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A P P L I E D  P H Y S I C S

Hamiltonian learning for 300 trapped ion qubits with 
long-range couplings
Shi-An Guo1†, Yu-Kai Wu1,2,3†, Jing Ye1, Lin Zhang1, Ye Wang4, Wen-Qian Lian4, Rui Yao4, Yu-Lin Xu1, 
Chi Zhang4, Yu-Zi Xu1, Bin-Xiang Qi1, Pan-Yu Hou1,2, Li He1,2, Zi-Chao Zhou1,2, Lu-Ming Duan1,2,5*

Quantum simulators with hundreds of qubits and engineerable Hamiltonians have the potential to explore quan-
tum many-body models that are intractable for classical computers. However, learning the simulated Hamiltoni-
an, a prerequisite for any quantitative applications of a quantum simulator, remains an outstanding challenge due 
to the fast increasing time cost with the qubit number and the lack of high-fidelity universal gate operations in the 
noisy intermediate-scale quantum era. Here, we demonstrate the Hamiltonian learning of a two-dimensional ion 
trap quantum simulator with 300 qubits. We use global manipulations and single-qubit–resolved state detection 
to efficiently learn the all-to-all–coupled Ising model Hamiltonian, with the required quantum resources scaling at 
most linearly with the qubit number. We further demonstrate a physically guided learning scheme with the quan-
tum sample complexity independent of system sizes by carefully fitting the anharmonic trap potential. Our work 
paves the way for wide applications of large-scale ion trap quantum simulators.

INTRODUCTION
Quantum computers and quantum simulators have reached the stage 
of coherently manipulating hundreds of qubits (1–4), and quantum 
advantage over classical computers has been claimed in random 
sampling tasks (5–9). To achieve the next milestone of quantum ad-
vantage with practical utility, quantum simulation of many-body dy-
namics is one of the most promising candidates (10–13). However, 
verifying the quantum simulation results for such classically intrac-
table problems is a notoriously challenging task. To completely char-
acterize the simulated dynamics and to check whether it follows the 
desired Hamiltonian evolution, quantum process tomography re-
quires a time cost that grows exponentially with the system size N 
(14). To reduce this complexity, various Hamiltonian learning algo-
rithms have been developed (15–32), using different types of a priori 
knowledge about the system like locality (15, 17, 18, 21–25, 27, 30–
32) and sparsity (20, 26, 29) or using the help of certain steady states 
or thermal states (22–25,  31) or other trusted quantum devices 
(16,  19,  28) as quantum resources. Nevertheless, a poly(N) time 
complexity is generally inevitable, which becomes a considerable 
cost for the large-scale quantum simulators. Besides, many of the 
learning algorithms require individually addressed quantum 
gates (15, 17, 18, 22–25, 28–32), which may not be available on 
the noisy intermediate-scale quantum (NISQ) devices.

On the other hand, quantum simulators based on arrays of atoms 
(33–35) or ions (4, 12) can naturally support single-shot readout of all 
the N qubits, giving N bits of information per trial. This can largely 
reduce the required quantum simulation resource costs by up to a fac-
tor of N. Following this idea, the coherent imaging spectroscopy tech-
nique has been developed, where all the O

(
N2

)
 coefficients in a fully 

connected Ising model can be determined from O(N) frequency scans 
with global quantum manipulation and individual state detection 

(36). However, this scheme is subject to a lower signal-to-noise ratio 
as the state preparation error accumulates with increasing N. In addi-
tion, the time for each frequency scan may need to scale polynomially 
with N to resolve the decreasing energy gaps. Because of these restric-
tions, this scheme has only been applied to measure an eight-spin 
Hamiltonian (36) and to partially verify the theoretical calculations 
for 61 qubits (37).

Here, we report the Hamiltonian learning of an ion trap quan-
tum simulator with 300 qubits. We use global laser and microwave 
operations to perform a Ramsey-type experiment with various evo-
lution times under the desired Ising Hamiltonian. We extract single-
spin and two-spin observables from the single-shot measurements 
to fit all the O

(
N2

)
 Ising coupling coefficients (44,850 in total), and 

we test the learning results on independent data to show that there 
is no substantial overfitting. We further compare this general model 
to a physically guided one with O(N) parameters. By independently 
calibrating the collective phonon modes of the ions and the laser 
intensity, the latter learning algorithm can achieve a similar test er-
ror as the former, with an improved scaling for the required sample 
size. We further compute the dynamics of higher-order spin correla-
tions from the learned Hamiltonian and validate the learning results 
from their consistency with the experimental data. Our method can 
be applied to even larger ion crystals and paves the way for the ap-
plications of the ion trap quantum simulators on various NISQ algo-
rithms (11, 13).

RESULTS
Experimental scheme
Our experimental setup is sketched in Fig. 1A with a two-
dimensional (2D) crystal of 300 171Yb+ ions in a cryogenic mono-
lithic ion trap (4). The qubits are encoded in the hyperfine ground 
states ∣0⟩ ≡ ∣S1∕2, F = 0,mF = 0⟩ and ∣1⟩ ≡ ∣S1∕2, F = 1,mF = 0⟩. 
By applying counter-propagating 411-nm global laser beams on the 
ions perpendicular to the 2D crystal, we can generate a long-range 
Ising Hamiltonian H0 =

∑
i<jJijσ

i
z
σ
j
z intermediated by the trans-

verse (drumhead) phonon modes (4, 38). When supplemented by a 
global microwave resonant to the qubit frequency, a transverse-field 
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Ising model H = H0 + B
∑

iσ
i
x
 can be obtained (4) with wide appli-

cations in quantum many-body physics (12) and NISQ algorithms 
(11, 13). Because the transverse field B can be accurately controlled 
and separately calibrated in experiments, here, we focus on the cali-
bration of the Ising coupling coefficients Jij’s, which represents the 
challenging part of the Hamiltonian H to be learned. Theoretically, 
with the 2D crystal locating on an equiphase surface of the laser (see 
Materials and Methods) and under the virtual excitation condition 
of the phonon modes (4, 12), the coupling coefficients can be given as

where μ is the laser detuning, ωk is the frequency of the kth mode, ηk 
is the Lamb-Dicke parameter, Ωi is the laser-induced ac Stark shift 
on the ith ion, and bik is the normalized mode vector.

