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Abstract

The unifying theme of this dissertation is using cosmological observations as a tool to discover

new physics and astrophysics.

The first part focuses on the effects of primordial non-Gaussianity on the large-scale

distribution of dark matter halos. The statistical properties of the primordial fluctuation

contain a wealth of information about the Universe’s early moments, and these properties are

imprinted on the late-time distribution of matter. The first chapter serves as an introduction

to the effects of non-Gaussianity on halo bias, summarizing previous work and extending it

to the cubic local model (the gNL model). Chapter 2 generalizes some of the techniques of

Chapter 1, allowing for the calculation of halo bias with arbitrary initial conditions, while

Chapter 3 shows the relationship between the seemingly different techniques existing in the

literature. Detailed forecasts for upcoming surveys are presented in Chapter 4, including the

effect of marginalization over shot-noise and Gaussian part of the bias, photometric redshifts

uncertainties and multi-tracer analysis to reduce the effect of cosmic variance.

The second part contains work on two secondary anisotropies of the Cosmic Microwave

Background radiation (CMB), namely the Integrated Sachs-Wolfe (ISW) effect and the ki-

netic Sunyaev-Zel’dovich (kSZ) effect. The late-time ISW effect arises because of decay of

the large-scale gravitational potential due to the accelerated expansion and is therefore a

powerful probe of dark energy. Chapter 5 presents a new detection of the ISW effect, using

WISE galaxies and AGN as tracers of the gravitational potential, whose bias is measured in

cross-correlation with CMB lensing maps. An appendix discusses the contamination of this

measurement due to the linear part of the kSZ effect, the Doppler shift of photon energy

due to scattering off coherently moving electrons. The last chapter explores the prospects of

detecting the kSZ signal from sources for which accurate redshift information is not available

(such as the WISE catalog). Forecasts are presented, as well as comparison with simulations

and a discussion of the main sources of contamination.
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Relation to Published Work

This dissertation divided into two main sections and comprises six chapters. The first section

includes four chapters and explores the effect of primordial non-Gaussianity on the halo bias

at late times. The topics of the second section are the Integrated Sachs-Wolfe (ISW) effect

and the kinetic Sunyaev-Zel’dovich (kSZ) effect.

Chapter 1 provides an introduction to the effect of primordial non-Gaussianity on halo

bias, explains the peak-background split formalism and extends it to the cubic form of local

non-Gaussianity. Detailed comparison with N-body simulations is presented. This chapter

is based on work done in collaboration with Kendrick Smith and Marilena LoVerde, and has

been published in Smith, Ferraro and LoVerde, “Halo clustering and gNL-type primordial

non-Gaussianity” in the Journal of Cosmology and Astroparticle Physics 03 (2012) 032.

I co-developed the theoretical predictions and the comparison with previous work (with

discussions and help from the other co-authors). Kendrick Smith and Marilena LoVerde

performed and analyzed the simulations.

Part of the work presented in this chapter is also present in the Proceedings of the

DPF-2011 Conference, Providence, RI, August 8-13, 2011.

Chapter 2 derives the halo-halo and halo-matter correlations for arbitrary (non-

Gaussian) initial conditions. The concept of stochastic bias is explored and the conditions

under which it arises are discussed, together with several examples. This chapter is based

on work done in collaboration with Daniel Baumann, Daniel Green and Kendrick Smith,

and has been published in Baumann, Ferraro, Green, Smith, Journal of Cosmology and
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Astroparticle Physics 1305 (2013) 001 with the title “Stochastic Bias from Non-Gaussian

Initial Conditions”. I co-lead this work together with Daniel Baumann. All of the calcu-

lations were derived independently in two different sets of notes (one written by me) that

were then merged to create a single paper.

Chapter 3 explores the relationship between different techniques to compute halo bias

(such as barrier crossing, peak-background spit and local biasing) and show that they are

equivalent under certain conditions, which are specified in the text. This chapter is based

on work done in collaboration with Daniel Baumann, Daniel Green and Kendrick Smith,

and has been published in Ferraro, Smith, Green, Baumann, Monthly Notices of the Royal

Astronomical Society 435 934 (2013) with the title “On the correspondence between bar-

rier crossing, peak-background split and local biasing”. I co-lead this work together with

Kendrick Smith. I have written most of the paper (with the exception of section 3.4.2) with

input from the co-authors.

Chapter 4 provides forecast for primordial non-Gaussianity with halo bias with upcom-

ing galaxy surveys. The effects of photometric redshift errors and cancellation of sample

variance with multi-tracer analysis is also discussed. This chapter is based on work done

in collaboration with Kendrick Smith and has been published in Ferraro and Smith, “Using

large scale structure to measure fNL, gNL and τNL”, Physical Review D 91, 043506 (2015). I

lead this work, having written most of the text, all of the code and made all of the figures.

Chapter 5 presents a new detection of the ISW effect with WISE galaxies and AGN. The

galaxy/AGN bias is calibrated using CMB lensing, thus avoiding possible systematics that

can arise when using the auto-correlation function. This work has been done in collaboration

with Blake Sherwin and David Spergel and has been published in Ferraro, Sherwin and

Spergel, Physical Review D 91, 083533 (2015) with the title “A WISE measurement of the

ISW effect”. I lead this work, and I have analyzed the data, written all of the code and most

of the text, with frequent discussion with the co-authors.
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Appendix 2 explores the contamination to the ISW signal due the Doppler effect (linear

kSZ). This appendix is the result of currently unpublished work in collaboration with David

Spergel. I lead this work, with advice from David Spergel.

Chapter 6 explores the prospects of detecting kSZ in absence of reliable redshift es-

timates for the tracer populations. The main sources of contaminations are discussed and

forecasts are presented. This chapter builds on work in progress in collaboration with Colin

Hill and David Spergel. The computation of the expected signal follows and confirms previ-

ously published results (see text for details). The calculation of the lensing leakage, cosmic

variance and forecasts are my own, as well as all of the numerical computations. The hy-

drodynamical simulations were analyzed by Colin Hill and Nick Battaglia, while the theory

curves are my work.
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Chapter 1

Halo clustering and gNL-type

primordial non-Gaussianity

1.1 Abstract

A wide range of multifield inflationary models generate non-Gaussian initial conditions in

which the initial adiabatic fluctuation is of the form (ζG + gNLζ
3
G). We study halo clustering

in these models using two different analytic methods: the peak-background split framework,

and brute force calculation in a barrier crossing model, obtaining agreement between the two.

We find a simple, theoretically motivated expression for halo bias which agrees with N -body

simulations and can be used to constrain gNL from observations. We discuss practical caveats

to constraining gNL using only observable properties of a tracer population, and argue that

constraints obtained from populations whose observed bias is ∼< 2.5 are generally not robust

to uncertainties in modeling the halo occupation distribution of the population.

1.2 Introduction

In the last few decades, increasingly precise observations (e.g. [36, 53, 56, 58, 34, 66]) have

led to a standard cosmological model in which small initial fluctuations evolve in a ΛCDM
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background to give rise to the observed universe. Current data are consistent with initial

fluctuations which are adiabatic, scalar, Gaussian, with weak deviations from scale invariance

(ns < 1 at 3σ).

The statistics of the initial fluctuations, i.e. deviations from Gaussian initial conditions,

provide a powerful probe of the physics of the early universe. In the context of inflation

[27, 41, 1, 28, 30, 65, 2], the simplest models (single-field, minimally coupled slow-roll) predict

initial curvature perturbations with negligible deviations from Gaussianity. However, there

is a rich phenomenology of non-Gaussian initial conditions in models with multiple fields,

self-interactions near horizon crossing, or speed of sound cs � 1 during inflation. In this

paper, we will focus on non-Gaussianity of the so-called local type [59, 24, 37, 52], in which

the primordial potential1 is of the form

Φ(x) = ΦG(x) + fNL(ΦG(x)2 − 〈Φ2
G〉) + gNL(ΦG(x)3 − 3〈Φ2

G〉ΦG(x)) (1.1)

where ΦG is a Gaussian field and fNL, gNL are free parameters.2

Local non-Gaussianity can be generated by physical mechanisms involving multiple fields,

such as light spectator fields during inflation which evolve to generate the initial adiabatic

fluctuations (the curvaton scenario) [42, 46, 45], or models where the inflaton decay rate is

modulated by a second field [19, 35]. Non-Gaussianity of local type is also naturally generated

in non-inflationary models of the early universe such as the new ekpyrotic/cyclic scenario

[3, 8, 39]. There is a theorem [48, 9] which states that any single-field model of inflation

cannot generate detectable levels of local non-Gaussianity without violating observed limits

on deviation from a scale-invariant power spectrum. Thus, detection of either fNL or gNL

would rule out all single field models of inflation and place powerful constraints on the physics

of the early universe. Current observational constraints on these parameters are consistent

1In studies of primordial non-Gaussianity, it is conventional to define a primordial potential Φ = 3
5ζ, where

ζ is the initial adiabatic curvature perturbation. Note that Φ is not the conformal Newtonian potential, which
is given by 2

3Φ deep in the radiation-dominated epoch where Eq. (1.1) applies.
2We define gNL-type non-Gaussianity including the term −3〈Φ2

G〉ΦG; this term simply renormalizes ΦG
so that its power spectrum PΦG

is equal to the observed power spectrum PΦ (to first order in gNL).
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with zero [36, 62, 21, 17], but are expected to improve by an order of magnitude or more in

the near future.

In models of inflation in which |gNL| = O(f 2
NL), it is unlikely that observational constraints

on gNL will be competitive with constraints on fNL. However, there are a number of examples

where f 2
NL � |gNL|, making the gNL term in Eq. (1.1) the dominant source of primordial

non-Gaussianity. This situation arises in curvaton models where non-quadratic terms in the

potential are important [60, 33, 20, 31, 5] or in multifield models in which (∆N) varies rapidly

at the end of inflation [32, 4]. The existence of these scenarios makes searching for gNL just

as important as fNL and measurements provide important constraints on the microphysical

parameter space.

In a pioneering paper [12], Dalal et al showed that large-scale clustering of halos depends

sensitively on fNL. More precisely, a sample of halos (or tracers such as galaxies or quasars)

with constant bias b1 in a Gaussian cosmology will have scale-dependent bias given by

b(k) ≈ b1 + 2δc(b1 − 1)
fNL

α(k, z)
(1.2)

in an fNL cosmology. Here, δc is the spherical collapse threshold and α(k, z) is defined by

α(k, z) =
2k2T (k)D(z)

3ΩmH2
0

(1.3)

so that the linear density field and the primordial potential are related by δlin(k, z) =

α(k, z)Φ(k). Large-scale structure constraints on fNL from scale-dependent bias are cur-

rently competitive with the CMB (e.g. [62, 68]) and may ultimately provide constraints which

are stronger (e.g. [11, 29]). The key identity (1.2) has been derived using several different

analytic frameworks [50, 62, 25] and agrees with N -body simulations (e.g. [12, 26, 54, 17]).

In this paper we study the related issue of large-scale halo-clustering in a gNL cosmology.

We consider the large-scale halo bias in two analytic frameworks: the peak-background split

(§1.4) and a barrier crossing model (§1.5). We find consistency between the two formalisms
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(in disagreement with [15]) and obtain an expression analogous to Eq. (1.2) for the scale-

dependent halo bias in a gNL cosmology. Our main results are a universal relation between

the scale-dependent halo bias in a gNL cosmology and the mass function in an fNL cosmology,

b(k) ≈ b1 +
βggNL

α(k, z)
where βg = 3(∂ log n/∂fNL) (1.4)

and expressions for βg (Eqs. (1.49), (1.50)) which can be used in practice to constrain gNL

from data. We also discuss caveats when estimating the gNL bias from observable quantities

(§1.6.4) and argue that constraints obtained from tracer populations which are not highly

biased (b1 ∼> 2.5) are generally not robust to uncertainties in HOD modeling.

Throughout this paper we use the WMAP5+BAO+SN fiducial cosmology [18], with

baryon density Ωbh
2 = 0.0226, CDM density Ωch

2 = 0.114, Hubble parameter h = 0.70,

spectral index ns = 0.961, optical depth τ = 0.080, and power-law initial curvature power

spectrum k3Pζ(k)/2π2 = ∆2
ζ(k/kpiv)ns−1 where ∆2

ζ = 2.42 × 10−9 and kpiv = 0.002 Mpc−1.

All power spectra and transfer functions have been computed using CAMB [40].

1.3 Definitions and notation

We will sometimes model halos of mass ≥ M with peaks in a smoothed density field δM

defined as follows. Let δM(x) be the linear density field smoothed by a tophat filter with

radius R(M) = (3M/4πρm)1/3, i.e.

δM(x) =

∫
d3k

(2π)3
e−ik ·xδlin(k)WM(k) (1.5)

where

WM(k) = 3
sin(kR(M))− kR(M) cos(kR(M))

(kR(M))3
(1.6)
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Let σM = 〈δ2
M〉1/2 be the RMS amplitude of the smoothed density field, and let κn(M) be

its n-th non-Gaussian cumulant, defined by:

κn(M) =
〈δnM〉conn

σnM
. (1.7)

Since δM and σM are defined via linear theory, κn(M) is independent of redshift as implied

by the notation. To first order in fNL and gNL, we have

κ3(M) = κ
(1)
3 (M)fNL (1.8)

κ4(M) = κ
(1)
4 (M)gNL (1.9)

with higher cumulants equal to zero, where κ
(1)
3 (M), κ

(1)
4 (M) are the values of the cumulants

at fNL = 1 and gNL = 1 respectively. These values are given explicitly by:

κ
(1)
3 (M) =

6

σ3
M

∫
d3k d3k′

(2π)6
WM(k)WM(k′)WM(|k + k′|)Pmm(k)Pmm(k′)α(|k + k′|)

α(k)α(k′)

κ
(1)
4 (M) =

24

σ4
M

∫
d3k d3k′ d3k′′

(2π)9
WM(k)WM(k′)WM(k′′)WM(|k + k′ + k′′|)

×Pmm(k)Pmm(k′)Pmm(k′′)α(|k + k′ + k′′|)
α(k)α(k′)α(k′′)

(1.10)

where α(k) was defined previously in Eq. (1.3) and Pmm(k) is the power spectrum of the

linear density field, 〈δlin(k)δlin(k′)〉 = (2π)3Pmm(k)δ(3)(k + k′). For numerical calculation,

the following fitting functions (from [44]) are convenient:

κ
(1)
3 (M) = (6.6× 10−4)

(
1− 0.016 log

(
M

h−1M�

))
(1.11)

κ
(1)
4 (M) = (1.6× 10−7)

(
1− 0.021 log

(
M

h−1M�

))
. (1.12)

This paper is mainly concerned with calculating halo bias b(k) = Pmh(k)/Pmm(k) to first

order in fNL and gNL, so let us establish notation from the outset, by writing the large-scale
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bias in the general form:

b(k) = b1 + b1ffNL + b1ggNL +
βffNL + βggNL

α(k)
(1.13)

where unlike Eq. (1.2) and Eq. (1.4) we have allowed for scale-independent corrections b1f and

b1g from fNL and gNL primordial non-Gaussianity. Equation (1.13) defines the coefficients

b1, b1f , b1g, βf , βg. This equation assumes that the k-dependence is of the functional form

(constant) + (constant)/α(k), but we will derive this analytically (Eq. (1.34)) and show that

it agrees with simulations (§1.6.1). In this notation, the Dalal et al formula (1.2) can be

written as βf = 2δc(b1 − 1).

1.4 Peak-background split

The peak-background split formalism is a procedure for predicting halo clustering statistics

on large scales. The basic idea is that a long-wavelength fluctuation in the initial curvature

alters the local abundance of halos in a way which is equivalent to perturbing parameters

of the background cosmology, e.g. the matter density ρm or the amplitude ∆Φ of the initial

fluctuations. The use of this formalism to study halo bias in non-Gaussian cosmologies was

pioneered in [62]; we will review this calculation of the bias in an fNL cosmology (§1.4.1) and

then perform an analogous calculation in the gNL case (§1.4.2).

1.4.1 fNL cosmology

In an fNL cosmology, the initial conditions are given by:

Φ(x) = ΦG(x) + fNL(ΦG(x)2 − 〈Φ2
G〉) (1.14)

To analyze the effect of a long-wavelength mode, let us decompose the Gaussian potential as

a sum ΦG = Φl+Φs of long-wavelength and short-wavelength contributions. The long/short-
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wavelength decomposition of the non-Gaussian potential Φ is then

Φ(x) = Φl(x) + fNL

(
Φl(x)2 − 〈Φ2

l 〉
)︸ ︷︷ ︸

long

+ (1 + 2fNLΦl(x))Φs(x) + fNL(Φs(x)2 − 〈Φ2
s〉)︸ ︷︷ ︸

short

(1.15)

and contains explicit coupling between long and short wavelength modes of the Gaussian

potential.

Let us consider how the term (1 + 2fNLΦl(x))Φs(x) in Eq. (1.15) affects nl(x), the long-

wavelength part of the halo number density field. In a local region where the long-wavelength

potential takes some value Φl, the amplitude ∆Φ of the small-scale modes is perturbed:

∆Φ → (1 + 2fNLΦl)∆Φ. This modifies the local halo abundance, in the same way that the

global abundance would be modified if the cosmological parameter ∆Φ were perturbed, i.e. we

get a term in the long-wavelength halo density of the form ∆n(x) = 2fNLΦl(x)(∂n/∂ log ∆Φ).

In addition, even in a Gaussian cosmology, there is a perturbation to the local halo abundance

which is proportional to the long-wavelength part δl(x) of the density fluctuation, i.e. a term

of the form ∆n(x) = δl(x)(∂n/∂δl). Putting this together, the long-wavelength part of the

halo density is given by:3

nl(x) = n̄+
∂n

∂δl
δl(x) + 2fNL

∂n

∂ log ∆Φ

Φl(x)

= n̄(1 + b1δl(x) + βffNLΦl(x)) (1.16)

3In this derivation, we have swept two terms in Eq. (1.14) under the rug; let us now argue that these are
indeed negligible. The term fNL(Φs(x)2−〈Φ2

s〉) alters the statistics of the small scale modes; this does perturb
the halo abundance (by generating skewness in the density field) but the perturbation is independent of the
long-wavelength fluctuation Φl. Therefore, this term does not contibute to the large-scale halo bias. The
term fNL(Φl(x)2−〈Φ2

l 〉) perturbs the long-wavelength modes and decorrelates them (to order O(fNL)) from
both the linear density fluctuation δ(x) and the field (2fNLΦl) which modulates the local power spectrum
amplitude ∆Φ. In principle, this should generate stochastic bias at order O(f2

NL), but we will neglect this,
since we are only calculating to order O(fNL).
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where

b1 =
∂ log n

∂δl
(1.17)

βf = 2
∂ log n

∂ log ∆Φ

. (1.18)

Intuitively, in an fNL cosmology, the local power spectrum amplitude ∆Φ is not spatially

constant, but varies throughout the universe in a way which is proportional to the long-

wavelength potential Φl.

Computing the halo bias b(k) = Pmh(k)/Pmm(k) from Eq. (1.16) for nl(x), we get:

b(k) =
b1Pmm(k) + βfPmΦ(k)

Pmm(k)

= b1 +
βffNL

α(k, z)
. (1.19)

From the preceding argument, we predict that the scale-dependent fNL bias is given by

βf = 2(∂ log n/∂ log ∆Φ). We will refer to this as a “weak” prediction for the bias: it

cannot be used to constrain fNL from real data, since βf has not been expressed in terms of

observable quantities.

To make further progress, we need to evaluate the derivative (∂ log n/∂ log ∆Φ), by mak-

ing additional assumptions. If we assume that the halo mass function is universal, then

one can calculate the derivative, obtaining (∂ log n/∂ log ∆Φ) = δc(b1 − 1), where b1 is the

Gaussian bias [62], so that:

βf = 2δc(b1 − 1) . (1.20)

We will refer to this as a “strong” prediction for the scale-dependent bias in an fNL cosmology,

since βf has been expressed in terms of the observable quantity b1. The strong form is

essential for constraining fNL from observations.
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1.4.2 gNL cosmology

Let us now generalize the analysis of large-scale clustering in the previous subsection to the

case of a gNL cosmology, with initial conditions given by:

Φ(x) = ΦG(x) + gNL(ΦG(x)3 − 3〈Φ2
G〉ΦG(x)) . (1.21)

Separating the Gaussian field into long and short wavelength pieces ΦG = Φl + Φs, we

decompose Φ as follows:

Φ(x) = Φl(x) + gNL(Φl(x)3 − 3〈Φ2
l 〉Φl(x))︸ ︷︷ ︸

long

(1.22)

+ Φs(x) + 3gNL(Φl(x)2 − 〈Φ2
l 〉)Φs(x) + 3gNLΦl(x)(Φs(x)2 − 〈Φ2

s〉)

+ gNL(Φs(x)3 − 3〈Φ2
s〉Φs(x))

Where the “long” part of the potential has been indicated explicitly and the rest contributes

to the “short” part. As in the fNL case, we’ll consider the perturbation to the long-wavelength

halo density nh(x) generated by each of these terms.

The term 3gNL(Φl(x)2 − 〈Φ2
l 〉)Φs(x) can be interpreted as a local modulation in the

small-scale power spectrum amplitude, given by ∆Φ → (1 + 3gNL(Φl(x)2 − 〈Φ2
l 〉))∆Φ. This

generates a term ∆nl(x) = 3gNL(Φl(x)2 − 〈Φ2
l 〉)(∂n/∂ log ∆Φ) in the long-wavelength halo

density, in close analogy with the fNL case (the modulation is proportional to gNL(Φ2
l −〈Φ2

l 〉)

in this case, rather than fNLΦl).

The term 3gNLΦl(x)(Φs(x)2−〈Φ2
s〉) can be interpreted as follows. In a local region where

the long-wavelength potential takes the value Φl, the small-scale modes are perturbed in the

same way as in an fNL cosmology where the global value of fNL is given by (3gNLΦl). This

generates a term ∆nl(x) = 3gNLΦl(x)(∂n/∂fNL) in the long-wavelength halo density.

Finally, there is the usual term ∆nl(x) = δl(x)(∂n/∂δl) due to changes in mean back-

ground density (as in the Gaussian case).
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Putting this all together, we find that the long-wavelength halo density field in a gNL

cosmology is given by:4

nl(x) = n̄+
∂n

∂δl
δl(x) + 3gNL

∂n

∂ log ∆Φ

(Φl(x)2 − 〈Φ2
l 〉) + 3gNL

∂n

∂fNL

Φl(x)

= n̄

(
1 + b1δl(x) +

3

2
βfgNL(Φl(x)2 − 〈Φ2

l 〉) + βggNLΦl(x)

)
(1.23)

where b1 and βf were defined previously (Eqs. (1.17), (1.18)), and:

βg = 3
∂ log n

∂fNL

(1.24)

The large-scale halo bias b(k) = Pmh(k)/Pmm(k) is given by:

b(k) = b1 +
βggNL

α(k, z)
. (1.25)

Note that the (βfgNL) term in Eq. (1.23) does not contribute to the bias, since the field

(Φl(x)2−〈Φ2
l 〉) and the long-wavelength density field δl are uncorrelated (their cross correla-

tion is a three-point function of Gaussian fields, which vanishes). This term should generate

stochastic bias, but we defer a systematic study of halo stochasticity in non-Gaussian cos-

mologies to a future paper [22].

We have now arrived at the peak-background split prediction (1.25) for halo bias in a

gNL cosmology, which relates the scale-dependent gNL bias to the derivative (∂ log n/∂fNL) of

the halo mass function in an fNL cosmology. In the terminology of the previous subsection,

this is a “weak” prediction: we have shown that the problem of computing the gNL bias is

naturally related to the problem of understanding the mass function in an fNL cosmology,

but the coefficient βg has not been expressed in terms of observable quantities.

4Analogously to the fNL case, we have neglected two terms in Eq. (1.22). The term gNL(Φl(x)3 −
3〈Φ2

l 〉Φl(x)) only alters power spectra at order O(g2
NL), and we will neglect terms of this order. The term

gNL(Φs(x)3 − 3〈Φ2
s〉Φs(x)) generates kurtosis in the density field and modifies the halo mass function [44],

but in a way which is independent of Φl and therefore does not contribute to large-scale clustering.
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To obtain a “strong” prediction, we need to evaluate the derivative (∂ log n/∂fNL), which

requires making additional assumptions. This has been done in [44], assuming a barrier

crossing model for the mass function and using the Edgeworth expansion to calculate the

derivative (see also [51, 43, 6, 38, 47, 14, 13]). The result is:

∂ log n(M)

∂fNL

=
κ3(M)

6
H3(ν(M))− 1

6

dκ3/dM

dν/dM
H2(ν(M)) (1.26)

where ν = δc/σM , and H2(x) = x2 − 1 and H3(x) = x3 − 3x are Hermite polynomials. We

will compare this prediction with N -body simulations in §1.6.

1.5 Barrier crossing model

In this section, we will study large-scale bias using a barrier crossing model, obtaining results

which are consistent with the peak-background split formalism from the previous section.

The two approaches are complementary: the barrier model has the advantage that it gener-

ates complete predictions for halo statistics (such as the mass function or bias) via an algo-

rithmic calculational procedure, but obscures the physical intuition of the peak-background

split. For completeness, the calculations in this section will be sufficiently general to include

the cases of Gaussian, fNL-type, and gNL-type initial conditions.

1.5.1 Setting up the calculation

The barrier crossing model is an old, widely influential idea in cosmology, in which halos of

mass ≥M are identified with peaks in the smoothed linear density field [55]. Although more

complex versions have been proposed, we will use the simplest version: a spherical collapse

model with constant barrier height, defined formally as follows.

We model halos of mass ≥ M as regions where the smoothed linear density field δM(x)

(defined in Eq. (1.5)) exceeds the threshold value δc, i.e. the halo number density nh(x) is
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given by:

nh(x) =
ρm
M
θ(δM(x)− δc) (1.27)

where θ is the step function

θ(x) =

 0 if x < 0

1 if x ≥ 0
(1.28)

Throughout this paper, we take δc = 1.42; this value produces somewhat improved agreement

between the barrier model and simulations, compared to the Press-Schechter value δc = 1.69.5

To study halo bias in this model, we define the following notation. Let x, x′ be two

points separated by distance r, let δlin denote the (unsmoothed) linear density field at x,

and let δ′M denote the smoothed linear density field at x′. We denote the joint PDF of these

random variables by p(δlin, δ
′
M), and denote the 1-variable PDF of δ′M by p(δ′M). We define

p0 =

∫ ∞
δc

dδ′M p(δ′M) (1.29)

ξ0(r) =

∫
dδlin dδ

′
M p(δlin, δ

′
M) δlinθ(δ

′
M − δc) (1.30)

These quantities are related to the halo mass function n(M) and matter-halo correlation

function ξmh(r), but there is one wrinkle. In the barrier crossing model, the field nh defined

in Eq. (1.27) represents the number density of halos with mass ≥ M , whereas we want to

consider a sample of halos with mass in a narrow mass range (M,M + dM). Thus n(M)

and ξmh(r) are obtained by taking derivatives as follows:

n(M) = −2ρm
M

(
dp0

dM

)
(1.31)

ξmh(r) =
dξ0(r)/dM

dp0/dM
(1.32)

5We experimented with using a mass-dependent barrier δc(ν) chosen for consistency with a universal mass
function such as Sheth-Tormen [61] or Warren [67], but found that this did not result in further improvement.
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1.5.2 Mass function, halo bias, and interpretation

In principle, calculation of the halo mass function and large-scale bias in the barrier crossing

model has now been reduced to evaluation of Eqs. (1.29)–(1.32). We defer details of the

calculation to Appendix 1.8 and quote the final results. The halo mass function is given by:

n(M) =
2ρm
M

(
d log σ−1

dM

)
e−ν

2/2

(2π)1/2

[
ν

+ fNL

(
κ

(1)
3 (M)

νH3(ν)

6
− dκ

(1)
3 /dM

d(log σ−1)/dM

H2(ν)

6

)

+ gNL

(
κ

(1)
4 (M)

νH4(ν)

24
− dκ

(1)
4 /dM

d(log σ−1)/dM

H3(ν)

24

)]
(1.33)

The halo bias b(k) = Pmh(k)/Pmm(k) is given by (in the large-scale limit k → 0):

b(k) = b1 + b1ffNL + b1ggNL +
βffNL + βggNL

α(k)
(1.34)

where:

b1 = 1 +
ν2 − 1

δc
(1.35)

b1f = −κ(1)
3 (M)

(
ν3 − ν

2δc

)
+

dκ
(1)
3 /dM

d(log σ−1)/dM

(
ν + ν−1

6δc

)
(1.36)

b1g = −κ(1)
4 (M)

(
ν4 − 3ν2

6δc

)
+

dκ
(1)
4 /dM

d(log σ−1)/dM

(
ν2

12δc

)
(1.37)

βf = 2ν2 − 2 (1.38)

βg = κ
(1)
3 (M)

ν3 − 3ν

2
− dκ

(1)
3 /dM

d(log σ−1)/dM

(
ν − ν−1

2

)
(1.39)

Although the above expressions are the result of a purely formal calculation, we will now

show that each term has a natural interpretation.

Considering first the halo mass function (1.33), we have found a Press-Schechter mass

function (with δc = 1.42) in the Gaussian case, plus first-order corrections in fNL and gNL
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which agree with those found in [43, 44] using the Edgeworth expansion. This agreement is

expected since the two calculations are based on the same barrier crossing model.

Moving on to halo bias, in the Gaussian case, we predict that b(k) is constant on large

scales, with value b1 given by Eq. (1.35). The peak-background split argument suggests a

general relation between the large-scale halo bias and the halo mass function which applies

generally to a universal mass function of the form:

n(M) =
ρm
M
f(ν)

d log σ−1

dM
(1.40)

On large scales, the bias is predicted to be scale-independent and given by [7]:

b1 = 1− ν

δc

d log f

dν
(1.41)

Comparing our predictions (1.33), (1.35) for n(M) and b1, we find agreement, i.e. Eq. (1.35)

for b1 can be interpreted as the general peak-background split expression for halo bias,

specialized to the Press-Schechter mass function.

More generally, the b1f and b1g contributions to the bias (Eqs. (1.36), (1.37)) represent

shifts in the scale-independent part of the bias due to primordial non-Gaussianity. It is

straightforward to check that these terms can be obtained by plugging the non-Gaussian mass

function in Eq. (1.33) into the peak-background split prediction (1.41) for scale-independent

bias, i.e. the b1f and b1g terms can be interpreted as changes to the bias which are entirely

due to the mass function being perturbed in a non-Gaussian cosmology. This type of term

(scale-independent bias proportional to fNL) was first found for fNL cosmologies in [17]. Note

that a scale-independent shift is unobservable in practice, and cannot be used to constrain

non-Gaussianity, since the bias of a real tracer population, such as galaxies or quasars, is a

free parameter.

The βf contribution to the bias is the well-known scale-dependent bias in an fNL cosmol-

ogy. Comparing Eq. (1.38) for βf with Eqs. (1.33), (1.35), this term can be written either as
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βf = 2∂(log n)/∂(log ∆Φ) or βf = 2δc(b1 − 1). (In §1.4, we referred to these as “weak” and

“strong” predictions.)

The βg contribution to the bias is the focus of this paper: scale-dependent bias in a

gNL cosmology. Eq. (1.39) gives this term in the “strong” form that was found previously

(Eq. (1.26)) using the peak-background split argument. Alternately, we can write this term

in the “weak” form βg = 3∂(log n)/∂fNL using Eq. (1.33).

In summary, we have found that the complete expression for large-scale halo bias in the

barrier crossing model (Eq. (1.34)) agrees perfectly with the peak-background split calcula-

tion from §1.4. The bias contains a scale-independent part (b1+b1ffNL+b1ggNL) which can be

obtained from the halo mass function, via the general relation (1.41). The scale-independent

bias depends on fNL and gNL, because the halo mass function depends on these parameters.

The bias also contains a scale-dependent part (βffNL + βggNL)/α(k) whose coefficients can

be calculated explicitly and agree with the peak-background split predictions.

1.5.3 Comparison with previous work

It is interesting to compare the above calculations with the results of [16] (see also [25]),

where βg was calculated using the MLB formula [49], which gives N -point functions of halos

as an asymptotic series in ν. The scale-dependent gNL bias was found to be (in our notation):

βMLB
g = κ

(1)
3 (M)

δcν(b1 − 1)

2
(1.42)

When this prediction was compared to N -body simulations, it was found to be a poor fit.

Comparing βMLB
g with our calculation (1.39) for βg, it is seen that the two agree in

the high-mass limit ν → ∞, but disagree in subleading terms. This is expected since the

MLB formula is based on the same barrier crossing model that we have used, but it is an

asymptotic result, whereas we have done an exact calculation (to first order in fNL, gNL).

