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Abstract: We study the evolution of quantum fluctuations of gravity around an inflationary solution

in renormalizable quantum gravity, in which the initial scalar-fluctuation dominance is shown by the

background-free nature expressed by a special conformal invariance. Inflation ignites at the Planck

scale and continues until spacetime phase transition occurs at a dynamical scale of about 1017 GeV.

We show that during inflation, the initially large scale-invariant fluctuations reduce in amplitude to

the appropriate magnitude suggested by tiny CMB anisotropies. The goal of this research is to derive

the spectra of scalar fluctuations at the phase transition point, that is, the primordial spectra. A system

of nonlinear evolution equations for the fluctuations is derived from the quantum gravity effective

action. The running coupling constant is then expressed by a time-dependent average following the

spirit of the mean field approximation. In this paper, we determine and examine various nonlinear

terms, not treated in previous studies such as the exponential factor of the conformal mode. These

contributions occur during the early stage of inflation when the amplitude is still large. Moreover,

in order to verify their effects concretely, we numerically solve the evolution equation by making

a simplification to extract the most contributing parts of the terms in comoving momentum space.

The result indicates that they serve to maintain the initial scale invariance over a wide range beyond

the comoving Planck scale. This is a challenge toward the derivation of the precise primordial

spectra, and we expect in the future that it will lead to the resolution of the tensions that have arisen

in cosmology.

Keywords: quantum gravity inflation; nonlinear evolution; primordial spectrum; initial scalar-fluctuation

dominance; amplitude reduction

1. Introduction and Summary

Inflation is an unbelievable idea proposed by Guth [1], Sato [2], and Starobinsky [3] to
solve the horizon and flatness problems, which claims that there was a period of exponential
expansion in the universe before the big bang1. Remarkably, if we genuinely embrace this
concept, a significant portion of the universe we observe today originated from a region
even smaller than the Planck length.

Going over the Planck-scale wall requires quantization of gravity with not only renor-
malizability but also background freedom. Defying the common perception in this research
area, we have proposed asymptotically background-free quantum gravity [5–9] as a theory
with such properties and also a realistic inflationary dynamics. Its distinctive feature is that
diffeomorphism invariance in the ultraviolet (UV) limit is described as a special conformal
invariance [10–16]. Since it is a gauge symmetry, it represents background freedom in
which all different conformally-flat spacetimes are gauge equivalent. This symmetry is
called BRST conformal invariance,2 which was first found in two-dimensional quantum
gravity [17–20] and then extended to four dimensions. The existence of this symmetry
makes it possible to describe the world far beyond the Planck scale where scalar fluctuations
dominate and no tensor ones.
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Perturbation theory is formulated by introducing a dimensionless coupling constant
t that represents deviation from the conformal invariance. The asymptotic background
freedom represents that nonperturbative fluctuations of the conformal mode in the gravita-
tional field become dominant in the UV limit of t → 0. In this paper, we investigate how
the universe evolves and deviates from such a scale-invariant state. The moment when
the conformal invariance is completely broken at a novel energy scale of quantum gravity,
ΛQG, is called the “spacetime phase transition”. If we set this scale below the Planck scale,
then the theory has an inflationary solution with the expansion time constant of order of
the Planck mass [21–23].

The goal of this study is to clarify how perturbations, or spacetime fluctuations, around
the inflationary solution evolve, and to derive the primordial spectra that are the initial
conditions of the current universe. It can be said that in the universe before inflation
begins, quantum fluctuations of gravity are large and thus spacetime is not substantially
fixed. As inflation begins, the fluctuations gradually decrease in amplitude, eventually
reaching the magnitude suggested by observations of tiny anisotropies in the cosmic
microwave background radiation (CMB) [24,25] until the time of the spacetime phase
transition. Since fluctuations in gravity represent fluctuations in time and distance, the
reduction of them implies that the universe becomes a real world where time and distance
can be measured accurately3.

In order to obtain the primordial spectrum, various nonlinear effects in the evolution
of the fluctuations must be taken into account properly. The running coupling constant
is one of these nonlinear effects, which is incorporated into the equations of motion by
approximating it as a time-dependent mean field, as done in previous studies [22,23]. In
this way, we show that the amplitude of the fluctuations reduces during inflation.

To determine the spectral pattern more accurately, we need to evaluate contributions
from nonlinear terms, such as the exponential factor of the conformal mode existing in
the Einstein–Hilbert action. The fluctuations dealt with here are of sizes that momentum
dependence disappears as soon as inflation begins, but the nonlinear effects cannot be
ignored in the early stage where the fluctuations are still large4. One of the purposes of
this research is to determine a system of nonlinear evolution equations of the fluctuations
involving such effects.

Since it is a rather complicated equation system, we here simplify it by extracting most
contributing parts of the nonlinear terms in comoving momentum space so that we can
solve it numerically and quantify their effects, as will be described in Sections 4 and 5. One
of the results indicating that there is a large effect on the evolution of fluctuations is shown
in Figures 1 and 2, together with previous results from linear equations. Consequently, we
confirm that the nonlinear terms have expected effects by which the initial scale invariance is
maintained up to relatively-high momentum regions, as inferred in the previous works [23].

In determining the spectrum, the presence of the physical infrared cutoff ΛQG plays
an essential role. The sharp falloff in low multipole components of the CMB angular power
spectrum is explained by this scale [21]. Its wavelength is given by a comoving scale of the
correlation length ξΛ = 1/ΛQG. This means that most of the universe we see today was
within the size of ξΛ before inflation.

Quantum gravity inflation suggests that the observed CMB anisotropy spectrum con-
tains real quantum gravity effects. The guiding principles here are clear: diffeomorphism
invariance and renormalizability. Thus the model gives life to the concept of inflation, align-
ing with Starobinsky’s perspective [3]. Moreover, we expect that the primordial spectrum
derived from the first principle will settle the Hubble tension [27].
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Figure 1. The evolution of quantum gravity fluctuations incorporating nonlinear terms (black),

together with previous linear equation results (red), from before inflation to the spacetime phase

transition. The (left) is displayed in logarithmic time and the (right) is in normal time. The Planck

time at which inflation begins is normalized to unity, and then the phase transition occurs at 60. The

horizontal axis k is the comoving momentum.

Figure 2. The (left) is an enlarged view near the transition point in Figure 1. The (right) is the values

at the transition point, providing the primordial spectrum (a line connecting points, the amplitude is

its square).

2. Renormalizable and Asymptotically Background-Free Quantum Gravity

The problems with Einstein’s theory of gravity are summarized in unrenormalizability
and the existence of singularities. Therefore, a finite UV cutoff is usually introduced in the
Planck scale to avoid such problems. This corresponds to thinking of spacetime discretized
in the Planck length, and some researchers regard the length as a quantum of spacetime.
However, introducing the UV cutoff breaks diffeomorphism invariance.

If we consider diffeomorphism invariance as a first principle, then we have to bring
the cutoff to infinity, i.e., take the continuum limit. It implies that the theory is renor-
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malizable. Being renormalizable is equivalent to having no singularity. The reason why
the existence of singularities cannot be denied probabilistically is due to the fact that the
Einstein–Hilbert action becomes finite for such singular spacetime configurations, because
it does not contain the Riemann tensor Rµνλσ which controls the magnitude of curvature. A
renormalizable quantum theory of gravity requires an action involving the Riemann tensor
squared with correct sign. Since such an action is positively divergent for singularities, they
are eliminated as unphysical5. Furthermore, since the action becomes dimensionless, the
corresponding coupling constant is also dimensionless and renormalizable [28–31].

Despite these excellent properties, it is generally known that another problem arises
in such a theory. This is the so-called ghost problem. However, note here that the existence
of ghost modes itself is not a problem. In fact, Einstein’s theory of gravity has a ghost
mode due to the indefiniteness of the Einstein–Hilbert action. Owing to that, there are
non-trivial solutions such as the Friedmann solution even though we are considering an
equation where the total Hamiltonian vanishes. If the action was positive definite, there
should only be a trivial vacuum solution. Thus, the ghost mode is an indispensable element
to make the Hamiltonian zero, i.e., to preserve diffeomorphism invariance. However, it
causes problems if it appears locally as a real object. A problem with early renormalizable
theories using curvature squared is that the ghost mode appears as a physical particle state
in the UV limit.

Considering why such a problem occurs, it turns out that there is a problem in the
method of perturbation expansion. The conventional perturbation expansion has been
carried out in the graviton picture propagating in the flat spacetime of Rµνλσ = 0, but this
expansion method cannot make the ghost mode unphysical. To begin with, assuming that
flat spacetime appears asymptotically implies that the closer we approach the center of the
black hole, the weaker the gravitational field. Thus, this is a physically unnatural setting.
Even theoretically this perturbation method exhibits inconsistent UV behavior (see also
Note 6).

How should we perform perturbation expansion to correctly describe features of the
world beyond the Planck scale? A solution to this problem can be found by considering
what is required in the early universe. The important fact here is that inflation is given by a
spacetime configuration in which the Weyl tensor

Cµνλσ = Rµνλσ −
1

2
gµ[λRσ]ν +

1

2
gν[λRσ]µ +

1

6
gµ[λgσ]νR

vanishes, where a[µbν] = aµbν − aνbµ. Therefore, we perform perturbation expansion
around the conformally-flat spacetime with Cµνλσ = 0.

This suggests that the conformal mode of the gravitational field, crucial for deter-
mining distances, receives special treatment. Here, we extract it in an exponential factor,
ensuring its positivity

gµν = e2ϕ ḡµν,

where the scalar-like field ϕ is called the conformal-factor field. The remaining mode ḡµν is
expanded by the traceless tensor field hµν as

ḡµν = ηµλ

(

eh
)λ

ν
= ηµλ

(

δλ
ν + hλ

ν +
1

2
hλ

σhσ
ν + · · ·

)

, (1)

where h
µ
µ = 0. Raising and lowering the legs of the traceless tensor field is done with

the flat background metric ηµν = (−1, 1, 1, 1) as hµν = ηµλhλ
ν. The coordinates of the flat

metric are denoted as xµ = (η, x), and are henceforth called the comoving coordinate,
following cosmology.