The experimental sequence for Hamiltonian learning is shown in 
Fig. 1B where we perform a Ramsey-type experiment to extract infor-
mation about H0 by tuning the transverse B field to zero. We initialize 
the spins in ∣+⟩ by a global microwave π∕2 pulse, evolve them under 
H0 for time t , and, lastly, measure all the spins in the σx basis by 

applying another microwave π∕2 pulse followed by the site-resolved 
fluorescence detection. To remove the influence of possible longitudi-
nal fields H � =

∑
ihiσ

i
z
 (which can be calibrated separately if needed), 

we apply a microwave π pulse in the middle of the Hamiltonian evolu-
tion that commutes with the desired H0. A typical single-shot mea-
surement result at t = 0, using the electron shelving technique (39–41), 
is shown in Fig. 1C with a few random spins being flipped due to the 
about 0.7% state-preparation-and-measurement (SPAM) errors. Sim-
ilarly, in Fig. 1D, we show a typical single-shot measurement result at 
t = 9 ms when the Ising interaction is dominated by the pattern of the 
fifth highest phonon mode. By further averaging over M experimental 
trials, we can estimate any k-body spin correlation functions. Here, we 
focus on the single-spin (“magnetization”) and two-spin (“correla-
tion”) observables and use them to fit all the Jij’s, as shown in Fig. 1 (E 
and F). Later, we will use higher-order correlations to verify the Ham-
iltonian learning results.

Suppose we take data from T  different evolution times. The 
NT  magnetizations and N(N−1)T ∕2 correlations contain suf-
ficient information to learn the N(N−1)∕2 Ising coupling coef-
ficients. Actually, in principle, even the early-time dynamics 

Jij =
∑
k

1

8
(
μ−ωk

)η2kbikbjkΩiΩj (1)
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Fig. 1. Experimental scheme. (A) A cryogenic monolithic ion trap is used to obtain a two-dimensional (2D) crystal of N = 300171Yb
+ ions. (B) A Ramsey-type experiment 

is performed to learn the long-range Ising Hamiltonian using global control and individual readout of the qubits. We initialize all the ions in ∣0 ⟩ by laser cooling and opti-
cal pumping and rotate them into ∣+⟩ by a microwave π∕2 pulse. The system is then evolved under the Ising Hamiltonian H0 for various times t  with a spin echo in the 
middle to cancel the longitudinal fields. Last, we measure all the ions in the σx basis via another microwave π∕2 pulse followed by the state-dependent fluorescence de-
tection. (C) Typical single-shot measurement result at t = 0 ms. (D) Typical single-shot measurement result at t = 9 ms. (E) All the single-spin (magnetization) and two-spin 
(correlation) observables are used to fit the Ising coupling coefficients. Typical fitting results (solid curves) are compared with the measured data (dots for magnetization 
and squares for correlation with one SD error bar) for an arbitrarily chosen ion pair. (F) The fitted Ising coupling coefficients Jij when the laser couples dominantly to the 
fifth highest phonon mode.
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⟨σi(t)σj(t)⟩ − ⟨σi(t)⟩ ⟨σj(t)⟩ ≈ 4 ∣ Jij ∣
2 t2 is sufficient to deter-

mine the magnitude of all the Jij’s. Here, we use longer evolution 
time and the analytical formulae for the magnetizations and cor-
relations (see Materials and Methods) to fit the Ising coefficients 
so that the results will be more robust to the experimental noises. 
Because of the symmetry of the Hamiltonian and the initial state, 
the measured dynamics will be invariant if we change Jij → −Jij 
(∀ j ≠ i) for any given spin i . In other words, there exist an expo-
nential number of equivalent solutions under our experimental 
sequence, which, in principle, can be distinguished by preparing 
different initial states. However, note that these equivalent pat-
terns are discrete and well separated from each other given that 
each spin is strongly coupled to at least one of other spins. There-
fore, we can simply use the theoretical predictions like Eq. 1 as 
the starting point of the fitting to break their symmetry.

We demonstrate this Hamiltonian learning algorithm for differ-
ent Ising coupling coefficients in Fig. 2, with the laser dominantly 
coupled to the highest (center of mass) or the fifth phonon mode, or 
using two frequency components to couple to both of them (4). As 
shown in Fig. 2A, the residual sum of squares (RSS) of the least 
square fitting follows a 1∕M scaling (solid curves) versus the sample 
size M at each time point due to the statistical fluctuation. There also 
exists a nonzero RSS in the limit M → ∞ due to the deviations from 
the ideal fitting model caused by the SPAM error, the nonzero pho-
non excitations, and the spin dephasing due to high-frequency 
noise. (The dominant dephasing source of a shot-to-shot laser inten-
sity fluctuation has been included in the theoretical model as de-
scribed in Materials and Methods.) If we view the least square fitting 
as an optimization problem, then the RSS is already close to the 
M → ∞ case (horizontal dashed lines) with about M = 5000 sam-
ples. However, this does not exclude the possible overfitting in the 
obtained Ising coefficients. For this purpose, we further plot the 
learning curve during the training process in Fig. 2B. We randomly 
split the data at each time point into two equal halves as the training 
and the test sets. We minimize the RSS of the training set by iterative 
algorithms and also compute the corresponding RSS on the test set 

at each step. As we can see, for all the three Hamiltonians to be 
learned, the RSS for the training and the test sets shows the same 
tendency and similar final values. This suggests that our sample size 
is large enough to avoid overfitting in the learning results.