For realistic halo masses, the “subleading” terms neglected in the MLB formula are of order
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one (to quantify this better, βg and βMLB
g agree to 10% only when the halo bias b1 ≥ 15), so

in practice the two predictions are quite different.

Recently, ref. [15] argued that the barrier crossing model cannot generate correct pre-

dictions for general non-Gaussian initial conditions such as the gNL model, but we found

the opposite conclusion: brute-force calculation in the barrier crossing model, collecting all

terms of order O(gNL), agrees precisely (i.e. to all orders in 1/ν) with the peak-background

split. It seems intuitively plausible that two must be consistent, since the peak-background

split argument depends only on the assumption that halo formation is determined by the

local density field, and the barrier crossing model is a concrete example of a model in which

this assumption is satisfied.

1.6 Results from N-body simulations

In the last two sections, we have obtained complete analytic predictions for large-scale bias

in a gNL cosmology, finding agreement between the peak-background split formalism (§1.4)

and a barrier crossing model based on spherical collapse (§1.5).

To compare these predictions with simulation, we performed collisionless N -body sim-

ulations using the GADGET-2 TreePM code [64]. Simulations were done using periodic

box size Rbox = 1600 h−1 Mpc, particle count Np = 10243, and force softening length

Rs = 0.05(Rbox/N
1/3
p ). With these parameters and the fiducial cosmology from §1.2, the

particle mass is mp = 2.92× 1011 h−1 M�.

We generate initial conditions by simulating a Gaussian primordial potential Φ, and

applying fNL or gNL corrections by straightforward use of Eq. (1.1). We linearly evolve to

redshift zini = 100 using the transfer function6 from CAMB [40], and obtain initial particle

6One subtlety here: straightforward use of CAMB’s transfer function at redshift 100 leads to inconsis-
tencies since CAMB includes radiation (which is not negligible at z = 100) in its expansion history, while
GADGET does not. For this reason we use CAMB’s linear transfer function at low redshift and extrapolate
back to z = 100 using the growth function in an Ωrad = 0 universe.
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positions at this redshift using the Zeldovich approximation [69]. (At zini = 100, transient

effects due to use of this approximation should be negligible [10].)

After running the N -body simulation, we group particles into halos using an MPI par-

allelized implementation of the friends-of-friends algorithm [23] with link length LFOF =

0.2RboxN
−1/3
p . For a halo containing NFOF particles, we assign a halo position given by the

mean of the individual particle positions. We estimate halo bias b(k) = Pmh(k)/Pmm(k)

using the procedure described in Appendix A of [63]. The statistical error ∆b(k) obtained

using this procedure is smaller than the error that would be obtained assuming uncorrelated

estimates of the power spectra Pmm and Pmh, since shared sample variance is taken into

account.

Results in this paper are based on 4 simulations with Gaussian initial conditions, 5

simulations with gNL = ±2 × 106, and 3 simulations with fNL = ±250 (for a total of 20

simulations).

1.6.1 Fitting the functional form b(k) = b1 + βggNL/α(k)

We now compare our analytic prediction for b(k) to simulation in several steps, corresponding

to increasingly strong versions of the prediction.

First, consider the weakest possible question: our analytic prediction for the bias is of

the functional form

b(k) = b1 + βg
gNL

α(k)
(1.43)

Is this is a good fit to simulation, if we treat the coefficients b1 and βg as free parameters?

(We will compare our analytic prediction for βg to simulation in the next subsection; for now

we are just testing whether the functional form (1.43) is correct.)

In Fig. 1.1, we show some example fits of this form, for redshift z = 0.5 and halo mass

range 1.15 ≤ M ≤ 1.83 × 1014 h−1 M�. Each fit was performed using bias estimates from

4 independent simulations with Lbox = 1600 h−1 Mpc and wavenumbers k ≤ 0.04 h Mpc−1.
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Figure 1.1: An example to illustrate that halo bias in a gNL cosmology takes the functional
form form b(k) = b1 +βggNL/α(k). This figure corresponds to redshift z = 0.5 and halo mass
range 1.15 ≤M ≤ 1.83×1014 h−1 M�, but we find the same functional form for all redshifts
and halo masses.

We find good χ2 values for the fits, with recovered parameters:

b1 = 3.653± 0.026 for gNL = 0

(b1, 103βg) = (3.575± 0.038, 0.581± 0.056) for gNL = 2× 106

(b1, 103βg) = (3.824± 0.039, 0.935± 0.060) for gNL = −2× 106

(1.44)

We note that the recovered bias parameters (1.44) in this example show that both b1 and

βg are gNL-dependent. In the barrier crossing model, we made a prediction for the gNL

dependence of b1 (Eq. (1.37)). We find good agreement between this prediction and our

simulations. Note that in practice, the gNL dependence of b1 is unobservable since for a real

tracer population, the halo occupation distribution is not known precisely and b1 must be

treated as a free parameter to be determined from data.

The observed gNL dependence of βg corresponds to scale-dependent bias of order O(g2
NL)

or higher (note that βg is defined in such a way that constant βg corresponds to scale-

dependent bias which is linear in gNL). This complicates comparison with our analytic
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predictions, since we have only calculated the bias to order O(gNL). We address this by

estimating βg by averaging the estimates obtained from simulations with gNL = ±2 × 106,

thus removing contributions to b(k) which are proportional to g2
NL. Note that this does not

remove O(g3
NL) contributions to the bias, but we have checked that such contributions are

negligible for gNL = ±2× 106, by comparing with simulations with halved step size.

Repeating this fitting procedure for redshifts z ∈ {2, 1, 0.5, 0} and a range of halo masses

(the precise set of halo mass bins used is shown in Fig. 1.2 below), we find χ2 values which

are consistent with their expected distribution, i.e. we find that the functional form (1.43) is

a good fit to the simulations for a wide range of redshifts and halo masses. For this reason, in

subsequent sections, we will “compress” the estimates of b(k) in each simulation (as shown

in Fig. 1.1) to two numbers (b1 and βg), with statistical errors given by the fitting procedure.

1.6.2 Comparison with analytic predictions

Now that we have established the functional form b(k) = b1 + βggNL/α(k) of the bias, and

a procedure for estimating βg from simulation as a function of redshift and halo mass, we

would like to compare with our analytic predictions for βg.

First, consider the “weak” form of the prediction (βg = 3(∂ log n/∂fNL)) obtained from

the peak-background split argument. We can test this prediction by estimating the derivative

(∂ log n/∂fNL) directly from simulations, by taking finite differences of log(n) in simulations

with fNL = ±250. (We checked convergence in the step size.) We find that the prediction

holds perfectly (within the statistical errors of the simulations) for all redshifts and halo

masses (Fig. 1.2).

Second, consider the “strong” Edgeworth prediction (Eq. (1.39)), in which an explicit

formula for βg is given. In this case, we find reasonable agreement at high mass (M ∼> 1014

h−1 M�), but the prediction breaks down at low halo mass (Fig. 1.2).

Our interpretation is as follows. The peak-background split prediction βg = 3(∂ log n/∂fNL)

is a universal relation between bias in a gNL cosmology and the mass function in an fNL
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Figure 1.2: Comparison of the “weak” and “strong” predictions for the scale-dependent bias
in a gNL cosmology. Blue squares: Direct estimates of the bias, extracted from simulations
with gNL = ±2 × 106 as described in §1.6.1. Green circles: “Weak” analytic prediction
for the bias (βg = 3(∂ log n/∂fNL)) from the peak-background split formalism, showing
perfect agreement. The estimates of (∂ log n/∂fNL) shown in the figure were obtained directly
from simulations with fNL = ±250. Red dotted curve: Edgeworth prediction for the
bias (Eq. (1.39)). Good agreement is seen at high mass, but at low masses Edgeworth
underpredicts 3(d log n/dfNL). We will find an improvement in §1.6.3.
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cosmology. Although “weak” in the sense that it does not supply a closed-form expression

for βg, the derivation makes few assumptions, and one expects it to be exact. In order

to constrain gNL from real data, we need a “strong” prediction which expresses βg in

closed form, using only observable quantities (i.e. the analog of the Dalal et al formula

βf = 2δc(b1 − 1) for an fNL cosmology). Using the Edgeworth expansion, one can make

such a prediction in the context of the barrier crossing model (Eq. (1.39)), and obtain

rough agreement with simulations, but the level of agreement is not really good enough for

doing precision cosmology. Therefore, we next propose a slightly modified version of the

Edgeworth prediction.

1.6.3 A simple universal formula for the bias in a gNL cosmology

We would like to slightly modify the Edgeworth prediction (1.39) for βg so that it agrees

better with N -body simulations. It is also convenient to have a prediction in which βg is

given as a function of observable quantities: Gaussian bias b1 (rather than halo mass, which

is unobservable) and redshift z.

We start by rewriting the Edgeworth prediction (1.39) for βg in terms of variables (b1, z).

The following fitting functions for κ3 and dκ3/d log(σ−1) are convenient:

κ3 = 0.000329(1 + 0.09z)b−0.09
1 (1.45)

dκ3

d log σ−1
= −0.000061(1 + 0.22z)b−0.25

1 (1.46)

For purposes of this subsection, we define the quantity ν to be given in terms of b1 and z by:

ν = [δc(b1 − 1) + 1]1/2 (where δc = 1.42) (1.47)
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Figure 1.3: Scale-dependent gNL bias coefficient βg as a function of redshift z and halo bias
b1, showing excellent agreement between our final analytic result (Eq. (1.49), dashed curves)
and N -body simulations (error bars).

The Edgeworth prediction for βg can be written in the following form:

βEdge.
g = κ3

[
− 1 +

3

2
(ν − 1)2 +

1

2
(ν − 1)3

]
− dκ3

d log σ−1

(
ν − ν−1

2

)
(1.48)

Empirically, we find that if we tweak the Edgeworth prediction by changing the coefficients

of the polynomial in brackets as follows:

βg = κ3

[
− 0.7 + 1.4(ν − 1)2 + 0.6(ν − 1)3

]
− dκ3

d log σ−1

(
ν − ν−1

2

)
(1.49)

then we obtain good agreement with simulations (Fig. 1.3). The expression (1.49) for βg

(with quantities κ3, dκ3/d log σ−1, ν defined by Eqs. (1.45)–(1.47)) is one of the main results

of this paper and is our observational “bottom line” when constraining gNL from real data.

We have motivated our “tweak” to the Edgeworth prediction as essentially a fitting

function for the ν dependence (although it is worth noting that the z dependence is correctly

predicted by the barrier crossing model). A speculative interpretation of this tweak, which
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we will defer for future work, is as follows. In the barrier crossing model, the second-order

halo bias is given by b2 = (ν3− 3ν)/(δcσM). It is tempting to conjecture that the expression

in brackets in Eq. (1.49) is generally equal to (δcσMb2), and interpret our “tweak” to the

Edgeworth prediction (1.48) as perturbing the relation between b1 and b2, relative to the

barrier crossing model. This opens up the possibility of directly measuring the second-order

bias and determining βg directly. To study the viability of this idea, one would need to

compare βg in simulation to some other estimate of second-order halo bias, such as the halo

bispectrum in the squeezed limit.

1.6.4 An important caveat

There is an important caveat when using Eq. (1.49), or indeed any fitting function for the

gNL bias, to constrain gNL from real data. It is tempting to compute βg by simply plugging

the observed bias b1 and redshift z into Eq. (1.49). (Since the z-dependence is very mild, a

rough estimate for the redshift suffices.) However, we have only shown that this procedure

is correct in the limit of a narrow bin in halo mass and redshift, and a real tracer population

will be a weighted average over M and z.

For example, consider the case in which the “tracers” are the dark matter particles

themselves, i.e. each halo is weighted in proportion to its mass (assuming all mass is in

halos). This tracer population has bias b1 = 1 (for the trivial reason that we are back to the

dark matter field), so straightforward use of Eq. (1.49) would suggest that βg ≈ −0.00025.

(This value would make the low-k power spectrum a reasonably sensitive probe of gNL.)

In fact, the true βg of this tracer is zero, since the matter power spectrum Pmm(k) does

not contain a term proportional to gNL/α(k). This example shows that the true gNL bias

of a tracer population can differ significantly from the value obtained by straightforward
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use of Eq. (1.49). In general, the gNL bias will depend on the full HOD (halo occupation

distribution) of the tracer population, not only on the Gaussian bias b1.7

One popular approach to modeling the HOD is to assume that halos below some minimum

mass Mmin do not host tracers, whereas the mean number of tracers in a halo of mass

M ≥Mmin is proportional to the total mass M . For reference, we give a fitting function for

the gNL bias for this HOD:

βg = κ3

[
− 0.4(ν − 1) + 1.5(ν − 1)2 + 0.6(ν − 1)3

]
(1.50)

where for purposes of this equation, κ3 and ν are defined as functions of the observables b1

and z by Eqs. (1.45), (1.47) above.

Eq. (1.50) applies to a mass-weighted population of halos above Mmin, whereas Eq. (1.49)

applies to a population which is narrowly selected in mass. The two agree for b1 ∼> 2.5,

suggesting that HOD dependence is small in practice for highly biased samples, but disagree

qualitatively for b1 ∼< 2.5. For example, the gNL bias βg changes sign at b1 ≈ 2.1 for the

narrowly selected sample (Eq. (1.49)), whereas βg is always positive for the mass-weighted

sample (Eq. (1.50)).

Our perspective is that, in order to obtain gNL constraints which are robust to HOD

modeling uncertainty, one should use highly biased samples (b1 ∼> 2.5), where this uncertainty

will be minimized. Samples which are not highly biased do not give robust constraints; for

example, a tracer population with b1 = 1.8 can have a gNL bias βg which is negative, zero,

or positive, depending on the HOD.

For highly biased samples, it is useful to make the following observation: the gNL bias

βfit
g which is obtained from straightforward use of Eq. (1.49) is always less than the true gNL

bias βtrue
g .8 This follows from positivity of the second derivative d2βg/db

2
1. It follows that a

7Note that there is no analogous caveat in the fNL case. Because the relation βf = 2δc(b1 − 1) is linear,
it applies to both a tracer population which is narrowly selected in (M, z) and to a population which is an
arbitrary weighted average over (M, z).

8This statement assumes that the probability that a halo hosts a tracer is a function only of the mass
and redshift. If the probability depends strongly on additional variables such as merger history, triaxiality,
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gNL constraint obtained using βfit
g is always valid, but slightly overestimates the statistical

error that could be obtained if βtrue
g were known. This effectively treats HOD uncertainty as

an extra source of systematic error.

1.7 Discussion

We have computed large-scale halo bias for non-Gaussian initial conditions, using two ana-

lytic frameworks: the peak-background split formalism (§1.4) and a barrier crossing model

(§1.5), finding agreement between the two. Although our emphasis has been on the constant-

fNL and constant-gNL models, our calculational machinery should apply to more general

non-Gaussian initial conditions.

The peak-background split formalism is simpler and also suggests a simple physical pic-

ture of non-Gaussian cosmologies on large scales. In an fNL cosmology, the amplitude ∆Φ of

the initial fluctuations is not spatially constant, but is proportional to (1 + 2fNLΦl). Thus,

∆Φ has fluctuations on large scales which are 100% correlated with the long-wavelength

potential, generating halo bias of the form (βffNL/α(k)). In a gNL cosmology, the small-

scale skewness is nonzero and proportional to (gNLΦl), leading to halo bias of the form

(βggNL/α(k)). The peak-background split argument is very useful for generating universal

relations such as βg = 3∂(log n)/∂fNL, which are “weak” in the sense that the RHS has not

been expressed in terms of observable quantities, but have the advantage of being exact (as

can be seen by comparing the two sets of errorbars in Fig. 1.2).

The barrier crossing model generates all terms in the large-scale bias, including terms

such as b1f and b1g which are easy to miss, by a purely algorithmic calculational procedure. In

addition, the barrier crossing model generates “strong” forms of the bias coefficients (e.g. the

Edgeworth expression (1.39) for βg), which are closed-form expressions in M and z. However,

etc. then this will generate additional contributions to βg, in analogy to the fNL case [62, 57]. In principle,
selection biases to βg can be addressed by folding the selection into the mass function when computing
∂(log n)/∂fNL, but detailed study is beyond the scope of this paper.
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these expressions are not exact because the barrier crossing model is approximation to the

true process of halo formation.

To obtain a “bottom line” expression for the scale-dependent gNL bias βg in terms of

redshift z and Gaussian bias z, we found it necessary to tweak slightly the b1 dependence

of the Edgeworth prediction, arriving at the expression (1.49) which agrees very well with

simulations. The caveat is that Eq. (1.49) applies only to a halo population which has been

selected in a narrow halo mass and redshift range. In principle, one can calculate βg for a

tracer population by multiplying by the halo occupation distribution and integrating over

mass and redshift. In practice, the HOD is not known precisely and we have argued in §1.6.4

that the best approach is to only use highly biased populations (b ∼> 2.5) for constraining

gNL. Since βg is a rapidly increasing function of b1, this strategy makes sense both from the

perspective of minimizing statistical errors, and systematic errors due to HOD uncertainty.

In data analysis, it may be useful to impose cuts which increase the mean halo bias at

the expense of reducing the number of tracers. Another advantage of subdividing tracer

populations is that this may permit fNL and gNL to be constrained simultaneously (with a

single tracer population, the two are degenerate).
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1.8 Appendix: Barrier model calculations

In this appendix, we give details of the calculation of the halo mass function and large-scale

bias (Eqs. (1.33)–(1.39)) in the barrier crossing model, to first order in fNL, gNL.

First, consider evaluation of the integrals in Eqs. (1.29), (1.30). Primordial non-

Gaussianity enters the calculation by perturbing the PDFs which appear from Gaussian

distributions. This perturbation can be written down explicitly using the Edgeworth expan-

sion, which represents the PDF as a power series in cumulants. The Edgeworth expansion

for the 1-variable PDF p(δ′M) is:

p(δ′M) = exp

(∑
n≥3

(−1)n

n!
κn(M)σnM

∂n

∂δ
′n
M

)
1

(2π)1/2σM
e−δ

′2
M/(2σ

2
M ) (1.51)

=
1

(2π)1/2σM
e−δ

′2
M/(2σ

2
M )

(
1 +

κ3(M)

6
H3(ν) +

κ4(M)

24
H4(ν) + · · ·

)
=

1

(2π)1/2σM
e−δ

′2
M/(2σ

2
M )

(
1 + fNL

κ
(1)
3 (M)

6
H3(ν) + gNL

κ
(1)
4 (M)

24
H4(ν) + · · ·

)

where we have kept terms of first order in fNL, gNL. We can now compute p0 by plugging

into the definition (1.29):

p0 =
1

2
erfc

(
ν√
2

)
+ fNL

κ
(1)
3 (M)

6

e−ν
2/2

(2π)1/2
H2(ν) + gNL

κ
(1)
4 (M)

24

e−ν
2/2

(2π)1/2
H3(ν) (1.52)

Armed with this expression, it is easy to compute n(M) = −2ρm/M(dp0/dM), obtaining

the form of the mass function in Eq. (1.33).

Moving on to the 2-variable PDF p(δlin, δ
′
M), the Edgeworth expansion is:

p(δlin, δ
′
M) = exp

σlinσMκ1,1
∂2

∂δlin ∂δ′M
+
∑
m,n

m+n≥3

(−1)m+n

m!n!
σmlinσ

n
Mκm,n

∂m+n

∂δmlin∂δ
′n
M


× 1

2πσlinσM
exp

(
− δ2

lin

2σ2
lin

− δ
′2
M

2σ2
M

)
(1.53)
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where σlin = 〈δ2
lin〉1/2 and the cumulant κm,n is defined by:9

κm,n(M, r) =
〈(δlin)m(δ′M)n〉conn

σmlinσ
n
M

(1.54)

Note that the cumulant κn(M) defined previously in Eq. (1.7) is equal to κ0,n(M, r).

Keeping the first few terms in the Edgeworth expansion:10

p(δlin, δ
′
M) =

1

2πσlinσM
exp

(
− δ2

lin

2σ2
lin

− δ
′2
M

2σ2
M

)
×
(

1 +
κ1,1(M, r)

σlin

δlin

(
δ′M
σM

)
+
κ1,2(M, r)

2σlin

δlinH2

(
δ′M
σM

)
+
κ1,3(M, r)

6σlin

δlinH3

(
δ′M
σM

)
+
κ1,1(M, r)κ0,3(M)

6σlin

δlinH4

(
δ′M
σM

)
+
κ1,1(M, r)κ0,4(M)

24σlin

δlinH5

(
δ′M
σM

)
+ · · ·

)
(1.55)

we compute ξ0(r) by integrating Eq. (1.30) term by term, obtaining:

ξ0(r) =
σline

−ν2/2

(2π)1/2

(
κ1,1(M, r) +

κ1,2(M, r)

2
ν +

κ1,3(M, r)

6
H2(ν)

+
κ1,1(M, r)κ3(M)

6
H3(ν) +

κ1,1(M, r)κ4(M)

24
H4(ν)

)
(1.56)

To make further progress, we convert the correlation function to a power spectrum P0(k) =∫
d3r eik · rξ0(r), and keep only the leading behavior of each term in the long-wavelength

9A technical point: σlin is formally infinite, but it will cancel from the final results in Eqs. (1.35)–(1.39).
One could make σlin finite by introducing a smoothing scale R for the matter field, and take the limit R→ 0
at the end of the calculation.

10The choice of terms to keep was dictated by the following considerations. Only terms with precisely one
δlin derivative will give nonzero contributions to the integral

∫∞
−∞ dδlin δlinp(δlin, δ

′
M ) appearing in ξmh(r),

so we have only kept these terms. (Terms with two or more derivatives would contribute to the halo-halo
correlation function ξhh(r), so they may be relevant for halo stochasticity.) We have also omitted terms
whose leading contribution is second-order or higher in fNL and gNL.
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limit k → 0.

∫
d3r eik · rκ1,2(M, r) =

1

σlinσ2
M

∫
d3q d3q′

(2π)6
WM(q)WM(q′)

〈
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〉
→ 4fNL
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∫
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1

σlinσ3
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(1)
3 (M)

(
P (k)

α(k)

)
(1.58)

where “→” denotes the k → 0 limit, and we have used Eq. (1.10) to simplify the last line.

Putting this together, we find the following expression for P0(k) in the k → 0 limit:

P0(k) =
e−ν

2/2

(2π)1/2

[
P (k)

σM

(
1 + fNL

κ
(1)
3 (M)

6
H3(ν) + gNL

κ
(1)
4 (M)

24
H4(ν)

)

+2νfNL
P (k)

α(k)
+ κ

(1)
3 (M)

H2(ν)

2
gNL

P (k)

α(k)

]
(1.59)

The halo bias in a narrow mass range is given by the derivative:

b(k) =
dP0(k)/dM

(dp0/dM)P (k)
+ 1 (1.60)

where the “+1” converts Lagrangian to Eulerian bias. Plugging in the forms of p0, P0 in

Eqs. (1.52), (1.59), a long but straightforward calculation now gives the halo bias in the form

given in the text (Eqs. (1.34)–(1.39)).
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Chapter 2

Stochastic Bias from Non-Gaussian

Initial Conditions

2.1 Abstract

In this chapter we show that a stochastic form of scale-dependent halo bias arises in multi-

source inflationary models, where multiple fields determine the initial curvature perturbation.

We derive this effect for general non-Gaussian initial conditions and study various examples,

such as curvaton models and quasi-single field inflation. We present a general formula for

both the stochastic and the non-stochastic parts of the halo bias, in terms of the N -point

cumulants of the curvature perturbation at the end of inflation. At lowest order, the stochas-

ticity arises if the collapsed limit of the four-point function is boosted relative to the square

of the three-point function in the squeezed limit. We derive all our results in two ways,

using the barrier crossing formalism and the peak-background split method. In the next

chapter, which was published as a companion paper [1], we prove that these two approaches

are mathematically equivalent.

38



2.2 Introduction

A central goal of modern cosmology is to uncover the physics that generated the primordial

density perturbations and thereby seeded the large-scale structures (LSS) we see around us.

The coherent nature of the cosmic microwave background (CMB) anisotropies suggests that

the fluctuations were created at very early times, possibly during a period of inflation [2].

One of the few observational probes that allows us access to the physics of that epoch

is primordial non-Gaussianity [3]. At present, the best constraints on non-Gaussianity are

coming from the CMB (e.g. [4]), but LSS is emerging as a promising complementary observ-

able (e.g. [5, 6]). Historically, the usefulness of LSS as a tool for early universe cosmology

has been viewed with some suspicion, since non-linear evolution can itself produce significant

non-Gaussianity even if the initial conditions were perfectly Gaussian. Disentangling any

primordial non-Gaussianity from these late time effects always seemed like a messy business.

This attitude has changed somewhat when it was discovered that non-Gaussian initial con-

ditions lead to a scale-dependent clustering of galaxies on large scales [7, 8]. In particular,

it was shown that non-linear mode coupling induces a modulation of the local short-scale

power σ8(x) by the long-wavelength gravitational potential Φ(x). This results in a biasing

of halos (or galaxies) that is proportional to Φ rather than the dark matter density δ (or

∇2Φ). Crucially, the appearance of Φ rather than δ in the halo bias implies a specific form

of scale-dependence that cannot be created dynamically (i.e. by late time processes). This

is the main reason that halo bias is such a robust probe of the initial conditions.

Figure 2.1: The squeezed limit of the three-point function, k1 → 0, gives the dominant
contribution to the scale-dependent halo bias. A stochastic form of scale-dependent halo
bias arises if the four-point function is large in the collapsed limit, k12 ≡ |k1 + k2| → 0.

In this chapter, we study stochastic halo bias on large scales. The term ‘stochastic’ here

refers to the fact that the halo over-density is not 100% correlated to the matter over-density
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on large scales, i.e. the halo-halo power spectrum Phh(k) is boosted relative to the matter-halo

power spectrum Pmh(k). Formally, this means that

Phh(k) > b2(k)Pmm(k) +
1

nh

, (2.1)

where b(k) ≡ Pmh(k)/Pmm(k) is the halo bias, and nh is the halo number density. Large-

scale stochastic bias arises in non-Gaussian models when the small-scale power σ8(x) varies

from point to point, but in a way that isn’t completely correlated with the local value of

Φ(x) and its derivatives. This is most easily demonstrated in models with multiple fields,

where the small-scale power may depend on fields that do not contribute to the (linearized)

gravitational potential. Our goal in this chapter is to provide an understanding of the origin

of stochastic bias in a model-independent way. In the absence of significant isocurvature

perturbations, all the relevant information must be encoded in the correlation functions of

gravitational potential Φ. It will be useful to define

f̂NL ≡
1

4
lim
k1→0

ξ
(3)
Φ (k1,k2,k3)

P1P2

, (2.2)

τ̂NL ≡
9

100
lim
k12→0

ξ
(4)
Φ (k1,k2,k3,k4)

P1P3P12

, (2.3)

where 〈Φk1 · · ·ΦkN 〉c ≡ (2π)3ξ
(N)
Φ (k1, · · · ,kn) δD(k1 + · · · + kn) and Pi ≡ ξ

(2)
Φ (ki).

This parametrizes the amplitude of the three-point function in the squeezed limit,

k1 � min{k2, k3}, and the amplitude of the four-point function in the collapsed limit,

k12 ≡ |k1 + k2| � min{ki}. As we will show, stochastic bias arises if the ‘collapsed

four-point function’ is not equal to the square of the ‘squeezed three-point function’, i.e. if

τ̂NL 6= (6
5
f̂NL)2. There exists a well-known theoretical constraint on the relative size of τ̂NL

and (6
5
f̂NL)2. If only a single field (which may or may not be the inflaton) generates the

primordial curvature perturbation and its non-Gaussianity, then τ̂NL = (6
5
f̂NL)2 [9] and

the biasing is non-stochastic. On the other hand, if multiple coupled fields generate the
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non-Gaussianity, then τ̂NL can be larger1 than (6
5
f̂NL)2 [16, 17] and the biasing will be

stochastic. We will discuss classes of inflationary theories that predict precisely this kind of

observational signature [18, 19, 20]. This provides the opportunity of using scale-dependent

stochastic bias2 as a probe of any early universe physics associated with a boosted collapsed

four-point function—just like the non-stochastic scale-dependent bias is a powerful probe of

the squeezed three-point function.

More generally, we find that the large-scale non-stochastic bias can be written

as a sum over N -point functions ξ
(N)
Φ (k1, · · · ,kN) evaluated in the squeezed limit

k1 � min{k2, · · · , kN}.3 The stochastic bias, on the other hand, involves a double

sum over (M + N)-point functions ξ
(M+N)
Φ (k1, · · · ,kM+N) evaluated in the collapsed limit

|k1 + · · · + kM | � min{ki}. Stochastic bias arises if any collapsed (M + N)-point function

is boosted relative to the product of the corresponding squeezed (M + 1)-point and (N + 1)-

point functions. In all physically interesting cases that we are aware of, this effect is due

to the collapsed four-point function being boosted relative to the square of the three-point

function (i.e. the case M = N = 2). Therefore, we will generally interpret stochastic bias

as a probe of the collapsed four-point function. The main result of this chapter is a general

pair of formulas, eqs. (2.36) and (2.46), for the non-stochastic and stochastic parts of the

bias, for completely general non-Gaussian initial conditions parametrized by the N -point

cumulants ξ
(N)
Φ (k1, · · · ,kN).

The outline of the chapter is as follows: We will begin, in Section 2.3, with a qualita-

tive explanation of scale-dependent stochastic bias. In Section 2.4, we will show how our

1No matter how the fluctuations were created, the parameters have to satisfy the Suyama-Yamaguchi
inequality τ̂NL ≥ ( 6

5 f̂NL)2 [10] (see also [11, 12, 13, 14, 15]). This is easy to understand: we can think of

f̂NL as a measure of the large-scale correlation between the potential Φ and the locally measured small-scale
power, f̂NL ∼ 〈Φ`Φ2

s〉/〈Φ2
`〉〈Φ2

s〉. On the other hand, τ̂NL is a measure of the large-scale variance in the small-

scale power, τ̂NL ∼ 〈Φ2
sΦ

2
s〉c/〈Φ2

`〉〈Φ2
s〉2. The inequality τ̂NL ≥ ( 6

5 f̂NL)2 then arises simply as the condition
that the correlation coefficient between the small-scale power and Φ must be between −1 and 1.

2We should note that in this chapter we are interested in large-scale stochastic bias. On small scales,
non-linear evolution and astrophysical processes can create local stochasticity, which is not relevant in our
study.

3More precisely, k1 is fixed to the large scale k where we are computing the bias, and k2, · · ·, kN are

integrated over a broad range of scales near the halo collapse scale kh ∼ ρ1/3
m M−1/3.
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intuitive understanding is borne out in the barrier crossing model of structure formation.

In Section 2.5, we will illustrate these results with explicit examples. In each case, we also

derive our predictions in the peak-background split formalism. In a companion paper [1],

we prove the mathematical equivalence of barrier crossing and peak-background split. We

present our conclusions in Section 2.6. Finally, Appendix 2.7 discusses the convergence of

the Edgeworth expansion for local non-Gaussianity.

2.3 Stochastic Bias

Galaxies reside in dark matter halos. For Gaussian initial conditions and at long wave-

lengths, the fluctuations in the density of halos δh can be expressed as an expansion in the

linear matter density field δ. At linear order, the two are simply related by a numerical

factor—the bias bg—i.e. δh = bgδ. This simple bias relation gets modified for non-Gaussian

initial conditions, due to a coupling between short and long-wavelength modes. The short

modes determine the collapse of dark matter halos, while long modes modulate the density

on large scales, effectively raising or lowering the threshold for the formation of collapsed

objects. A non-zero three-point function affects the variance of the short modes, leading to

a dependence of the number density of halos on the amplitude of the long modes. For local

non-Gaussianity4 this leads to a dependence of the halo density on the long-wavelength grav-

itational potential Φ rather than the matter density δ ∝ ∇2Φ. This leads to a characteristic

scale-dependence in the bias relation, ∆b ∝ k−2 [7]. It is this scale-dependence that allows us

to trust the large-scale bias as a probe of initial conditions. Crucially, the dependence of the

halo density on Φ is not something that could be mimicked by local dynamics. Dynamical

processes don’t care about the local value of the potential, but are only sensitive to tidal

forces which are proportional to ∇2Φ and Φ̇ (essentially this is a consequence of the equiv-

alence principle). Any dependence of the small-scale power on Φ itself can therefore only

4In real space, local non-Gaussianity is parametrized as Φ(x) = φ(x) + fNL(φ2(x) − 〈φ2〉), where φ is
Gaussian.
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come from the initial conditions. This is what makes scale-dependent bias such a promising

probe of early universe physics, despite all the astrophysical uncertainties associated with

galaxy formation.