We introduce a coupling constant t as a dimensionless parameter that controls the
above perturbation expansion. Noting that the field strength of the traceless tensor field is
the Weyl tensor, the perturbation theory is defined by introducing the inverse of t2 before
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the Weyl tensor squared with correct sign. The action of the whole system including it is
given by [5–9]

I =
∫

d4x
√−g

{

− 1

t2
C2

µνλσ − bG4 +
1

h̄

(

1

16πG
R + LM

)}

.

The first term is called the Weyl action and is conformally invariant,
√−g C2

µνλσ = C̄2
µνλσ,

where the quantity with the bar is defined by ḡµν. The second G4 = RµνλσRµνλσ −
4RµνRµν + R2 is the Euler density and its volume integral is also conformally invariant,
where b is not an independent coupling constant because this term does not contain a ki-
netic term, which is expanded in t. The third is the Einstein–Hilbert action and LM denotes
the matter field actions which are conformally invariant in the UV limit. The cosmological
constant term is ignored here because its contribution is negligible in the early universe.
When performing perturbation calculations, we usually redefine the field as hµν → thµν in
the expansion formula (1), but here we proceed without redefining because we consider
even regions where the coupling constant becomes large.

The coupling constant t represents the degree of deviation from the conformal flatness.
The significant point of this expansion method is that in the UV limit of t → 0, the
traceless tensor field becomes small, but the conformal-factor field ϕ remains fluctuating
nonperturbatively. Thus, there is no picture of particles propagating in flat spacetime. The
partition function under this expansion is given by [5–20]:

∫

[dg]g eiI(g) =
∫

[dϕdh]η eiS(ϕ,ḡ)+iI(g),

where the ϕ-dependent action S is the Wess–Zumino action [32] for conformal anomaly [33–36].
Unlike the conventional perturbation expansion around flat spacetime, S is necessary to
preserve diffeomorphism invariance when replacing the path integral measure from the
invariant [dg]g to the commonly used [dϕdh]η defined on the flat background6. This is a
quantity that makes up the running coupling constant introduced later, which represents the
breaking of conformal invariance. Although the word anomaly is used, it is not physically
anomalous. If formulated using dimensional regularization that preserves diffeomorphism
invariance manifestly, the information of S is automatically contained between 4 and
D (< 4) dimensions [6–9,31,37–42].

The Wess–Zumino actions are responsible for fourth-derivative dynamics of the
conformal-factor field ϕ. The most important term among them is the Riegert action [10],
which remains even in t → 07:

SR =
∫

d4x

{

− b1

(4π)2

(

2ϕ∆̄4ϕ + Ē4 ϕ +
1

18
R̄2

)}

, (2)

where E4 = G4 − 2∇2R/3 and ∇2 = ∇µ∇µ. The differential operator
√−g∆4, which

is conformally invariant for scalars, is defined by ∆4 = ∇4 + 2Rµν∇µ∇ν − 2R∇2/3 +
∇µR∇µ/3. The coefficient is expanded as

b1 = bcB, B = 1 − γ1
t2

4π
+ o(t4). (3)

The lowest is given by bc = (NX + 11NW/2 + 62NA)/360 + 769/180 with a right positive
value, where NX , NW , and NA are the numbers of scalar fields, Weyl fermions, and gauge
fields coupled with gravity, respectively [5,12,31]. For example, bc = 7.0 for the Standard
Model, bc = 9.1 for SU(5)GUT, and bc = 12.0 for SO(10)GUT. Here we adopt bc = 7.

Initial quantum gravity spectrum at t = 0 is given by a two-point function of ϕ. It is a
logarithmic function of distance [11,15,23]

⟨ϕ(η, x)ϕ(η, y)⟩ = − 1

4bc
log(x − y)2. (4)
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Fourier transforming this in three-dimensional space provides a scale-invariant scalar
spectrum whose amplitude is a positive-definite constant proportional to the reciprocal of
bc. This fact is a consequence of the gravitational field being a dimensionless field.

The dynamics at the UV limit, where the Riegert action plays a central role, is de-
scribed by the BRST conformal field theory, i.e., a special conformal field theory with
conformal invariance as gauge symmetry8. This is a hidden quantum field theory that
emerges when rewriting quantum gravity into the theory on a particular background, here
ηµν, and performing the path integral over ϕ. Unlike normal conformal invariance, this
invariance shows background freedom that expresses gauge equivalence between different
conformally-flat spacetimes. Under this symmetry, all ghost modes involved in the ϕ and
h

µ
ν fields become unphysical—not gauge invariant. Physical states are given by scalar

composite states (primary scalar states) only, no tensor-type states. Thus, the asymptotic
background freedom indicates that scalar fluctuations predominate in the early universe,
consistent with observations9. The argument based on the conformal algebra can be found
everywhere, which corresponds to solving the Hamiltonian and momentum constraints
that bind ghosts [11–16].

As mentioned before, the unphysical ghost mode is a necessary ingredient for con-
structing a state in which the total Hamiltonian vanishes. If all modes were positive-definite,
only such a state would be the trivial vacuum. Thus, the ghost mode in the gravitational
field should be a hidden entity that does not appear locally, but necessary to preserve
diffeomorphism invariance and to give entropy of the universe10. This means that the
quantum theory of gravity is not a theory for dealing with local entities such as gravitons,
but a theory for describing state-changes in spacetime. Ghost modes do not appear directly
in calculations that describe the evolution of quantum spacetime. Although they definitely
contribute to the evolution, they are not directly observed. This is true not only for quantum
gravity but also for classical Einstein gravity. Evolution in the Friedmann universe is exactly
due to the ghost mode, and the inflationary universe is as well.

Infrared dynamics of the traceless tensor field are represented by the running coupling
constant. Defining the beta function as µdt/dµ = −β0 t3 (β0 > 0) with an arbitrary mass
scale µ introduced upon quantization, it is given by11

t̄2(Q) =
[

β0 log(Q2/Λ2
QG)

]−1
, (5)

where Q2 = q2/e2ϕ and q2 is the momentum squared defined on flat spacetime [6,22,37]. In
cosmology, Q is called the physical momentum and q is called the comoving momentum.

The energy scale ΛQG(= µe−1/2β0t2
) is a renormalization group (RG) invariant satisfying

dΛQG/dµ = 0, i.e., one of the physical constants that do not change in the process of cosmic
evolution [44].

The effective action Γ including quantum corrections is given by replacing t2 with t̄2(Q).
Specifically, the Weyl part of the effective action is ΓW = −[1/t2 − 2β0ϕ + β0 log(q2/µ2)]C̄2

µνλσ,

where the second is one of the Wess–Zumino actions and the third is a loop correction, and
then we can find that the inside of the square brackets can be summarized in the form of
1/t̄2(Q) [6,22,37]. Thus, the ϕ-dependence of the momentum Q comes from the Wess–Zumino
action S. At higher orders of t, multipoint interactions of the type ϕnC̄2

µνλσ arise, which are

incorporated into Q in higher-order corrections of the running coupling constant [37]. The
Riegert part of the effective action, ΓR, is also given by replacing the t2-dependence in the
coefficient (3) with t̄2(Q). In this case, the Wess–Zumino action of the type ϕn+1(2∆̄4ϕ + Ē4)
contributes. Similarly, in the presence of gauge field Fµν, the Wess–Zumino action of the
type ϕnF̄2

µν arises and the gauge coupling constant is then replaced with its running coupling
constant [37].

The effective action is a RG invariant, and the Planck mass and the cosmological
constant appearing in it are also RG invariants, namely physical constants, such as the
dynamical scale ΛQG [45]. These three constants must be determined from observations.
Here, the two mass scales mpl and ΛQG are involved in the inflationary dynamics, while
the cosmological constant is negligibly small. The magnitude relation must be mpl > ΛQG
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for inflation to occur. This relation implies that quantum gravity activates before reaching
the Planck scale, i.e., the correlation length ξΛ becomes larger than the Planck length. The
length ξΛ gives the size of localized quantum gravity excitations, leading to a dynamical
discretization of spacetime [46].

The relation mpl > ΛQG also serves as a unitarity condition to ensure that ghost
particles do not appear in the world after the spacetime phase transition. In quantum
spacetime, all ghost modes are constrained by BRST conformal invariance, but this cannot
be applied after the transition. Therefore, the transition must occur below the Planck scale
so that ghost gravitons with mass about mpl do not appear.

The energy-momentum tensor is a formula obtained by applying a variation on the
gravitational field to the effective action. Therefore, it is also a RG invariant and a finite
operator, namely a normal product [38–42]. The equation of motion for quantum gravity is
expressed as the vanishing energy-momentum tensor. This is a general conclusion drawn
from diffeomorphism invariance and renormalizability, implying no correction due to
zero-point energy, which is consistent with no UV cutoff [47]. In addition, in the theory of
gravity without absolute time, conservation of the energy-momentum tensor is guaranteed
by the fact that it is a RG invariant.

