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Abstract In various fields of mathematical research, the
Brouwer degree is a potent tool for topological analysis. By
using the Brouwer degree defined in one-dimensional space,
we interpret the equation of state for temperature in black
hole thermodynamics, T = T (V, xi ), as a spinodal curve,
with its derivative defining a new function f . The sign of
the slope of f indicates the topological charge of the black
hole’s critical points, and the total topological charge can be
deduced from the asymptotic behavior of the function f . We
analyze a spherical hairy black hole within the framework of
Lovelock gravity, paying particular attention to the topolog-
ical structure of black hole thermodynamics under Gauss–
Bonnet gravity. Here, the sign of the scalar hair parameter
influences the topological classification of uncharged black
holes. When exploring the thermodynamic topological prop-
erties of hairy black holes under cubic Lovelock gravity,
we find that the spherical hairy black hole reproduces the
thermodynamic topological classification results seen under
Gauss–Bonnet gravity.

1 Introduction

Topology, a powerful mathematical tool for studying physi-
cal systems, has been widely applied across various fields of
theoretical physics, including particle physics and condensed
matter physics. In gravitational systems, topology has been
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employed to examine the light rings (LRs) of ultracompact
objects (UCOs) [1], revealing that the locations of LRs corre-
spond to the zeros of a specific vector. It was found that these
objects must have at least two LRs, with one being stable.
This method was later applied to black holes in 1+3 dimen-
sional asymptotically flat spacetimes [2], it was discovered
that, for each sense of rotation, there is at least one standard
LR outside the horizon. Building on this foundation, refer-
ence [3] utilizes topological methods in progressive AdS and
dS spacetimes, establishing that these spacetimes must con-
tain at least one standard photon sphere. If the topological
charge vanishes, the spacetime transitions into a naked sin-
gularity.

Topological methods have been widely applied in var-
ious gravitational systems, and they are naturally used to
study black hole thermodynamics. Motivated by this, Wei
et al. [4,5] proposed the generalized off-shell free energy
method and the temperature method to explore the global
and local properties of black hole thermodynamics. The for-
mer approach utilizes Duan’s φ-mapping topological cur-
rent theory [6] and the residue theorem [7] to study various
black holes, yielding intriguing results [8–27]. This approach
has been extended to the study of non-Boltzmann statistics
[28,29]. For the latter approach, in addition to applying topo-
logical current theory to classify the critical points of black
holes [30–37], an alternative, straightforward method has
been developed for conducting topological analysis of black
hole thermodynamic critical points [38]. This method relies
on an important concept in topology, namely the Brouwer
degree.

Assume n ≥ 1 is an integer, and let � be a bounded open
set in R

n , i.e., � ⊂ R
n . Consider a continuous mapping

f : � → R
n . Suppose z /∈ f (∂�), (where ∂� denotes the
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boundary of �) is a regular value of f . Then the preimage
f −1(z) = {x1, ...., xm}, consisting of points xn ∈ � is finite.
Consequently, f (xn) = z. Then the Brouwer degree of the
mapping was defined by [39]

d( f,�, z) :=
∑

x∈ f −1(z)

sgn
(
J f (x)

)
, (1)

the expression J f (x) = det( f ′(x)) represents the Jacobian
determinant of f at the point x , and sgn: R → {−1, 0, 1}
denotes the defined sign function

sgn(x) =

⎧
⎪⎨

⎪⎩

−1, x < 0

0, x = 0 ,

1, x > 0

(2)

this quantity is used to determine the positivity or negativity
of the determinant of the Jacobian matrix det( f ′(x)), inde-
pendent of the choice of the regular value z, and remains
invariant under continuous deformation of the mapping. In
the one-dimensional case, let f : � = [a, b] → R be
a continuously differentiable function with f (a) �= 0 and
f (b) �= 0. Let A = f −1(0) be the set of zeros of f . If for all
x ∈ A, f ′(x) �= 0, i.e., 0 is a regular value of f , then A is a
finite set. According to the definition of the Brouwer degree,
we have

d( f,�, 0) :=
∑

x∈A

sgn f ′(x). (3)