Stochastic bias arises whenever the density of halos is not 100% correlated with the

potential Φ or its derivatives. In order to develop some intuition, we now give a schematic

derivation of the effect. In the next section, we will upgrade this to a more formal analysis in

the barrier crossing approach. If we assume that the primordial perturbations are adiabatic,

then the formation of halos can only depend on local physics of the fluctuations. Nevertheless,

long-wavelength variations of the number of halos may depend, not only on the local value of

the linear density field, but on all of its local correlation functions. Assuming only locality,

we may therefore write the local halo number density as

nh(x) = n̄h(δ(x); [δn](x)) , (2.4)

where [...] denotes an average over a small region of characteristic size ` that is centered

around x. Long-wavelength fluctuations in the number of halos can then be understood as

a Taylor expansion,

δh(x) ≡ δnh

n̄h

= bgδ(x) + β[δ2](x) + · · · , (2.5)

where bg is the Gaussian bias and

β ≡ ∂ lnnh

∂[δ2]
. (2.6)

It is easy to see (e.g. by splitting all fields into long and short modes), that for local non-

Gaussianity the short-scale power is modulated by the gravitational potential, [δ2] ≈ [δ2]g (1+

4fNLΦ(x)). This is the origin of scale-dependent bias in local non-Gaussianity.

Using the expansion (2.5), we can also evaluate correlation functions between two spa-

tially separated points x and x′. We use a prime to indicate that fields are evaluated at

x′, while fields without a prime are evaluated at x. The matter-halo correlation, in a large
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region of size L� `, then is

〈δhδ
′〉

〈δδ′〉 = bg + β
〈[δ2]δ′〉
〈δδ′〉 + · · · , (2.7)

while the halo-halo correlation is

〈δhδh
′〉

〈δδ′〉 = b2
g + 2bgβ

〈[δ2]δ′〉
〈δδ′〉 + β2 〈[δ2][δ2]′〉

〈δδ′〉 + · · · . (2.8)

This leads to the possibility that the bias inferred from 〈δhδ〉 is not equal to the bias inferred

from 〈δhδh
′〉. We characterize this so-called stochasticity of the halo bias by the following

parameter5

r ≡ 〈δhδh
′〉

〈δδ′〉 −
(〈δhδ

′〉
〈δδ′〉

)2

. (2.9)

Using eqs. (2.7) and (2.8), we find

r = β2

[
〈[δ2][δ2]′〉
〈δδ′〉 −

(〈[δ2]δ′〉
〈δδ′〉

)2
]

+ · · · . (2.10)

This simple argument gives reliable intuition for the origin of stochasticity. Specifically, we

see that if a local variation in the amplitude of [δ2](x) is uncorrelated with δ(x′), then there is

no extra contribution to the bias in eq. (2.7). Nevertheless, the halo-halo correlation function

in eq. (2.8) can still be modified by long-wavelength variations in [δ2](x). Moreover, the result

(2.10) makes it clear that stochasticity arises from a non-trivial four-point function of the

primordial potential. In fact, the real space correlation function 〈[δ2](x)[δ2](x′)〉 relates to the

collapsed limit of the four-point function in Fourier space, i.e. lim|k1+k2|→0〈Φk1Φk2Φk3Φk4〉.
5In practice, we also have to subtract shot noise contributions from 〈δhδh′〉 and 〈δhδ′〉—see §2.4.3. Note

that other definitions of the stochasticity coefficient can be chosen. A natural alternative would be to define
r̃ = 〈δhδ′〉/(〈δhδh′〉〈δδ′〉)1/2 − 1. In both definitions r = 0 means that the matter and halo fields are 100%
correlated.
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2.4 Predictions from Barrier Crossing

In this section, we give a formal derivation of stochastic bias using the classic barrier crossing

method of Press and Schechter [21]. Our goal is to obtain an expression for the stochasticity

coefficient (2.9) in terms of the cumulants of the smoothed density field. These in turn can

be related to N -point functions of the primordial potential and hence contain information

about the initial conditions.

2.4.1 Definitions and Notation

We begin with some basic definitions and a description of our notation. Let δ̂(x, z) denote

the linear density field (to be distinguished by the hat from the non-linear density field δ).

The linearized Poisson equation relates δ̂ to the primordial potential Φ,

δ̂k(z) = α(k, z)Φk , (2.11)

where

α(k, z) ≡ 2

3

k2

ΩmH2
0

T (k)D(z) . (2.12)

Here, T (k) is the matter transfer function normalized such that T (k)→ 1 as k → 0 and D(z)

is the linear growth factor (as function of redshift z), normalized so that D(z) = (1 + z)−1

in matter domination. For notational simplicity, we will from now on suppress the redshift

argument from all quantities. We use δM(x) for the linear field smoothed with a top-hat

window function with radius6 RM ≡ (3M/4πρ̄m)1/3, so that

δM(x) =

∫
k

e−ik ·xWM(k)δ̂k =

∫
k

e−ik ·x αM(k)Φk , (2.13)

6The smoothing scale RM corresponds to the comoving size of halos of mass M in Lagrangian space.
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where
∫
k

( · ) ≡
∫

d3k
(2π)3

( · ),

WM(k) ≡ 3
sin(kRM)− kRM cos(kRM)

(kRM)3
, (2.14)

and αM(k) ≡ WM(k)α(k). Let σM = 〈δ2
M〉1/2 be the rms amplitude of the smoothed density

field, and κn(M) be its n-th non-Gaussian cumulant,

κn(M) =
〈δnM〉c
σnM

, (2.15)

where the subscript ‘c’ indicates the use of a connected correlation function. Since δM and

σM are defined via linear theory, κn(M) is independent of redshift. Similar definitions apply

to the unsmoothed field δ̂, in which case we denote the variance and cumulants by σ̂ and κn̂.

Ultimately, we will be interested in two-point clustering statistics. Let x and x′ be two

points separated by a distance r ≡ |x − x′|. Moreover, let a prime indicate that the field

is evaluated at x′, e.g. δ′M ≡ δM(x′). Fields without a prime are evaluated at x. The joint

cumulants are then defined by

κm̂,n(r,M) ≡ 〈δ̂
m(δ′M)n〉c
σ̂mσnM

, (2.16)

κm,n(r,M, M̄) ≡ 〈(δM)m(δ′
M̄

)n〉c
σmMσ

n
M̄

. (2.17)

These cumulants can be related to N -point functions of the gravitational potential,

〈Φk1Φk2 · · ·ΦkN 〉c = (2π)3δD(k12...N) ξ
(N)
Φ (k1,k2, . . . ,kN) , (2.18)

where k12...N ≡ k1 + k2 + · · ·+ kN .
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2.4.2 Edgeworth Expansions

The probability density functions (PDFs) of weakly non-Gaussian random variables have

well-defined Edgeworth expansions (for a review see e.g. [22]). Consider first the variables

δM and δ′M . It will be convenient to define the rescaled fields

ν ≡ δM
σM

and ν ′ ≡ δ′M
σM

, (2.19)

with 〈ν〉 = 〈ν ′〉 = 0 and 〈ν2〉 = 〈(ν ′)2〉 = 1. The cumulants in eqs. (2.15) and (2.17) then

become κn = 〈νn〉c and κm,n = 〈νm(ν ′)n〉c. The Edgeworth expansion for the marginal PDF

is

p(ν) = exp

(∑
n≥3

(−1)n

n!
κn

∂n

∂νn

)
pg(ν) , where pg(ν) ≡ 1√

2π
e−

1
2
ν2 . (2.20)

The first few terms can be written as

p(ν) =
(

1 +
κ3

3!
H3(ν) +

κ4

4!
H4(ν) + · · ·

)
pg(ν) , (2.21)

where the functions Hn(ν) are Hermite polynomials

Hn(ν) ≡ (−1)ne
1
2
ν2 d

n

dνn
e−

1
2
ν2 . (2.22)

Similarly, the Edgeworth expansion for the joint PDF is

p(ν, ν ′) = exp

(
κ1,1

∂2

∂ν∂ν ′
+
∑

m+n≥3

(−1)m+n

m!n!
κm,n

∂m+n

∂νm∂(ν ′)n

)
pg(ν)pg(ν

′) . (2.23)

In Appendix 2.7, we discuss the convergence properties of this expansion. In the next section,

we will use it to compute halo-halo correlations.
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The matter-halo case is completely analogous: to construct the joint PDF of the variables

δ̂ and δ′M , we define rescaled variables ν̂ = δ̂/σ̂ and ν ′ = δ′M/σM . The joint PDF p(ν̂, ν ′) is

then given by the Edgeworth series (2.23) with the cumulant κm,n replaced by κm̂,n.

2.4.3 Barrier Crossing

In the simplest version of the barrier crossing formalism [21], halos of mass ≥M are identified

with regions where the linearly evolved smoothed density field exceeds a constant threshold

value δc for collapse. The halo number density nh(x) is then given by

nh(x) = 2
ρ̄m

M
Θ(δM(x)− δc) , (2.24)

with Θ the Heaviside step function. It has been shown numerically that δc ≈ 1.42 produces

good results [23], but for our analytical calculations we don’t need to specify a particular

value for δc. The fraction of space occupied by regions above the collapse threshold is

f(M) =

∫ ∞
νc

[dν] p(ν) , (2.25)

where νc(M) ≡ δc/σM . Using the Edgeworth expansion (2.21), we find7

f(M) =
1

2
erfc

(
νc√

2

)
+ pg(νc)

[
κ3(M)

3!
H2(νc) +

κ4(M)

4!
H3(νc) + · · ·

]
. (2.26)

When interpreting calculations in the barrier crossing model, it must be kept in mind that

eq. (2.24) for nh(x) is the number density of halos in Lagrangian space. Our convention

throughout this paper is that the power spectra Pmh(k) and Phh(k) are always computed in

Lagrangian space. In particular, bg denotes the Lagrangian bias. The relevant quantity to

compare to observations or simulations is the Eulerian bias which, to lowest order, is given

by bE
g = 1 + bg.

7In our notation the halo mass function is dnh/dM = − ρ̄m/M(df/dM).
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The barrier crossing model also neglects shot noise contributions which arise from the

finite halo number density nh. Throughout this paper, Phh always denotes the halo-halo

power spectrum after subtracting the shot noise contribution 1/nh. (There are also shot

noise, or one-halo, contributions to the matter-halo power spectrum Pmh, which are usually

negligible, but are a leading source of stochastic bias in the Gaussian case [24, 25].)

Matter-Halo Correlations

The correlation between the halo field at x′ and the dark matter field at x is given by

ξ̂(r,M) =
M

2ρ̄m

∫ ∞
−∞

[dδ̂]

∫ ∞
−∞

[dδ′M ] δ̂(x)nh(x′) p(δ̂, δ′M) . (2.27)

In the rescaled variables ν̂ ≡ δ̂(x)/σ̂ and ν ′ ≡ δM(x′)/σM , this becomes

ξ̂(r,M) = σ̂

∫ ∞
−∞

[dν̂]

∫ ∞
νc

[dν ′] ν̂ p(ν̂, ν ′) . (2.28)

It will be convenient to work in momentum space via ξ̂(k,M) =
∫

d3r eik · r ξ̂(r,M). To

describe the correlations of halos in the mass bin [M,M + dM ], we take derivatives with

respect to M . The matter-halo power spectrum is then given by

Pmh(k,M) =
dξ̂(k,M)

dM

(
df(M)

dM

)−1

. (2.29)

To compute the correlation function (2.28), we substitute the Edgeworth expansion (2.23) for

p(ν̂, ν ′). Only terms with exactly one ν̂-derivative survive the integration, and we therefore

find

ξ̂(k,M) = σ̂ pg(νc)

[
κ1̂,1 +

H1(νc)

2!
κ1̂,2 +

H2(νc)

3!
κ1̂,3 +

H3(νc)

3!
κ1̂,1 ? κ3 + · · ·

]
, (2.30)
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where ? denotes a convolution. We see that the matter-halo correlations, or equivalently the

non-stochastic part of the halo bias, only depend on the following cumulants

κ1̂,n(k,M) = σ̂−1σ−nM

(
n∏
i=1

∫
qi

αM(qi)

)
α(k)〈ΦkΦq1 · · ·Φqn〉c . (2.31)

Moreover, we note that the large-scale limit, limk→0 κ1̂,n(k,M), is determined by the squeezed

limit of the primordial (n+ 1)-point function [26],

lim
k→0

ξ
(n+1)
Φ (k, q1, · · · , qn) . (2.32)

The explicit form of the cumulants κ1̂,n≥2 depends on the type of non-Gaussianity. We

compute some examples in Section 2.5.

Keeping only linear terms8 in eq. (2.30), we get

ξ̂(k,M) = pg(νc)(κ1̂,1σ̂σM)

[
1

σM
+
∞∑
n=2

Hn−1(νc)

n!
f1̂,n + · · ·

]
, (2.33)

where we defined

f1̂,n(k,M) ≡
κ1̂,n(k,M)

κ1̂,1(k,M)σM
. (2.34)

It was convenient to factor out the Gaussian term κ1̂,1σ̂σM , since at long wavelengths it

becomes the matter power spectrum

κ1̂,1 σ̂σM =

∫
q

α(k)αM(q)〈ΦkΦq〉 = WM(k)Pmm(k)
k→0−−→ Pmm(k) . (2.35)

Evaluating eq. (2.29), we find

Pmh(k)
k→0−−→ Pmm(k)

[
bg +

∞∑
n=2

(
βn + β̃n

d

d lnσM

)
f1̂,n + · · ·

]
, (2.36)

8In Appendix 2.7, we explain that the lowest order cumulants usually dominate and that products of
cumulants are suppressed.
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where

bg ≡
1

σM

ν2
c − 1

νc
, βn ≡

Hn(νc)

n!
and β̃n ≡

Hn−1(νc)

n! νc
. (2.37)

The ellipses in eq. (2.36) stand for terms that are non-linear in the cumulants. For local

non-Gaussianity, the derivative terms df1̂,n/d lnσM will be negligible, but in principle, we

can keep them (and sometimes we have to).

Our expression (2.36) agrees with the general formula for the non-stochastic bias given

in [26]; however, ref. [26] implicitly found that non-Gaussianity cannot generate large-scale

stochastic bias. In the next section, we will find the opposite conclusion. The disagreement

is easy to understand: Ref. [26] claims after their eq. (40) that contributions to Phh from

cumulants κm,n with m,n ≥ 2 must approach a constant as k → 0. This is not true for

general non-Gaussian initial conditions and exceptions to that statement are precisely what

causes the effects discuss in this paper.

Halo-Halo Correlations

Next, we consider the correlation between the halo fields at x and x′,

ξ(r,M, M̄) =
MM̄

4ρ̄2
m

∫ ∞
−∞

[dδM ]

∫ ∞
−∞

[dδ′M̄ ]nh(x)nh(x′) p(δM , δ
′
M̄) . (2.38)

In the rescaled variables ν ≡ δM(x)/σM and ν ′ ≡ δM̄(x′)/σM̄ , this becomes

ξ(r,M, M̄) =

∫ ∞
νc

[dν]

∫ ∞
ν̄c

[dν ′] p(ν, ν ′) . (2.39)

Notice that, in principle, we have allowed for two distinct mass thresholds, M and M̄ . The

power spectrum of halos in the mass bins [M,M + dM ] and [M̄, M̄ + dM̄ ] then is

Phh̄(k) =
d2ξ(k,M, M̄)

dMdM̄

(
df(M)

dM

df(M̄)

dM̄

)−1

. (2.40)
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For simplicity, we will restrict the following presentation to correlations of equal mass halos,

M = M̄ . The power spectrum for a narrow mass bin around M is then given by

Phh(k) =
d2ξ(k,M, M̄)

dMdM̄

∣∣∣∣
M̄=M

(
df(M)

dM

)−2

. (2.41)

To compute the correlation function (2.39), we substitute the Edgeworth expansion (2.23)

for p(ν, ν ′),

ξ(k,M, M̄) = pg(νc)pg(ν̄c)

[
κ1,1 +

1

2

(
κ2,1H1(νc) + κ1,2H1(ν̄c)

)
+

1

6

(
κ3,1H2(νc) + κ1,3H2(ν̄c)

)
+

1

4
κ2,2H1(νc)H1(ν̄c) +

1

2
κ1,1 ? κ1,1 + · · ·

]
.

(2.42)

The form of higher-order cumulants, such as κ1,2, κ1,3 and κ2,2, again depends on the type

of non-Gaussianity. We compute some examples in Section 2.5.

Keeping only the terms linear in κm,n (this approximation will be justified in Ap-

pendix 2.7) in eq. (2.42), we find

ξ(k,M, M̄) = pg(νc)pg(ν̄c)(κ1,1σMσM̄)

[
1

σMσM̄

+
∞∑
n=2

(
1

σM

Hn−1(ν̄c)

n!
f1,n +

1

σM̄

Hn−1(νc)

n!
fn,1

)

+
∞∑
m=2

∞∑
n=2

Hm−1(νc)

m!

Hn−1(ν̄c)

n!
fm,n + · · ·

]
, (2.43)

where

f1,n(k,M, M̄) ≡ κ1,n(k,M, M̄)

κ1,1(k,M, M̄)σM̄
for n ≥ 1 , (2.44)

fm,n(k,M, M̄) ≡ κm,n(k,M, M̄)

κ1,1(k,M, M̄)σMσM̄
for m,n ≥ 2 . (2.45)
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We again factored out the Gaussian contribution, κ1,1 σMσM̄
k→0−−→ Pmm(k). Note that

f1,n = f1̂,n in the large scale limit k � R−1
M , where f1̂,n was defined in eq. (2.34). Substituting

(2.43) into (2.41), we get

Phh(k)
k→0−−→ Pmm(k)

[
b2
g + 2bg

∞∑
n=2

(
βn + β̃n

∂

∂ lnσM

)
f1,n

+
∞∑
m=2

∞∑
n=2

(
βm + β̃n

∂

∂ lnσM

)(
βm + β̃n

∂

∂ lnσM̄

)
fm,n + · · ·

]
. (2.46)

Note that, while in the end we always take M = M̄ in this paper, M and M̄ are independent

variables when calculating partial derivatives of fm,n(M, M̄).

2.4.4 Stochastic Halo Bias

We now combine the above results to evaluate the stochasticity coefficient

r ≡ Phh

Pmm

−
(
Pmh

Pmm

)2

, (2.47)

where, as usual, it is understood that shot noise is subtracted from Phh and Pmh. Substituting

eqs. (2.36) and (2.46), we find

r
k→0−−→

∞∑
m=2

∞∑
n=2

(
βm + β̃m

∂

∂ lnσM

)(
βn + β̃n

∂

∂ lnσM̄

)
fm,n

−
[
∞∑
n=2

(
βn + β̃n

∂

∂ lnσM

)
fn,1

]2

. (2.48)

We note that cumulants κm,n(k) with m,n ≥ 2 contribute to the halo-halo power spectrum

but not the matter-halo power spectrum (2.36), so stochastic halo bias is sourced by these

cumulants. These cumulants can be written in terms of the (m + n)-point functions of the
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gravitational potential,

κm,n(k,M, M̄)
k→0−−→ 1

σmMσ
n
M̄

(
m−1∏
i=1

∫
qi

αM(qi)

)(
n−1∏
j=1

∫
q′j

αM̄(q′j)

)
αM(q)αM̄(q′)

× ξ(m+n)
Φ

(
q1, · · · , qm−1,−q + k, q′1, · · · , q′n−1,−q′ − k

)
, (2.49)

where q ≡ ∑m−1
i=1 qi and q′ ≡ ∑n−1

j=1 q
′
j. We see that, in general, large-scale stochastic bias

arises whenever an (m + n)-point function ξ
(m+n)
Φ (k1, · · · ,km+n) is boosted in the collapsed

limit |∑m
i=1 ki| → 0, relative to the product of the corresponding squeezed (m+1)-point and

(n+ 1)-point functions. In the next section, we will compute eq. (2.48) for a few interesting

examples. In most cases, we will get stochastic bias from the case m = n = 2, i.e. a

collapsed four-point function lim|k1+k2|→0 ξ
(4)
Φ (k1,k2,k3,k4) which is larger than the square

of the squeezed three-point function limk1→0 ξ
(3)
Φ (k1,k2,k3).

54



2.5 Examples

In this section, we discuss several physical mechanisms that lead to stochastic halo bias. For

each example, we will derive the result in two different ways:

1) using a peak-background split (PBS) method;

2) using the barrier crossing analysis of the previous section.

We demonstrate explicitly that both approaches lead to the same answers.

2.5.1 τNL Cosmology

A simple phenomenological way to get a boosted collapsed limit for the four-point function

is the following generalization of the local ansatz to multiple fields

Φ = Aiφi +Bij (φiφj − 〈φiφj〉) , (2.50)

with the Einstein summation convention understood. This structure arises, for example, in

the curvaton model of [18] (see also [25]),

Φ = φ+ ψ + fNL(1 + Π)2 (ψ2 − 〈ψ2〉) , where
Pφ
Pψ
≡ Π . (2.51)

Here, φ and ψ are uncorrelated Gaussian random fields with power spectra that are propor-

tional to each other. The three- and four-point functions take the local form

ξ
(3)
Φ (k1,k2,k3) = fNL

[
P1P2 + 5 perms.

]
+O(f 3

NL) , (2.52)

ξ
(4)
Φ (k1,k2,k3,k4) = 2

(
5
6

)2
τNL

[
P1P2P13 + 23 perms.

]
+O(τ 2

NL) , (2.53)

where we have defined Pi ≡ PΦ(ki) and Pij ≡ PΦ(|ki + kj|). However, unlike the single-field

local ansatz, now τNL need not be equal to
(

6
5
fNL

)2
. Instead, the ansatz (2.51) implies τNL ≡
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(
6
5
fNL

)2
(1 + Π), in agreement with the Suyama-Yamaguchi inequality, τNL ≥

(
6
5
fNL

)2
[10]

(see also [11, 12, 13, 14, 15]). The following limits will be useful in computing the cumulants

required in the barrier crossing calculation:

lim
k1→0

ξ
(3)
Φ (k1,k2,k3) = 4fNLP1P2 , (2.54)

lim
k1→0

ξ
(4)
Φ (k1,k2,k3,k4) = 8

(
5
6

)2
τNL P1

[
P2P3 + P2P4 + P3P4

]
, (2.55)

lim
k12→0

ξ
(4)
Φ (k1,k2,k3,k4) = 16

(
5
6

)2
τNL P12P1P3 . (2.56)

However, before we discuss the explicit barrier crossing result, we present an alternative

derivation using the peak-background split approach.

Peak-Background Split

PBS is a heuristic procedure for predicting the large-scale clustering statistics of dark matter

halos. All fields are split into long and short modes—i.e. the Gaussian fields in eq. (2.51) are

written as φ = φs+φ` and ψ = ψs+ψ`. The short scales (. RM . 10 Mpc/h) determine halo

formation, while the long scales (& 100 Mpc/h) are the ones on which we want to measure

the clustering of halos. Long modes are therefore always much larger than the Lagrangian

size of the halos that we consider, i.e. RMk` � 1. The precise split into long and short modes

isn’t important for physical observables, as long as it satisfies the above constraints.

The long-wavelength modes alter the statistical properties of the small-scale fluc-

tuations. For instance, to lowest order, the locally measured small-scale power is

σ = σ̄ [1 + 2fNL(1 + Π)ψ`], and the locally measured halo number density is

nh(x) = n̄h (δc − δ` ; σ̄ [1 + 2fNL(1 + Π)ψ`]) . (2.57)
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Taylor expanding this expression, we get

δh ≡
δnh

n̄h

= bgδ` + βf (1 + Π)fNLψ` , (2.58)

where

bg ≡
∂ lnnh

∂δ`
and βf ≡ 2

∂ lnnh

∂ lnσ
. (2.59)

Hence, we find

Pmh =

(
bg + βf

fNL

α(k)

)
Pmm , (2.60)

and

Phh =

(
b2
g + 2bgβf

fNL

α(k)
+ β2

f

(
5
6

)2
τNL

α2(k)

)
Pmm . (2.61)

This leads to large-scale halo stochasticity of the form

r =
((

5
6

)2
τNL − f 2

NL

) β2
f

α2(k)
. (2.62)

As Π→ 0, this reduces to the classic fNL model, with τNL =
(

6
5
fNL

)2
and hence no stochas-

ticity.

Barrier Crossing

Next, we show that eq. (2.62) can be reproduced precisely from the barrier crossing analysis

of the previous section. In Appendix 2.7, we show that only the lowest-order cumulants will

be significant. Here, we calculate the relevant cumulants explicitly: Using eq. (2.54), we get

f1,2 = f1̂,2
k→0−−→ 4

fNL

α(k)
. (2.63)

The order-of-magnitude estimates in Appendix 2.7 suggest that this will be the dominant

contribution. In particular, we expect, f1,2 > f1,3. We can confirm this explicitly. Using
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eq. (2.55), we get

f1,3 = f1̂,3
k→0−−→ 4

(
5
6

)2
τNL

α(k)
·κ(fNL=1)

3 , (2.64)

where

κ
(fNL=1)
3 (M) ≡ 6

σ3
M

∫
q1

∫
q2

αM(q1)αM(q2)αM(q12)PΦ(q1)PΦ(q2) . (2.65)

Since κ
(fNL=1)
3 is of order ∆Φ, we see that the condition f1,3 � f1,2 is equivalent to fNL(1 +

Π)∆Φ � 1. This latter condition is always satisfied if all fields are weakly coupled.9

Finally, using eq. (2.56), we get

f2,2
k→0−−→ 16

(
5
6

)2
τNL

α2(k)
. (2.67)

Substituting the above into eq. (2.48) gives

r =
((

5
6

)2
τNL − f 2

NL

) β2
f

α2(k)
, (2.68)

where we have used the relation βf = 4β2 = 2(νc−1), which can be derived by evaluating the

derivative βf = 2∂ lnnh/∂ lnσ in the barrier crossing model [27]. Comparing with eq. (2.62),

we find that barrier crossing and peak-background split give consistent answers.

9In more detail, to show that fNL(1 + Π)∆Φ � 1, we argue as follows. Assuming that the field ψ is not

strongly coupled, the dimensionless non-Gaussianity parameter f
(ψ)
NL ∆ψ = fNL(1 + Π)3/2∆Φ must be ∼< 1.

Therefore

fNL(1 + Π)∆Φ =
[
fNL∆Φ

]1/3
·
[
fNL(1 + Π)3/2∆Φ

]2/3
∼< [10−3]1/3 · [1] = 10−1 , (2.66)

where the bound on the first factor is the current observational bound fNL ∼< 102.
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2.5.2 gNL Cosmology

As our next example, we consider a cubic form of local non-Gaussianity.10 In this case, the

non-Gaussian potential is parametrized by the expansion

Φ = φ+ gNL

(
φ3 − 3〈φ2〉φ

)
. (2.69)

The power spectrum of the non-Gaussian field is

PΦ(k) = Pφ(k) + g2
NLPφ3(k) , (2.70)

where

Pφ3(k) ≡ 6

∫
q1

∫
q2

Pφ(q1)Pφ(q2)Pφ(|k − q1 − q2|) . (2.71)

We note that for scale-invariant initial conditions, (k3/2π2)Pφ(k) = ∆2
φ, the power spectrum

Pφ3 is infrared divergent. If the IR divergence is regulated by putting the fields in a finite

box with length L, then the power spectrum diverges as

Pφ3(k) ∼ 18∆4
φ ln2(kL)Pφ(k) . (2.72)

On large scales, the matter power spectrum therefore is

Pmm(k) ' α2(k)PΦ(k) = Pg(k)
(
1 + 18g2

NL∆4
φ ln2(kL)

)
, (2.73)

where we defined Pg(k) ≡ α2(k)Pφ(k). Current observational constraints imply that

|gNL∆2
φ| � 1. To obtain answers to zeroth or first order in gNL∆2

φ, it suffices to set

Pmm ' Pg.

10We should say from the outset that the large-scale stochasticity in the gNL model will be too small to
be observationally relevant. Although the non-stochastic and stochastic contributions to Phh(k) will turn
out to be parametrically identical (∼ g2

NL∆2
ΦPΦ(k)), the non-stochastic contribution is typically larger by a

constant factor ≈ 104. Nevertheless, the gNL example provides an interesting check of our formalism.
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For the barrier crossing analysis, we require the following higher-order correlation func-

tions

ξ
(4)[tree]
Φ (k1,k2,k3,k4) = gNL

[
P1P2P3 + 23 perms.

]
+O(g2

NL) , (2.74)

ξ
(4)[loop]
Φ (k1,k2,k3,k4) = 9g2

NL

[
P1P2Pφ2(k13) + 11 perms.

]
, (2.75)

ξ
(6)
Φ (k1,k2,k3,k4,k5,k6) = 36g2

NL

[
P1P2P3P4P125 + 89 perms.

]
, (2.76)

where kij = |ki + kj|, Pi = Pφ(ki), Pijk = Pφ(|ki + kj + kk|), and

Pφ2(k) ≡ 2

∫
q

Pφ(q)Pφ(|k − q|) ∼ 4∆2
φ ln(kL)Pφ(k) . (2.77)

Note that odd-point correlation functions ξ
(2N+1)
Φ are zero due to the Φ → −Φ symmetry.

Next, we will derive the stochastic halo bias both in peak-background split and in barrier

crossing.

Peak-Background Split

The PBS analysis proceeds as before. Splitting the Gaussian potential into long and

short modes, φ = φ` + φs, we find that the locally measured small-scale power is

σ = σ̄ [1 + 3gNL (φ2
` − 〈φ2

`〉)]. Moreover, the locally measured value of fNL is f eff
NL = 3gNLφ`

[28]. The halo number density therefore is

nh(x) = n̄h

(
δc − δ` ; σ̄

[
1 + 3gNL

(
φ2
` − 〈φ2

`〉
)]

; f eff
NL

)
, (2.78)

where δ` ' α(k`)φ`. Taylor expanding this expression, we find

δh = bgδ` + 3
2
βfgNL

(
φ2
` − 〈φ2

`〉
)

+ βggNLφ` , (2.79)
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where bg and βf are the same as in (2.59), and

βg ≡ 3
∂ lnnh

∂fNL

. (2.80)

It follows that

Pmh = bgPmm + βggNLPmφ =

(
bg + βg

gNL

α(k)

)
Pmm , (2.81)

and

Phh =

(
bg + βg

gNL

α(k)

)2

Pmm +
9

4
β2
fg

2
NLPφ2 . (2.82)

This implies a large-scale halo stochasticity of the form

r =
9

4
β2
fg

2
NL

Pφ2

Pmm

. (2.83)

Barrier Crossing

We now show that the same result is obtained from barrier crossing. In Appendix 2.7, we

argue that only the first few cumulants need to be taken into account. It is straightforward

to compute them explicitly. From eqs. (2.74) and (2.76), we get

f1,3(k)
k→0−−→ 3gNL

α(k)
κ

(fNL=1)
3 and f3,3(k) = [f1,3(k)]2 . (2.84)

This only contributes to the non-stochastic bias. However, since f1̂,2 = 0, stochastic bias

arises from f2,2. First, we note that the tree-level four-point function (2.74) leads to a very

small and scale-independent contribution to f2,2 :

f
[tree]
2,2 (k,M, M̄)

k→0−−→ 12gNL

Pmm(k)

(
1

σ2
M

∫
q

α2
M(q)P 2

φ(q) +
1

σ2
M̄

∫
q

α2
M̄(q)P 2

φ(q)

)
. (2.85)
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Plugging into eq. (2.48) and noting that β2 = 1
4
βf and β̃2 = 1

2
, we get a small scale-dependent

contribution to the large-scale stochastic bias

r[tree] =
3

2

gNL

Pmm(k)

(
β2
f + 2βf

)( 1

σ2
M

∫
q

α2
M(q)P 2

φ(q)

)
. (2.86)

In practice, this contribution to the large-scale stochasticity can’t be used as a probe of initial

conditions, since a contribution to r with r ∝ 1/k (or equivalently a contribution to Phh(k)

which approaches a constant as k → 0) is degenerate with other sources of stochasticity such

as second-order Gaussian bias. Finally, the one-loop four-point function (2.75) leads to the

following contribution to f2,2 :

f
[loop]
2,2 (k)

k→0−−→ 36 g2
NL ·

Pφ2(k)

Pmm(k)
. (2.87)

The corresponding stochasticity parameter is

r[loop] =
9

4
β2
fg

2
NL

Pφ2(k)

Pmm(k)
∝ 1

k4
, (2.88)

in agreement with the PBS predictions (2.83).