Until now, we have paid no attention to h̄, but here we clearly specify where it ap-
pears when restored. Considering the action I by dividing it into the fourth-derivative
gravitational part I(4) and the lower-derivative term IEG consisting of the Einstein–Hilbert
action and matter actions, the reciprocal of h̄ is entered only in front of IEG. Since the
gravitational field is essentially a dimensionless field, I(4) is completely dimensionless,
thus it does not contain h̄. Similarly, h̄ is not included in the Wess–Zumino action S de-
rived from the path integral measure. This means that all fourth-derivative gravitational
actions are quantities that describe purely quantum dynamics, and the whole including
them as weights, except IEG, could be regarded as a whole measure of the path inte-
gral. Hence, the path integral of quantum gravity is often symbolically expressed using
only IEG as

∫

Dgµν eiIEG/h̄, but here it is shown that the measure is expressed exactly as

Dgµν = [dϕdh]η eiS+iI(4) . This is also the reason why the Weyl action and the Wess–Zumino
action resulting from the measure are treated on the same footing in the following discus-
sion. From the consideration of h̄, it turns out that the ghost mode is essentially a quantum
entity and does not appear as a classical one like particles. In the following, h̄ = 1.

3. Inflationary Universe and Evolution Equation of Spacetime Fluctuations

The idea of inflation has been conceived to solve the horizon problem of why there
were larger correlations than the horizon size in the early universe and the flatness problem
of why curvature remains near zero even after more than 10 billion years [1–3]. Here we
focus on another important role of inflation: generating initial conditions for evolution of
the current universe, namely, the primordial spectra. They have to be almost scale-invariant
and the magnitude of their amplitude has to be very small, at least for fluctuations with
sizes involved in the structure formation of the universe. Inflation theory needs to describe
these matters.

First, we show that the quantum gravity theory has an inflationary solution. The
equation of motion that expresses evolution of the universe is derived by a variation of the
effective action as follows [22]

δΓ =
∫

d4x

(

T
µ
µδϕ +

1

2
T

µ
νδhν

µ

)

= 0. (6)

The energy-momentum tensor is represented by the sum of the Riegert, Weyl, Einstein–
Hilbert, and matter field sectors, as Tµν = TR

µν +TW
µν +TEH

µν +TM
µν, where Tµν = ηµλTλ

ν. Ex-
pressions for the energy-momentum tensors of each sector are summarized in Appendix A.
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3.1. Inflationary Solution

The conformal-factor field ϕ is divided into a spatially homogeneous component ϕ̂
and a fluctuation φ around it as

ϕ(η, x) = ϕ̂(η) + φ(η, x). (7)

Homogeneous nonlinear equation for ϕ̂ is given from the trace equation T
µ
µ = 0 as [21,22]

− bc

4π2
B∂4

η ϕ̂ + 6M2
P e2ϕ̂

(

∂2
η ϕ̂ + ∂η ϕ̂∂η ϕ̂

)

= 0, (8)

where MP = 1/
√

8πG is the reduced Planck mass. The first term is from the Riegert
action (2) and the second term is from the Einstein–Hilbert action, while there is no con-
tribution from the Weyl and matter actions. In addition, letting ρ be an energy density of
matter fields, we obtain an energy conservation equation from the time-time component
equation T00 = 0 as [22]

bc

8π2
B
(

2∂3
η ϕ̂∂η ϕ̂ − ∂2

η ϕ̂∂2
η ϕ̂

)

− 3M2
Pe2ϕ∂η ϕ̂∂η ϕ̂ + e4ϕ̂ρ = 0. (9)

Here we introduce the scale factor a = eϕ̂ and the proper time defined by dτ = adη.
Further, introducing the Hubble variable H = ∂τa/a and their derivatives Y = ∂τ H and
Z = ∂2

τ H, we can rewrite (8) as

B
(

∂τZ + 7HZ + 4Y2 + 18H2Y + 6H4
)

− 3H2
D

(

Y + 2H2
)

= 0. (10)

When the coupling constant vanishes and thus B = 1, this equation has a stable inflationary
solution with

H = HD, HD =

√

8π2

bc
MP. (11)

The constant HD has a value between the Planck mass mpl and the reduced Planck mass
MP for the typical value of bc mentioned before. Therefore, it is also called the Planck scale.
This solution expresses that the scale factor expands exponentially in the proper time as
a(τ) ∝ eHDτ . Thus, the universe begins to grow rapidly from the Planck time τP = 1/HD.

The energy conservation Equation (9) can be rewritten as

B
(

2HZ − Y2 + 6H2Y + 3H4
)

− 3H2
D H2 +

8π2

bc
ρ = 0. (12)

Substituting the solution (11) into this equation, we find that ρ = 0 is an initial value.

3.2. Spacetime Phase Transition

As the space begins to expand, the running coupling constant t̄ (5) increases accord-
ingly. It implies that the universe gradually deviates from conformally-flat spacetime, and
thus inflation terminates at the dynamical energy scale ΛQG where t̄2 diverges. At this time,
the conformal gravity dynamics disappears completely and the classical spacetime phase
emerges. In order to represent it as a time evolution, we approximate the running coupling
constant by a time-dependent mean field [22,23]. That is, replace Q with the reciprocal of
the proper time τ and express it as

t̄2(τ) =
[

β0 log(τ2
Λ/τ2)

]−1
, (13)

where τΛ = 1/ΛQG is called the dynamical time. This running coupling constant increases
logarithmically as inflation progresses, and diverges rapidly in the dynamical time. Then,
the Weyl part of the effective action disappears in proportion to the reciprocal of t̄2(τ).

The effective action that describes infrared dynamics of the Riegert sector is also
expressed by replacing t2 in the factor B (3) with t̄2(τ). We denote the factor that has
undergone such a replacement as B̄(τ) and consider the equation where B in the equation
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of motion is simply replaced with B̄(τ). Furthermore, in order to express the disappearance
of the dynamics of the Riegert sector with divergence of t̄2(τ), we assume the following
form, called the dynamical factor [22,23]:

B̄(τ) =

[

1 +
γ1

κ

t̄2(τ)

4π

]−κ

, (14)

where γ1, κ > 0. The constants γ1, κ, and also β0 are here treated as phenomenological
parameters that adjust the inflationary scenario. In this paper, these dynamical-factor
parameters are set to be β0 = 0.4, γ1 = 0.1, and κ = 1.

In this way, the spacetime phase transition is expressed as a process in which all the
fourth-derivative gravitational actions responsible for the conformal gravity dynamics
vanish at the dynamical time τΛ. The gravitational energy disappeared at that time is
transferred to the energy of matter fields, causing the big bang. The energy conservation
Equation (12) with B replaced by B̄ expresses such a process, that is, the matter energy ρ,
which is initially zero, is generated when B̄ disappears as the running coupling constant
increases. The change occurs rapidly near the phase transition, and ρ(τΛ) = 3M2

PH2(τΛ)
is obtained.

The number of e-foldings of inflation defined by Ne = log[a(τΛ)/a(τP)] is roughly
given by a ratio of the two physical scales HD and ΛQG. Here, we take the ratio to be

N =
HD

ΛQG
= 60. (15)

In practice, the number of e-foldings Ne is slightly larger than this value, depending on the
dynamical-factor parameters.

Since bc is set to 7 here, the dynamical energy scale is determined from (15) to be

ΛQG = 1.3 × 1017 GeV

for MP = 2.4 × 1018 GeV.
To clarify the physical meaning of the two mass scales, we introduce the corresponding

comoving scales:

λ = a(τi)ΛQG, m = a(τi)HD, (16)

where a(τi) is the scale factor at a time τi = 1/Ei (Ei ≫ HD) far before the Planck time,
that is, before the scale factor starts to grow. The current scale factor is normalized to
1 here. Letting λ be a scale that explains the sharp falloff in low multipole components of
the CMB angular power spectrum, its value is close to the Hubble constant H0 and thus
a(τi) ∼ 10−59 is derived. This implies that most of the universe we see today was originally
created within the correlation length ξΛ.

Furthermore, if the big bang occurred near 1017 GeV and the present universe was
created there, then the universe expanded about 1029 times after the big bang. From this,
it is required to expand 1030 times during the inflationary period. Although ΛQG is not
the only parameter determining the number of e-foldings, it turns out that this scale is a
relatively tight one when considering the scenario of cosmic evolution. In this paper, we
adopt m = 0.02 Mpc−1 as a reference value, and then λ (= m/N) = 0.00033 Mpc−112.

A numerical solution of the equation of motion for the homogeneous component is
shown in Figure 313. The horizontal axis is a dimensionless time defined by t = HDτ
(not to be confused with the coupling constant). The Hubble variable H is obtained by
solving the homogeneous Equation (10) with B replaced by B̄. The matter energy density ρ
is then obtained by substituting the result of H into (12). See Appendix B for details of the
computation method.

We will now consider how the low-energy spacetime after the phase transition is
described. In QCD, when the gluon action given by the second derivative disappears,
the gluon dynamics disappear completely. Meanwhile, in quantum gravity, even if the
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fourth-derivative gravitational action disappears, the second-derivative Einstein–Hilbert
action remains, which gives the kinetic term of the gravitational field at low energies. Thus,
Einstein’s theory of gravity appears as a low-energy effective theory. It is then no longer
appropriate to consider separately the conformal-factor field and the traceless tensor field,
and a composite field in which they are tightly coupled becomes a new variable of the
gravitational field. The actual low-energy effective theory will be described by derivative
expansions in the gravitational field with the Einstein–Hilbert action as the lowest order.
According to this, the Hubble variable increases a little further after the phase transition,
gains the e-foldings, and then oscillates and approaches the Friedmann solution rapidly, as
shown in Figure 3 (see Ref. [22] for details).

Figure 3. The (left) shows the time evolution of the scale factor a and the (right) shows that of the

Hubble variable H, where HD is normalized to unity. The vertical dotted line represents the phase

transition time τΛ(= 60). The subsequent behavior is derived from a low-energy effective theory of

gravity defined by derivative expansions in the gravitational field [22].