Nevertheless, it is still desirable to have more samples to im-
prove the precision. To quantify the precision of the learned 
Ising Hamiltonian, here, we define a relative energy difference 
ϵ
�
J (1), J (2)

�
≡ ⟨∣E�J (1)�−E

�
J (2)

�
∣⟩∕

�
δE

�
J (1)

�
⋅δE

�
J (2)

�
, where the nu-

merator is the energy difference between two sets of Ising coeffi-
cients J (1)

ij
’s and J (2)

ij
’s averaged over all the spin configurations, and 

the denominator consists of the SD of the energy for the two sets, 
again over all the spin configurations (see Materials and Methods 
for details). Roughly speaking, this quantity characterizes the phase 
difference accumulated during the typical timescale of the two 
Hamiltonians and has a scaling of 

√
N  with the system size. Now, we 

can take two disjoint sets of data, each with M samples, to learn the 
Ising coupling coefficients J (1) and J (2), and compute their relative 
energy difference. We further average over random choices of the 
datasets to quantify the precision and fit a scaling ϵ ∝ 1∕

√
M as 

shown in Fig. 2C. From the fitting results, we can estimate that about 
104 samples at each time point will be needed to reach a precision of 
1% for the N = 300 qubits. Note that the above definition of the pre-
cision is for general quantum dynamics and average spin configura-
tions. In many cases, we will be interested in the ground states, then 
the undesired scaling of 

√
N  can be removed, and the precision can 

be largely improved (see Materials and Methods). However, for gen-
eral Ising Hamiltonian, the ground-state energy may be difficult to 
evaluate; therefore, here, we still use the above definition of the pre-
cision while recognizing that the actual precision may be better for 
certain tasks.

The above scaling of ϵ ∝
√
N ∕M suggests that, to reach the de-

sired precision for large-scale quantum simulators, the required 
sample size M may scale linearly with the qubit number N. This can 
also be understood as follows: Although we use O

(
N2

)
 observables 

(including magnetizations and correlations) to learn the O
(
N2

)
 

A B C

Fig. 2. Hamiltonian learning with O
(
N

2
)
 parameters. (A) Residual sum of squares (RSS) for N = 300ions and T = 13 time steps versus the sample size M at each step. 

Whether the Ising Hamiltonian comes from coupling to the first (blue) or the fifth (red) highest phonon mode or both (green), the experimental results can be well fitted 
by y = ax−1 + b (solid curves) where b > 0 (horizontal dashed lines) corresponds to the deviation from the theoretical model due to experimental imperfections. After 
discarding the data when the configuration of the ion crystal is changed during the experimental sequence (see Materials and Methods), we get in total 
M = 4638, 5640, and 5272 samples for the three Hamiltonians, respectively. (B) Typical learning curves when we randomly divide the samples at each time point into 
two equal halves as the training and the test sets. We fit the Ising coupling coefficients Jij’s using the training set by iteratively minimizing their RSS (training-RSS). For each 
step of iteration, we record the Jij’s and compute the RSS on the test set (test-RSS). (C) Precision ϵ of the learning results versus the sample size M. We take two disjoint sets 
of data, each with M samples, to learn the Ising coupling coefficients separately. Then, we compute their relative energy difference for 1000 randomly sampled spin con-
figurations. Last, we further average over five random choices of the disjoint datasets and use the SD as error bars. A scaling of ϵ ∝ M−α is fitted with α ∈ [0.45,0.57], close 
to the theoretical scaling of M−0.5.
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parameters of the Hamiltonian, note that they are computed from M 
single-shot measurement results that contain at most NM bits of in-
formation. In this sense, M ∼ O(N) samples will be necessary to es-
timate all the O

(
N2

)
 parameters. To overcome this general scaling, 

additional knowledge about the physical system must be exploited 
to parameterize the Hamiltonian more economically. According to 
Eq. 1, one possibility is to calibrate the phonon modes and the laser 
intensities on all the ions. As shown in Fig. 3 (A and B) with more 
details in Materials and Methods, we can fit the anharmonic trap 
potential up to the fourth order from the measured equilibrium po-
sitions of the ions and a few phonon modes that can be resolved and 
further compute all the phonon mode structures theoretically. In 
addition, in Fig. 3C, we calibrate the laser intensity on individual 
ions by driving their carrier Rabi oscillations between the S1∕2 and 
D5∕2 levels. However, if we directly compute the Ising coupling coef-
ficients using Eq. 1 (or add up two sets of such computed coefficients 
when applying two frequency components), then the performance 
of the learned Hamiltonian is typically not satisfactory, with much 
higher RSS on the test set as shown by the O(1)-scheme in Fig. 3D.

To understand the deviation from the above O
(
N2

)
-scheme, we 

fix the calibrated phonon modes and turn the laser-induced ac Stark 
shift Ωi into N fitting parameters. From Fig. 3D, we can see that, 
with these O(N) fitting parameters, the RSS on the test data already 
becomes close to the O

(
N2

)
-scheme. We plot the ratio between the 

fitted Ωi and the measured ones in Fig. 3E when the laser couples 

dominantly to the fifth phonon mode. The discrepancy is most se-
vere near the nodes of the fifth mode as shown in Fig. 3F where 
bik ≈ 0 and near the edge of the 2D crystal with large micromotion 
of the ions. This suggests that the deviation between the O(1)-scheme 
and the O

(
N2

)
-scheme is still restricted by the inaccurate calibra-

tion of the phonon modes and may be improved in the future by 
including the micromotion into the theoretical model. It also means 
that the O(N) fitting parameters do not have the physical meaning of 
the laser intensity but are to compensate the miscalibrated phonon 
modes. Therefore, for the Hamiltonian when the laser has two fre-
quency components to couple to two phonon modes, we should in-
troduce N independent fitting parameters for each mode.

Predicting higher-order correlations
Apart from explaining all the magnetizations and the correlations, 
the learned Hamiltonian should also be able to predict the dynamics 
of higher-order spin correlations. As shown in Materials and Meth-
ods, for our experimental sequence, each k-body correlation can be 
computed analytically with a time cost of O

(
2k
)
, and there are O

(
Nk

)
 

such terms for small k. Therefore, instead of testing all of them or 
even including them in the Hamiltonian learning process, here, we 
choose to validate the learning results using a few randomly selected 
sets of ions. As shown in Fig. 4, we use the learning results of the 
O
(
N2

