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Abstract | The increasing sensitivity of modern sky surveys allow ever fainter
emissions of light to be detected, but it also increases the chances of noticeable
overlap between multiple sources of light, a phenomenon called blending. The
consequences of blending are expected to be among the leading systematic
measurement uncertainties of future surveys, such as the Legacy Survey of Space
and Time. This Perspective discusses two main approaches to addressing blending:
attempting to separate individual sources and statistically correcting for the
presence of blending at the population level. For both approaches, simultaneous
access to data of multiple surveys will be critical to construct a joint data set that

combines the strengths of each individual survey.

Blending occurs when multiple sources of
light occupy the same region of the sky.

If left unaccounted for, blending results in
contaminated measurements of celestial
sources that are traditionally considered
isolated. Its consequences propagate

into and alter the estimates of physical
processes that are under investigation,
and are expected to be among the leading
systematic uncertainties of many scientific
investigations for future surveys like the
Legacy Survey of Space and Time (LSST)
of the Vera C. Rubin Observatory.

The rate at which blending happens
depends on two main parameters. First
and foremost, the sensitivity (also called
depth) of the observations determines
how many emitters are detected per unit
sky area. At optical and near-infrared
wavelengths, shallow observations
primarily show stars in the Milky
Way, whereas source counts in deeper
observations are dominated by galaxies
at cosmological distances.

Second, the spatial resolution of the
instrument determines the minimal unit
of sky area in which multiple sources can
be distinguished from each other. For
modern telescopes, the resolution limit
is typically determined by the ‘seeing, the
blurring caused by a turbulent atmosphere.
In its absence, that is, with a ground-based
adaptive optics system or a space telescope,

the resolution is set by the diffraction limit
of the telescope optics.

Modern ground-based surveys — like
the Dark Energy Survey (DES)', the Hyper
Suprime-Cam Subaru Strategic Program
(HSC SSP)? and the future LSST® — have
been designed, among other criteria,
to maximize the number of galaxies for
which fluxes, sizes and ellipticities can be
measured. Their observations are so deep
that they reveal most stars in our Galaxy
and an even larger number of galaxies.
With the number density of sources on the
sky, blending becomes inevitable, given
the seeing conditions and sensitivity of these
surveys (FIG. 1). On top of that, galaxies are
spatially extended, that is, their apparent
size is larger than the resolution limit of
the instrument, which leads to even higher
rates of blending. As a result, these surveys
find 30-60% of all celestial sources to be
blended**. Although each study adopts
different definitions of blending, driven by
their respective measurement methodology
and scientific requirements, the blending
rates consistently grow with increasing
sensitivity.

The problems for follow-up analyses
in astrophysics and cosmology that arise
from blending are twofold. First, traditional
measurement algorithms in astronomy
assume independence of sources. In other
words, they expect that a large sky area
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can be broken up into smaller chunks
so that, in each chunk, there is only one
source to be analyzed. If this assumption
is violated, measurements, such as those
of the flux or shape of a source, become
contaminated®’. Rejecting blended galaxies
is possible, but not advisable. Depending
on the adopted criterion, rejecting blended
galaxies results in a loss of statistical power
of a few percent to tens of percent for an
LSST-like programme of measuring galaxy
shapes for weak gravitational lensing®,
which defies the original intent of deeper
observations. Moreover, such a scheme
would preferentially reject galaxies in
regions of high source density, with possible
biases arising for cosmological applications’.
We argue, in the next section, that
simultaneous modelling multiple sources
even inside one sky chunk can mitigate these
measurement biases.

Second, a more pernicious scenario
arises when multiple sources are so close
to each other that a given observation and
measurement method cannot recognize
their presence individually. Unrecognized
blending affects about 15% of all galaxies
in an LSST-like survey'® and creates
strong outliers and systematic biases in
ellipticity measurements'*~'>. It renders
rejection and simultaneous modelling
efforts formally impossible (but there is a
remedy; as discussed in the next section)
and calls for a subsequent, higher-level
statistical correction of measurement biases
(as discussed in the section on characterizing
blending) or the integration of multiple
data sets, especially the combination of
ground-based and space-based surveys
(as discussed in the Outlook).

