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Hamiltonian learning for 300 trapped ion qubits with

long-range couplings
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Quantum simulators with hundreds of qubits and engineerable Hamiltonians have the potential to explore quan-
tum many-body models that are intractable for classical computers. However, learning the simulated Hamiltoni-
an, a prerequisite for any quantitative applications of a quantum simulator, remains an outstanding challenge due
to the fast increasing time cost with the qubit number and the lack of high-fidelity universal gate operations in the
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noisy intermediate-scale quantum era. Here, we demonstrate the Hamiltonian learning of a two-dimensional ion
trap quantum simulator with 300 qubits. We use global manipulations and single-qubit-resolved state detection
to efficiently learn the all-to-all-coupled Ising model Hamiltonian, with the required quantum resources scaling at
most linearly with the qubit number. We further demonstrate a physically guided learning scheme with the quan-
tum sample complexity independent of system sizes by carefully fitting the anharmonic trap potential. Our work
paves the way for wide applications of large-scale ion trap quantum simulators.

INTRODUCTION

Quantum computers and quantum simulators have reached the stage
of coherently manipulating hundreds of qubits (1-4), and quantum
advantage over classical computers has been claimed in random
sampling tasks (5-9). To achieve the next milestone of quantum ad-
vantage with practical utility, quantum simulation of many-body dy-
namics is one of the most promising candidates (10-13). However,
verifying the quantum simulation results for such classically intrac-
table problems is a notoriously challenging task. To completely char-
acterize the simulated dynamics and to check whether it follows the
desired Hamiltonian evolution, quantum process tomography re-
quires a time cost that grows exponentially with the system size N
(14). To reduce this complexity, various Hamiltonian learning algo-
rithms have been developed (15-32), using different types of a priori
knowledge about the system like locality (15, 17, 18, 21-25, 27, 30-
32) and sparsity (20, 26, 29) or using the help of certain steady states
or thermal states (22-25, 31) or other trusted quantum devices
(16, 19, 28) as quantum resources. Nevertheless, a poly(N) time
complexity is generally inevitable, which becomes a considerable
cost for the large-scale quantum simulators. Besides, many of the
learning algorithms require individually addressed quantum
gates (15, 17, 18, 22-25, 28-32), which may not be available on
the noisy intermediate-scale quantum (NISQ) devices.

On the other hand, quantum simulators based on arrays of atoms
(33-35) or ions (4, 12) can naturally support single-shot readout of all
the N qubits, giving N bits of information per trial. This can largely
reduce the required quantum simulation resource costs by up to a fac-
tor of N. Following this idea, the coherent imaging spectroscopy tech-
nique has been developed, where all the O(N 2) coefficients in a fully
connected Ising model can be determined from O(N) frequency scans
with global quantum manipulation and individual state detection
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(36). However, this scheme is subject to a lower signal-to-noise ratio
as the state preparation error accumulates with increasing N. In addi-
tion, the time for each frequency scan may need to scale polynomially
with N to resolve the decreasing energy gaps. Because of these restric-
tions, this scheme has only been applied to measure an eight-spin
Hamiltonian (36) and to partially verify the theoretical calculations
for 61 qubits (37).

Here, we report the Hamiltonian learning of an ion trap quan-
tum simulator with 300 qubits. We use global laser and microwave
operations to perform a Ramsey-type experiment with various evo-
lution times under the desired Ising Hamiltonian. We extract single-
spin and two-spin observables from the single-shot measurements
to fit all the O(N?) Ising coupling coefficients (44,850 in total), and
we test the learning results on independent data to show that there
is no substantial overfitting. We further compare this general model
to a physically guided one with O(N) parameters. By independently
calibrating the collective phonon modes of the ions and the laser
intensity, the latter learning algorithm can achieve a similar test er-
ror as the former, with an improved scaling for the required sample
size. We further compute the dynamics of higher-order spin correla-
tions from the learned Hamiltonian and validate the learning results
from their consistency with the experimental data. Our method can
be applied to even larger ion crystals and paves the way for the ap-
plications of the ion trap quantum simulators on various NISQ algo-
rithms (11, 13).

RESULTS

Experimental scheme

Our experimental setup is sketched in Fig. 1A with a two-
dimensional (2D) crystal of 300 17'Yb* ions in a cryogenic mono-
lithic ion trap (4). The qubits are encoded in the hyperfine ground
states |0) =[S, /,,F=0,mp=0) and |1) =[S, ,,F =1,m; =0).
By applying counter-propagating 411-nm global laser beams on the
ions perpendicular to the 2D crystal, we can generate a long-range
Ising Hamiltonian Hy = ), <j]ij<5;6i intermediated by the trans-
verse (drumhead) phonon modes (4, 38). When supplemented by a
global microwave resonant to the qubit frequency, a transverse-field
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Fig. 1. Experimental scheme. (A) A cryogenic monolithic ion trap is used to obtain a two-dimensional (2D) crystal of N = 300'"7"Yb" ions. (B) A Ramsey-type experiment
is performed to learn the long-range Ising Hamiltonian using global control and individual readout of the qubits. We initialize all the ions in| 0) by laser cooling and opti-
cal pumping and rotate them into [+) by a microwave =/ 2 pulse. The system is then evolved under the Ising Hamiltonian H, for various times t with a spin echo in the
middle to cancel the longitudinal fields. Last, we measure all the ions in the o, basis via another microwave = / 2 pulse followed by the state-dependent fluorescence de-
tection. (C) Typical single-shot measurement result att = 0 ms. (D) Typical single-shot measurement result att = 9 ms. (E) All the single-spin (magnetization) and two-spin
(correlation) observables are used to fit the Ising coupling coefficients. Typical fitting results (solid curves) are compared with the measured data (dots for magnetization
and squares for correlation with one SD error bar) for an arbitrarily chosen ion pair. (F) The fitted Ising coupling coefficients J; when the laser couples dominantly to the

fifth highest phonon mode.

