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Blending occurs when multiple sources of 
light occupy the same region of the sky.  
If left unaccounted for, blending results in 
contaminated measurements of celestial 
sources that are traditionally considered 
isolated. Its consequences propagate 
into and alter the estimates of physical 
processes that are under investigation, 
and are expected to be among the leading 
systematic uncertainties of many scientific 
investigations for future surveys like the 
Legacy Survey of Space and Time (LSST)  
of the Vera C. Rubin Observatory.

The rate at which blending happens 
depends on two main parameters. First 
and foremost, the sensitivity (also called 
depth) of the observations determines 
how many emitters are detected per unit 
sky area. At optical and near-​infrared 
wavelengths, shallow observations 
primarily show stars in the Milky 
Way, whereas source counts in deeper 
observations are dominated by galaxies 
at cosmological distances.

Second, the spatial resolution of the 
instrument determines the minimal unit 
of sky area in which multiple sources can 
be distinguished from each other. For 
modern telescopes, the resolution limit 
is typically determined by the ‘seeing’, the 
blurring caused by a turbulent atmosphere. 
In its absence, that is, with a ground-​based 
adaptive optics system or a space telescope, 

can be broken up into smaller chunks 
so that, in each chunk, there is only one 
source to be analyzed. If this assumption 
is violated, measurements, such as those 
of the flux or shape of a source, become 
contaminated6,7. Rejecting blended galaxies 
is possible, but not advisable. Depending 
on the adopted criterion, rejecting blended 
galaxies results in a loss of statistical power 
of a few percent to tens of percent for an 
LSST-​like programme of measuring galaxy 
shapes for weak gravitational lensing8, 
which defies the original intent of deeper 
observations. Moreover, such a scheme 
would preferentially reject galaxies in 
regions of high source density, with possible 
biases arising for cosmological applications9. 
We argue, in the next section, that 
simultaneous modelling multiple sources 
even inside one sky chunk can mitigate these 
measurement biases.

Second, a more pernicious scenario 
arises when multiple sources are so close 
to each other that a given observation and 
measurement method cannot recognize 
their presence individually. Unrecognized 
blending affects about 15% of all galaxies 
in an LSST-​like survey10 and creates 
strong outliers and systematic biases in 
ellipticity measurements10–12. It renders 
rejection and simultaneous modelling 
efforts formally impossible (but there is a 
remedy, as discussed in the next section) 
and calls for a subsequent, higher-​level 
statistical correction of measurement biases 
(as discussed in the section on characterizing 
blending) or the integration of multiple 
data sets, especially the combination of 
ground-​based and space-​based surveys  
(as discussed in the Outlook).

Box 1 presents a visual summary of the 
main effects and severity of blending for an 
LSST-​like imaging survey.

Deblending efforts
Blending poses an inverse problem, 
known as ‘deblending’ in astronomy and 
‘source separation’ in general. The goal of 
deblending is to reconstruct the properties 
of the individual sources from a combined, 
blended observation. Strictly speaking, the 
task is impossible because the problem is 
underconstrained. For any recorded photon, 
it is simply not known which source it came 
from. In general, the problem has k times 

the resolution is set by the diffraction limit 
of the telescope optics.

Modern ground-​based surveys — like 
the Dark Energy Survey (DES)1, the Hyper 
Suprime-​Cam Subaru Strategic Program 
(HSC SSP)2 and the future LSST3 — have 
been designed, among other criteria, 
to maximize the number of galaxies for 
which fluxes, sizes and ellipticities can be 
measured. Their observations are so deep 
that they reveal most stars in our Galaxy 
and an even larger number of galaxies. 
With the number density of sources on the 
sky, blending becomes inevitable, given 
the seeing conditions and sensitivity of these 
surveys (Fig. 1). On top of that, galaxies are 
spatially extended, that is, their apparent 
size is larger than the resolution limit of 
the instrument, which leads to even higher 
rates of blending. As a result, these surveys 
find 30–60% of all celestial sources to be 
blended4–6. Although each study adopts 
different definitions of blending, driven by 
their respective measurement methodology 
and scientific requirements, the blending 
rates consistently grow with increasing 
sensitivity.

