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Abstract. Scattering amplitudes in perturbative quantum field theory exhibit a rich structure
of zeros, poles and branch cuts which are best understood in complexified momentum space. It
has been recently shown that by leveraging this information one can significantly simplify both
analytical reconstruction and final expressions for the rational coefficients of transcendental
functions appearing in phenomenologically-relevant scattering amplitudes. Inspired by these
observations, we present a new algorithmic approach to the reconstruction problem based on
p-adic numbers and computational algebraic geometry. For the first time, we systematically
identify and classify the relevant irreducible surfaces in spinor space with five-point kinematics,
and thanks to p-adic numbers — analogous to finite fields, but with a richer structure to their
absolute value — we stably perform numerical evaluations close to these singular surfaces, thus
completely avoiding the use of floating-point numbers. Then, we use the data thus acquired
to build ansétze which respect the vanishing behavior of the numerator polynomials on the
irreducible surfaces. These ansétze have fewer free parameters, and therefore reduced numerical
sampling requirements. We envisage future applications to novel two-loop amplitudes.

1. Introduction

Theoretical predictions in the Standard Model are being driven towards higher loop orders and
multiplicities to match the increasing precision of experimental results from the LHC. To handle
the increasing algebraic complexity of loop-amplitude computations, while avoiding numerical
instabilities, methods based on finite-field sampling have been introduced [1,2] and implemented
in publicly available software [3-5]. These methods allow one to numerically sample rational
coefficients of master integrals or transcendental functions, and “reconstruct” their analytical
form for subsequent phenomenological applications. Very recently, a number of cutting-edge
computations for processes at two loop with five-point kinematics including an off-shell external
leg have been successfully tackled in this way [6-9].

Our present work is mainly motivated by the exponential increase in the number of free
parameters in the ansitze which need to be fixed from finite-field samples as the phase-space
multiplicity increases. For example, the five-point massless kinematics computation of Ref. [10]
required O(10°) samples, while the five-point one-mass kinematics computation of Ref. [8]
required O(10°) evaluations. An additional motivation comes from the need to obtain stable and
fast to evaluate amplitudes for phenomenological applications. To this aim, taking inspiration
from previous computations relying on spinor-helicity ansétze and constraints from singular
limits in complexified momentum space [11,12], we formulate an algorithm based on p-adic
numbers and algebraic geometry to obtain ansétze with reduced sampling requirements.
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1.1. Problem setup

When working in dimensional regularization, the e-pole dependence of the amplitude is well
understood in terms of universal factors and lower-order amplitudes [13,14]. Therefore, instead
of the amplitudes A, we can consider the so-called finite remainders R. Given a phase space
that involves n massless particles, we can write

R=> G\ Fi(\A), (1)

where the C; and F; are rational and transcendental functions respectively, and (A, 5\) denotes
the set of left- and right-handed Weyl spinors, which we treat as independent. As the set of
possible poles {D} is well known, the rational functions can be written as
. Ni(A\ A
G = NN

H] D]()‘a A)q”
The aim is to obtain refined ansiatze for the numerator polynomials A;. As an example
application we reconsider the two-loop finite remainders for the process ¢gg — 3v [15,16].

(2)

2. Geometry of spinor space
Our starting point is the polynomial ring of spinor components

Su=F[1).[1],....|n). [n] 3)

where we are employing spinor-helicity notation, and the spinors are understood to be taken
component wise. This is the infinite set of polynomials in spinor components with coefficients
in the field F, together with the operations of addition and multiplication.

It is natural to consider subsets of this infinite set of polynomials. In particular, it is
interesting to consider those subsets, called ideals, formed by all polynomial linear combinations
of a given set of starting polynomials, which are dubbed ideal generators. The most fundamental
ideal in S, is the momentum conservation ideal, dubbed J,, and defined as

Ir, = <§j )0l - (4)

Here it is expressed in terms of a single tensor generator, which is a shorthand for four generators
in components. The subscript indicates the ring over which the ideal is defined. Note that
different generating sets may correspond to the same ideal. A variety of operations involving
ideals, such as equality checks, can be done via Grobner basis techniques.

The geometric concept corresponding to the algebraic one of an ideal is that of a wvariety.
Given an ideal J in S, the associated variety, denoted as V(J), is defined as the set of phase-
space points (A, \) € F4" which set the generators of J to zero. For instance, V(Jy,) is the set of
points in n-point phase space which satisfy momentum conservation. Similarly, given a variety
U we can associate to it an ideal I(U), defined as the set of all polynomials vanishing on U.
Two natural concepts to associate to ideals and varieties are dimension and codimension. The
latter is defined as the complement of dimension w.r.t. the dimension of the full space V' ((0)).
The dimension of V(Jy, ) is 4n — 4, while its codimension in S, is 4.

