again, we need the squeezed and collapsed limits of the primordial correlation functionﬂ [19,

20, [14]:
k)2
lim €57 (ky, ko, ks) = 4fx1 (—) ISVER (2.89)
k14)0 k2
: (4) 5)2 ki s
kgri)lo 5(1) (kl, kg, kg, k4) = 16 (6) TNL % P1P3P12 y (290)

where we defined the parameter

A

9 m?
Vi (2.91)

The non-trivial momentum scaling of egs. (2.89)) and ([2.90)) is a remarkable signature of extra

Il
DN o

Hubble mass scalars during inflation [19] 20} 29, 30]. Moreover, if the mixing between o and

¢ (or ¢) is parametrized by a small dimensionless number € < 1, then

TNL ~ 872 (g)fNL)Q > (ngL)Q . (292)

The enhancement of 7yy, arises because the trispectrum is generated by the exchange of the
o-field which is only weakly coupled to (. The size of the four-point function (¢*) can be

estimated from the square of the three-point function ((?¢’) at horizon crossing,

(¢h) ~(Co)? ~e”

(2.93)

The boost of mn1, is the result of the small correlation between the curvature fluctuation
and the massive field, ¢ < 1. The precise dependence of fyr, and 7y, on the fundamental
parameters of the QSFI Lagrangian can be found in [14].

3See [20] for an intuitive explanation of the scalings in eqgs. (2.89) and (2.90).
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Barrier Crossing

In QSFI, the higher-order N-point functions are suppressed by factors of the power spectrum,
just as in our previous examples. The dominant contributions to the large-scale structure
signal therefore arise from the squeezed limit of the three-point function and the collapsed

limit of the four-point function. The relevant cumulants are

oK) 2% 4{;“ (kRa)> D 21(“]{5)":) E?‘;JQ(WM , (2.94)
and
kaa(k) 2% 16 (2)” mar (K2 Ry Ry ) %;Eig;) Z?‘;%(JA) 23‘(%(?) . (2.95)
Here, we have defined
S(8) = [ G WA (k) () (). (296)

where the integration variable, k,, is one of the short momenta and Rj,; is the smoothing
scale defined by eq. (2.14)). By definition, ¥,,(0) = 0. In the limit A — 0, we recover the

results of the 7w, model. Therefore, we find

(kRM)A ZQ(A) and fap = L fi,2(M)fi,2(M) : (2'97)

fi’z = 4 a(k) ‘712\4 ’ (ngL>2

To obtain the large-scale stochasticity, we substitute the cumulants into eq. (2.48)),

= 5,9 5,2 5,— 0 K 2.98
ro= <52+Bzm> <62+5281n01\-4>f2’2 - {<ﬁ2+5281n0M>f1,2] . (2.98)

Because the cumulants depend explicitly on R,;, we have to be concerned that the derivatives
with respect to o)y may this time not be negligible. Indeed, numerical evaluation of the

integral shows significant o), dependence of fj , (see fig. . Keeping the derivative terms,
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M=10"M/h

dln fi,
dln OM

1072

0.‘2 0‘.4 0:6 0‘.8 l.‘O 1.‘2 1.‘4
A
Figure 2.2: Numerical evaluation of egs. 2.96|i and (2.97). For A 2 1.0, the cumulant fj,

depends significantly on the halo mass scale M. This is in contrast to local non-Gaussianity,
which corresponds to the limit A — 0.

we get

r (@ ) o (52 gy ) )

a?(k) dlnoyy oy
(3) o~ f

o R . (2.99)

The characteristic momentum scaling of eq. (2.99) and the natural boost of 7y, makes halo

stochasticity an interesting probe of quasi-single-field inflation.
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2.6 Conclusions

What was the number of light degrees of freedom during inflation? And, what were their
interactions? The great virtue of primordial non-Gaussianity is that it is sensitive to these
basic questions about the physics of inflation. In particular, it is well-known that the squeezed

limit of the primordial three-point function,
k1—0

can only be large if more than one light field was dynamically relevant during inflation [31],
32]. Remarkably, this statement is independent of the details of the Lagrangian for the
inflaton field and its initial conditions. Measurements of the squeezed limit therefore have
the potential to rule out all models of single-field inflation [31, B2]. Moreover, the precise
scaling in the squeezed limit is sensitive to the details of the mass spectrum [19, [14], allowing
a test of extra Hubble mass fields, such as those generically expected in supersymmetric
theories [20]. Having a large three-point function in the squeezed limit modulates the two-
point function of halos and therefore leads to scale-dependent bias [7]. In the future, this
effect may well be our most sensitive probe of the squeezed limit.

In this paper, we have discussed a stochastic form of scale-dependent halo bias. This

effect arises if the collapsed limit of the primordial four-point function,

lim <(I)k1q)k2q)k3q)k4>c s (2101)

k12—0

is larger than the square of the squeezed limit of the three-point function. More generally,
stochastic bias arises whenever a suitable collapsed limit of an (M 4 N)-point function is
larger than the product of the associated squeezed (M +1)-point and (N +1)-point functions,
where M, N > 2. The key tool for obtaining this result, and a main result of this paper, is
a pair of formulas, egs. and , for the matter-halo and halo-halo power spectra
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in a general non-Gaussian model parametrized by the N-point functions of the primordial
potential.

In non-Gaussian models which generate significant stochastic halo bias, the results of
this paper are important even at a qualitative level. As a concrete example, it should be
possible to measure fy;, and 7y, independently using stochastic bias. This can be done either
by measuring multiple tracer populations and directly estimating large-scale stochasticity
(which has the advantage of eliminating sample variance), or from a single tracer population
by measuring Py, (k) and using the functional form

P (k) = b (1 + fNLj(—i;) + TNL%) (2.102)

to fit for by, fxr, and 7y, independently.

Recently, ref. [36] showed that if only non-stochastic bias is considered, the leading con-
tribution from 7y, is small (in our language, this corresponds to the O(7yy,) contribution to
k13) and it is difficult to separate fxi, and 7y, so stochastic bias has an important qualitative
effect. As another example, in quasi-single field inflation, the stochastic bias is larger than
the non-stochastic bias by a large factor (parametrically £72), leading to a similarly large
enhancement in signal-to-noise when stochastic bias is considered. We defer quantitative
forecasts incorporating stochastic bias for future work.

In general, there is no stochastic bias if only a single field (which may or may not be
the inflaton) generates the primordial curvature perturbation and its non-Gaussianity [16].
Measuring stochastic halo bias would therefore teach us about the effective number of degrees
of freedom that generated the primordial fluctuations and its higher-order correlations. In
particular, stochasticity is sensitive to what we may call “hidden sector non-Gaussianity”, i.e.
situations in which two fields generate the curvature perturbation, but only one (hidden)
field is responsible for its non-Gaussianity. In this paper, we have derived this effect for

general non-Gaussian initial conditions. We have also applied our formalism to a number
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of explicit examples, such as curvaton models [18] and quasi-single field inflation [19]. We
have shown that halo bias, in principle, gives us information about the soft limits of both
the primordial three-point function and the four-point function. It is therefore a valuable

tool in the quest to uncover the physics that created the initial perturbations.
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2.7 Appendix: Convergence of the Edgeworth Expan-
sion

In this appendix, we discuss the convergence properties of the Edgeworth expansion for
local non-Gaussianity. In particular, we will estimate the relative size of the cumulants
Knm(k, M) for general n and m > 0 in the large-scale limit £ — 0. For further discussion see
e.g. [33, 34, 35]. The results in this appendix are used in the main text in several places: to
justify the approximation that non-linear terms in the Edgeworth expansion are negligible

in eqs. (2.33) and (2.43)), and to justify keeping only certain cumulants in the 7y, model
(82.5.1)) and the gni, model (§2.5.2)).

2.7.1 7, Cosmology

We first consider the 7y, model of §2.5.1|

Linear terms.—The leading contribution in the £ — 0 limit arises from the following contri-

bution to the connected correlation function

(| [

Knm = ‘An,m <¢1(1/)¢)2 e (Wﬂ)n | <¢¢)n+1 s (¢¢)n+m—1¢n+m>/c dK ) (2103)

where dK =[], (“;’T’;g ay (ki) and (11)); denotes an auto-convolution evaluated at k;. The
prime on the correlation function denotes that we have dropped an overall momentum con-

serving delta-function. The amplitude of the cumulant is given by

nlm! 2ntm=2

Apm = Com(1+ H)Q(”’Lm_Q)fﬁfm_g , where Crom = (2.104)

n m
TN

We arrived at eq. (2.103)) by using the definition of ® in eq. (2.51) and expanding out terms
to produce a connected correlation function. The numerical factor c,,, in the amplitude

(2.104) arises from the sum over equivalent contractions of the fields. The vertical line in
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separates the first n terms from the last m. Each contraction gives a factor of Py,
and the contraction crossing the vertical line carries momentum £k, giving a factor of P, (k)
that can be taken out of the integral. The power spectrum P, (k) diverges as k — 0 and
gives the largesﬁ contribution to Ky ,,. The remaining integral over dK will typically be
dominated by the non-linear scale kyj, where k3 Py (k) ~ o3, (kn)A2 ~ 1. Therefore, we

may estimate the integral using ay; ~ Ag', to get

Pum(k
Kim = Crp, (L+I)™2 f-t AP-2. W()) for m>1, (2.105)

Ko = Cpm (14 TD)WHm=3 gubm=2 Nnfm=d, P (k) for nandm>1. (2.106)

(k)

The factor nlm! appearing in ¢, ,, is canceled explicitly in the Edgeworth expansion (12.23)),
and as shown in §2.5.1) the condition fnp(1 4+ II)Ae < 1 is always satisfied. This implies
that higher-order cumulants are subdominant relative to lower-order ones, and hence the

only terms we have to keep in the 7y, model are k; 1, K12 = K1 and K.

Non-linear terms.—When expanding the exponential in the Edgeworth expansion (2.23)) we
also encounter non-linear terms such as /{i (@), First, we will show that, for n and/or
m > 1, these terms are suppressed by the near-Gaussianity of the primordial perturbations.

We distinguish two cases:

e When n > 1 and m > 1, we take powers of the contributions in (2.106)), to find

P P (k _ _
6E e (1 1y g2 agpe=s ] P8 e pa g
, a2(k)
(2.107)
where L is an infrared cutoff. This can be written as
KL~ R (L DAL (1 )PP (kL) . (2.108)

14Subleading contributions arise when both linear 1) terms appear on the same side. In such cases, two
contractions cross the vertical line, and the resulting cumulant is finite in the £ — 0 limit.
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Using fxp(141)Ag < 1 and (14 1II) > 1, we see that s}, is suppressed relative to

Knm for n,m > 1.

e When n =1 and m > 1, the situation is slightly different. If we take higher powers of
the results in (2.105|), we find for P > 1,
m—2 rm— m—21F -
Him ~ Cf,m [(1 + 102 fi AR 2} AL P (k)

~ R (L + DA (1 ) Pak) -

Again, as we increase the power P, the contribution is suppressed. However, there
is a clear difference between P = 1 and P > 1. Nevertheless, in the limit & — 0,

[Pum(k)/a(k)] ™' o< k so that these contributions vanish relative to 1 .

Next, we consider products of the Gaussian piece, /if 1- We find for P > 1,

Binm (Feq)

7 mﬁi_l(keq) : (2.110)

Here, k1 ; receives its largest contribution from the peak of the linear matter power spectrum
A2 (k) = K*Py(k) which occurs at k = keg, the scale set by matter-radiation equality.
Because Ay, (keq) < 1 at that scale, the modes are still linear and higher powers of x;; will
be suppressed. However, in the limit £ — 0, k1 ; vanishes, while /{f , is finite for P > 1. This
gives a small constant contribution to the halo power spectrum B, which is a free parameter

in practice (we discussed this in the context of the gy, model in §2.5.2)).

Finally, we look at terms of the form xf x% ,. We may bound these contributions by

n,m''n’,m’

using the above estimates with the convolution ﬁim*ngm, =Jq /ﬁivn(\ql)ka&m,(lk —q|). For

n,m > 1, the convolution will be dominated by the IR, and we find

(k) In(kL)

B8 (2.111)



For m = m’ = 1, the convolution is dominated by physics at the non-linear scale, so we may

simply multiply (2.109)) and/or (2.110) to find
KD kKD~ kD ()RS | (R) KD (2.112)
As a result, convolutions of different cumulants will be suppressed by fxp,(1 + II)Ag < 1.

2.7.2 gni, Cosmology

Similar arguments apply to the gyn;, model of §2.5.2]

Linear terms.—First, we note that s, ,, = 0, unless n+m is even. Moreover, only for both n
and m odd do we get a scale-dependent tree-level contribution to the cumulant. (In the main
text, we discuss the important special case kg 2.) Schematically, we can write ky, ,, ~ gfIL AY.

At tree level, we then find

nrl P (k)

Kim ~ 0N Ag‘—Q- a(k) for m odd , (2.113)
o Pk
Knm ™~ ONL ! Ag”r"_4- a2(/(£)) for n,m odd and > 1. (2.114)

Since current observational constraints imply |gn,A%| < 1, the only tree-level terms that
we need to keep are k11, k1,3 = k31 and kg 3. As we discuss in the main text, there is also

an interesting loop contribution to kg 9.

Non-linear terms.—As in the 7y, model, products of cumulants of the form ni . Will be

suppressed due to the near-Gaussianity of the perturbations. The contributions of higher

powers of Kk, ,, is nearly identical in both cases:
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e When n > 1 and m > 1, we take powers of the contributions in (2.114]), to find

n+m

P
P P} -1 m+n—4
Knm ™ [gNL A@ ]

AP Pk L)

(P—1)(2Ep=2)

~ Knm [QNLA%} "~ '(kL) . (2.115)

Clearly, if gnp A3 < 1, then the higher powers of k,,, are suppressed (if we assume
that the log is small).
e When n = 1 and m > 1, we take higher powers of the results in (2.113)), to find for
P>1
P T 1
Kim ™~ [QNE Ay } Ay~ P (k1)

_1)(m=1
~ K [ A2] T k) - (2.116)

Again, we find that P > 1 contributions are suppressed by powers of gypAZ < 1. As

in the 7n, model, we find that P = 1 has a different scaling with k£ from P > 1.

It should be clear that other cumulants behave in the same way as in the 7y, model and will

be suppressed by factors of gy, A%.
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Chapter 3

On the Correspondence between
Barrier Crossing, Peak-Background

Split, and Local Biasing

3.1 Abstract

Several, apparently distinct, formalisms exist in the literature for predicting the clustering
of dark matter halos. It has been noticed on a case-by-case basis that the predictions of
these different methods agree in specific examples, but the precise correspondence remains
unclear. In this chapter, we provide a simple mathematical relationship between barrier

crossing, peak-background split, and local biasing.

3.2 Introduction

The large-scale clustering of dark matter halos has become an important probe of primordial
cosmology. In particular, non-Gaussianity in the initial conditions would leave an imprint in
the scale-dependence of the halo bias [9, [I7], sometimes of stochastic type [24], [4]. Several,

apparently distinct, methods are commonly used to compute these effects. So far, these
78



methods have been considered to be independent, even though they give the same results
when applied to specific examples [10, [4]. In this paper, we will show that the barrier crossing
(BC) model, the peak-background split (PBS) method and the local biasing (LB) approach

are, in fact, mathematically closely related.

Barrier crossing is the classic model of structure formation dating back to the pioneering
work of Press and Schechter [18]. In its simplest formulation, it identifies halos as regions of
the linearly evolved density field above some critical density d.. The clustering properties of
halos can then be calculated as an Edgeworth expansion in the cumulants of the probability
density of the primordial density fluctuations, which in turn can be expressed in terms of

N-point functions of the potential [15] 10, 23], [4].

Peak-background split is a method for calculating the influence of long-wavelength fluc-
tuations (larger than the halo size) on the locally measured statistical properties. It has
been widely used in cosmology [3, 8] and its usefulness in dealing with non-Gaussian initial
conditions has been first pointed out in [9]. In the most common implementation, the non-
Gaussian field is defined as a non-linear function of auxiliary Gaussian fields, which are split
into short-wavelength and long-wavelength components. By modulating the statistics of the
short modes, the long modes affect the clustering statistics. In this paper, we will generalize
the PBS approach so that it can be applied to arbitrary non-Gaussian initial conditions,
parametrized by arbitrary N-point functions of the primordial potential. This will require
introducing additional fields ps, p3, - - -, which measure the local power spectrum amplitude,

skewness, etc.

Local biasing [11), 20, 12, 2, 19] refers to the idea of expressing the halo density field ), as
a function the local dark matter density (smoothed on some scale) and expanding in powers

of the density contrast ¢,

Sn(x) = b10(x) + byd*(x) + b3 () + -+ - . (3.1)
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Correlation functions can then be computed straightforwardly in terms of the coefficients
in the expansion. Several variations of this formalism exist in literature (for example some
use an expansion in the non-linear dark matter density, while others use the linearly evolved
density). In this work, we will demonstrate the equivalence between barrier crossing and
a particular variant of local biasing, in which the expansion is in the linearly evolved and

non-Gaussian dark matter density contrast.

In a companion paper [4] (included here as Chapter 2), we derived the clustering statistics
for specific non-Gaussian models, both in the peak-background split formalism and in the
barrier crossing model. We showed for each example that both approaches give consistent
results. The goal of this paper is to prove that this agreement isn’t accidental, but follows

from a mathematical relationship between both methods.

The outline of the chapter is as follows. After defining our notation in Section [3.3] we
introduce our main technical tool in Section [3.4} a series expansion for the halo field ¢y, in
the barrier crossing model. We review some examples of non-Gaussian models and show how
the series expansion is used for efficiently calculating halo power spectra. In Section we
use the series expansion to provide a mathematical relationship the barrier crossing model,
the peak-background split method, and the local biasing formalism. We conclude with
brief comments in Section An appendix collects some elementary properties of Hermite

polynomials.

3.3 Preliminaries and Notation

Non-Gaussian initial conditions can be parameterized by the connected N-point functions

§<(I>N) of the primordial gravitational potential ®. In Fourier space, these are defined as

(Ppy Py - - Proy e = (27)30n (k1o n) €5 (K, Ky .. Koy) (3.2)
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where k5. ny = k1 +ko+-- -+ ky. The primordial potential is related to the linearly evolved

matter density contrast via Poisson’s equation

5k(2) = Oé(k’,Z)(I)k y (33)
where
alk,z) = % : (3.4)

Here, T'(k) is the matter transfer function normalized such that T'(k) — 1 as k — 0 and D(z)
is the linear growth factor (as function of redshift 2), normalized so that D(z) = (1 + z)7!
in matter domination. For notational simplicity, we will from now on suppress the redshift
argument from all quantities. The field d,/(x) denotes the linear density contrast smoothed

with a top-hat filter of radius Ry = (3M /47pym)'/3. In Fourier space,
O (k) = W (K)o , (3.5)

where Wy (k) is the Fourier transform of the top-hat filter,

_ _sin(kRy) — kRpy cos(kRyy)
W (k) =3 GONE :

(3.6)

We also define o3y = (02,)'/2 and ay; (k) = Was(k)a(k).