3.3. Nonlinear Evolution Equation of Fluctuations

Here, we consider equations of motion for fluctuations around the inflationary solution.
In fact, we should discuss the evolution of the physical scalars defined by composite fields,
such as the quantum Ricci scalar. However, due to the fact that the scalar fluctuations reduce
in amplitude during inflation, as previously mentioned, it turns out that it is sufficient to
consider the evolution of the fluctuations, because the information we ultimately want to
know is their reduced values at the phase transition, which gives the initial conditions of
the Friedmann universe.

Now we derive a system of nonlinear evolution equations for the fluctuations. The
conformal invariance indicates that the scalar fluctuation φ (7) dominates in the early
universe beyond the Planck scale. In order to describe the process that the scalar fluctuation
gradually deforms with time, we also take into account a scalar component of the traceless
tensor field, defined by

h00 = h, hij =
1

3
δijh, (17)

which is initially vanishing.
The system of linear evolution equations for the fluctuations has already been derived,

and it has been shown that the fluctuations gradually reduce during inflation [22,23]. How-
ever, since φ is still large in the initial stage, we cannot accurately estimate the fluctuation
spectrum without incorporating nonlinear terms involving multipoint functions of φ there.
The exponential factor of φ existing in the Einstein–Hilbert action provides such terms. On
the other hand, h is treated in the linear approximation, assuming that it is not very large,
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which is because h is initially small. It then grows, but reduces again before the coupling
constant t becomes large. Thus, nonlinear terms are limited to first order in h.

In addition, scalar fluctuations contain nonlinear terms combining other tensor modes
into scalars. These modes may also contribute to the equation of motion as nonlinear terms.
However, since the initial smallness of these tensor modes is almost maintained [22], the non-
linear terms containing them will contribute little to the evolution of the scalar fluctuations.

First, consider the trace part of the equations of motion. The Riegert sector is given by

T
Rµ

µ = −(bc/16π2)B(4∆̄4ϕ+ Ē4). Expanding it to the first order of the traceless tensor field
yields (A2). We expand this expression according to (7) and (17) and decompose it into the

linear part of φ and h and the nonlinear part of o(φh). Writing it as T
Rµ

µ = T
Rµ

µ|L +T
Rµ

µ|NL,
we obtain

T
Rµ

µ|L =
bc

8π2
B

{

−2∂4
η φ + 4∂2

η |∂2 φ − 2 |∂4 φ − 4∂4
η ϕ̂h − 8∂3

η ϕ̂∂ηh − 16

3
∂2

η ϕ̂∂2
ηh

+
32

9
∂2

η ϕ̂ |∂2h − 4

3
∂η ϕ̂∂3

ηh +
20

9
∂η ϕ̂∂η |∂2h − 1

3
∂4

ηh +
2

9
∂2

η |∂2h +
1

9
|∂4h

}

and

T
Rµ

µ|NL =
bc

8π2
B

{

−4h∂4
η φ +

8

3
h∂2

η |∂2 φ +
4

3
h |∂4 φ − 8∂ηh∂3

η φ +
8

3
∂ih∂2

η∂i φ

+
8

3
∂ηh∂η |∂2 φ +

8

3
∂ih∂i |∂2 φ − 16

3
∂2

ηh∂2
η φ +

32

9
|∂2h∂2

η φ +
16

9
|∂2h |∂2 φ

−4

3
∂3

ηh∂η φ +
20

9
∂η |∂2h∂η φ − 4

3
∂2

η∂ih∂i φ +
4

9
∂i |∂2h∂i φ

}

.

On the other hand, the trace part of the Weyl sector disappears in the first order of h,
resulting in TWλ

λ|L = 0.

The trace part of the Einstein–Hilbert sector is given by T
EHµ

µ = M2
P

√−gR = M2
Pe2ϕ(R̄ −

6∇̄2ϕ − 6∇̄µϕ∇̄µϕ). Expanding it to the first order of the traceless tensor field, we get
(A5). Expanding this further yields terms up to infinite order in φ due to the presence of
the exponential factor e2ϕ. Expressing it as TEH

µν = ∑
∞
n=0 TEH

(n)µν
, n = 0 is a homogeneous

component that gives the second term of (8) and (9), and TEH
(n)µν

consists of the o(φn) and

o(φn−1h) terms. The linear part is given by

T
EHµ

(1) µ
= M2

P e2ϕ̂

{

6∂2
η φ − 6 |∂2 φ + 12∂η ϕ̂∂η φ + 12

(

∂2
η ϕ̂ + ∂η ϕ̂∂η ϕ̂

)

φ

+∂2
ηh +

1

3
|∂2h + 6∂η ϕ̂∂ηh + 6

(

∂2
η ϕ̂ + ∂η ϕ̂∂η ϕ̂

)

h

}

and the nonlinear part composed of o(φ2) and o(φh) is

T
EHµ

(2) µ
= M2

P e2ϕ̂

{

12φ∂2
η φ − 12φ |∂2 φ + 6∂η φ∂η φ − 6∂i φ∂i φ + 24∂η ϕ̂ φ∂η φ

+12
(

∂2
η ϕ̂ + ∂η ϕ̂∂η ϕ̂

)

φ2 + 2φ∂2
ηh +

2

3
φ |∂2h + 6∂2

η φh + 2 |∂2 φh

+6∂η φ∂ηh + 2∂i φ∂ih + 12∂η ϕ̂ φ∂ηh + 12∂η ϕ̂ ∂η φh

+12
(

∂2
η ϕ̂ + ∂η ϕ̂∂η ϕ̂

)

φh

}

.

The case of n ≥ 3 can also be easily derived.
Since there are two field variables, the trace equation alone is incomplete. Therefore,

we consider another equation that combines the energy-momentum tensor such as

1

|∂2

(

Ti
i − 3

∂i∂j

|∂2
Tij

)

= 0. (18)
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Unlike the trace equation, there is a contribution from the Weyl sector, which is derived
from the linear part of the energy-momentum tensor given in (A3). On the other hand,
there is no contribution from the matter sector in this case either.

Since there is 1/t2 in front of the Weyl part, this part dominates at the early stage when
t2 is small. Multiplying the whole equation of motion by t2 to remove it, we can then see
that the contribution from the Riegert and Einstein–Hilbert sectors becomes o(t2) so that
they can be treated in linear in the early stage. The contribution to (18) from the Riegert
sector is thus given by linear part of φ and h obtained by substituting (7) into (A1). The
contribution from the Einstein–Hilbert sector is also derived from (A4).

Furthermore, since the fluctuations decrease as the coupling constant t increases,
Equation (18) can remain the linear approximation from beginning to end. This equation is
expressed by the second derivative of the fields as

16

3

1

t2

(

∂2
ηh − 1

3
|∂2h

)

+
bc

8π2
B

{

4

3
∂2

η φ +
8

3
∂η ϕ̂ ∂η φ +

(

8∂2
η ϕ̂ − 4

3
|∂2

)

φ

+
2

9
∂2

ηh +
4

3
∂η ϕ̂ ∂ηh +

(

20

9
∂2

η ϕ̂ − 16

9
∂η ϕ̂∂η ϕ̂ +

2

27
|∂2

)

h

}

+M2
P e2ϕ̂

(

−4φ +
2

3
h

)

= 0. (19)

Thus, the system of evolution equations can be expressed as a coupled differential equation

of this linear equation and the nonlinear trace equation T
Rµ

µ|L +T
Rµ

µ|NL +∑
∞
n=1 T

EHµ

(n) µ
= 0.

However, it is not yet in a form that can be solved numerically. It is necessary to

rewrite the ∂4
η ϕ̂ h term in the T

Rµ
µ|L part to terms with lower time-derivatives of ϕ̂ using the

homogeneous Equation (8). In addition, noting that the trace equation has the structure

− bc

4π2
B
(

∂4
η φ − 2∂2

η |∂2 φ + |∂4 φ
)

+ M2
P e2ϕ̂

{

6∂2
η φ − 6 |∂2 φ

+12∂η ϕ̂ ∂η φ + 12
(

∂2
η ϕ̂ + ∂η ϕ̂∂η ϕ̂

)

φ
}

= o(h),

the h ∂4
η φ term in the T

Rµ
µ|NL part is rewritten to terms with lower time-derivatives of φ by

ignoring the o(h2) term. In addition, we introduce a field variable

Φ = φ +
1

6
h

and treat Φ and h as independent variables. The fourth time-derivative of h in the linear
part is then absorbed into a fourth time-derivative of Φ so that the time-derivative of h
is given by up to at most the third one. Here, Φ is the gravitational potential when the
line-element is expressed within linear as ds2 = a2[−(1 + 2Ψ)dη2 + (1 + 2Φ)dx2], where
the other one is given by Ψ = φ − h/2.

The nonlinear terms that become effective in the early stage of the inflationary universe
can be incorporated in this way. On the other hand, the nonlinear effect arising in infrared
conformal gravity dynamics is represented by the running coupling constant. As mentioned
earlier, it is expressed by adopting a type of the mean-field approximation that rewrites
the coupling constant squared to the time-dependent average t̄2(τ) (13) and also B to
the time-dependent dynamical factor B̄(τ) (14). While this seems like a radical model,
no detailed information of strong coupling dynamics other than the disappearance of
conformal gravity dynamics will be needed, because the size of the fluctuations considered
here becomes much larger than the correlation length ξΛ near the phase transition point
where the coupling constant increases.