The problems for follow-​up analyses 
in astrophysics and cosmology that arise 
from blending are twofold. First, traditional 
measurement algorithms in astronomy 
assume independence of sources. In other 
words, they expect that a large sky area 
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as many degrees of freedom as constraints 
from data, where k is the number of 
blended sources. This scaling can be seen 
for imaging instruments, in which case one 
image per source is to be reconstructed, as 
well as for photon-​counting instruments, 
in which case mixture modelling estimates 
a probability for every photon of being 
associated with any of the k sources13. To 
overcome the inherent degeneracies of this 
underconstrained inverse problem, one 
must make assumptions about the kind of 
blending and the properties of the sources 
being blended.

Virtually all deblending approaches 
adopt a linear mixing model, in which 
multiple sources simply add their respective 
emissions along the line of sight. This 
model is mathematically and practically the 
easiest one, and allows for a variety of linear 
methods to be applied. It assumes mutual 
independence between sources, which 
seems justified in astronomy because stars 
and galaxies that appear blended are very 
often not physically interacting but merely 
aligned from our perspective. In detail, 
the assumption is invalid because dust in a 
foreground galaxy absorbs and re-​emits light 
from any background source. Fortunately, 
galaxies are only moderately opaque14 — at 
least in the nearby universe — so that dust 
attenuation can be ignored to the first order.

One can further assume knowledge of 
the spatial light distribution of the sources. 

For instance, stars are point sources, 
the apparent shape of which is entirely 
determined by the point spread function of 
the telescope, so that only their luminosity 
and position have to be determined. 
This simplification allows for successful 
deblending even in highly crowded 
stellar fields15–17. Galaxies exhibit complex 
morphologies, and, thus, require additional 
assumptions. That such assumptions are at 
least approximately justified is supported 
by the long-​standing realization that galaxy 
morphologies are not arbitrary but form 
groups, most prominently those of elliptical 
and spiral galaxies18.

The main morphological features of 
many galaxies can, thus, be described 
by simple parametric models19 or their 
approximations20,21. Stabilizing and speeding 
up the solutions for multi-​source deblending 
usually requires iterative approaches, 
wherein the parametric model is fit to only 
one source at a time. One can then either 
mask pixels deemed to belong to other 
sources in the blend or subtract the assumed 
pixel values according to an earlier fit of 
these other sources22–24. Both approaches 
directly exploit the assumed independence 
between sources.

Non-​parametric approaches can solve for 
multiple sources at once. A suitable approach 
that implements a linear mixing model and 
can formally handle an arbitrary number 
of sources was implemented in the Sloan 

Digital Sky Survey (SDSS) photo pipeline25. 
This approach can be extended with an 
approach based on matrix factorization26,27. 
To reduce the number of degrees of freedom, 
one can enforce morphological heuristics 
— for instance, that galaxies are symmetric 
under 180° rotation or are monotonically 
decreasing from their centres, through 
constrained optimization28,29.

Recent advances in machine learning 
allow non-​parametric methods to learn 
commonalities among observed galaxies, 
thereby, extending and generalizing 
heuristic constraints. Generative neural 
networks are capable of representing a wide 
range of galaxy morphologies. They are 
well-​suited for deblending because they 
learn an encoding from which any observed 
galaxy, or at least its relevant aspects, can be 
reconstructed. A common architecture is 
the autoencoder30,31, which can be trained 
to encode isolated galaxy images into a 
low-​dimensional latent space and then to 
decode, that is, reconstruct, the image from 
the latent variables. Knowing how any galaxy 
can look (the task for the decoder, also called 
generator) strongly reduces the degeneracies 
that arise from the overlap of multiple 
galaxies: many deblending solutions may 
add up to a given blend, but the individual 
sources do not look like real galaxies and, 
therefore, can be dismissed.

Such generative models have been used 
in several deblending studies. For example, 
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Fig. 1 | The same sky region of 1.5 × 0.75 arcmin2, observed by different 
surveys. From left to right: the Sloan Digital Sky Survey (SDSS)91 with a 
pixel scale of 0.396 arcsec, the DECam Legacy Survey (DECaLS)92 with  
a pixel scale of 0.262 arcsec, the Hyper Suprime-​Cam Subaru Strategic 
Program (HSC SSP)2 with a pixel scale of 0.168 arcsec and the Cosmic 
Assembly Near-​infrared Deep Extragalactic Legacy Survey (CANDELS) 
programme93,94 with the Hubble Space Telescope and a pixel scale of 