The main quantity of interest, in this paper, is the halo density contrast in Lagrangian
space
() — ()

where ny,(x) is the halo number density. To lowest order, 9y, is related to the halo over-
density in Eulerian space via i = &, + J. We will determine the large-scale behavior of
the matter-halo and halo-halo power spectra Py, (k) = (ddn) (k) and Pyn(k) = (0non) (k).

We define By, (k) to be the halo power spectrum after the shot noise contribution 1/n;, has
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been subtracted, where ny, is the halo number density. Analogously, we define P,;(k) to be
the matter-halo power spectrum after subtracting the 1-halo term (in practice, this term is

usually negligibly small). We define the (Lagrangian) halo bias as

(3.8)

This is related to the Eulerian bias via bg = b+ 1. A stochastic form of halo bias arises
whenever the density of halos isn’t 100% correlated with the dark matter density [4]. In that

case, the bias inferred from B, will be different from the bias inferred from Py, i.e.

P (k) Pun(k) ?
Prh) 7 (Pmm<k>) ' (39)

3.4 A Series Representation of Barrier Crossing

In this section, we introduce the barrier crossing formalism and quote results from our
companion paper [4]. We also introduce a series representation of barrier crossing, which

will be our main tool to prove the equivalence to local biasing and peak-background split in

Section [3.5]

3.4.1 Review of Barrier Crossing

In the simplest version of the barrier crossing model [I§], halos of mass > M are modeled
as regions of space in which the smoothed density field d,; exceeds the collapse threshold ¢,

i.e. the halo number density ny,(x) is given by

nMW(x) oc O(0p () — 6,) , (3.10)
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where O is the Heaviside step function. Eq. (3.10) models the abundance of a mass-weighted
sample of halos whose mass exceeds some minimum value M E| We will also consider the case
of a halo sample defined by a narrow mass bin, which is obtained from the mass-weighted

case by differentiating with respect to M, i.e.

nd (x) o 8%@(@(:::) —6) . (3.11)

Throughout the paper, we will refer to these two types of halo samples as “mass-weighted
samples” (MW) and “narrow samples” (V).

The barrier crossing model allows us to compute the statistics of halo-halo and halo-
matter correlations. To discuss correlations between quantities at two points & and x’, it
is useful to define dy;y = dpr(x), 8, = op(2') and r = | — &’|. The joint cumulants of the

density fields are therf]

Kpn(r, M) = %, (3.12)
K (r, M, M) = <(6MJ):SZVI)”>C. (3.13)

The hat on ky,, denotes the use of the unsmoothed density field 0. In the limit £ — 0, we

find ki, (k) = Pum(k)/(coy) and k1,1 (k) = Pam(k)/(0a0oy;). This motivates the following

!This type of sample is often assumed when fitting models to observations of luminous tracers such as
galaxies or quasars. In the absence of detailed knowledge of the halo occupation distribution (HOD), a
simple choice is to assume that halos below some minimum mass M are unpopulated with tracers, whereas
the expected number of tracers in a halo of mass > M is proportional to the halo mass.

ZNote that the variance of the unsmoothed linear density contrast o2 = (§2) is formally infinite, but
cancels in the definition of the quantity fj , which will appear in our final expressions.
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definitions

£ (k, M) Fin(h, M) forn > 1 (3.14)
L (K, = —0 orn>1, :
Ln K“i,l(k’ M) oM
— Iiln(l{f7 M, M)
(kM) = k forn>1, 3.15
Jia( ) ko (ki M, Mo orn ( )
_ M, M
Jmn(k, M, M) = i (K, M, M) for m,n > 2. (3.16)

/43171(]{, M, M)O’MO'M

Using the function a(k, z) defined in (3.3), it is straightforward to relate the above cumulants
to the primordial correlation functions fc(I)N) defined in |D

In [4], we showed how the matter-halo and halo-halo power spectra are computed in
the barrier crossing model using the Edgeworth expansion for the joint probability density
function p(das, 0%,). (We refer the reader to that paper for detailed derivations and further
discussion.) The result can be expressed in terms of the cumulants f;, and fy,,. Taking

the limit k& — 0 for the case of a mass-weighted sample with M = M, we find

Pon(k, M) = Py (k) (bMW )+ (M) fy, (k M)) (3.17a)
n>2
Pun(k, M) = Py (k) (byW(Mf + 200" (M Zan ) fin(k, M, M) (3.17b)
n>2

- Z (M)t (M) fr (ke M, M))

where the coefficients ay, (not to be confused with the a of eq. (3.3])) are defined in terms of

Hermite polynomials (see Appendix [3.7)),

2 e v? H, (v Se
an(M) = \/i S 1|<”) . with v (M) = (3.18)
merfe(Zve) ! oM
We also defined the Gaussian bias as
M
bW (M) = (M) (3.19)
oM
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Note that b]gw W(M) is the Press-Schechter bias for the mass-weighted halo sample. In writ-
ing (3.17)), we have dropped “nonlinear” terms in the Edgeworth expansion, i.e. terms in-
volving products (Km,n, Fmons * * - Kmyn,) With p > 1.

Similarly, for the case of a halo sample defined by a narrow mass bin, we have

n>2

Pon(k, M) = Py (k) ( M)+ Da(M)fy,(k M)) : (3.20a)

M=M
n>2

Pun(k, M) = Pum(k) <b;V( 2+ 20N (M) Y " Du(M) fra(k, M, M)‘ ) (3.20D)

M=M
m,n>2

+ Y DM )fmn(kMM)’ )

where we have defined the differential operator

~ 0
as well as the functions
1 v2—1 _ H,(v.) ~ _ H, 1 (v.)
bY (M) = e Bn(M) = o and Ba(M) = o (3.22)

Note that bév (M) is the Press-Schechter bias of a halo sample defined by a narrow mass bin.
In eq. (3.20b) for Py, we have assumed M = M for simplicity, but the variables M and M

should be treated as independent for purposes of taking derivatives.

3.4.2 Hermite Polynomial Expansion

In this section, we will develop an alternative (to the Edgeworth expansion) algebraic frame-

work for analyzing clustering in the barrier crossing model. First, consider the case of a
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mass-weighted halo sample, where the halo field is modeled as a step function

OM

n'W(z) o © (v(x) —v.) , where v(x)= (3.23)

Since the Hermite polynomials H,,(v) are a complete basis, any function of v can be written
as a linear combination of Hermite polynomials. In particular, we can write the Heaviside

step function O(v — v,) as

O —ve) =Y an(ve) Ho(v) (3.24)
n=0
where
1 [ —v?/2 Lerfe( Lo, n=>0
a(ve) = —'/ dv O —v) e Hy(v) =4 ? () . (3.25)
n! J_o V2 %\/LQ?Q—VE/Z H,_1(v.) n>1

Plugging this series expansion into eq. (3.23)), and normalizing the halo field to the fractional
overdensity dy,, we get
an(ve) <5M($))
on(x) = H,
(@) n2>:1 ap(ve) oM

= bYW(M)oy(x) + Z @, (M)pn(x) , [mass-weighted sample]  (3.26)

n>2

where a,, (M) and b]gw W(M) were introduced in egs. (3.18) and (3.19), respectively. The fields

pn are defined as

pu(x) = Hy, (Mm)) . (3.27)

oM
On large scales, the field p, = §2,/02, — 1 tracks long-wavelength variations in the locally
measured small-scale power, and for non-Gaussian initial conditions the power spectrum

P,,,, (k) may acquire extra large-scale contributions. Analogously, the field p3 = 0%, /0%, —
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305 /o tracks long-wavelength variations in the locally measured small-scale skewness, and

so on for higher p,,.

10° ¢
bg Pmm

104 L

Q%Ppnﬂn(@ 10% F
[h—3 Mpcﬂ o
102 F P3

101 L

1073 1072 1071
k [hMpc™!]

Figure 3.1: Convergence of the series representation (3.26)) at low k, illustrated by comparing
terms in the halo-halo power spectrum Py (k) = b2(M)Puw(k) + 320", a2 (M) P, ,, (k) in a
Gaussian cosmology. (Note that for Gaussian initial conditions, cross power spectra P, , (k)
with m # n are zero.) We have taken z = 0 and a mass-weighted sample of halos with mass
M > 2 x 10" h=t M.,

We emphasize that the series representation (|3.26)) is mathematically equivalent to the
barrier crossing model, since it is obtained by simply substituting the convergent Hermite
series into the barrier crossing expression for ny. The series representation
converges for all values of «, but its usefulness depends on how rapidly it converges, i.e. how
many terms we need to get a good approximation. For example, to compute the halo field
dn(x) at a single point @ in real space, many terms are needed (of order 100) and the series
representation is not useful. On the other hand, the Fourier transformed series representation
on(k) = bYW op + >0, anpn(k) converges rapidly on large scales (i.e. k < k1), as shown
in fig. , and the series representation is very convenient. (The series converges for all k,

but only converges rapidly for k < ky;.)
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The preceding expressions have all applied to the case of a mass-weighted halo sample.

For the case of a halo sample defined by a narrow mass bin, the halo field is modeled as

) x 2 @(‘W)—uc)

Olnoyy oM
- RGLACT
_ ;((n+1>ycan+1<yc>+an(yc)ﬁ) Hn(‘”(jf)) RS

Normalizing ny, to the fractional halo overdensity dy,, we get

o= D ) (04

Cl1(Vc) OM

_ (”3_1)5M(x)+ 1 96y (@)

veoy Olnoyy

3 (2t + 2 Bt 0 gy (D)

OM

We drop the term containing 9d,,/0 In o)y, since this term vanishes on large scales, k < R]Tj,

and write the result using the notation by, 3,, 3, defined in eq. l)

on(x) = béV(M)(SM(m)qLZ (ﬁn(M) + B, (M) 0 ) () . [narrow sample] (3.30)

81HOM

As a check on our formalism, we can verify that the matter-halo and halo-halo power spectra
obtained from the series (3.26)) agree with the results obtained previously in [4] using the
Edgeworth expansion. We first write the power spectrum P, (k) in terms of the correlation

function (3.2]),

n—1
P () = 250 (H / on(qi)) car(—Jk+ al) x €7k, qu, - gus—k—q) . (331)
i=1v4
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where we have defined fq_ ()=/J (dsqi (-) and ¢ = Y7 q;. Similarly, we can express

P, ol asﬂ

o)) (TL [ owla) ) anl@an(o

X gt(I’m+n)(qi7 e uq;n—l’ _q/ + k7 qi, " ,4dn—1, —q — k) s (332)

where ¢/ = Y"1 11 q;- Using the notation f; , and f,,, defined in eqgs. 1} and 1} and

taking the limit £ — 0, we find

P, (k) = fi,(k, M) Pan(k) | (3.33)
Poopn(k) = frn(k, M, M) P (k) . (3.34)

For the case of the mass-weighted halo sample, the series representation (3.26) therefore

gives the following matter-halo and halo-halo power spectra

Pon(k, M) = ) (D an(M)fy, (kM) ) (3.35a)
Pan(k, M, M) = Pun(k) Z (M)t (M) fr (ks M, M) | (3.35b)

in agreement with the Edgeworth calculation (3.17)). The case of the narrow mass bin can

be verified similarly.

3We have made an approximation here: by using connected correlation functions in eqgs. (3.31)) and -,
we have neglected some contributions to the power spectra P, and P, ,. . More precisely, we have neglected
disconnected terms whose factorization contains multiple higher cumulants (i.e. £y, , with m +n > 3), and
also some contributions to P, , (k) which approach a constant as & — 0. (Note that subleading terms in
the Hermite polynomial p, = (dpr/0nm)™ — n(n — 1)(6ar/om)"2/2 + -+ cancel the largest disconnected
contributions to the power spectra in egs. and - The derivation in [4] of eq. ED contains
equivalent approximations, which is why we Wlll shortly find agreement with the results of [4]. In principle,
one can avoid making any approximations by including disconnected contributions when calculating power
spectra Ps,, and P, , . However, in Appendix A of [4], we showed that these approximations are always
valid in the observationally relevant regime where the initial perturbations are close to Gaussian.
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Eqgs. and are the main results of this section and give a series representation
for the halo field in the barrier crossing model, for the cases of a mass-weighted halo sample
and a narrow mass bin respectively. Using the series representation, we will give a simple,
conceptual proof of the close correspondence of the barrier model, the peak-background split,
and local biasing in Section |3.5 However, it is useful to first build intuition by considering

a few example non-Gaussian models.

3.4.3 Examples

For a given non-Gaussian model, one can analyze large-scale clustering by keeping a small set
of terms in the series expansion of §;, (either eq. or for a mass-weighted sample or
narrow mass bin, respectively), and computing the necessary power spectra P, , (k) on large
scales. This is a computationally convenient way to compute the non-Gaussian clustering
signal, and allows the signal to be interpreted physically as arising from large-scale variations
in locally measured quantities such as small-scale power and skewness, as we will see in the

context of some example models.

i Cosmology

Consider a non-Gaussian model in which the initial Newtonian potential is given by

O(z) = o(z) + far (¢°(2) — (%) (3.36)

where ¢ is a Gaussian field. We will refer to this as the “fy, model” (or local model).
This type of non-Gaussianity arises somewhat generically in multi-field models of the early
universe, e.g. modulated reheating models [25], curvaton models [14, [16], or multi-field ekpy-
rotic scenarios [13], [6]. In this section, we will study a generalization of the fyi, model which
we will call the “myp, model”. This type of non-Gaussianity arises in “multi-source” models,

i.e. models in which quantum mechanical perturbations in multiple fields determine the ini-
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tial adiabatic curvature perturbation [24] [7, 5 [I]. The non-Gaussian potential ® is given in
terms of two uncorrelated Gaussian fields ¢ and 1, with power spectra that are proportional

to each other

O(z) = ¢(x) +(x) + fun(l+10)? (P*(2) — (¥?)) | (3.37)

where fyi, and II = P,(k)/Py(k) are free parameters. It is easy to compute the three- and

four-point functions,

5((193) = fNL |:P1P2 + 5perms.] + O(ff\))IL) y (338)
&(194) = 2 (%)2 TNL [P1P2P13 + 23 perms.] + O(T]%L) s (339)

where we have defined v, = (2fn0)?(1 + 1), P, = Po(ki), and Py = Po(lk; + kj|). Tt is
conventional to parametrize this model with variables { fxr, 7nr.}, which correspond to the
amplitudes of the 3-point and 4-point functions, rather than the variables {fxr,Il}. The
fxr model (with IT = 0 so that ¢ contributes but not ¢) corresponds to the special case
TNL = (ngL)2-

To compute halo clustering in the 7y, model, we keep the first two terms in the series

expansion for &y, (egs. (3.26)) and (3.30))), obtaining:

bé” W + aaps | [mass-weighted sample]
on = (3.40)

b o + (BQ(M) + Bz(M)L> pa - [narrow sample]

Olnon

Using egs. (3.38)) and (3.39) in egs. (3.31) and (3.32)), we obtain the following power spectra

in the &k — 0 limit:

Ponl) = pu 2l (.41)
Pprz (k) 16 (%)2 TNL Pmm(k) (3.42)
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Putting everything together, we find

Puat) = (bg+ f ) Pa). (3.43a)
Pu(k) = (b§+2bngL%+(§)2mL&f—{k)) Pom(k) . (3.43D)

where we have defined the non-Gaussian bias parameter

dan(M) , [mass-weighted sample]
By = (3.44)

4B5(M) . [narrow sample]
In both the mass-weighted and narrow mass bin cases, the non-Gaussian and Gaussian parts
of the bias are related by B; = 20.b,. Note that in the narrow mass bin case, there is

a derivative term in &y (the term 9py/01lnoys in eq. (3.40))), but this ends up giving zero

contribution to the power spectra P, and Py, since the power spectra Pj,, and P,

papz QL€

independent of M in the mnr, model.

Our calculation of the clustering power spectra (3.43) agrees with previous calculations
in the literature (e.g. [24 [4]) but the series representation gives some physical intuition: the
large-scale non-Gaussian clustering is due to large-scale fluctuations in the field ps, which
we interpret as long-wavelength variations in the locally measured small-scale power. If
™NL = (g fnp)?, then long-wavelength variations in p, are 100% correlated to the matter
density d on large scales, and the non-Gaussian halo bias is non-stochastic. If 7w, > ( g INL)?,

then py and ¢ are not 100% correlated, leading to stochastic bias.

gn. Cosmology

The gni model is a non-Gaussian model in which the initial potential ¢ is given in terms of

a single Gaussian field ¢ by:

O(z) = ¢(z) + gni. (¢°(x) — 3(¢*)¢()) - (3.45)
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We keep the first three terms in the series expansion for dy, obtaining:

(

bYW 4 azps + asps [mass-weighted sample]
op = = 3.46
"7 o+ (M) + Ba(M) 52 ) o (3.46)
+ (Bg(]\/[) + Bs(M )3ln0'M) P3 - [narrow sample]
\
To compute power spectra we will need the following cumulants in the gn;, model:
Eg)[tree] = gNL [P1P2P3 + 23 perms.} + O(g%) , (3.47)
5((1:1)[100p] = 9912\IL [P1P2P¢2(k:13) + 11 perms.} , (3.48)
&Y = 3693, [P PPy PyPros + 89 perms.] . (3.49)
Here, we have defined P, = Py(|k; + k; + kyi|) and
Palb) =2 [ PiPsk = a) ~ 483 m(L)P(E) (3:50)
q

where A7 = (k?/27%)Py(k) and we have regulated the infrared divergence by putting the
field in a finite box of size L. Note that the power spectra Ps,, and P,,,, are zero (since there

isad — —P symmetry). The remaining power spectra can be calculated by substituting

eqs. and into eqs. and (3.32). In the limit & — 0, this gives

Pmm(k> (fnL=1)

P(SpB(k) = BQNL &<k) R3 s (351)
24QNL
Pralh) = ( WP + 36 Pa(h) (3.2
Prum(k) = 1% ( o)’ (3.53)
Here, /{éf =1 denotes the dimensionless skewness parameter r; = (63,(x))e/03, in the local

)[tree]

model with fy;, = 1. Note that we use the tree-level cumulant 5((1,4 when computing Ps,,,
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(4)[loop]
P

but use both the tree-level cumulant and the one-loop cumulant ¢ when computing

P,,p- Although the O(gf;,) one-loop cumulant is generally smaller than the O(gny,) tree-

level cumulant, the one-loop cumulant dominates in the |k; + ko] — 0 limit which is relevant

for P,

pP2p2*

Putting the above calculations together, we ﬁndﬁ

Pon(k) = (bg +one sz)) Po(k) | (3.54a)
69 ? 9 2 2
Pu(k) = (bg + 9NL@> Pam (k) + ZﬁngLP&(k) ) (3.54b)

where 3 was defined in eq. (3.44) and we have defined

3 Oég(M)liéfNL:l) , [mass-weighted sample]

By = (3.55)

3(52(M) + By (M) -2 ) /-iéfNL:l) . [narrow sample]

811’10’1\/[

Note that in the narrow mass bin case, there are derivative terms in dy (eq. (3.46))), and their
contributions to Py, and Py, are non-zero (unlike the previously considered 7yp, model),

mpn 11 €08, (3.51)—(3.53) depend on halo mass via the mass-

because the power spectra P
dependent quantity /-féf vL=l)
These expressions for P, and B, agree with previous calculations in the literature based
on the Edgeworth expansion [10], 23| [4]. Our series expansion gives some physical intuition
as follows. The non-Gaussian contribution to P, comes from the power spectrum F,,,,
and can therefore be interpreted as arising from long-wavelength variations in the locally
measured small-scale skewness p3. On large scales, the non-Gaussian fluctuations in p; are
100% correlated to the density field, and therefore the associated halo bias is non-stochastic.