The system of nonlinear evolution equations derived finally is given by
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bc

8π2
B̄(τ)

{

−2∂4
ηΦ + 4∂2

η |∂2Φ − 2 |∂4Φ − 4

9
∂2

η |∂2h +
4

9
|∂4h − 8∂3

η ϕ̂ ∂ηh

−16

3
∂2

η ϕ̂ ∂2
ηh − 4

3
∂η ϕ̂ ∂3

ηh +
32

9
∂2

η ϕ̂ |∂2h +
20

9
∂η ϕ̂ ∂η |∂2h

−16

3
h∂2

η |∂2Φ +
16

3
h |∂4Φ − 8∂ηh∂3

ηΦ +
8

3
∂ih∂2

η∂iΦ +
8

3
∂ηh∂η |∂2Φ

+
8

3
∂ih∂i |∂2Φ − 16

3
∂2

ηh∂2
ηΦ +

32

9
|∂2h∂2

ηΦ +
16

9
|∂2h |∂2Φ − 4

3
∂3

ηh∂ηΦ

+
20

9
∂η |∂2h∂ηΦ − 4

3
∂2

η∂ih∂iΦ +
4

9
∂i |∂2h∂iΦ

}

+M2
P e2ϕ̂

{

6∂2
ηΦ + 12∂η ϕ̂ ∂ηΦ − 6 |∂2Φ + 12

(

∂2
η ϕ̂ + ∂η ϕ̂∂η ϕ̂

)

Φ

+4∂η ϕ̂ ∂ηh +
4

3
|∂2h − 8

(

∂2
η ϕ̂ + ∂η ϕ̂∂η ϕ̂

)

h

+12Φ∂2
ηΦ + 6∂ηΦ∂ηΦ + 24∂η ϕ̂ Φ∂ηΦ + 12

(

∂2
η ϕ̂ + ∂η ϕ̂∂η ϕ̂

)

Φ2

−12Φ |∂2Φ − 6∂iΦ∂iΦ − 8h∂2
ηΦ + 4∂ηh∂ηΦ − 16∂η ϕ̂ h∂ηΦ + 8∂η ϕ̂ ∂ηhΦ

−16
(

∂2
η ϕ̂ + ∂η ϕ̂∂η ϕ̂

)

hΦ + 16h |∂2Φ + 4∂ih∂iΦ +
8

3
|∂2hΦ

}

= 0 (20)

and

16

3

1

t̄2(τ)

(

∂2
ηh − 1

3
|∂2h

)

+
bc

8π2
B̄(τ)

{

4

3
∂2

ηΦ − 4

3
|∂2Φ +

8

3
∂η ϕ̂ ∂ηΦ + 8∂2

η ϕ̂ Φ

+
8

27
|∂2h +

8

9
∂η ϕ̂ ∂ηh +

(

8

9
∂2

η ϕ̂ − 16

9
∂η ϕ̂∂η ϕ̂

)

h

}

+ MP e2ϕ̂

(

−4Φ +
4

3
h

)

= 0. (21)

The second Equation (21) plays an important role as a constraint for connecting the
inflation and Friedmann phases. When the running coupling constant t̄ is small, h is small,
indicating that φ is dominant. Conversely, when t̄ diverges, 1/t̄2 the dynamical factor
B̄ vanishes, and the last Einstein term becomes dominant, this results in a transition to
the Friedmann universe satisfying Φ = h/3. In terms of the gravitational potentials, it
expresses that the initial fluctuation of Φ = Ψ changes to Φ = −Ψ.

Equations (20) and (21) will be solved simultaneously. At that time, it is necessary that
∂3

ηh in (20) is rewritten to the third time-derivative of Φ and other lower time-derivative
terms using an equation obtained by time differentiating (21) as

∂3
ηh =

1

3
∂η |∂2h +

1

t̄2(τ)
∂η t̄2(τ)

(

∂2
ηh − 1

3
|∂2h

)

− bc

32π2
t̄2(τ)

{

B̄(τ)

[

∂3
ηΦ + 2∂η ϕ̂∂2

ηΦ + 8∂2
η ϕ̂∂ηΦ + 6∂3

η ϕ̂Φ − ∂η |∂2Φ

+
2

3
∂η ϕ̂∂2

ηh +
4

3

(

∂2
η ϕ̂ − ∂η ϕ̂∂η ϕ̂

)

∂ηh +
2

3

(

∂3
η ϕ̂ − 4∂2

η ϕ̂∂η ϕ̂
)

h +
2

9
∂η |∂2h

]

+∂η B̄(τ)

[

∂2
ηΦ + 2∂η ϕ̂∂ηΦ + 6∂2

η ϕ̂Φ − |∂2Φ +
2

3
∂η ϕ̂∂ηh

+
2

3

(

∂2
η ϕ̂ − 2∂η ϕ̂∂η ϕ̂

)

h +
2

9
|∂2h

]}

+M2
P t̄2(τ)e2ϕ̂

{

3

4
∂ηΦ +

3

2
∂η ϕ̂Φ − 1

4
∂ηh − 1

2
∂η ϕ̂h

}

. (22)
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4. How to Handle Nonlinear Terms

The fluctuation spectrum is expressed using Fourier transform in the three-dimensional
comoving coordinate space. Letting f (x) be a dimensionless field variable, here we define
its Fourier transform so that the transformed quantity is also dimensionless as

f (x) =
∫

d3k

(2π)3

1

k3
f (k) eik·x,

where k = |k|. Its dimensionless power spectrum ⟨| f (k)|2⟩/2π2 is defined by ⟨ f (k) f (k′)⟩ =
⟨| f (k)|2⟩k3(2π)3δ3(k + k′). The scale invariance is expressed as this power spectrum
being constant.

Fourier transform of a dimensionless field product f (x)g(x) is also defined by

( f g)(k) = k3
∫

d3x f (x)g(x)e−ik·x

= k3
∫

d3x

∫

d3p

(2π)3

d3q

(2π)3

1

p3q3
f (p)g(q)ei(p+q−k)·x. (23)

Here, we rewrite the exponential part using the expansion formula with the spherical
Bessel function,

eik·x = 4π
∞

∑
l=0

l

∑
m=−l

il jl(kx)Y∗
lm(Ωk)Ylm(Ωx),

where Ω denotes angular components such that dx3 = x2dxdΩx and the spherical harmon-
ics are normalized as

∫

dΩY∗
lm(Ω)Yl′m′(Ω) = δll′δmm′ .

Henceforth, assuming that isotropic components of each function in the linear and
nonlinear terms contribute predominantly, let

f (p) = f (p), g(q) = g(q). (24)

In this case, the angular integration in (23) can be easily performed and we obtain

( f g)(k) =
8

(2π)3
k3

∫

dp

p

dq

q
f (p)g(q)

∫

dxx2 j0(kx)j0(px)j0(qx),

where j0(kx) = sin(kx)/kx. The x-integral yields

∫ ∞

0
dxx2 j0(kx)j0(px)j0(qx) =

{

π
4

1
kpq for |p − q| < k < p + q

0 otherwise

and thus we get

( f g)(k) =
k2

(2π)2

∫

dp

p2

dq

q2
θ(k − |p − q|)θ(p + q − k) f (p)g(q), (25)

where θ is the Heaviside step function.
The Fourier transform of a product of functions with spatial derivatives can be calcu-

lated similarly. Here it suffices for us to consider the following type:

(∂i f ∂ig)(k) = k3
∫

d3x∂i f (x)∂ig(x)e−ik·x

= k3
∫

d3x

∫

d3p

(2π)3

d3q

(2π)3

−p · q

p3q3
f (p)g(q)ei(p+q−k)·x.

Under the isotropic condition (24), integrating the angular components of the momentum
p and q can be easily performed by expressing the vector p = (px, py, pz) in terms of
spherical harmonics as
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px =

√

2π

3
p
{

Y1−1(Ωp)− Y11(Ωp)
}

,

py = i

√

2π

3
p
{

Y1−1(Ωp) + Y11(Ωp)
}

,

pz =

√

4π

3
pY10(Ωp).

Performing the integration of the remaining angular component Ωx using

∫

dΩxY∗
l1m1

(Ωx)Yl2m2
(Ωx)Yl3m3

(Ωx) =

√

(2l2 + 1)(2l3 + 1)

4π(2l1 + 1)
Cl10

l20l30Cl1m1
l2m2l3m3

yields

(∂i f ∂ig)(k) =
8

(2π)3
k3

∫

dpdq f (p)g(q)
∫

dxx2 j0(kx)j1(px)j1(qx)

=
k2

(2π)2

∫

dp

p2

dq

q2
θ(k − |p − q|)θ(p + q − k)

×1

2
(p2 + q2 − k2) f (p)g(q). (26)

The lower bound of the comoving momentum integral is given by the physical co-
moving scale λ (16), while there is no upper bound on the integration. Using (25) and
(26), Fourier transforms of the second-order nonlinear terms in the trace Equation (20) are
given by

bc

8π2
B̄

k2

(2π)2

∫ ∞

λ

dp

p2

dq

q2
θ(k − |p − q|)θ(p + q − k)

{

−8∂ηh(p)∂3
ηΦ(q)

−16

3
∂2

ηh(p)∂2
ηΦ(q)− 4

3
∂3

ηh(p)∂ηΦ(q) +

(

−20

9
p2 +

20

3
q2 − 4

3
k2

)

h(p)∂2
ηΦ(q)

+

(

−20

9
p2 − 8

3
q2

)

∂ηh(p)∂ηΦ(q) +

(

−2

3
p2 − 2

3
q2 +

2

3
k2

)

∂2
ηh(p)Φ(q)

+

[

−2

9
p4 + 4q4 +

2

9
p2q2 +

(

2

9
p2 +

4

3
q2

)

k2

]

h(p)Φ(q)

}

(27)

and

M2
Pe2ϕ̂ k2

(2π)2

∫ ∞

λ

dp

p2

dq

q2
θ(k − |p − q|)θ(p + q − k)

{

6Φ(p)∂2
ηΦ(q)

+6∂2
ηΦ(p)Φ(q) + 6∂ηΦ(p)∂ηΦ(q) + 12∂η ϕ̂ Φ(p)∂ηΦ(q) + 12∂η ϕ̂ ∂ηΦ(p)Φ(q)

+12
(

∂2
η ϕ̂ + ∂η ϕ̂∂η ϕ̂

)

Φ(p)Φ(q) + 3
(

p2 + q2 + k2
)

Φ(p)Φ(q)− 8h(p)∂2
ηΦ(q)

+4∂ηh(p)∂ηΦ(q)− 16∂η ϕ̂ h(p)∂ηΦ(q) + 8∂η ϕ̂ ∂ηh(p)Φ(q)

−16
(

∂2
η ϕ̂ + ∂η ϕ̂∂η ϕ̂

)

h(p)Φ(q)−
(

2

3
p2 + 14q2 + 2k2

)

h(p)Φ(q)

}

. (28)

Here, the momentum integral in (28) has no problem on the upper bound due to the strength
of its negative power. On the other hand, the absence of problems in (27) derived from the
fourth-derivative Riegert action will be guaranteed by the property that the traceless tensor
field becomes smaller in the high-momentum region14.