0.06 arcsec. Increasing the sensitivity yields a larger number of sources and 
reveals the fainter outskirts galaxies, both of which result in higher rates 
of blending. At fixed depth, increasing the spatial resolving power is the 
only means of reducing source confusion. SDSS and DECaLS images 
adapted with permission from Legacy Surveys/D. Lang (Perimeter 
Institute). HSC SSP image adapted with permission from NAOJ/HSC 
Collaboration.
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the generator of an autoencoder trained on 
isolated galaxies can be retained while the 
encoder is retrained on blended images32. 
Doing so changes the task of the encoder 
to learn how to robustly identify the latent 
variables of the most prominent galaxy, 
while ignoring all others. The approach 
exploits an insight from blending statistics, 
namely, that configurations with one 
bright source and one or several much 
fainter sources are much more common 
than configurations with equally bright 
galaxies (Box 1). The approach, thus, seeks 
to recover the most prominent source in the 
most common blend scenario. Going one 
step further, one can use an autoencoder 
extension, called a U-​Net33, to break up the  
image into multiple output channels of 
the same shape and obtain solutions for both 
sources in a two-​source blend34, which, for 
intermediate to faint galaxies, is the most 
common configuration (Box 1).

Both these approaches are somewhat 
sensitive to the prevailing observational 
conditions (such as image resolution, 
the shape and width of the point spread 
function, sky brightness and its spatial 
variations, and detector artifacts). Modern 
surveys invest in careful characterization 
of these conditions, which suggests a 
strategy of explicitly modelling them as 
degradations of an ideal image. Doing 
so leaves for the network only the task of 
encoding galaxy images in idealized form 
— that is, noise-​free, super-​resolution and 
unconvolved35. Combining this strategy 
with the linear mixing model yields a hybrid 
Bayesian scheme that has an explicit form of 
the blending likelihood and a probabilistic 
generative network (of the PixelCNN++ 
architecture36, for example) as a prior over 
all galaxy morphologies37. This direction 
appears promising thanks to deep learning 
methods gaining further capabilities and 
maturity, but care needs to be taken to 
train on realistic, high-​quality images and 
to account for morphological changes of 
galaxies observed at different wavelengths.

Deblending approaches typically require 
knowledge of how many sources are present 
in a blend because they can only model the 
previously identified ones. This requirement 
renders deblending dependent on the task 
of source detection, which is performed 
prior to deblending. Whereas statistically 
optimal detection methods have been 
formulated for point sources38–41, direct 
solutions for extended blended sources do 
not exist. Convolutional neural networks 
provide an implicit solution of object 
detection and classification, for instance, 
with the Mask R-​CNN42 architecture, 

and show good performance on images 
of moderate source density43. Increasing 
the density further makes detection and 
deblending exponentially more difficult44, 
ultimately leading to the so-​called confusion 
limit. At this sensitivity of a survey, further 
detections become statistically impossible 
due to the Poisson noise from the collective 
light emitted by all sources. The increasing 
depth of modern surveys requires 
techniques that are capable of operating 
close to the confusion limit. One promising 
approach is to break the interdependency 
of detection and deblending by exploiting 

the power-​law shape of galaxy luminosity 
functions. Performing detections and 
deblending on the rarer bright sources first 
and then running a conventional or Mask 
R-​CNN detection method on the residuals of  
the deblending model allows the detection 
of previously missed sources in heavily 
blended regions45. Such an iterative detection 
catalogue increases source detection 
completeness in blends and, thus, sharply 
reduces the rate of unrecognized blending.

Although most detection methods 
have been trained on simulated images 
resembling the observations of particular 

Box 1 | Blending characteristics for the LssT

we created realistic simulated images that mimic the observing conditions of the Legacy survey of 
space and time (Lsst), using a cosmological simulation that determines the location, brightness and 
morphology of all sources. we then process these images with the Lsst data management software 
stack and register when a known input source is contained within the area of a detected source  
in the image. unlike studies on observations, we can unambiguously determine if blending has 
happened.

Owing to their apparent size on the sky, the brightest galaxies (i-​band magnitude ~16) are 
effectively guaranteed to be blended (blue line in figure part a), typically forming groups of 8 ± 3 
sources (black data points in figure part a), with the second brightest source in such a group usually 
being 8 magnitudes (that is, a factor of 1,500) fainter (figure part b). the measurement of the 
brightest sources is, thus, mostly unaffected by blending, but blending almost certainly hinders  
the detection and measurement of fainter sources in their vicinity.