Ising model H = H;, + B } ;6" can be obtained (4) with wide appli-
cations in quantum many-body physics (12) and NISQ algorithms
(11, 13). Because the transverse field B can be accurately controlled
and separately calibrated in experiments, here, we focus on the cali-
bration of the Ising coupling coeflicients J;’s, which represents the
challenging part of the Hamiltonian H to be learned. Theoretically,
with the 2D crystal locating on an equiphase surface of the laser (see
Materials and Methods) and under the virtual excitation condition
of the phonon modes (4, 12), the coupling coefficients can be given as

1
’ ; 8(p—ox)
where 1 is the laser detuning, o, is the frequency of the kth mode, n;,
is the Lamb-Dicke parameter, &, is the laser-induced ac Stark shift
on the ith ion, and b is the normalized mode vector.

The experimental sequence for Hamiltonian learning is shown in
Fig. 1B where we perform a Ramsey-type experiment to extract infor-
mation about H, by tuning the transverse B field to zero. We initialize
the spins in |+) by a global microwave xt /2 pulse, evolve them under
H, for time ¢, and, lastly, measure all the spins in the o, basis by

nibikbijin (1)
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applying another microwave 7 /2 pulse followed by the site-resolved
fluorescence detection. To remove the influence of possible longitudi-
nal fields H' = ) ;h;6’ (which can be calibrated separately if needed),
we apply a microwave x pulse in the middle of the Hamiltonian evolu-
tion that commutes with the desired H,. A typical single-shot mea-
surement resultatt = 0, using the electron shelving technique (39-41),
is shown in Fig. 1C with a few random spins being flipped due to the
about 0.7% state-preparation-and-measurement (SPAM) errors. Sim-
ilarly, in Fig. 1D, we show a typical single-shot measurement result at
t = 9 ms when the Ising interaction is dominated by the pattern of the
fifth highest phonon mode. By further averaging over M experimental
trials, we can estimate any k-body spin correlation functions. Here, we
focus on the single-spin (“magnetization”) and two-spin (“correla-
tion”) observables and use them to fit all the ],»j’s, as shown in Fig. 1 (E
and F). Later, we will use higher-order correlations to verify the Ham-
iltonian learning results.

Suppose we take data from T different evolution times. The
NT magnetizations and N(N —1)T /2 correlations contain suf-
ficient information to learn the N(N —1) /2 Ising coupling coef-
ficients. Actually, in principle, even the early-time dynamics
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(o,(t)oi(1)) — (o,(1)) (o;(t)) = 4|J; 1> is sufficient to deter-
mine the magnitude of all the J;s. Here, we use longer evolution
time and the analytical formulae for the magnetizations and cor-
relations (see Materials and Methods) to fit the Ising coefficients
so that the results will be more robust to the experimental noises.
Because of the symmetry of the Hamiltonian and the initial state,
the measured dynamics will be invariant if we change J;; = Jj;
(Vj # i) for any given spin i. In other words, there exist an expo-
nential number of equivalent solutions under our experimental
sequence, which, in principle, can be distinguished by preparing
different initial states. However, note that these equivalent pat-
terns are discrete and well separated from each other given that
each spin is strongly coupled to at least one of other spins. There-
fore, we can simply use the theoretical predictions like Eq. 1 as
the starting point of the fitting to break their symmetry.

We demonstrate this Hamiltonian learning algorithm for differ-
ent Ising coupling coeflicients in Fig. 2, with the laser dominantly
coupled to the highest (center of mass) or the fifth phonon mode, or
using two frequency components to couple to both of them (4). As
shown in Fig. 2A, the residual sum of squares (RSS) of the least
square fitting follows a1l / M scaling (solid curves) versus the sample
size M at each time point due to the statistical fluctuation. There also
exists a nonzero RSS in the limit M — oo due to the deviations from
the ideal fitting model caused by the SPAM error, the nonzero pho-
non excitations, and the spin dephasing due to high-frequency
noise. (The dominant dephasing source of a shot-to-shot laser inten-
sity fluctuation has been included in the theoretical model as de-
scribed in Materials and Methods.) If we view the least square fitting
as an optimization problem, then the RSS is already close to the
M — oo case (horizontal dashed lines) with about M = 5000 sam-
ples. However, this does not exclude the possible overfitting in the
obtained Ising coeflicients. For this purpose, we further plot the
learning curve during the training process in Fig. 2B. We randomly
split the data at each time point into two equal halves as the training
and the test sets. We minimize the RSS of the training set by iterative
algorithms and also compute the corresponding RSS on the test set

at each step. As we can see, for all the three Hamiltonians to be
learned, the RSS for the training and the test sets shows the same
tendency and similar final values. This suggests that our sample size
is large enough to avoid overfitting in the learning results.
Nevertheless, it is still desirable to have more samples to im-
prove the precision. To quantify the precision of the learned
Ising Hamiltonian, here, we define a relative energy difference