5. Simplification of Nonlinear Terms and Numerical Evaluation

In order to numerically solve the above system of nonlinear evolution equations, we
have to describe the momentum integrals by sums and rewrite it to a multiple simultaneous
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differential equation in which many fields with different momentum are linked. However,
it is not easy to actually solve such a multiple differential equation. Here we further
simplify the equations and examine them to evaluate how the nonlinear term specifically
affects patterns of the spectrum. At that time, we do not care too much about the overall
amplitude accuracy.

First of all, since we cannot solve the evolution equation if two time variables are
mixed, we rewrite the conformal time η to the proper time τ. Using the scale factor a,
the Hubble variable H, and its time derivatives Y = ∂τ H and Z = ∂2

τ H, the differential
operators with respect to η are rewritten as

∂η = a∂τ ,

∂2
η = a2D2

τ , D2
τ = ∂2

τ + H∂τ ,

∂3
η = a3D3

τ , D3
τ = ∂3

τ + 3H∂2
τ +

(

Y + 2H2
)

∂τ ,

∂4
η = a4D4

τ , D4
τ = ∂4

τ + 6H∂3
τ +

(

4Y + 11H2
)

∂2
τ +

(

Z + 7HY + 6H3
)

∂τ .

The inflationary variables are also rewritten as

∂η ϕ̂ = aH, ∂2
η ϕ̂ = a2

(

Y + H2
)

, ∂3
η ϕ̂ = a3

(

Z + 4HY + 2H3
)

,

∂4
η ϕ̂ = a4

(

∂τZ + 7HZ + 4Y2 + 18H2Y + 6H4
)

,

where the last ∂4
η ϕ̂ was used when deriving (10).

We decompose the scale factor as a(t) = a(ti)× ā(t), where t (= HDτ) is the dimen-
sionless time as introduced before and ā(ti) = 1. Then, a dimensionless quantity obtained
by dividing the physical momentum squared k2/a2 by H2

D can be expressed using the
comoving Planck mass m (16) as

Pa(t, k) =
k2

H2
Da2(τ)

=
k2

m2 ā2(t)
. (29)

Similarly, we introduce a dimensionless differential operator defined by Dn
t = Dn

τ /Hn
D =

∂n
t + · · · (n = 2, 3, 4), in which the Hubble variables are replaced with normalized

H̄ = H/HD, Ȳ = Y/H2
D, and Z̄ = Z/H3

D.
Next, we simplify the nonlinear terms as follows. First, applying an approximation that

the field correlation vanishes instantaneously when distance exceeds the correlation length
ξΛ, let the field f (k) be a variable with values such as a step function for k ≥ λ. We then
focus on the following function that arises in the Fourier transforms of the field products:

1

(2π)2

k2

p2q2
θ(k − |p − q|)θ(p + q − k). (30)

When displaying this function in the physical range p, q ≥ λ, there are two sharp peaks at
(p, q) = (λ, k) and (k, λ). Therefore, we extract these neighborhoods and evaluate them.
Supposing that the field variable f (k) is the one averaged over a narrow range ∆ around
the momentum k, and considering only the contribution from the narrow region near the
peak where dpdq is ∆2, we simplify (25) as follows:

( f g)(k) =
1

(2π)2

∆2

λ2

[

f (λ)g(k) + f (k)g(λ)
]

. (31)

We also simplify (26) in the same way. The evolution equation derived in this way is
written down in Appendix B, in which TR[λ](k) = 0 (A7) is a simplified version of the trace
Equation (20) while SP(k) = 0 (A8) is the constraint Equation (21).

Hence, we have to solve a system of nonlinear evolution equations consisting of the
four equations

TR[λ](k) = 0, SP(k) = 0, TR[λ](λ) = 0, SP(λ) = 0, (32)
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simultaneously, together with the homogeneous Equation (10). Here note that the last
two TR[λ](λ) = 0 and SP(λ) = 0 form a system of equations representing the nonlinear
evolution of the field with momentum λ, and can be solved with only these two equations.
In this way, although originally we have to solve a multi-line coupled equation system
consisting of many fields with different momentums, it is now reduced to a two-line system
consisting only of the fields with momenta k and λ, which can be solved relatively easily.

Let us solve this simplified evolution equation to see how the nonlinear terms work.
Here ∆ is introduced as a phenomenological parameter that effectively expresses the
strength of the nonlinear term, and its value is assumed to be approximately ∆/2π ∼ λ
because the coefficient of (31) becomes about 1.

In solving the nonlinear evolution Equation (32), we have to pay attention to the role
of SP = 0. As mentioned near the end of Section 3, this equation acts like a constraint
condition connecting the initial stage where the running coupling constant t̄ is small until
the moment of the spacetime phase transition where it diverges. It indicates that the
universe at t̄2 → 0 before inflation is in a state where only the fluctuation of Φ = φ with
h = 0 exists. On the other hand, at the dynamical time tΛ when t̄2 diverges, the fluctuation
changes to that satisfying Φ = h/3.

To solve the evolution equation while preserving the constraint SP = 0, we need
to solve it as a boundary value problem. The initial time ti is set to 10−3, well before
the Planck time, and the amplitude of Φ at that time is given by the square root of its
scale-invariant power spectrum ⟨|φ(ti, k)|2⟩ = π2/bc obtained by Fourier transform of the
two-point correlation function (4) [23]. Thus the initial value of Φ is set to

Φ(ti, k) =
π√
bc

(33)

and ∂tΦ(ti, k) = ∂2
t Φ(ti, k) = ∂3

t Φ(ti, k) = 0 for k ≥ λ. In order to set the boundary
condition on the field h, we rewrite it as h = 3(Φ − X) and impose the boundary condition
on X. Since the initial value of h is zero, X(ti, k) is equal to (33), while X should vanish at
the dynamical time tΛ(= 60), thus we set

X(ti, k) =
π√
bc

, X(tΛ, k) = 0. (34)

To evaluate time evolution of the field with momentum k, we have to solve (32) with the
boundary conditions (33) and (34) at k, together with those where k is replaced with λ.
Further comments on how to solve it are summarized in Appendix B.

The fluctuation that was scale-invariant before inflation deforms and eventually re-
duces with time. Figure 4 shows the results of time evolution of the fluctuations solved in
this way for various ∆, in which one of the results (black) is already displayed in Figure 1
and Figure 2 together with an enlarged view near the phase transition. The line of k = λ
on the right end of each figure is the result of solving only the latter two equations in (32),
while each k line is obtained by solving the four equations simultaneously.

Figure 5 plots the value of Φ at the time of the phase transition, and the square of it will
give the primordial spectrum that is an initial condition of the subsequent time evolution.
The right normalized panel shows that the nonlinear term has effects of flattening the
spectrum even in the region k > m. In the previous linear equation results [22], the
spectrum was greatly deformed at k > m, but it can be seen that the nonlinear effect
suppresses the deformation up to the high momentum region, exceeding 3 times m.

Here, we examined the evolution equation simplified by introducing the parameter
∆, but in fact it will be necessary to solve a system of evolution equations consisting of a
very large number of the fields obtained by describing the momentum integrals of (27) and
(28) by sums. In addition, although only nonlinear terms up to second order in the fields
are considered here, it is believed that higher-order nonlinear terms contribute in higher
momentum regions. In fact, here the linear approximation exhibits large undulations in the
spectrum and some strange behavior, which suggests that the nonlinear effects given by
the exponential function become essential in that region.
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Figure 4. Time evolution of the fluctuations including the nonlinear effects for bc = 7 and

m = 0.02 Mpc−1. The end line denotes the phase transition time set at tΛ = 60. Each shows

Φ and the h-component in Φ, respectively. Here, ∆/2π is 1.3λ (black), λ (blue), and 0.7λ (green) from

the top, and the red is the result for the linear equation (∆ = 0), where the black is already shown in

Figures 1 and 2.

Figure 5. Plots of the value of Φ at the time of the spacetime phase transition. The right is the one

normalized so that the others match the black at k = m. It can be seen that the nonlinear term serves

to maintain the scale invariance of the spectrum beyond the comoving Planck scale m.

Why, then, do the nonlinear terms with the exponential factor play an important role
in maintaining the scale invariance despite the presence of mass scale? The Einstein–Hilbert
action having such a factor is one of the conformal fields in terms of conformal field theory.
It is generally believed that correlation functions in the theory with it as a potential term
exhibit a power-law behavior. It may be considered that this behavior is manifested.

Thus, we can expect that the scale invariance before inflation is maintained up to
the relatively-high momentum region due to the nonlinear effects, and is conveyed to
the present CMB. However, to what extent will such an effect be maintained? Could
unexpected structures emerge in regions of even higher momentum [48]? The results here
are the first step toward clarifying these matters.
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Appendix A. Energy-Momentum Tensor for Each Sector

The energy-momentum tensor for each sector defined by (6) is given here [22]. In the
following, ✷ = ∂λ∂λ = −∂2

η + |∂2 is d’Alembertian in the flat background and χµ = ∂λhλ
µ.