2.5.3 Quasi-Single-Field Inflation

Our last example is quasi-single field inflation (QSFI) [19]. These models involve extra mas-

sive scalar degrees of freedom during inflation. In the simplest examples, a single scalar field

σ of mass11 m2 ≤ 9
4
H2 mixes with the fluctuation of the inflaton12 δφ. The mixing commu-

nicates non-Gaussianity from the hidden (isocurvature) sector to the observable (adiabatic)

sector. As we now show, it also leads to a significant stochasticity in the halo bias.

11We note that extra scalars with masses close to the Hubble scale H are a natural prediction of super-
symmetric theories of inflation (see [20] for further discussion).

12Recall that δφ in spatially flat gauge is proportional to the curvature perturbation, ζ ≡ −H
φ̇
δφ.
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Boosted Four-Point Function

Again, we need the squeezed and collapsed limits of the primordial correlation functions13 [19,

20, 14]:

lim
k1→0

ξ
(3)
Φ (k1,k2,k3) = 4fNL

(
k1

k2

)∆

P1P2 , (2.89)

lim
k12→0

ξ
(4)
Φ (k1,k2,k3,k4) = 16

(
5
6

)2
τNL

(
k2

12

k1k3

)∆

P1P3P12 , (2.90)

where we defined the parameter

∆ ≡ 3

2
−
√

9

4
− m2

H2
. (2.91)

The non-trivial momentum scaling of eqs. (2.89) and (2.90) is a remarkable signature of extra

Hubble mass scalars during inflation [19, 20, 29, 30]. Moreover, if the mixing between σ and

φ (or ζ) is parametrized by a small dimensionless number ε < 1, then

τNL ∼ ε−2 (6
5
fNL)2 > (6

5
fNL)2 . (2.92)

The enhancement of τNL arises because the trispectrum is generated by the exchange of the

σ-field which is only weakly coupled to ζ. The size of the four-point function 〈ζ4〉 can be

estimated from the square of the three-point function 〈ζ2σ〉 at horizon crossing,

〈ζ4〉 ∼ 〈ζ2σ〉2 ∼ ε−2 〈ζ3〉2
〈ζ2〉 . (2.93)

The boost of τNL is the result of the small correlation between the curvature fluctuation

and the massive field, ε � 1. The precise dependence of fNL and τNL on the fundamental

parameters of the QSFI Lagrangian can be found in [14].

13See [20] for an intuitive explanation of the scalings in eqs. (2.89) and (2.90).
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Barrier Crossing

In QSFI, the higher-order N -point functions are suppressed by factors of the power spectrum,

just as in our previous examples. The dominant contributions to the large-scale structure

signal therefore arise from the squeezed limit of the three-point function and the collapsed

limit of the four-point function. The relevant cumulants are

κ1̂,2(k)
k→0−−→ 4fNL

σ̂
(kRM)∆ Pmm(k)

α(k)

Σ2
M(∆)

σ2
M

, (2.94)

and

κ2,2(k)
k→0−−→ 16

(
5
6

)2
τNL(k2RMRM̄)∆ Pmm(k)

α2(k)

Σ2
M(∆)

σ2
M

Σ2
M̄

(∆)

σ2
M̄

. (2.95)

Here, we have defined

Σ2
M(∆) ≡

∫
d3ks
(2π)3

W 2
M(ks)(ksRM)−∆Pmm(ks) , (2.96)

where the integration variable, ks, is one of the short momenta and RM is the smoothing

scale defined by eq. (2.14). By definition, ΣM(0) = σM . In the limit ∆→ 0, we recover the

results of the τNL model. Therefore, we find

f1̂,2 = 4fNL
(kRM)∆

α(k)

Σ2
M(∆)

σ2
M

and f2,2 =
τNL

(6
5
fNL)2

f1̂,2(M)f1̂,2(M̄) . (2.97)

To obtain the large-scale stochasticity, we substitute the cumulants into eq. (2.48),

r =

(
β2 + β̃2

∂

∂ lnσM

)(
β2 + β̃2

∂

∂ lnσM̄

)
f2,2 −

[(
β2 + β̃2

∂

∂ lnσM

)
f1̂,2

]2

. (2.98)

Because the cumulants depend explicitly on RM , we have to be concerned that the derivatives

with respect to σM may this time not be negligible. Indeed, numerical evaluation of the

integral shows significant σM dependence of f1̂,2 (see fig. 2.2). Keeping the derivative terms,
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Figure 2.2: Numerical evaluation of eqs. (2.96) and (2.97). For ∆ & 1.0, the cumulant f1̂,2

depends significantly on the halo mass scale M . This is in contrast to local non-Gaussianity,
which corresponds to the limit ∆→ 0.

we get

r =
((

5
6

)2
τNL − f 2

NL

) k2∆

α2(k)

[(
βf + 2

d

d lnσM

)
R∆
M Σ2

M(∆)

σ2
M

]2

∝
(

5
6

)2
τNL − f 2

NL

k4−2∆
. (2.99)

The characteristic momentum scaling of eq. (2.99) and the natural boost of τNL makes halo

stochasticity an interesting probe of quasi-single-field inflation.
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2.6 Conclusions

What was the number of light degrees of freedom during inflation? And, what were their

interactions? The great virtue of primordial non-Gaussianity is that it is sensitive to these

basic questions about the physics of inflation. In particular, it is well-known that the squeezed

limit of the primordial three-point function,

lim
k1→0
〈Φk1Φk2Φk3〉 , (2.100)

can only be large if more than one light field was dynamically relevant during inflation [31,

32]. Remarkably, this statement is independent of the details of the Lagrangian for the

inflaton field and its initial conditions. Measurements of the squeezed limit therefore have

the potential to rule out all models of single-field inflation [31, 32]. Moreover, the precise

scaling in the squeezed limit is sensitive to the details of the mass spectrum [19, 14], allowing

a test of extra Hubble mass fields, such as those generically expected in supersymmetric

theories [20]. Having a large three-point function in the squeezed limit modulates the two-

point function of halos and therefore leads to scale-dependent bias [7]. In the future, this

effect may well be our most sensitive probe of the squeezed limit.

In this paper, we have discussed a stochastic form of scale-dependent halo bias. This

effect arises if the collapsed limit of the primordial four-point function,

lim
k12→0

〈Φk1Φk2Φk3Φk4〉c , (2.101)

is larger than the square of the squeezed limit of the three-point function. More generally,

stochastic bias arises whenever a suitable collapsed limit of an (M + N)-point function is

larger than the product of the associated squeezed (M+1)-point and (N+1)-point functions,

where M,N ≥ 2. The key tool for obtaining this result, and a main result of this paper, is

a pair of formulas, eqs. (2.36) and (2.46), for the matter-halo and halo-halo power spectra
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in a general non-Gaussian model parametrized by the N -point functions of the primordial

potential.

In non-Gaussian models which generate significant stochastic halo bias, the results of

this paper are important even at a qualitative level. As a concrete example, it should be

possible to measure fNL and τNL independently using stochastic bias. This can be done either

by measuring multiple tracer populations and directly estimating large-scale stochasticity

(which has the advantage of eliminating sample variance), or from a single tracer population

by measuring Phh(k) and using the functional form

Phh(k) = b2
g

(
1 + fNL

2δc
α(k)

+ τNL

(5
6
)2δ2

c

α2(k)

)
(2.102)

to fit for bg, fNL and τNL independently.

Recently, ref. [36] showed that if only non-stochastic bias is considered, the leading con-

tribution from τNL is small (in our language, this corresponds to the O(τNL) contribution to

κ1,3) and it is difficult to separate fNL and τNL, so stochastic bias has an important qualitative

effect. As another example, in quasi-single field inflation, the stochastic bias is larger than

the non-stochastic bias by a large factor (parametrically ε−2), leading to a similarly large

enhancement in signal-to-noise when stochastic bias is considered. We defer quantitative

forecasts incorporating stochastic bias for future work.

In general, there is no stochastic bias if only a single field (which may or may not be

the inflaton) generates the primordial curvature perturbation and its non-Gaussianity [16].

Measuring stochastic halo bias would therefore teach us about the effective number of degrees

of freedom that generated the primordial fluctuations and its higher-order correlations. In

particular, stochasticity is sensitive to what we may call “hidden sector non-Gaussianity”, i.e.

situations in which two fields generate the curvature perturbation, but only one (hidden)

field is responsible for its non-Gaussianity. In this paper, we have derived this effect for

general non-Gaussian initial conditions. We have also applied our formalism to a number
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of explicit examples, such as curvaton models [18] and quasi-single field inflation [19]. We

have shown that halo bias, in principle, gives us information about the soft limits of both

the primordial three-point function and the four-point function. It is therefore a valuable

tool in the quest to uncover the physics that created the initial perturbations.
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2.7 Appendix: Convergence of the Edgeworth Expan-

sion

In this appendix, we discuss the convergence properties of the Edgeworth expansion for

local non-Gaussianity. In particular, we will estimate the relative size of the cumulants

κn,m(k,M) for general n and m > 0 in the large-scale limit k → 0. For further discussion see

e.g. [33, 34, 35]. The results in this appendix are used in the main text in several places: to

justify the approximation that non-linear terms in the Edgeworth expansion are negligible

in eqs. (2.33) and (2.43), and to justify keeping only certain cumulants in the τNL model

(§2.5.1) and the gNL model (§2.5.2).

2.7.1 τNL Cosmology

We first consider the τNL model of §2.5.1.

Linear terms.—The leading contribution in the k → 0 limit arises from the following contri-

bution to the connected correlation function

κn,m ' An,m
∫
〈ψ1(ψψ)2 · · ·ψ(ψψ)n | (ψψ)n+1 . . . ψ(ψψ)n+m−1ψn+m〉′c dK , (2.103)

where dK ≡ ∏i
d3ki
(2π)3

αM(ki) and (ψψ)i denotes an auto-convolution evaluated at ki. The

prime on the correlation function denotes that we have dropped an overall momentum con-

serving delta-function. The amplitude of the cumulant is given by

An,m ≡ cn,m(1 + Π)2(n+m−2)fn+m−2
NL , where cn,m ≡

n!m! 2n+m−2

σnMσ
m
M̄

. (2.104)

We arrived at eq. (2.103) by using the definition of Φ in eq. (2.51) and expanding out terms

to produce a connected correlation function. The numerical factor cn,m in the amplitude

(2.104) arises from the sum over equivalent contractions of the fields. The vertical line in
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(2.103) separates the first n terms from the last m. Each contraction gives a factor of Pψ,

and the contraction crossing the vertical line carries momentum k, giving a factor of Pψ(k)

that can be taken out of the integral. The power spectrum Pψ(k) diverges as k → 0 and

gives the largest14 contribution to κn,m. The remaining integral over dK will typically be

dominated by the non-linear scale knl, where k3
nlPmm(knl) ∼ α2

M(knl)∆
2
Φ ∼ 1. Therefore, we

may estimate the integral using αM ∼ ∆−1
Φ , to get

κ1,m ' c1,m (1 + Π)m−2 fm−1
NL ∆m−2

Φ · Pmm(k)

α(k)
for m > 1 , (2.105)

κn,m ' cn,m (1 + Π)n+m−3 fn+m−2
NL ∆n+m−4

Φ · Pmm(k)

α2(k)
for n and m > 1 . (2.106)

The factor n!m! appearing in cn,m is canceled explicitly in the Edgeworth expansion (2.23),

and as shown in §2.5.1, the condition fNL(1 + Π)∆Φ � 1 is always satisfied. This implies

that higher-order cumulants are subdominant relative to lower-order ones, and hence the

only terms we have to keep in the τNL model are κ1,1, κ1,2 = κ2,1 and κ2,2.

Non-linear terms.—When expanding the exponential in the Edgeworth expansion (2.23) we

also encounter non-linear terms such as κPn,m(x). First, we will show that, for n and/or

m > 1, these terms are suppressed by the near-Gaussianity of the primordial perturbations.

We distinguish two cases:

• When n > 1 and m > 1, we take powers of the contributions in (2.106), to find

κPn,m ∼
[
cn,m (1 + Π)n+m−3 fn+m−2

NL ∆n+m−4
Φ

]P
· Pmm(k)

α2(k)
·∆2(P−1)

Φ lnP−1(kL) ,

(2.107)

where L is an infrared cutoff. This can be written as

κPn,m ∼ κn,m · cPn,m
[
fNL(1 + Π)∆Φ

](P−1)(n+m−2)
(1 + Π)−P lnP−1(kL) . (2.108)

14Subleading contributions arise when both linear ψ terms appear on the same side. In such cases, two
contractions cross the vertical line, and the resulting cumulant is finite in the k → 0 limit.

70



Using fNL(1 + Π)∆Φ � 1 and (1 + Π) > 1, we see that κPn,m is suppressed relative to

κn,m for n,m > 1.

• When n = 1 and m > 1, the situation is slightly different. If we take higher powers of

the results in (2.105), we find for P > 1,

κP1,m ∼ cP1,m
[
(1 + Π)m−2 fm−1

NL ∆m−2
Φ

]P
∆P−1

Φ Pmm(knl)

∼ κ1,m · cP−1
1,m

[
fNL(1 + Π)∆Φ

](P−1)(m−1)
(1 + Π)−Pα(k) · Pmm(knl)

Pmm(k)
. (2.109)

Again, as we increase the power P , the contribution is suppressed. However, there

is a clear difference between P = 1 and P > 1. Nevertheless, in the limit k → 0,

[Pmm(k)/α(k)]−1 ∝ k so that these contributions vanish relative to κ1,m.

Next, we consider products of the Gaussian piece, κP1,1. We find for P > 1,

κP1,1 ∼ P P
mm(keq) · (keq)3P−3

∼ κ1,1
Pmm(keq)

Pmm(k)
∆P−1

m (keq) . (2.110)

Here, κ1,1 receives its largest contribution from the peak of the linear matter power spectrum

∆2
m(k) = k3P̂m(k) which occurs at k = keq, the scale set by matter-radiation equality.

Because ∆m(keq) < 1 at that scale, the modes are still linear and higher powers of κ1,1 will

be suppressed. However, in the limit k → 0, κ1,1 vanishes, while κP1,1 is finite for P > 1. This

gives a small constant contribution to the halo power spectrum Phh which is a free parameter

in practice (we discussed this in the context of the gNL model in §2.5.2).

Finally, we look at terms of the form κPn,mκ
Q
n′,m′ . We may bound these contributions by

using the above estimates with the convolution κPn,m ?κ
Q
n′,m′ =

∫
q
κPm,n(|q|)κQn′,m′(|k−q|). For

n,m > 1, the convolution will be dominated by the IR, and we find

κPn,m ? κ
Q
n′,m′ ∼ κPn,m(k)κQn′,m′(k)

α2(k) ln(kL)

Pmm(k)
. (2.111)
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For m = m′ = 1, the convolution is dominated by physics at the non-linear scale, so we may

simply multiply (2.109) and/or (2.110) to find

κPn,1 ? κ
Q
n′,1 ∼ κPn,1(k)κQn′,1(k) k3

nl . (2.112)

As a result, convolutions of different cumulants will be suppressed by fNL(1 + Π)∆Φ � 1.

2.7.2 gNL Cosmology

Similar arguments apply to the gNL model of §2.5.2.

Linear terms.—First, we note that κn,m = 0, unless n+m is even. Moreover, only for both n

and m odd do we get a scale-dependent tree-level contribution to the cumulant. (In the main

text, we discuss the important special case κ2,2.) Schematically, we can write κn,m ∼ gβNL ∆γ
Φ.

At tree level, we then find

κ1,m ∼ g
m−1

2
NL ∆m−2

Φ · Pmm(k)

α(k)
for m odd , (2.113)

κn,m ∼ g
n+m

2
−1

NL ∆m+n−4
Φ · Pmm(k)

α2(k)
for n,m odd and > 1 . (2.114)

Since current observational constraints imply |gNL∆2
Φ| � 1, the only tree-level terms that

we need to keep are κ1,1, κ1,3 = κ3,1 and κ3,3. As we discuss in the main text, there is also

an interesting loop contribution to κ2,2.

Non-linear terms.—As in the τNL model, products of cumulants of the form κPn,m will be

suppressed due to the near-Gaussianity of the perturbations. The contributions of higher

powers of κn,m is nearly identical in both cases:
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• When n > 1 and m > 1, we take powers of the contributions in (2.114), to find

κPn,m ∼
[
g
n+m

2
−1

NL ∆m+n−4
Φ

]P
· Pmm(k)

α2(k)
·∆2(P−1)

Φ lnP−1(kL)

∼ κn,m

[
gNL∆2

Φ

](P−1)(n+m−2
2

)

lnP−1(kL) . (2.115)

Clearly, if gNL∆2
Φ � 1, then the higher powers of κn,m are suppressed (if we assume

that the log is small).

• When n = 1 and m > 1, we take higher powers of the results in (2.113), to find for

P > 1

κP1,m ∼
[
g
m−1

2
NL ∆m−2

Φ

]P
∆P−1

Φ Pmm(knl)

∼ κ1,m

[
gNL∆2

Φ

](P−1)(m−1
2

)
α(k) · Pmm(knl)

Pmm(k)
. (2.116)

Again, we find that P > 1 contributions are suppressed by powers of gNL∆2
Φ � 1. As

in the τNL model, we find that P = 1 has a different scaling with k from P > 1.

It should be clear that other cumulants behave in the same way as in the τNL model and will

be suppressed by factors of gNL∆2
Φ.
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Chapter 3

On the Correspondence between

Barrier Crossing, Peak-Background

Split, and Local Biasing

3.1 Abstract

Several, apparently distinct, formalisms exist in the literature for predicting the clustering

of dark matter halos. It has been noticed on a case-by-case basis that the predictions of

these different methods agree in specific examples, but the precise correspondence remains

unclear. In this chapter, we provide a simple mathematical relationship between barrier

crossing, peak-background split, and local biasing.

3.2 Introduction

The large-scale clustering of dark matter halos has become an important probe of primordial

cosmology. In particular, non-Gaussianity in the initial conditions would leave an imprint in

the scale-dependence of the halo bias [9, 17], sometimes of stochastic type [24, 4]. Several,

apparently distinct, methods are commonly used to compute these effects. So far, these
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methods have been considered to be independent, even though they give the same results

when applied to specific examples [10, 4]. In this paper, we will show that the barrier crossing

(BC) model, the peak-background split (PBS) method and the local biasing (LB) approach

are, in fact, mathematically closely related.

Barrier crossing is the classic model of structure formation dating back to the pioneering

work of Press and Schechter [18]. In its simplest formulation, it identifies halos as regions of

the linearly evolved density field above some critical density δc. The clustering properties of

halos can then be calculated as an Edgeworth expansion in the cumulants of the probability

density of the primordial density fluctuations, which in turn can be expressed in terms of

N -point functions of the potential [15, 10, 23, 4].

Peak-background split is a method for calculating the influence of long-wavelength fluc-

tuations (larger than the halo size) on the locally measured statistical properties. It has

been widely used in cosmology [3, 8] and its usefulness in dealing with non-Gaussian initial

conditions has been first pointed out in [9]. In the most common implementation, the non-

Gaussian field is defined as a non-linear function of auxiliary Gaussian fields, which are split

into short-wavelength and long-wavelength components. By modulating the statistics of the

short modes, the long modes affect the clustering statistics. In this paper, we will generalize

the PBS approach so that it can be applied to arbitrary non-Gaussian initial conditions,

parametrized by arbitrary N -point functions of the primordial potential. This will require

introducing additional fields ρ2, ρ3, · · · , which measure the local power spectrum amplitude,

skewness, etc.

Local biasing [11, 20, 12, 2, 19] refers to the idea of expressing the halo density field δh as

a function the local dark matter density (smoothed on some scale) and expanding in powers

of the density contrast δ,

δh(x) = b1δ(x) + b2δ
2(x) + b3δ

3(x) + · · · . (3.1)
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Correlation functions can then be computed straightforwardly in terms of the coefficients

in the expansion. Several variations of this formalism exist in literature (for example some

use an expansion in the non-linear dark matter density, while others use the linearly evolved

density). In this work, we will demonstrate the equivalence between barrier crossing and

a particular variant of local biasing, in which the expansion is in the linearly evolved and

non-Gaussian dark matter density contrast.

In a companion paper [4] (included here as Chapter 2), we derived the clustering statistics

for specific non-Gaussian models, both in the peak-background split formalism and in the

barrier crossing model. We showed for each example that both approaches give consistent

results. The goal of this paper is to prove that this agreement isn’t accidental, but follows

from a mathematical relationship between both methods.

The outline of the chapter is as follows. After defining our notation in Section 3.3, we

introduce our main technical tool in Section 3.4: a series expansion for the halo field δh in

the barrier crossing model. We review some examples of non-Gaussian models and show how

the series expansion is used for efficiently calculating halo power spectra. In Section 3.5, we

use the series expansion to provide a mathematical relationship the barrier crossing model,

the peak-background split method, and the local biasing formalism. We conclude with

brief comments in Section 3.6. An appendix collects some elementary properties of Hermite

polynomials.

3.3 Preliminaries and Notation

Non-Gaussian initial conditions can be parameterized by the connected N -point functions

ξ
(N)
Φ of the primordial gravitational potential Φ. In Fourier space, these are defined as

〈Φk1Φk2 · · ·ΦkN 〉c = (2π)3δD(k12...N) ξ
(N)
Φ (k1,k2, . . . ,kN) , (3.2)
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where k12...N ≡ k1 +k2 + · · ·+kN . The primordial potential is related to the linearly evolved

matter density contrast via Poisson’s equation

δk(z) = α(k, z)Φk , (3.3)

where

α(k, z) ≡ 2k2T (k)D(z)

3ΩmH2
0

. (3.4)

Here, T (k) is the matter transfer function normalized such that T (k)→ 1 as k → 0 and D(z)

is the linear growth factor (as function of redshift z), normalized so that D(z) = (1 + z)−1

in matter domination. For notational simplicity, we will from now on suppress the redshift

argument from all quantities. The field δM(x) denotes the linear density contrast smoothed

with a top-hat filter of radius RM = (3M/4πρ̄m)1/3. In Fourier space,

δM(k) = WM(k)δk , (3.5)

where WM(k) is the Fourier transform of the top-hat filter,

WM(k) ≡ 3
sin(kRM)− kRM cos(kRM)

(kRM)3
. (3.6)

We also define σM ≡ 〈δ2
M〉1/2 and αM(k) ≡ WM(k)α(k).

The main quantity of interest, in this paper, is the halo density contrast in Lagrangian

space

δh(x) ≡ nh(x)− 〈nh〉
〈nh〉

, (3.7)

where nh(x) is the halo number density. To lowest order, δh is related to the halo over-

density in Eulerian space via δE
h = δh + δ. We will determine the large-scale behavior of

the matter-halo and halo-halo power spectra Pmh(k) ≡ 〈δδh〉(k) and Phh(k) ≡ 〈δhδh〉(k).

We define Phh(k) to be the halo power spectrum after the shot noise contribution 1/nh has
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been subtracted, where nh is the halo number density. Analogously, we define Pmh(k) to be

the matter-halo power spectrum after subtracting the 1-halo term (in practice, this term is

usually negligibly small). We define the (Lagrangian) halo bias as

b(k) ≡ Pmh(k)

Pmm(k)
. (3.8)

This is related to the Eulerian bias via bE = b + 1. A stochastic form of halo bias arises

whenever the density of halos isn’t 100% correlated with the dark matter density [4]. In that

case, the bias inferred from Phh will be different from the bias inferred from Pmh, i.e.

Phh(k)

Pmm(k)
6=
(
Pmh(k)

Pmm(k)

)2

. (3.9)

3.4 A Series Representation of Barrier Crossing

In this section, we introduce the barrier crossing formalism and quote results from our

companion paper [4]. We also introduce a series representation of barrier crossing, which

will be our main tool to prove the equivalence to local biasing and peak-background split in

Section 3.5.

3.4.1 Review of Barrier Crossing

In the simplest version of the barrier crossing model [18], halos of mass ≥ M are modeled

as regions of space in which the smoothed density field δM exceeds the collapse threshold δc,

i.e. the halo number density nh(x) is given by

nMW
h (x) ∝ Θ(δM(x)− δc) , (3.10)

82



where Θ is the Heaviside step function. Eq. (3.10) models the abundance of a mass-weighted

sample of halos whose mass exceeds some minimum value M .1 We will also consider the case

of a halo sample defined by a narrow mass bin, which is obtained from the mass-weighted

case by differentiating with respect to M , i.e.

nNh (x) ∝ ∂

∂M
Θ(δM(x)− δc) . (3.11)

Throughout the paper, we will refer to these two types of halo samples as “mass-weighted

samples” (MW ) and “narrow samples” (N).

The barrier crossing model allows us to compute the statistics of halo-halo and halo-

matter correlations. To discuss correlations between quantities at two points x and x′, it

is useful to define δM = δM(x), δ′M = δM(x′) and r = |x − x′|. The joint cumulants of the

density fields are then2

κm̂,n(r,M) ≡ 〈δ
m(δ′M)n〉c
σmσnM

, (3.12)

κm,n(r,M, M̄) ≡ 〈(δM)m(δ′
M̄

)n〉c
σmMσ

n
M̄

. (3.13)

The hat on κm̂,n denotes the use of the unsmoothed density field δ. In the limit k → 0, we

find κ1̂,1(k)→ Pmm(k)/(σσM) and κ1,1(k)→ Pmm(k)/(σMσM̄). This motivates the following

1This type of sample is often assumed when fitting models to observations of luminous tracers such as
galaxies or quasars. In the absence of detailed knowledge of the halo occupation distribution (HOD), a
simple choice is to assume that halos below some minimum mass M are unpopulated with tracers, whereas
the expected number of tracers in a halo of mass ≥M is proportional to the halo mass.

2Note that the variance of the unsmoothed linear density contrast σ2 = 〈δ2〉 is formally infinite, but
cancels in the definition (3.14) of the quantity f1̂,n which will appear in our final expressions.
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definitions

f1̂,n(k,M) ≡
κ1̂,n(k,M)

κ1̂,1(k,M)σM
for n ≥ 1 , (3.14)

f1,n(k,M, M̄) ≡ κ1,n(k,M, M̄)

κ1,1(k,M, M̄)σM̄
for n ≥ 1 , (3.15)

fm,n(k,M, M̄) ≡ κm,n(k,M, M̄)

κ1,1(k,M, M̄)σMσM̄
for m,n ≥ 2 . (3.16)

Using the function α(k, z) defined in (3.3), it is straightforward to relate the above cumulants

to the primordial correlation functions ξ
(N)
Φ defined in (3.2).

In [4], we showed how the matter-halo and halo-halo power spectra are computed in

the barrier crossing model using the Edgeworth expansion for the joint probability density

function p(δM , δ
′
M). (We refer the reader to that paper for detailed derivations and further

discussion.) The result can be expressed in terms of the cumulants f1̂,n and fm,n. Taking

the limit k → 0 for the case of a mass-weighted sample with M = M̄ , we find

Pmh(k,M) = Pmm(k)

(
bMW
g (M) +

∑
n≥2

αn(M)f1̂,n(k,M)

)
, (3.17a)

Phh(k,M) = Pmm(k)

(
bMW
g (M)2 + 2bMW

g (M)
∑
n≥2

αn(M)f1,n(k,M,M) (3.17b)

+
∑
m,n≥2

αm(M)αn(M)fm,n(k,M,M)

)
,

where the coefficients αn (not to be confused with the α of eq. (3.3)) are defined in terms of

Hermite polynomials (see Appendix 3.7),

αn(M) ≡
√

2

π

e−ν
2
c /2

erfc( 1√
2
νc)

Hn−1(νc)

n!
, with νc(M) ≡ δc

σM
. (3.18)

We also defined the Gaussian bias as

bMW
g (M) ≡ α1(M)

σM
. (3.19)
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Note that bMW
g (M) is the Press-Schechter bias for the mass-weighted halo sample. In writ-

ing (3.17), we have dropped “nonlinear” terms in the Edgeworth expansion, i.e. terms in-

volving products (κm1n1κm2n2 · · ·κmpnp) with p > 1.

Similarly, for the case of a halo sample defined by a narrow mass bin, we have

Pmh(k,M) = Pmm(k)

(
bNg (M) +

∑
n≥2

Dn(M)f1̂,n(k,M)

)
, (3.20a)

Phh(k,M) = Pmm(k)

(
bNg (M)2 + 2bNg (M)

∑
n≥2

Dn(M)f1,n(k,M, M̄)
∣∣∣
M=M̄

(3.20b)

+
∑
m,n≥2

Dm(M)Dn(M̄)fm,n(k,M, M̄)
∣∣∣
M=M̄

)
,

where we have defined the differential operator

Dn(M) ≡ βn(M) + β̃n(M)
∂

∂ lnσM
, (3.21)

as well as the functions

bNg (M) ≡ 1

σM

ν2
c − 1

νc
, βn(M) ≡ Hn(νc)

n!
and β̃n(M) ≡ Hn−1(νc)

n! νc
. (3.22)

Note that bNg (M) is the Press-Schechter bias of a halo sample defined by a narrow mass bin.

In eq. (3.20b) for Phh, we have assumed M = M̄ for simplicity, but the variables M and M̄

should be treated as independent for purposes of taking derivatives.

3.4.2 Hermite Polynomial Expansion

In this section, we will develop an alternative (to the Edgeworth expansion) algebraic frame-

work for analyzing clustering in the barrier crossing model. First, consider the case of a

85



mass-weighted halo sample, where the halo field is modeled as a step function

nMh W (x) ∝ Θ (ν(x)− νc) , where ν(x) ≡ δM(x)

σM
. (3.23)

Since the Hermite polynomials Hn(ν) are a complete basis, any function of ν can be written

as a linear combination of Hermite polynomials. In particular, we can write the Heaviside

step function Θ(ν − νc) as

Θ(ν − νc) =
∞∑
n=0

an(νc)Hn(ν) , (3.24)

where

an(νc) =
1

n!

∫ ∞
−∞

dν Θ(ν − νc)
e−ν

2/2

√
2π

Hn(ν) =


1
2
erfc( 1√

2
νc) n = 0

1
n!

1√
2π
e−ν

2
c /2Hn−1(νc) n ≥ 1

. (3.25)

Plugging this series expansion into eq. (3.23), and normalizing the halo field to the fractional

overdensity δh, we get

δh(x) =
∑
n≥1

an(νc)

a0(νc)
Hn

(
δM(x)

σM

)
= bMW

g (M)δM(x) +
∑
n≥2

αn(M)ρn(x) , [mass-weighted sample] (3.26)

where αn(M) and bMW
g (M) were introduced in eqs. (3.18) and (3.19), respectively. The fields

ρn are defined as

ρn(x) ≡ Hn

(
δM(x)

σM

)
. (3.27)

On large scales, the field ρ2 = δ2
M/σ

2
M − 1 tracks long-wavelength variations in the locally

measured small-scale power, and for non-Gaussian initial conditions the power spectrum

Pρ2ρ2(k) may acquire extra large-scale contributions. Analogously, the field ρ3 = δ3
M/σ

3
M −
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3δM/σM tracks long-wavelength variations in the locally measured small-scale skewness, and

so on for higher ρn.

Figure 3.1: Convergence of the series representation (3.26) at low k, illustrated by comparing
terms in the halo-halo power spectrum Phh(k) = b2

g(M)Pmm(k) +
∑∞

n=2 α
2
n(M)Pρnρn(k) in a

Gaussian cosmology. (Note that for Gaussian initial conditions, cross power spectra Pρmρn(k)
with m 6= n are zero.) We have taken z = 0 and a mass-weighted sample of halos with mass
M ≥ 2× 1013 h−1 M�.

We emphasize that the series representation (3.26) is mathematically equivalent to the

barrier crossing model, since it is obtained by simply substituting the convergent Hermite

series (3.24) into the barrier crossing expression (3.23) for nh. The series representation

converges for all values of x, but its usefulness depends on how rapidly it converges, i.e. how

many terms we need to get a good approximation. For example, to compute the halo field

δh(x) at a single point x in real space, many terms are needed (of order 100) and the series

representation is not useful. On the other hand, the Fourier transformed series representation

δh(k) = bMW
g δM +

∑∞
n=2 αnρn(k) converges rapidly on large scales (i.e. k � knl), as shown

in fig. 3.1, and the series representation is very convenient. (The series converges for all k,

but only converges rapidly for k � knl.)
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The preceding expressions have all applied to the case of a mass-weighted halo sample.