By applying the method for calculating topological charges
at critical points [5], each critical point can be assigned a
topological charge Qn based on sgn f ′(x), such that Qn =
sgn f ′(x). The sum of all these charges Qt represents the
Brouwer degree

Qt =
∑

n

Qn . (4)

Additionally, we can use a straightforward formula to calcu-
late the total topological charge directly, without needing to
determine the topological charge at each individual critical
point. This formula is [40]

Qt = 1

2
(sgn f (b) − sgn f (a)) =

∑

x∈A

sgn f ′(x), (5)

this equation allows for the direct determination of the total
topological charge through the analysis of the asymptotic
behavior of f . It is important to note that Eq. (5) is valid
only for continuously differentiable functions with non-zero
boundary values [40].

When applying the Brouwer degree definition to the topo-
logical analysis of thermodynamic critical points, it is nec-
essary to assign specific physical meaning to the function f
and its zeros. The equation that determines the critical points
is

(∂ST )P,xi = 0,
(
∂S,ST

)
P,xi = 0, (6)

where (∂ST )P,xi and
(
∂S,ST

)
P,xi represent the first and sec-

ond derivatives with respect to S, respectively, under con-
stant P and xi . By eliminating the pressure from (6), we
obtain a new temperature function known as the spinodal
curve T s = T (S, xi ) [41]. Consequently, the Eq. (6) is trans-
formed into

(
∂ST

s)
xi = 0,

(
∂S,ST

s)
xi = 0, (7)

now let f = (∂ST s)xi . According to this definition, it is
not difficult to see that the zero of f corresponds precisely
to the critical point of the thermodynamic system. We can
assign topological charges to each critical point based on
the characteristics of the zeros of f . The total topological
charge is the sum of the topological charges of all critical
points. In other words, the spinodal curve plays a crucial role
in the topological analysis of critical points. To illustrate this
more clearly, we explore black hole thermodynamics within a
higher-order gravity model-specifically, charged hairy black
holes under Lovelock gravity.

We organize the remainder of the paper as follows: In
Sect. 2, we begin by reviewing the thermodynamic proper-
ties of charged hairy black holes in the context of Gauss–
Bonnet gravity. We then use the Brouwer degree to calcu-
late the topological charge of both charged and uncharged
black holes. In Sect. 3, we extend the analysis from Sect. 2 to
the third-order Lovelock gravity framework. Finally, Sect. 4
presents the conclusions of this paper.

2 Hairy black holes in Gauss–Bonnet gravity

We begin by briefly introducing the thermodynamic prop-
erties of general Lovelock gravity, where the action in d-
dimensional spacetime is given by [42]

I = 1

16πG

∫
dd x

√−g

(
kmax∑

k=0

L(k) − 4πGFμνF
μν

)
, (8)

where kmax = [ d−1
2

]
such that the brackets represent the

integer part of (d − 1)/2, Fμν = ∂μAν − ∂ν Aμ, L(k) is the
Lagrangian densities

L(k) = 1

2k
δ(k)

(
ak R

(k) + bkφ
d−4k S(k)

)
, (9)
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with δ(k) = (2k)!δμ1
[α1

δ
ν1
β1

· · · δμk
αk δ

νk
βk ] is the generalized Kro-

necker tensor. Here the tensors R(k) and S(k) are

R(k) =
k∏

r

Rαrβr
μr νr

, S(k) =
k∏

r

Sαrβr
μr νr . (10)

We focus on the charged AdS hairy black hole solution, with
the metric given by

ds2 = − f dt2 + f −1dr2 + r2d
2
(σ )d−2,

F = Q

rd−2 dt ∧ dr,
(11)

here, d
(σ)d−2 represents the line element on a d−2 dimen-
sional spatial hypersurface with constant scalar curvature
equal to (d − 2)(d − 3)σ . The values σ = −1, 0,+1 corre-
spond to hyperbolic, planar, and spherical curvatures, respec-
tively. This leads to the following polynomial equation

kmax∑

k=0

αk

(
σ − f

r2

)k

= 16πGM

(d − 2)
σ
d−2r

d−1 + H

rd

− 8πG

(d − 2)(d − 3)

Q2

r2d−4 , (12)

where

α0 = a0

(d − 1)(d − 2)
, α1 = a1,

αk = ak

2k∏

n=3

(d − n) when k ≥ 2.