e[JO, TP =(|E[JV] =E[J®] 1)/+/8E[J®] - SE[]@], where the nu-
merator is the energy difference between two sets of Ising coeffi-
cients ]i(jl)’s and ]l.(jz)’s averaged over all the spin configurations, and

the denominator consists of the SD of the energy for the two sets,
again over all the spin configurations (see Materials and Methods
for details). Roughly speaking, this quantity characterizes the phase
difference accumulated during the typical timescale of the two
Hamiltonians and has a scaling of \/ﬁ with the system size. Now, we
can take two disjoint sets of data, each with M samples, to learn the
Ising coupling coefficients /¥ and J, and compute their relative
energy difference. We further average over random choices of the
datasets to quantify the precision and fit a scaling € x 1/ \/M as
shown in Fig. 2C. From the fitting results, we can estimate that about
10* samples at each time point will be needed to reach a precision of
1% for the N = 300 qubits. Note that the above definition of the pre-
cision is for general quantum dynamics and average spin configura-
tions. In many cases, we will be interested in the ground states, then
the undesired scaling of \/IT] can be removed, and the precision can
be largely improved (see Materials and Methods). However, for gen-
eral Ising Hamiltonian, the ground-state energy may be difficult to
evaluate; therefore, here, we still use the above definition of the pre-
cision while recognizing that the actual precision may be better for
certain tasks.

The above scaling of € « 1/N / M suggests that, to reach the de-
sired precision for large-scale quantum simulators, the required
sample size M may scale linearly with the qubit number N. This can
also be understood as follows: Although we use O(N 2) observables
(including magnetizations and correlations) to learn the O(Nz)
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Fig. 2. Hamiltonian learning with O(Nz) parameters. (A) Residual sum of squares (RSS) for N = 300ions and T = 13 time steps versus the sample size M at each step.
Whether the Ising Hamiltonian comes from coupling to the first (blue) or the fifth (red) highest phonon mode or both (green), the experimental results can be well fitted
by y = ax™" + b (solid curves) where b > 0 (horizontal dashed lines) corresponds to the deviation from the theoretical model due to experimental imperfections. After
discarding the data when the configuration of the ion crystal is changed during the experimental sequence (see Materials and Methods), we get in total
M = 4638, 5640, and 5272 samples for the three Hamiltonians, respectively. (B) Typical learning curves when we randomly divide the samples at each time point into
two equal halves as the training and the test sets. We fit the Ising coupling coefficients J;/s using the training set by iteratively minimizing their RSS (training-RSS). For each
step of iteration, we record the J;/s and compute the RSS on the test set (test-RSS). (C) Precision € of the learning results versus the sample size M. We take two disjoint sets
of data, each with M samples, to learn the Ising coupling coefficients separately. Then, we compute their relative energy difference for 1000 randomly sampled spin con-
figurations. Last, we further average over five random choices of the disjoint datasets and use the SD as error bars. A scaling of e x M~%is fitted with a € [0.45,0.57], close
to the theoretical scaling of M0,
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parameters of the Hamiltonian, note that they are computed from M
single-shot measurement results that contain at most NM bits of in-
formation. In this sense, M ~ O(N) samples will be necessary to es-
timate all the O(N?) parameters. To overcome this general scaling,
additional knowledge about the physical system must be exploited
to parameterize the Hamiltonian more economically. According to
Eq. 1, one possibility is to calibrate the phonon modes and the laser
intensities on all the ions. As shown in Fig. 3 (A and B) with more
details in Materials and Methods, we can fit the anharmonic trap
potential up to the fourth order from the measured equilibrium po-
sitions of the ions and a few phonon modes that can be resolved and
further compute all the phonon mode structures theoretically. In
addition, in Fig. 3C, we calibrate the laser intensity on individual
ions by driving their carrier Rabi oscillations between the S, , and
D; ), levels. However, if we directly compute the Ising coupling coef-
ficients using Eq. 1 (or add up two sets of such computed coefhicients
when applying two frequency components), then the performance
of the learned Hamiltonian is typically not satisfactory, with much
higher RSS on the test set as shown by the O(1)-scheme in Fig. 3D.
To understand the deviation from the above O(N?)-scheme, we
fix the calibrated phonon modes and turn the laser-induced ac Stark
shift Q; into N fitting parameters. From Fig. 3D, we can see that,
with these O(N) fitting parameters, the RSS on the test data already
becomes close to the O(N 2 )—scheme. We plot the ratio between the
fitted Q, and the measured ones in Fig. 3E when the laser couples
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dominantly to the fifth phonon mode. The discrepancy is most se-
vere near the nodes of the fifth mode as shown in Fig. 3F where
b ~ 0 and near the edge of the 2D crystal with large micromotion
of the ions. This suggests that the deviation between the O(1)-scheme
and the O(N 2 )—scheme is still restricted by the inaccurate calibra-
tion of the phonon modes and may be improved in the future by
including the micromotion into the theoretical model. It also means
that the O(N) fitting parameters do not have the physical meaning of
the laser intensity but are to compensate the miscalibrated phonon
modes. Therefore, for the Hamiltonian when the laser has two fre-
quency components to couple to two phonon modes, we should in-
troduce N independent fitting parameters for each mode.