For the case of a halo sample defined by a narrow mass bin, the halo field is modeled as

nNh (x) ∝ ∂

∂ lnσM
Θ

(
δM(x)

σM
− νc

)
=

∂

∂ lnσM

∑
n≥0

an(νc)Hn

(
δM(x)

σM

)
=

∑
n≥0

(
(n+ 1)νc an+1(νc) + an(νc)

∂

∂ lnσM

)
Hn

(
δM(x)

σM

)
. (3.28)

Normalizing nh to the fractional halo overdensity δh, we get

δh(x) =
∑
n≥1

(
(n+ 1)

an+1(νc)

a1(νc)
+

an(νc)

νca1(νc)

∂

∂ lnσM

)
Hn

(
δM(x)

σM

)
=

(
ν2
c − 1

νcσM

)
δM(x) +

1

νcσM

∂δM(x)

∂ lnσM

+
∑
n≥2

(
1

n!
Hn(νc) +

1

n!

Hn−1(νc)

νc

∂

∂ lnσM

)
Hn

(
δM(x)

σM

)
. (3.29)

We drop the term containing ∂δM/∂ lnσM , since this term vanishes on large scales, k � R−1
M ,

and write the result using the notation bg, βn, β̃n defined in eq. (3.22):

δh(x) = bNg (M)δM(x)+
∞∑
n=2

(
βn(M) + β̃n(M)

∂

∂ lnσM

)
ρn(x) . [narrow sample] (3.30)

As a check on our formalism, we can verify that the matter-halo and halo-halo power spectra

obtained from the series (3.26) agree with the results obtained previously in [4] using the

Edgeworth expansion. We first write the power spectrum Pδρn(k) in terms of the correlation

function (3.2),

Pδρn(k) =
α(k)

σnM

(
n−1∏
i=1

∫
qi

αM(qi)

)
αM(−|k + q|) × ξ

(n+1)
Φ (k, q1, · · · , qn−1,−k − q) , (3.31)
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where we have defined
∫
qi

( · ) ≡
∫

d3qi
(2π)3

( · ) and q ≡ ∑n−1
i=1 qi. Similarly, we can express

Pρmρn(k) as 3

Pρmρn(k) =
1

σmMσ
n
M̄

(
m−1∏
i=1

∫
q′i

αM(q′i)

)(
n−1∏
j=1

∫
qj

αM̄(qj)

)
αM(q′)αM̄(q)

× ξ
(m+n)
Φ (q′1, · · · , q′m−1,−q′ + k, q1, · · · , qn−1,−q − k) , (3.32)

where q′ ≡∑m−1
i=1 q

′
i . Using the notation f1̂,n and fm,n defined in eqs. (3.14) and (3.16), and

taking the limit k → 0, we find

Pδρn(k) = f1̂,n(k,M)Pmm(k) , (3.33)

Pρmρn(k) = fm,n(k,M, M̄)Pmm(k) . (3.34)

For the case of the mass-weighted halo sample, the series representation (3.26) therefore

gives the following matter-halo and halo-halo power spectra

Pmh(k,M) = Pmm(k)

(∑
n≥1

αn(M)f1̂,n(k,M)

)
, (3.35a)

Phh(k,M, M̄) = Pmm(k)

( ∑
m,n≥1

αm(M)αn(M̄)fm,n(k,M, M̄)

)
, (3.35b)

in agreement with the Edgeworth calculation (3.17). The case of the narrow mass bin can

be verified similarly.

3We have made an approximation here: by using connected correlation functions in eqs. (3.31) and (3.32),
we have neglected some contributions to the power spectra Pδρn and Pρmρn . More precisely, we have neglected
disconnected terms whose factorization contains multiple higher cumulants (i.e. κm,n with m+ n ≥ 3), and
also some contributions to Pρmρn(k) which approach a constant as k → 0. (Note that subleading terms in
the Hermite polynomial ρn = (δM/σM )n − n(n − 1)(δM/σM )n−2/2 + · · · cancel the largest disconnected
contributions to the power spectra in eqs. (3.31) and (3.32).) The derivation in [4] of eq. (3.17) contains
equivalent approximations, which is why we will shortly find agreement with the results of [4]. In principle,
one can avoid making any approximations by including disconnected contributions when calculating power
spectra Pδρn and Pρmρn . However, in Appendix A of [4], we showed that these approximations are always
valid in the observationally relevant regime where the initial perturbations are close to Gaussian.
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Eqs. (3.26) and (3.30) are the main results of this section and give a series representation

for the halo field in the barrier crossing model, for the cases of a mass-weighted halo sample

and a narrow mass bin respectively. Using the series representation, we will give a simple,

conceptual proof of the close correspondence of the barrier model, the peak-background split,

and local biasing in Section 3.5. However, it is useful to first build intuition by considering

a few example non-Gaussian models.

3.4.3 Examples

For a given non-Gaussian model, one can analyze large-scale clustering by keeping a small set

of terms in the series expansion of δh (either eq. (3.26) or (3.30) for a mass-weighted sample or

narrow mass bin, respectively), and computing the necessary power spectra Pρmρn(k) on large

scales. This is a computationally convenient way to compute the non-Gaussian clustering

signal, and allows the signal to be interpreted physically as arising from large-scale variations

in locally measured quantities such as small-scale power and skewness, as we will see in the

context of some example models.

τNL Cosmology

Consider a non-Gaussian model in which the initial Newtonian potential is given by

Φ(x) = φ(x) + fNL

(
φ2(x)− 〈φ2〉

)
, (3.36)

where φ is a Gaussian field. We will refer to this as the “fNL model” (or local model).

This type of non-Gaussianity arises somewhat generically in multi-field models of the early

universe, e.g. modulated reheating models [25], curvaton models [14, 16], or multi-field ekpy-

rotic scenarios [13, 6]. In this section, we will study a generalization of the fNL model which

we will call the “τNL model”. This type of non-Gaussianity arises in “multi-source” models,

i.e. models in which quantum mechanical perturbations in multiple fields determine the ini-
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tial adiabatic curvature perturbation [24, 7, 5, 1]. The non-Gaussian potential Φ is given in

terms of two uncorrelated Gaussian fields φ and ψ, with power spectra that are proportional

to each other

Φ(x) = φ(x) + ψ(x) + fNL(1 + Π)2
(
ψ2(x)− 〈ψ2〉

)
, (3.37)

where fNL and Π = Pφ(k)/Pψ(k) are free parameters. It is easy to compute the three- and

four-point functions,

ξ
(3)
Φ = fNL

[
P1P2 + 5 perms.

]
+O(f 3

NL) , (3.38)

ξ
(4)
Φ = 2

(
5
6

)2
τNL

[
P1P2P13 + 23 perms.

]
+O(τ 2

NL) , (3.39)

where we have defined τNL = (6
5
fNL)2(1 + Π), Pi ≡ PΦ(ki), and Pij ≡ PΦ(|ki + kj|). It is

conventional to parametrize this model with variables {fNL, τNL}, which correspond to the

amplitudes of the 3-point and 4-point functions, rather than the variables {fNL,Π}. The

fNL model (with Π = 0 so that ψ contributes but not φ) corresponds to the special case

τNL = (6
5
fNL)2.

To compute halo clustering in the τNL model, we keep the first two terms in the series

expansion for δh (eqs. (3.26) and (3.30)), obtaining:

δh =


bMW
g δM + α2ρ2 , [mass-weighted sample]

bNg δM +
(
β2(M) + β̃2(M) ∂

∂ lnσM

)
ρ2 . [narrow sample]

(3.40)

Using eqs. (3.38) and (3.39) in eqs. (3.31) and (3.32), we obtain the following power spectra

in the k → 0 limit:

Pδρ2(k) = 4fNL
Pmm(k)

α(k)
, (3.41)

Pρ2ρ2(k) = 16
(

5
6

)2
τNL

Pmm(k)

α2(k)
. (3.42)
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Putting everything together, we find

Pmh(k) =

(
bg + fNL

βf
α(k)

)
Pmm(k) , (3.43a)

Phh(k) =

(
b2
g + 2bgfNL

βf
α(k)

+
(

5
6

)2
τNL

β2
f

α2(k)

)
Pmm(k) . (3.43b)

where we have defined the non-Gaussian bias parameter

βf =

 4α2(M) , [mass-weighted sample]

4β2(M) . [narrow sample]
(3.44)

In both the mass-weighted and narrow mass bin cases, the non-Gaussian and Gaussian parts

of the bias are related by βf = 2δcbg. Note that in the narrow mass bin case, there is

a derivative term in δh (the term ∂ρ2/∂ lnσM in eq. (3.40)), but this ends up giving zero

contribution to the power spectra Pmh and Phh, since the power spectra Pδρ2 and Pρ2ρ2 are

independent of M in the τNL model.

Our calculation of the clustering power spectra (3.43) agrees with previous calculations

in the literature (e.g. [24, 4]) but the series representation gives some physical intuition: the

large-scale non-Gaussian clustering is due to large-scale fluctuations in the field ρ2, which

we interpret as long-wavelength variations in the locally measured small-scale power. If

τNL = (6
5
fNL)2, then long-wavelength variations in ρ2 are 100% correlated to the matter

density δ on large scales, and the non-Gaussian halo bias is non-stochastic. If τNL > (6
5
fNL)2,

then ρ2 and δ are not 100% correlated, leading to stochastic bias.

gNL Cosmology

The gNL model is a non-Gaussian model in which the initial potential Φ is given in terms of

a single Gaussian field φ by:

Φ(x) = φ(x) + gNL

(
φ3(x)− 3〈φ2〉φ(x)

)
. (3.45)
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We keep the first three terms in the series expansion for δh, obtaining:

δh =



bMW
g δM + α2ρ2 + α3ρ3 , [mass-weighted sample]

bNg δM +
(
β2(M) + β̃2(M) ∂

∂ lnσM

)
ρ2

+
(
β3(M) + β̃3(M) ∂

∂ lnσM

)
ρ3 . [narrow sample]

(3.46)

To compute power spectra we will need the following cumulants in the gNL model:

ξ
(4)[tree]
Φ = gNL

[
P1P2P3 + 23 perms.

]
+O(g2

NL) , (3.47)

ξ
(4)[loop]
Φ = 9g2

NL

[
P1P2Pφ2(k13) + 11 perms.

]
, (3.48)

ξ
(6)
Φ = 36g2

NL

[
P1P2P3P4P125 + 89 perms.

]
. (3.49)

Here, we have defined Pijk = Pφ(|ki + kj + kk|) and

Pφ2(k) ≡ 2

∫
q

Pφ(q)Pφ(|k − q|) ∼ 4∆2
φ ln(kL)Pφ(k) , (3.50)

where ∆2
φ ≡ (k3/2π2)Pφ(k) and we have regulated the infrared divergence by putting the

field in a finite box of size L. Note that the power spectra Pδρ2 and Pρ2ρ3 are zero (since there

is a Φ → −Φ symmetry). The remaining power spectra can be calculated by substituting

eqs. (3.47), (3.48) and (3.49) into eqs. (3.31) and (3.32). In the limit k → 0, this gives

Pδρ3(k) = 3gNL
Pmm(k)

α(k)
κ

(fNL=1)
3 , (3.51)

Pρ2ρ2(k) =
24gNL

σ2
M

(∫
q

α2
M(q)P 2

φ(q)

)
+ 36g2

NLPφ2(k) , (3.52)

Pρ3ρ3(k) = 9g2
NL

Pmm(k)

α2(k)

(
κ

(fNL=1)
3

)2

. (3.53)

Here, κ
(fNL=1)
3 denotes the dimensionless skewness parameter κ3 = 〈δ3

M(x)〉c/σ3
M in the local

model with fNL = 1. Note that we use the tree-level cumulant ξ
(4)[tree]
Φ when computing Pδρ3 ,
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but use both the tree-level cumulant and the one-loop cumulant ξ
(4)[loop]
Φ when computing

Pρ2ρ2 . Although the O(g2
NL) one-loop cumulant is generally smaller than the O(gNL) tree-

level cumulant, the one-loop cumulant dominates in the |k1 +k2| → 0 limit which is relevant

for Pρ2ρ2 .

Putting the above calculations together, we find:4

Pmh(k) =

(
bg + gNL

βg
α(k)

)
Pmm(k) , (3.54a)

Phh(k) =

(
bg + gNL

βg
α(k)

)2

Pmm(k) +
9

4
β2
fg

2
NLPφ2(k) , (3.54b)

where βf was defined in eq. (3.44) and we have defined

βg =

 3α3(M)κ
(fNL=1)
3 , [mass-weighted sample]

3
(
β2(M) + β̃2(M) ∂

∂ lnσM

)
κ

(fNL=1)
3 . [narrow sample]

(3.55)

Note that in the narrow mass bin case, there are derivative terms in δh (eq. (3.46)), and their

contributions to Pmh and Phh are non-zero (unlike the previously considered τNL model),

because the power spectra Pρmρn in eqs. (3.51)–(3.53) depend on halo mass via the mass-

dependent quantity κ
(fNL=1)
3 .

These expressions for Pmh and Phh agree with previous calculations in the literature based

on the Edgeworth expansion [10, 23, 4]. Our series expansion gives some physical intuition

as follows. The non-Gaussian contribution to Pmh comes from the power spectrum Pδρ3 ,

and can therefore be interpreted as arising from long-wavelength variations in the locally

measured small-scale skewness ρ3. On large scales, the non-Gaussian fluctuations in ρ3 are

100% correlated to the density field, and therefore the associated halo bias is non-stochastic.

The leading contribution to stochastic bias comes from the power spectrum Pρ2ρ2 and can

4We have neglected contributions to Phh(k) which approach a constant as k → 0; such contributions are
unobservable in practice since they are degenerate with other contributions such as second-order halo bias.
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be interpreted as long-wavelength variations in small-scale power which are uncorrelated to

the density field.

3.5 Proof of the Correspondence

In the previous section, we showed that the barrier crossing model can be formulated as a

series representation:

δh(x) =

 bMW
g δM(x) +

∑
n≥2 αn(M)ρn(x) , [mass-weighted sample]

bNg δM(x) +
∑

n≥2

(
βn(M) + β̃n(M) ∂

∂ lnσM

)
ρn(x) . [narrow sample]

(3.56)

In this section, we will use this result to prove that barrier crossing is mathematically related

to local biasing (§3.5.1) and peak-background split (§3.5.2), and in particular they give

equivalent results.

3.5.1 Local Biasing

“Local biasing” refers to any model of halo clustering in which the halo field is represented

as a local function of the dark matter density, e.g. a power series

δh(x) = b1δ(x) + b2δ
2(x) + b3δ

3(x) + · · · . (3.57)

Several versions of local biasing exist in the literature (e.g. [11, 20, 12, 2]). We notice that the

series on the right-hand side of (3.56) is a type of local biasing expansion, since the ρn fields

are local functions of the smoothed density field δM . Therefore, our series representation

proves that the barrier crossing model is mathematically equivalent to a specific version of

the local biasing formalism.5

5In [10], the authors have argued that the barrier crossing model can be written as a local expansion
in terms of ‘renormalized’ bias parameters (see Section III.B and III.C). We note that a local Hermite
expansion is well defined and will automatically generate the correct bias coefficients in the Gaussian or
weakly non-Gaussian case, without need for renormalization. See Section II.D of [22] for further discussion.
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In this section, we would like to elaborate on the connection between our series represen-

tation and the usual way of thinking about local biasing, and comment on the differences

with other versions of the formalism.

First, the density field δM which appears in the series representation is the non-Gaussian

and linearly evolved density field, smoothed on the mass scale M . In particular, there is

no need to introduce a new smoothing scale which is distinct from the halo scale, as done

in some versions of local biasing. We do not include non-linear evolution in δM since the

standard barrier crossing model is based on thresholding the linear density field.

Second, we do not need to introduce explicit dependence of the halo over-density δh on

the long-wavelength potential Φ` in a non-Gaussian cosmology. In some versions of local

biasing, δh is expanded in both δ` and Φ`, in order to keep the relation local. In our version,

the Φ` dependence happens automatically, since δh depends on higher cumulants ρ2, ρ3, · · · ,

and these cumulants can be correlated with Φ` in a non-Gaussian model. To see how this

happens in detail, consider the fNL model. Inspection of the power spectra in eqs. (3.41) and

(3.42) shows (taking τNL = (6
5
fNL)2) that ρ2 is 100% correlated with the field Φ` = α−1

M (k)δM

as k → 0. More precisely, ρ2 → 4fNLΦ` on large scales. Making this substitution in eq. (3.56),

we get δh = bgδ` + fNLβfΦ` + · · · and recover the usual result.

This example shows that including explicit Φ` dependence in the local expansion of δh

is not necessary (in fact, including it our model would “double-count” the non-Gaussian

clustering), if higher powers of the density field are included in the expansion. In the fNL

model, the modulation to the locally measured power ρ2 is directly proportional to Φ`. More

generally, the expansion should be in all of the non-negligible cumulants ρ2, ρ3, · · · .

It is also interesting to consider the τNL model in the case τNL > (6
5
fNL)2. Here, the locally

measured small-scale power ρ2 has excess power on large scales which is not 100% correlated

with Φ`, leading to stochastic bias [4]. This qualitative behavior is correctly captured by a

local biasing model of the form δh = bgδ` + α2ρ2, but not by a local biasing model of the

form δh = bgδ` + b2Φ`.
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In the narrow mass bin case, our series expansion includes derivative terms of the form

∂ρn/∂ lnσM . To our knowledge, derivative terms have not been been proposed in any version

of local biasing which has appeared in the literature. In the barrier crossing model, derivative

terms appear naturally for a narrowly selected halo sample, since this case is obtained from

the mass-weighted case (which does not contain derivative terms) by differentiating with

respect to halo mass.

Finally, even in the mass-weighted case, there is a difference between the Hermite poly-

nomial expansion

δh(x) = bMW
g δM(x) +

∑
n≥2

αn(M)Hn

(
δM(x)

σM

)
(3.58)

and a power series expansion of the form

δh(x) = b1δM(x) + b2δ
2
M(x) + b3δ

3
M(x) + · · · . (3.59)

At first sight, the two may appear equivalent: if both series are truncated at the same order

N , then we can rearrange coefficients to transform either series into the other (since both just

parametrize an arbitrary degree-N polynomial). However, when we write the power series

expansion (3.59), we are assuming that the values of the low-order coefficients b1, b2, · · ·

are independent of the order N at which the series is truncated. This means for example

that in a Gaussian cosmology, the matter-halo power spectrum Pmh(k) = (b1 + 3σ2
Mb3 +

15σ4
Mb5 + · · · )Pmm(k) depends on where the series is truncated. In contrast, the Hermite

expansion (3.58) is more stable: Pmh(k) is always equal to bMW
g Pmm(k), regardless of how

many terms are retained in the series. Note that the barrier crossing model has a convergent

Hermite polynomial expansion (3.24), but cannot be sensibly expanded as a power series in

δM , since the Heaviside step function Θ(δM/σM − δc) is not an analytic function of δM .

In summary, the barrier crossing model is mathematically equivalent to a specific version

of the local biasing formalism in which the following choices have been made: we linearly

evolve the density field and smooth it at mass scale M ; we include higher cumulants ρ2, ρ3, · · ·
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in the density field, but not additional fields such as the potential Φ`; derivative terms appear

in the narrow mass bin case; and we use a Hermite polynomial expansion in δM/σM rather

than the power series expansion. Other variants of the local biasing formalism exist in the

literature, and we are not claiming that our choices are optimal (in the sense of producing

best agreement with simulations); the purpose of this section was simply to point out which

set of choices is equivalent to the barrier crossing model.

3.5.2 Peak-Background Split

The “peak-background split” is a formalism for modeling halo clustering on large scales,

in which one relates large-scale modes of the halo density field δh to large-scale modes of

fields whose power spectra can be calculated directly. For example, the PBS formalism was

applied to an fNL cosmology in [21]. On large scales, k � R−1
M , one can argue that the halo

density is related to the linear density field δ and the Newtonian potential Φ by

δh(k) = bgδ(k) + fNLβfΦ(k) , (3.60)

where bg is the usual Gaussian bias, and βf = 2∂ lnnh/∂ lnσ8. Using this expression, it

is easy to show that the large-scale bias is given by b(k) = bg + fNLβf/α(k), and is non-

stochastic. For additional examples of the PBS formalism applied to non-Gaussian models,

see [24, 23, 4]. In this section, we will show how the PBS formalism generalizes to an arbitrary

non-Gaussian model, and give a simple proof that this generalization is equivalent to the

barrier crossing model. We will work out in detail the case of a mass-weighted halo sample;

the narrow mass bin case follows by differentiating with respect to M .

There is one technical point that we would like to make explicit. We want to generalize

the peak-background split formalism so that it applies to an arbitrary non-Gaussian model,

parametrized by the N -point correlation functions of the initial Newtonian potential Φ. As

an example, consider the τNL model from §3.4.3, with constituent fields φ, ψ. The PBS
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analysis of this model has been worked out in [24, 4] and requires keeping track of the long-

wavelength parts φ`, ψ` of both fields, in order to correctly predict non-Gaussian stochastic

bias on large scales. (Intuitively, multiple fields are needed because we need to keep track of

long-wavelength density fluctuations and long-wavelength variations in the locally measured

small-scale power, and the two are not 100% correlated in the τNL model.) This raises

a conceptual puzzle: how would we get stochastic bias if we were just given correlation

functions of the single field Φ, rather than a description of the τNL model involving multiple

constituent fields? As we will now see, we must extend the PBS formalism by introducing

additional fields which correspond to the locally measured small-scale power, small-scale

skewness, kurtosis, etc. These fields are precisely the quantities ρ2, ρ3, · · · which appeared

earlier in our series expansion in §3.4. This will allow us to connect the PBS formalism with

the barrier crossing model (and in fact prove that the two are mathematically equivalent).

Consider a large subvolume of the universe containing many halos, but over which the

long mode is reasonably constant, and let ( · )` denote a spatial average over the subvolume.

Let us assume that the halo number density (nh)` in the subvolume is a function of the

one-point PDF of the underlying dark matter field δM (when linearly evolved and smoothed

on the halo scale). For weakly non-Gaussian fields, the one-point PDF in each subvolume

can be characterized completely by its mean (δM)`, variance (σ2
M)`, and higher cumulants

(κn)` = (〈δnM〉c/σnM)` for n ≥ 3. Therefore we can write (nh)` ≡ n̄h((δM)`, (σ
2
M)`, {(κn)`}).

Taylor expanding to first order in these parameters, we get

(nh)` = n̄h

(
1 +

∂ lnnh

∂(δM)`
(δM)` +

∂ lnnh

∂(σ2
M)`

(
(σ2

M)` − σ2
M

)
+
∞∑
n=3

∂ lnnh

∂(κn)`
(κn)`

)
. (3.61)

Here, we have used the notation (σ2
M)` to denote the variance of δM restricted to the subvol-

ume, and σ2
M to denote the global variance. To make contact with our previous notation, note
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that
(
(σ2

M)` − σ2
M

)
= σ2

M(ρ2)` and (κn)` = (ρn)`.
6 Making these substitutions in eq. (3.61),

we get

(δh)` =
∂ lnnh

∂(δM)`
(δM)` + σ2

M

∂ lnnh

∂(σ2
M)`

(ρ2)` +
∞∑
n=3

∂ lnnh

∂(κn)`
(ρn)` . (3.62)

Since this equation applies when taking the subvolume average ( · )` over any large subvolume,

it also applies to any large-scale Fourier mode:

δh(k)
k→0−−→ ∂ lnnh

∂δM
δM(k) + σ2

M

∂ lnnh

∂σ2
M

ρ2(k) +
∞∑
n=3

∂ lnnh

∂κn
ρn(k) . (3.63)

Let us compare this expression with our series representation of δh in the barrier crossing

model:

δh(k) = bMW
g δM(k) +

∑
n≥2

αn(M)ρn(k) . (3.64)

The form of the two series representations is the same, but the coefficients appear to be

different. In the barrier crossing model, we have the following explicit formula for the

coefficient αn(M) of the n-th term in the series:

αn(M) =

√
2

π

e−ν
2
c /2

erfc( 1√
2
νc)

Hn−1(νc)

n!
, (3.65)

whereas in the PBS derivation, αn is given by a suitable derivative of the halo mass function:

α2 = σ2
M

∂ lnnh

∂σ2
M

and αn =
∂ lnnh

∂κn
for n ≥ 3 . (3.66)

If we assume a Press-Schechter mass function, then one can evaluate the mass function

derivatives in the above equation using the machinery from [15]. The result agrees precisely

with the explicit formula (3.65). Therefore, the barrier crossing model and the generalized

PBS formalism with fields ρ2, ρ3, · · · are formally equivalent, but only under the assumption

6The identity (ρn)` = (κn)` holds for n ≤ 5, but has non-linear corrections for n ≥ 6. For example,
(ρ6)` = (κ6)` + 10(κ3)2

` . We have neglected these non-linear corrections since eq. (3.61) is an expansion to
first order anyway.
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of a Press-Schechter mass function (note that this assumption is “built in” to the barrier

crossing model).

If we relax the assumption of a Press-Schechter mass function, then the barrier crossing

model and the generalized PBS formalism can both be written as series expansions with the

same general form, but make different predictions for the coefficients αn(M). One can ask

which prediction agrees better with N -body simulations. In [23], the two predictions for

α3 were compared with simulations in the context of the gNL model. It was found that the

PBS prediction (3.66) is exact (within the ≈ 1% statistical error of the simulations) if both

the bias and the mass function derivative (∂ lnnh/∂κ3) are evaluated numerically from the

simulations. The barrier crossing prediction (3.65) is an approximation: although it is based

on an exact calculation within the barrier crossing model, this model is an approximation

to the true dynamics of an N -body simulation. The approximation works reasonably well

for large halo mass but breaks down for low masses, motivating the use of fitting functions

for practical data analysis. It is natural to conjecture that the same qualitative statements

will be true for the αn coefficients with n > 3, but we have not attempted to verify this with

simulations. (Note that no fitting function is necessary for α2, since the relation βf ≈ 2δcbg

holds to ≈ 10% accuracy in N -body simulations.)

In summary, the barrier crossing model is closely related to the PBS formalism, appro-

priately generalized to an arbitrary non-Gaussian cosmology by introducing additional fields

ρ2, ρ3, · · · , plus the additional assumption of a Press-Schechter mass function. The barrier

crossing model is analytically tractable (e.g. one can derive closed-form expressions for the

coefficients αn(M) and βn(M)), and usually a reasonable approximation, making it very

useful for analytic studies or forecasts. However, for data analysis, it may be necessary to

go beyond the Press-Schechter approximation by replacing the closed-form expressions for

coefficients such as αn(M) with their PBS counterparts measured from simulations.
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3.6 Conclusions

In this paper, we have demonstrated the precise mathematical relationship between barrier

crossing, peak-background split and local biasing. We first introduced a Hermite polyno-

mial expansion of the halo density contrast δh in the barrier crossing model: eqs. (3.26)

and (3.30). We showed that this allows a computationally efficient way to calculate the

clustering power spectra Pmh and Phh. Moreover, the series expansion makes the formal

equivalence of the various halo modeling formalisms very transparent. First, it automati-

cally takes the form of a local biasing model, in which the non-Gaussian and linearly evolved

density contrast is expanded in Hermite polynomials. Second, it provides a very natural

connection between barrier crossing and peak-background split. To make this relationship

manifest, we generalized the PBS formalism so that it can be applied to the most general set

of non-Gaussian initial conditions, parametrized by the N -point functions of the primordial

potential. This extension of PBS involves additional fields which correspond to the locally

measured small-scale power, small-scale skewness, kurtosis, etc. Mapping those fields to fields

in the Hermite polynomial expansion of the barrier crossing model, we showed the close re-

lationship between PBS and BC. Finally, although in this paper we have concentrated on

computing power spectra, our series expansion should also be useful for analyzing the effects

of primordial non-Gaussianity on other clustering statistics, such as the halo bispectrum [2].
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3.7 Appendix: convention on Hermite Polynomials

In this paper, we have used the probabilists’ definition of Hermite Polynomials

Hn(ν) = (−1)neν
2/2 d

n

dνn
e−ν

2/2 , (3.67)

satisfying the recursion relation

Hn+1(ν) = νHn(ν)−H ′n(ν) (3.68)

and the orthogonality condition

∫ ∞
−∞

dν
1√
2π
e−ν

2/2Hm(ν)Hn(ν) = m!δmn . (3.69)

For reference, we list some of the low-order Hermite polynomials

H0(ν) = 1 , (3.70)

H1(ν) = ν , (3.71)

H2(ν) = ν2 − 1 , (3.72)

H3(ν) = ν3 − 3ν , (3.73)

H4(ν) = ν4 − 6ν2 + 3 . (3.74)
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We have made use of the following integral

1

n!

∫ ∞
νc

dν
1√
2π
e−ν

2/2Hn(ν) =


1
2
erfc( 1√

2
νc) n = 0

1
n!

1√
2π
e−ν

2
c /2Hn−1(νc) n ≥ 1

. (3.75)
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Chapter 4

Using Large Scale Structure to

measure fNL, gNL and τNL

4.1 Abstract

Primordial non-Gaussianity of local type is known to produce a scale-dependent contribution

to the galaxy bias. Several classes of multi-field inflationary models predict non-Gaussian bias

which is stochastic, in the sense that dark matter and halos don’t trace each other perfectly

on large scales. In this work, we forecast the ability of next-generation Large Scale Structure

surveys to constrain common types of primordial non-Gaussianity like fNL, gNL and τNL using

halo bias, including stochastic contributions. We provide fitting functions for statistical

errors on these parameters which can be used for rapid forecasting or survey optimization.

A next-generation survey with volume V = 25h−3Gpc3, median redshift z = 0.7 and mean

bias bg = 2.5, can achieve σ(fNL) = 6, σ(gNL) = 105 and σ(τNL) = 103 if no mass information

is available. If halo masses are available, we show that optimally weighting the halo field in

order to reduce sample variance can achieve σ(fNL) = 1.5, σ(gNL) = 104 and σ(τNL) = 100

if halos with mass down to Mmin = 1011 h−1M� are resolved, outperforming Planck by a

factor of 4 on fNL and nearly an order of magnitude on gNL and τNL. Finally, we study the
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effect of photometric redshift errors and discuss degeneracies between different non-Gaussian

parameters, as well as the impact of marginalizing Gaussian bias and shot noise.

4.2 Introduction

The study of the statistical properties of the primordial fluctuations beyond the power spec-

trum has enormous constraining power on inflationary models. While single field slow roll

inflation predicts Gaussian fluctuations [51, 52], for which all of the information lies in the

primordial power spectrum, a wealth of alternative models (in particular multifield models)

can produce detectable non-Gaussianity.

At the time of writing the best constraints come from measurements of the Cosmic

Microwave Background radiation (CMB) [2, 1]. However these measurements are already

close to being cosmic-variance limited since the CMB is produced on a two dimensional

surface, and small scales are suppressed by Silk damping (although future measurements of

E-mode polarization may improve statistical errors by a factor ≈
√

2).

With the ability of extracting 3D information and smaller scale modes, Large Scale

Structure (LSS) has the potential of soon reaching and improving CMB constraints. The

simplest forms of primordial local non-Gaussianity have been shown to leave a very distinctive

imprint in the halo power spectrum, in the form of a scale-dependent bias proportional to

k−2 [24, 25]. This has been recently generalized [42, 6, 5] to arbitrary inflationary models.

In some multifield models, non-Gaussian halo bias can be stochastic: the halo and matter

fields are not 100% correlated on large scales [37, 6, 41]. This is an important observational

signature which can be used to discriminate between models which do and do not predict

stochastic bias.

Analysis of existing LSS datasets yield constraints that are comparable to the ones from

WMAP [31, 28, 32, 13, 43, 47, 46, 48], with almost all of them being limited by spurious large-

scale power due to systematics (extinction, stellar contamination, imperfect calibration, etc.
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[26, 27]). Recently developed techniques such as mode projection and extensions [26, 28, 29,

30] or weights method [31, 32] are very promising ways to reduce the impact of systematics.

The k−2 scaling makes the signal largest on the very largest scales, which are affected by

cosmic variance. In [7, 8, 17], it was observed that cosmic variance may be partially cancelled

by splitting the sample in bins of different halo mass, and taking a linear combination of

halo fields such that the Gaussian bias terms (bgδm) nearly cancel, but non-Gaussian bias

terms of the form (bNGδm/k
2) do not cancel. A related idea for reducing statistical errors,

proposed in [18, 19], is to reduce Poisson variance by taking a different linear combination of

mass bins (essentially mass weighting) whose Poisson variance is lower than the naive (1/n)

expectation due to mass conservation.

Previous work [9, 12, 16, 8, 11, 14, 15, 10, 45] has used the Fisher matrix formalism

to forecast constraints on primordial non-Gaussianity through halo bias. Here we revisit

the Fisher matrix calculation and provide analytically motivated fitting functions that are

intended to be convenient for rapid forecasting or survey optimization. We study some

issues which are observationally relevant like the impact of marginalizing Gaussian bias and

shot noise, and the impact of photometric redshift errors. We then extend the multi-tracer

method of [8, 11, 14, 49] to include the effects of stochastic bias and to distinguish fNL

from gNL, which are completely degenerate when only a single tracer population is available.