)
-scheme, which come from all the single-spin and two-spin 

observables, to predict the dynamics of k-body correlations with 

A B

E F

C D

Fig. 3. Hamiltonian learning with O(N) physically guided parameters. (A and B) Calibration of anharmonic trap potential. (A) Blue dots are the measured ion positions 
from the complementary metal-oxide semiconductor (CMOS) camera. Green hollow circles are the best fit assuming a quadratic potential in the xz plane. Red dots further 
include cubic and quartic terms in the potential. (B) Blue vertical lines are the measured transverse phonon mode frequencies. The phonon spectrum becomes too dense 
to resolve at the low-frequency side, so we measure the 10 highest phonon mode frequencies and one lowest frequency. Red vertical lines are the best-fitted theoretical 
mode frequencies with cubic and quartic potentials. (C) ac Stark shift Ωi of individual ions from experimentally calibrated Rabi rates. They can further be fitted by a Gaussian 
profile with a full width at half maximum of 241 μm along the z direction and 29 μm along the x direction. (D) Comparison of test-RSS for Hamiltonian learning with 
O(1), O(N), and O

(
N2

)
 parameters. Here, O

(
N2

)
-scheme is the method in Fig. 2, O(1)-scheme is to compute the Jij coefficients from the above calibrated phonon modes 

and laser intensities, while O(N)-scheme is to use the calibrated phonon modes but fit Ωi’s as free parameters. The yellow, green, and blue bars correspond to the Ising 
Hamiltonian when coupling to the first, fifth, or both phonon modes, respectively. Error bars represent one SD when randomly splitting the data into training and test sets 
for 10 times. (E) Ratio of the fitted Ωi’s for the O(N)-scheme to the calibrated values in the O(1)-scheme, when the laser couples mainly to the fifth phonon mode. (F) Mode 
structure bik of the fifth highest phonon mode.
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k = 3, 4, and 5. For the arbitrarily chosen ion indices, we see good 
agreement between the theoretical and experimental results, which 
again shows the validity and the insignificant overfitting in the 
learning results.

DISCUSSION
To sum up, in this work we demonstrate the Hamiltonian learning 
of a long-range Ising model with N = 300 spins on a 2D ion trap 
quantum simulator. By exploiting global quantum operations and 
single-qubit–resolved measurements, we can learn a general Ising 
model with O

(
N2

)
 parameters and the required sample size scales at 

most linearly with the qubit number. By independently calibrating 
the phonon modes of the ion crystal, a more efficient scheme with 
O(N) parameters can achieve a similar value of the test error, al-
though the fitting parameters may lack a good physical interpreta-
tion and may be related to the miscalibration of the phonon modes. 
In the future, by including higher-order nonlinear potential and the 
micromotion into the description of the phonon modes, we may im-
prove the accuracy of the O(1)-scheme to be comparable to the 
O
(
N2

)
-scheme and thus further enhance the efficiency of the Ham-

iltonian learning task.
Our method can also be extended to contain a site-dependent 

longitudinal field H � =
∑

ihiσ
i
z
, which is required in general appli-

cations like the formulation of a quadratic unconstrained binary 
optimization problem (42). Note that such a longitudinal field is 
canceled by the spin echo in our experimental sequence. Therefore, 
a straightforward method is to first use the sequence with the spin 
echo to learn all the Ising coupling coefficients Jij’s and then fix them 
and execute another set of sequences without the spin echo to learn 
the additional N parameters hi’s, following the general analytical 
formulae in Materials and Methods.

The result of our Hamiltonian learning algorithm can directly be 
applied in quantum simulation (10–13) and quantum random sam-
pling (9) tasks that are challenging for classical computers. As demon-
strated in (4), the quasi-adiabatic evolution under a long-range 
transverse-field Ising model can be difficult to calculate classically 
when the system possesses, e.g., the competition between Ising inter-
actions generated by different laser frequencies and/or long-range 
anti-ferromagnetic coupling due to a negative laser detuning. Note 
that, although qualitative information like the structure of the phonon 
modes may be obtained without knowing Jij’s (4), detailed calibration 

of these parameters is a prerequisite for quantitative applications like 
finding approximate ground-state energies and spin configurations of 
the targeted classical Ising model. With future upgrades to support 
individually addressed single-qubit phase gates, the learning results 
can also enable the instantaneous quantum polynomial-time (IQP) 
circuit sampling, a well-known quantum random sampling scheme to 
demonstrate quantum advantage (9). Specifically, an instance of the 
IQP circuit C = H⊗NDH⊗N can be achieved by a diagonal circuit D as 
the time evolution under the target Ising Hamiltonian in the σz basis 
together with random single-qubit phase gates and two layers of Had-
amard gates by global microwave pulses. Similar to other quantum 
random sampling tasks (5–9), the verification of the sampling results 
requires accurate calibration of Jij’s to allow the calculation of the 
cross-entropy benchmarks.

MATERIALS AND METHODS
Experimental setup
We use a monolithic 3D Paul trap (4, 43, 44) with a radio frequency 
(rf) of ωrf = 2π × 35.280 MHz at a cryogenic temperature of 6.1 K.  
To obtain a 2D crystal of N = 300171Yb+ ions, we use trap fre-
quencies of 

(
ωx ,ωy ,ωz

)
= 2π × (0.623,2.20,0.147) MHz where the 

z direction is the axial direction without micromotion as shown 
in Fig. 1A.

All the laser beams propagate in the micromotion-free direc-
tions in the yz plane to be insensitive to the inevitable micromo-
tion of the 2D crystal along the x direction. We use a global 
370-nm laser beam for Doppler cooling, optical pumping, and 
qubit state detection by turning on or off 14.7- and 2.1-GHz 
electro-optic modulators. Another two 370-nm laser beams are 
used for EIT cooling with π and σ+ polarizations perpendicular to 
each other (45). They have a blue detuning of about 86 MHz from the 
transition between ∣S1∕2, F = 1,mF = 0⟩ (∣S1∕2, F = 1,mF = −1⟩) 
and ∣P1∕2, F = 0,mF = 0⟩. We further use a global 411-nm laser 
beam with a linewidth of about 1 kHz, perpendicular to the ion 
crystal, for the sideband cooling of the transverse phonon modes.