The leading contribution to stochastic bias comes from the power spectrum P,,,, and can

p2p2

4We have neglected contributions to Py (k) which approach a constant as k — 0; such contributions are
unobservable in practice since they are degenerate with other contributions such as second-order halo bias.
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be interpreted as long-wavelength variations in small-scale power which are uncorrelated to

the density field.

3.5 Proof of the Correspondence

In the previous section, we showed that the barrier crossing model can be formulated as a

series representation:

51 () bYW ont(x) + 3,00 (M) pp(x) | [mass-weighted sample]
h) = - 5
DY O (x) + 37,50 (Bn(M) + Bn(M)ﬁ) pn(x) [narrow sample]
(3.56)

In this section, we will use this result to prove that barrier crossing is mathematically related
to local biasing (§3.5.1) and peak-background split (§3.5.2)), and in particular they give

equivalent results.

3.5.1 Local Biasing

“Local biasing” refers to any model of halo clustering in which the halo field is represented

as a local function of the dark matter density, e.g. a power series

Sn(x) = b10(x) + byd*(x) + b3 () + -+ - . (3.57)

Several versions of local biasing exist in the literature (e.g. [11} 20, 12| 2]). We notice that the
series on the right-hand side of is a type of local biasing expansion, since the p,, fields
are local functions of the smoothed density field d,,. Therefore, our series representation
proves that the barrier crossing model is mathematically equivalent to a specific version of

the local biasing formalism [

°In [10], the authors have argued that the barrier crossing model can be written as a local expansion
in terms of ‘renormalized’ bias parameters (see Section III.B and III.C). We note that a local Hermite
expansion is well defined and will automatically generate the correct bias coefficients in the Gaussian or
weakly non-Gaussian case, without need for renormalization. See Section IL.D of [22] for further discussion.
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In this section, we would like to elaborate on the connection between our series represen-
tation and the usual way of thinking about local biasing, and comment on the differences
with other versions of the formalism.

First, the density field d;; which appears in the series representation is the non-Gaussian
and linearly evolved density field, smoothed on the mass scale M. In particular, there is
no need to introduce a new smoothing scale which is distinct from the halo scale, as done
in some versions of local biasing. We do not include non-linear evolution in d,; since the
standard barrier crossing model is based on thresholding the linear density field.

Second, we do not need to introduce explicit dependence of the halo over-density d;, on
the long-wavelength potential ®, in a non-Gaussian cosmology. In some versions of local
biasing, ), is expanded in both ¢, and ®,, in order to keep the relation local. In our version,
the ®, dependence happens automatically, since ¢, depends on higher cumulants ps, p3, - - -,
and these cumulants can be correlated with ®, in a non-Gaussian model. To see how this
happens in detail, consider the fyr, model. Inspection of the power spectra in egs. and
shows (taking 7wy, = (ngL)Q) that py is 100% correlated with the field @, = a;; (k)
as k — 0. More precisely, po — 4 fn,®, on large scales. Making this substitution in eq. ,
we get 0, = bydp + fnr.By®e + - - - and recover the usual result.

This example shows that including explicit ®, dependence in the local expansion of ¢y
is not necessary (in fact, including it our model would “double-count” the non-Gaussian
clustering), if higher powers of the density field are included in the expansion. In the fyr,
model, the modulation to the locally measured power ps is directly proportional to ®,. More
generally, the expansion should be in all of the non-negligible cumulants ps, p3, - - - .

It is also interesting to consider the 7y, model in the case T, > (g fxp)?. Here, the locally
measured small-scale power p, has excess power on large scales which is not 100% correlated
with ®,, leading to stochastic bias [4]. This qualitative behavior is correctly captured by a
local biasing model of the form ¢, = byd, 4+ a2p2, but not by a local biasing model of the

form 5h = bgég + bg@g.
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In the narrow mass bin case, our series expansion includes derivative terms of the form
Opn/0Inaoy. To our knowledge, derivative terms have not been been proposed in any version
of local biasing which has appeared in the literature. In the barrier crossing model, derivative
terms appear naturally for a narrowly selected halo sample, since this case is obtained from
the mass-weighted case (which does not contain derivative terms) by differentiating with
respect to halo mass.

Finally, even in the mass-weighted case, there is a difference between the Hermite poly-

nomial expansion

On() = )" op(x) + o (M)H, (5M—(w)> (3.58)

g
n>2 M

and a power series expansion of the form

At first sight, the two may appear equivalent: if both series are truncated at the same order
N, then we can rearrange coefficients to transform either series into the other (since both just
parametrize an arbitrary degree-N polynomial). However, when we write the power series
expansion (3.59)), we are assuming that the values of the low-order coefficients by, b, - - -
are independent of the order N at which the series is truncated. This means for example
that in a Gaussian cosmology, the matter-halo power spectrum Py, (k) = (by + 303,b3 +
150%,b5 + -+ ) Pum(k) depends on where the series is truncated. In contrast, the Hermite
expansion is more stable: P, (k) is always equal to béw W Pum(k), regardless of how
many terms are retained in the series. Note that the barrier crossing model has a convergent
Hermite polynomial expansion , but cannot be sensibly expanded as a power series in
dnr, since the Heaviside step function ©(dy;/0n — d.) is not an analytic function of d,,.

In summary, the barrier crossing model is mathematically equivalent to a specific version
of the local biasing formalism in which the following choices have been made: we linearly

evolve the density field and smooth it at mass scale M; we include higher cumulants ps, p3, - - -
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in the density field, but not additional fields such as the potential ®,; derivative terms appear
in the narrow mass bin case; and we use a Hermite polynomial expansion in d,; /0y rather
than the power series expansion. Other variants of the local biasing formalism exist in the
literature, and we are not claiming that our choices are optimal (in the sense of producing
best agreement with simulations); the purpose of this section was simply to point out which

set of choices is equivalent to the barrier crossing model.

3.5.2 Peak-Background Split

The “peak-background split” is a formalism for modeling halo clustering on large scales,
in which one relates large-scale modes of the halo density field d,, to large-scale modes of
fields whose power spectra can be calculated directly. For example, the PBS formalism was
applied to an fxr, cosmology in [21]. On large scales, k < R}, one can argue that the halo

density is related to the linear density field § and the Newtonian potential ® by

0u(k) = byd(k) + FruBr0(k) | (3.60)

where b, is the usual Gaussian bias, and ff = 20Inn;,/0lnos. Using this expression, it
is easy to show that the large-scale bias is given by b(k) = by, + fxr.Br/c(k), and is non-
stochastic. For additional examples of the PBS formalism applied to non-Gaussian models,
see [24, 23, [4]. In this section, we will show how the PBS formalism generalizes to an arbitrary
non-Gaussian model, and give a simple proof that this generalization is equivalent to the
barrier crossing model. We will work out in detail the case of a mass-weighted halo sample;

the narrow mass bin case follows by differentiating with respect to M.

There is one technical point that we would like to make explicit. We want to generalize
the peak-background split formalism so that it applies to an arbitrary non-Gaussian model,
parametrized by the N-point correlation functions of the initial Newtonian potential ®. As

an example, consider the 7y, model from §3.4.3] with constituent fields ¢,v. The PBS
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analysis of this model has been worked out in [24] [4] and requires keeping track of the long-
wavelength parts ¢, 1, of both fields, in order to correctly predict non-Gaussian stochastic
bias on large scales. (Intuitively, multiple fields are needed because we need to keep track of
long-wavelength density fluctuations and long-wavelength variations in the locally measured
small-scale power, and the two are not 100% correlated in the 7y, model.) This raises
a conceptual puzzle: how would we get stochastic bias if we were just given correlation
functions of the single field ®, rather than a description of the 7y, model involving multiple
constituent fields? As we will now see, we must extend the PBS formalism by introducing
additional fields which correspond to the locally measured small-scale power, small-scale
skewness, kurtosis, etc. These fields are precisely the quantities po, p3,- -+ which appeared
earlier in our series expansion in This will allow us to connect the PBS formalism with

the barrier crossing model (and in fact prove that the two are mathematically equivalent).

Consider a large subvolume of the universe containing many halos, but over which the
long mode is reasonably constant, and let (- ), denote a spatial average over the subvolume.
Let us assume that the halo number density (ny), in the subvolume is a function of the
one-point PDF of the underlying dark matter field d,; (when linearly evolved and smoothed
on the halo scale). For weakly non-Gaussian fields, the one-point PDF in each subvolume
can be characterized completely by its mean (d,/),, variance (o%;),, and higher cumulants
(kn)e = ((6%)c/0)e for n > 3. Therefore we can write (ny); = nn((dar)e, (03)e, {(Kn)e})-

Taylor expanding to first order in these parameters, we get

_ O0lnny, O0lnny, 9 9 =, dlnny
(nh)f = Np <1 + m ((SM)Z + a(o_—%/f)g((UM)z - UM) + 2 a(lin)g (K,n)g> . (361)

Here, we have used the notation (0%,), to denote the variance of d,; restricted to the subvol-

ume, and o3, to denote the global variance. To make contact with our previous notation, note
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that ((03,)e — 0%;) = 03;(p2)e and (k) = (pn)gﬁ Making these substitutions in eq. (3.61),

we get
O0lnny,

(On)e = 8(6M>e(5M)£ —l-OMg(lnn)h p2)e Z alnn)h (Pn)e - (3.62)

Since this equation applies when taking the subvolume average (- ), over any large subvolume,

it also applies to any large-scale Fourier mode:

k-0 Olnny 8lnnh Jlnny
Oulk) = o (k) + 03— Z e

pu(k) . (3.63)

Let us compare this expression with our series representation of dy, in the barrier crossing

model:

on(k) = bYW or (k) + > an(M)pa(k) . (3.64)

n>2
The form of the two series representations is the same, but the coefficients appear to be
different. In the barrier crossing model, we have the following explicit formula for the

coefficient a,, (M) of the n-th term in the series:

671/2/2 (v
ozn(M):\/z Hooalve) (3.65)

erfc(f ve)  nl

whereas in the PBS derivation, «, is given by a suitable derivative of the halo mass function:

8lnnh Jlnny

forn>3. (3.66)

Kp

If we assume a Press-Schechter mass function, then one can evaluate the mass function
derivatives in the above equation using the machinery from [I5]. The result agrees precisely
with the explicit formula (3.65). Therefore, the barrier crossing model and the generalized

PBS formalism with fields ps, p3, - - - are formally equivalent, but only under the assumption

5The identity (pn)e = (kn)e holds for n < 5, but has non-linear corrections for n > 6. For example,
(pe)e = (k6)e + 10(k3)?. We have neglected these non-linear corrections since eq. (3.61)) is an expansion to
first order anyway.
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of a Press-Schechter mass function (note that this assumption is “built in” to the barrier
crossing model).

If we relax the assumption of a Press-Schechter mass function, then the barrier crossing
model and the generalized PBS formalism can both be written as series expansions with the
same general form, but make different predictions for the coefficients a,,(M). One can ask
which prediction agrees better with N-body simulations. In [23], the two predictions for
a3 were compared with simulations in the context of the gn;, model. It was found that the
PBS prediction is exact (within the ~ 1% statistical error of the simulations) if both
the bias and the mass function derivative (01nny/0ks) are evaluated numerically from the
simulations. The barrier crossing prediction is an approximation: although it is based
on an exact calculation within the barrier crossing model, this model is an approximation
to the true dynamics of an N-body simulation. The approximation works reasonably well
for large halo mass but breaks down for low masses, motivating the use of fitting functions
for practical data analysis. It is natural to conjecture that the same qualitative statements
will be true for the «,, coefficients with n > 3, but we have not attempted to verify this with
simulations. (Note that no fitting function is necessary for ay, since the relation Sy ~ 26.b,
holds to &~ 10% accuracy in N-body simulations.)

In summary, the barrier crossing model is closely related to the PBS formalism, appro-
priately generalized to an arbitrary non-Gaussian cosmology by introducing additional fields
P2, P3, -, plus the additional assumption of a Press-Schechter mass function. The barrier
crossing model is analytically tractable (e.g. one can derive closed-form expressions for the
coefficients a,,(M) and (,(M)), and usually a reasonable approximation, making it very
useful for analytic studies or forecasts. However, for data analysis, it may be necessary to
go beyond the Press-Schechter approximation by replacing the closed-form expressions for

coefficients such as a,, (M) with their PBS counterparts measured from simulations.
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3.6 Conclusions

In this paper, we have demonstrated the precise mathematical relationship between barrier
crossing, peak-background split and local biasing. We first introduced a Hermite polyno-
mial expansion of the halo density contrast dy, in the barrier crossing model: eqs.
and . We showed that this allows a computationally efficient way to calculate the
clustering power spectra P, and P,,. Moreover, the series expansion makes the formal
equivalence of the various halo modeling formalisms very transparent. First, it automati-
cally takes the form of a local biasing model, in which the non-Gaussian and linearly evolved
density contrast is expanded in Hermite polynomials. Second, it provides a very natural
connection between barrier crossing and peak-background split. To make this relationship
manifest, we generalized the PBS formalism so that it can be applied to the most general set
of non-Gaussian initial conditions, parametrized by the N-point functions of the primordial
potential. This extension of PBS involves additional fields which correspond to the locally
measured small-scale power, small-scale skewness, kurtosis, etc. Mapping those fields to fields
in the Hermite polynomial expansion of the barrier crossing model, we showed the close re-
lationship between PBS and BC. Finally, although in this paper we have concentrated on
computing power spectra, our series expansion should also be useful for analyzing the effects

of primordial non-Gaussianity on other clustering statistics, such as the halo bispectrum [2].
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3.7 Appendix: convention on Hermite Polynomials

In this paper, we have used the probabilists” definition of Hermite Polynomials

dn
H,(v) = (—1)”6”2/256*'/2/2 : (3.67)

satisfying the recursion relation

H,1(v) =vH,(v) — H, (v) (3.68)

n

and the orthogonality condition

oo 21

/Oo dv \/1_€V2/2 H, (v)H,(v) = m!op, . (3.69)

For reference, we list some of the low-order Hermite polynomials

Ho(v) =1, (3.70)
Hi(v)=v, (3.71)
Hy(v) =v*—1, (3.72)
Hs(v) =1v* —3v, (3.73)
Hyv)=v'—62+3. (3.74)
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We have made use of the following integral

1 1
1 [ 1 serfe(—=v, n=>0
—' dv \/Te—l/2/2 Hn(lj> = 2 (ﬁ ) ) . (375)
n. iy
Ve T %—Lgﬂe /2 Hy 1 (1) n=>1
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Chapter 4

Using Large Scale Structure to

measure fyr,, gy, and TN

4.1 Abstract

Primordial non-Gaussianity of local type is known to produce a scale-dependent contribution
to the galaxy bias. Several classes of multi-field inflationary models predict non-Gaussian bias
which is stochastic, in the sense that dark matter and halos don’t trace each other perfectly
on large scales. In this work, we forecast the ability of next-generation Large Scale Structure
surveys to constrain common types of primordial non-Gaussianity like fxr,, gnr, and 7wy, using
halo bias, including stochastic contributions. We provide fitting functions for statistical
errors on these parameters which can be used for rapid forecasting or survey optimization.
A next-generation survey with volume V = 25h73Gpc?, median redshift z = 0.7 and mean
bias by, = 2.5, can achieve o( fx1) = 6, o(gnr,) = 10° and o(7nr,) = 10? if no mass information
is available. If halo masses are available, we show that optimally weighting the halo field in
order to reduce sample variance can achieve o(fyr) = 1.5, o(gnL) = 10* and o(7n) = 100
if halos with mass down to My, = 10" A~'M, are resolved, outperforming Planck by a

factor of 4 on fyr, and nearly an order of magnitude on gy, and 7np,. Finally, we study the
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effect of photometric redshift errors and discuss degeneracies between different non-Gaussian

parameters, as well as the impact of marginalizing Gaussian bias and shot noise.

4.2 Introduction

The study of the statistical properties of the primordial fluctuations beyond the power spec-
trum has enormous constraining power on inflationary models. While single field slow roll
inflation predicts Gaussian fluctuations [51l, [52], for which all of the information lies in the
primordial power spectrum, a wealth of alternative models (in particular multifield models)
can produce detectable non-Gaussianity.

At the time of writing the best constraints come from measurements of the Cosmic
Microwave Background radiation (CMB) [2], I]. However these measurements are already
close to being cosmic-variance limited since the CMB is produced on a two dimensional
surface, and small scales are suppressed by Silk damping (although future measurements of
E-mode polarization may improve statistical errors by a factor ~ \/5)

With the ability of extracting 3D information and smaller scale modes, Large Scale
Structure (LSS) has the potential of soon reaching and improving CMB constraints. The
simplest forms of primordial local non-Gaussianity have been shown to leave a very distinctive
imprint in the halo power spectrum, in the form of a scale-dependent bias proportional to
k=2 [24, 25]. This has been recently generalized [42, [6, [5] to arbitrary inflationary models.
In some multifield models, non-Gaussian halo bias can be stochastic: the halo and matter
fields are not 100% correlated on large scales [37, [0, 41]. This is an important observational
signature which can be used to discriminate between models which do and do not predict
stochastic bias.

Analysis of existing LSS datasets yield constraints that are comparable to the ones from
WMAP [31], 28,32, [13], 43, 47, [46], 48], with almost all of them being limited by spurious large-

scale power due to systematics (extinction, stellar contamination, imperfect calibration, etc.
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[26], 27]). Recently developed techniques such as mode projection and extensions [20], 28|, 29]
30] or weights method [31], [32] are very promising ways to reduce the impact of systematics.