Galaxies with intermediate brightness still have blending rates of more than 50% and group sizes 
of 2–4 (figure part a), but if they are blended, the secondary source is only 2–4 magnitudes (factors 
6–40) fainter (figure part b). this is the regime in which blending is still very common and can be  
very noticeable in measurements.

at the faintest end, sources appear very small and blending becomes rare (figure part a), but if it 
happens, it involves another source of almost equal brightness (figure part b). this is the regime in 
which measurements, and even detection probabilities, are most strongly affected by blending.

a sketch to summarize these findings from blending statistics is shown in figure part c. Because 
brighter galaxies are intrinsically larger and their outskirts remain visible further away from their 
centres, they occupy more area on the sky (not shown to scale). with the same secondary source 
population in all three cases, blended groups get smaller with decreasing brightness of the primary 
source, but the secondaries become similarly bright.

in figure parts a and b, vertical error bars denote symmetrical 68% confidence intervals and 
horizontal error bars indicate the bin width of 1 magnitude. the dashed line in part b indicates 
equality between brightest and second brightest sources as a guide to the eye.
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surveys, actual observations can be used 
instead if reliable detection catalogues are 
available. Doing so allows a U-​Net to learn 
the separation between sources and the 
sky background. If the sources have also 
been assigned a classification label, one can 
further leverage the U-​Net architecture and 
provide an image per label46. By running 
on multi-​band images, this semantic 
segmentation approach classifies individual 
pixels into background, point source and 
several galaxy types, and is, thus, able 
to detect sources and possibly provide a 
physically motivated deblending solution 
based on morphological and colour features. 
The main challenge in such a scheme lies 
in the reliance on externally constructed 
detections and classifications. For both 
semantic segmentation and iterative 
detection and deblending, it is difficult to 
know when to stop, that is, to determine if 
a perceived variation in the data justifies 
reporting of a new source or different  
galaxy label.

Deblending can also be performed in 
the spectral domain. Given an assumed 
set of spectra that can be exhibited by 
sources, one can ask whether an observed 
spectrum is more likely to have come from 
a single source or a combination of sources. 
One can also determine the most likely 
spectra of each source using a statistical 
hypothesis test47. Furthermore, one can 
combine assumptions about spatial and 
spectral properties28,48. Deblending with 
spatial and spectral information — known 
as hyper-​spectral modelling — exploits all 
separating features available for non-​variable 
sources, and we are convinced of its 
effectiveness and feasibility. The current 
shortcoming of hyper-​spectral modelling 
lies in the limitations in understanding of 
how various astrophysical processes shape 
the properties of galaxies. Comparisons 
between large hyper-​spectral data sets49–51 
and galaxy-​scale simulations52–54 could 
lead to the definition of observationally 
recognizable galactic ‘building blocks’, such 
as bulges, bars, spiral arms, star-​forming 
regions and tidal tails. Such building 
blocks are interesting in their own right as 
constraints on models for galaxy formation 
and evolution. Furthermore, a library or 
deep-​learning model of them would make 
it possible to identify spectrally or spatially 
distinct structures and differentiate those 
that emerge within a single galaxy from 
those that are formed by the superposition 
of different galaxies. We believe that 
investigations in this direction are the 
next logical step in the development of 
hyper-​spectral deblending.

Blending characterization and 
mitigation
An alternative to deblending is to 
characterize the effects of blending at 
the statistical level. Blending affects any 
pixel-​level measurement, and subsequent 
scientific analyses, by altering one’s ability 
to detect sources or to measure their 
properties cleanly. When deblending is not 
feasible at a level of systematic uncertainty 
subdominant to the statistical error budget 
of large surveys, such a characterization 
is essential.

Deep, space-​based observations could 
provide reliable ‘ground truth’ information 
for blending studies10 (Fig. 1), but, so far, have 
limited sky coverage. Therefore, simulations 
are critical for blending characterization6,8. 
Substantial simulation efforts are being 
made for the upcoming LSST55,56, as well 
as ESA’s Euclid mission12,57 and NASA’s 
Nancy Grace Roman Space Telescope58. 
In images generated from cosmological 
N-​body simulations, the assumed galaxy 
morphologies either follow parametric 
Sérsic models19 or are drawn from a limited 
number of high-​fidelity images from the 
Hubble Space Telescope. The former lack 
the rich morphological diversity of galaxies, 
whereas the latter only provide a small 
sample of galaxy shapes.