Finally, we discuss separating the non-Gaussian parameters fNL, gNL, and τNL, clarifying

results in the literature and giving quantitative forecasts.

This chapter is organized as follows: In Section 4.3 we introduce our notation and formal-

ism, as well as discuss possible consequences of the recent claims of the BICEP2 collaboration

about the amplitude of primordial tensor modes. The single-tracer case is treated analyti-

cally and numerically in detail in Section 4.4, while in Section 4.5, we discuss the effect of

marginalization and redshift errors on our forecasts. In Section 4.6 we show how constraints

can be improved by using mass information. The (partial) degeneracy between models is

discussed in Section 4.7, followed by discussion and conclusions in Section 4.8.
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4.3 Definitions and notation

4.3.1 Primordial non-Gaussianity and Large Scale Structure

The statistical properties of the primordial potential Φ(k) = (3/5)ζ(k) can be completely

characterized by its N -point connected correlation function, which we will denote by ξ
(N)
Φ :

〈Φ(k1)Φ(k2) · · ·Φ(kN)〉c = (2π)3δD(k1 + k2 + · · ·+ kN) ξ
(N)
Φ (k1,k2, . . . ,kN) , (4.1)

It is customary to define the potential power spectrum PΦ(k) = ξ
(2)
Φ (k,−k) and the dimen-

sionless power spectrum ∆2
Φ(k) = k3PΦ(k)/2π2.

We shall consider a model with primordial bispectrum and trispectrum parametrized by

two parameters fNL and τNL, which here we will assume to be independent1

ξ
(3)
Φ (k1, k2, k3) = fNL

[
PΦ(k1)PΦ(k2) + 5 perms.

]
, (4.2)

ξ
(4)
Φ (k1, k2, k3, k4) = 2

(
5
6

)2
τNL

[
PΦ(k1)PΦ(k2)PΦ(|k1 + k3|) + 23 perms.

]
, (4.3)

This can be realized for example in the curvaton model [36, 6, 37], in which the non-Gaussian

gravitational potential Φ is expressed in terms of two uncorrelated Gaussian fields φ and ψ,

with power spectra that are proportional to each other

Φ(x) = φ(x) + ψ(x) + fNL(1 + Π)2
(
ψ2(x)− 〈ψ2〉

)
, (4.4)

where fNL and Π = Pφ(k)/Pψ(k) are free parameters. In this case, we can check that

τNL = (6
5
fNL)2(1 + Π), so that fNL and τNL are independent parameters.

The matter overdensity δm(k, z) is related to the primordial potential Φ(k) through the

Poisson equation,

δm(k, z) = α(k, z)Φ(k) . (4.5)

1It can be shown on general grounds that they have to satisfy the Suyama-Yamaguchi [34, 35] inequality
τNL ≥ ( 6

5fNL)2. Specific theories of inflation will predict particular relations between fNL and τNL.
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Here we have defined α(k, z) by

α(k, z) =
2k2T (k)

3ΩmH2
0

D(z) (4.6)

where D(z) is the linear growth function normalized so that D(z) = 1/(1 + z) in matter

domination (so that D(z) ≈ 0.76 at z = 0) and T (k) is the transfer function normalized to

1 at low k.

It can be shown that in presence of non-zero fNL or τNL, the halo matter and halo-halo

power spectra acquire a scale dependent bias on large scales [42, 6, 37]:

Pmh(k, z) =

(
bg + fNL

βf
α(k, z)

)
Pmm(k, z) (4.7)

Phh(k, z) =

(
b2
g + 2bgfNL

βf
α(k, z)

+
25

36
τNL

β2
f

α(k, z)2

)
Pmm(k, z) +

1

neff

(4.8)

Here, bg is the Eulerian halo bias, and βf is a non-Gaussian bias parameter which can be

expressed exactly as a derivative of the tracer density n with respect to the power spectrum

amplitude: βf = 2∂ lnn/∂ ln ∆Φ. Throughout this paper, we will use the alternate expression

βf = 2δc(bg − 1), which is exact in a barrier crossing model with barrier height δc and is a

good (≈ 10% accurate) fit to N -body simulations. We will take δc = 1.42, as appropriate for

the Sheth-Tormen [33] halo mass function. The 1/neff term enters as a Poisson shot noise

term in Phh due to the discrete nature of tracers. The value of neff is only approximately

equal to the number density of tracers n and marginalization over a constant contribution

to Phh will be discussed in Section 4.4.

We note that if τNL > (6
5
fNL)2, then Eq. (4.8) implies that halo and matter fields are

not 100% correlated on large scales even in the absence of shot noise. This phenomenon is

known as ‘stochastic bias ’.

Another model that we will study is one that is cubic in the potential:

Φ(x) = φ(x) + gNL

(
φ3(x)− 3〈φ2〉φ(x)

)
. (4.9)
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Here it is easy to show [44, 42, 6, 5] that for low k:

Pmh(k, z) =

(
bg + gNL

βg
α(k, z)

)
Pmm(k, z) , (4.10)

Phh(k, z) =

(
bg + gNL

βg
α(k, z)

)2

Pmm(k, z) +
1

neff

, (4.11)

where βg = 3∂ lnn/∂fNL is the derivative of the tracer density with respect to fNL. In

this case, the barrier crossing model prediction for βg does not agree well with N -body

simulations, and for numerical work we use fitting functions for βg from Section 5.3 of [44].

Currently the best limits on fNL and τNL are from the Planck satellite [1], which constrains

(local) fNL = 2.7 ± 5.8 and τNL < 2800 (95% CL). Regarding gNL, an independent analysis

of WMAP9 data has found gNL = (−3.3 ± 2.2) × 105 [23], while the Planck Fisher matrix

forecast is σ(gNL) = 6.7× 104 [23].

Throughout the paper we will assume a flat ΛCDM model as our fiducial cosmology

with parameters from the Planck (2013) data release: Ωmh
2 = 0.14, ΩΛ = 0.69, h = 0.68,

ln(1010As) = 3.09, τ = 0.09 and ns = 0.96.

4.3.2 Fisher Matrix analysis

The Fisher information matrix for a multivariate random variable π which depends on pa-

rameters {θα} = {fNL, τNL, gNL} through the conditional likelihood L(π|θα) is given by

Fαβ = −
〈
∂2 lnL(π|θ)
∂θα ∂θβ

〉
(4.12)

where the expectation value is taken over random realizations of π for a fixed fiducial set of

parameters θα.

We specialize Eq. (4.12) to the case where π = (δ1(k), · · · , δN(k)) represents all k-modes

of a set of Gaussian fields δi, and the N -by-N covariance matrix Cij(k) = Pδiδj(k) depends
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on the parameters θα. In this case, we have:

logL(δi|θα) =
∑
k

(
−1

2
Tr logC(k)− 1

2
δi(k)C−1

ij (k)δj(k)

)
(4.13)

which leads to the Fisher matrix:

Fαβ =
∑
k

1

2
Tr

[
C−1 ∂C

∂θα
C−1 ∂C

∂θβ

]
(4.14)

and every term is evaluated around the fiducial cosmology (usually fNL = τNL = gNL = 0).

The (marginalized) error on θα is given by σα = (F−1)
1/2
αα (no sum), while the error on

θα fixing all other parameters to their fiducial values is σα = (Fαα)−1/2 (again no sum).

Similarly, the covariances are given by Cov(θ̂α, θ̂β) = (F−1)αβ.

For a 3D Large Scale Structure survey with volume V , we replace the mode sum
∑

k by:

∑
k

−→ V

∫
d3k

(2π)3
= V

∫ kmax

kmin

dk k2

2π2
(4.15)

where kmin = 2π/V 1/3 is the fundamental mode and kmax will be specified in context.

In the single-tracer case where the random variable is the halo overdensity δh, the fidu-

cial covariance is the 1-by-1 matrix C(k) = b2
gPmm(k) + 1/n and the derivative terms are

(assuming that 1/neff is approximately independent of the non-gaussian parameters):

∂C

∂fNL

= 2bg
βf

α(k, z)
Pmm ,

∂C

∂τNL

=

(
5

6

)2 β2
f

α(k, z)2
Pmm ,

∂C

∂gNL

= 2bg
βg

α(k, z)
Pmm (4.16)

4.3.3 A comment on tensor modes

Recent advances in sensitivity of CMB polarization experiments have allowed the detection

of B-modes at degree angular scale by the BICEP2 collaboration [3]. If the amplitude of the

signal is entirely attributed to primordial tensor modes2, it would correspond to a tensor-to-

2At the time of writing, it is unclear what fraction of the signal is due to galactic foregrounds [53, 54].
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scalar ratio r = 0.2+0.07
−0.05. In this section, we comment on the implications of a detection of r

on local primordial non-Gaussianity.

For simplicity, assume that the inflaton produces Gaussian scalar curvature perturbation

ζinf = (5/3)φ, and that there is a second ‘curvaton’ field contributing to the scalar pertur-

bations by an amount ζcur, but that is not driving inflation and is allowed to generate large

non-Gaussianity.

If the inflaton and curvaton are uncorrelated, the total scalar perturbation is ∆2
ζ,tot =

∆2
ζ,inf + ∆2

ζ,cur. By definition of r this is:

∆2
ζ,tot =

∆2
t

r
=

8

r

(
HI

2π

)2

(4.17)

Here ∆2
t = 8(HI/2π)2 is the tensor power spectrum and HI is the Hubble parameter during

inflation. The portion produced by the inflaton is

∆2
ζ,inf =

1

2ε

(
HI

2π

)2

(4.18)

where ε = −ḢI/H
2
I is one of the slow roll parameters. This means that the fraction of the

scalar power generated by the inflaton is

Q2 ≡
∆2
ζ,inf

∆2
ζ,tot

=
r

16ε
(4.19)

Since slow-roll inflation requires ε � 1, or more typically ε ∼ 0.01, a detection of r ∼ 10−2

or larger would imply that Q2 is not � 1, i.e. a sizable fraction of the scalar perturbations

must be produced by the inflaton (see also [4]). Detectable non-Gaussianity is still possible

in this model, but requires (modest) tuning, since the power spectra of ζinf and ζcur must

be comparable. A sharper conclusion we can draw is that τNL cannot be close to its minimal

value (6
5
fNL)2, since

τNL =

(
6

5
fNL

)2
1

1−Q2
(4.20)
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in this model. Rephrasing, if r & 10−2, an appreciable fraction of the non-Gaussian halo

bias must be stochastic.

4.4 Single tracer forecasts

In this Section, we forecast fNL and τNL constraints obtained without use of multi-tracer

techniques. The survey will be characterized by (V, z, bg, 1/n, kmax), where bg represents the

mean (number weighted) bias of the sample. Our model for Phh(k) is the following:

Phh(k, z) =

(
b2
g + 2bgfNL

βf
α(k, z)

+
25

36
τNL

β2
f

α(k, z)2

)
Pmm(k, z) +

1

n
, (4.21)

where we have taken the fiducial value of neff to be n. First of all we note that fNL and

τNL are not (completely) degenerate in Phh, since they generate a different scale dependence,

so it’s possible to distinguish them even with a single tracer population. We defer further

discussion about correlations between parameters to Section 4.7.

From here we can calculate a 4-by-4 Fisher matrix whose rows correspond to the param-

eters (fNL, τNL, bg, 1/neff), and compute statistical errors on each parameter, with various

choices for which other parameters are marginalized.

4.4.1 Some definitions

Since the Φ power spectrum is nearly scale invariant, we can write k3PΦ(k) = AΦI(k), where

I(k) ≡ (k/k0)ns−1. The dimensionless coefficient AΦ is given in terms of the primordial

curvature perturbation amplitude by AΦ = (18π2/25)∆2
ζ(k0). For our fiducial cosmology

based parameters from the Planck 2013 release, we find AΦ ≈ 1.56 × 10−8, measured at

k0 = 0.05 Mpc−1.

We define keq, the scale of matter-radiation equality, to be (aH) evaluated at a = Ωr/Ωm.

Numerically, keq ≈ 0.0154h Mpc−1.
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We will express our final results in terms of a comoving distance R0(z) and comoving

tracer number density n0(z) defined by:

R0(z)2 =
2D(z)

3ΩmH2
0

=
α(k, z)

k2T (k)

n0(z) = (AΦR0(z)4keq)−1 (4.22)

The length R0(z) is equal to the comoving Hubble length 1/(aH), times some z-dependent

factors of order unity. A survey with tracer density n is sample variance limited at the

Hubble scale if (n/n0) � keqR0 ≈ 50, and Poisson limited on all scales if (n/n0) � 1.

Numerically, R0(z) = 3214 h−1 Mpc and n0(z) = 3.87× 10−5 h3 Mpc−3 at z = 0.7.

4.4.2 Factoring the Fisher matrix

Let Fαβ denote the 4-by-4 Fisher matrix with parameters (fNL, τNL, bg, 1/n). In this Section,

we will show that F and its inverse can be factored in the form

(
Simple function of {V, bg, z}

)
×
(

Complicated function of
{
kmin, kmax,

b2
gn

n0(z)

})
(4.23)

This simplifies attempts to find a fitting function, since we can fit the two factors sepa-

rately. Since the inverse Fisher matrix also factors, this simplification also works for bias-

marginalized statistical errors.

To derive the factorization (4.23), write the Fisher matrix as:

Fαβ =
V

2

∫
d3k

(2π)3

(∂αPhh(k, z))(∂βPhh(k, z))

Phh(k, z)2
(4.24)

Now rewrite the halo-halo power spectrum in the form:

Phh(k, z) = b2
gAΦR0(z)4

(
kT (k)2I(k) + keq

n0(z)

b2
gn

)
(4.25)
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and note that the parameter derivative ∂αPhh(k, z) can be factored as fα(z)gα(k), where α

denotes any of the parameters {fNL, τNL, bg, 1/n}, and the quantities f, g are defined by:

fα(z) =



4δcbg(bg − 1)AΦR0(z)2

25
36

4δ2
c (bg − 1)2AΦ

2bgAΦR0(z)4

1


gα(k) =



k−1T (k)I(k)

k−3I(k)

kT (k)2I(k)

1


(4.26)

We plug the above expressions into the Fisher matrix (4.24) to obtain:

Fαβ =
V

2

fα(z)fβ(z)

b4
gA

2
ΦR0(z)8

F ′αβ F−1
αβ =

2

V

b4
gA

2
ΦR0(z)8

fα(z)fβ(z)
F ′−1
αβ (4.27)

where we have defined

F ′αβ =

∫
d3k

(2π)3

gα(k)gβ(k)

[kT (k)2I(k) + keqn0(z)/(b2
gn)]2

(4.28)

Since F ′αβ and its inverse only depend on {kmin, kmax, b
2
gn/n0(z)}, we have now derived the

factorization (4.23).

It will be convenient to specialize the above factorization to the cases α = β = fNL and

α = β = τNL. If we do not marginalize either bg or 1/n (and set τNL = 0 when forecasting

fNL and vice versa), the statistical errors on fNL and τNL are given by:

σ(fNL) =

√
2

4δc

bg
bg − 1

R0(z)2V −1/2(F ′fNL
)−1/2

σ(τNL) =

(
6

5

)2 √
2

4δ2
c

(
bg

bg − 1

)2

R0(z)4V −1/2(F ′τNL
)−1/2 (4.29)
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where:

F ′fNL
=

∫
d3k

(2π)3

(
k−1T (k)I(k)

kT (k)2I(k) + keqn0(z)/(b2
gn)

)2

F ′τNL
=

∫
d3k

(2π)3

(
k−3I(k)

kT (k)2I(k) + keqn0(z)/(b2
gn)

)2

(4.30)

To marginalize over bg and/or 1/n, we would replace matrix elements of F ′ in Eq. (4.29) by

matrix elements of an appropriate inverse Fisher matrix.

4.4.3 Sample Variance and Poisson limits; qualitative behavior

As an illustration of the factorization in the previous Section, let’s derive approximate ex-

pressions for σ(fNL), σ(τNL) in the sample variance dominated limit n/n0(z)� keqR0(z) and

Poisson dominated limit n/n0(z)� 1, without bias marginalization (and setting ns = 1 for

this subsection). First we take limits of Eq. (4.29), obtaining:

F ′fNL
→ 1

2π2
k−1

min (SVD)

→ Z

2π2
k−1

eq

(
b2
gn

n0(z)

)2

(PD)

F ′τNL
→ 1

10π2
k−5

min (SVD)

→ 1

6π2
k−3

mink
−2
eq

(
b2
gn

n0(z)

)2

(PD) (4.31)

where we have defined the dimensionless number Z = k−1
eq

∫
dk T (k)2, and SVD and PD

stand for ‘Sample Variance Dominated’ and ‘Poisson Dominated’ respectively. Plugging

into Eq. (4.29) to get parameter errors, and taking kmin = 2π/V 1/3, we get the following

approximate limits:

118



σ(fNL) → 2.77
bg

bg − 1

(
V

R0(z)3

)−2/3

(SVD)

→ 0.95
bg

bg − 1
(keqR0(z))1/2

(
V

R0(z)3

)−1/2( b2
gn

n0(z)

)−1

(PD)

σ(τNL) → 248

(
bg

bg − 1

)2(
V

R0(z)3

)−4/3

(SVD)

→ 30.6

(
bg

bg − 1

)2

(keqR0(z))

(
V

R0(z)3

)−1( b2
gn

n0(z)

)−1

(PD) (4.32)

As we expected, the statistical errors are independent of tracer density n in the sample

variance limited case, while they scale as 1/n in the Poisson limit. This behavior becomes

very clear in the numerical results shown in Figure 4.1.

We also notice the errors often depend on volume in a way which differs from the usual

V −1/2 scaling. This happens when the k-integral for the Fisher matrix element diverges at

low-k, so that most of the statistical weight comes from the survey scale kmin = 2π/V 1/3.

This divergence always occurs for τNL, so the τNL constraint is always dominated by the

largest-scale modes in the survey (i.e. a few modes). For fNL this depends on the level of

Poisson noise; in the sample variance limit the statistical weight is dominated by the largest

scale modes, but in the Poisson dominated limit the statistical weight is distributed over a

range of scales between kmin and keq.

We also note that in the Poisson dominated case, the last line of (4.32) can be rewritten:

σ(τNL) = 30.6

(
1

bg − 1

)2

(keqR0(z)4n0(z))
1

nV
(Poisson dominated) (4.33)

i.e. σ(τNL) only depends on n, V through the total number of tracers (nV ) in the Poisson-

dominated case.

The analytic results in this subsection are approximate (we have assumed ns = 1 and

T (k) = 1) and shouldn’t be used in forecasting. In Figure 4.1 we show the numerical results
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Figure 4.1: Statistical errors on fNL (bottom) and τNL (middle) and gNL (top) for varying
tracer density n, for our fiducial survey with volume V = 25 h−3 Gpc3, redshift z = 0.7,
tracer bias bg = 2.5 and maximum wavenumber kmax = 0.1 h Mpc−1. The ‘marginalized’ case
(dashed lines) refers to marginalization over Gaussian bias and a 20% Gaussian prior on 1/neff

around the fiducial value 1/neff = 1/n. When forecasting each parameter {fNL, τNL, gNL},
the other two parameters are set to zero. Constraining gNL is discussed in Section 4.4.5,
while degeneracies and their covariance are discussed in Section 4.7.

and in the next subsection we give fitting functions which work at the few percent level and

include the effect of non-trivial ns and T (k).

4.4.4 Fitting functions

Motivated by the analytically discussion of the previous Section, here we present fitting func-

tions for σ(fNL) and σ(τNL) as functions of (V, z, bg, n), while fixing all of the parameters of

the background cosmology to the Planck 2013 values, as explained in Section 4.3. Moreover,

we take kmax = 0.1h Mpc−1 throughout.

As a first step, we define the quantity

Γ(n, z) =
b2
gn

n0(z)
= b2

g

(
n

1.17× 10−5h3 Mpc−3

)
D2(z) (4.34)
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To make our fitting functions self-contained, we note that the linear growth factor D(z) is

well fit by [50]:

D(z) ≈ 5

2

Ωm(z)

1 + z

[
Ωm(z)4/7 − ΩΛ(z) +

(
1 +

1

2
Ωm(z)

)(
1 +

1

70
ΩΛ(z)

)]−1

(4.35)

where Ωm(z) and ΩΛ(z) are defined by

Ωm(z) =
Ωm(1 + z)3

ΩΛ + Ωm(1 + z)3
ΩΛ(z) =

ΩΛ

ΩΛ + Ωm(1 + z)3
(4.36)

Our fitting functions for σ(fNL) and σ(τNL) will be sums of sample variance and Poisson

terms as follows:

σ(fNL) = σS(fNL) + σP (fNL) σ(τNL) = σS(τNL) + σP (τNL) (4.37)

Note these are just fitting functions, and we are making no claims about the true variance

decomposing into separate contributions. Following the analytic results of Section 4.4.3, we

fit the individual terms with the functional forms:

σS(fNL) = AS D(z)
bg

bg − 1

(
V

V0

)−2/3+εS+ 1
2
µS ln(V/V0)

σP (fNL) = AP D(z)
bg

bg − 1
Γ−1(n, z)

(
V

V0

)−1/2+εP+ 1
2
µP ln(V/V0)

σS(τNL) = A′S D2(z)

(
bg

bg − 1

)2(
V

V0

)−4/3+ε′S+ 1
2
µ′S ln(V/V0)

σP (τNL) = A′P D2(z)

(
bg

bg − 1

)2

Γ−1(n, z)

(
V

V0

)−1+ε′P+ 1
2
µ′P ln(V/V0)

(4.38)

where V0 = 5h−3 Gpc3 and values of the remaining parameters depend on whether we are

marginalizing over bias or not. As in the previous discussion we will consider the two cases:

(i) when no marginalization is performed, and (ii) when we marginalize over the gaussian

bias bg and assume a 20% Gaussian prior on the shot noise 1/neff . Best-fit parameter values
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in these two cases are given by:

for fNL : (AS, εS, µS,AP , εP , µP ) =

=

 (10.7, 0.096, −0.009, 33.7, −0.039, 0.012) if bg, neff unmarginalized

(15.9, 0.002, 0.005, 54.2, −0.102, 0.037) if bg, neff marginalized

for τNL : (A′S, ε′S, µ′S,A′P , ε′P , µ′P ) =

=

 (8477, 0.098, −0.037, 30405, −0.013, 0.000) if bg, neff unmarginalized

(8493, 0.089, −0.030, 30830, −0.035, 0.015) if bg, neff marginalized
(4.39)

This completes the description of our fitting functions for σ(fNL) and σ(τNL). With the

above definitions, we find that our fitting functions are accurate to better than 10% for

0.5 ≤ (V / h−3 Gpc3) ≤ 50 and arbitrary (b, n). (Note that kmax = 0.1 has been assumed

throughout; we will study the effect of varying kmax in Section 4.5.1.)

From this we read off the following: A sample variance limited survey with comoving

volume V = 25h−3 Gpc3 and bg = 2.5 has statistical errors σ(fNL) ≈ 6 and σ(τNL) ≈ 1000,

comparable to Planck. Therefore, the only way to improve statistical errors beyond Planck

is to measure a larger volume or to use a multi-tracer analysis, as described later.

4.4.5 Forecasts for gNL

As we have briefly mentioned in Section 4.3, the large scale bias in presence of primordial

gNL is approximately given by

Phh(k) =

(
bg + gNL

βg
α(k)

)2

Pmm(k) +
1

n
, (4.40)

where βg = 3∂ lnn/∂fNL. In [44] we have found a fitting function for βg:

βg(ν) ≈ κ3

[
− 0.7 + 1.4(ν − 1)2 + 0.6(ν − 1)3

]
− dκ3

d lnσ−1

(
ν − ν−1

2

)
. (4.41)
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where:

ν = [δc(bg − 1) + 1]1/2 , κ3 = 0.000329(1 + 0.09z) b−0.09
g ,

dκ3

d lnσ−1
= −0.000061(1 + 0.22z) b−0.25

g (4.42)

with δc = 1.42. Comparing Equation (4.8) for a ‘pure’ fNL cosmology (i.e. one in which

τNL =
(

6
5
fNL

)2
), with Equation (4.40), we find that the effect of gNL on halo bias is the same

as the effect of fNL = (βf/βg)gNL and therefore they are indistinguishable with a single tracer

population. In particular, if we want forecasts on the detectability of gNL with a single tracer

population assuming fNL = 0, we just write σ(gNL) = (βf/βg)σ(fNL) ≈ (2δc(bg−1)/βg)σ(fNL)

and use results from the previous subsection. Numerical results for our fiducial survey are

shown in Figure 4.1.

As we will show in Sections 4.6 and 4.7, multiple tracer populations with different mass

(or equivalently Gaussian bias), can allow us to distinguish between fNL and gNL, thanks to

the different dependence of the scale dependent correction on the Gaussian bias bg.

4.5 General considerations when constraining fNL from

Large Scale Structure

4.5.1 How much do statistical errors degrade when marginalizing

bias and Poisson noise?

When analyzing data from a real survey, the values of bg and neff must be measured together

with the non-Gaussian parameters, and it is important to understand the amount of infor-

mation lost in doing so. In this Section, we quantify this by forecasting statistical errors on

fNL and τNL when the parameters bg and (1/neff) are marginalized, and discuss our results

as a function of kmax.
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We first note that (1/neff) is only approximately equal to (1/n), where n is the number

density of tracers. In addition to the (1/n) term expected from Poisson statistics, there are

several effects which contribute constant power on large scales: non-linear galaxy bias, halo

exclusion [22], tidal tensor bias [20, 21], and contributions from the HOD. Throughout this

section, when we marginalize (1/neff), we assign a Gaussian prior around the fiducial value

(1/n) with width equal to 20% of the value itself.

In Figure 4.2, we compare statistical errors on fNL and τNL in the cases with no marginal-

ization, or marginalization over bg and with a 20% prior on neff . It is seen that marginalizing

bg can make a large difference in σ(fNL), e.g. in the sample variance limited case with

kmax & 0.1h Mpc−1. This is because the non-Gaussian correction to the bias scales as

bNG(k) ∼ fNL/(k
2T (k)), with T (k) ∼ k−2 ln (k/keq) for k � keq. Hence, the non-Gaussian

part of the bias becomes nearly degenerate with the Gaussian bias bg for k � keq. For

τNL, marginalization makes practically no difference and the statistical power increases very

slowly going to higher k.

Based on these plots, we note that statistical errors on fNL and τNL are approximately

saturated at kmax ∼ 0.1h Mpc−1, if Gaussian bias is properly marginalized. Therefore we

take kmax = 0.1h Mpc−1 as our fiducial value in this paper.

4.5.2 Redshift Errors and 3D → 2D projection

Most observational constraints on non-Gaussianity reported in the literature have made use

of projected angular correlation functions, rather than using redshift information. In this

Section we discuss the effect of projecting three-dimensional measurements into one or more

radial bins. This will quantify the information lost by 3D → 2D projection, and will also

indicate how accurate photometric redshifts must be in order to avoid losing information

relative to an ideal 3D survey.

We use a formalism which neglects curved-sky corrections, boundary effects, and redshift

evolution, but is self-consistent given these approximations. Consider a rectangular 3D box
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Figure 4.2: Forecasts on fNL and τNL as a function of maximum wavenumber kmax in the
sample variance limited (top) and Poisson limited (bottom) regimes. Here V = 25h−1Gpc,
z = 0.7, and bg = 2.5.

with periodic boundary conditions, and treat one of the three dimensions as the ‘radial’

direction, and the other two dimensions as ‘transverse’. Let A⊥ be the transverse area of the
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box, and let L‖ be the length of the box in the radial direction. We divide our 3D survey

in Nbins radial slices and project the 3D halo field onto the closest slice. The case Nbins = 1

corresponds to neglecting any redshift information (i.e. a purely 2D survey), while the limit

Nbins →∞ corresponds to an ideal 3D survey with perfect redshifts.

Suppose that the halo field in the box is a 3D field δ3D with power spectrum

P 3D
hh (k) =

(
bg + fNL

2δc(bg − 1)

α(k)

)2

Pmm(k) +
1

n
(4.43)

where the Gaussian bias bg, redshift, and number density n are assumed constant throughout

the box. We divide the box into Nbins radial bins and project the 3D halo field into Nbins

two-dimensional fields δ1, · · · , δNbins
. We then use the 2D Fisher matrix formalism to forecast

the statistical error on σ(fNL), and study the dependence of σ(fNL) on Nbins.

For Fisher forecasting, we will need to compute power spectra Pij(l) of the 2D fields

δi. We will avoid using the Limber approximation since we will be interested in the limit

Nbins → ∞ in which the Limber approximation becomes arbitrarily bad (note that we are

making the flat sky approximation throughout, but the flat sky and Limber approximations

are independent). In real space, the 3D → 2D projection is given by

δi(x, y) =
Nbins

L‖

∫ χi+L‖/2Nbins

χi−L‖/2Nbins

dχ δ3D(x, y, χ) (4.44)

where (x, y) are transverse coordinates, χ is the radial coordinate, and χi is the central

χ-value of the i-th bin. In Fourier space, the 3D → 2D projection is given by:

δ̃i(lx, ly) =

∫ ∞
−∞

dlχ
2π

δ̃i(lx, ly, lχ) sinc

(
lχL‖

2Nbins

)
eilχχi (4.45)
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where (lx, ly) is a 2D wavevector of modulus l = (l2x + l2y)
1/2 and sinc(x) = (sinx)/x. It

follows that the Nbins-by-Nbins matrix of 2D projected power spectra is:

Pij(l) =

∫ ∞
−∞

dlχ
2π

P 3D
hh

(√
l2 + l2χ

)
sinc2

(
lχL‖

2Nbins

)
eilχ(χi−χj) (4.46)

We will compute 2D Fisher matrices to maximum wavenumber lmax = 0.1 h Mpc−1, but

take the upper limit of the lχ integral in Eq. (4.46) large enough that the integral converges.

Note that the 2D Fisher matrix is given by

Fαβ =
A⊥
2

∫
d2l

(2π)2
Tr

[
P−1 ∂P

∂θα
P−1 ∂P

∂θβ

]
(4.47)

with P = Pij(l) given by Eq. (4.46).

In Figure 4.3 we show the dependence of σ(fNL) on Nbins, in both Poisson and sample

variance limited cases. We see that completely neglecting redshift information significantly

degrades the amount of information available; the statistical error on fNL in a 2D analysis

(i.e. Nbins = 1) is larger than the 3D case by a factor close to 3. However, binning in redshift

bins with with redshift spread ∆z ∼ 0.1 or smaller is sufficient to capture almost all of the

3D information.

We can also comment briefly on the effect of photometric redshift uncertainties. Photo-

metric redshifts from a multi-band instrument such as LSST are several times smaller than

∆z ∼ 0.1, and therefore we expect that photometric redshift uncertainties should not sig-

nificantly degrade statistical errors on fNL. A caveat to this analysis is that a small fraction

of catastrophic photometric redshift errors may add large-scale power; this case should be

studied separately. (For a different approach to the study of photometric redshift errors and

the closely related issue of redshift space distortions, see [16, 12].)

127



10-2 10-1 100 101

∆z

4

5

6

7

8

9

10

11

12

σ
(f
N
L
)

Sample variance limit, n=10−1 (h/Mpc)3

3D survey

10-2 10-1 100 101

∆z

500

1000

1500

2000

2500

3000

σ
(f
N
L
)

Poisson limit, n=10−7 (h/Mpc)3

3D survey

Figure 4.3: Dependence of statistical error σ(fNL) on redshift bin width (∆z), corresponding
to (from right to left) Nbins = 1, 2, 3, 5, 7, 10, 20, 50, and 100. The fiducial survey has
volume V = 25 h−3 Gpc3, redshift z = 0.7 and bias bg = 2.5, with a cubic geometry assumed
so that A⊥ = V 2/3 and L‖ = V 1/3. Note that the rightmost point corresponds to a 2D
survey, and that the loss of information is roughly the same in the sample variance limited
and Poisson limited cases.
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4.6 Multi-tracer forecasts - Optimal Weighting

In this Section, we will consider multiple tracers with different Gaussian bias and show how

to combine them optimally for the best constraining power on primordial non-Gaussianity.

Here we will assume that all halos above some minimum mass Mmin have been detected, and

use the halo model prediction (with Sheth-Tormen mass function) for the number density

and bias. Thus the parameters of our forecasts will be (V, z,Mmin).