BOX 1 presents a visual summary of the
main effects and severity of blending for an
LSST-like imaging survey.

Deblending efforts

Blending poses an inverse problem,

known as ‘deblending’ in astronomy and
‘source separation’ in general. The goal of
deblending is to reconstruct the properties
of the individual sources from a combined,
blended observation. Strictly speaking, the
task is impossible because the problem is
underconstrained. For any recorded photon,
it is simply not known which source it came
from. In general, the problem has k times
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DECaLS

Fig. 1| The same sky region of 1.5 x 0.75 arcmin?, observed by different
surveys. From left to right: the Sloan Digital Sky Survey (SDSS)** with a
pixel scale of 0.396 arcsec, the DECam Legacy Survey (DECaLS)* with
a pixel scale of 0.262 arcsec, the Hyper Suprime-Cam Subaru Strategic
Program (HSC SSP)? with a pixel scale of 0.168 arcsec and the Cosmic

CANDELS

HSC SSP

0.06 arcsec. Increasing the sensitivity yields a larger number of sources and
reveals the fainter outskirts galaxies, both of which result in higher rates
of blending. At fixed depth, increasing the spatial resolving power is the
only means of reducing source confusion. SDSS and DECaLS images
adapted with permission from Legacy Surveys/D. Lang (Perimeter

Assembly Near-infrared Deep Extragalactic Legacy Survey (CANDELS)
programme’*** with the Hubble Space Telescope and a pixel scale of

Collaboration.

Institute). HSC SSP image adapted with permission from NAOJ/HSC

as many degrees of freedom as constraints
from data, where k is the number of
blended sources. This scaling can be seen
for imaging instruments, in which case one
image per source is to be reconstructed, as
well as for photon-counting instruments,
in which case mixture modelling estimates
a probability for every photon of being
associated with any of the k sources”. To
overcome the inherent degeneracies of this
underconstrained inverse problem, one
must make assumptions about the kind of
blending and the properties of the sources
being blended.

Virtually all deblending approaches
adopt a linear mixing model, in which
multiple sources simply add their respective
emissions along the line of sight. This
model is mathematically and practically the
easiest one, and allows for a variety of linear
methods to be applied. It assumes mutual
independence between sources, which
seems justified in astronomy because stars
and galaxies that appear blended are very
often not physically interacting but merely
aligned from our perspective. In detail,
the assumption is invalid because dust in a
foreground galaxy absorbs and re-emits light
from any background source. Fortunately,
galaxies are only moderately opaque'* — at
least in the nearby universe — so that dust
attenuation can be ignored to the first order.

One can further assume knowledge of
the spatial light distribution of the sources.

For instance, stars are point sources,

the apparent shape of which is entirely
determined by the point spread function of
the telescope, so that only their luminosity
and position have to be determined.

This simplification allows for successful
deblending even in highly crowded

stellar fields'>""". Galaxies exhibit complex
morphologies, and, thus, require additional
assumptions. That such assumptions are at
least approximately justified is supported
by the long-standing realization that galaxy
morphologies are not arbitrary but form
groups, most prominently those of elliptical
and spiral galaxies'®.

The main morphological features of
many galaxies can, thus, be described
by simple parametric models" or their
approximations®»”'. Stabilizing and speeding
up the solutions for multi-source deblending
usually requires iterative approaches,
wherein the parametric model is fit to only
one source at a time. One can then either
mask pixels deemed to belong to other
sources in the blend or subtract the assumed
pixel values according to an earlier fit of
these other sources™**. Both approaches
directly exploit the assumed independence
between sources.

Non-parametric approaches can solve for
multiple sources at once. A suitable approach
that implements a linear mixing model and
can formally handle an arbitrary number
of sources was implemented in the Sloan

Digital Sky Survey (SDSS) photo pipeline™.
This approach can be extended with an
approach based on matrix factorization
To reduce the number of degrees of freedom,
one can enforce morphological heuristics

— for instance, that galaxies are symmetric
under 180° rotation or are monotonically
decreasing from their centres, through
constrained optimization®*.