The morphological complexity of 
simulated galaxies is likely to increase 
in the near future thanks to advances in 
neural network generators35. In addition, 
image simulations coming directly from 
cosmological hydrodynamics simulations59 
could soon provide fully realistic mock 
observations at the scale of wide-​field 
surveys. Ideally, such simulated images 
would include complex dependencies, 
for instance, those between the clustering 
of galaxies and their spectral and 
morphological characteristics52. In the 
meantime, the lack of realism of ab initio 
simulations can be partially remedied by 
injecting mock sources into observations 
and measuring how well they are 
recovered7,60,61. Although the mock sources 
themselves are drawn from a parametric 
model or a small set of high-​fidelity images, 
the properties of all other sources are,  
by construction, correct.

Regardless of the principle underlying 
the blending characterization, the 
assumption is made that measurements 
on observations exhibit the same kinds of 
difficulties, so that the corrections needed in 
practice can be directly read off from these 
prior characterization efforts. We detail 
blending-​related approaches for the most 
important measurements below.

Detection. Detection completeness is 
a complex interplay of the concrete 
arrangement of sources in a sky region and 
the data processing pipeline. For isolated 
galaxies, the ability to detect is primarily 
limited by Poisson shot noise. For faint 
galaxies, this noise is dominated by the so-​
called sky brightness, which is a combination 
of several sources, such as sunlight scattered 
off the Moon or off interplanetary dust 
grains, airglow of the atmosphere. The 
increased shot noise from blending of 
detected and undetected sources does not 
itself noticeably impede detection, increasing 
the effective noise level for the LSST by 
only about 0.2%4. The dominating effect is 
the difficulty of detecting fainter sources 
in the vicinity of brighter ones, driven 
by algorithmic choices such as requiring 
a minimum measure of separability to 
consider the fainter source a legitimate 
detection. The detection completeness 
of potentially detectable sources, that is, 
sources that would have been detectable if 
they were isolated, is reduced by blending 
by approximately 10% in the DES61 and by 
20% in the LSST4. Source injection tests in 
deep observations from the Hubble Space 
Telescope similarly show that blending 
reduces stellar completeness from 1% at the 
brighter end to 20% close to the detection 
limit62.

Source injection methods are also well 
suited to correct for the cumulative effects 
on the completeness of detection catalogues. 
A case study for angular clustering of 
galaxies in the DES60 shows an excess 
signal by more than a factor of 2 on scales 
below 7 arcsec, attributed to blending. The 
clustering signal is expressed as the average 
probability of finding a source within an 
angular separation from another source, 
and is, thus, directly modulated by any 
change to the detection probability. This 
counter-​intuitive excess possibly originates 
from the light envelope of bright sources 
aiding the detection of fainter ones in 
their vicinity. Injecting sources provides 
an estimate of the non-​uniform detection 
probability of the survey and allows for such 
spurious contributions to be removed.

Photometry and photometric redshifts. 
Photometry — that is, the measurement 
of source flux, typically in multiple filter 
bands — is the basis for many statements 
about the physical state of a source, such 
as the temperature of a star or the stellar 
mass of a galaxy. In addition, the apparent 
colour of galaxies yields an estimate of their 
distance through the redshifting of photons 
caused by cosmic expansion. This approach, 
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called photometric redshift estimation, 
provides distance estimates for the vast 
majority of extragalactic sources.

Simulated images of Sérsic galaxy models 
with parameters resembling the expected 
galaxy population that will be observed by 
the LSST show that 62% of the simulated 
sources have at least 1% flux contribution 
from overlapping sources in the i band4. 
This fraction is reduced to 51% when only 
considering contaminating sources that 
are sufficiently bright to be individually 
detectable, highlighting the influence of 
a non-​detectable source population that 
creates a faint but spatially structured 
photon background63. Even when blending 
is recognized, source injection tests show 
that galaxy photometry is affected at a level 
of 5%; stellar photometry even by 20%, 
largely independent of filter band7. In rare 
cases, blending causes catastrophic outliers 
in galaxy photometry, resulting in gross 
overestimation of source fluxes 61. Even faint 
levels of flux contamination are problematic 
when they change the colour and, thus, 
the photometric redshift of a galaxy. In 
crowded fields, for instance, near the cores 
of clusters, such colour changes can happen 
at levels exceeding the requirements of 
next-​generation cosmological experiments64.