The symmetric product is a(µbν) = (aµbν + aνbµ)/2.

Riegert sector

TR
µν =

bc

8π2
B

{

4✷ϕ∂µ∂νϕ − 4∂(µ✷ϕ∂ν)ϕ − 8

3
∂µ∂λϕ∂ν∂λϕ +

4

3
∂µ∂ν∂λϕ∂λϕ

+
2

3
∂µ∂ν✷ϕ + ηµν

[

−✷ϕ✷ϕ +
2

3
∂λ✷ϕ∂λϕ +

2

3
∂λ∂σϕ∂λ∂σϕ − 2

3
✷

2ϕ

]

−4∂(µhλ
ν)✷ϕ∂λϕ + 2∂λhµν✷ϕ∂λϕ − 4hλσ∂λ∂σϕ∂µ∂νϕ − 4χλ∂µ∂νϕ∂λϕ

+4hλσ∂λ∂σ∂(µϕ∂ν)ϕ + 4∂(µhλσ∂λ∂σϕ∂ν)ϕ + 4χλ∂λ∂(µϕ∂ν)ϕ

+
8

3
hλσ∂µ∂λϕ∂ν∂σϕ +

4

3
∂(µhλσ∂ν)∂λϕ∂σϕ + 4∂λhσ

(µ∂ν)∂λϕ∂σϕ

−4∂λhσ
(µ∂ν)∂σϕ∂λϕ − 4

3
hλσ∂µ∂ν∂λϕ∂σϕ − 4

3
∂(µhλ

ν)∂λ∂σϕ∂σϕ

+
2

3
∂λhµν∂λ∂σϕ∂σϕ +

4

3
∂µ∂νhλσ∂λϕ∂σϕ − 4∂λ∂(µhσ

ν)∂λϕ∂σϕ

+2∂λ∂σhµν∂λϕ∂σϕ − 4∂λχ(µ∂ν)ϕ∂λϕ + 4✷hλ
(µ∂ν)ϕ∂λϕ

+
4

3
∂(µχν)∂λϕ∂λϕ − 2

3
✷hµν∂λϕ∂λϕ +

4

3
∂λχλ∂µϕ∂νϕ

−4hλ
(µ∂ν)∂λϕ✷ϕ + 2hλ

(µ∂ν)✷ϕ∂λϕ + 2hλ(µ∂λ
✷ϕ∂ν)ϕ

+
8

3
hλ
(µ∂ν)∂

σϕ∂λ∂σϕ − 4

3
hλ
(µ∂ν)∂λ∂σϕ∂σϕ

+ηµν

[

2hλσ∂λ∂σϕ✷ϕ + 2χλ
✷ϕ∂λϕ − 2

3
hλσ∂λ∂σ∂ρϕ∂ρϕ

−2

3
χλ∂λ∂σϕ∂σϕ + 2∂λχσ∂λϕ∂σϕ − 2

3
hλσ∂λ✷ϕ∂σϕ − 4

3
hλσ∂λ∂ρϕ∂σ∂ρϕ

−4

3
∂ρhλσ∂ρ∂λϕ∂σϕ − 4

3
✷hλσ∂λϕ∂σϕ − 2

3
∂λχλ∂σϕ∂σϕ

]

−4

3
∂(µhλσ∂ν)∂λ∂σϕ − 2

3
hλσ∂λ∂σ∂µ∂νϕ − 8

3
∂µ∂νhλσ∂λ∂σϕ − 2

3
χλ∂λ∂µ∂νϕ

+
8

3
∂(µχλ∂ν)∂λϕ − 2

3
∂µ∂νχλ∂λϕ − 2

3
∂(µhλ

ν)∂λ✷ϕ +
1

3
∂λhµν∂λ✷ϕ

+4∂λ∂(µhσ
ν)∂λ∂σϕ − 2∂λ∂σhµν∂λ∂σϕ − 14

3
∂(µχν)✷ϕ +

7

3
✷hµν✷ϕ

−2∂λχλ∂µ∂νϕ + 4∂λχ(µ∂ν)∂
λϕ − 4✷hλ

(µ∂ν)∂λϕ +
2

3
∂λ∂(µχλ∂ν)ϕ

−2

3
hλ
(µ∂ν)∂λ✷ϕ

+ηµν

[

4

3
hλσ∂λ∂σ✷ϕ +

4

3
∂ρhλσ∂ρ∂λ∂σϕ +

4

3
χλ∂λ✷ϕ +

8

3
✷hλσ∂λ∂σϕ

−8

3
∂λχσ∂λ∂σϕ +

2

3
✷χλ∂λϕ + 2∂λχλ

✷ϕ − 1

3
∂λ∂σχσ∂λϕ

]

−1

9
∂µ∂ν∂λχλ +

1

9
ηµν✷∂λχλ

}

(A1)
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and the trace is

T
Rµ

µ =
bc

8π2
B

{

−2✷2ϕ + 4hµν
✷∂µ∂νϕ + 4∂λhµν∂λ∂µ∂νϕ + 4χλ∂λ✷ϕ

+4✷hµν∂µ∂νϕ + 2✷χλ∂λϕ +
4

3
∂λχλ

✷ϕ − 2

3
∂λ∂σχσ∂λϕ +

1

3
✷∂λχλ

}

. (A2)

Weyl sector

TW
µν = − 2

t2

{

✷
2hµν − 2✷∂(µχν) +

2

3
∂µ∂ν∂λχλ +

1

3
ηµν✷∂λχλ

}

(A3)

and the trace vanishes.

Einstein–Hilbert sector

TEH
µν = M2

Pe2ϕ

{

2∂µ∂νϕ − 2∂µϕ∂νϕ + ηµν

(

−2✷ϕ − ∂λϕ∂λϕ
)

− ∂(µχν)

+
1

2
✷hµν − 2hλ

(µ∂ν)∂λϕ + 2hλ
(µ∂ν)ϕ∂λϕ − 2∂(µhλ

ν)∂λϕ + ∂λhµν∂λϕ

+ηµν

(

1

2
∂λχλ + 2hλσ∂λ∂σϕ + hλσ∂λϕ∂σϕ + 2χλ∂λϕ

)}

(A4)

and the trace is

T
EHµ

µ = M2
P e2ϕ

{

−6✷ϕ − 6∂λϕ∂λϕ + ∂λχλ + 6hλσ∂λ∂σϕ + 6χλ∂λϕ

+6hλσ∂λϕ∂σϕ
}

. (A5)

Appendix B. Summary of Simplified Nonlinear Evolution Equation and How to Solve It

Time evolution of the fluctuations is obtained by simultaneously solving the evolution
equation of the fluctuations and the homogeneous equation that determines the inflationary
background.

The homogeneous equation can be expressed as

∂tZ̄ + 7H̄Z̄ + 4Ȳ2 + 18H̄2Ȳ + 6H̄4 − 3

[

1 +
γ1

κ
ᾱG(t)

]κ
(

Ȳ + 2H̄2
)

= 0, (A6)

using the dimensionless time t = HDτ and the normalized Hubble variables, H̄ = ∂t ā/ā,
Ȳ = ∂tH̄, and Z̄ = ∂tȲ, defined in Section 5. Here, the time-dependent running coupling
constant is denoted as ᾱG(t) = t̄2(t)/4π. The initial time ti = HD/Ei is set to 10−3 so that
Ei sufficiently larger than the Planck energy. Numerical calculations are stopped at tΛ − ϵ
just before the running coupling constant diverges, and ϵ is reduced until the result does
not change. Figure 3 is the result calculated in this way.

In the following, the evolution equation of fluctuations that we actually dealt with
and the method for solving it are described in detail. We use the trace Equation (20)
with multiplied by (8π2/bc)× (1/B̄)× (1/H4

Da4) and simplified the nonlinear terms as in
Sections 4 and 5. Denoting it as TR[λ](k) = 0 yields:
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TR[λ](k) = −2D4
t Φ(k)− 4Pa(k)D2

t Φ(k)− 2P2
a (k)Φ(k)− 4

3
H̄D3

t h(k)

−16

3

(

Ȳ + H̄2
)

D2
t h(k) +

4

9
Pa(k)D2

t h(k)− 8
(

Z̄ + 4H̄Ȳ + 2H̄3
)

∂th(k)

−20

9
H̄Pa(k)∂th(k)−

32

9

(

Ȳ + H̄2
)

Pa(k)h(k) +
4

9
P2

a (k)h(k)

+
1

(2π)2

∆2

λ2

{

−8∂th(λ)D3
t Φ(k)− 8∂th(k)D3

t Φ(λ)− 16

3
D2

t h(λ)D2
t Φ(k)

−16

3
D2

t h(k)D2
t Φ(λ)− 4

3
D3

t h(λ)∂tΦ(k)− 4

3
D3

t h(k)∂tΦ(λ)

+

[

−20

9
Pa(λ) +

16

3
Pa(k)

]

h(λ)D2
t Φ(k) +

[

−32

9
Pa(k) +

20

3
Pa(λ)

]

h(k)D2
t Φ(λ)

+

[

−20

9
Pa(λ)−

8

3
Pa(k)

]

∂th(λ)∂tΦ(k) +

[

−20

9
Pa(k)−

8

3
Pa(λ)

]

∂th(k)∂tΦ(λ)

−2

3
Pa(λ)D2

t h(λ)Φ(k)− 2

3
Pa(λ)D2

t h(k)Φ(λ)

+

[

−2

9
P2

a (λ) +
16

3
P2

a (k) +
4

9
Pa(λ)Pa(k)

]

h(λ)Φ(k)