The k=2 scaling makes the signal largest on the very largest scales, which are affected by
cosmic variance. In [7, 8, [I7], it was observed that cosmic variance may be partially cancelled
by splitting the sample in bins of different halo mass, and taking a linear combination of
halo fields such that the Gaussian bias terms (b,d,,) nearly cancel, but non-Gaussian bias
terms of the form (bygd,,/k*) do not cancel. A related idea for reducing statistical errors,
proposed in [I8],[19], is to reduce Poisson variance by taking a different linear combination of
mass bins (essentially mass weighting) whose Poisson variance is lower than the naive (1/n)
expectation due to mass conservation.

Previous work [9 12, [16], 8, 11l [14], 15, 10, [45] has used the Fisher matrix formalism
to forecast constraints on primordial non-Gaussianity through halo bias. Here we revisit
the Fisher matrix calculation and provide analytically motivated fitting functions that are
intended to be convenient for rapid forecasting or survey optimization. We study some
issues which are observationally relevant like the impact of marginalizing Gaussian bias and
shot noise, and the impact of photometric redshift errors. We then extend the multi-tracer
method of [8 [T1], 14, 49] to include the effects of stochastic bias and to distinguish fyr,
from gnr,, which are completely degenerate when only a single tracer population is available.
Finally, we discuss separating the non-Gaussian parameters fxr, gnp, and 7ni, clarifying
results in the literature and giving quantitative forecasts.

This chapter is organized as follows: In Section [£.3] we introduce our notation and formal-
ism, as well as discuss possible consequences of the recent claims of the BICEP2 collaboration
about the amplitude of primordial tensor modes. The single-tracer case is treated analyti-
cally and numerically in detail in Section [4.4] while in Section [4.5] we discuss the effect of
marginalization and redshift errors on our forecasts. In Section [4.6| we show how constraints
can be improved by using mass information. The (partial) degeneracy between models is

discussed in Section [4.7] followed by discussion and conclusions in Section [4.8|
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4.3 Definitions and notation

4.3.1 Primordial non-Gaussianity and Large Scale Structure

The statistical properties of the primordial potential ®(k) = (3/5)((k) can be completely

characterized by its N-point connected correlation function, which we will denote by £<(DN):
(D (k1) ®(ky) - - B(kn))e = (20)0p (k1 + ko + - + k) E (Ky ko, . ky) . (41)

It is customary to define the potential power spectrum Py (k) = 59(1«:, —k) and the dimen-
sionless power spectrum AZ(k) = k3 Py (k) /272
We shall consider a model with primordial bispectrum and trispectrum parametrized by

two parameters fyr, and 7w, which here we will assume to be independen‘dﬂ

&5 (ky, ka, ks) = fx[Po(k1)Po(ky) + 5 perms.], (4.2)

ED (ky, ko ks, ka) = 2(2) 7w [Po (k1) Po (ko) Po(|ky + ks|) + 23perms.] ,  (4.3)

This can be realized for example in the curvaton model [36, 6], [37], in which the non-Gaussian
gravitational potential ® is expressed in terms of two uncorrelated Gaussian fields ¢ and 1,

with power spectra that are proportional to each other

O(z) = ¢(x) +(x) + fun(l+10)* (P*(2) — (¥?)) | (4.4)

where fx, and II = P,(k)/Py(k) are free parameters. In this case, we can check that
T™NL = (g fnp)?2(1 +10), so that fyr, and 7yp, are independent parameters.

The matter overdensity d,,(k, z) is related to the primordial potential ®(k) through the
Poisson equation,

om(k, z) = alk,z)P(k) . (4.5)

1Tt can be shown on general grounds that they have to satisfy the Suyama-Yamaguchi [34, 35] inequality
TNL > (g fx1)?. Specific theories of inflation will predict particular relations between fxr, and 7.
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Here we have defined «(k, z) by

22T (k)

oh2) =30 1

D(2) (4.6)

where D(z) is the linear growth function normalized so that D(z) = 1/(1 + z) in matter
domination (so that D(z) ~ 0.76 at z = 0) and T'(k) is the transfer function normalized to
1 at low k.

It can be shown that in presence of non-zero fyi, or 7nr,, the halo matter and halo-halo

power spectra acquire a scale dependent bias on large scales [42, [6l, 37]:

th(/{?, Z) = <bg + fNL%) Pmm(k, Z) (47)
2
Phh(k'7 Z) = (b; + 2bngLa<ifZ) + %TNLa(lffz)g) Pmm<k7 Z) + Nt (48)

Here, b, is the Eulerian halo bias, and ; is a non-Gaussian bias parameter which can be
expressed exactly as a derivative of the tracer density n with respect to the power spectrum
amplitude: f; = 201Inn/0In Ag. Throughout this paper, we will use the alternate expression
Bf = 20.(by — 1), which is exact in a barrier crossing model with barrier height 6, and is a
good (= 10% accurate) fit to N-body simulations. We will take d. = 1.42, as appropriate for
the Sheth-Tormen [33] halo mass function. The 1/n.s term enters as a Poisson shot noise
term in Py, due to the discrete nature of tracers. The value of neg is only approximately
equal to the number density of tracers n and marginalization over a constant contribution
to Py will be discussed in Section (4.4}

We note that if 7v, > (£fx1)?, then Eq. implies that halo and matter fields are
not 100% correlated on large scales even in the absence of shot noise. This phenomenon is
known as ‘stochastic bias’.

Another model that we will study is one that is cubic in the potential:

O(z) = ¢(x) + g, (¢°(x) — 3(¢%)d()) (4.9)
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Here it is easy to show [44] [42] 6, 5] that for low k:

Pon(k,z) = (bg + gNL%) Pom(k, 2) (4.10)
ﬁ7 2 1
Pun(k,2z) = (bg +gNLWgz>) P (K, 2) + — — (4.11)

where 8, = 30Inn/0fxy, is the derivative of the tracer density with respect to fxr. In
this case, the barrier crossing model prediction for 8, does not agree well with N-body
simulations, and for numerical work we use fitting functions for /5, from Section 5.3 of [44].

Currently the best limits on fyr, and 7yp, are from the Planck satellite [1], which constrains
(local) fnp, = 2.7+ 5.8 and 7w, < 2800 (95% CL). Regarding gnr,, an independent analysis
of WMAP9 data has found gnr, = (—3.3 +2.2) x 10° [23], while the Planck Fisher matrix
forecast is o(gn1,) = 6.7 x 10* [23].

Throughout the paper we will assume a flat ACDM model as our fiducial cosmology
with parameters from the Planck (2013) data release: ,,h* = 0.14, 2, = 0.69, h = 0.68,
In(10'°A,) = 3.09, 7 = 0.09 and n, = 0.96.

4.3.2 Fisher Matrix analysis

The Fisher information matrix for a multivariate random variable = which depends on pa-
rameters {0, } = {/NL, TnL, gnL} through the conditional likelihood L(7|6,,) is given by

B 9?In L(7]0)

where the expectation value is taken over random realizations of 7 for a fixed fiducial set of
parameters 6.
We specialize Eq. (4.12) to the case where m = (§1(k),- - ,dn(k)) represents all k-modes

of a set of Gaussian fields d;, and the N-by-N covariance matrix C;j;(k) = Fj;s,(k) depends
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on the parameters 6,. In this case, we have:

log £(610.) = > (—%Tr log C'(k) — %@(k)q}l(k)éj(k)) (4.13)

k

which leads to the Fisher matrix:

1 oC oC
Fs=) -Tr|Cc! —C! — 4.14
of Zk: 2" {C a0, © 69/5} (4.14)

and every term is evaluated around the fiducial cosmology (usually fxi, = ™~ = gnp = 0).
The (marginalized) error on 6, is given by o, = (F _1)(1)({3 (no sum), while the error on
0, fixing all other parameters to their fiducial values is 0, = (Fa.o) /2 (again no sum).
Similarly, the covariances are given by Cov(fa, 05) = (F~1)as.
For a 3D Large Scale Structure survey with volume V', we replace the mode sum ), by:
3 kmax 2
; — V/% = V/k % (4.15)
where Ky, = 27/ V173 is the fundamental mode and k. will be specified in context.
In the single-tracer case where the random variable is the halo overdensity 9y, the fidu-
cial covariance is the 1-by-1 matrix C(k) = b Ppm(k) 4+ 1/n and the derivative terms are

(assuming that 1/n.g is approximately independent of the non-gaussian parameters):

6

— 9% - - o —9) P (416
O fxL Ya(k, 2) OTNL a(k, z)? JgnL Ya(k, 2) (4.16)

aC By ac (5)2 oy aC B,

4.3.3 A comment on tensor modes

Recent advances in sensitivity of CMB polarization experiments have allowed the detection
of B-modes at degree angular scale by the BICEP2 collaboration [3]. If the amplitude of the

signal is entirely attributed to primordial tensor modesﬂ it would correspond to a tensor-to-

2At the time of writing, it is unclear what fraction of the signal is due to galactic foregrounds [53} [54].
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scalar ratio r = 0.270 0. In this section, we comment on the implications of a detection of r

on local primordial non-Gaussianity.

For simplicity, assume that the inflaton produces Gaussian scalar curvature perturbation
Ging = (5/3)¢, and that there is a second ‘curvaton’ field contributing to the scalar pertur-
bations by an amount (.., but that is not driving inflation and is allowed to generate large
non-Gaussianity.

If the inflaton and curvaton are uncorrelated, the total scalar perturbation is Aétat =

A2

(yin

5+ AZ - By definition of 7 this is:

2 2
Ag,tot - ﬁ - § (HI> (4.17)

T r \ 27

Here A? = 8(H;/27)? is the tensor power spectrum and Hj is the Hubble parameter during

inflation. The portion produced by the inflaton is

1 (Hp\?
A2, o= — | — 4.18
Ginf T 9¢ ( 27 ) (4.18)
where € = —H;/H? is one of the slow roll parameters. This means that the fraction of the
scalar power generated by the inflaton is
A2, r

2 — —¢inf
= — 4.19
@ A, 16e (4.19)

Since slow-roll inflation requires € < 1, or more typically € ~ 0.01, a detection of 7 ~ 1072
or larger would imply that Q% is not < 1, i.e. a sizable fraction of the scalar perturbations
must be produced by the inflaton (see also [4]). Detectable non-Gaussianity is still possible
in this model, but requires (modest) tuning, since the power spectra of (;,f and (., must

be comparable. A sharper conclusion we can draw is that 7y, cannot be close to its minimal

2
TNL = (ngL) 1 —1Q2 (4.20)

value (£ fy1,)?, since
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in this model. Rephrasing, if r > 1072, an appreciable fraction of the non-Gaussian halo

bias must be stochastic.

4.4 Single tracer forecasts

In this Section, we forecast fyi, and 7ni, constraints obtained without use of multi-tracer
techniques. The survey will be characterized by (V, 2, by, 1/n, kmax ), Where b, represents the

mean (number weighted) bias of the sample. Our model for Py, (k) is the following:

1
Pk, 2) +— (4.21)
n

25 B
Pat2) = (1 + 2o 5+ e

where we have taken the fiducial value of n.g to be n. First of all we note that fyr, and
7nL are not (completely) degenerate in Py, since they generate a different scale dependence,
so it’s possible to distinguish them even with a single tracer population. We defer further
discussion about correlations between parameters to Section [4.7]

From here we can calculate a 4-by-4 Fisher matrix whose rows correspond to the param-
eters (fxL, 7L, by, 1/neqr), and compute statistical errors on each parameter, with various

choices for which other parameters are marginalized.

4.4.1 Some definitions

Since the ® power spectrum is nearly scale invariant, we can write k> Pp(k) = Agl(k), where
I(k) = (k/ko)™~!. The dimensionless coefficient Ag is given in terms of the primordial
curvature perturbation amplitude by Ag = (187%/25)AZ(kg). For our fiducial cosmology
based parameters from the Planck 2013 release, we find Ap ~ 1.56 x 1078, measured at
ko = 0.05 Mpc1.

We define k., the scale of matter-radiation equality, to be (aH ) evaluated at a = Q, /.
Numerically, ke, ~ 0.0154h Mpc™!.
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We will express our final results in terms of a comoving distance Ry(z) and comoving

tracer number density ny(z) defined by:

2D(z) :a(k,z)
30, HE k2T (k)
no(z) = (AeRo(2)"keq)™" (4.22)

R0(2)2 =

The length Ry(z) is equal to the comoving Hubble length 1/(aH), times some z-dependent
factors of order unity. A survey with tracer density n is sample variance limited at the
Hubble scale if (n/ng) > keqRo ~ 50, and Poisson limited on all scales if (n/ng) < 1.
Numerically, Ry(z) = 3214 h~' Mpc and ng(z) = 3.87 x 107® h3 Mpc™ at z = 0.7.

4.4.2 Factoring the Fisher matrix

Let F,p denote the 4-by-4 Fisher matrix with parameters ( fxr,, 7w, by, 1/n). In this Section,

we will show that F' and its inverse can be factored in the form

b2
<Simple function of {V/ b, z}) X (Complicated function of {kmin, Emax ng_{i)}) (4.23)
0

This simplifies attempts to find a fitting function, since we can fit the two factors sepa-
rately. Since the inverse Fisher matrix also factors, this simplification also works for bias-
marginalized statistical errors.

To derive the factorization (4.23)), write the Fisher matrix as:

3
Faﬁ _ Z/ d°k (8aPhh(k,z))(85Phh(k,z)) (424)
2 (271')3 Phh(k, 2)2
Now rewrite the halo-halo power spectrum in the form:
2 _ 72 4 2 no(2)
(K, 2) = by Ag Ro(2)" | KT'(k)“I(k) + keqm (4.25)
g
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and note that the parameter derivative 0, FPu,(k, 2) can be factored as f,(2)ga(k), where «

denotes any of the parameters { fxr,, 7wr, by, 1/n}, and the quantities f, g are defined by:

45,b,(by — 1) Ag Ro(2)? k=T (k)1 (k)
2452(h, — 1) Ag k=3I (k
fa(z) = s640c0s =1 ga(k) = " (4.26)
2b, A Ro(2)* KT(k)?1(k)
1 1

We plug the above expressions into the Fisher matrix (4.24]) to obtain:

VAGRE L 2BABRGS
oo = SHBRG O TV RGRE 421

where we have defined

P 9o (k) g5 (k)
af / (27T)3 [kT(]g)2](k) + keqno(z)/(bgn)]Q (428)

Since F),5 and its inverse only depend on {Kmin, kmax, b;n/n0(2)}, we have now derived the
factorization (4.23)).

It will be convenient to specialize the above factorization to the cases a = § = fxr, and
a = = 7n. If we do not marginalize either b, or 1/n (and set 7w, = 0 when forecasting
fxi and vice versa), the statistical errors on fyr, and 7y, are given by:

V2 b,
40, by — 1

o(TnL) = (g)2£<bgbil)21%0(z)4v1/2(F;NL)1/2 (4.29)

RQ(Z)2V_1/2(F/ -1/2

fNL)

U(fNL) =
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where:
/
Ff NL

/
TNL

/ Pk ( YT (k)1 (k) )2
(27)3 \ KT (k)21 (k) + keqno(2)/(b2n)

Bk k=31 (k)
(2m)? (

KT (k)21(k) + k‘eqno(Z)/(bgn))

(4.30)

To marginalize over b, and/or 1/n, we would replace matrix elements of F” in Eq. (4.29) by

matrix elements of an appropriate inverse Fisher matrix.

4.4.3 Sample Variance and Poisson limits; qualitative behavior

As an illustration of the factorization in the previous Section, let’s derive approximate ex-

pressions for o( fyr.), o(7n1) in the sample variance dominated limit n/ng(z) > keqRo(2) and

Poisson dominated limit n/ng(z) < 1, without bias marginalization (and setting ns = 1 for

this subsection). First we take limits of Eq. (4.29)), obtaining:

/
FfNL

F/

TNL

b (SVD)
9 2
ot () )
ok (SVD)
2
skt (s ) D)

(4.31)

where we have defined the dimensionless number Z = k;]ll [ dkT(k)? and SVD and PD

stand for ‘Sample Variance Dominated” and ‘Poisson Dominated’ respectively. Plugging

into Eq. (4.29) to get parameter errors, and taking kym = 27/V1/3, we get the following

approximate limits:
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o(fa) — 27708 ( V)3)2/3 (SVD)

by —1 \ Ro(z
o(rnn) — 248 (bgbj 1)2< Ro‘é)3>_4/3 (SVD)

-1

306 (bgbj1>2(keq30(z)) (%)1 (n?(Z)) (PD)  (4.32)

As we expected, the statistical errors are independent of tracer density n in the sample

variance limited case, while they scale as 1/n in the Poisson limit. This behavior becomes
very clear in the numerical results shown in Figure 4.1

We also notice the errors often depend on volume in a way which differs from the usual
V~1/2 scaling. This happens when the k-integral for the Fisher matrix element diverges at
low-k, so that most of the statistical weight comes from the survey scale ky, = 2m/V/3.
This divergence always occurs for 7nr,, so the 7y, constraint is always dominated by the
largest-scale modes in the survey (i.e. a few modes). For fyi, this depends on the level of
Poisson noise; in the sample variance limit the statistical weight is dominated by the largest
scale modes, but in the Poisson dominated limit the statistical weight is distributed over a
range of scales between kpyin and keq.

We also note that in the Poisson dominated case, the last line of (4.32)) can be rewritten:

(Poisson dominated) (4.33)

) (kea Ro (=) rof2))—

O'(TNL) = 30.6 ( W

by — 1

i.e. o(7nr) only depends on n,V through the total number of tracers (nV') in the Poisson-
dominated case.
The analytic results in this subsection are approximate (we have assumed ny = 1 and

T(k) = 1) and shouldn’t be used in forecasting. In Figure [4.1| we show the numerical results
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Figure 4.1: Statistical errors on fy, (bottom) and 7wy, (middle) and gnp, (top) for varying
tracer density n, for our fiducial survey with volume V = 25 h=3 Gpc?, redshift z = 0.7,
tracer bias b, = 2.5 and maximum wavenumber kyax = 0.1 h Mpct. The ‘marginalized’ case
(dashed lines) refers to marginalization over Gaussian bias and a 20% Gaussian prior on 1/ng
around the fiducial value 1/nes = 1/n. When forecasting each parameter { fxr, 7w, gnr}s
the other two parameters are set to zero. Constraining gyp, is discussed in Section [4.4.5|
while degeneracies and their covariance are discussed in Section 4.7]

and in the next subsection we give fitting functions which work at the few percent level and

include the effect of non-trivial ngy and T'(k).