Following the formalism of [8], we can divide the halo overdensity into N � 1 mass bins

δh = (δ1, . . . , δN)T . The number of bins will be determined by the finite mass resolution

of the survey. Assuming halos to be locally biased and stochastic tracers of the underlying

density field, we can write

δh = b δ + ε (4.48)

where ε is the residual (Poisson-like) noise field, with zero mean and uncorrelated with the

matter density δ. Here bi is the mean (number weighted) Gaussian bias of tracers in bin i:

bi =

∫
M∈bin i

dM dn
dM
bg(M)∫

M∈bin i
dM dn

dM

(4.49)

The halo covariance matrix Cij(k) = 〈δ∗i (k)δj(k)〉 is

C(k) = 〈δhδTh 〉 = bbTPmm(k) +E (4.50)

where Eij = 〈εiεj〉 is the error matrix. This has been studied analytically and with N -

body simulations in several earlier papers (see for example [8, 19]). They find that E is

approximately scale independent on the range of k considered, and that the dependence on

fNL is pretty weak and will be neglected here.
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We will use the halo model prediction for E at low k, which has been shown to be a

pretty good approximation to N -body simulations [19]:3

Eij = 〈εiεj〉 = 〈(δi − biδ)(δj − bjδ)〉

= 〈δiδj〉 − bi〈δjδ〉 − bj〈δiδ〉+ bibj〈δ2〉

=
δij
ni
− bi

Mj

ρ̄
− bj

Mi

ρ̄
+ bibj

〈nM2〉
ρ̄2

(4.51)

In the last line, we have taken the limit k → 0 of the halo model predictions. Here we have

defined

〈nM2〉 =

∫
dM

dn

dM
M2 (4.52)

Note that the two-halo contribution to Eij cancels entirely. The off-diagonal components

have a contribution from the one-halo term, while the on-diagonal components are a sum

of the usual Poisson-like term 1/ni and one-halo contribution. It is possible to construct an

estimator that weighs each halo bin optimally, which is going to be a compromise between

reduction of Poisson shot noise (which would correspond to pure mass weighing) and can-

cellation of cosmic variance. As shown in [7], the Fisher Matrix formalism already includes

these effects.

In Figure 4.4, we show forecasted statistical errors σ(fNL), σ(τNL) and σ(gNL) from opti-

mal weighting, for varying minimum halo mass Mmin. For high Mmin we are in the Poisson

limited regime and the constraints from halo bias are not competitive with those from Planck.

As Mmin decreases, the statistical errors decrease rapidly, then plateau near Mmin ∼ 5× 1013

h−1M�, then decrease more slowly.

This “sample variance plateau” region can be interpreted as the range of Mmin where the

tracer density is high enough to be sample variance limited, but not high enough that sample

variance cancellation is effective. The sample variance plateau is important when thinking

3We find that our forecasts for σ(fNL), σ(gNL), σ(τNL) in this section are nearly unchanged if we use the
Poisson approximation Eij ≈ δij/ni to Eq. (4.51), except for a ∼ 10% increase in the errors on the sample
variance plateau.
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about survey optimization. Once a survey is deep enough to reach the sample variance

plateau, further improvements in survey depth do not significantly improve constraints on

primordial non-Gaussianity, unless the improvement is large enough (& 3 magnitudes) to go

past the plateau. Pushing to lower Mmin . 4× 1012h−1M�, cancellation of sample variance

becomes effective with a moderate effect on fNL or gNL, and a much larger one on τNL, since

for the latter case, most of the signal-to-noise comes from the very largest scales, which are

the ones that are most affected by cosmic variance.

From Figure 4.4, we see that a future generation with V = 25 h−3 Gpc3 is competitive

with Planck if resolving halos down to Mmin ∼ 1014h−1M�. In order to significantly improve

over Planck, either an increase in volume or a multi-tracer analysis with Mmin . 1013h−1M�

are needed.

4.7 Separating fNL, gNL, τNL

So far, we have studied statistical errors on the parameters fNL, gNL, τNL individually, i.e. we

forecast the statistical error on each parameter assuming that the other two parameters are

zero4. In this Section, we ask the question: to what extent can the parameters fNL, gNL, τNL

be constrained jointly?

4.7.1 Single tracer

Considering the single-tracer case first, it is clear that fNL and gNL are completely degenerate,

since the clustering signature produced by fNL 6= 0 is identical to the signature produced

by gNL = (βf/βg)fNL. On the other hand, there is some scope for separating fNL and τNL

with a single tracer, since the non-Gaussian bias has different scale dependence in the two

cases (fNLk
−2T (k)−1 versus τNLk

−4T (k)−2). We can quantify this by using the Fisher matrix

4This assumption is not strictly consistent for the case of fNL, since τNL must satisfy the inequality
τNL ≥ ( 6

5fNL)2 on general grounds. However, we find that σ(τNL) � σ(fNL)2 for all forecasts considered
in this paper, which implies that assuming τNL = 0 when forecasting σ(fNL) is a good approximation to
assuming the ‘minimal’ value τNL = ( 6

5fNL)2
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Figure 4.4: Statistical errors on fNL (bottom solid curve), τNL (middle solid curve) and gNL

(top solid curve) in a multitracer analysis, with varying Mmin and N = 50 mass bins equally
spaced on a log scale. When forecasting a given parameter {fNL, τNL, gNL}, the other two
are set to zero. Here the volume is V = 25 h−3 Gpc3, the redshift z = 0.7 and kmax = 0.1 h
Mpc−1. Note the ‘sample variance plateau’ at Mmin ∼ 3 × 1013 h−1M�. The upper dashed
line shows the Planck Fisher forecast σ(gNL) = 6.7× 104 from [23]. The middle dashed line
is the Planck σ(τNL) ≈ 720, obtained by fitting a Gaussian to the upper part of the τNL

posterior for Lmax = 50 (Figure 19 of [1]).

formalism to compute the correlation coefficient

Corr(fNL, τNL) = − FfNL,τNL√
FfNL

FτNL

(4.53)

where the minus sign appears because the covariance matrix is the inverse of the Fisher

matrix.

An analytic calculation along the lines of Section 4.4.3 suggests that there should always

be a moderate negative correlation between fNL and τNL in the single-tracer case. Figure 4.5

shows the numerical results for our fiducial survey. Note that having to marginalize over bg

and 1/neff makes fNL and τNL more degenerate and harder to distinguish.
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Figure 4.5: Single-tracer correlation coefficient between fNL and τNL in the unmarginalized
case (top curve) and marginalizing over bg with a 20% Gaussian prior on 1/neff (bottom
curve). The results are shown for our fiducial survey with V = 25 h−3 Gpc3, z = 0.7 and
bg = 2.5.

4.7.2 Multiple tracer

The multi-tracer case is more interesting since fNL and gNL are no longer degenerate due

to the different dependence of βf and βg on halo mass (or equivalently on Gaussian bias).

Following Section 4.6, we assume perfect measurements of all halos above some minimum

mass Mmin, and use the Fisher matrix formalism to compute the correlation coefficients

Corr(fNL, τNL) and Corr(fNL, gNL). Numerical results are shown in Figure 4.6.

Let’s consider the fNL − τNL case first. In the region with high Mmin the tracer density

is low and we are deeply in the Poisson dominated regime, with correlation coefficient close

to −0.5, in agreement with Figure 4.5. Decreasing Mmin allows more tracers to be included

and the correlation becomes more negative, as expected from the previous discussion. As

soon as Mmin reaches the sample variance plateau, fNL and τNL start to decorrelate, reaching

nearly zero correlation at Mmin ∼ 1010h−1M�.
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Joint constraints on fNL, τNL were also studied in [11], who found poor prospects for

distinguishing the two, and generally weak constraints on τNL, if the stochastic bias from τNL

is not included. We therefore conclude that stochastic bias is a very powerful observational

probe of τNL.

In the fNL − gNL case, the two are completely degenerate in the Poisson limit of high

Mmin and are therefore observationally indistinguishable using halo bias. Close to the sample

variance plateau they decorrelate partially, to become highly negatively correlated again in

the region of sample variance cancellation. We conclude that fNL, gNL are not perfectly

degenerate in a multi-tracer analysis, but are always significantly correlated (see also [10] for

a detailed discussion of the degeneracy between fNL and gNL).
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Figure 4.6: Multi-tracer correlation coefficients Corr(fNL, τNL) (top curve) and Corr(fNL, gNL)
(bottom curve), for varying minimum halo mass Mmin.
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4.8 Discussion and Conclusions

A detection of primordial non-Gaussianity would have very profound consequences for our

understanding of the early Universe. Non-Gaussianity of the local type has been shown to

leave an imprint on the large scale distribution of halos and galaxies in the form of a scale-

dependent correction to the bias. Looking for this effect is one of the most promising ways

to improve on the already tight bounds obtained by the Planck satellite.

In this work we have consider the effects of the scale-dependent bias on the power spec-

trum of halos and obtained forecasts applicable to upcoming Large Scale Structure surveys.

Below we summarize our conclusions:

• If no mass information or other proxy for the bias of individual objects is available, a

‘single tracer’ analysis is used. A survey volume V = 25h−3Gpc3, median redshift z =

0.7 and mean bias bg = 2.5, can achieve σ(fNL) = 6, σ(gNL) = 105 and σ(τNL) = 103,

if enough objects are resolved that the survey is sample variance limited.

• The statistical error on fNL and gNL approximately scales like V −2/3 and V −1/2 in

sample variance or Poisson domination regimes respectively. The error on τNL scales

like V −4/3 (sample variance domination) or V −1 (Poisson domination). In cases where

the statistical error does not scale as V −1/2, most of the statistical weight comes from

the very largest scales in the survey.

• When constraining primordial non-Gaussianity from large-scale structure, it is always

important to marginalize over Gaussian bias bg (and to a lesser extent, Poisson noise

1/neff) In particular, if bg is not marginalized in the sample variance dominated case,

small increases in kmax can appear to produce a large improvement on statistical errors.

This is not the case when proper bias marginalization is performed, since in this regime

and for k & 10−1h Mpc−1, Gaussian bias and non-Gaussian corrections become nearly

degenerate.

135



• Neglecting redshift information in large-scale structure degrades statistical errors on

primordial non-Gaussianity by a factor close to 3. However, redshift uncertainties of

order ∆z ≈ 0.1 increase the errors by ≈ 1.4 compared to the knowing the redshifts

perfectly. Therefore a next generation photometric survey will be able to extract most

of the information.

• A single-tracer sample variance limited survey with V = 25h−3Gpc3 has a statistical

power comparable to Planck. Improvement over CMB experiments would require either

a larger volume or the use of multi-tracer techniques. If the mass or bias of individual

objects is known, it is possible to combine different populations optimally in order

to partially cancel sample variance and decrease the error. This mechanism becomes

effective when resolving halos with Mmin . 1013h−1M�. If halos down to Mmin ∼

1011h−1M� are resolved, we forecast σ(fNL) = 1.5, σ(gNL) = 104 and σ(τNL) = 100,

improving over Planck or a single-tracer analysis by a factor of 4 for fNL and nearly

an order of magnitude for gNL and τNL.

• fNL and τNL can be distinguished even with a single tracer, due to the different scale

dependence of the bias on large scales (k−2 vs k−4), but there is a significant correlation

in the single tracer case. They can be decorrelated by using a multi-tracer analysis

and pushing to Mmin . 1013h−1M�. fNL and gNL are indistinguishable in the single-

tracer case since the clustering signature produced by fNL 6= 0 is identical to the that

produced by gNL = (βf/βg)fNL. The multi-tracer case can make use of the fact that

the non-Gaussian bias depends on the Gaussian bias in different ways to distinguish

the two. However, the correlation coefficient is always close to −1.

• Finally we briefly comment on survey optimization for primordial non-Gaussianity.

For most cases of practical interest the ‘sample variance plateau’ makes it very hard

to reach the regime in which sample variance cancellation becomes effective. So the

most effective way of reducing the statistical errors is to increase the survey area (and
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hence the total volume), unless already resolving halos with masses at the lower end

of the plateau (Mmin ∼ 1013h−1M� with our fiducial volume), in which case a deeper

survey will also correspond to a significant improvement of statistical power.
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Chapter 5

A WISE measurement of the ISW

effect

5.1 Abstract

The Integrated Sachs-Wolfe effect (ISW) measures the decay of the gravitational potential

due to cosmic acceleration and is thus a direct probe of Dark Energy. In some of the earlier

studies, the amplitude of the ISW effect was found to be in tension with the predictions of the

standard ΛCDM model. We measure the cross-power of galaxies and AGN from the WISE

mission with CMB temperature data from WMAP9 in order to provide an independent

measurement of the ISW amplitude. Cross-correlations with the recently released Planck

lensing potential maps are used to calibrate the bias and contamination fraction of the

sources, thus avoiding systematic effects that could be present when using auto-spectra to

measure bias. We find an amplitude of the cross-power of A = 1.24± 0.47 from the galaxies

andA = 0.88±0.74 from the AGN, fully consistent with the ΛCDM prediction ofA = 1. The

ISW measurement signal-to-noise ratio is 2.7 and 1.2 respectively. Comparing the amplitudes

of the galaxy and AGN cross-correlations, which arise from different redshifts, we find no
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evidence for redshift evolution in Dark Energy properties, consistent with a Cosmological

Constant.

5.2 Introduction

The nature and the properties of Dark Energy are among the most significant unsolved

problems in physics. We now believe that Dark Energy accounts for about 70% of the energy

density of the Universe and is causing the cosmic expansion to accelerate. Measurements of

Type Ia supernovae, Baryon Acoustic Oscillations, galaxy clusters or gravitational lensing

(of the Cosmic Microwave Background, galaxies, or strongly lensed quasars) [2, 3, 4, 5,

6, 7], when combined with measurements of the Cosmic Microwave Background (CMB)

anisotropies [1, 43], all provide evidence for an accelerated expansion [15] and imply a flat

and Dark Energy dominated universe.

While theorists have proposed a large number of models to explain cosmic acceleration,

including modifications to General Relativity on large scales [14], there exist only very few

observational windows into the properties of this phenomenon.

Measurements of the Integrated Sachs-Wolfe effect (ISW) [16] provide a powerful method

to probe Dark Energy, as this effect is sensitive to the time evolution of the gravitational

potential sourced by Large Scale Structure and thus probes Einstein’s equations beyond the

simple Friedmann equation. The ISW effect is the distortion of the CMB temperature due

to the time evolution of the gravitational potential along the line of sight: photons entering

a gravitational potential well blue-shift and subsequently redshift when leaving the well.

In a matter-dominated universe, the gravitational potential is time-independent on large

scales, so the amount of blue- and red- shifting is the same and the photon energy is overall

unchanged; Dark Energy causes an accelerated expansion, making the gravitational potential

shallower with time and resulting in a net blue-shift of the photons. This effect is too small to

be detected directly in the CMB spectrum [17] but it is expected to be measurable through
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the correlation between the measured temperature anisotropies of the CMB and the Large

Scale Structure, which acts as a tracer of the gravitational potential.

Such analyses have been carried out in earlier work (see for example [22, 21, 23, 24, 27,

34, 35, 36, 28, 20, 29, 30]), with the strongest detection to date (at the 4.5σ level) relying

on the combination of many different data sets [34]. One interesting feature of several of the

previous studies is that the cross-correlation signal lies systematically above (by ∼ 1 − 2σ)

the predicted value in the standard cosmological model (in which the Dark Energy is a

Cosmological Constant) [34, 29, 19]. The same is true for some analyses based on stacking

large clusters and voids, with the tension with ΛCDM reaching > 3σ [24, 25, 26, 45, 46].

We perform a new ISW cross-correlation analysis using a sample of galaxies and quasars

from the Wide-field Infrared Survey Explorer (WISE, [11]), which scanned the full sky in 4

frequency bands, ranging from 3.4 to 22 µm, and detected hundreds of millions of sources.

The 3.4 µm band probes massive galaxies out to z ∼ 1 and with a median redshift of 0.3 [31].

The large area of the survey, together with its redshift distribution and the large number of

sources, makes WISE one of the best catalogs for this kind of work. An early study with the

WISE preliminary release catalog found an amplitude that is 2σ above the ΛCDM prediction

[29], while a subsequent work [30] using the full sky galaxy catalog found an amplitude

consistent with ΛCDM, but at low significance (1σ). We use a larger sample (applying less

restrictive cuts to the data) with higher median redshift and expect to detect the signal at a

considerably higher significance. The Planck collaboration has recently combined the ISW

measurements from WISE with several other datasets to obtain a 4.0σ measurement of the

ISW amplitude [46].

Since galaxies and quasars trace the dark matter and hence the potential up to a bias

factor (a proportionality factor relating tracer overdensity to mass overdensity), it is crucial

to measure the bias reliably in order to be able to compare the ISW amplitude with the-

oretical predictions. Methods to measure the bias from the auto-correlation spectrum can

be prone to systematic errors, especially for WISE maps which contain strong galactic and
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instrumental signals, and can lead to incorrect conclusions about the amplitude of the ISW

effect. Recent progress in the measurement of the gravitational lensing of the CMB by the

Atacama Cosmology Telescope (ACT, [12, 42]), South Pole Telescope (SPT, [13, 48, 10]),

POLARBEAR [8, 9] and the Planck Satellite [43, 44], allow a direct measurement of bias

(lensing is sourced directly by the gravitational potential itself), by cross-correlating lensing

potential maps with the tracer field. We expect this measurement to be more robust and less

prone to systematic errors. This chapter is organized as follows: The ISW effect is briefly

reviewed in section 5.3. Sections 5.4 and 5.5 introduce our tracer and CMB datasets, while

in section 5.6 we discuss the calibration of the bias using CMB lensing. Our ISW results are

presented in section 5.6.3, followed by a discussion and conclusions in section 5.8.

5.3 The ISW effect

As discussed in the introduction, the ISW effect is a secondary CMB anisotropy which is

due to the time variation of the gravitational potentials along the line of sight [16] (see [47]

for a recent review):

(
∆T

T

)
ISW

(n̂) = −
∫
dη e−τ(z)(Φ̇ + Ψ̇)[η, n̂(η0 − η)]

≈ −2

∫
dη Φ̇[η, n̂(η0 − η)] (5.1)

where in the second line we have used the GR prediction that in absence of anisotropic

stresses Φ = Ψ and have approximated the optical depth τ(z) � 1 over the period where

Φ̇ 6= 0, so that we can take e−τ(z) ≈ 1. Note that during matter domination, Φ̇ = 0 and

there in no ISW contribution. Since in the standard cosmological model the effect of Dark

Energy is relevant only at z ∼< 1, the largest contribution comes from the very largest scales.

The typical low ` contribution to the CMB fluctuation spectrum is ∼ 100 µK2, compared
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to the ∼ 1000 µK2 of the primary fluctuations, too small to be detected directly in presence

of cosmic variance. This problem can be overcome by cross-correlating the observed CMB

temperature with tracers of the gravitational potential, such as galaxies or quasars, that

would otherwise be uncorrelated with the CMB in the absence of the ISW contribution.

We will work with the projected overdensity field of tracers (galaxies or quasars), which

can be expressed in terms of the matter overdensity δ:

δg(n̂) =

∫
dz b(z)

dN

dz
δ(n̂, z) (5.2)

Where we have assumed a (redshift dependent) linear bias model for the tracers and dN/dz

is the redshift distribution normalized such that
∫
dz′ dN

dz′
= 1.

We can compute the angular cross-correlation1:

CTg
` = CΦ̇g

` = 4π

∫
dk

k
∆2
m(k)KΦ̇

` (k)Kg
` (k) (5.3)

in terms of the dimensionless (linear) matter power spectrum at redshift z = 0, ∆2
m(k) =

k3P (k, z = 0)/2π2. Here the galaxy and ISW weight functions are given by:

Kg
` (k) =

∫
dz b(z)

dN

dz
D(z) j`[kχ(z)] (5.4)

KΦ̇
` (k) =

3ΩmH
2
0

k2

∫
dz

d

dz
((1 + z)D(z)) j`[kχ(z)] (5.5)

where j` are the spherical Bessel functions, D(z) is the linear growth factor normalized to

D(z = 0) = 1 and χ(z) = η0 − η(z) is the comoving distance to redshift z.

1Here we assume that the ISW contribution is the only component of the temperature anisotropy corre-

lated with low-redshift tracers of the potential, so that we can write CTg` = CΦ̇g
` .
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A simple Fisher matrix analysis gives the expected signal-to-noise ratio for a coverage

fraction fsky,

(
S

N

)2

≈ fsky
∑
`

(2`+ 1)
[CTg

` ]2

CTT
` Cgg

` + [CTg
` ]2

(5.6)

≈ fsky
∑
`

(2`+ 1)
[CTg

` ]2

CTT
` Cgg

`

(5.7)

where in the second line we have used the fact that the correlation is weak CTg
` �

√
CTT
` Cgg

` .

It can be shown that most of the signal-to-noise comes from ` ∼ 20 and z ∼ 0.4, with a wide

redshift distribution, and that the contributions from z > 1.5 and ` > 100 are negligible [18].

Note that due to cosmic variance, there is a theoretical maximum for the signal-to-

noise ratio, which we can see as follows: The correlation coefficient r ≡ CΦ̇g
` /
√
CΦ̇Φ̇
` Cgg

` is

constrained to be2 −1 ≤ r ≤ 1, so that [CTg
` ]2 = [CΦ̇g

` ]2 ≤ CΦ̇Φ̇
` Cgg

` . Therefore

(
S

N

)2

≈ fsky
∑
`

(2`+ 1)
[CTg

` ]2

CTT
` Cgg

`

(5.8)

≤ fsky
∑
`

(2`+ 1)
CΦ̇Φ̇
`

CTT
`

(5.9)

This can be evaluated in a given cosmological model and for ΛCDM one finds (S/N) ∼<

7.6
√
fsky and about 15% more if polarization information is added [35].

5.4 WISE data

WISE scanned the entire sky in four bands at 3.4, 4.6, 12 and 22 µm (W1 to W4) and provided

a much deeper dataset than other experiments at similar frequencies (such as 2MASS and

IRAS). The WISE W1 and W2 bands primarily probe starlight coming from other galaxies

or galactic stars, while the W3 and W4 bands are more sensitive to the thermal emission

from dust grains.

2Here the value of C` includes the shot-noise contribution.
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The WISE Source Catalog [11] contains more than 500 million sources which are detected

at S/N > 5 in at least one band (usually W1 since it is the most sensitive). Galactic stars

and quasars each account for approximately 12% of the catalog at high galactic latitude. Ap-

proximately 70% are normal star-forming galaxies, while 6% are unusually red, unidentified

sources [31]. Previous work [31, 37, 38] has shown that the four WISE bands are sufficient to

effectively distinguish stars and quasars from normal galaxies. The details of this color-color

selection are outlined in the next subsections.

Unfortunately, parts of the WISE catalog are contaminated by moonlight: when WISE

observes near the Moon (or as far as 30 deg away), stray light can affect the images and

produce spurious detections. This is visible as several bright (overdense) stripes, which are

perpendicular to the ecliptic equator and parallel to the WISE scan direction. The catalog’s

moon lev flag denotes the fraction of frames that are believed to be contaminated. We

discard all objects that have moon lev > 4 in any band and regions with high density of

such objects are added to the mask.

We also discard any source for which cc flags 6= 0, since it is considered an artifact

(diffraction spike, optical ghost, etc.).

Due to the scan strategy, the coverage depth is very inhomogeneous (the poles were

scanned to much greater depth than the equator) and the selection function is mostly un-

known. The median coverage in W1 is 15 exposures, with 12 exposure being the ‘typical’

number for points near the equator and 160 for points near the ecliptic poles. Plotting the

source magnitude distribution as a function of position of the sky, we find that for high

galactic latitude, the distribution is fairly uniform for W1 < 17.0. According to the WISE

Explanatory Supplement3, the catalog is 95% complete for sources with W1 < 16.6. There-

fore we apply this magnitude cut to ensure good completeness and uniformity and at the

same time retain the largest number of sources.

Below we outline our selection criteria for stars, galaxies and AGN:

3http://wise2.ipac.caltech.edu/docs/release/allsky/expsup/
sec2 2.html
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5.4.1 Stars

Emission from stars in the mid-IR is dominated by the Rayleigh-Jeans tail of the spectrum,

meaning that the color4 is close to zero and approximately independent of surface temper-

ature. We use the following color cuts proposed in [37] to separate stars from galaxies and

AGN: stars have W1 < 10.5, W2 − W3 < 1.5 and W1 − W2 < 0.4. In addition, we find

that stars close to the galactic plane are effectively removed by classifying as ‘star’ anything

with W1 − W2 < 0.

Dust-poor elliptical galaxies at low redshift are hard to distinguish from stars with WISE

colors alone and can therefore be misidentified and fall into this category.

5.4.2 Galaxies

Here we adopt an empirical definition of “Galaxy” as anything not classified as a star or

AGN. Due to the negative k-correction in the IR, the WISE W1 band can probe galaxies

out to z ∼> 1, since the W1 flux does not change significantly in the range z ∼ 0.5− 1.5 [31].

We use the redshift distribution of WISE galaxies as measured in [31]. In this paper, the

authors cross-matched WISE sources with SDSS DR7 [32] in high galactic latitude regions

and found the distribution to be fairly broad, peaking at z ∼ 0.3 and extending all the way

to z = 1. In order to more effectively remove galactic stars and be able to use a larger

portion of the sky, we had to make the additional cut W1 −W2 > 0, compared to [31]. The

effect of this on the redshift distribution should be negligible, since from their color-color

diagrams, the vast majority of galaxies are shown to indeed have W1 −W2 > 0. To further

test the effect of uncertainties in the redshift distribution, we repeat the analysis by shifting

the whole distribution by ∆z = ±0.1 (corresponding to a ∼30% shift in the peak z) and find

that the best fit ISW amplitude is only changed by ∼ 5%, corresponding to about 0.1σ. We

therefore conclude that it is appropriate to use the distribution as in [31] without additional

corrections.

4Here by color we mean difference between magnitudes in two of the WISE bands.
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The redshift distribution and the very large number of sources (our sample consists of

approximately 50 million galaxies) make WISE nearly ideal for ISW cross-correlation.

The criterion W1 −W2 > 0 for galaxies ensures that the stellar contamination is small, at

the cost of omitting a small number of galaxies. The remaining contamination, if uncorrelated

with the CMB, affects the normalization of CTg
` in the same way as it affects the cross-

correlation with CMB lensing, and therefore can be calibrated out5. (see section 5.6). If in

addition the contamination sources are clustered (like stars close to the galactic plane), they

will add to the auto-power spectrum on large scales, acting as noise in the ISW measurement

and thus lowering the statistical significance.

We adopt a fiducial bias model that constant with redshift for WISE selected galaxies

and we measure the bias via lensing in section 5.6. To investigate the dependence of our

results on the uncertainty in bias evolution, we also repeat the analysis for an evolving bias

model bG(z) = bG0 (1 + z), with constant bG0 .

Our conservative masking leaves fsky = 0.47 and about 50 million galaxies.

WISE galaxies

-0.741835 0.647701

Figure 5.1: The WISE galaxy overdensity map, including the mask, displayed in grey.

5both CTg` and Cκg` are lowered by the same multiplicative factor (1− contamination fraction). Therefore
the measured bias is an ‘effective bias’ = real bias × (1− contamination fraction).

152



5.4.3 AGN

The mid-IR selection of AGN is a well-studied problem. Following [33, 38] we use the

selection criteria W1 − W2 > 0.85 and W2 < 15.0. This has been shown to work well

for both Type 1 and Type 2 AGN up to redshift z ∼< 3 and leads to a source density of 42

deg−2. Mid-IR selection is not significantly affected by dust extinction and the only potential

contaminants are brown dwarfs and asymptotic giant branch stars, both of which have much

smaller surface density.

We use the redshift distribution of WISE AGN that has been recently measured in [49]

by cross-matching AGN on 7.9 deg2 of the Boötes/AGES field. The authors show that it

peaks at z ∼ 1.1, with a spread ∆z ∼ 0.6 and further constrain the contamination fraction

to be less than 15%.

We take the redshift dependence of the bias to be the one appropriate for the Type 1

QSOs, as suggested by [52]: bA(z) = bA0 [0.53+0.289(1+z)2], where b0 is an overall amplitude,

which we measure from the cross-correlation with CMB lensing maps.

Stellar contamination is expected to be very small, since AGN are easily distinguishable

from stars using WISE bands.

Our masking leaves fsky = 0.48 and about 910,000 AGN.

5.5 CMB data

Our CMB temperature data is obtained from the foreground reduced WMAP9 maps [1] in

the Q, V and W bands (respectively at 40, 60 and 90 GHz), and the cosmological parameters

taken from [1]. At the scales of interest (` ∼< 100), the data is cosmic variance limited with

negligible instrumental noise. For the CMB we apply the KQ75y9 extended temperature

analysis mask, which includes point sources detected in WMAP and has fsky ≈ 0.69. The

total mask is the product of the CMB mask and the appropriate WISE mask for AGN
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WISE AGN

-0.897218 0.952855

Figure 5.2: The WISE AGN overdensity map, including the mask, displayed in grey.

or galaxies. The same comprehensive mask is applied to both datasets before the cross-

correlation analysis.

5.6 Lensing bias calibration

We use weak lensing of the CMB by our tracers to measure an effective bias, which takes

into account the level of contamination by stars or artifacts.

5.6.1 Introduction

The observed (lensed) temperature T (n̂) in a given direction n̂ is a remapping of the original

temperature Tor in the direction n̂+d, where d is the displacement field: T (n̂) = Tor(n̂+d).

It is convenient to work with the convergence field, defined as κ ≡ −∇ ·d/2 and which

can be expressed as an integral along the line of sight [39, 40]:

κ(n̂) =

∫
dz Kκ(z)δ(n̂, z) (5.10)
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In a flat universe (an assumption that we make throughout), the lensing kernel is given by:

Kκ(z) =
3ΩmH

2
0

2H(z)
(1 + z)χ(z)

χ∗ − χ(z)

χ∗
(5.11)

where χ∗ ∼ 14 Gpc is the comoving distance to the last scattering surface.

The cross-correlation between the lensing convergence and the projected density field can

be calculated using the Limber approximation, which is expected to work well here, since we

only use modes ` ∼> 50:

Cκg
` =

∫
dz

H(z)

χ2(z)
Kg(z)Kκ(z)P

(
k =

`+ 1/2

χ(z)
, z

)
(5.12)

We note that the linear bias factor b(z) appears in Cκg
` and CTg

` weighed by different

kernels and therefore it is important to account for the redshift dependence of b. As discussed

previously, our fiducial galaxy bias is a constant with redshift, but we also investigate the

model bG(z) = bG0 (1 + z), while for the AGN we take bA(z) = bA0 [0.53 + 0.289(1 + z)2].

5.6.2 Planck lensing potential

The Planck collaboration released a map of the lensing potential φL (related to the lensing

convergence by κ = −∇2φL/2), covering over 70% of the sky [44]. As we can see from

equation (5.10), this is a direct measurement of the projected density field out to the surface

of last scattering, weighted by a broad kernel which peaks at z ∼ 2.

The correlation between WISE and the Planck lensing potential was recently investigated

in [44, 49], where a ∼ 7σ detection was found for both galaxies and quasars. Here we repeat

the analysis with the same maps and masks used for the ISW work.
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5.6.3 Results

We use the Planck lensing potential and WISE maps at HEALPix [50] resolution Nside = 512

and measure the cross-correlation signal for 100 ≤ ` ≤ 400, correcting for the effects of

the pixel window function and of the mask. Note that we use the same `max as in the

cosmological analysis by the Planck team [44]. Including higher ` would probe the non-

linear regime, where a constant bias model is likely to be inadequate and require corrections.

Furthermore, including higher ` would be unnecessary from a statistical point of view, as the

error on the bias is not the dominant source of uncertainty on the ISW amplitude. Lacking

realistic simulated Planck lensing maps, the error bars are computed from the variance of the

values in a given ` bin. We have however checked that they are consistent but ∼ 30− 60%

larger than the theory error bars computed in the Gaussian approximation, which represent

a theoretical lower bound.

100 150 200 250 300 350 400

`

1

0

1

2

3

4

C
g

`

1e 7

bG (z) =const

bG (z) =bG0 (1 +z)

Figure 5.3: Lensing convergence-galaxy cross-correlation as a measure of the linear bias for
WISE galaxies.

Figures 5.3 and 5.4 show the cross-correlation signal. For our fiducial galaxy bias model (a

redshift independent constant), we find bG = 1.41±0.15. This value is larger than that found
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Figure 5.4: Lensing convergence-AGN cross-correlation as a measure of the linear bias for
WISE AGN.

by the Planck Collaboration [44]; this difference is expected, because Planck uses a more

conservative magnitude cut and hence measures bias of lower redshift, less biased sources. If

instead we consider our second model bG(z) = bG0 (1 + z), we measure bG0 = 0.98± 0.10. We

note that there is a slight dependence on `max, which could be due to statistical fluctuations,

a failure of our linear bias model on small scales, or other effects. However, this dependence

is negligible for the purpose of this paper: even in the extreme case of using `max = 2000

instead of our fiducial 400, the bias we measure is higher by only 12%, translating into a

change in ISW amplitude of 0.13σ.