The imaging system, with a numerical aperture of 0.33, is also 
perpendicular to the 2D ion crystal. We use a complementary 
metal-oxide semiconductor (CMOS) camera to collect the fluores-
cence from individual ions. We use electron shelving for the single-
shot state detection by first converting the population in the 
∣S1∕2, F = 0,mF = 0⟩ state to the D5∕2 and F7∕2 levels through global 

A B C

Fig. 4. Validation of the Hamiltonian learning results by higher-order correlations. We further use the Hamiltonian, learned from single-spin and two-spin observ-
ables, to predict k-body spin correlations with (A) k = 3, (B) k = 4, and (C) k = 5. We compare the theoretical predictions (solid curves) with experimental results (dots) for 
three randomly chosen sets of ion indices. Each experimental point is averaged over M = 5640 samples. Here, we use the Hamiltonian when the laser couples domi-
nantly to the fifth highest phonon mode as an example.
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411- and 3432-nm laser (40, 41). Then, we count the fluorescence 
photon from individual ions under the global 370-nm laser with an 
exposure time of 1.5 ms. The SPAM infidelity is about 0.7%, mainly 
due to the imperfect shelving under inhomogeneous laser beams.

We use two counter-propagating 411-nm laser beams to generate 
the long-range Ising interaction. As shown in fig. S1, each laser 
beam has two frequency components on the two sides of the 
∣S1∕2, F = 0,mF = 0⟩ to ∣D5∕2, F = 2,mF = 0⟩ transition, such that 
their time-independent ac Stark shift can be roughly canceled. On 
the other hand, the beat note of these two beams creates an ac Stark 
shift varying in time and space, which can create a spin-dependent 
force (46, 47) and, further, an Ising-type spin-spin interaction when 
the phonon modes are adiabatically eliminated (12). More details 
about the daily operation of the 2D ion crystal and the derivation for 
the Ising model Hamiltonian can be found in our previous work (4).

Alignment of 2D ion crystal with laser wavefront
Equation 1 gives the theoretical Ising coupling coefficients when the 
laser phase is uniform over the 2D crystal. In practice, there can be 
misalignment between the 2D crystal and the equiphase surface of 
the laser, e.g., due to the tilting or twisting of the crystal. Then, each 
ion may have a site-dependent initial phase φi, and the theoretical 
Ising coupling will be modified into Jij → Jijcos

(
φi−φj

)
. Before the 

experiment, we adjust the laser wavefront and the 2D ion crystal to 
minimize such a site-dependent initial phase.

We calibrate the site-dependent φi by initializing all the ions in 
∣S1∕2, F = 0,mF = 0⟩, applying a π∕2 pulse using one 411-nm la-
ser, and then applying another π∕2 pulse using the other 411-nm 
laser with a random phase. The whole process can be understood 
as follows. Without loss of generality, we can use the first laser 
pulse to define the σx direction of the optical qubits between 
∣ g ⟩ ≡ ∣S1∕2, F = 0,mF = 0⟩ and ∣ e ⟩ ≡ ∣D5∕2, F = 2,mF = 0⟩. There-
fore, the first π∕2 pulse prepares all the ions into 

�
∣ g⟩+∣ e⟩�∕√2. 

Then, the second laser pulse will have a phase shift of φi in the 
frame of individual ions, together with a global random phase 
of Δϕ, which we add purposely. This leads us to the final 
state 

��
1+ei(φi+Δϕ)

�
∣ g⟩+

�
1−e−i(φi+Δϕ)

�
∣ e⟩

�
∕2.

From the above final product state, we can compute the expecta-
tion values

and

If we further average over the random phase Δϕ, then we have

which can indicate whether the laser phase is uniform over the 
2D crystal.

Once the above correlation matrix is measured for the N = 300 
ions, we have two ways to minimize the misalignment: One is to ro-
tate the ion crystal by electric fields, and the other is to rotate the laser 
beams. Because we want to keep the ion crystal to be micromotion-
free along the transverse y direction, which already defines a plane at 

y = 0, here, we prefer to rotate the laser beams to suppress the spatial 
oscillation of the spin-spin correlation as much as possible. For the 
remaining phase fluctuation due to, e.g., the curvature of the laser 
wavefront, we use the voltages on the 4 × 7 = 28 dc segments togeth-
er with an overall dc bias on the rf electrodes to fine-tune the shape of 
the 2D crystal. Typical measurement results for the final correlation 
matrix of N = 300 ions are shown in fig. S2, which indicates a nearly 
uniform optical phase over the 2D crystal.

Detection of change in the crystal configuration
As described in (4), the configuration of the 2D ion crystal of 
N = 300 ions has a typical lifetime of a few minutes under the Dop-
pler cooling laser. However, during the experimental sequence, we 
need to turn off the cooling laser for the desired Hamiltonian evolu-
tion. Then, the ion configuration has a non-negligible probability to 
change during the evolution time up to 9 ms. In this experiment, al-
though the global laser and the pattern of the few highest phonon 
modes are not sensitive to the small change in the ion positions, it 
does influence the site-resolved state detection of individual qubits. 
Therefore, we add a step to check the crystal configuration during 
the repetition of the experimental sequences. Specifically, we collect 
the fluorescence from individual ions during the Doppler cooling 
stage for each experimental trial using the CMOS camera. Ideally, all 
the ions will locate at the precalibrated positions and appear bright 
on the images. However, if the crystal configuration is changed, then 
some of these preselected regions will become empty and be detected 
as a dark ion.

Note that, under our experimental conditions, the probability for 
the configuration to change in each trial is still low. Therefore, once 
the configuration is changed, it will persist for several rounds of ex-
perimental sequences. This allows us to distinguish the configura-
tion change from the occasional SPAM error on random ions. The 
detailed empirical criteria to identify the configuration change are 
shown in table S1. In addition, note that these criteria can discard 
not only the change in the ion configuration but also the occasional 
leakage to some metastable levels or the formation of, e.g., YbH+ 
ions. In the experiment, we typically discard about 20% of the data, 
which depends on the conditions of the experimental setup.

Analytical formulae for k-body spin correlations
We consider a general Ising model Hamiltonian with a longitu-
dinal field

Following our experimental sequence, we initialize all the spins 
in ∣+⟩, evolve the system under the Hamiltonian H for time t , and, 
lastly, measure the individual spins in the σx basis.