4.4.4 Fitting functions

Motivated by the analytically discussion of the previous Section, here we present fitting func-
tions for o(fxr,) and o(7n1,) as functions of (V) z,b,,n), while fixing all of the parameters of
the background cosmology to the Planck 2013 values, as explained in Section Moreover,
we take ke = 0.1h Mpc~! throughout.

As a first step, we define the quantity

1.17 x 10-5h3 Mpc ™3
120
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To make our fitting functions self-contained, we note that the linear growth factor D(z) is

well fit by [50]:

0 ()7 — Qp(2) + (1 + %Qm@)) (1 + %QA@))] T sy

where Q,,(z) and Q(z) are defined by

B (1 + 2)3
COp Q1+ 2)3

QA F Q1+ 2)3

Qn(2) On(2) (4.36)

Our fitting functions for o(fxr) and o(mn1) will be sums of sample variance and Poisson

terms as follows:

o(fze) = os(fan) + op(fai) o(mzi) = os(mn) + op(7e) (4.37)

Note these are just fitting functions, and we are making no claims about the true variance
decomposing into separate contributions. Following the analytic results of Section [4.4.3] we

fit the individual terms with the functional forms:

os(fxn) = As D(2)

bg v —2/3+eg+3ps In(V/V)
by, —1 \ Vo

1% —1/2+ep+3up In(V/Vo)
on(fss) = Ap D(2) )

r-! —
bg—l (TL,Z) (%

b 2 Vv —4/3+€g+3 s In(V/Vo)
) = 4620 (525) ()
9

b 2 v —1+ep+3plp In(V/Vp)
op(mnn) = Ap D*(2) (b i 1) I (n,z2) (Vo> (4.38)
9

where Vy = 5h=3 Gpc® and values of the remaining parameters depend on whether we are
marginalizing over bias or not. As in the previous discussion we will consider the two cases:
(i) when no marginalization is performed, and (ii) when we marginalize over the gaussian

bias b, and assume a 20% Gaussian prior on the shot noise 1/n.s. Best-fit parameter values
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in these two cases are given by:

for fxr, : (AS,ES,MS,AP, GP,MP) =
(10.7, 0.096, —0.009, 33.7, —0.039, 0.012) if by, nes unmarginalized
(15.9, 0.002, 0.005, 54.2, —0.102, 0.037) if by, nes marginalized
for i = (A, €, pisy Aps €ps fip) =
(8477, 0.098, —0.037, 30405, —0.013, 0.000) if b,, nes unmarginalized

_ (4.39)
(8493, 0.089, —0.030, 30830, —0.035, 0.015) if b,, ney marginalized

This completes the description of our fitting functions for o(fxr) and o(7np). With the
above definitions, we find that our fitting functions are accurate to better than 10% for
0.5 < (V/h™3Gpc®) < 50 and arbitrary (b,n). (Note that k.. = 0.1 has been assumed
throughout; we will study the effect of varying k.« in Section )

From this we read off the following: A sample variance limited survey with comoving
volume V' = 25h% Gpc® and b, = 2.5 has statistical errors o(fxr,) ~ 6 and o(mr,) = 1000,
comparable to Planck. Therefore, the only way to improve statistical errors beyond Planck

is to measure a larger volume or to use a multi-tracer analysis, as described later.

4.4.5 Forecasts for gyy,

As we have briefly mentioned in Section [£.3] the large scale bias in presence of primordial

gn is approximately given by

1

Phh(k) = (bg + gNL%) Pmm(k) + E s (440)

where 5, = 30Inn/0fxr. In [44] we have found a fitting function for f,:

By(v) ~ ks { — 0.7+ 14(v — 1)% + 0.6(v — 1)3] - dli“;_l <” _2’/—1> . (4.41)
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where:

v=1[0:(bg— 1)+ 1]1/2 , k3 =0.000329(1 + 0.09z) bgo-og 7
d/ig

T = —0.000061(1 +0.222) b, % (4.42)
no

with 6. = 1.42. Comparing Equation (4.8) for a ‘pure’ fxi cosmology (i.e. one in which

™ = (ngL)2>, with Equation (4.40)), we find that the effect of gn1, on halo bias is the same

as the effect of fxi, = (8/By)gn1, and therefore they are indistinguishable with a single tracer
population. In particular, if we want forecasts on the detectability of gy, with a single tracer
population assuming fxr, = 0, we just write o(gn1,) = (B/8y)0(fan) = (20.(b,—1)/By)0(fnr)
and use results from the previous subsection. Numerical results for our fiducial survey are
shown in Figure 4.1

As we will show in Sections 4.6 and multiple tracer populations with different mass
(or equivalently Gaussian bias), can allow us to distinguish between fyr, and gnp,, thanks to

the different dependence of the scale dependent correction on the Gaussian bias b,.

4.5 General considerations when constraining fyi, from

Large Scale Structure

4.5.1 How much do statistical errors degrade when marginalizing

bias and Poisson noise?

When analyzing data from a real survey, the values of b, and n.g must be measured together
with the non-Gaussian parameters, and it is important to understand the amount of infor-
mation lost in doing so. In this Section, we quantify this by forecasting statistical errors on
fxi and 7wr, when the parameters b, and (1/negs) are marginalized, and discuss our results

as a function of k..
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We first note that (1/neg) is only approximately equal to (1/n), where n is the number
density of tracers. In addition to the (1/n) term expected from Poisson statistics, there are
several effects which contribute constant power on large scales: non-linear galaxy bias, halo
exclusion [22], tidal tensor bias [20, 21], and contributions from the HOD. Throughout this
section, when we marginalize (1/nqg), we assign a Gaussian prior around the fiducial value
(1/n) with width equal to 20% of the value itself.

In Figure|4.2] we compare statistical errors on fy;, and 7y, in the cases with no marginal-
ization, or marginalization over b, and with a 20% prior on n.g. It is seen that marginalizing
b, can make a large difference in o(fyr), e.g. in the sample variance limited case with
Emax = 0.1h Mpc~!. This is because the non-Gaussian correction to the bias scales as
bna(k) ~ fau/(K*T(k)), with T(k) ~ k=21 (k/ke,) for k > keq. Hence, the non-Gaussian
part of the bias becomes nearly degenerate with the Gaussian bias b, for & > k.. For
7L, marginalization makes practically no difference and the statistical power increases very
slowly going to higher k.

Based on these plots, we note that statistical errors on fy;, and 7y, are approximately
saturated at kpax ~ 0.1h Mpc™!, if Gaussian bias is properly marginalized. Therefore we

take kmax = 0.1h Mpc™! as our fiducial value in this paper.

4.5.2 Redshift Errors and 3D — 2D projection

Most observational constraints on non-Gaussianity reported in the literature have made use
of projected angular correlation functions, rather than using redshift information. In this
Section we discuss the effect of projecting three-dimensional measurements into one or more
radial bins. This will quantify the information lost by 3D — 2D projection, and will also
indicate how accurate photometric redshifts must be in order to avoid losing information
relative to an ideal 3D survey.

We use a formalism which neglects curved-sky corrections, boundary effects, and redshift

evolution, but is self-consistent given these approximations. Consider a rectangular 3D box
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Figure 4.2: Forecasts on fy;, and 7np, as a function of maximum wavenumber k., in the
sample variance limited (top) and Poisson limited (bottom) regimes. Here V = 25h'Gpc,

z=10.7, and b, = 2.5.

with periodic boundary conditions, and treat one of the three dimensions as the ‘radial’

direction, and the other two dimensions as ‘transverse’. Let A | be the transverse area of the
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box, and let L be the length of the box in the radial direction. We divide our 3D survey
in Ny radial slices and project the 3D halo field onto the closest slice. The case Ny, = 1
corresponds to neglecting any redshift information (i.e. a purely 2D survey), while the limit
Npins — 00 corresponds to an ideal 3D survey with perfect redshifts.

Suppose that the halo field in the box is a 3D field d3p with power spectrum

Py (k) = (bg + fm%) P (k) + % (4.43)

where the Gaussian bias by, redshift, and number density n are assumed constant throughout
the box. We divide the box into N, radial bins and project the 3D halo field into Ny
two-dimensional fields 01, - - -, dn,,.. We then use the 2D Fisher matrix formalism to forecast
the statistical error on o(fxr,), and study the dependence of o( fxr,) on Npips.

For Fisher forecasting, we will need to compute power spectra P;;(l) of the 2D fields
0;. We will avoid using the Limber approximation since we will be interested in the limit
Npins — 00 in which the Limber approximation becomes arbitrarily bad (note that we are
making the flat sky approximation throughout, but the flat sky and Limber approximations

are independent). In real space, the 3D — 2D projection is given by

Nin Xi+L) /2Nbins
- / dx 3p(2,y, x) (4.44)
X

Ly

i—L||/2Nbins

where (z,y) are transverse coordinates, x is the radial coordinate, and y; is the central

x-value of the i-th bin. In Fourier space, the 3D — 2D projection is given by:

~ *dl, ~ I, L ,
51<l:m ly) = / 2_; 5z(lx7 lyv lX) sinc (;[—]J') GZlXXi (445)

[e.e]
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where (I,1,) is a 2D wavevector of modulus [ = (12 + l§)1/2 and sinc(x) = (sinz)/z. It
follows that the Nyi,s-by-Npins matrix of 2D projected power spectra is:

< dl ol LD\ g
Pi;(1) :/_ o P,?;’?(,/ZQ + li) sinc? (2;%—”) etix(i=x;) (4.46)

0o bins

We will compute 2D Fisher matrices to maximum wavenumber ., = 0.1 A Mpc™!, but
take the upper limit of the /, integral in Eq. (4.46|) large enough that the integral converges.

Note that the 2D Fisher matrix is given by

oP __, OP
-1 77 p-1 7"
Tr [P 0P 5 7 (4.47)

A [
Fo=_=
T | (2r)?

with P = P;;(l) given by Eq. .

In Figure we show the dependence of o(fx1,) on Ny, in both Poisson and sample
variance limited cases. We see that completely neglecting redshift information significantly
degrades the amount of information available; the statistical error on fyr, in a 2D analysis
(i.e. Npins = 1) is larger than the 3D case by a factor close to 3. However, binning in redshift
bins with with redshift spread Az ~ 0.1 or smaller is sufficient to capture almost all of the
3D information.

We can also comment briefly on the effect of photometric redshift uncertainties. Photo-
metric redshifts from a multi-band instrument such as LSST are several times smaller than
Az ~ 0.1, and therefore we expect that photometric redshift uncertainties should not sig-
nificantly degrade statistical errors on fyr,. A caveat to this analysis is that a small fraction
of catastrophic photometric redshift errors may add large-scale power; this case should be
studied separately. (For a different approach to the study of photometric redshift errors and

the closely related issue of redshift space distortions, see [16], 12].)
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Figure 4.3: Dependence of statistical error o( fxr,) on redshift bin width (Az), corresponding
to (from right to left) Nyws = 1, 2, 3, 5, 7, 10, 20, 50, and 100. The fiducial survey has
volume V' = 25 h™3 Gpc?, redshift z = 0.7 and bias b, = 2.5, with a cubic geometry assumed
and L = V13 Note that the rightmost point corresponds to a 2D
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4.6 Multi-tracer forecasts - Optimal Weighting

In this Section, we will consider multiple tracers with different Gaussian bias and show how
to combine them optimally for the best constraining power on primordial non-Gaussianity.
Here we will assume that all halos above some minimum mass M,,;, have been detected, and
use the halo model prediction (with Sheth-Tormen mass function) for the number density
and bias. Thus the parameters of our forecasts will be (V, z, Myyin)-

Following the formalism of []], we can divide the halo overdensity into N >> 1 mass bins
8, = (61,...,0n)T. The number of bins will be determined by the finite mass resolution
of the survey. Assuming halos to be locally biased and stochastic tracers of the underlying

density field, we can write

Sn=bd+e (4.48)

where € is the residual (Poisson-like) noise field, with zero mean and uncorrelated with the

matter density J. Here b; is the mean (number weighted) Gaussian bias of tracers in bin i:

b, — fMEbin sz;l_]T\;b.q(M) (4 49)
g dn :
fMEbin i AM 3
The halo covariance matrix C;;(k) = (37 (k)0,(k)) is
C(k) = (6,6]) = bb" P(k) + E (4.50)
where E;; = (e;€;) is the error matrix. This has been studied analytically and with N-

body simulations in several earlier papers (see for example [8, [19]). They find that E is
approximately scale independent on the range of k considered, and that the dependence on

fnL is pretty weak and will be neglected here.
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We will use the halo model prediction for E at low k, which has been shown to be a

pretty good approximation to N-body simulations [19] :E|

Ei; = (ei€ej) = ((6; — b:i6)(5; — b;9))
= (6:;0;) — b;(6;0) — b;(;0) + bibj<52>
(Sij M M, <7”LM2>

= Yy 4.51
n; 5 ]p T ( )

In the last line, we have taken the limit k& — 0 of the halo model predictions. Here we have

defined

dn
(nM?) = / dM d—MM2 (4.52)

Note that the two-halo contribution to E;; cancels entirely. The off-diagonal components
have a contribution from the one-halo term, while the on-diagonal components are a sum
of the usual Poisson-like term 1/n; and one-halo contribution. It is possible to construct an
estimator that weighs each halo bin optimally, which is going to be a compromise between
reduction of Poisson shot noise (which would correspond to pure mass weighing) and can-
cellation of cosmic variance. As shown in [7], the Fisher Matrix formalism already includes
these effects.

In Figure [1.4] we show forecasted statistical errors o( fxr), o(mn1) and o(gnr) from opti-
mal weighting, for varying minimum halo mass M,,;,. For high M,,;, we are in the Poisson
limited regime and the constraints from halo bias are not competitive with those from Planck.
As M,;, decreases, the statistical errors decrease rapidly, then plateau near M, ~ 5 x 103
h='Mg, then decrease more slowly.

This “sample variance plateau” region can be interpreted as the range of M,,;, where the
tracer density is high enough to be sample variance limited, but not high enough that sample

variance cancellation is effective. The sample variance plateau is important when thinking

3We find that our forecasts for o(fnr), o(gnL), o(7n1) in this section are nearly unchanged if we use the
Poisson approximation E;; ~ d;;/n; to Eq. (4.51)), except for a ~ 10% increase in the errors on the sample
variance plateau.
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about survey optimization. Once a survey is deep enough to reach the sample variance
plateau, further improvements in survey depth do not significantly improve constraints on
primordial non-Gaussianity, unless the improvement is large enough (2 3 magnitudes) to go
past the plateau. Pushing to lower M, < 4 x 10'2h~1 M, cancellation of sample variance
becomes effective with a moderate effect on fyp, or gy, and a much larger one on 7y, since
for the latter case, most of the signal-to-noise comes from the very largest scales, which are
the ones that are most affected by cosmic variance.

From Figure , we see that a future generation with V' = 25 h=3 Gpc? is competitive
with Planck if resolving halos down to M, ~ 10**h~1 M. In order to significantly improve
over Planck, either an increase in volume or a multi-tracer analysis with M, < 108¥h~1M,

are needed.

4.7 Separating fnr, gL, TNL

So far, we have studied statistical errors on the parameters fxr, gnr, 7nr individually, i.e. we
forecast the statistical error on each parameter assuming that the other two parameters are
zer(ﬂ In this Section, we ask the question: to what extent can the parameters fnr,, gnL, TnL

be constrained jointly?

4.7.1 Single tracer

Considering the single-tracer case first, it is clear that fyr, and gy, are completely degenerate,
since the clustering signature produced by fxi, # 0 is identical to the signature produced
by gn. = (B¢/By) fxr. On the other hand, there is some scope for separating fyr, and 7y,
with a single tracer, since the non-Gaussian bias has different scale dependence in the two

cases (fxp.k 2T (k)™ versus Tap kT (k)~?). We can quantify this by using the Fisher matrix

4This assumption is not strictly consistent for the case of fxr, since 7nr must satisfy the inequality
~L > (2fn1)? on general grounds. However, we find that o(mxr) > o(fx1)? for all forecasts considered
in this paper, which implies that assuming 7n;, = 0 when forecasting o(fx1.) is a good approximation to
assuming the ‘minimal’ value 7n1, = (% fn)?
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Figure 4.4: Statistical errors on fyi, (bottom solid curve), 7y, (middle solid curve) and gnr,
(top solid curve) in a multitracer analysis, with varying M,;, and N = 50 mass bins equally
spaced on a log scale. When forecasting a given parameter {fxL, 7L, gnL}, the other two
are set to zero. Here the volume is V = 25 h™3 Gpc?, the redshift z = 0.7 and kpax = 0.1 A
Mpc~!. Note the ‘sample variance plateau’ at My, ~ 3 x 103 h=*M,. The upper dashed
line shows the Planck Fisher forecast o(gnr,) = 6.7 x 10* from [23]. The middle dashed line
is the Planck o(7n1,) & 720, obtained by fitting a Gaussian to the upper part of the 7y,
posterior for Ly, = 50 (Figure 19 of [1]).

formalism to compute the correlation coefficient

F
fNL77-NL (453)
FfNLF

TNL

COTT(me 7'NL) = —

where the minus sign appears because the covariance matrix is the inverse of the Fisher
matrix.

An analytic calculation along the lines of Section 4.4.3| suggests that there should always
be a moderate negative correlation between fyr, and 7y, in the single-tracer case. Figure
shows the numerical results for our fiducial survey. Note that having to marginalize over b,

and 1/nes makes fnr, and 7np, more degenerate and harder to distinguish.
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Figure 4.5: Single-tracer correlation coefficient between fy, and 7wy, in the unmarginalized
case (top curve) and marginalizing over b, with a 20% Gaussian prior on 1/nes (bottom
curve). The results are shown for our fiducial survey with V = 25 h=3 Gpc3, z = 0.7 and
by = 2.5.

4.7.2 Multiple tracer

The multi-tracer case is more interesting since fyr, and gnp, are no longer degenerate due
to the different dependence of By and §, on halo mass (or equivalently on Gaussian bias).
Following Section we assume perfect measurements of all halos above some minimum
mass My, and use the Fisher matrix formalism to compute the correlation coefficients
Corr(fnL, ) and Corr(fyr, gnr). Numerical results are shown in Figure .

Let’s consider the fn;, — 71, case first. In the region with high M,,;, the tracer density
is low and we are deeply in the Poisson dominated regime, with correlation coefficient close
to —0.5, in agreement with Figure [£.5] Decreasing M, allows more tracers to be included
and the correlation becomes more negative, as expected from the previous discussion. As
soon as M, reaches the sample variance plateau, fyr, and 7y, start to decorrelate, reaching

nearly zero correlation at My, ~ 101°A=1 M.
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Joint constraints on fyr, 7w, were also studied in [I1], who found poor prospects for
distinguishing the two, and generally weak constraints on 7yr,, if the stochastic bias from 7y,
is not included. We therefore conclude that stochastic bias is a very powerful observational
probe of myr..