Morphology and weak gravitational 
lensing. One of the key aims of current 
and upcoming imaging surveys is to use 
gravitational lensing to map the distribution 
of matter in the Universe. Gravitational 
lensing is the bending of light from distant 
sources, primarily high-​redshift galaxies, 
by the gravity of intervening mass. For 
most galaxies, this bending manifests itself 
as a slight change in size and ellipticity, 
a phenomenon called weak lensing. The 
primary effect, caused by the so-​called shear γ,  
changes the 2D ellipticity e of a source as
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where R = ∂e/∂γ is called the (linear) shear 
response.

Accurate measurements of the apparent 
ellipticity, thus, carry the imprints of 
cosmological lensing and give information 
about the properties of dark matter and 
dark energy. In addition, the lensing effect 
depends on the distance between the 
observer, the ‘lens’ that causes the light 
deflection and the source from which the 
light was initially emitted. To constrain 
the 3D structure of the cosmic matter field,  

one must, therefore, estimate the redshift z of 
the source galaxies, or, at least, the distribution 
of their redshifts n(z). Weak lensing, 
therefore, requires accurate morphological 
measurements, as well as photometry for 
photometric redshift estimates.

Blending presents various challenges 
for weak lensing measurements. Ellipticity 
measurements are even more sensitive to 
blending than photometry because the 
effective influence of a pixel is proportional 
to the squared distance from the centre of 
the source. As a result, blending tends to 
align the semi-​major axis of the best-​fitting 
ellipse towards the neighbouring source. 
Unrecognized blending (identifiable in 
ground-​based images by comparison with 
high-​resolution space-​based images of 
the same sky region) causes large outliers 
in ellipticity measurements and increases 
the overall uncertainties in ellipticities 
by 14%10. This number is confirmed by a 
statistical accounting of the influence of 
blends on ellipticity noise in simulated 
images that resemble those from the LSST4. 
The presence of non-​detected objects also 
causes systematic biases in the amplitude 
of ellipticity measurements at the percent 
level11,65,66. Even if the neighbouring sources 
are completely identified, ellipticity and 
size measures remain uncertain and are 
usually biased towards large sizes and high 
ellipticities67, because deblending algorithms 
are fundamentally imperfect (as discussed in 
the section on deblending efforts).

The high accuracy requirements of 
weak lensing suggest an approach where 
the measurements are made as robust to 
blending as possible, and residual biases 
are corrected statistically. Doing so by 
simulating every conceivable shape and 
brightness of a galaxy is time-​consuming 
and sensitive to the underlying assumptions 
about the relevant galaxy parameters11,68.

An alternative approach, called 
metacalibration, stems from recognizing 
that weak lensing is solely described by the 
change of ellipticity or sizes, with unlensed 
galaxy properties acting as a constant 
additive term (see Eq. (1)). Because galaxies 
have no preferred orientation, the constant 
term vanishes when averaging over many 
galaxies, so that 〈γ〉 ≈ 〈R〉−1〈e〉. Calibration, 
thus, only needs to accurately determine 
the average of the response matrix R, that 
is, how the measurements of ellipticities 
respond to a change in the shear, for 
instance, by artificial shearing (or stretching, 
for size-​based lensing estimates) of sources 
in observed images and recording how their 
measurements change69,70. This approach 
can be performed on the actual galaxies 

in question, instead of simulations, and 
encompasses all stages of the data processing 
pipeline. As a result, metacalibration yields 
ellipticity measurements that are corrected 
to the very stringent requirements of 
upcoming weak lensing analyses70.

This result remains nominally true for 
blended galaxies, even if deblending is not 
attempted66. Metacalibration can further 
be extended to include a separate detection 
step of the manipulated images, a technique 
dubbed metadetection, which can suppress 
biases arising from the interdependencies of 
detection and ellipticity measurements. For 
observations from the DES, the LSST and 
Euclid, these biases can be suppressed from a 
few percent to a few parts in 10,000 (refs66,71).