Recent advances in machine learning
allow non-parametric methods to learn
commonalities among observed galaxies,
thereby, extending and generalizing
heuristic constraints. Generative neural
networks are capable of representing a wide
range of galaxy morphologies. They are
well-suited for deblending because they
learn an encoding from which any observed
galaxy, or at least its relevant aspects, can be
reconstructed. A common architecture is
the autoencoder’’', which can be trained
to encode isolated galaxy images into a
low-dimensional latent space and then to
decode, that is, reconstruct, the image from
the latent variables. Knowing how any galaxy
can look (the task for the decoder, also called
generator) strongly reduces the degeneracies
that arise from the overlap of multiple
galaxies: many deblending solutions may
add up to a given blend, but the individual
sources do not look like real galaxies and,
therefore, can be dismissed.

Such generative models have been used
in several deblending studies. For example,
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the generator of an autoencoder trained on
isolated galaxies can be retained while the
encoder is retrained on blended images™.
Doing so changes the task of the encoder
to learn how to robustly identify the latent
variables of the most prominent galaxy,
while ignoring all others. The approach
exploits an insight from blending statistics,
namely, that configurations with one
bright source and one or several much
fainter sources are much more common
than configurations with equally bright
galaxies (BOX 1). The approach, thus, seeks
to recover the most prominent source in the
most common blend scenario. Going one
step further, one can use an autoencoder
extension, called a U-Net*, to break up the
image into multiple output channels of

the same shape and obtain solutions for both
sources in a two-source blend*, which, for
intermediate to faint galaxies, is the most
common configuration (BOX 1).

Both these approaches are somewhat
sensitive to the prevailing observational
conditions (such as image resolution,
the shape and width of the point spread
function, sky brightness and its spatial
variations, and detector artifacts). Modern
surveys invest in careful characterization
of these conditions, which suggests a
strategy of explicitly modelling them as
degradations of an ideal image. Doing
so leaves for the network only the task of
encoding galaxy images in idealized form
— that is, noise-free, super-resolution and
unconvolved”. Combining this strategy
with the linear mixing model yields a hybrid
Bayesian scheme that has an explicit form of
the blending likelihood and a probabilistic
generative network (of the Pixel CNN++
architecture®, for example) as a prior over
all galaxy morphologies”. This direction
appears promising thanks to deep learning
methods gaining further capabilities and
maturity, but care needs to be taken to
train on realistic, high-quality images and
to account for morphological changes of
galaxies observed at different wavelengths.

Deblending approaches typically require
knowledge of how many sources are present
in a blend because they can only model the
previously identified ones. This requirement
renders deblending dependent on the task
of source detection, which is performed
prior to deblending. Whereas statistically
optimal detection methods have been
formulated for point sources™*, direct
solutions for extended blended sources do
not exist. Convolutional neural networks
provide an implicit solution of object
detection and classification, for instance,
with the Mask R-CNN* architecture,

and show good performance on images

of moderate source density*. Increasing
the density further makes detection and
deblending exponentially more difficult*,
ultimately leading to the so-called confusion
limit. At this sensitivity of a survey, further
detections become statistically impossible
due to the Poisson noise from the collective
light emitted by all sources. The increasing
depth of modern surveys requires
techniques that are capable of operating
close to the confusion limit. One promising
approach is to break the interdependency
of detection and deblending by exploiting
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the power-law shape of galaxy luminosity
functions. Performing detections and
deblending on the rarer bright sources first
and then running a conventional or Mask
R-CNN detection method on the residuals of
the deblending model allows the detection
of previously missed sources in heavily
blended regions*. Such an iterative detection
catalogue increases source detection
completeness in blends and, thus, sharply
reduces the rate of unrecognized blending.
Although most detection methods
have been trained on simulated images
resembling the observations of particular

Box 1| Blending characteristics for the LSST

happened.

very noticeable in measurements.
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We created realistic simulated images that mimic the observing conditions of the Legacy Survey of
Space and Time (LSST), using a cosmological simulation that determines the location, brightness and
morphology of all sources. We then process these images with the LSST data management software
stack and register when a known input source is contained within the area of a detected source

in the image. Unlike studies on observations, we can unambiguously determine if blending has

Owing to their apparent size on the sky, the brightest galaxies (i-band magnitude ~16) are
effectively guaranteed to be blended (blue line in figure part a), typically forming groups of 8 +3
sources (black data points in figure part a), with the second brightest source in such a group usually
being 8 magnitudes (that is, a factor of 1,500) fainter (figure part b). The measurement of the
brightest sources is, thus, mostly unaffected by blending, but blending almost certainly hinders
the detection and measurement of fainter sources in their vicinity.