Predicting higher-order correlations

Apart from explaining all the magnetizations and the correlations,
the learned Hamiltonian should also be able to predict the dynamics
of higher-order spin correlations. As shown in Materials and Meth-
ods, for our experimental sequence, each k-body correlation can be
computed analytically with a time cost of O (2" ), and there are O (N k)
such terms for small k. Therefore, instead of testing all of them or
even including them in the Hamiltonian learning process, here, we
choose to validate the learning results using a few randomly selected
sets of ions. As shown in Fig. 4, we use the learning results of the
O(N?)-scheme, which come from all the single-spin and two-spin
observables, to predict the dynamics of k-body correlations with
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Fig. 3. Hamiltonian learning with O(N) physically guided parameters. (A and B) Calibration of anharmonic trap potential. (A) Blue dots are the measured ion positions
from the complementary metal-oxide semiconductor (CMOS) camera. Green hollow circles are the best fit assuming a quadratic potential in the xz plane. Red dots further
include cubic and quartic terms in the potential. (B) Blue vertical lines are the measured transverse phonon mode frequencies. The phonon spectrum becomes too dense
to resolve at the low-frequency side, so we measure the 10 highest phonon mode frequencies and one lowest frequency. Red vertical lines are the best-fitted theoretical
mode frequencies with cubic and quartic potentials. (C) ac Stark shift Q; of individual ions from experimentally calibrated Rabi rates. They can further be fitted by a Gaussian
profile with a full width at half maximum of 241 pm along the z direction and 29 um along the x direction. (D) Comparison of test-RSS for Hamiltonian learning with
0O(1), O(N), and O(Nz) parameters. Here, O(N2 )-scheme is the method in Fig. 2, O(1)-scheme is to compute the Jj coefficients from the above calibrated phonon modes
and laser intensities, while O(N)-scheme is to use the calibrated phonon modes but fit Q/s as free parameters. The yellow, green, and blue bars correspond to the Ising
Hamiltonian when coupling to the first, fifth, or both phonon modes, respectively. Error bars represent one SD when randomly splitting the data into training and test sets
for 10 times. (E) Ratio of the fitted Q/'s for the O(N)-scheme to the calibrated values in the O(1)-scheme, when the laser couples mainly to the fifth phonon mode. (F) Mode

structure b, of the fifth highest phonon mode.
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Fig. 4. Validation of the Hamiltonian learning results by higher-order correlations. We further use the Hamiltonian, learned from single-spin and two-spin observ-
ables, to predict k-body spin correlations with (A) k = 3, (B) k = 4, and (C) k = 5. We compare the theoretical predictions (solid curves) with experimental results (dots) for
three randomly chosen sets of ion indices. Each experimental point is averaged over M = 5640 samples. Here, we use the Hamiltonian when the laser couples domi-

nantly to the fifth highest phonon mode as an example.

k=3, 4, and 5. For the arbitrarily chosen ion indices, we see good
agreement between the theoretical and experimental results, which
again shows the validity and the insignificant overfitting in the
learning results.

DISCUSSION

To sum up, in this work we demonstrate the Hamiltonian learning
of a long-range Ising model with N = 300 spins on a 2D ion trap
quantum simulator. By exploiting global quantum operations and
single-qubit-resolved measurements, we can learn a general Ising
model with O(N 2) parameters and the required sample size scales at
most linearly with the qubit number. By independently calibrating
the phonon modes of the ion crystal, a more efficient scheme with
O(N) parameters can achieve a similar value of the test error, al-
though the fitting parameters may lack a good physical interpreta-
tion and may be related to the miscalibration of the phonon modes.
In the future, by including higher-order nonlinear potential and the
micromotion into the description of the phonon modes, we may im-
prove the accuracy of the O(1)-scheme to be comparable to the
O(N?)-scheme and thus further enhance the efficiency of the Ham-
iltonian learning task.

Our method can also be extended to contain a site-dependent
longitudinal field H' = },h;6’, which is required in general appli-
cations like the formulation of a quadratic unconstrained binary
optimization problem (42). Note that such a longitudinal field is
canceled by the spin echo in our experimental sequence. Therefore,
a straightforward method is to first use the sequence with the spin
echo to learn all the Ising coupling coeflicients J;;s and then fix them
and execute another set of sequences without the spin echo to learn
the additional N parameters h/s, following the general analytical
formulae in Materials and Methods.

The result of our Hamiltonian learning algorithm can directly be
applied in quantum simulation (10-13) and quantum random sam-
pling (9) tasks that are challenging for classical computers. As demon-
strated in (4), the quasi-adiabatic evolution under a long-range
transverse-field Ising model can be difficult to calculate classically
when the system possesses, e.g., the competition between Ising inter-
actions generated by different laser frequencies and/or long-range
anti-ferromagnetic coupling due to a negative laser detuning. Note
that, although qualitative information like the structure of the phonon
modes may be obtained without knowing J;/s (4), detailed calibration

Guo et al., Sci. Adv. 11, eadt4713 (2025) 29 January 2025

of these parameters is a prerequisite for quantitative applications like
finding approximate ground-state energies and spin configurations of
the targeted classical Ising model. With future upgrades to support
individually addressed single-qubit phase gates, the learning results
can also enable the instantaneous quantum polynomial-time (IQP)
circuit sampling, a well-known quantum random sampling scheme to
demonstrate quantum advantage (9). Specifically, an instance of the
IQP circuit C = H®N DH®Y can be achieved by a diagonal circuit D as
the time evolution under the target Ising Hamiltonian in the o, basis
together with random single-qubit phase gates and two layers of Had-
amard gates by global microwave pulses. Similar to other quantum
random sampling tasks (5-9), the verification of the sampling results
requires accurate calibration of ],-j’s to allow the calculation of the
cross-entropy benchmarks.