(13)

In Eq. (12), H represents the introduced scalar hair term

H =
kmax∑

k=0

(d − 3)!
(d − 2(k + 1))!bkσ

k Nd−2k . (14)

The relationship between N and the scalar field φ is given
by φ = N

r . To satisfy the equations of motion of the scalar
field, N must meet the following constraints [42]:

kmax∑

k=1

kbk
(d − 1)!

(d − 2k − 1)!σ
k−1N 2−2k = 0,

kmax∑

k=0

bk
(d − 1)! (d(d − 1) + 4k2

)

(d − 2k − 1)! σ k N−2k = 0.

(15)

Since there are two equations with a single unknown (N ),
one of the equations imposes a restriction on the permissible
coupling constants, bk . In what follows we consider bk = 0
for k ≥ 3 in an ensemble.

The mass, temperature, and electric potential of the black
hole can be described in terms of the event horizon radius

M = (d − 2)
σ
d−2

16πG

kmax∑

k=0

αkσ
krd−2k−1+ − (d − 2)
σ

d−2H

16πGr+

+ 
σ
d−2Q

2

2(d − 3)rd−3+
,

T = f ′ (r+)

4π
= 1

4πr+D (r+)

×
⎡

⎣
∑

k

σαk(d − 2k − 1)

(
σ

r2+

)k−1

+ H

rd−2+
− 8πGQ2

(d − 2)r2(d−3)
+

]
,

� = 
σ
d−2Q

(d − 3)rd−3+
,

(16)

where

D (r+) =
kmax∑

k=1

kαk

(
σr−2+

)k−1
. (17)

In Lovelock gravity, black holes no longer adhere to the area
law; instead, the entropy is determined using Wald’s method
[43]. In this case, the black hole’s entropy not only includes
the standard Lovelock black hole entropy but also accounts
for the contribution from the scalar hair. Through precise
calculations, the hairy contribution to the entropy is given by

S = 

(σ)
d−2

4G

[
kmax∑

k=1

(d − 2)kσ k−1αk

d − 2k
rd−2k+ − d

2σ(d − 4)
H

]
.

(18)

the mass, entropy, temperature, charge and and other quan-
tities of the black hole obey the extended first law

δM = T δS + �δQ +
∑

k


(k)δαk +
∑

k

K(k)δbk, (19)

here αk and bk are considered thermodynamic quantities,
while 
(k) and K(k) are their respective conjugate thermo-
dynamic potentials.

Considering the negative cosmological constant as the
thermodynamic pressure

P = − �

8π
= (d − 1)(d − 2)

16πL2 , V = 

(σ)
d−2r

d−1+
d − 1

, (20)
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here V is the volume. We first discuss the impact of scalar
hair on the thermodynamic topological classification of black
holes in Gauss–Bonnet gravity (i.e., second-order Lovelock
gravity). The polynomial in this case is given by:

α0 + σ − f

r2 + α2

(
σ − f

r2

)2

− h

rd
− 16πM

(d − 2)

(σ)
d−2r

d−1

+ 8π

(d − 2)(d − 3)

Q2

r2d−4 = 0.

(21)

Introducing the dimensionless thermodynamic variables

r+ = v
√

α2, T = t√
α2(d − 2)

, Q = q√
2
α

d−3
2

2 ,

(d − 1)(d − 2)α0

16π
= p

4α2
, H = 4πh

d − 2
α

d−2
2

2 .

(22)

And the the dimensionless counterpart of Helmholtz free

energy was found as g = α
3−d

2
2



(σ)
d−2

G, where G = M − T S

characterizes the canonical ensemble. Then the dimension-
less equation of state reads

t = 1

4πv1+2d
(
v2 + 2σ

)
[
−4πq2v8 + 4πv4+d

(
h + pvd

)

+(d − 2)v2dσ
(
(d − 3)v2 + (d − 5)σ

)]
.