Galaxies with intermediate brightness still have blending rates of more than 50% and group sizes
of 2-4 (figure part a), but if they are blended, the secondary source is only 2—-4 magnitudes (factors
6-40) fainter (figure part b). This is the regime in which blending is still very common and can be

At the faintest end, sources appear very small and blending becomes rare (figure part a), but if it
happens, it involves another source of almost equal brightness (figure part b). This is the regime in
which measurements, and even detection probabilities, are most strongly affected by blending.

A sketch to summarize these findings from blending statistics is shown in figure part c. Because
brighter galaxies are intrinsically larger and their outskirts remain visible further away from their
centres, they occupy more area on the sky (not shown to scale). With the same secondary source
population in all three cases, blended groups get smaller with decreasing brightness of the primary
source, but the secondaries become similarly bright.

In figure parts a and b, vertical error bars denote symmetrical 68% confidence intervals and
horizontal error bars indicate the bin width of 1 magnitude. The dashed line in part b indicates
equality between brightest and second brightest sources as a guide to the eye.
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surveys, actual observations can be used
instead if reliable detection catalogues are
available. Doing so allows a U-Net to learn
the separation between sources and the
sky background. If the sources have also
been assigned a classification label, one can
further leverage the U-Net architecture and
provide an image per label®. By running
on multi-band images, this semantic
segmentation approach classifies individual
pixels into background, point source and
several galaxy types, and is, thus, able
to detect sources and possibly provide a
physically motivated deblending solution
based on morphological and colour features.
The main challenge in such a scheme lies
in the reliance on externally constructed
detections and classifications. For both
semantic segmentation and iterative
detection and deblending, it is difficult to
know when to stop, that is, to determine if
a perceived variation in the data justifies
reporting of a new source or different
galaxy label.

Deblending can also be performed in
the spectral domain. Given an assumed
set of spectra that can be exhibited by
sources, one can ask whether an observed
spectrum is more likely to have come from
a single source or a combination of sources.
One can also determine the most likely
spectra of each source using a statistical
hypothesis test””. Furthermore, one can
combine assumptions about spatial and
spectral properties®*s. Deblending with
spatial and spectral information — known
as hyper-spectral modelling — exploits all
separating features available for non-variable
sources, and we are convinced of its
effectiveness and feasibility. The current
shortcoming of hyper-spectral modelling
lies in the limitations in understanding of
how various astrophysical processes shape
the properties of galaxies. Comparisons
between large hyper-spectral data sets*~!
and galaxy-scale simulations™** could
lead to the definition of observationally
recognizable galactic ‘building blocks] such
as bulges, bars, spiral arms, star-forming
regions and tidal tails. Such building
blocks are interesting in their own right as
constraints on models for galaxy formation
and evolution. Furthermore, a library or
deep-learning model of them would make
it possible to identify spectrally or spatially
distinct structures and differentiate those
that emerge within a single galaxy from
those that are formed by the superposition
of different galaxies. We believe that
investigations in this direction are the
next logical step in the development of
hyper-spectral deblending.

Blending characterization and
mitigation

An alternative to deblending is to
characterize the effects of blending at

the statistical level. Blending affects any
pixel-level measurement, and subsequent
scientific analyses, by altering one’s ability
to detect sources or to measure their
properties cleanly. When deblending is not
feasible at a level of systematic uncertainty
subdominant to the statistical error budget
of large surveys, such a characterization

is essential.

Deep, space-based observations could
provide reliable ‘ground truth’ information
for blending studies' (FIC. 1), but, so far, have
limited sky coverage. Therefore, simulations
are critical for blending characterization®*.
Substantial simulation efforts are being
made for the upcoming LSST*>*, as well
as ESA’s Euclid mission'>”” and NASA’s
Nancy Grace Roman Space Telescope™.