In the fxp — gnp case, the two are completely degenerate in the Poisson limit of high
M i and are therefore observationally indistinguishable using halo bias. Close to the sample
variance plateau they decorrelate partially, to become highly negatively correlated again in
the region of sample variance cancellation. We conclude that fyr,, gyt are not perfectly
degenerate in a multi-tracer analysis, but are always significantly correlated (see also [I0] for

a detailed discussion of the degeneracy between fyi, and gni,).

0.0
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Figure 4.6: Multi-tracer correlation coefficients Corr( fxr,, 7nr,) (top curve) and Corr( fxr, gnr)
(bottom curve), for varying minimum halo mass My;y.
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4.8 Discussion and Conclusions

A detection of primordial non-Gaussianity would have very profound consequences for our
understanding of the early Universe. Non-Gaussianity of the local type has been shown to
leave an imprint on the large scale distribution of halos and galaxies in the form of a scale-
dependent correction to the bias. Looking for this effect is one of the most promising ways
to improve on the already tight bounds obtained by the Planck satellite.

In this work we have consider the effects of the scale-dependent bias on the power spec-
trum of halos and obtained forecasts applicable to upcoming Large Scale Structure surveys.

Below we summarize our conclusions:

e If no mass information or other proxy for the bias of individual objects is available, a
‘single tracer’ analysis is used. A survey volume V = 25h3Gpc?, median redshift z =
0.7 and mean bias b, = 2.5, can achieve o(fx1) = 6, o(gnr) = 10° and o(7n1) = 10%,

if enough objects are resolved that the survey is sample variance limited.

e The statistical error on fxr, and gnr, approximately scales like V=23 and VY2 in
sample variance or Poisson domination regimes respectively. The error on 7yr, scales
like V=43 (sample variance domination) or V~! (Poisson domination). In cases where

—-1/2

the statistical error does not scale as V=2, most of the statistical weight comes from

the very largest scales in the survey.

e When constraining primordial non-Gaussianity from large-scale structure, it is always
important to marginalize over Gaussian bias b, (and to a lesser extent, Poisson noise
1/neg) In particular, if b, is not marginalized in the sample variance dominated case,
small increases in k., can appear to produce a large improvement on statistical errors.
This is not the case when proper bias marginalization is performed, since in this regime
and for k > 1071h Mpc~!, Gaussian bias and non-Gaussian corrections become nearly

degenerate.
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e Neglecting redshift information in large-scale structure degrades statistical errors on
primordial non-Gaussianity by a factor close to 3. However, redshift uncertainties of
order Az = 0.1 increase the errors by ~ 1.4 compared to the knowing the redshifts
perfectly. Therefore a next generation photometric survey will be able to extract most

of the information.

e A single-tracer sample variance limited survey with V = 25h73Gpc? has a statistical
power comparable to Planck. Improvement over CMB experiments would require either
a larger volume or the use of multi-tracer techniques. If the mass or bias of individual
objects is known, it is possible to combine different populations optimally in order
to partially cancel sample variance and decrease the error. This mechanism becomes
effective when resolving halos with M, < 10%3A~1M,. If halos down to My, ~
10" A= M., are resolved, we forecast o(fx1,) = 1.5, o(gn) = 10* and o(7n1,) = 100,

improving over Planck or a single-tracer analysis by a factor of 4 for fyr, and nearly

an order of magnitude for gy, and Ty

e fni and 7y, can be distinguished even with a single tracer, due to the different scale
dependence of the bias on large scales (k=2 vs k~%), but there is a significant correlation
in the single tracer case. They can be decorrelated by using a multi-tracer analysis
and pushing to My, < 108871 M. fyr and gnp are indistinguishable in the single-
tracer case since the clustering signature produced by fyr, # 0 is identical to the that
produced by gni, = (8f/8,) fnr. The multi-tracer case can make use of the fact that

the non-Gaussian bias depends on the Gaussian bias in different ways to distinguish

the two. However, the correlation coefficient is always close to —1.

e Finally we briefly comment on survey optimization for primordial non-Gaussianity.
For most cases of practical interest the ‘sample variance plateau’ makes it very hard
to reach the regime in which sample variance cancellation becomes effective. So the

most effective way of reducing the statistical errors is to increase the survey area (and
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hence the total volume), unless already resolving halos with masses at the lower end
of the plateau (M, ~ 10130~ M, with our fiducial volume), in which case a deeper

survey will also correspond to a significant improvement of statistical power.
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Chapter 5

A WISE measurement of the ISW

effect

5.1 Abstract

The Integrated Sachs-Wolfe effect (ISW) measures the decay of the gravitational potential
due to cosmic acceleration and is thus a direct probe of Dark Energy. In some of the earlier
studies, the amplitude of the ISW effect was found to be in tension with the predictions of the
standard ACDM model. We measure the cross-power of galaxies and AGN from the WISE
mission with CMB temperature data from WMAP9 in order to provide an independent
measurement, of the ISW amplitude. Cross-correlations with the recently released Planck
lensing potential maps are used to calibrate the bias and contamination fraction of the
sources, thus avoiding systematic effects that could be present when using auto-spectra to
measure bias. We find an amplitude of the cross-power of A = 1.24 + 0.47 from the galaxies
and A = 0.8840.74 from the AGN, fully consistent with the ACDM prediction of A = 1. The
ISW measurement signal-to-noise ratio is 2.7 and 1.2 respectively. Comparing the amplitudes

of the galaxy and AGN cross-correlations, which arise from different redshifts, we find no
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evidence for redshift evolution in Dark Energy properties, consistent with a Cosmological

Constant.

5.2 Introduction

The nature and the properties of Dark Energy are among the most significant unsolved
problems in physics. We now believe that Dark Energy accounts for about 70% of the energy
density of the Universe and is causing the cosmic expansion to accelerate. Measurements of
Type Ia supernovae, Baryon Acoustic Oscillations, galaxy clusters or gravitational lensing
(of the Cosmic Microwave Background, galaxies, or strongly lensed quasars) [2, [3], [4] [3]
0, [7], when combined with measurements of the Cosmic Microwave Background (CMB)
anisotropies [I], 43], all provide evidence for an accelerated expansion [I5] and imply a flat
and Dark Energy dominated universe.

While theorists have proposed a large number of models to explain cosmic acceleration,
including modifications to General Relativity on large scales [14], there exist only very few
observational windows into the properties of this phenomenon.

Measurements of the Integrated Sachs-Wolfe effect (ISW) [16] provide a powerful method
to probe Dark Energy, as this effect is sensitive to the time evolution of the gravitational
potential sourced by Large Scale Structure and thus probes Einstein’s equations beyond the
simple Friedmann equation. The ISW effect is the distortion of the CMB temperature due
to the time evolution of the gravitational potential along the line of sight: photons entering
a gravitational potential well blue-shift and subsequently redshift when leaving the well.
In a matter-dominated universe, the gravitational potential is time-independent on large
scales, so the amount of blue- and red- shifting is the same and the photon energy is overall
unchanged; Dark Energy causes an accelerated expansion, making the gravitational potential
shallower with time and resulting in a net blue-shift of the photons. This effect is too small to

be detected directly in the CMB spectrum [17] but it is expected to be measurable through
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the correlation between the measured temperature anisotropies of the CMB and the Large
Scale Structure, which acts as a tracer of the gravitational potential.

Such analyses have been carried out in earlier work (see for example [22], 211 23] 24], 27,
341, [35], 136, 28, 20}, 291 30]), with the strongest detection to date (at the 4.50 level) relying
on the combination of many different data sets [34]. One interesting feature of several of the
previous studies is that the cross-correlation signal lies systematically above (by ~ 1 — 20)
the predicted value in the standard cosmological model (in which the Dark Energy is a
Cosmological Constant) [34], 29, [19]. The same is true for some analyses based on stacking
large clusters and voids, with the tension with ACDM reaching > 3o [24] 25| 26|, [45], [46].

We perform a new ISW cross-correlation analysis using a sample of galaxies and quasars
from the Wide-field Infrared Survey Explorer (WISE, [11]), which scanned the full sky in 4
frequency bands, ranging from 3.4 to 22 pum, and detected hundreds of millions of sources.
The 3.4 pm band probes massive galaxies out to z ~ 1 and with a median redshift of 0.3 [31].
The large area of the survey, together with its redshift distribution and the large number of
sources, makes WISE one of the best catalogs for this kind of work. An early study with the
WISE preliminary release catalog found an amplitude that is 20 above the ACDM prediction
[29], while a subsequent work [30] using the full sky galaxy catalog found an amplitude
consistent with ACDM, but at low significance (1o). We use a larger sample (applying less
restrictive cuts to the data) with higher median redshift and expect to detect the signal at a
considerably higher significance. The Planck collaboration has recently combined the ISW
measurements from WISE with several other datasets to obtain a 4.00c measurement of the
ISW amplitude [46].

Since galaxies and quasars trace the dark matter and hence the potential up to a bias
factor (a proportionality factor relating tracer overdensity to mass overdensity), it is crucial
to measure the bias reliably in order to be able to compare the ISW amplitude with the-
oretical predictions. Methods to measure the bias from the auto-correlation spectrum can

be prone to systematic errors, especially for WISE maps which contain strong galactic and

146



instrumental signals, and can lead to incorrect conclusions about the amplitude of the ISW
effect. Recent progress in the measurement of the gravitational lensing of the CMB by the
Atacama Cosmology Telescope (ACT, [12) 42]), South Pole Telescope (SPT, [13, 48| [10]),
POLARBEAR [8, @] and the Planck Satellite [43] [44], allow a direct measurement of bias
(lensing is sourced directly by the gravitational potential itself), by cross-correlating lensing
potential maps with the tracer field. We expect this measurement to be more robust and less
prone to systematic errors. This chapter is organized as follows: The ISW effect is briefly
reviewed in section [5.3] Sections [5.4] and introduce our tracer and CMB datasets, while
in section [5.6| we discuss the calibration of the bias using CMB lensing. Our ISW results are

presented in section [5.6.3], followed by a discussion and conclusions in section [5.8|

5.3 The ISW effect

As discussed in the introduction, the ISW effect is a secondary CMB anisotropy which is
due to the time variation of the gravitational potentials along the line of sight [16] (see [47]

for a recent review):

(%)ISW @) = — / dn e "D (® + W) [, (no — n)]

~ -2 / dn ®fn, (o — 1)] (5.1)

where in the second line we have used the GR prediction that in absence of anisotropic
stresses ® = W and have approximated the optical depth 7(z) < 1 over the period where
o £ 0, so that we can take e"7*) ~ 1. Note that during matter domination, ® = 0 and
there in no ISW contribution. Since in the standard cosmological model the effect of Dark
Energy is relevant only at z < 1, the largest contribution comes from the very largest scales.

The typical low ¢ contribution to the CMB fluctuation spectrum is ~ 100 K2, compared
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to the ~ 1000 pK? of the primary fluctuations, too small to be detected directly in presence
of cosmic variance. This problem can be overcome by cross-correlating the observed CMB
temperature with tracers of the gravitational potential, such as galaxies or quasars, that
would otherwise be uncorrelated with the CMB in the absence of the ISW contribution.
We will work with the projected overdensity field of tracers (galaxies or quasars), which

can be expressed in terms of the matter overdensity d:

5,(R) = / dz b(z)C;—NcS(ﬁ, 2) (5.2)

z

Where we have assumed a (redshift dependent) linear bias model for the tracers and dN/dz
is the redshift distribution normalized such that [ dz/'9% = 1.

We can compute the angular Cross—correlationﬂ:
T & dk o P
Cp? =G =dm [ A (k) Ky (k) K7 (k) (5.3)

in terms of the dimensionless (linear) matter power spectrum at redshift z = 0, A2 (k) =

k3P (k,z = 0)/272. Here the galaxy and ISW weight functions are given by:

KY(K) = [ dz o) 5 D) dlbx() (5.4
) = 220 [ as (14 2)D() il (o) (5.5)

where j, are the spherical Bessel functions, D(z) is the linear growth factor normalized to

D(z=0) =1 and x(z) =19 — n(z) is the comoving distance to redshift z.

'Here we assume that the ISW contribution is the only component of the temperature anisotropy corre-
lated with low-redshift tracers of the potential, so that we can write CZTg = Cf g,
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A simple Fisher matrix analysis gives the expected signal-to-noise ratio for a coverage

fraction fgy,

S\ L [l
(3) = ot SN e 5.6)

[C; 2
4

where in the second line we have used the fact that the correlation is weak O} ¢ < /CITCY.
It can be shown that most of the signal-to-noise comes from ¢ ~ 20 and z ~ 0.4, with a wide
redshift distribution, and that the contributions from z > 1.5 and ¢ > 100 are negligible [18].

Note that due to cosmic variance, there is a theoretical maximum for the signal-to-
noise ratio, which we can see as follows: The correlation coefficient r = C’f 91/ CE2CY s

constrained to b —1 <7 <1, so that [C]9]? = [Cgi)g]2 < C¥*C99. Therefore

S\ ? T2
(N) ~ fsky%:@u 1)% (5.8)
C<i><i>
< Ssky 2(26 + 1>C£TT (5.9)
Z Z

This can be evaluated in a given cosmological model and for ACDM one finds (S/N) <
7.6/ fsky and about 15% more if polarization information is added [35].

5.4 WISE data

WISE scanned the entire sky in four bands at 3.4, 4.6, 12 and 22 ym (W1 to W4) and provided
a much deeper dataset than other experiments at similar frequencies (such as 2MASS and
IRAS). The WISE W1 and W2 bands primarily probe starlight coming from other galaxies
or galactic stars, while the W3 and W4 bands are more sensitive to the thermal emission

from dust grains.

2Here the value of C; includes the shot-noise contribution.
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The WISE Source Catalog [I1] contains more than 500 million sources which are detected
at S/N > 5 in at least one band (usually W1 since it is the most sensitive). Galactic stars
and quasars each account for approximately 12% of the catalog at high galactic latitude. Ap-
proximately 70% are normal star-forming galaxies, while 6% are unusually red, unidentified
sources [31]. Previous work [31], 37, [38] has shown that the four WISE bands are sufficient to
effectively distinguish stars and quasars from normal galaxies. The details of this color-color
selection are outlined in the next subsections.

Unfortunately, parts of the WISE catalog are contaminated by moonlight: when WISE
observes near the Moon (or as far as 30 deg away), stray light can affect the images and
produce spurious detections. This is visible as several bright (overdense) stripes, which are
perpendicular to the ecliptic equator and parallel to the WISE scan direction. The catalog’s
moon_lev flag denotes the fraction of frames that are believed to be contaminated. We
discard all objects that have moon_lev > 4 in any band and regions with high density of
such objects are added to the mask.

We also discard any source for which cc_flags # 0, since it is considered an artifact
(diffraction spike, optical ghost, etc.).

Due to the scan strategy, the coverage depth is very inhomogeneous (the poles were
scanned to much greater depth than the equator) and the selection function is mostly un-
known. The median coverage in W1 is 15 exposures, with 12 exposure being the ‘typical’
number for points near the equator and 160 for points near the ecliptic poles. Plotting the
source magnitude distribution as a function of position of the sky, we find that for high
galactic latitude, the distribution is fairly uniform for W1 < 17.0. According to the WISE
Explanatory Supplememﬂ the catalog is 95% complete for sources with W1 < 16.6. There-
fore we apply this magnitude cut to ensure good completeness and uniformity and at the
same time retain the largest number of sources.

Below we outline our selection criteria for stars, galaxies and AGN:

3http://wise2.ipac.caltech.edu/docs /release/allsky /expsup/
sec2_2.html
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5.4.1 Stars

Emission from stars in the mid-IR is dominated by the Rayleigh-Jeans tail of the spectrum,
meaning that the colorﬁ is close to zero and approximately independent of surface temper-
ature. We use the following color cuts proposed in [37] to separate stars from galaxies and
AGN: stars have W1 < 10.5, W2 — W3 < 1.5 and W1 — W2 < 0.4. In addition, we find
that stars close to the galactic plane are effectively removed by classifying as ‘star’ anything
with W1 — W2 < 0.

Dust-poor elliptical galaxies at low redshift are hard to distinguish from stars with WISE

colors alone and can therefore be misidentified and fall into this category.

5.4.2 Galaxies

Here we adopt an empirical definition of “Galaxy” as anything not classified as a star or
AGN. Due to the negative k-correction in the IR, the WISE W1 band can probe galaxies
out to z 2 1, since the W1 flux does not change significantly in the range z ~ 0.5 — 1.5 [31].
We use the redshift distribution of WISE galaxies as measured in [31]. In this paper, the
authors cross-matched WISE sources with SDSS DR7 [32] in high galactic latitude regions
and found the distribution to be fairly broad, peaking at z ~ 0.3 and extending all the way
to z = 1. In order to more effectively remove galactic stars and be able to use a larger
portion of the sky, we had to make the additional cut W1 — W2 > 0, compared to [31]. The
effect of this on the redshift distribution should be negligible, since from their color-color
diagrams, the vast majority of galaxies are shown to indeed have W1 — W2 > 0. To further
test the effect of uncertainties in the redshift distribution, we repeat the analysis by shifting
the whole distribution by Az = 40.1 (corresponding to a ~30% shift in the peak z) and find
that the best fit ISW amplitude is only changed by ~ 5%, corresponding to about 0.10. We
therefore conclude that it is appropriate to use the distribution as in [31] without additional

corrections.

4Here by color we mean difference between magnitudes in two of the WISE bands.
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The redshift distribution and the very large number of sources (our sample consists of
approximately 50 million galaxies) make WISE nearly ideal for ISW cross-correlation.

The criterion W1 — W2 > 0 for galaxies ensures that the stellar contamination is small, at
the cost of omitting a small number of galaxies. The remaining contamination, if uncorrelated
with the CMB, affects the normalization of CZT 9 in the same way as it affects the cross-
correlation with CMB lensing, and therefore can be calibrated ouff’] (see section [5.6). If in
addition the contamination sources are clustered (like stars close to the galactic plane), they
will add to the auto-power spectrum on large scales, acting as noise in the ISW measurement
and thus lowering the statistical significance.

We adopt a fiducial bias model that constant with redshift for WISE selected galaxies
and we measure the bias via lensing in section To investigate the dependence of our
results on the uncertainty in bias evolution, we also repeat the analysis for an evolving bias
model b%(2) = b5 (1 + z), with constant .

Our conservative masking leaves fg, = 0.47 and about 50 million galaxies.

WISE galaxies

-0.741835 0.647701

Figure 5.1: The WISE galaxy overdensity map, including the mask, displayed in grey.