(23)

2.1 Charged hairy black holes

Using the spherical horizon (σ = 1) as an example. With the
dimensionless state Eq. (23) already derived, the condition
for finding the critical points is now as follows

(∂vt)p,q,h = 0,
(
∂v,vt

)
p,q,h = 0. (24)

By eliminating the parameter p, a new temperature function
can be obtained, which is the spinodal curve t s = t (v, q, h)

that we are looking for

t s = 1

2πv1+2d
(
v2 + 6

)
[
4π(2 − d)q2v8 + 2πdhv4+d

+2(5 − d)(2 − d)v2d + (3 − d)(2 − d)v2d+2
]
,

(25)

the condition (24) then becomes

(
∂t s

∂v

)

q,h
= 0. (26)

When we set f =
(

∂t s
∂v

)

q,h
, the expression for f is obtained

as follows

f = 1

2πv2+2d
(
v2 + 6

)2

[
2πdh(1 − d)v6+d

+ 12πdh(3 − d)v4+d

+ 4πq2(2 − d)(5 − 2d)v10 + 24πq2(2 − d)(7 − 2d)v8

− (2 − d)(3 − d)v4+2d − 12(2 − d)v2+2d

−12(2 − d)(5 − d)v2d
]
.

(27)

Let us first discuss the charged case. It is evident that this
function is continuously differentiable. We find that for any
d ≥ 5 and q > 0, the following asymptotic behavior can be
obtained

f
(
v → 0+) ∼ q2(2 − d)(7 − 2d)

v2d−6
(
v2 + 6

)2 → +∞,

f (v → +∞) ∼ − (2 − d)(3 − d)v2

2π
(
v2 + 6

)2 → 0−.

(28)

From the above expression, it can be seen that f has a nonzero
boundary. By solving the equation for the topological charge,
Eq. (5), the total topological charge of a charged hairy black
hole in this system can be determined as follows

Qt = 1

2

[
sgn f (v → +∞) − sgn f

(
v → 0+)]

= 1

2
(−1 − 1) = −1.

(29)

We observe that the result mentioned above is independent
of the black hole charge q, the hairy parameter h, and the
dimension d. This implies that the hairy parameter does not
affect the topological charge of charged black holes with
spherical event horizon geometry, indicating that they belong
to the same topological class.

To determine the topological charge of each critical point
under various parameters, we would like to analyze the spin-
odal curve and the behavior of the function f . As an example,
for d = 5, Fig. 1 illustrates the number of critical points for
different charges. It shows that up to three critical points can
exist within a suitable range of parameters q and h.

For larger q, we find only one critical point. Let d =
5, q = 0.4, h = 0.1. In Fig. 2a, the colored solid lines repre-
sent isobaric curves, and the gray dashed line represents the
spinodal curve. It can be clearly seen that the critical point
CP1 is exactly the extremum point of the spinodal curve (the
extremum point of the critical temperature). According to
the analysis in [30,31,34], the topological charge of the con-
ventional critical point CP1, which serves as an annihilation

123
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Fig. 1 The number of critical points for charged hairy black holes
under Gauss–Bonnet gravity with d = 5

Fig. 2 The topological charge with only one critical point, QCP1 =
−1. Set d = 5, q = 0.4, h = 0.1

point, is −1. This corresponds to the zero point of the func-
tion f with a negative slope at CP1, as illustrated in Fig. 2b.
Therefore, we infer that the sign of the slope at the zero point
of the function f represents the topological charge of the
black hole critical point, i.e., QCP = sgn f ′(CP).

According to Fig. 1, if the charge is sufficiently small,
there can be up to three critical points. Next, we calculate the
topological charge of each critical point in this case, taking

Fig. 3 The graph of the function f (v) as it varies with v. The black dot
represents the zero point with positive topological charge. QCP1 = −1,
QCP2 = 1 and QCP2 = −1. Set d = 5, q = h = 0.1

q = h = 0.1. The behavior of the function f is shown
in Fig. 3. It is evident that the topological charges of these
critical points are QCP1 = sgn f ′(CP1) = −1, QCP2 =
sgn f ′(CP2) = 1, QCP3 = sgn f ′(CP3) = −1. Thus, the
topological charges of adjacent critical points are opposite,
and the sum of all topological charges is Qt = QCP1 +
QCP2 + QCP3 = −1, which is the sum of the topological
charges of each zero (critical point). This result is consistent
with the result obtained from Eq. (29).