First, we consider the single-spin observables ⟨σi
x
⟩. We have

⟨σi
z
⟩ = cos

�
φi+Δϕ

�
(2)

⟨σi
z
σ
j
z⟩= cos

�
φi+Δϕ

�
cos

�
φj+Δϕ

�

=
1

2

�
cos

�
φi−φj

�
+cos

�
φi+φj+2Δϕ

�� (3)

⟨σi
z
σ
j
z ⟩ − ⟨σi

z
⟩ ⟨σjz ⟩ =

1

2
cos

�
φi−φj

�
(4)

H = H0 +H � =
∑
i< j

Jijσ
i
z
σi
z
+

∑
i

hiσ
i
z (5)

⟨σi
x
(t)⟩= ⟨+ ⋯+∣ eiHtσi

x
e−iHt ∣ + ⋯ +⟩

=
1

2n

�
{s},{s�}

⟨{s} ∣ eiHtσi
x
e−iHt ∣ {s�}⟩

=
1

2n

�
{s},{s�}

⟨{s} ∣ eiE({s})tσi
x
e−iE({s�})t ∣ {s�}⟩

=
1

2n

�
{s}−si ,si

⟨{s}− si ∣ ⟨si ∣ eiE({s}−si ,si)tσixe−iE({s}−si ,−si)t ∣ {s}− si⟩ ∣ − si⟩

(6)
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where {s} represents the set of all spins in the σz basis, {s} − si means 
the set of all but the ith spin, and we use the fact that σi

x
 flips the ith 

spin without affecting other spins.
In the above derivation, we use the function E to represent the 

energy of a given spin configuration. In general, if we divide the 
spins into two groups, {sA} and {sB}, then we can express the total 
energy as

where EJ and Eh represent the energy under the Ising interaction and 
the longitudinal field, respectively, and EJ

(
{sA}, {sB}

)
 is the interac-

tion between the two groups. In addition, we have the symmetry

Using these relations, we get

Similarly, for the correlation between two spins i and j, we have

In principle, by fitting the N single-spin magnetizations and the 
N(N−1)∕2 two-spin correlations, we can get all the required pa-
rameters. In particular, if we focus on the early-time dynamics, 
then we have

and

Therefore, we have

which already gives the magnitude of each desired Jij. However, in 
practice, such early-time dynamics will be sensitive to the SPAM 
error, so we use the long-time evolution and the analytical formulae 
to fit the Ising coupling coefficients as described in the Experimental 
scheme section.

We can also generalize the above formulae to k-body correlations

where ′  in the summation or production represents the set 
{ s} − si1 − ⋯ − sik. The number of terms scales exponentially with 
k, so we do not use all of them for the Hamiltonian learning process 
but only use a few randomly chosen sets with k = 3, 4, and5 for the 
validation of our learning results.

In the above derivations, we assume ideal evolution under the 
Hamiltonian of Eq. 5, and we attribute the decay in the magnetiza-
tion and the correlation to the dynamics under hi’s and Jij’s. In prac-
tice, however, various noise sources can lead to decoherence in the 
experiment. For example, slow drifts in the laser intensity or fre-
quency can lead to shot-to-shot fluctuation in these coefficients, 
which further translates into a Gaussian decay in the measured 
magnetizations and correlations. In addition, as we show in (4), the 
off-resonant phonon excitation can also be regarded as a spin de-
phasing term when we trace out the phonon modes. The actual error 
model can be very complicated depending on the contribution of 
different sources and will generally vary with different sites. Here, 
we take a simplified model with 2N parameters.

Specifically, for each ion i, we assign two parameters γi
cor

 and 
γi
indep

 for the correlated and independent decoherence rates, respec-
tively. The correlated decoherence is motivated by the slow drift in 
the longitudinal fields caused by the global laser intensity. Although 
they average into a Gaussian decay over different experimental trials 
through ⟨cos(ht)⟩ = e−(γt)

2∕2 when h ∼ N
(
0, γ2

)
, still, the coherence 

between different ions is maintained when we consider spin-spin 
correlations. In contrast, the independent decoherence captures the 
other error sources that do not maintain the phase coherence among 
ions. With such terms included and with the longitudinal field set to 

E({s})=EJ ({s})+Eh({s})

=EJ
(
{sA}

)
+EJ

(
{sB}

)
+EJ

(
{sA}, {sB}

)
+Eh

(
{sA}

)
+Eh

(
{sB}

) (7)

EJ ({s})=EJ (−{s})

Eh({s})=−Eh(−{s})

EJ
(
{sA}, {sB}

)
=−EJ

(
{sA}, −{sB}

)
=−EJ

(
−{sA}, {sB}

) (8)

⟨σi
x
(t)⟩= 1

2n

�
{s}−si ,si

eiE({s}−si ,si)t e−iE({s}−si ,−si)t

=
1

2n

�
{s}−si ,si

e2i[EJ({s}−si ,si)+Eh(si)]t

=
1

2n

�
{s}

e2i(
∑

k≠i Jkisksi+hisi)t

=
1

2

�
si

e2ihisi t
�
k≠i

cos
�
2Jkisit

�

= cos
�
2hit

��
k≠i

cos
�
2Jkit

�

(9)

⟨σi
x
(t)σ

j
x(t)⟩= 1

2n

�
{s}−si−sj ,si ,sj

eiE({s}−si−sj ,si ,sj)t e−iE({s}−si−sj ,−si ,−sj)t

=
1

2n

�
{s}−si−sj ,si ,sj

e
2i
�
EJ({s}−si−sj ,si)+EJ({s}−si−sj ,sj)+Eh(si)+Eh(sj)

�
t

=
1

2n

�
{s}

e
2i
�∑

k≠i,j Jkisksi+
∑

k≠i,j Jkjsksj+hisi+hjsj

�
t

=
1

4

�
si ,sj

e2i(hisi+hjsj)t
�
k≠i,j

coss
�
2
�
Jkisi+ Jkjsj

�
t
�

=
1

2
cos

�
2
�
hi+hj

�
t
��
k≠i,j

cos
�
2
�
Jki+ Jkj

�
t
�

+
1

2
cos

�
2
�
hi−hj

�
t
��
k≠i,j

cos
�
2
�
Jki− Jkj

�
t
�

(10)

⟨σi
x
(t)⟩ ≈ 1 − 2

�
h2
i
+
�
k≠i

J2
ki

�
t2

(11)

⟨σi
x
(t)σ

j
x(t)⟩ ≈ 1 − 2

�
h2
i
+h2

j
+
�
k≠i,j

�
J2
ki
+ J2

kj

��
t2 (12)