The remaining problem for shape 
measurements arises because multiple 
blended galaxies are rarely physically 
associated, but are, instead, line-​of-​sight 
projections. As a result, the photons from 
individual galaxies experience different 
amounts of lensing on their way to the 
observer. In addition, weak lensing analyses 
require redshift estimates — typically 
from photometry, which is also affected 
by blending. Both of these effects can be 
summarized at the level of the redshift 
distribution of sources, n(z), which 
ordinarily denotes the number of galaxies 
in a survey at a given redshift. However, any 
blended source with photons originating 
from different redshifts effectively 
contributes to n(z) at multiple redshifts. The 
shear measurement response also modulates 
the effective distribution. The combined 
effect can be treated by constructing an 
effective redshift distribution for weak 
lensing nγ(z). The shape of this distribution 
can be determined from dedicated image 
simulations, which compute the measured 
ellipticity of a source when introducing 
an artificial shear at a redshift z. These 
simulations need to be populated with a 
realistic distribution of galaxies and must 
vary the lensing strength as a function 
of redshift72. Using nγ(z) instead of n(z) 
provides a simple plug-​in replacement 
for follow-​up studies that accounts for the 
combined effects of blending on both 
the shape measurements and the redshift 
estimates. However, it requires many more 
calibration simulations compared with 
conventional constant-​shear calibrations, 
which poses a substantial computing 
challenge to large surveys.

Outlook
With deblending methods continually 
improving and statistical mitigation 
approaches, in some cases, reaching levels 
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of calibration sufficient for upcoming 
cosmological studies, what is there left to do?

Many astronomical studies rely on 
accurate results for individual sources, often 
in configurations with a high probability of 
blending. Examples are galaxy clusters or 
extended low-​surface-​brightness galaxies73–75. 
The best way to aid the impossible task of 
deblending in these cases is to use superior 
data. Assessing detection completeness and 
photometry in ground-​based imaging by 
comparing with space-​based observations 
of the same region10,76 is routinely done 
if overlapping data are available (Fig. 1).  
Such overlapping data, however, are 
still scarce.

For instance, the entire sky area covered 
by the Hubble Space Telescope amounts 
to only about 0.1% of the sky (Rick White, 
personal communication), with the largest 
contiguous area, the so-​called Cosmic 
Evolution Survey (COSMOS) field77,78, 
fitting comfortably in a single pointing of 
many modern survey telescopes. However, 
this situation will change in this decade. 
The launches of Euclid in 2022, of the 
Chinese Survey Space Telescope (CSST) in 
2024 and of the Roman Space Telescope 
in 2025 complement the ground-​based 
Rubin Observatory with three space-​borne 
instruments that are optimized for 
wide-​field surveys. The availability of 
overlapping imaging surveys will extend 
the wavelength coverage in the ultraviolet 
and near-​infrared range. It also spurs the 
development of data processing approaches 
that either use high-​resolution images as 
templates for more blended low-​resolution 
data79,80 or fully exploit the combined 
data set by jointly processing all available 
observations at the pixel level81–84.

Statistical mitigation of blending can 
be remarkably accurate, but photometric 
measurements will remain challenging. One 
can read off blending-​induced photometry 
biases from simulations, but the calculated 
biases are strongly dependent on the 
parameters of the image simulation or 
of the injected sources7,72. In addition to 
computational limitations, the critical issue 
is, thus, the realism of these simulations, 
specifically regarding the joint distributions 
of morphologies, spectra and redshifts.

The most convincing way forward again 
employs the use of superior data. Ideally, 
one would construct an overlapping data 
set from the most capable instruments in all 
relevant wavelengths, so that shortcomings 
of one data set can be compensated by 
another, as has routinely been done with 
follow-​up spectroscopic campaigns of large 
imaging surveys85–87. But the instruments 

in question differ in their capabilities, 
observational restrictions and in the 
demands of other programmes they are 
intended to carry out. Full overlap over 
all of the sky is, thus, not attainable in the 
foreseeable future.

As a result, proposed agreements 
between multiple surveys are critical. 
Spending some fraction of their respective 
time budget on observations of common 
sky regions, the so-​called deep fields88–90, 
will make it possible to combine all available 
information. With common sky coverage 
from ground and space soon reaching tens 
of square degrees, these carefully chosen 
fields will be large enough to provide a 
representative sample of the complex joint 
distributions of galaxy properties. They 
are also premier target fields for deep 
spectroscopic follow-​up programmes, 
either with moderately high resolution 
spectrographs from the ground or the 
upcoming slitless spectroscopy instruments 
of Euclid, CSST and Roman. Besides 
the immediate scientific opportunities, the 
analysis of these joint deep fields will be 
invaluable to test deblending methods, 
determine blending contaminations to 
various measurements without relying on 
simulations and provide training data for 
neural network generators.

Blending poses a profound challenge for 
the processing and analysis of data from 
deep sky surveys, the scope of which has 
only recently been fully recognized. We 
are optimistic that this challenge can be 
met with methodological advances and 
cross-​survey cooperation.
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