*both CZ 9 and C;Y are lowered by the same multiplicative factor (1— contamination fraction). Therefore
the measured bias is an ‘effective bias’ = real bias x (1— contamination fraction).
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5.4.3 AGN

The mid-IR selection of AGN is a well-studied problem. Following [33], B8] we use the
selection criteria W1 — W2 > 0.85 and W2 < 15.0. This has been shown to work well
for both Type 1 and Type 2 AGN up to redshift z < 3 and leads to a source density of 42
deg=2. Mid-IR selection is not significantly affected by dust extinction and the only potential
contaminants are brown dwarfs and asymptotic giant branch stars, both of which have much
smaller surface density.

We use the redshift distribution of WISE AGN that has been recently measured in [49]
by cross-matching AGN on 7.9 deg? of the Bootes/AGES field. The authors show that it
peaks at z ~ 1.1, with a spread Az ~ 0.6 and further constrain the contamination fraction
to be less than 15%.

We take the redshift dependence of the bias to be the one appropriate for the Type 1
QSOs, as suggested by [52]: b*(2) = b5'[0.53+0.289(1+2)?], where by is an overall amplitude,
which we measure from the cross-correlation with CMB lensing maps.

Stellar contamination is expected to be very small, since AGN are easily distinguishable
from stars using WISE bands.

Our masking leaves fs, = 0.48 and about 910,000 AGN.

5.5 CMB data

Our CMB temperature data is obtained from the foreground reduced WMAP9 maps [I] in
the Q, V and W bands (respectively at 40, 60 and 90 GHz), and the cosmological parameters
taken from [I]. At the scales of interest (¢ < 100), the data is cosmic variance limited with
negligible instrumental noise. For the CMB we apply the KQ75y9 extended temperature
analysis mask, which includes point sources detected in WMAP and has f, ~ 0.69. The

total mask is the product of the CMB mask and the appropriate WISE mask for AGN
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WISE AGN

-0.897218 0.952855

Figure 5.2: The WISE AGN overdensity map, including the mask, displayed in grey.

or galaxies. The same comprehensive mask is applied to both datasets before the cross-

correlation analysis.

5.6 Lensing bias calibration

We use weak lensing of the CMB by our tracers to measure an effective bias, which takes

into account the level of contamination by stars or artifacts.

5.6.1 Introduction

The observed (lensed) temperature 7'(n) in a given direction n is a remapping of the original
temperature Ty, in the direction n+ d, where d is the displacement field: T'(n) = T,,(n+d).
It is convenient to work with the convergence field, defined as kK = —V -d/2 and which

can be expressed as an integral along the line of sight [39, [40]:

k(D) = /dz K"(z)o(n, z) (5.10)
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In a flat universe (an assumption that we make throughout), the lensing kernel is given by:

K*(z) = %(1 + z)x(z)X*_X—jM (5.11)

where y. ~ 14 Gpc is the comoving distance to the last scattering surface.
The cross-correlation between the lensing convergence and the projected density field can
be calculated using the Limber approximation, which is expected to work well here, since we

only use modes ¢ > 50:

o [ HE) g o _+1)2
o _/d XQ(Z)K()K()P(k ~E ) (5.12)

We note that the linear bias factor b(z) appears in C;¢ and C, ¢ weighed by different
kernels and therefore it is important to account for the redshift dependence of b. As discussed
previously, our fiducial galaxy bias is a constant with redshift, but we also investigate the

model b%(z) = b5 (1 + z), while for the AGN we take b(2) = b71[0.53 + 0.289(1 + 2)?].

5.6.2 Planck lensing potential

The Planck collaboration released a map of the lensing potential ¢, (related to the lensing
convergence by k = —V2¢/2), covering over 70% of the sky [44]. As we can see from
equation , this is a direct measurement of the projected density field out to the surface
of last scattering, weighted by a broad kernel which peaks at z ~ 2.

The correlation between WISE and the Planck lensing potential was recently investigated
in [44], 49], where a ~ 7o detection was found for both galaxies and quasars. Here we repeat

the analysis with the same maps and masks used for the ISW work.
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5.6.3 Results

We use the Planck lensing potential and WISE maps at HEALPix [50] resolution Ng;gq. = 512
and measure the cross-correlation signal for 100 < ¢ < 400, correcting for the effects of
the pixel window function and of the mask. Note that we use the same ¢,,,, as in the
cosmological analysis by the Planck team [44]. Including higher ¢ would probe the non-
linear regime, where a constant bias model is likely to be inadequate and require corrections.
Furthermore, including higher ¢ would be unnecessary from a statistical point of view, as the
error on the bias is not the dominant source of uncertainty on the ISW amplitude. Lacking
realistic simulated Planck lensing maps, the error bars are computed from the variance of the
values in a given ¢ bin. We have however checked that they are consistent but ~ 30 — 60%
larger than the theory error bars computed in the Gaussian approximation, which represent

a theoretical lower bound.

le—7

—  b% (2) =const

100 150 200 250 300 350 400

Figure 5.3: Lensing convergence-galaxy cross-correlation as a measure of the linear bias for
WISE galaxies.

Figures and show the cross-correlation signal. For our fiducial galaxy bias model (a

redshift independent constant), we find b = 1.4140.15. This value is larger than that found
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Figure 5.4: Lensing convergence-AGN cross-correlation as a measure of the linear bias for
WISE AGN.

by the Planck Collaboration [44]; this difference is expected, because Planck uses a more
conservative magnitude cut and hence measures bias of lower redshift, less biased sources. If
instead we consider our second model b%(z) = b§ (1 + 2), we measure b5 = 0.98 & 0.10. We
note that there is a slight dependence on ¢,,,., which could be due to statistical fluctuations,
a failure of our linear bias model on small scales, or other effects. However, this dependence
is negligible for the purpose of this paper: even in the extreme case of using /,,,, = 2000
instead of our fiducial 400, the bias we measure is higher by only 12%, translating into a
change in ISW amplitude of 0.130.

For the AGN with bias b (z) = b{'[0.5340.289(1+ 2)?], we measure b = 1.26+0.23. Our
result is stable with respect to changes in /,,,, and is only ~ 1o higher than the SPT result
[49], b3 = 0.97 £ 0.13. Again, this uncertainty corresponds to a shift in the ISW amplitude
derived from the AGN sample of about 0.30 and is therefore not important for the purpose

of this work.
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5.7 ISW results

We measure the cross-correlation of the WISE galaxy and AGN samples with the WMAP
CMB temperature maps in the Q, V and W bands. We estimate the signal in 7 bins
(bandpowers), equally spaced in ¢ space and spanning multipoles from 5 to 100. Since we
are only interested in ¢ < 100, we use maps with HEALPix N4, = 128, after correcting for
the WMAP beam (different for each band) and for the pixel window function. The complex
geometry of the mask induces non-trivial off diagonal correlations between bandpowers and
we use the MASTER algorithm [51] to largely undo the effect of the mask and obtain an
unbiased (but slightly suboptimal) estimate of the bandpowers.

To estimate the error bars and the covariance matrix, we cross-correlate the WISE galaxy
and AGN sample&ﬁ with 5000 simulated CMB maps as follows: We use our fiducial cosmology
CMB power spectrum and the WMAP beam transfer function to obtain 5000 simulated CMB
maps (Gaussian random fields) for each band. Then noise is added to each pixel in the form of
a Gaussian random variable with zero mean and standard deviation given by o = ¢/ \/m ,
where o0p is 2.188, 3.131 or 6.544 mK, for Q, V and W bands respectively, and N, is the
number of exposures of the corresponding pixel in the WMAP survey.

The Monte Carlo covariance matrices for the Q band are shown in figure in appendix
5.9l We verify convergence by varying the number of simulations and noting consistent
results. While the covariance matrix is dominated by the diagonal components, the off
diagonal components are non-negligible and should be taken into account.

The cross-correlation results are shown in figures [5.5 and and summarized in tables
and If d are the measured bandpowers and t are the corresponding theory values, the
best fit amplitude A = Cf @5t /GTPACDM §g ohtained by minimizing x* = (d—t)7C~!(d—
t), where C~! is the inverse of the covariance matrix. The significance is computed as

Vool — Xin, With X2, referring to the null hypothesis t = 0 (i.e. no ISW signal). When

6Because of the uncertainties on the WISE selection function and noise properties, we choose to use the
real data in estimating the Monte Carlo covariance matrix.
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quoting the ISW amplitude, the value of the bias is fixed to the mean value found in the
previous section, and uncertainties in the bias determination are very subdominant compared
to the cosmic variance errors.

The null tests are performed by cross-correlation with the simulated CMB maps are
shown in figure [5.8 in appendix for each band. All of the null tests are consistent with

zero signal as expected.

5.7.1 Galaxies

For WISE galaxies with constant bias, we measure an amplitude of A = 1.24 + 0.47, fully
consistent with the ACDM prediction A = 1. The amplitudes and some basic statistical

properties for each band are reported in table 5.1 and the results are shown in figure [5.5
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0.20f — best fit (Q band) (4
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— 0.15} **x% W band
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= ool T x
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N \
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%\» a \<f\>:
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Figure 5.5: cross-correlation between WISE galaxies and WMAP temperature maps, where
the ACDM theory curve is computed assuming a redshift independent bias. The error bands
are shown only for Q band and the other error bars are within 5% of the ones shown.

The correlation signal is essentially independent of frequency over the range 40 - 90 GHz,

which makes a significantly contamination by foregrounds unlikely.
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’ Band ‘ Amplitude A ‘ x? / dof ‘ p-value ‘ S/N ‘
Q 1.22 +0.47 | 142 /6 0.04 2.6
\Y 1.25+0.47 | 1.81/6 0.06 2.6
\W 1.26 £ 047 | 1.25/6 0.03 2.7

Table 5.1: ISW amplitude and significance for the galaxy sample, assuming a constant bias
model.

As we can see from table [5.1], the x? of the best fit is slightly low, but it is expected this
high or low about 6 - 12% of the time. To test the error calculation, we used the Gaussian
approximation (Fisher formalism) to analytically compute the errors bars using the measured
WISE auto-power spectrum, obtaining a result that is fully consistent with the Monte Carlo
estimate.

To test the stability of our results with respect to changes in the mask, we repeat the
cross-correlation with masks leaving fg, = 0.35,0.40 and 0.51, and find best fit amplitudes
A = 1.10,1.01 and 1.10 respectively. The masks with small f,, were chosen to effectively
mask the stellar overdensity visible in figure |5.1] close to the galactic plane and show that
the signal is not due to correlation between stellar overdensity and residual contaminants in
the CMB map.

To assess the dependence of our result on uncertainties in the evolution of bias, we repeat
the analysis with a model in which it evolves linearly with redshift 6“(z) = b5 (1 + 2). In
this case we find A = 1.54 £+ 0.59, with again S/N ~ 2.7. This corresponds to a shift in
amplitude of about one half sigma and therefore we can conclude that our measurement is

fairly robust under uncertainties in the evolution of the bias.

5.7.2 AGN

The measured amplitude A = 0.88 4+ 0.74 is again consistent with the ACDM predictions.
The amplitude is stable under small changes in the mask and is frequency independent, as

can be seen from table [5.2) and figure
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Figure 5.6: Cross-correlation between WISE AGN and WMAP temperature maps. The error
bands are shown only for  band; the other error bars are within 5% of the ones shown.

’ Band \ Amplitude A \ x> / dof \ p-value \ S/N ‘

Q 088+0.74 | 46 /6 0.4 1.2
\Y 0.86 £0.74 | 4.7/6 0.4 1.2
W 091 +0.75 | 46 /6 0.4 1.2

Table 5.2: ISW amplitude and significance for the AGN sample.

As the highest ¢ bin in figure [5.6| appears low, we extend our analysis to ¢ = 200 to

test that this value is simply a fluctuation. We find that the points for 100 < ¢ < 200 are

consistent with the low-(-fit signal curve as expected[]

Though the AGN sample is simpler to cleanly select than the galaxy sample, the sig-

nificance of the AGN sample is lower. Partially this is because the expected signal itself is

smaller, as a large fraction of WISE AGN lie at z 2 1, where Dark Energy is unimportant.

In addition, the smaller number of sources makes the sample shot-noise limited in the high

¢ bins, further reducing the significance of the measurement.

"in particular, the next two bandpowers in figure 6 would lie at (0.066 + 0.134) and (0.003 + 0.147) uK

respectively.
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5.8 Conclusions

Dark Energy remains one of the most elusive outstanding problems in Physics, and the ISW
effect provides one of the most direct probes of its properties.

In this work we have measured the cross-correlation between the CMB temperature and
both WISE galaxies and AGN. The correlation is expected to be entirely due to the ISW
effect and hence absent in a Universe with no Dark Energy.

We find a positive signal which is consistent with the ACDM predictions, with signifi-
cances of 2.70 and 1.20 for galaxies and AGN respectively. It can be shown that the bulk
contribution to the galaxy ISW signal comes from z ~ 0.2 — 0.6, with a peak at z ~ 0.3,
while the AGN, due to their fairly high median redshift, receive a fairly uniform contribution
in the interval z ~ 0.2 — 1.2. Therefore, the AGN act as a useful probe of Dark Energy at
an earlier time. We find that our results show no evidence for evolution of the Dark Energy
density, as expected from a Cosmological Constant.

We use the CMB lensing potential from the Planck mission to calibrate the bias and stel-
lar contamination of our sample, a method that has recently become available with advances
in high-resolution CMB experiments. Calibration with lensing cross-correlation allows a di-
rect measurement of the effective bias, with a smaller sensitivity to some systematic errors
that can affect a measurement with the auto power spectra. Moreover, any instrumental
systematic that could affect both the CMB temperature and the reconstructed lensing po-
tential should be mitigated by using two independent experiments for the lensing and ISW
analyses.

The signal we detect is fairly insensitive to the choice of mask and, more crucially, fre-
quency independent. An imperfect foreground subtraction on the CMB side could poten-
tially create spurious correlation with WISE, but any residual foreground contamination is
expected to vary significantly over the range 40 - 90 GHz that we probe here. Therefore we

conclude that any contamination, if present, is likely to be highly subdominant.
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While some previous studies hinted at the possibility of a signal with amplitude higher
than what expected from ACDM, we find no deviation from the standard cosmological model
in either amplitude or redshift dependence, in agreement with some of the other previous
measurements (eg [22, [35, B6], [45]). We are also in agreement with a recent analysis of the
ISW effect from WISE galaxies [30] that used a somewhat smaller sample at lower redshift

and measured an amplitude consistent with ACDM, with a significance of about 1o.

Acknowledgements

We thank Olivier Doré, Amir Hajian, Eiichiro Komatsu, Fabian Schmidt, Kendrick Smith,
Michael Strauss and Matias Zaldarriaga for very helpful discussions. Moreover we are grateful
to the anonymous referees who helped improve the paper significantly. SF and DNS are
supported by NASA ATP grant NNX12AG72G and NSF grant AST1311756. BDS was
supported by a Miller Research Fellowship at Berkeley and by a Charlotte Elizabeth Procter

Honorific Fellowship at Princeton University.

5.9 Appendix 1: Covariance matrix and null tests

Here we show plots for the Q-band covariance matrices and the null tests. For a description

of the methodology, see section [5.7]in the main text.

5.10 Appendix 2: Doppler effect contamination to the

ISW signal

In this appendix we discuss the magnitude of another secondary anisotropy of the CMB
that preserves the black-body frequency spectrum: the Doppler (or linear kinetic Sunyaev-
Zel’dovich) effect. This is caused by the Doppler shift when a CMB photon scatters off
coherently moving electrons with line-of-sight velocity v,. The fractional CMB temperature
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Figure 5.7: Q-band Monte Carlo covariance matrices for galaxies (left) and AGN (right). V
and W band covariances are very similar and are not shown here.
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Figure 5.8: Null tests: correlation of the WISE galaxy (left) and AGN (right) maps with
5000 simulated CMB realizations. All are consistent with zero signal.

fluctuation © = AT/T caused by the Doppler effect is given by [55, [56, [54]:

O(n) = —/dn e~ v, (5.13)

Where the integral is taken along the line of sight. To linear order, we take 7(z) to be the
average T at redshift z. Since velocity is related to density by the continuity equation, which
to linear order reads

0+V-v=0 |, (5.14)
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this is an additional source of CMB-matter correlation beyond the ISW effect and is inde-
pendent of frequency and therefore not distinguishable through component separation. At
the power spectrum level, the Doppler effect can be calculated by including the 7e~"v, term
in the line-of-sight integral of [53] as a source term, considering the fact that v, is a spin-1
quantity under rotation and therefore the projection kernel from k to ¢ involves the time
derivative of the spherical Bessel functions j;(kx), rather than j,(kx) which is used for the
projection of scalars (such as density or potential). Moreover we note that Limber approx-
imation is very inaccurate for velocities on large scales and we will use the exact equations
instead.

Figure shows that on large scales (¢ < 100), the Doppler contribution is comparable
to the ISW amplitude.
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Figure 5.9: Doppler and ISW contribution from the CMB power spectrum, compared to the

primary anisotropy.
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5.10.1 WISE galaxies and AGN

It becomes natural to ask if the Doppler effect can be a large contaminant to the ISW
measurements presented previously, since they are comparable at the power spectrum level.
Firstly, as discussed in [57], the Doppler contribution has the same sign as the ISW effect:
consider a matter overdensity at redshift z,. Gas from z > 2z, will be infalling with a
peculiar velocity pointing towards us, thus upscattering CMB photons. The contrary is true
for gas at z < z,, which will have a peculiar velocity pointing away from us and will thus
downscatter CMB photons energy. However, since the probability of Thomson scattering (the
visibility function 7e¢~7) is decreasing with time, scattering at higher redshift is more likely
and therefore an overdensity will be associated with a hot spot in the CMB temperature.

Figures [5.10| and shows the result of numerical computation of the Doppler-galaxy
and Doppler-AGN correlations for the WISE catalog, obtained by modifying the publicly
available CAMB Sources codeﬂ to only include the Doppler contribution as a source function
and the appropriate redshift distribution for the WISE objects.

We see that the Doppler contamination to our kSZ measurement is about 1% for WISE
galaxies and 4% for WISE AGN. To explain such a small number, we must note that the
vast majority of the linear Doppler signal is produced around the redshift or reionization,
when the visibility function is largest. On the contrary the ISW effect arises only when the
effect of Dark Energy is dominant, and most of the signal comes from z < 1. This explains

the very weak correlation between the Doppler signal and low-redshift structure.

8http://camb.info/sources/
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Figure 5.10: Doppler and ISW contribution to the CMB-galaxy cross correlation for WISE

selected galaxies

[1K]

L(+1)C,/2m

Figure 5.11: Doppler and ISW contribution to the CMB-AGN cross correlation for WISE
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5.10.2 Anomalous signal from superclusters and supervoids

As mentioned in the introduction to this chapter, the ISW signal obtained by stacking on
SDSS DRY7 superclusters and supervoids is in ~ 40 tension with the ACDM expectation
[24, 25], 26]. In this section we ask whether the Doppler contribution can relieve at least part
of the tension.