In images generated from cosmological
N-body simulations, the assumed galaxy
morphologies either follow parametric
Sérsic models' or are drawn from a limited
number of high-fidelity images from the
Hubble Space Telescope. The former lack
the rich morphological diversity of galaxies,
whereas the latter only provide a small
sample of galaxy shapes.

The morphological complexity of
simulated galaxies is likely to increase
in the near future thanks to advances in
neural network generators®. In addition,
image simulations coming directly from
cosmological hydrodynamics simulations
could soon provide fully realistic mock
observations at the scale of wide-field
surveys. Ideally, such simulated images
would include complex dependencies,
for instance, those between the clustering
of galaxies and their spectral and
morphological characteristics™. In the
meantime, the lack of realism of ab initio
simulations can be partially remedied by
injecting mock sources into observations
and measuring how well they are
recovered”***', Although the mock sources
themselves are drawn from a parametric
model or a small set of high-fidelity images,
the properties of all other sources are,
by construction, correct.

Regardless of the principle underlying
the blending characterization, the
assumption is made that measurements
on observations exhibit the same kinds of
difficulties, so that the corrections needed in
practice can be directly read off from these
prior characterization efforts. We detail
blending-related approaches for the most
important measurements below.

59

Detection. Detection completeness is

a complex interplay of the concrete
arrangement of sources in a sky region and
the data processing pipeline. For isolated
galaxies, the ability to detect is primarily
limited by Poisson shot noise. For faint
galaxies, this noise is dominated by the so-
called sky brightness, which is a combination
of several sources, such as sunlight scattered
off the Moon or off interplanetary dust
grains, airglow of the atmosphere. The
increased shot noise from blending of
detected and undetected sources does not
itself noticeably impede detection, increasing
the effective noise level for the LSST by
only about 0.2%’. The dominating effect is
the difficulty of detecting fainter sources

in the vicinity of brighter ones, driven

by algorithmic choices such as requiring

a minimum measure of separability to
consider the fainter source a legitimate
detection. The detection completeness

of potentially detectable sources, that is,
sources that would have been detectable if
they were isolated, is reduced by blending
by approximately 10% in the DES®' and by
20% in the LSST". Source injection tests in
deep observations from the Hubble Space
Telescope similarly show that blending
reduces stellar completeness from 1% at the
brighter end to 20% close to the detection
limit®.

Source injection methods are also well
suited to correct for the cumulative effects
on the completeness of detection catalogues.
A case study for angular clustering of
galaxies in the DES® shows an excess
signal by more than a factor of 2 on scales
below 7 arcsec, attributed to blending. The
clustering signal is expressed as the average
probability of finding a source within an
angular separation from another source,
and is, thus, directly modulated by any
change to the detection probability. This
counter-intuitive excess possibly originates
from the light envelope of bright sources
aiding the detection of fainter ones in
their vicinity. Injecting sources provides
an estimate of the non-uniform detection
probability of the survey and allows for such
spurious contributions to be removed.

Photometry and photometric redshifts.
Photometry — that is, the measurement

of source flux, typically in multiple filter
bands — is the basis for many statements
about the physical state of a source, such

as the temperature of a star or the stellar
mass of a galaxy. In addition, the apparent
colour of galaxies yields an estimate of their
distance through the redshifting of photons
caused by cosmic expansion. This approach,
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called photometric redshift estimation,
provides distance estimates for the vast
majority of extragalactic sources.

Simulated images of Sérsic galaxy models
with parameters resembling the expected
galaxy population that will be observed by
the LSST show that 62% of the simulated
sources have at least 1% flux contribution
from overlapping sources in the i band*.
This fraction is reduced to 51% when only
considering contaminating sources that
are sufficiently bright to be individually
detectable, highlighting the influence of
a non-detectable source population that
creates a faint but spatially structured
photon background®. Even when blending
is recognized, source injection tests show
that galaxy photometry is affected at a level
of 5%; stellar photometry even by 20%,
largely independent of filter band’. In rare
cases, blending causes catastrophic outliers
in galaxy photometry, resulting in gross
overestimation of source fluxes °'. Even faint
levels of flux contamination are problematic
when they change the colour and, thus,
the photometric redshift of a galaxy. In
crowded fields, for instance, near the cores
of clusters, such colour changes can happen
at levels exceeding the requirements of
next-generation cosmological experiments®.