It is worth noting that when we set d = 5 and q = 0.1, and
consider the variation of the hairy parameter h, that is, we
can regard h as a “time evolution factor”, as shown in Fig. 4.
When h < h1, the system has only one critical point, CP3,
with a topological charge of −1. As h increases and precisely
reaches h1, in addition to the original critical point CP3, we
also observe another critical point, ĈP, whose position can
be accurately calculated using Eq. (24). It is found that this
point is exactly at the critical point where f ′ = 0, so the
critical point ĈP has a topological charge of 0. With further
increase ofh, we find that not only doesCP3 exist, but ĈP also
produces two new critical points, CP2 and CP1, where CP2

has a topological charge of +1, and CP1 has a topological
charge of −1. As h continues to increase, CP2 and CP3

get closer, while CP2 and CP1 move further apart. When h
increases to h = h2, we observe that CP2 and CP3 merge
into a single critical point, ĈP, which corresponds exactly
to another critical point where f ′ = 0, so the topological
charge of ĈP is also zero. When h > h2, ĈP also disappears,
leaving only CP1. This means that the critical points creat
and annihilate in pairs does not affect the total value of the
topological charge.

2.2 Un charged hairy black holes

Next we discuss the uncharged case, when q = 0, then the
spinodal curve in (25) becomes

123
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Fig. 4 The critical points creat and annihilate in pairs for charged hairy
black holes in Gauss–Bonnet gravity. Assume d = 5, q = 0.1

t s = 1

2πv1+d
(
v2 + 6

)
[
2πdhv4 + 2(5 − d)(2 − d)vd

+(3 − d)(2 − d)v2+2
]
, (30)

the function f =
(

∂t s
∂v

)

h
becomes

f = 1

2πv2+d
(
v2+6

)2

[
2πdh(1−d)v6+12πdh(3−d)v4

− (2 − d)(3 − d)v4+d − 12(2 − d)v2+d

−12(2 − d)(5 − d)vd
]
.

(31)

Similar to the analysis of the charged case, Eq. (31) is con-
tinuously differentiable, and when d ≥ 5 and q = 0, there is

f
(
v → 0+) ∼ −dh(d − 3)v2

vd
(
v2 + 6

)2 →
{

+∞ when h < 0

−∞ when h > 0
,

f (v → +∞) ∼ − (2 − d)(3 − d)v2

2π
(
v2 + 6

)2 → 0−.

(32)

We find that the asymptotic result of the function f is related
to the positive and negative value of h, so the total topological
number (topological charge) of the black hole in this case can
be divided into two cases, i.e

Qtotal = 1

2

[
sgn f (v → +∞) − sgn f

(
v → 0+)]

=
{

−1 when h < 0

0 when h > 0.

(33)

Fig. 5 The topological charges with two critical point, QCP1 = 1 and
QCP2 = −1. Set d = 5, q = 0, h = 0.09

The above results indicate that the total topological num-
ber of the black hole in the uncharged case depends on the
sign of the hairy parameter h. Taking d = 5 as an example,
when h < 0, as shown in Fig. 5a, there is only one criti-
cal point CP2, so the total topological charge is −1, which
can be classified in the same category as the charged black
hole. When 0 < h � h0, we find that not only does the
critical point CP2 exist, but a new critical point CP1 also
appears. At this point, the two critical points are far apart,
with the topological charge of CP1 being +1. Therefore, the
total topological charge is 0, placing this case in a different
topological class from the charged black hole. As h increases,
CP2 and CP1 move infinitely closer together and merge into
a single critical point ĈP, which is the annihilation point of
the critical point pair ĈP, with a topological charge of 0.
The graph of the function f for 0 < h < h0 is shown in
Fig. 5b. When h = 0.09, the two critical points in Fig. 5 have
opposite topological charges, so the total topological charge
is Qt = QCP1 + QCP2 = 0. For h > h0, no critical points
are found, so there is no topological charge, which can be
understood as a topological charge of 0, consistent with the
result in (33).
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3 Hairy black holes in cubic Lovelock gravity