⟨σi
x
(t)σ

j
x(t)⟩ − ⟨σi

x
(t)⟩ ⟨σjx(t)⟩ ≈ 4J2

ij
t2 (13)

⟨σi1x (t)⋯ σ
ik
x (t)⟩= 1

2n

�
{s}

e
2i
�∑�

l

∑
kJlik

sl sik
+
∑

khik
sik

�
t

=
1

2k

�
si1,⋯,sik

e
2i
�∑

khik
sik

�
t �

l

�
cos

�
2

��
k

Jlik sik

�
t

�

=
1

2k

�
si1,⋯,sik

cos

�
2

��
k

hik sik

�
t

��
l

�
cos

�
2

��
k

Jlik sik

�
t

� (14)
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zero, the theoretical dynamics for single-spin and multi-spin ob-
servables become

If we fit these 2N parameters together with the Ising coupling co-
efficients, because their leading-order effects are both the decay in 
the magnetization and correlation as shown by Eqs. 11 and 12, then 
it will largely increase the uncertainty in the learning results. Instead, 
here, we first fit all the γi

cor
’s and γi

indep
’s with fixed Jij = 0 by setting a 

large laser detuning of 80 kHz above the COM mode. Then, we fix 
these fitted decoherence rates during the rest of the experiment to 
learn the desired Hamiltonian when the laser detuning is closer to 
some of the phonon modes. Note that this separated calibration step 
is consistent with our error model of a slow drift in the laser-induced 
ac Stark shift (the longitudinal field) and an additional independent 
dephasing due to noise sources other than the laser. The calibration 
results for γi

cor
’s and γi

indep
’s are shown in fig. S3. Together, they give an 

average decoherence time of about 1∕
√(

γi
indep

)2

+
(
γi
cor

)2
∼ 9 ms.

Compensating the leakage error to D5∕2 and F
7∕2 levels

Under the off-resonant 411-nm laser, there is a small probability 
that the final population will be in the D5∕2 or F7∕2 levels, which is a 
leakage error from the qubit subspace in the S1∕2 levels. In the ex-
periment, we observe a gradual increase in the leakage probability 
with the evolution time, which mainly comes from the spontaneous 
emission from the D5∕2 levels to the F7∕2 levels. After electron shelv-
ing, such leaked population will be detected as dark, that is, the 
∣0⟩ ≡ ∣S1∕2, F = 0,mF = 0⟩ state. This will cause bias in the mea-
sured magnetizations and correlations.

For small leakage probability ϵL, we can measure the leakage rate 
experimentally and correct it to the first order during the experimen-
tal sequence. The idea is to divide the experimental trials into two 
groups. For one group, we use the original experimental sequence in 

Fig. 1B. For the other group, we insert a π pulse to exchange the 
∣0⟩ ≡ ∣S1∕2, F = 0,mF = 0⟩ and ∣1⟩ ≡ S ∣ 1∕2, F = 1,mF = 0⟩ states 
before the measurement. Suppose, ideally, the ith qubit has probability 
pi
0
 to be in ∣0⟩ and probability pi

1
 to be in ∣1⟩ (pi

0
+ pi

1
= 1), and sup-

pose, now, there is probability ϵi
L
 of the leakage error that may vary for 

different ions. Now, if we evaluate ⟨σi
z
⟩ for the two groups of datasets, 

then we will get 
(
pi
0
−pi

1

)(
1−ϵi

L

)
+ ϵi

L
 and 

(
pi
1
−pi

0

)(
1−ϵi

L

)
+ ϵi

L
, re-

spectively, without or with the π pulse. From their average, we obtain the 
leakage probability ϵi

L
, while their difference gives 2

(
pi
0
−pi

1

)(
1−ϵi

L

)
, 

which is proportional to the ideal single-spin magnetization pi
0
− pi

1
 

and can be recovered by dividing 
(
1−ϵi

L

)
. Following similar deriva-

tions, we can use this method to correct the k-body spin correlations 
⟨σi1z (t) ⋯ σ

ik
z (t)⟩ to the first order by dividing 

∏k

l=1

�
1−ϵ

il
L

�
.

For each ion, we can further perform a linear fit for the leakage 
probability versus time and obtain the leakage rates shown in fig. S4. 
The central ions feel higher 411-nm laser intensity and typically 
have higher leakage rates, with a typical timescale above 30 ms, 
much longer than our evolution time.

Theoretical scaling of the precision
As described in the Experimental scheme section, we use the 
relative energy difference ϵ

�
J (1), J (2)

�
≡ ⟨∣E�J (1)�−E

�
J (2)

�
∣ ⟩∕√

δE
[
J (1)

]
⋅ δE

[
J (2)

]
 between the learning results J (1)

ij
’s and J (2)

ij
’s on 

independent datasets to characterize the learning precision. Specifi-
cally, for any given spin configuration {s}, we can evaluate the ener-
gy for the two Hamiltonians E

[
{s}; J (1)

]
 and E

[
{s}; J (2)

]
. Then, we 

compute the numerator as the average of ∣E
[
{s}; J (1)

]
− E

[
{s}; J (2)

]
∣ 

over the randomly sampled spin configurations, and we define 
δE

[
J (1)

]
 and δE

[
J (2)

]
 as the SDs of E

[
{s}; J (1)

]
 and E

[
{s}; J (2)

]
 over 

random spin configurations.
Next, we analyze the scaling of the precision ϵ versus the system size 

N. When fitting the O
(
N2

)
 parameters of Jij’s, the different parameters 

are correlated through their covariance matrix, so we expect their fluc-
tuation to be on the same order which we denote as δJij ∼ δ. We have 
δ ∝ 1∕

√
M depending on the sample size M. Now, if we compute the 

energy difference due to the δJij terms on random spin configurations, 
then we are basically performing a random walk with O

(
N2

)
 steps. 