For the AGN with bias bA(z) = bA0 [0.53+0.289(1+z)2], we measure bA0 = 1.26±0.23. Our

result is stable with respect to changes in `max and is only ∼ 1σ higher than the SPT result

[49], bA0 = 0.97± 0.13. Again, this uncertainty corresponds to a shift in the ISW amplitude

derived from the AGN sample of about 0.3σ and is therefore not important for the purpose

of this work.
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5.7 ISW results

We measure the cross-correlation of the WISE galaxy and AGN samples with the WMAP

CMB temperature maps in the Q, V and W bands. We estimate the signal in 7 bins

(bandpowers), equally spaced in ` space and spanning multipoles from 5 to 100. Since we

are only interested in ` ≤ 100, we use maps with HEALPix Nside = 128, after correcting for

the WMAP beam (different for each band) and for the pixel window function. The complex

geometry of the mask induces non-trivial off diagonal correlations between bandpowers and

we use the MASTER algorithm [51] to largely undo the effect of the mask and obtain an

unbiased (but slightly suboptimal) estimate of the bandpowers.

To estimate the error bars and the covariance matrix, we cross-correlate the WISE galaxy

and AGN samples6 with 5000 simulated CMB maps as follows: We use our fiducial cosmology

CMB power spectrum and the WMAP beam transfer function to obtain 5000 simulated CMB

maps (Gaussian random fields) for each band. Then noise is added to each pixel in the form of

a Gaussian random variable with zero mean and standard deviation given by σ = σ0/
√
Nexp,

where σ0 is 2.188, 3.131 or 6.544 mK, for Q, V and W bands respectively, and Nexp is the

number of exposures of the corresponding pixel in the WMAP survey.

The Monte Carlo covariance matrices for the Q band are shown in figure 5.7 in appendix

5.9. We verify convergence by varying the number of simulations and noting consistent

results. While the covariance matrix is dominated by the diagonal components, the off

diagonal components are non-negligible and should be taken into account.

The cross-correlation results are shown in figures 5.5 and 5.6 and summarized in tables

5.1 and 5.2. If d are the measured bandpowers and t are the corresponding theory values, the

best fit amplitude A = CTg,bestfit
` /CTg,ΛCDM

` is obtained by minimizing χ2 = (d−t)TC−1(d−

t), where C−1 is the inverse of the covariance matrix. The significance is computed as√
χ2
null − χ2

min, with χ2
null referring to the null hypothesis t = 0 (i.e. no ISW signal). When

6Because of the uncertainties on the WISE selection function and noise properties, we choose to use the
real data in estimating the Monte Carlo covariance matrix.
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quoting the ISW amplitude, the value of the bias is fixed to the mean value found in the

previous section, and uncertainties in the bias determination are very subdominant compared

to the cosmic variance errors.

The null tests are performed by cross-correlation with the simulated CMB maps are

shown in figure 5.8 in appendix 5.9 for each band. All of the null tests are consistent with

zero signal as expected.

5.7.1 Galaxies

For WISE galaxies with constant bias, we measure an amplitude of A = 1.24 ± 0.47, fully

consistent with the ΛCDM prediction A = 1. The amplitudes and some basic statistical

properties for each band are reported in table 5.1 and the results are shown in figure 5.5.
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Figure 5.5: cross-correlation between WISE galaxies and WMAP temperature maps, where
the ΛCDM theory curve is computed assuming a redshift independent bias. The error bands
are shown only for Q band and the other error bars are within 5% of the ones shown.

The correlation signal is essentially independent of frequency over the range 40 - 90 GHz,

which makes a significantly contamination by foregrounds unlikely.
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Band Amplitude A χ2 / dof p-value S/N

Q 1.22 ± 0.47 1.42 / 6 0.04 2.6
V 1.25 ± 0.47 1.81 / 6 0.06 2.6
W 1.26 ± 0.47 1.25 / 6 0.03 2.7

Table 5.1: ISW amplitude and significance for the galaxy sample, assuming a constant bias
model.

As we can see from table 5.1, the χ2 of the best fit is slightly low, but it is expected this

high or low about 6 - 12% of the time. To test the error calculation, we used the Gaussian

approximation (Fisher formalism) to analytically compute the errors bars using the measured

WISE auto-power spectrum, obtaining a result that is fully consistent with the Monte Carlo

estimate.

To test the stability of our results with respect to changes in the mask, we repeat the

cross-correlation with masks leaving fsky = 0.35, 0.40 and 0.51, and find best fit amplitudes

A = 1.10, 1.01 and 1.10 respectively. The masks with small fsky were chosen to effectively

mask the stellar overdensity visible in figure 5.1 close to the galactic plane and show that

the signal is not due to correlation between stellar overdensity and residual contaminants in

the CMB map.

To assess the dependence of our result on uncertainties in the evolution of bias, we repeat

the analysis with a model in which it evolves linearly with redshift bG(z) = bG0 (1 + z). In

this case we find A = 1.54 ± 0.59, with again S/N ≈ 2.7. This corresponds to a shift in

amplitude of about one half sigma and therefore we can conclude that our measurement is

fairly robust under uncertainties in the evolution of the bias.

5.7.2 AGN

The measured amplitude A = 0.88 ± 0.74 is again consistent with the ΛCDM predictions.

The amplitude is stable under small changes in the mask and is frequency independent, as

can be seen from table 5.2 and figure 5.6.
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Figure 5.6: Cross-correlation between WISE AGN and WMAP temperature maps. The error
bands are shown only for Q band; the other error bars are within 5% of the ones shown.

Band Amplitude A χ2 / dof p-value S/N

Q 0.88 ± 0.74 4.6 / 6 0.4 1.2
V 0.86 ± 0.74 4.7 / 6 0.4 1.2
W 0.91 ± 0.75 4.6 / 6 0.4 1.2

Table 5.2: ISW amplitude and significance for the AGN sample.

As the highest ` bin in figure 5.6 appears low, we extend our analysis to ` = 200 to

test that this value is simply a fluctuation. We find that the points for 100 ≤ ` ≤ 200 are

consistent with the low-`-fit signal curve as expected7.

Though the AGN sample is simpler to cleanly select than the galaxy sample, the sig-

nificance of the AGN sample is lower. Partially this is because the expected signal itself is

smaller, as a large fraction of WISE AGN lie at z & 1, where Dark Energy is unimportant.

In addition, the smaller number of sources makes the sample shot-noise limited in the high

` bins, further reducing the significance of the measurement.

7in particular, the next two bandpowers in figure 6 would lie at (0.066 ± 0.134) and (0.003 ± 0.147) µK
respectively.
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5.8 Conclusions

Dark Energy remains one of the most elusive outstanding problems in Physics, and the ISW

effect provides one of the most direct probes of its properties.

In this work we have measured the cross-correlation between the CMB temperature and

both WISE galaxies and AGN. The correlation is expected to be entirely due to the ISW

effect and hence absent in a Universe with no Dark Energy.

We find a positive signal which is consistent with the ΛCDM predictions, with signifi-

cances of 2.7σ and 1.2σ for galaxies and AGN respectively. It can be shown that the bulk

contribution to the galaxy ISW signal comes from z ∼ 0.2 − 0.6, with a peak at z ∼ 0.3,

while the AGN, due to their fairly high median redshift, receive a fairly uniform contribution

in the interval z ∼ 0.2 − 1.2. Therefore, the AGN act as a useful probe of Dark Energy at

an earlier time. We find that our results show no evidence for evolution of the Dark Energy

density, as expected from a Cosmological Constant.

We use the CMB lensing potential from the Planck mission to calibrate the bias and stel-

lar contamination of our sample, a method that has recently become available with advances

in high-resolution CMB experiments. Calibration with lensing cross-correlation allows a di-

rect measurement of the effective bias, with a smaller sensitivity to some systematic errors

that can affect a measurement with the auto power spectra. Moreover, any instrumental

systematic that could affect both the CMB temperature and the reconstructed lensing po-

tential should be mitigated by using two independent experiments for the lensing and ISW

analyses.

The signal we detect is fairly insensitive to the choice of mask and, more crucially, fre-

quency independent. An imperfect foreground subtraction on the CMB side could poten-

tially create spurious correlation with WISE, but any residual foreground contamination is

expected to vary significantly over the range 40 - 90 GHz that we probe here. Therefore we

conclude that any contamination, if present, is likely to be highly subdominant.

162



While some previous studies hinted at the possibility of a signal with amplitude higher

than what expected from ΛCDM, we find no deviation from the standard cosmological model

in either amplitude or redshift dependence, in agreement with some of the other previous

measurements (eg [22, 35, 36, 45]). We are also in agreement with a recent analysis of the

ISW effect from WISE galaxies [30] that used a somewhat smaller sample at lower redshift

and measured an amplitude consistent with ΛCDM, with a significance of about 1σ.
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5.9 Appendix 1: Covariance matrix and null tests

Here we show plots for the Q-band covariance matrices and the null tests. For a description

of the methodology, see section 5.7 in the main text.

5.10 Appendix 2: Doppler effect contamination to the

ISW signal

In this appendix we discuss the magnitude of another secondary anisotropy of the CMB

that preserves the black-body frequency spectrum: the Doppler (or linear kinetic Sunyaev-

Zel’dovich) effect. This is caused by the Doppler shift when a CMB photon scatters off

coherently moving electrons with line-of-sight velocity vr. The fractional CMB temperature
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Figure 5.7: Q-band Monte Carlo covariance matrices for galaxies (left) and AGN (right). V
and W band covariances are very similar and are not shown here.
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Figure 5.8: Null tests: correlation of the WISE galaxy (left) and AGN (right) maps with
5000 simulated CMB realizations. All are consistent with zero signal.

fluctuation Θ = ∆T/T caused by the Doppler effect is given by [55, 56, 54]:

Θ(n̂) = −
∫
dη τ̇e−τvr (5.13)

Where the integral is taken along the line of sight. To linear order, we take τ(z) to be the

average τ at redshift z. Since velocity is related to density by the continuity equation, which

to linear order reads

δ̇ +∇ ·v = 0 , (5.14)
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this is an additional source of CMB-matter correlation beyond the ISW effect and is inde-

pendent of frequency and therefore not distinguishable through component separation. At

the power spectrum level, the Doppler effect can be calculated by including the τ̇ e−τvr term

in the line-of-sight integral of [53] as a source term, considering the fact that vr is a spin-1

quantity under rotation and therefore the projection kernel from k to ` involves the time

derivative of the spherical Bessel functions j′`(kχ), rather than j`(kχ) which is used for the

projection of scalars (such as density or potential). Moreover we note that Limber approx-

imation is very inaccurate for velocities on large scales and we will use the exact equations

instead.

Figure 5.9 shows that on large scales (` < 100), the Doppler contribution is comparable

to the ISW amplitude.
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Figure 5.9: Doppler and ISW contribution from the CMB power spectrum, compared to the
primary anisotropy.
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5.10.1 WISE galaxies and AGN

It becomes natural to ask if the Doppler effect can be a large contaminant to the ISW

measurements presented previously, since they are comparable at the power spectrum level.

Firstly, as discussed in [57], the Doppler contribution has the same sign as the ISW effect:

consider a matter overdensity at redshift z∗. Gas from z > z∗ will be infalling with a

peculiar velocity pointing towards us, thus upscattering CMB photons. The contrary is true

for gas at z < z∗, which will have a peculiar velocity pointing away from us and will thus

downscatter CMB photons energy. However, since the probability of Thomson scattering (the

visibility function τ̇ e−τ ) is decreasing with time, scattering at higher redshift is more likely

and therefore an overdensity will be associated with a hot spot in the CMB temperature.

Figures 5.10 and 5.11 shows the result of numerical computation of the Doppler-galaxy

and Doppler-AGN correlations for the WISE catalog, obtained by modifying the publicly

available CAMB Sources code8, to only include the Doppler contribution as a source function

and the appropriate redshift distribution for the WISE objects.

We see that the Doppler contamination to our kSZ measurement is about 1% for WISE

galaxies and 4% for WISE AGN. To explain such a small number, we must note that the

vast majority of the linear Doppler signal is produced around the redshift or reionization,

when the visibility function is largest. On the contrary the ISW effect arises only when the

effect of Dark Energy is dominant, and most of the signal comes from z < 1. This explains

the very weak correlation between the Doppler signal and low-redshift structure.

8http://camb.info/sources/
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Figure 5.10: Doppler and ISW contribution to the CMB-galaxy cross correlation for WISE
selected galaxies
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Figure 5.11: Doppler and ISW contribution to the CMB-AGN cross correlation for WISE
selected AGN.
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5.10.2 Anomalous signal from superclusters and supervoids

As mentioned in the introduction to this chapter, the ISW signal obtained by stacking on

SDSS DR7 superclusters and supervoids is in ∼ 4σ tension with the ΛCDM expectation

[24, 25, 26]. In this section we ask whether the Doppler contribution can relieve at least part

of the tension.

In [24], the authors identify the 100 largest superstructures in 7500 square degrees of the

SDSS LRG catalog. They are split between 50 ‘superclusters’ and 50 ‘supervoids’, and span

a redshift range 0.4 < z < 0.75, with a median redshift of 0.5. An aperture photometry

filter9 (AP) with 4 degrees radius is applied to the WMAP5 CMB temperature map to

obtain an estimate of the ISW signal. The mean of the absolute value of the stacked ISW

signal on these 100 superstructures is found to be 9.6 ± 2.2µK, compared to a prediction

from ray-tracing simulations of ∼ 2µK [25]. While the original analysis was performed on

WMAP data, this has been subsequently confirmed by the Planck team [45, 46].

The choice of 4 degrees radius for the AP filter corresponds to the typical angular size

of these structures in the sky, while the typical spatial extent is ∼ 100h−1 Mpc. Therefore

we shouldn’t think of these as bound structures with a well defined profile, but rather as

mild hills and valleys in the potential. On these scales linear theory is expected to work

remarkably well.

The exact profile of these structures is not known and ray-tracing through N-body simula-

tions seems like the most robust approach. However here we give an approximate treatment

which is expected to at least accurately predict the ratio between the ISW and Doppler

signals. Since the scales of interest are in the linear regime, we can compute the expected

RMS CMB fluctuations produced by ISW and Doppler effects caused by these structures,

by using the usual line-of-sight integral, restricting the integration over the spatial extent

of the typical structure. Note that since potential (which sources ISW) and velocity (which

9the filter output is defined as the mean temperature in a disk of radius θd, to which the mean temperature
in a surrounding ring of equal area is subtracted.
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sources Doppler) scale differently with the matter overdensity δ (Φ ∝ δ/k2 and v ∝ δ/k),

the spatial extent of the structure will be slightly different in potential and velocity. For

density, we assume that the window function is a spherical tophat of 100h−1 Mpc in radius

and solve for a potential and velocity window function. We modify the public code CAMB10

in order to only perform the integration of the Doppler and ISW source terms, with a given

window function.

After applying the AP filter with 4 degrees radius like in the analysis on real data, we

find that the Doppler contribution is only ∼ 2% of the ISW signal. There is also a non-

trivial cross-correlation between ISW and Doppler, and it is as large as ∼ 20% of the ISW

amplitude.

As a last step, we would like to see if we can reproduce the expected level of ISW and

Doppler, and not only their ratio. We note that these structures are not randomly chosen,

but they are the most extreme superstructures in the SDSS footprint. Therefore we should

quantify how extreme these fluctuations are compared to the RMS, in other words, we

would like to compute the ‘significance’ ν = δ/σ for these structures. We will calculate this

approximately in the Press-Schechter formalism and use linear theory throughout. Under

the assumption of Gaussian initial conditions, we find that νc required to have 50 regions

above νc in a volume equal to the volume spanned by the SDSS LRG, when smoothing the

density field on 100h−1 Mpc scale is νc = 4.2.

Figure 5.12 shows the expected ISW and Doppler signals for fixed νc = 4.2 and as a

function of AP filter size. We find the expected ISW signal to be ∼ 1.9µK, in good agreement

with simulation results. While this calculation is very approximate (and can be improved

by using the ‘peak formalism’), the ratio between Doppler and ISW is independent of νc.

In conclusion, the Doppler contamination to the ISW signal is of order 2% (with a 20%

cross correlation between the two), and both contributions have the same sign. While this

goes in the direction of easing the tension, it does not fully resolve it. To decide whether this

10http://camb.info
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is a purely ‘statistical’ fluctuation or something different more data is needed and the Dark

Energy Survey collaboration is currently repeating the analysis on new, non-overlapping

structures with similar properties. Their results might shed new light on this intriguing

discrepancy.
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Figure 5.12: Expected Doppler and ISW signal from an Aperture Photometry filter at the
location of the super-cluster/void. The plot shows RMS fluctuation of the output of the
Aperture Photometry filter, multiplied by the significance νc = 4.2, versus the filter radius
θd (except for the primary CMB which is not multiplied by νc). As we can see, the primary
CMB fluctuations are the main source of noise. The curve labelled ‘other contributions’
includes all of the other contributions that are correlated with the presence of low redshift
over- or under- densities; the main contribution to this term is the ordinary Sachs-Wolfe
effect due to the correlation between density at the surface of last scattering and at low
redshift. The sign of the Sachs-Wolfe effect is the same as Doppler and ISW.
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Chapter 6

Prospects for kSZ detection without

accurate redshift information

6.1 Introduction

In this chapter we ask the question of whether the kinetic Sunyaev-Zel’dovich (kSZ) signal

can be extracted in cross-correlation, in absence of reliable redshift estimates for the tracer

population (for example in the case of the WISE catalog [1]).

The kSZ effect is produced by Thomson scattering of CMB photons off of coherently

moving electrons. The amplitude of the kSZ signal depends linearly on the local free electron

density ne (and is independent of temperature), and is therefore suited to probe the low

density and low temperature outskirts of galaxies and cluster. The sign of the effect depends

on the direction of the peculiar line-of-sight velocity of the free electrons. In particular, if a

galaxy or cluster is moving towards us, it will on average up-scatter CMB photons, producing

a ‘hot spot’ in the observed CMB map. The contrary is true for galaxies or clusters moving

away from us.

The equal likelihood of positive and negative kSZ signals leads to a large cancellation in

the cross-correlation of low-redshift tracers with CMB maps. In absence of redshift informa-
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tion, we can’t perform velocity reconstruction, or use any of the other common techniques

to avoid the cancellation . To overcome this difficulty, the CMB temperature map can be

squared in real space before cross-correlating with tracers. Since primary CMB fluctuations

are dominant to the kSZ power spectrum at ` < 3000, we apply a Wiener filter to the CMB

map, before squaring it in real space. This filter downweights angular scales on which the

kSZ signal is most subdominant to the primary CMB, ISW, and noise.

First suggested in [7], this cross-correlation probes the mass and line-of-sight velocity of

the gas associated with galaxies used as tracers . It thus provides a method with which to

find the missing baryons [2], similar to but distinct from other kSZ techniques based on mo-

mentum template reconstruction [9, 10] or pairwise velocities [6]. In particular, this method

does not require redshift estimates, but just a statistical redshift distribution. Similarly,

individual halo mass estimates are not required for the inference of the kSZ amplitude in

this method, in contrast to the pairwise velocity or velocity reconstruction approaches.

6.2 Theory summary

The fractional CMB temperature shift induced by the kSZ effect, ΘkSZ(n̂) = ∆T kSZ/TCMB(n̂),

in a direction n̂ on the sky is given by [3, 4, 5] (in units with c = 1):

ΘkSZ(n̂) = −
∫
dη g(η) pe · n̂ (6.1)

= −σT
∫

dη

1 + z
e−τ(z)ne(n̂, η) ve · n̂, (6.2)

where σT is the Thomson scattering cross-section, η(z) is the comoving distance to redshift z,

τ is the optical depth to Thomson scattering, g(η) = τ̇ e−τ is the visibility function. Here ne

is the physical free electron number density, ve is the peculiar velocity of the electrons, and

we have defined the electron momentum pe = (1 + δ)ve. For concreteness, we will focus on
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two promising low-redshift tracers: the projected WISE galaxy catalog [1] and the CFHTLS

lensing convergence map [11].

The projected galaxy overdensity δg is defined by

δg(n̂) =

∫ zmax

0

dz W g(z) δm(ηn̂, η) (6.3)

where zmax is the maximum source redshift, and W g(z) is the projection kernel given by:

W g(z) = bgps(z) (6.4)

Here bg is the linear bias factor and ps(z) ∝ dn/dz is the redshift distribution of source

galaxies (normalized to have unit integral).

The Weak Lensing (WL) convergence field depends on the projected matter overdensity

δm along the LOS and the lensing kernel:

κ(n̂) =

∫ zmax

0

dz W κ(z) δm(ηn̂, η) (6.5)

where W κ(z) is the lensing kernel:

W κ(z) =
3ΩmH

2
0η(z)

2aH(z)

∫ zmax

z

dzs ps(zs)
η(zs)− η(z)

η(zs)
(6.6)

Since the projected density and the convergence field are closely related to each other,

we will use κ and δg interchangeably in what follows. All equations can be transformed from

one to the other by the simple exchange W κ ↔ W g.

As explained in the introduction, the cross-correlation between kSZ and tracers is ex-

pected to vanish on small scales because of the ve → −ve symmetry. We therefore square

the temperature fluctuation map in real space before performing the cross correlation.
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In order to minimize spurious contributions to the primary fluctuations and detector

noise, we filter the temperature map with a filter F before squaring:

Θf (`) = F (`)Θ(`) (6.7)

where

F (`) =
CkSZ
`

Ctot
`

(6.8)

And Ctot
` is the total fluctuation power, which includes primary CMB, kSZ, ISW and noise.

Following [7, 8], we can write the angular spectrum of the kSZ2–δg (or kSZ2–WL) cross-

correlation as

C
kSZ2×δg
` =

∫ zmax

0

dz

η2
W g(z)g2(η)T (k = `/η(z), z) (6.9)

Where we have used the Limber approximation, and have defined the triangle power spectrum

T

T (k, z) =

∫
d2q

(2π)2
F (qη)F (|k + q|η)Bδpn̂pn̂(k, q,−k − q) (6.10)

The hybrid bispectrum Bδpn̂pn̂ is the three point function of one density contrast and two

line of sight momenta, pn̂. The triangle power spectrum T is the integral over all triangles

with sides k, q, and −k − q, lying on planes of constant redshift.

Considering that the momentum field p ∼ δv on small scales, that the hybrid bispectrum

Bδpn̂pn̂ contains terms of the form 〈vv〉〈δδδ〉, 〈vδ〉〈δδv〉, . . . , and a connected part 〈vvδδδ〉c.

Reference [8] argues that the former term 〈vv〉〈δδδ〉 is the dominant on small scales (k � keq)

and we have verified this numerically.

On small scales we can therefore approximate the hybrid bispectrum in terms of the 3D

velocity dispersion v2
rms and the non-linear matter bispectrum BNL

m [7, 8]:

Bδpn̂pn̂ ≈
1

3
v2

rmsB
NL
m (6.11)
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6.3 Possible contaminants

One drawback of this technique is that it is very sensitive to the leakage of emission from the

tracers themselves to the CMB temperature map, and therefore good frequency coverage that

allows effective component separation is required. The main sources of leakage are expected

to be synchrotron, thermal Sunyaev-Zel’dovich (tSZ) and dust emission. Moreover, spatial

changes in the spectral index of the dust or synchrotron emission can also mimic the kSZ

signal. Work in progress in collaboration with Colin Hill and David Spergel shows that a

multi-frequency analysis of the Planck data [12] is powerful enough to limit the contamination

by foregrounds to a small fraction of the signal (see Hill, Ferraro et al, in preparation).

The contaminants that preserve the black-body spectrum of the CMB cannot however be

removed by component separation. Apart from kSZ, the ISW effect and weak gravitational

lensing are also frequency-independent. While the ISW (and its non-linear generalization) is

expected to be negligible at ` > 100, it turns out that the weak lensing contribution is large

(in fact larger than the signal itself) and must be accurately modeled and removed in order

to detect kSZ.

In the next section we calculate the weal lensing leakage in this cross-correlation.

6.4 Lensing leakage

Let Θ = ∆T/T be the unlensed temperature fluctuation and Θ̃ be the corresponding lensed

fluctuation. We first note that in absence of filter/beam, lensing preserved the total variance,

i.e. 〈Θ̃2(x)〉 = 〈Θ2(x)〉 (essentially just looking at a different point in the sky), so that there

is no lensing contribution to 〈Θ̃2(x)δg(y)〉.

Now things are a bit different when including filter and beam. Let Θ̃f (`) = f(`)Θ̃(`),

where f(`) = F (`)b(`) is the product of a filter F and the beam function b. We want to
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compute the Fourier Transform of 〈Θ̃2
f (x)δg(y)〉:

〈Θ̃2
f (`1)δg(`2)〉 = (6.12)

=

∫
d2L

(2π)2
〈Θ̃f (L)Θ̃f (`1 −L)δg(`2)〉 (6.13)

=

∫
d2L

(2π)2
f(L)f(|`1 −L|)〈Θ̃(L)Θ̃(`1 −L)δg(`2)〉 (6.14)

The lensed fluctuations can be expanded in terms of the unlensed ones:

Θ̃(x) = Θ(x) +∇ψ · ∇Θ(x) +
1

2
∇aψ∇bψ∇a∇bΘ(x) + . . . (6.15)

where ψ is the lensing potential, so that we can express

[∇ψ · ∇Θ](L) = −
∫

d2L′

(2π)2
L′ · (L−L′)ψ(L′)Θ(L−L′) (6.16)

Now, in perturbation theory (up to first order in the displacement),

〈Θ̃(L)Θ̃(`1 −L)δg(`2)〉 = 〈Θ(L)Θ(`1 −L)δg(`2)〉 (6.17)

+ 〈[∇ψ · ∇Θ](L)Θ̃(`1 −L)δg(`2)〉+ (L→ `1 −L) + . . .

The first term is due to ISW + kSZ only, while the second and third terms should

contribute equally by symmetry. Plugging in equation 6.14 and using 6.16:

〈Θ̃2
f (`1)δg(`2)〉 = 〈Θ2

f (`1)δg(`2)〉 − 2

∫
d2L

(2π)2
f(L)f(|`1 −L|) (6.18)

×
∫

d2L′

(2π)2
L′ · (L−L′)〈ψ(L′)Θ(L−L′)Θ(`1 −L)δg(`2)〉

There is a non-zero connected trispectrum (due to ISW and subleading to the other terms),

and two non-zero contractions 〈ψδg〉〈ΘΘ〉 and 〈ψΘ〉〈Θδg〉, the latter again due to ISW.
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Consider the first one and write:

〈ψ(L′)δg(`2)〉 = (2π)2 C
ψδg
`2

δD(L′ + `2) (6.19)

〈Θ(L−L′)Θ(`1 −L)〉 = (2π)2 CTT
|`1−L| δD(`1 −L′) (6.20)

Then the main correction due to lensing is

− 2(2π)2δD(`1 + `2)

∫
d2L

(2π)2
f(L)f(|L− `1|) `1 · (L− `1) C

ψδg
`1

CTT
|L−`1| (6.21)

Similarly, the other contraction gives rise to

− 2(2π)2δD(`1 + `2)

∫
d2L

(2π)2
f(L)f(|L− `1|) `1 · (L− `1) CψT

`1
C
Tδg
|L−`1| (6.22)

which is due to ISW and numerically is found to be factor of ∼ 104 − 105 smaller than the

lensing contribution on the scales considered here.

Changing variable in (6.21) to L′ = L− `1:

∆CT2×g
` ≈ −2

` C
ψδg
`

(2π)2

∫ ∞
0

dL′ L′2f(L′)CTT
L′

∫ 2π

0

dφ f(|L′ + `|) cosφ (6.23)

Note also that if f(`) = constant, the lensing correction vanishes identically as expected.

6.5 Numerical results

Here we show the results from numerical integration of equation (6.9) and (6.23). The

evaluation of equation (6.9) is computationally expensive and is achieved by precomputing

all of the terms involving the fitting function to the non-linear bispectrum on a grid, followed

by interpolation. The angular integrals in both cases involve large cancellations and a high

number of integration points are required. For both the power spectrum and bispectrum
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we use fitting functions that have been matched to N-body simulations ([14] for the power

spectrum and [15] for the bispectrum).
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Figure 6.1: kSZ2 and lensing contribution for WISE galaxies
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Figure 6.2: kSZ2 and lensing contribution for CFHTLS convergence
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6.6 Lensing cosmic variance

When subtracting the lensing contamination to identify the kSZ2 signal, the amplitude of

the lensing is subject to the a cosmic variance uncertainty. In the Gaussian approximation,

the relative error in the lensing calculation in a bin of width ∆` due to cosmic variance is

σ(∆CT2×g
` )

∆CT2×g
`

=

√
2

fsky(2`+ 1)∆`
(6.24)

For ∆` = 500, we get the following relative errors (fsky = 0.00339 and 0.5 for CFHTLS and

WISE)

` = 500 1000 2000 3000
CFHTLS 3.4 % 2.4 % 1.7 % 1.4 %

WISE 0.3 % 0.2 % 0.14 % 0.11 %

Table 6.1: Fractional error on lensing amplitude due to cosmic variance for bins of ∆` =
500.

As we will see these uncertainties are much smaller than the typical error bar on the cross-

correlation and we conclude that the lensing cosmic variance is never the leading source of

uncertainty in our analysis. Much larger uncertainties will be arise from our modeling of the

relevant quantities (like lensing power spectrum and the bias) in the mildly non-linear regime,

as well as the error in determining the bias of our tracers (usually through cross-correlation

with CMB lensing maps).

6.7 Fisher forecast for kSZ2 detection

The maximum S/N ratio can be estimated by using Fisher’s formula as follows:

(
S

N

)2

= fsky
∑
`

(2`+ 1)
[CkSZ2×g

` ]2

C T̃ 2T̃ 2,f
` Cgg

` + [CkSZ2×g
` ]2

(6.25)
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and for C T̃ 2T̃ 2,f
` we use the Gaussian approximation:

C T̃ 2T̃ 2,f
` ≈ 2

∫
d2L

(2π)2
C T̃ T̃ ,f
L C T̃ T̃ ,f

|L−`| (6.26)

Where C T̃ T̃ ,f
` = F 2(`)b2(`)(CTT

` + CkSZ
` ) + F 2(`)CNN

` , and F (`) is the Wiener filter, b(`) is

the beam function and CNN
` is the map noise.

Considering typical numbers for a Planck component separated map (5 arcmin beam and

noise at the level of the Planck SMICA map), and restricting our analysis to 100 ≤ ` ≤ 3000,

we get the following:

fsky (S/N)
CFHTLS 0.0034 0.35

WISE 0.5 3.6
κCMB, no noise 0.7 1.1

Table 6.2: Forecast for the kSZ2 cross correlation. The κCMB field corresponds to cross-
correlating the square of a CMB temperature map with a CMB lensing convergence map as
a tracer of low-z matter, assuming no noise in the latter.

6.8 Conclusions and future work

In conclusion, a CMB data-set like Planck should allow a statistical kSZ detection with

S/N ∼ 3.6 when combined with the WISE galaxy catalog. This is assuming that the fre-

quency coverage of Planck is sufficient to remove the emission from the tracers in question.

While none of the official Planck component separated maps is adequate due to large resid-

ual leakage of tSZ, it is possible to implement component separation methods such as the

LGMCA [13] that explicitly set the tSZ residual to vanish. Preliminary work suggests that

the contamination by foregrounds can be reduced to a small fraction of the statistical un-

certainty on the kSZ amplitude. We have however shown that weak lensing of the CMB

is a major source of contamination in this analysis, and it is not removable by component

separation because it preserved the black-body spectrum of the CMB. We have calculated
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the amplitude of the lensing and shown that the cosmic variance uncertainty is negligibly

small when considering large fractions of the sky.

Work is in progress in collaboration with Colin Hill and David Spergel to perform this

cross-correlation using Planck data and the WISE galaxy catalog. The remaining sources of

theoretical uncertainty are the effects of non-linearity and redshift dependence of the galaxy

bias and this is subject of current effort.
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6.9 Appendix: Comparison with simulations

Since we have made a number of approximations and relied extensively on semi-analytical

fitting function for the power spectrum and bispectrum in non-linear regime, we compare

our results with hydrodynamical simulations:
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Figure 6.3: Lensing leakage in 〈T̃ 2
f κCMB〉. The blue dots show the quantity measured in the

simulations of Sehgal et al [16], while the solid line is first order the calculation presented in
this chapter. The agreement is excellent and implies that higher order terms are subleading.
Simulation data courtesy of Colin Hill - theory curve by the author.
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author.
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author.
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