In this section, we consider the thermodynamic topological
properties of U(1) charged hairy black holes under cubic
Lovelock gravity. Let’s consider the following polynomials

α3

(
σ − f

r2

)3

+ α2

(
σ − f

r2

)2

+
(

σ − f

r2

)
+ α0

= 16πGM

(d − 2)

(σ)
d−2r

d−1
+ H

rd
− 8πG

(d − 2)(d − 3)

Q2

r2d−4 .

(34)

Dimensionless parameters are also constructed

r+ = vα
1/4
3 , α = α2√

α3
, T = tα−1/4

3

d − 2
, H = 4πh

d − 2
α

d−2
4

3 ,

Q = q√
2
α

d−3
4

3 ,m = 16πM

(d − 2)

(κ)
d−2α

d−3
4

3

.

(35)

So the equation of state is

t = v−1−2d

4π
(
3 + v4 + 2v2α

)
[
−4πq2v10 + 14v2d − 9dv2d

+ d2v2d + 4hπv6+d + 6v4+2d − 5dv4+2d + d2v4+2d

+4pπv6+2dα + 10v2+2d − 7dv2+2dα + d2v2+2dα
]
.

(36)

After eliminating p, the spinodal curve is

t = 1

2πv1+2d
(
15 + v4 + 6v2α

)
[
4π(2 − d)q2v10

+ 2πdhv6+d + 2(5 − d)(2 − d)v2d+2

+3(7 − d)(2 − d)v2dα + (3 − d)(2 − d)v2d+4
]
.

(37)

Then the continuous differentiable function is constructed

f = 1

2πv2+2d
(
15 + v4 + 6v2α

)2

[
30(5 − d)dhπv6+d

+ 2dhπ(1 − d)v10+d − 12(−3 + d)αdhπv8+d

+ 60(−2 + d)(−9 + 2d)πq2v10

+ 4(−2 + d)(−5 + 2d)πq2v14

+ 24(−7 + 2d)α(−2 + d)πq2v12

− 45(−7 + d)(−2 + d)v2d

− (−3 + d)(−2 + d)v2d+8 + 12α(−2 + d)v2d+6

− 6
(

5 − 5d + 2(−5 + d)α2
)

(−2 + d)v2d+4

+12α(19 − 2d)(−2 + d)v2d+2
]
. (38)

Similar to the analysis in the previous section. When we
consider that the charge is non-zero, we find that for any
dimension d ≥ 7, we get the following asymptotic case

f
(
v → 0+) ∼ (−2 + d)(−9 + 2d)q2

v2d−8
(
15 + v4 + 6v2α

)2 → +∞,

f (v → +∞) ∼ − (−3 + d)(−2 + d)v6

(
15 + v4 + 6v2α

)2 → 0−. (39)

The above formula also does not depend on any black hole
parameters, and the total topological charge is

Qtotal = 1

2

[
sgn f (v → +∞) − sgn f

(
v → 0+)]

= 1

2
(−1 − 1) = −1.

(40)

The topological charge of a charged hairy black hole in
Lovelock gravity for d ≥ 7 is the same as that of a charged
hairy black hole in Gauss–Bonnet gravity for d ≥ 5, and they
can be classified into the same category. The distribution tra-
jectory of the critical volume with respect to the hairy param-

Fig. 6 The topological charges with three critical point, QCP1 = −1,
QCP2 = 1 and QCP2 = −1. Set d = 7, q = 0.1, h = 0.5 and α = 1
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eter h, and the plot of the function f are shown in Fig. 6. For a
certain range of h up to three critical points may exist. Similar
to the case in Gauss–Bonnet gravity, if α is sufficiently small,
three critical points can exist for sufficiently small charges.
Therefore, the topological charge associated with the critical
points is given by Qt = QCP1 + QCP2 + QCP3 = −1.