MATERIALS AND METHODS

Experimental setup

We use a monolithic 3D Paul trap (4, 43, 44) with a radio frequency
(rf) of o, = 21 X 35.280 MHz at a cryogenic temperature of 6.1 K.
To obtain a 2D crystal of N = 300""'Yb" ions, we use trap fre-
quencies of (,,®,,®,) = 27 X (0.623,2.20,0.147) MHz where the
z direction is the axial direction without micromotion as shown
in Fig. 1A.

All the laser beams propagate in the micromotion-free direc-
tions in the yz plane to be insensitive to the inevitable micromo-
tion of the 2D crystal along the x direction. We use a global
370-nm laser beam for Doppler cooling, optical pumping, and
qubit state detection by turning on or off 14.7- and 2.1-GHz
electro-optic modulators. Another two 370-nm laser beams are
used for EIT cooling with 7 and 6* polarizations perpendicular to
each other (45). They have a blue detuning of about 86 MHz from the
transition between [S, ), F =1,mp =0) (S, F=1,mp =-1))
and | P, ), F = 0,mp = 0). We further use a global 411-nm laser
beam with a linewidth of about 1 kHz, perpendicular to the ion
crystal, for the sideband cooling of the transverse phonon modes.

The imaging system, with a numerical aperture of 0.33, is also
perpendicular to the 2D ion crystal. We use a complementary
metal-oxide semiconductor (CMOS) camera to collect the fluores-
cence from individual ions. We use electron shelving for the single-
shot state detection by first converting the population in the
| Sy, F = 0,mp = 0) state to the D, , and F; , levels through global
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411- and 3432-nm laser (40, 41). Then, we count the fluorescence
photon from individual ions under the global 370-nm laser with an
exposure time of 1.5 ms. The SPAM infidelity is about 0.7%, mainly
due to the imperfect shelving under inhomogeneous laser beams.
We use two counter-propagating 411-nm laser beams to generate
the long-range Ising interaction. As shown in fig. S1, each laser
beam has two frequency components on the two sides of the
[S1/2, F=0,mp=0) to|Ds,, F =2, mp = 0) transition, such that
their time-independent ac Stark shift can be roughly canceled. On
the other hand, the beat note of these two beams creates an ac Stark
shift varying in time and space, which can create a spin-dependent
force (46, 47) and, further, an Ising-type spin-spin interaction when
the phonon modes are adiabatically eliminated (12). More details
about the daily operation of the 2D jon crystal and the derivation for
the Ising model Hamiltonian can be found in our previous work (4).

Alignment of 2D ion crystal with laser wavefront

Equation 1 gives the theoretical Ising coupling coefficients when the
laser phase is uniform over the 2D crystal. In practice, there can be
misalignment between the 2D crystal and the equiphase surface of
the laser, e.g., due to the tilting or twisting of the crystal. Then, each
ion may have a site-dependent initial phase @, and the theoretical
Ising coupling will be modified into J; — ]l-jcos((pi -9 ) Before the
experiment, we adjust the laser wavefront and the 2D ion crystal to
minimize such a site-dependent initial phase.

We calibrate the site-dependent ¢, by initializing all the ions in
Sy, F =0,mp=0), applying a n /2 pulse using one 411-nm la-
ser, and then applying another 7 /2 pulse using the other 411-nm
laser with a random phase. The whole process can be understood
as follows. Without loss of generality, we can use the first laser
pulse to define the o, direction of the optical qubits between
|g) =185, F =0,mp=0)and|e) =|Ds,, F =2,mp =0). There-

fore, the first T /2 pulse prepares all the ions into ( |g)+] e)) / \/5
Then, the second laser pulse will have a phase shift of @, in the
frame of individual ions, together with a global random phase
of A, which we add purposely. This leads us to the final

state { [1 + ei(“’f+A¢)] |g)+ [1 - e_i(‘PerAq))] le) }/2

From the above final product state, we can compute the expecta-
tion values

<(5;> =cos((pi+A¢) (2)

and

(Gicjz) = cos((pi + Ad))cos((pj + Ac]))

=%[cos((pi—cpj>+cos<(p,~+(pj+2A¢>] ®

If we further average over the random phase A¢, then we have

(clol) = (o) (ol) = Jcos(@,— ) @
which can indicate whether the laser phase is uniform over the
2D crystal.

Once the above correlation matrix is measured for the N = 300
ions, we have two ways to minimize the misalignment: One is to ro-
tate the ion crystal by electric fields, and the other is to rotate the laser
beams. Because we want to keep the ion crystal to be micromotion-
free along the transverse y direction, which already defines a plane at
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y = 0, here, we prefer to rotate the laser beams to suppress the spatial
oscillation of the spin-spin correlation as much as possible. For the
remaining phase fluctuation due to, e.g., the curvature of the laser
wavefront, we use the voltages on the 4 X 7 = 28 dc segments togeth-
er with an overall dc bias on the rf electrodes to fine-tune the shape of
the 2D crystal. Typical measurement results for the final correlation
matrix of N = 300 ions are shown in fig. S2, which indicates a nearly
uniform optical phase over the 2D crystal.