+

[

4P2
a (λ) +

14

9
Pa(λ)Pa(k)

]

h(k)Φ(λ)

}

+

[

1 +
γ1

κ
ᾱG(t)

]κ{

6D2
t Φ(k) + 12H̄∂tΦ(k) + 12

(

Ȳ + 2H̄2
)

Φ(k) + 6Pa(k)Φ(k)

+4H̄∂th(k)− 8
(

Ȳ + 2H̄2
)

h(k)− 4

3
Pa(k)h(k)

}

+
1

(2π)2

∆2

λ2

[

1 +
γ1

κ
ᾱG(t)

]κ{

12Φ(λ)D2
t Φ(k) + 12Φ(k)D2

t Φ(λ) + 12∂tΦ(λ)∂tΦ(k)

+24H̄
[

Φ(λ)∂tΦ(k) + Φ(k)∂tΦ(λ)
]

+ 24
(

Ȳ + 2H̄2
)

Φ(λ)Φ(k)

+
[

12Pa(k) + 6Pa(λ)
]

Φ(λ)Φ(k)− 8h(λ)D2
t Φ(k)− 8h(k)D2

t Φ(λ)

+4∂th(λ)∂tΦ(k) + 4∂th(k)∂tΦ(λ)− 16H̄
[

h(λ)∂tΦ(k) + h(k)∂tΦ(λ)
]

+8H̄
[

∂th(λ)Φ(k) + ∂th(k)Φ(λ)
]

− 16
(

Ȳ + 2H̄2
)[

h(λ)Φ(k) + h(k)Φ(λ)
]

−
[

2

3
Pa(λ) + 16Pa(k)

]

h(λ)Φ(k)−
[

8

3
Pa(k) + 14Pa(λ)

]

h(k)Φ(λ)

}

. (A7)

If writing the constraint Equation (21) multiplied by (3/16)× t̄2 × (1/H2
Da2) as SP(k) = 0,

then we get

SP(k) = D2
t h(k) +

1

3
Pa(k)h(k) +

bc

8π
ᾱG(t)B̄(t)

{

D2
t Φ(k) + 2H̄∂tΦ(k)

+6
(

Ȳ + H̄2
)

Φ(k) + Pa(k)Φ(k) +
2

3
H̄∂th(k) +

2

3

(

Ȳ − H̄2
)

h(k)

−2

9
Pa(k)h(k)

}

+
bc

8π
ᾱG(t)

{

−3Φ(k) + h(k)
}

. (A8)

Moreover, using (22), the terms with D3
t h (= ∂3

ηh/a3H3
D) in (A7) should be rewritten to

terms up to the third time-derivative of Φ and up to the second time-derivative of h as
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D3
t h(k) = −1

3
Pa(t)∂th(k) +

∂tᾱG(t)

ᾱG(t)

(

D2
t h +

1

3
Pa(k)h

)

− bc

8π
ᾱG(t)

{

B̄(t)

[

D3
t Φ(k) + 2H̄D2

t Φ(k) + 8
(

Ȳ + H̄2
)

∂tΦ(k)

+6
(

Z̄ + 4H̄Ȳ + 2H̄3
)

Φ(k) + Pa(k)∂tΦ(k) +
2

3
H̄D2

t h(k)

+
4

3
Ȳ∂th(k) +

2

3

(

Z̄ − 2H̄3
)

h(k)− 2

9
Pa(k)∂th(k)

]

+∂t B̄(t)
)

[

D2
t Φ(k) + 2H̄∂tΦ(k) + 6

(

Ȳ + H̄2
)

Φ(k)

+Pa(k)Φ(k) +
2

3
H̄∂th(k) +

2

3

(

Ȳ − H̄2
)

h(k)− 2

9
Pa(k)h(k)

]}

+
bc

8π
ᾱG(t)

{

3∂tΦ(k) + 6H̄Φ(k)− ∂th(k)− 2H̄h(k)
}

.

The time evolution of the field with momentum k including the nonlinear effects is ob-
tained by simultaneously solving the four equations TR[λ](k) = 0, SP(k) = 0, TR[λ](λ) = 0,
and SP(λ) = 0. Here, note that the last two form a closed system of equations for the field
with momentum λ that can be solved by them alone.

When solving (A7) and (A8), we have to solve the homogeneous equation simulta-
neously to determine the inflationary background, but the scale factor ā appears only in
the form Pa(k) (29) in these equations. Since the solution of ā in the early stage is given by

ā(t) = eH̄i(t−ti) with H̄i = 1/
√

B̄(ti) and also Pa(k) vanishes rapidly with time, using this
function to reduce computational load does not affect the result.

Here, in order to further reduce the computational load, we fix the inflationary back-
ground as H̄ = H̄i, Ȳ = 0, and Z̄ = 0. If contributions from the nonlinear terms are small,
the evolution equation can be solved without such a fixing. However, this manipulation
only raises or lowers overall the amplitude of the spectrum and does not affect the spectral
pattern, which is almost determined in the early stage. Therefore, the background is fixed
here so that the calculations can be performed with more aggressive parameter values.

Using the ratio of the two physical scales (15), the running coupling constant is written
as ᾱG(t) = [4πβ0 log(N2/t2)]−1. When performing the numerical calculation, we first
convert this to ᾱc

G(t) = [4πβ0 log((N + c)2/t2)]−1 and find a solution of c = 1, then use it
as an approximate solution to find the solution of c = 0. However, since the introduction
of c also only raises and lowers the amplitude slightly as a whole and does not affect the
spectral pattern, we here present only the results for c = 1 to reduce the load, as mentioned
above. In this case, there is no need to introduce ϵ.

Special programs are needed to handle boundary value problems for differential equa-
tions where some variables that are not observable diverge at boundaries [49]. Moreover,
we need to solve simultaneous equations with multiple variables. The commercially avail-
able Maple software has a built-in program for such boundary value problems, and we
use it here. Specifically, we use the “dsolve” command in Maple15, set it to “method =
bvp[midrich], abserr = 1 × 10−2, initmesh = 1000, maxmesh = 8192 (maximum value)”,
and solve it numerically. In addition, as ∆ gets larger, it becomes more difficult to converge
initial Newton iterations. In that case, we use the “continuation” parameter to start from a
smaller ∆ where the initial iteration converges, leading to the desired result.

Figures 1, 2, 4, and 5 are the results of solving the nonlinear evolution equations
with the boundary conditions (33) and (34), by simplifying some functions and calculation
methods, as described above. In order to perform large-scale computations involving many
fields with different momentums with higher precision, a special program such as the
Fortran software, BVP_SOLVER [49], and a device that can run it will be necessary.
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Notes

1 See also the historic works of E. B. Gliner, which are memorialized in Ref. [4].
2 BRST is an acronym consisting of the initials of Becchi, Rouet, Stora, and Tyutin, who discovered BRST symmetry of gauge

theories in the 1970s.
3 In the first place, there is no absolute time in gravitational theory, as we can see from the fact that the total Hamiltonian vanishes.

Time is nothing but a dynamical variable that monotonically increases on average. Hence, the graviton picture propagating in a

specific spacetime becomes applicable only after the spacetime phase transition when the fluctuations become sufficiently small.
4 The strength of the nonlinearity is of the order of unity when expressed in terms of the non-Gaussianity parameter fNL [26].
5 This is a general argument without premising finiteness. When considering perturbation expansions around an apparently finite

spacetime, the R2
µνλσ term is often removed using the Euler (Gauss–Bonnet) combination.

6 If we define the perturbation theory around flat spacetime, we need to introduce R2 as a kinetic term for the conformal mode.

However, the problem arises that a new coupling constant of this term does not exhibit asymptotically free behavior when it is

introduced with the correct sign [31].
7 The last R̄2 term is a loop correction required within the approximation adopted here, which compensates for quadratic terms of

the traceless tensor field present in the nonlocal Riegert action [10].
8 The transformation law for each field is expressed as δζ ϕ = ζλ∂λϕ + ∂λζλ/4 and δζ hµν = ζλ∂λhµν + (∂µζλ − ∂λζµ)hλ

ν/2 +

(∂νζλ − ∂λζν)hλ
µ/2 with a gauge parameter ζλ satisfying conformal Killing equations. The key here is that both right-hand sides

are field-dependent. In contrast, in conventional weak-field approximation, gauge transformations remaining in the UV limit do

not depend on fields, thus all modes that cannot be removed by gauge fixing become physical.
9 The BRST conformal invariance suggests that there are no tensor fluctuations of the CMB scales originated before inflation. Thus,

they do not give a limit on the inflation scale so that we can go over the Planck scale wall.
10 The ghost is reminiscent of the Bohm’s “hidden variable” in the sense that it is “invisible, but being”. Reconciling gravity and

quantum theory requires a deep understanding of what its being means. In relation to the Bohm interpretation of quantum

cosmology, see for instance Ref. [43], in which cosmological issues such as how to avoid singularities and achieve isotropizing are

addressed.
11 The coefficient of the beta function is calculated as β0 =[(NX + 3NW + 12NA)/240 + 197/60]/(4π)2 [5,12,31]. However, here we

will treat β0 as one of the phenomenological parameters describing the dynamics of strong coupling.
12 Using 1 Mpc = 3.1 × 1024 cm and 1 cm = 5.1 × 1013 GeV−1, we obtain a(τi) = 1.6 × 10−59.
13 At the phase transition point, the running coupling constant and the third derivative of H diverges, but the physical quantities

such as ρ remain finite.
14 When considering higher momentum regions, it will be necessary to introduce momentum dependence in the running coupling

constant such as t̄2(τ, k) = {β0 log[τ2
Λ(1/τ2 + k2/a(τ)2)]}−1, even though the k-dependence disappears as soon as inflation

begins.
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