Next, we discuss the case without charge. In this case, the
corresponding spinodal curve is

t s = 1

2πv1+2d
(
15 + v4 + 6v2α

)
[
2πdhv6+d + 3(7 − d)(2 − d)v2d

+2(5 − d)(2 − d)v2d+2α + (3 − d)(2 − d)v2d+4
]
.

(41)

So the function (38) becomes

f = 1

2πv2+2d
(
15 + v4 + 6v2α

)2

[
30(5 − d)dhπv6+d

+ 2dhπ(1 − d)v10+d − 12(−3 + d)αdhπv8+d

− 45(−7 + d)(−2 + d)v2d − (−3 + d)(−2 + d)v2d+8

− 6
(

5 − 5d + 2(−5 + d)α2
)

(−2 + d)v2d+4

+12α(19 − 2d)(−2 + d)v2d+2 + 12α(−2 + d)v2d+6
]
.

(42)

The above formula is a continuously differentiable function
for any d ≥ 7 we have

f
(
v → 0+) ∼ − (d − 5)dh

vd−4
(
15 + v4 + 6v2α

)2

→
{

+∞ when h < 0

−∞ when h > 0
,

f (v → +∞) ∼ − (−3 + d)(−2 + d)v6

(
15 + v4 + 6v2α

)2 → 0−,

(43)

then we get the topological number of uncharged black holes

Qtotal = 1

2

[
sgn f (v → +∞) − sgn f

(
v → 0+)]

=
{

−1 when h < 0

0 when h > 0.

(44)

We observe that the topological number of an uncharged
black hole in cubic Lovelock gravity is the same as that of an
uncharged black hole in Gauss–Bonnet gravity. In Fig. 7a, we
find that an increase in the parameter α reduces the range of

Fig. 7 The topological charges with two critical point, QCP1 = 1,
QCP2 = 1. Set d = 7, q = 0, h = 0.5 and α = 1

h, where there can be at most two critical points. Figure 7b
shows that when two critical points exist, the topological
charges are QCP1 = 1 and QCP2 = −1, respectively. There-
fore, the total topological charge is Qt = QCP1 +QCP2 = 0.

4 Conclusion

We employ the definition of the Brouwer degree by assigning
specific physical meanings to the continuous mapping func-
tion f and its zeros, and we associate a topological quantity
with the thermodynamic critical points of black holes based
on spinodal curve. In this approach, the topological charge
can be determined without the need to precisely locate the
exact value of the critical points; the zeros of the function f
alone can identify these critical points. Moreover, if the slope
of f at these zeros is positive, it indicates that the critical point
has a topological charge of +1. Conversely, if the slope is neg-
ative, it indicates a topological charge of −1. Additionally,
the total topological charge of the system can be computed
based on the asymptotic behavior of the function f .

123



Eur. Phys. J. C          (2024) 84:1251 Page 9 of 10  1251 

We examined the thermodynamic topological properties
of hairy black holes in Gauss–Bonnet gravity, with a particu-
lar focus on the case where σ = 1. For the charged scenario,
hairy black holes exhibit a topological charge of −1 across all
dimensions, indicating that they belong to the same topologi-
cal class. However, in the uncharged scenario, the sign of the
hairy parameter h plays a crucial role in identifing the ther-
modynamic topological charge of black holes. When h > 0,
the black holes have a total topological charge of −1, align-
ing it with the same topological class as charged hairy black
holes. Conversely, when h < 0 the total topological charge
becomes 0, placing it in aheid different topological class from
charged hairy black holes. Furthermore, when analyzing the
thermodynamics of hairy black holes within cubic Lovelock
gravity, we discovered that cubic Lovelock spherical black
holes reproduce the thermodynamic topological classifica-
tion results of Gauss–Bonnet spherical black holes in dimen-
sions d ≥ 5. The charged cases mirror the results observed
for charged Lovelock spherical black holes in dimensions
d ≥ 7, as detailed in reference [38]. The topological number
of uncharged, negatively hairy black holes corresponds to
that of uncharged, hairless black holes in dimensions d > 7
from [38].
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