Morphology and weak gravitational
lensing. One of the key aims of current

and upcoming imaging surveys is to use
gravitational lensing to map the distribution
of matter in the Universe. Gravitational
lensing is the bending of light from distant
sources, primarily high-redshift galaxies,

by the gravity of intervening mass. For

most galaxies, this bending manifests itself
as a slight change in size and ellipticity,

a phenomenon called weak lensing. The
primary effect, caused by the so-called shear y,
changes the 2D ellipticity e of a source as

de
e=e |y:0+_ |y:0y

9 (1)
+0(y*)=e l,-ot Ry,

where R=0e/dy is called the (linear) shear
response.

Accurate measurements of the apparent
ellipticity, thus, carry the imprints of
cosmological lensing and give information
about the properties of dark matter and
dark energy. In addition, the lensing effect
depends on the distance between the
observer, the lens’ that causes the light
deflection and the source from which the
light was initially emitted. To constrain
the 3D structure of the cosmic matter field,

one must, therefore, estimate the redshift z of
the source galaxies, or, at least, the distribution
of their redshifts n(z). Weak lensing,
therefore, requires accurate morphological
measurements, as well as photometry for
photometric redshift estimates.

Blending presents various challenges
for weak lensing measurements. Ellipticity
measurements are even more sensitive to
blending than photometry because the
effective influence of a pixel is proportional
to the squared distance from the centre of
the source. As a result, blending tends to
align the semi-major axis of the best-fitting
ellipse towards the neighbouring source.
Unrecognized blending (identifiable in
ground-based images by comparison with
high-resolution space-based images of
the same sky region) causes large outliers
in ellipticity measurements and increases
the overall uncertainties in ellipticities
by 14%"°. This number is confirmed by a
statistical accounting of the influence of
blends on ellipticity noise in simulated
images that resemble those from the LSST".
The presence of non-detected objects also
causes systematic biases in the amplitude
of ellipticity measurements at the percent
level'*>%. Even if the neighbouring sources
are completely identified, ellipticity and
size measures remain uncertain and are
usually biased towards large sizes and high
ellipticities”’, because deblending algorithms
are fundamentally imperfect (as discussed in
the section on deblending efforts).

The high accuracy requirements of
weak lensing suggest an approach where
the measurements are made as robust to
blending as possible, and residual biases
are corrected statistically. Doing so by
simulating every conceivable shape and
brightness of a galaxy is time-consuming
and sensitive to the underlying assumptions
about the relevant galaxy parameters'>®.

An alternative approach, called
metacalibration, stems from recognizing
that weak lensing is solely described by the
change of ellipticity or sizes, with unlensed
galaxy properties acting as a constant
additive term (see Eq. (1)). Because galaxies
have no preferred orientation, the constant
term vanishes when averaging over many
galaxies, so that (y) = (R)"'(e). Calibration,
thus, only needs to accurately determine
the average of the response matrix R, that
is, how the measurements of ellipticities
respond to a change in the shear, for
instance, by artificial shearing (or stretching,
for size-based lensing estimates) of sources
in observed images and recording how their
measurements change®’’. This approach
can be performed on the actual galaxies
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in question, instead of simulations, and
encompasses all stages of the data processing
pipeline. As a result, metacalibration yields
ellipticity measurements that are corrected
to the very stringent requirements of
upcoming weak lensing analyses”.

This result remains nominally true for
blended galaxies, even if deblending is not
attempted®. Metacalibration can further
be extended to include a separate detection
step of the manipulated images, a technique
dubbed metadetection, which can suppress
biases arising from the interdependencies of
detection and ellipticity measurements. For
observations from the DES, the LSST and
Euclid, these biases can be suppressed from a
few percent to a few parts in 10,000 (REFS**7").