Detection of change in the crystal configuration

As described in (4), the configuration of the 2D ion crystal of
N =300 ions has a typical lifetime of a few minutes under the Dop-
pler cooling laser. However, during the experimental sequence, we
need to turn off the cooling laser for the desired Hamiltonian evolu-
tion. Then, the ion configuration has a non-negligible probability to
change during the evolution time up to 9 ms. In this experiment, al-
though the global laser and the pattern of the few highest phonon
modes are not sensitive to the small change in the ion positions, it
does influence the site-resolved state detection of individual qubits.
Therefore, we add a step to check the crystal configuration during
the repetition of the experimental sequences. Specifically, we collect
the fluorescence from individual ions during the Doppler cooling
stage for each experimental trial using the CMOS camera. Ideally, all
the jons will locate at the precalibrated positions and appear bright
on the images. However, if the crystal configuration is changed, then
some of these preselected regions will become empty and be detected
as a dark ion.

Note that, under our experimental conditions, the probability for
the configuration to change in each trial is still low. Therefore, once
the configuration is changed, it will persist for several rounds of ex-
perimental sequences. This allows us to distinguish the configura-
tion change from the occasional SPAM error on random ions. The
detailed empirical criteria to identify the configuration change are
shown in table S1. In addition, note that these criteria can discard
not only the change in the ion configuration but also the occasional
leakage to some metastable levels or the formation of, e.g., YbH*
ions. In the experiment, we typically discard about 20% of the data,
which depends on the conditions of the experimental setup.

Analytical formulae for k-body spin correlations
We consider a general Ising model Hamiltonian with a longitu-
dinal field

_ r_ i i
H=H,+H = 2]1-]-62(52 + Zh,—cz (5)
i<j i
Following our experimental sequence, we initialize all the spins
in M), evolve the system under the Hamiltonian H for time ¢, and,
lastly, measure the individual spins in the 6, basis.

First, we consider the single-spin observables (jS ). We have
(L) =(+ - +|ecle™™ |+ - +)
1 iHt i i
=5 2, (shleMale™ ] {s'))
{sh{s'}
(6)

_ Z ({s} |eiE([s])tGi o Bt | {s’})
X
shis'}

_ 1 iEl {s}—s,-,s,v)t i —iE({s}=s;—s;)t
=5 2 ((s)=si (s Wil M)l ) — )] =)

{s}=sps;

1
n
2 {
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where {s} represents the set of all spins in the 6, basis, {s} — s; means
the set of all but the ith spin, and we use the fact that ¢ flips the ith
spin without affecting other spins.

In the above derivation, we use the function E to represent the
energy of a given spin configuration. In general, if we divide the
spins into two groups, {s,} and {sz}, then we can express the total
energy as

E({sh=E;({sH+E,({s})
=E,({5A})+E]({sB})+E]({sA}, {SB}) +Eh({5A})+Eh({SB})

7)

where E; and Ej, represent the energy under the Ising interaction and
the longitudinal field, respectively, and E, ({s4}, {s3}) is the interac-
tion between the two groups. In addition, we have the symmetry

E;({s)=E;(—{s})

E,({sh)=—Ey(={s} (8)
E]({SA}, {53}) :_E]({SA}> - {53}) :_E](_ {sa}s {53})
Using these relations, we get
i — 1 iE({s}=s;s; )t ,—iE({s}—s;—s;)t
CADE 2—”2 (e =spsi)t g (le) =)
_ 2% Z 2B (15155 +E, (5]t
{s}=sps;
— i eZi( sidiisesiHhis; )t 9)
21’1
(s}
_1 2ihys;t
=5 SZe gcos(ﬂkisit)
=cos(2h;t) Hcos(Z]kit)

k#i

Similarly, for the correlation between two spins i and j, we have

)

{s}=si=s;ssi>5;

2i[E]({s}—s,.—sj,s,»)+E]({s}—si—sj,sj)+Eh(s[)+E,,(sj)]t

eiE({s)—s[—sj,s,,sj)te—iE({s)—si—sj,—s,,—sj)t

(oL (Do) =5

1
=272

{s}=s;=s;:5;55;

l 262’( DSkt Zk#i,)]kysks]+hist+hj5j)t

n

(s}

| (10)
_ i Y 2i(hisihis))t [ coss[20si+Jis;)1]
518 ki,
= %cos [2(h;+h;)t] Hcos [2(J+T4)t]
ki,
+ %cos [2(h—h;)t] HCOS 20k =Ji)t]
ki

In principle, by fitting the N single-spin magnetizations and the
N(N —1) /2 two-spin correlations, we can get all the required pa-
rameters. In particular, if we focus on the early-time dynamics,
then we have
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(i) ~ 1~ 2<hf + Z],fi>t2

prm (11)
and
(ci(t)o, (1)) ~ 1 -2 lhf+hf+k;(1,§i+l,fj)] S
Therefore, we have
(oL(Hok() = (oL(t)) (oh(D)) ~ 4T3t (13)

which already gives the magnitude of each desired J;. However, in
practice, such early-time dynamics will be sensitive to the SPAM
error, so we use the long-time evolution and the analytical formulae
to fit the Ising coupling coefficients as described in the Experimental
scheme section.

We can also generalize the above formulae to k-body correlations

2621'( X1 T 5185+ T si, )t
(s}

2k Z " Hcosl (Z]hk >] (14)

S5l

/

(62 (1) o (1) = =

where ’ in the summation or production represents the set
{s} —s; — -+ —s;. The number of terms scales exponentially with
k, so we do not use all of them for the Hamiltonian learning process
but only use a few randomly chosen sets with k = 3,4, and5 for the
validation of our learning results.