Since we wish for momentum conservation to always be respected, it is convenient to introduce
the following quotient ring

Ry = Sn/Jn, (5)

where two polynomials are identified as equivalent if they differ by a member of Jy, ; that is,
in R,, all polynomials in Jy, are considered as re-writings of zero. Geometrically, all varieties
associated to ideals of R,, are sub-varieties of V(Jy, ). In the quotient ring V((0)g, ) ~ V(Ja,, ),
thus the codimension of V(Jy, ) in R, is 0.
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Figure 2. A reducible variety given by
Figure 1. The irreducible variety V ((z)). the union of V((x + y — 2)) in blue and
V(2% + yz)) in red.

2.1. Irreducible varieties and prime ideals
An important concept associated to varieties is that of reducibility. Mathematically, a variety
U is said to be irreducible if

U=U,UU; = U =Uor U;=U, (6)

that is, if it cannot be written as an irredundant union of two simpler varieties U; and Us.
Algebraically, irreducible varieties correspond to prime ideals, which are defined as follows

J isprimeif abe J = a€ JorbeJ. (7)

Figures 1 and 2 provide explicit examples, although to allow for a graphical visualization we
need to consider the simpler polynomial ring F[z,y, 2] instead of S,,. On the left-hand side, the
variety V' ((z)) is irreducible: it is just the plane x = 0. On the right-hand side, the variety
V({(z+y—z)(a*+yz))) is the union of two simpler varieties: the plane z +y —z = 0, in blue,
and the conical surface 22 + yz = 0, in red.

2.2. Irreducible singular varieties in spinor space
For our study of the rational functions C; in the five-point two-loop remainders of qg — 3 it
suffices to consider poles of the form

{D} = {(ij), (il +kli] Vi#j#ke(1,...,5)}. (8)

The associated varieties <Dj> R, 1€ of codimension one. There are 35 such varieties, and they
are all irreducible, which implies that the least common denominator [[; D; of Eq. (2) is unique.

Contrary to codimension-one varieties generated by a single denominator factor in Rs,
varieties of codimension two generated by a pair of poles are not all irreducible. For instance,
let us consider the following ideal of codimension two

Ji=((12), (23)) . (9)
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and ask ourselves whether it is prime. By writing down a Schouten identity between its
generators it is easy to find a product such that Eq. (7) is violated

13)(12) + [1)(23) = [2)(13) (10)
= |2(13)eJ; and [2) ¢y, (13) & J;. (11)

Then, clearly, J; cannot be prime. In fact, it admits the following decomposition
J=PNnP,NP~F;s, (12)
where the three prime ideals are given by

Pr={12))p . Pr=({12),(23),(13),45]) ., Py = ({if) ¥i#)p, - (13)

The second split P> N P3 is a peculiarity of 5-point phase space, as it follows from sj23 = $45.
Note also that union of varieties corresponds to intersection of ideals, hence Eq. (13) implies,
according to the definition of Eq. (6), that V' (J;) is a reducible variety. Physically, we can think
of P as a “soft” ideal, and of P5, P3 as “collinear” ideals.

Starting from the poles of Eq. (8), we identify 10 distinct prime ideals at codimension
two in Rs, up to permutations and parity (i.e. the symmetries of Jp,). Accounting for their
multiplicities under these symmetries we find 317 distinct irreducible varieties. For example,
there are 10 varieties analogous to P;, 20 to P> and only 2 to Ps.

3. p-adic numbers
To make practical use of Section 2, we need to be able to generate phase-space points close to
irreducible surfaces. This is impossible over finite fields, and potentially unstable over the usual
floating-point numbers, which leads us to introducing p-adic numbers.

A p-adic number x can be expressed in terms of a series, reminiscent of a Laurent series, in
a prime number p. Starting from a finite negative integer —m, we write

o0
x = Z aip' = a_mp "+t asip Tt +ag+ap+ap’ + - (14)
i=—m

The subset of p-adic numbers (Q,) with m = 0 is known as the p-adic integers (Z,). Given
m = 0, the first p-adic digit ag behaves like an element of the finite field F,,.
The valuation (vp) of a p-adic number is defined as

vp(x) = k such that a; =0 for all i < k. (15)
In terms of the valuation, we can define the p-adic absolute value as
|, = p~r ) (16)

where the sign in the exponent is crucial. As a consequence on this definition, the series of
Eq. (14) is convergent and can thus be safely truncated.