The remaining problem for shape
measurements arises because multiple
blended galaxies are rarely physically
associated, but are, instead, line-of-sight
projections. As a result, the photons from
individual galaxies experience different
amounts of lensing on their way to the
observer. In addition, weak lensing analyses
require redshift estimates — typically
from photometry, which is also affected
by blending. Both of these effects can be
summarized at the level of the redshift
distribution of sources, n(z), which
ordinarily denotes the number of galaxies
in a survey at a given redshift. However, any
blended source with photons originating
from different redshifts effectively
contributes to n(z) at multiple redshifts. The
shear measurement response also modulates
the effective distribution. The combined
effect can be treated by constructing an
effective redshift distribution for weak
lensing ny(z). The shape of this distribution
can be determined from dedicated image
simulations, which compute the measured
ellipticity of a source when introducing
an artificial shear at a redshift z. These
simulations need to be populated with a
realistic distribution of galaxies and must
vary the lensing strength as a function
of redshift”. Using ny(z) instead of n(z)
provides a simple plug-in replacement
for follow-up studies that accounts for the
combined effects of blending on both
the shape measurements and the redshift
estimates. However, it requires many more
calibration simulations compared with
conventional constant-shear calibrations,
which poses a substantial computing
challenge to large surveys.

Outlook

With deblending methods continually
improving and statistical mitigation
approaches, in some cases, reaching levels
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of calibration sufficient for upcoming
cosmological studies, what is there left to do?

Many astronomical studies rely on
accurate results for individual sources, often
in configurations with a high probability of
blending. Examples are galaxy clusters or
extended low-surface-brightness galaxies” .
The best way to aid the impossible task of
deblending in these cases is to use superior
data. Assessing detection completeness and
photometry in ground-based imaging by
comparing with space-based observations
of the same region'®’® is routinely done
if overlapping data are available (FIC. 1).
Such overlapping data, however, are
still scarce.

For instance, the entire sky area covered
by the Hubble Space Telescope amounts
to only about 0.1% of the sky (Rick White,
personal communication), with the largest
contiguous area, the so-called Cosmic
Evolution Survey (COSMOS) field””’,
fitting comfortably in a single pointing of
many modern survey telescopes. However,
this situation will change in this decade.
The launches of Euclid in 2022, of the
Chinese Survey Space Telescope (CSST) in
2024 and of the Roman Space Telescope
in 2025 complement the ground-based
Rubin Observatory with three space-borne
instruments that are optimized for
wide-field surveys. The availability of
overlapping imaging surveys will extend
the wavelength coverage in the ultraviolet
and near-infrared range. It also spurs the
development of data processing approaches
that either use high-resolution images as
templates for more blended low-resolution
data’* or fully exploit the combined
data set by jointly processing all available
observations at the pixel level*-*.

Statistical mitigation of blending can
be remarkably accurate, but photometric
measurements will remain challenging. One
can read off blending-induced photometry
biases from simulations, but the calculated
biases are strongly dependent on the
parameters of the image simulation or
of the injected sources”””. In addition to
computational limitations, the critical issue
is, thus, the realism of these simulations,
specifically regarding the joint distributions
of morphologies, spectra and redshifts.

The most convincing way forward again
employs the use of superior data. Ideally,
one would construct an overlapping data
set from the most capable instruments in all
relevant wavelengths, so that shortcomings
of one data set can be compensated by
another, as has routinely been done with
follow-up spectroscopic campaigns of large
imaging surveys**. But the instruments

in question differ in their capabilities,
observational restrictions and in the
demands of other programmes they are
intended to carry out. Full overlap over
all of the sky is, thus, not attainable in the
foreseeable future.

As aresult, proposed agreements
between multiple surveys are critical.
Spending some fraction of their respective
time budget on observations of common
sky regions, the so-called deep fields**",
will make it possible to combine all available
information. With common sky coverage
from ground and space soon reaching tens
of square degrees, these carefully chosen
fields will be large enough to provide a
representative sample of the complex joint
distributions of galaxy properties. They
are also premier target fields for deep
spectroscopic follow-up programmes,
either with moderately high resolution
spectrographs from the ground or the
upcoming slitless spectroscopy instruments
of Euclid, CSST and Roman. Besides
the immediate scientific opportunities, the
analysis of these joint deep fields will be
invaluable to test deblending methods,
determine blending contaminations to
various measurements without relying on
simulations and provide training data for
neural network generators.

Blending poses a profound challenge for
the processing and analysis of data from
deep sky surveys, the scope of which has
only recently been fully recognized. We
are optimistic that this challenge can be
met with methodological advances and
cross-survey cooperation.
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