In the above derivations, we assume ideal evolution under the
Hamiltonian of Eq. 5, and we attribute the decay in the magnetiza—
tion and the correlation to the dynamics under h;s and ] s. In prac-
tice, however, various noise sources can lead to decoherence in the
experiment. For example, slow drifts in the laser intensity or fre-
quency can lead to shot-to-shot fluctuation in these coefficients,
which further translates into a Gaussian decay in the measured
magnetizations and correlations. In addition, as we show in (4), the
off-resonant phonon excitation can also be regarded as a spin de-
phasing term when we trace out the phonon modes. The actual error
model can be very complicated depending on the contribution of
different sources and will generally vary with different sites. Here,
we take a simplified model with 2N parameters.

Specifically, for each ion i, we assign two parameters v’ _and

i for the correlated and independent decoherence rates, respec-

Yindep
tively. The correlated decoherence is motivated by the slow drift in
the longitudinal fields caused by the global laser intensity. Although
they average into a Gaussian decay over different experimental trials
through (cos(ht)) = e=*/2whenh ~ N (0,y?), still, the coherence
between different ions is maintained when we consider spin-spin
correlations. In contrast, the independent decoherence captures the
other error sources that do not maintain the phase coherence among
ions. With such terms included and with the longitudinal field set to
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zero, the theoretical dynamics for single-spin and multi-spin ob-

servables become
Hcos(Z]kit) (15)

(ci() =exp {— [(andep>2 + (Yior)z] t } :
k#i

omin=esn{- (o) () () )

X Hcos[Z(]ki+]k]-)t]

k#iy

. , (16)
ol () + )]
X Hcos[Z(}ki—]kj)t]
k#iyj
<ci:(t>---c§5(t)>=2—1k Y exp
2
- ;( mdep) (ZY’C“orslk> t (17)

Tel(3e)

If we fit these 2N parameters together with the Ising coupling co-
efficients, because their leading-order effects are both the decay in
the magnetization and correlation as shown by Eqs. 11 and 12, then
it will largely increase the uncertainty in the learning results. Instead,

here, we first fit all the y! s and y!_ 4ep With fixed J; = 0 by setting a

large laser detuning of 80 kHz above the COM mode. Then, we fix
these fitted decoherence rates during the rest of the experiment to
learn the desired Hamiltonian when the laser detuning is closer to
some of the phonon modes. Note that this separated calibration step
is consistent with our error model of a slow drift in the laser-induced
ac Stark shift (the longitudinal field) and an additional independent
dephasing due to noise sources other than the laser. The calibration

results for y! ’sandy! ndep s are shown in fig. S3. Together, they give an

2
average decoherence time of about1/ \/ + (yior)z ~ 9ms.

mdep
Compensating the leakage error to D;, and F; , levels
Under the off-resonant 411-nm laser, there is a small probability
that the final population will be in the D, or F; ), levels, which is a
leakage error from the qubit subspace in the S, , levels. In the ex-
periment, we observe a gradual increase in the leakage probability
with the evolution time, which mainly comes from the spontaneous
emission from the D; , levels to the F; , levels. After electron shelv-
ing, such leaked population will be detected as dark, that is, the
[0) =|S,,,,F =0,mp =0) state. This will cause bias in the mea-
sured magnetizations and correlations.

For small leakage probability €;, we can measure the leakage rate
experimentally and correct it to the first order during the experimen-
tal sequence. The idea is to divide the experimental trials into two
groups. For one group, we use the original experimental sequence in
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Fig. 1B. For the other group, we insert a m pulse to exchange the
[0) =S,/ F=0,mp=0) and |1) =§]|,/,, F=1,mp =0) states
before the measurement. Suppose, ideally, the ith qubit has probability
pito be in|0) and probability p to be in| 1) (p} + p = 1), and sup-
pose, now, there is probability €] of the leakage error that may vary for
different ions. Now, if we evaluate (GZ ) for the two groups of datasets,
then we will get (p —p? ) (1—€! ) + €l and (p| —p! ) (1—€! ) + €, re-
spectively, without or with the &t pulse. From their average, we obtain the
leakage probability €], while their difference gives 2 ( pi— p’l) (1- ei),
which is proportional to the ideal single-spin magnetization pj —

and can be recovered by dividing (1— €l ). Following similar deriva-
tions, we can use this method to correct the k-body spin correlations

(G (t) -+ 6(t)) to the first order by dividing H;;l (1 - e’L’ )

For each ion, we can further perform a linear fit for the leakage
probability versus time and obtain the leakage rates shown in fig. S4.
The central ions feel higher 411-nm laser intensity and typically
have higher leakage rates, with a typical timescale above 30 ms,

much longer than our evolution time.

Theoretical scaling of the precision
As described in the Experimental scheme section, we use the
relative energy difference e[JV,J@]|=(|E[JV]|-E[J®]])/

\/SE|J (1)] OE [] (2)] between the learning results ](1)’5 and ](2)5 on

independent datasets to characterize the learning prec1s1on Spec1ﬁ—
cally, for any given spin configuration {s}, we can evaluate the ener-
gy for the two Hamiltonians E[{s};J®] and E[{s};]®] Then, we
compute the numerator as the average of | E[{s}; ]| — E[{s};J?] |
over the randomly sampled spin configurations, and we define
SE[](”] and SE[](Z)] as the SDs of E[{s};J] and E[{s};]®] over
random spin configurations.