Therefore, the numerator can be estimated to be O(Nδ). On the other 
hand, for the denominator, we consider two cases: (i) We couple domi-
nantly to a single-phonon mode such that we have an all-to-all coupling 
Jij ∼ O

(
J0
)
, and (ii) we couple to all the phonon modes with roughly a 

power-law decay Jij ∼ J0 ∕∥ r⃗ i − r⃗ j ∥
α (12). In both cases, to observe 

nontrivial dynamics in the magnetizations and correlations, we want ∑
k≠iJ

2
ik
T2 ∼ O(1) according to Eqs. 11 and 12 where T is the total evo-

lution time. In the first case, it means J0 ∼ 1∕
√
NT, and, in the second 

case, it gives J0 ∼ 1∕T. In both cases, after averaging over random spin 
configurations, we find the SD of the total energy to be O

�√
N∕T

�
; 

thus, the precision will scale as 
√
NδT.

On the other hand, if the ground-state properties are desired, 
then, in the denominator, we should not compare with the fluctua-
tion of the energy but with the ground-state energy itself. Suppose 
there to be no notable frustration, we expect the ground-state ener-
gy to scale at least as O(N), then the precision will be O(1), no longer 
degrading with the system size.

⟨σi
x
(t)⟩= exp

�
−

��
γi
indep

�2

+
�
γi
cor

�2�
t2
�

⋅

�
k≠i

cos
�
2Jkit

�
(15)

⟨σi
x
(t)σ

j
x(t)⟩= 1

2
exp

�
−

��
γi
indep

�2

+
�
γ
j

indep

�2

+
�
γi
cor

+γ
j
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�2
�
t2
�

×
�
k≠i,j

cos
�
2
�
Jki+ Jkj

�
t
�

+
1

2
exp

�
−

��
γi
indep

�2

+
�
γ
j

indep

�2

+
�
γi
cor

−γ
j
cor

�2
�
t2
�

×
�
k≠i,j

cos
�
2
�
Jki− Jkj

�
t
�

(16)

⟨σi1x (t)⋯ σ
ik
x (t)⟩= 1

2k

�
si1,⋯,sik

exp

⎧⎪⎨⎪⎩
−

⎡⎢⎢⎣
�
k

�
γ
ik
indep

�2

+

��
k

γik
cor
sik

�2⎤⎥⎥⎦
t2
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×
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�
2

��
k

Jlik sik
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Fitting anharmonic trap potential
To compute the Ising coupling coefficients theoretically using Eq. 1, 
we need to know the accurate phonon mode structure of the ion 
crystal, which is, in principle, a classical problem and can be solved 
given the external trap potential. The trap potential is, in principle, 
governed by the design of the trap electrodes and the voltages that 
we apply on them. However, because of the fabrication errors and 
various experimental noises, the theoretically computed trap poten-
tial can often deviate from the actual one. Therefore, we choose to fit 
the trap potential from the available information, including the 
measured ion positions in the 2D crystal at the precision of about 
1 μm, the frequencies of a few resolvable phonon modes at the preci-
sion of about 1 kHz and the excitation pattern of these modes. As 
the phonon spectrum becomes denser at the low-frequency side, 
here, we only use the frequencies of the 10 highest modes and one 
lowest frequency. In addition, we can apply a weak global 411-nm 
laser pulse on the blue sideband of a resolved mode k, and then the 
excitation probability of each ion i will be proportional to b2

ik
.

Often, a harmonic trap is still a reasonable approximation to the 
trap potential, and, here, we add a few anharmonic terms as small 
perturbation. In particular, we assume that the potential can be de-
scribed by some low-order polynomials that vary slowly in space. 
Otherwise, if the potential is fast oscillating from ion to ion, then 
there will be too many parameters to fit from the available in-
formation.

Even if we truncate to quartic polynomials, the potential already 
contains a large number of parameters and a straightforward fitting 
will be both inefficient and likely to be trapped to unphysical local 
minima. Instead, we divide the fitting procedure into five stages as 
shown in table S2.

In the first stage, we give an initial fitting of the harmonic terms 
x2 and z2 within the plane of the 2D ion crystal. The y2 term is mea-
sured as the single-ion trap frequency along the perpendicular y 
axis through the resolved sideband transition with high precision 
and is fixed during the whole fitting procedure. For any given coef-
ficients for the x2 and z2 terms, we use the measured ion positions as 
the starting point to search the equilibrium positions under their 
Coulomb interaction and further solve the collective phonon mode 
frequencies. Then, we compare them with the measured values and 
further improve the fitting results by minimizing this cost function.

In the second stage, we add cubic terms to better fit the ion posi-
tions inside the xz plane. Because the equilibrium positions of all the 
ions have y = 0, we can drop all the terms containing y and only 
consider x3, x2z, xz2, and z3 terms.

However, the cubic terms are not sufficient to give a good fitting 
to the ion positions and mode frequencies, so we further consider 
the quartic terms. To have a good starting point to fit the quartic 
terms as perturbations, we insert the third stage to refine the qua-
dratic terms with the previous cubic terms fixed. Then, in the fourth 
stage, we add some quartic terms. Because of the reflection symme-
try of the designed electrodes, here, we only consider symmetric 
terms like y2z2, y2x2, x2z2, and z4, and we expect the other asym-
metric terms to be subdominant. The asymmetry of the ion crystal 
can already be captured by the cubic terms above. In addition, here, 
we drop the x4 term because the size the 2D crystal is much smaller 
in the x direction than that in the z direction.

In the last stage, we further fit cubic terms along the y direction 
through their influence to the transverse phonon modes. Here, we 
focus on xy2 and zy2 terms, which can be regarded as a site-dependent 

trap frequency along the y direction. They will not change the equi-
librium positions of the ions but will affect the phonon modes. On 
the other hand, terms like x2y, z2y, and xyz correspond to a site-
dependent force perpendicular to the crystal. Their main effect is a 
twist in the crystal that cannot be measured from the image of the 
ions. In addition, after the small twist of the crystal, these forces are 
already canceled by the harmonic terms as well as the Coulomb in-
teraction between ions, so we expect their influence on the phonon 
modes to be higher order and, hence, do not include them in this 
fitting. Last, the y3 does not affect the equilibrium positions or the 
transverse phonon modes and, therefore, is not considered either.

In the above fitting, we do not consider the micromotion of the 
ions because, in our case, the largest micromotion amplitude is still 
smaller than the inter-ion distance. In the future, we may also take 
the micromotion into consideration to get a more accurate descrip-
tion of the phonon modes for larger ion crystals (48–50).
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