For practical applications it is convenient to employ a “floating-point” representation, with
an exponent, given in terms of the valuation, and a k-digits mantissa, in parenthesis,

k—1
T = pl’p(x) (Z aipi + O(pk)> with a; #0. (17)
=0

We note that when implementing p-adic numbers in this representation it may be convenient to
allow for a variable-size mantissa, i.e. to explicitly keep track of the error term O(p*).
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3.1. p-adic phase-space points close to irreducible varieties

Given an irreducible surface U C V(Jy, ), we wish to generate a p-adic phase-space point
which lies close to the singular surface U, while being on V(Jy, ), i.e. respecting momentum
conservation. We label such a point with an (€) superscript and a U subscript, and define it as

qi(AS),S\S)) = O(e) where I(U) ={q1,...,q)r, and i € {1,... 1},

© 300 k (18)
(AL, Ay) = O(€7) where Jy, = (r1,...,14)5, and j € {1,...,4}.

In Eq. (18) the meaning of k is the same as in Eq. (17), that is momentum conservation is
respected to the full working precision. Since we wish for € to be a small quantity, and we are
working in @, we can take € ~ p. To construct such a phase-space point we can first generate a
finite field point exactly on U, and then “lift” this solution to be an approximate p-adic solution
with a multivariate procedure analogous to the univariate Hensel lift.

4. Ansatz construction
The first step is the determination of the orders of poles and zeros. This can be achieved by a
single p-adic evaluation close to the relevant codimension one variety

gij = vp (G AE) with U= V(D)) (19)

as long as the varieties V((D;)) are irreducible, which for the set of poles of Eq. (8) is always
the case at five-point — but is not, for instance, at four-point.

Having obtained the denominator [] j D]qij, we have numerical access to the numerator N; as
the product of the rational function C; and the denominator. For each irreducible surface U, of
codimension two, we can obtain the valuation of the numerator at a nearby point

Kin = (NI M) - (20)

Then, by the Zariski-Nagata theorem [17-19], we conclude that the numerator has to belong to
a particular class of polynomials, the so-called ideal symbolic powers, which are denoted by an
angle-bracket exponent
Ni € 3 with J=()I(U,)". (21)
¥
Moreover, N; needs to belong to the vector space of products of spinor brackets that have the
correct mass dimension and little-group weights. Let us denote monomials in spinor brackets as

mag = | [ [T [i)% . (22)
ji<i

We can then denote their mass dimension as [mq )], their k™ little-group weight as {m, g }x,
and define the following vector space

Mgz = {%,ﬁ)m(a,ﬁ) Ml = ds {mag bk = ks Cap) € @} ) (23)

where we are employing Einstein summation convention over the indices («, §). The numerator
belongs to both the ideal J of Eq. (21) and the appropriate vector space M, 3 of Eq. (23), i.e.

J\/}Gﬁﬂ./\/ld7$ with d=[N;] and ¢ ={N;}x. (24)

This intersection can be computed by means of polynomial reduction via Grébner bases and
standard linear algebra algorithms (e.g. for computing null-spaces and intersections of vector
spaces). It may also be convenient to first compute the intersection of the spinor-brackets vector
space with each ideal symbolic power, and then intersect the resulting vectors spaces, instead of
first intersecting the ideals to obtain J.
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Table 1. Number of free parameters in the ansitze.

. 2,0 2,N 2,0 2,N
Remainder ng) ot Ri,#)v n 7'\’,(7 W)Jrﬁ R(WW‘{)W
Old ansatz size 41301 2821 7905 1045
New ansatz size 566 20 18 6

5. Application and outlook
As an example application, we constructed refined anséatze for the two-loop finite remainders for
the production of three photons at hadron colliders. Table 1 shows the reduction in the size of
the ansatz for different helicity configurations in the expansion in the number of light fermion
flavors Ny. The comparison is between an ansatz which only takes into account mass dimension
and little-group weights, and one which also imposes the constrains from the order of vanishing
of the numerator on the irreducible surfaces of codimension two. The construction of this new
ansatz also requires 317 “warm-up” p-adic evaluations, while the sampling of the ansatz itself
can be done over finite fields. For this computation we have made extensive use of Singular [20],
through the Python interface of Ref. [21], and the Mathematica interface of Ref. [22]. We have
also made use of in-house implementations of p-adic numbers with and without a variable size
mantissa. For publicly available implementations we refer the reader to Refs. [23,24].

In the future, it will be interesting to analyze the behavior of algorithms for the numerical
computation of multi-loop amplitudes when the field is taken to be Q,. Barring severe numerical
instabilities, we foresee applications to new two-loop high-multiplicity amplitudes.
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