Next, we analyze the scaling of the precision e versus the system size
N. When fitting the O (N 2) parameters of J;s, the different parameters
are correlated through their covariance matrlx so we expect their fluc-
tuation to be on the same order which we denote as 6] ~ 8. We have
dx1/ \/_ M depending on the sample size M. Now, if we compute the
energy difference due to the 8];; terms on random spin configurations,
then we are basically performing a random walk with O(N?) steps.
Therefore, the numerator can be estimated to be O(NJ). On the other
hand, for the denominator, we consider two cases: (i) We couple domi-
nantly to a single-phonon mode such that we have an all-to-all coupling
Jij~ O(J, ) and (ii) we couple to all the phonon modes with roughly a
power-law decay J;; ~ J, /Il 7i— 7j ||* (12). In both cases, to observe
nontrivial dynamics in the magnetizations and correlations, we want
Yk 3 T2 ~ O(1)according to Egs. 11 and 12 where T'is the total evo-
1ut10n tlme In the first case, it means J, ~ 1/ \/_ NT, and, in the second
case, it gives J, ~ 1 / T. In both cases, after averaging over random spin
configurations, we find the SD of the total energy to be O( \/ﬁ / T);

thus, the precision will scale as \/JTI ST.

On the other hand, if the ground-state properties are desired,
then, in the denominator, we should not compare with the fluctua-
tion of the energy but with the ground-state energy itself. Suppose
there to be no notable frustration, we expect the ground-state ener-
gy to scale at least as O(NV), then the precision will be O(1), no longer
degrading with the system size.
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Fitting anharmonic trap potential

To compute the Ising coupling coefficients theoretically using Eq. 1,
we need to know the accurate phonon mode structure of the ion
crystal, which is, in principle, a classical problem and can be solved
given the external trap potential. The trap potential is, in principle,
governed by the design of the trap electrodes and the voltages that
we apply on them. However, because of the fabrication errors and
various experimental noises, the theoretically computed trap poten-
tial can often deviate from the actual one. Therefore, we choose to fit
the trap potential from the available information, including the
measured ion positions in the 2D crystal at the precision of about
1 pm, the frequencies of a few resolvable phonon modes at the preci-
sion of about 1 kHz and the excitation pattern of these modes. As
the phonon spectrum becomes denser at the low-frequency side,
here, we only use the frequencies of the 10 highest modes and one
lowest frequency. In addition, we can apply a weak global 411-nm
laser pulse on the blue sideband of a resolved mode k, and then the
excitation probability of each ion i will be proportional to bizk.

Often, a harmonic trap is still a reasonable approximation to the
trap potential, and, here, we add a few anharmonic terms as small
perturbation. In particular, we assume that the potential can be de-
scribed by some low-order polynomials that vary slowly in space.
Otherwise, if the potential is fast oscillating from ion to ion, then
there will be too many parameters to fit from the available in-
formation.

Even if we truncate to quartic polynomials, the potential already
contains a large number of parameters and a straightforward fitting
will be both inefficient and likely to be trapped to unphysical local
minima. Instead, we divide the fitting procedure into five stages as
shown in table S2.

In the first stage, we give an initial fitting of the harmonic terms
x% and z? within the plane of the 2D ion crystal. The y? term is mea-
sured as the single-ion trap frequency along the perpendicular y
axis through the resolved sideband transition with high precision
and is fixed during the whole fitting procedure. For any given coef-
ficients for the x* and z* terms, we use the measured ion positions as
the starting point to search the equilibrium positions under their
Coulomb interaction and further solve the collective phonon mode
frequencies. Then, we compare them with the measured values and
further improve the fitting results by minimizing this cost function.

In the second stage, we add cubic terms to better fit the ion posi-
tions inside the xz plane. Because the equilibrium positions of all the
ions have y =0, we can drop all the terms containing y and only
consider x%, x2z, xz% and z° terms.

However, the cubic terms are not sufficient to give a good fitting
to the ion positions and mode frequencies, so we further consider
the quartic terms. To have a good starting point to fit the quartic
terms as perturbations, we insert the third stage to refine the qua-
dratic terms with the previous cubic terms fixed. Then, in the fourth
stage, we add some quartic terms. Because of the reflection symme-
try of the designed electrodes, here, we only consider symmetric
terms like y22z2, y?x% x*z% and z* and we expect the other asym-
metric terms to be subdominant. The asymmetry of the ion crystal
can already be captured by the cubic terms above. In addition, here,
we drop the x* term because the size the 2D crystal is much smaller
in the x direction than that in the z direction.

In the last stage, we further fit cubic terms along the y direction
through their influence to the transverse phonon modes. Here, we
focus on xy? and zy? terms, which can be regarded as a site-dependent
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trap frequency along the y direction. They will not change the equi-
librium positions of the ions but will affect the phonon modes. On
the other hand, terms like x%y, z2y, and xyz correspond to a site-
dependent force perpendicular to the crystal. Their main effect is a
twist in the crystal that cannot be measured from the image of the
ions. In addition, after the small twist of the crystal, these forces are
already canceled by the harmonic terms as well as the Coulomb in-
teraction between ions, so we expect their influence on the phonon
modes to be higher order and, hence, do not include them in this
fitting. Last, the y* does not affect the equilibrium positions or the
transverse phonon modes and, therefore, is not considered either.

In the above fitting, we do not consider the micromotion of the
ions because, in our case, the largest micromotion amplitude is still
smaller than the inter-ion distance. In the future, we may also take
the micromotion into consideration to get a more accurate descrip-
tion of the phonon modes for larger ion crystals (48-50).

Supplementary Materials
This PDF file includes:

Tables S1and S2

Figs.S1to S4
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