In [24], the authors identify the 100 largest superstructures in 7500 square degrees of the
SDSS LRG catalog. They are split between 50 ‘superclusters’ and 50 ‘supervoids’, and span
a redshift range 0.4 < z < 0.75, with a median redshift of 0.5. An aperture photometry
ﬁltelﬂ (AP) with 4 degrees radius is applied to the WMAP5 CMB temperature map to
obtain an estimate of the ISW signal. The mean of the absolute value of the stacked ISW
signal on these 100 superstructures is found to be 9.6 £+ 2.2uK, compared to a prediction
from ray-tracing simulations of ~ 2uK [25]. While the original analysis was performed on
WMAP data, this has been subsequently confirmed by the Planck team [45] 46].

The choice of 4 degrees radius for the AP filter corresponds to the typical angular size
of these structures in the sky, while the typical spatial extent is ~ 100h~* Mpc. Therefore
we shouldn’t think of these as bound structures with a well defined profile, but rather as
mild hills and valleys in the potential. On these scales linear theory is expected to work
remarkably well.

The exact profile of these structures is not known and ray-tracing through N-body simula-
tions seems like the most robust approach. However here we give an approximate treatment
which is expected to at least accurately predict the ratio between the ISW and Doppler
signals. Since the scales of interest are in the linear regime, we can compute the expected
RMS CMB fluctuations produced by ISW and Doppler effects caused by these structures,
by using the usual line-of-sight integral, restricting the integration over the spatial extent

of the typical structure. Note that since potential (which sources ISW) and velocity (which

9the filter output is defined as the mean temperature in a disk of radius 4, to which the mean temperature
in a surrounding ring of equal area is subtracted.
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sources Doppler) scale differently with the matter overdensity § (® oc §/k* and v o< 6/k),
the spatial extent of the structure will be slightly different in potential and velocity. For
density, we assume that the window function is a spherical tophat of 100h~! Mpc in radius
and solve for a potential and velocity window function. We modify the public code CAMB|
in order to only perform the integration of the Doppler and ISW source terms, with a given
window function.

After applying the AP filter with 4 degrees radius like in the analysis on real data, we
find that the Doppler contribution is only ~ 2% of the ISW signal. There is also a non-
trivial cross-correlation between ISW and Doppler, and it is as large as ~ 20% of the ISW
amplitude.

As a last step, we would like to see if we can reproduce the expected level of ISW and
Doppler, and not only their ratio. We note that these structures are not randomly chosen,
but they are the most extreme superstructures in the SDSS footprint. Therefore we should
quantify how extreme these fluctuations are compared to the RMS, in other words, we
would like to compute the ‘significance’ v = §/o for these structures. We will calculate this
approximately in the Press-Schechter formalism and use linear theory throughout. Under
the assumption of Gaussian initial conditions, we find that v, required to have 50 regions
above v, in a volume equal to the volume spanned by the SDSS LRG, when smoothing the
density field on 100h~! Mpc scale is v, = 4.2.

Figure [5.12] shows the expected ISW and Doppler signals for fixed v, = 4.2 and as a
function of AP filter size. We find the expected ISW signal to be ~ 1.9uK, in good agreement
with simulation results. While this calculation is very approximate (and can be improved
by using the ‘peak formalism’), the ratio between Doppler and ISW is independent of v..

In conclusion, the Doppler contamination to the ISW signal is of order 2% (with a 20%
cross correlation between the two), and both contributions have the same sign. While this

goes in the direction of easing the tension, it does not fully resolve it. To decide whether this

Ohttp://camb.info
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is a purely ‘statistical’ fluctuation or something different more data is needed and the Dark
Energy Survey collaboration is currently repeating the analysis on new, non-overlapping
structures with similar properties. Their results might shed new light on this intriguing

discrepancy.
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Figure 5.12: Expected Doppler and ISW signal from an Aperture Photometry filter at the
location of the super-cluster/void. The plot shows RMS fluctuation of the output of the
Aperture Photometry filter, multiplied by the significance v, = 4.2, versus the filter radius
0,4 (except for the primary CMB which is not multiplied by v.). As we can see, the primary
CMB fluctuations are the main source of noise. The curve labelled ‘other contributions’
includes all of the other contributions that are correlated with the presence of low redshift
over- or under- densities; the main contribution to this term is the ordinary Sachs-Wolfe
effect due to the correlation between density at the surface of last scattering and at low
redshift. The sign of the Sachs-Wolfe effect is the same as Doppler and ISW.
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Chapter 6

Prospects for kSZ detection without

accurate redshift information

6.1 Introduction

In this chapter we ask the question of whether the kinetic Sunyaev-Zel’dovich (kSZ) signal
can be extracted in cross-correlation, in absence of reliable redshift estimates for the tracer
population (for example in the case of the WISE catalog [1]).

The kSZ effect is produced by Thomson scattering of CMB photons off of coherently
moving electrons. The amplitude of the kSZ signal depends linearly on the local free electron
density n. (and is independent of temperature), and is therefore suited to probe the low
density and low temperature outskirts of galaxies and cluster. The sign of the effect depends
on the direction of the peculiar line-of-sight velocity of the free electrons. In particular, if a
galaxy or cluster is moving towards us, it will on average up-scatter CMB photons, producing
a ‘hot spot’ in the observed CMB map. The contrary is true for galaxies or clusters moving
away from us.

The equal likelihood of positive and negative kSZ signals leads to a large cancellation in

the cross-correlation of low-redshift tracers with CMB maps. In absence of redshift informa-
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tion, we can’t perform velocity reconstruction, or use any of the other common techniques
to avoid the cancellation . To overcome this difficulty, the CMB temperature map can be
squared in real space before cross-correlating with tracers. Since primary CMB fluctuations
are dominant to the kSZ power spectrum at ¢ < 3000, we apply a Wiener filter to the CMB
map, before squaring it in real space. This filter downweights angular scales on which the
kSZ signal is most subdominant to the primary CMB, ISW, and noise.

First suggested in [7], this cross-correlation probes the mass and line-of-sight velocity of
the gas associated with galaxies used as tracers . It thus provides a method with which to
find the missing baryons [2], similar to but distinct from other kSZ techniques based on mo-
mentum template reconstruction [9, [10] or pairwise velocities [6]. In particular, this method
does not require redshift estimates, but just a statistical redshift distribution. Similarly,
individual halo mass estimates are not required for the inference of the kSZ amplitude in

this method, in contrast to the pairwise velocity or velocity reconstruction approaches.

6.2 Theory summary

The fractional CMB temperature shift induced by the kSZ effect, ©%(n) = AT*% /Teyp(n),

in a direction n on the sky is given by [3| 4, ] (in units with ¢ = 1):

%) — ~ [y g(o) p. (6.1)
d . A

where o7 is the Thomson scattering cross-section, 7(z) is the comoving distance to redshift z,
7 is the optical depth to Thomson scattering, g(n) = 7e~" is the visibility function. Here n,
is the physical free electron number density, v, is the peculiar velocity of the electrons, and

we have defined the electron momentum p, = (1 + §)v.. For concreteness, we will focus on
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two promising low-redshift tracers: the projected WISE galaxy catalog [I] and the CFHTLS
lensing convergence map [11].

The projected galaxy overdensity d, is defined by
5,(R) = /0 " 4 W) G ) (6.3)
where zpax is the maximum source redshift, and W9(z) is the projection kernel given by:
W9(=) = bypa(2) (6.4)

Here b, is the linear bias factor and p,(z) oc dn/dz is the redshift distribution of source
galaxies (normalized to have unit integral).
The Weak Lensing (WL) convergence field depends on the projected matter overdensity

0 along the LOS and the lensing kernel:

k() = /0 " 4 W 2) 6 (in, ) (6.5)

where W*(z) is the lensing kernel:

Since the projected density and the convergence field are closely related to each other,
we will use x and d, interchangeably in what follows. All equations can be transformed from
one to the other by the simple exchange W* «» W9,

As explained in the introduction, the cross-correlation between kSZ and tracers is ex-
pected to vanish on small scales because of the v, — —v, symmetry. We therefore square

the temperature fluctuation map in real space before performing the cross correlation.
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In order to minimize spurious contributions to the primary fluctuations and detector

noise, we filter the temperature map with a filter F' before squaring;:

©;(£) = F(0)O(¢) (6.7)
where
F) = Ccéot (6.8)

And C}°* is the total fluctuation power, which includes primary CMB, kSZ, ISW and noise.
Following [7, [8], we can write the angular spectrum of the kSZ*-, (or kSZ*~WL) cross-

correlation as

7t / %W9<z>g2<n>fr<k — 0/n(2).2) (6.9)

Where we have used the Limber approximation, and have defined the triangle power spectrum

T

2

T(k,z) = / (;ZT")QmeFﬂk T gn) Bspupa (k. 0.~k — @) (6.10)

The hybrid bispectrum Bg,_,. is the three point function of one density contrast and two
line of sight momenta, ps. The triangle power spectrum 7 is the integral over all triangles
with sides k, q, and —k — g, lying on planes of constant redshift.

Considering that the momentum field p ~ dv on small scales, that the hybrid bispectrum
Bsp.p. contains terms of the form (vv)(06d), (vd)(dov), ..., and a connected part (vvddod)..
Reference [§] argues that the former term (vv)(094) is the dominant on small scales (k > ke,)
and we have verified this numerically.

On small scales we can therefore approximate the hybrid bispectrum in terms of the 3D

2

rms

velocity dispersion v2 . and the non-linear matter bispectrum BN [7] [§]:

1
Bspops = =02 BN (6.11)
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6.3 Possible contaminants

One drawback of this technique is that it is very sensitive to the leakage of emission from the
tracers themselves to the CMB temperature map, and therefore good frequency coverage that
allows effective component separation is required. The main sources of leakage are expected
to be synchrotron, thermal Sunyaev-Zel’dovich (tSZ) and dust emission. Moreover, spatial
changes in the spectral index of the dust or synchrotron emission can also mimic the kSZ
signal. Work in progress in collaboration with Colin Hill and David Spergel shows that a
multi-frequency analysis of the Planck data [12] is powerful enough to limit the contamination
by foregrounds to a small fraction of the signal (see Hill, Ferraro et al, in preparation).

The contaminants that preserve the black-body spectrum of the CMB cannot however be
removed by component separation. Apart from kSZ, the ISW effect and weak gravitational
lensing are also frequency-independent. While the ISW (and its non-linear generalization) is
expected to be negligible at ¢ > 100, it turns out that the weak lensing contribution is large
(in fact larger than the signal itself) and must be accurately modeled and removed in order
to detect kSZ.

In the next section we calculate the weal lensing leakage in this cross-correlation.

6.4 Lensing leakage

Let © = AT/T be the unlensed temperature fluctuation and O be the corresponding lensed
fluctuation. We first note that in absence of filter /beam, lensing preserved the total variance,
ie. (©%(x)) = (02(x)) (essentially just looking at a different point in the sky), so that there
is no lensing contribution to (62(x)d,(y)).

Now things are a bit different when including filter and beam. Let ©(¢) = f(£)O(f),

where f(¢) = F(£)b(¢) is the product of a filter F' and the beam function b. We want to
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compute the Fourier Transform of (©%(x)d,(y)):

(07 (£1)34(£2)) = (6.12)
:/%@f@)éf(el ~L)5,(8)) (6.13)
_ / %f(L)f(]él — L)(O(L)O(8y — L)b, (£,)) (6.14)

The lensed fluctuations can be expanded in terms of the unlensed ones:

&(x) = O(x) + Vi - VO(z) + %vwvbwavb@@) b (6.15)

where 1) is the lensing potential, so that we can express

Vi VO(L) = — / 5752 L'-(L— L)(L)O(L — L) (6.16)

Now, in perturbation theory (up to first order in the displacement),

(O(L)O(&r — L)5,(£2)) = (B(L)O (€1 — L)d,(£2)) (6.17)

+ ([V¢-VO|(L)O(£y — L)3,(ky)) + (L — €1 — L) + ...

The first term is due to ISW + kSZ only, while the second and third terms should

contribute equally by symmetry. Plugging in equation and using

L
(2m)?

</ é; L' (L = L) (W(L)O(L ~ L6 (& — L)3,(£2)

(©FH(£1)0,(£2)) = (O7(£1)3,(£2)) — 2/ SL)f(l& = L)) (6.18)

There is a non-zero connected trispectrum (due to ISW and subleading to the other terms),

and two non-zero contractions (¢d,)(©0) and (¥0)(O4,), the latter again due to ISW.
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Counsider the first one and write:

(W(L')34(£2)) = (2m)2 C1 Sp(L' + £2) (6.19)

(O(L— L"), — L)) = (2m)* Cly] 1 6p(£s — L) (6.20)

Then the main correction due to lensing is

d’L %6 TT
sJ(L)F(IL = &) £ - (L = £1) Cp Cip_y (6.21)

— 2(27?)25D(£1 +£2)/W

Similarly, the other contraction gives rise to

d*L

G/ I =) b (B =) G G2 (622)

— 2(27T)26D(£1 -+ £2) /

which is due to ISW and numerically is found to be factor of ~ 10* — 10° smaller than the

lensing contribution on the scales considered here.

Changing variable in (6.21)) to L' = L — £;:

ACT > E ~ —2

12 01/15g o0 P , 2 )
(275)2 /0 aL’ L® f(L")Cp" /0 dp f(IL' + £]) cos ¢ (6.23)

Note also that if f(¢) = constant, the lensing correction vanishes identically as expected.

6.5 Numerical results

Here we show the results from numerical integration of equation and . The
evaluation of equation is computationally expensive and is achieved by precomputing
all of the terms involving the fitting function to the non-linear bispectrum on a grid, followed
by interpolation. The angular integrals in both cases involve large cancellations and a high

number of integration points are required. For both the power spectrum and bispectrum
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we use fitting functions that have been matched to N-body simulations ([I4] for the power

spectrum and [I5] for the bispectrum).
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Figure 6.1: kSZ? and lensing contribution for WISE galaxies
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Figure 6.2: kSZ? and lensing contribution for CFHTLS convergence
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6.6 Lensing cosmic variance

When subtracting the lensing contamination to identify the kSZ? signal, the amplitude of
the lensing is subject to the a cosmic variance uncertainty. In the Gaussian approximation,

the relative error in the lensing calculation in a bin of width A¢ due to cosmic variance is

T2 xg
oAC ) _ 2 (6.24)
ACE X8 fsky<2€ + 1)A€

For A¢ = 500, we get the following relative errors (fs, = 0.00339 and 0.5 for CFHTLS and
WISE)

(= 500 | 1000 | 2000 3000
CFHTLS |34 % |24 % | 1.7% | 1.4 %
WISE [ 03%{02%|0.14 % | 0.11 %

Table 6.1: Fractional error on lensing amplitude due to cosmic variance for bins of Al =
500.

As we will see these uncertainties are much smaller than the typical error bar on the cross-
correlation and we conclude that the lensing cosmic variance is never the leading source of
uncertainty in our analysis. Much larger uncertainties will be arise from our modeling of the
relevant quantities (like lensing power spectrum and the bias) in the mildly non-linear regime,
as well as the error in determining the bias of our tracers (usually through cross-correlation

with CMB lensing maps).

6.7 Fisher forecast for kSZ? detection

The maximum S/N ratio can be estimated by using Fisher’s formula as follows:

(i

T o T IR

(6.25)

(%)2 = foky zg:(% +1)
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T272 . . .
and for C, /' we use the Gaussian approximation:

o 2 o
T2T2,f —~ d L TT’f TT’f
CT'TF 9 / GC el (6.26)
Where CTT = F2(0)02(0)(CIT + CX%) + F2(0)CNN, and F(0) is the Wiener filter, b(f) is
the beam function and C" is the map noise.

Considering typical numbers for a Planck component separated map (5 arcmin beam and
noise at the level of the Planck SMICA map), and restricting our analysis to 100 < ¢ < 3000,

we get the following:

fsky (S/N)
CFHTLS 0.0034 | 0.35
WISE 0.5 3.6
KoM B, NO noise 0.7 1.1

Table 6.2: Forecast for the kSZ? cross correlation. The kg field corresponds to cross-
correlating the square of a CMB temperature map with a CMB lensing convergence map as
a tracer of low-z matter, assuming no noise in the latter.

6.8 Conclusions and future work

In conclusion, a CMB data-set like Planck should allow a statistical kSZ detection with
S/N ~ 3.6 when combined with the WISE galaxy catalog. This is assuming that the fre-
quency coverage of Planck is sufficient to remove the emission from the tracers in question.
While none of the official Planck component separated maps is adequate due to large resid-
ual leakage of tSZ, it is possible to implement component separation methods such as the
LGMCA [I3] that explicitly set the tSZ residual to vanish. Preliminary work suggests that
the contamination by foregrounds can be reduced to a small fraction of the statistical un-
certainty on the kSZ amplitude. We have however shown that weak lensing of the CMB
is a major source of contamination in this analysis, and it is not removable by component

separation because it preserved the black-body spectrum of the CMB. We have calculated
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the amplitude of the lensing and shown that the cosmic variance uncertainty is negligibly
small when considering large fractions of the sky.

Work is in progress in collaboration with Colin Hill and David Spergel to perform this
cross-correlation using Planck data and the WISE galaxy catalog. The remaining sources of
theoretical uncertainty are the effects of non-linearity and redshift dependence of the galaxy

bias and this is subject of current effort.
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6.9 Appendix: Comparison with simulations

Since we have made a number of approximations and relied extensively on semi-analytical
fitting function for the power spectrum and bispectrum in non-linear regime, we compare

our results with hydrodynamical simulations:
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Figure 6.3: Lensing leakage in (T 7 kem). The blue dots show the quantity measured in the
simulations of Sehgal et al [16], while the solid line is first order the calculation presented in
this chapter. The agreement is excellent and implies that higher order terms are subleading.
Simulation data courtesy of Colin Hill - theory curve by the author.
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Figure 6.4: (kSZ? x rkcppr) — unfiltered result with f(¢) = 1. The blue curve with error
bars shows the result from simulations of Battaglia et al [I7]. The red (top) curve shows the
fiducial theory computation. The green curve shows the theory computation but with same
Emin and k.. as in the simulation. This comparison shows that the simulation results are
biased low due to the lack of super-box long wavelength velocity modes. This effect can be
large as can be seen here. Simulation data courtesy of Nick Battaglia, theory curves by the
author.
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Figure 6.5: Filtered (kSZ? X komp) from the simulations of Sehgal et al [16] and with f(¢)
appropriate for Planck data. The agreement at large ¢ is excellent and the slight disagreement
at low ¢ can be due to the fact that these simulations are known not to reproduce the kSZ

power spectrum on large scales. Simulation data courtesy of Colin Hill - theory curve by the
author.
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